
POLITECNICO DI MILANO

FACULTY OF ENGINEERING

MASTER DEGREE IN COMPUTER ENGINEERING

A SOFTWARE CACHING METHODOLOGY FOR
POWER OPTIMIZATION IN DATA CENTERS

Tutor: Prof. Francalanci CHIARA

Co-Tutors: Capra EUGENIO

Giampaolo AGOSTA

Students:
Katsumi FABIO

Maica Reis IGOR

ACADEMIC YEAR 2009-2010

Agradecimento às nossas famı́lias,

pois sem base consistente não há

crescimento pessoal sólido.

Abstract

Nowadays, the evidence of human environmental impact is easily noticed. Cli-

matic changes and natural resources depletion have triggered the world concerns.

The increasing costs of energy and its influence on companies budget regard-

ing the IT infrastructure, i.e., Data Centers, have led enterprise focus to power

optimization. This research aims to create a software enhancement to reduce

the energy required by equipments since there are indications that software re-

dounds consumption. The thesis presents a software caching methodology to re-

duce the computation time in mathematical high workload systems commonly

used in financial institutions. Considering that fully stressed hardware demands

more power, the time saved induces the energy reduction. Furthermore, a numer-

ical model was engendered for software methods assortment and cache decisions.

After the development, a set of tests was performed and the defined metrics and

measurements turned out approximately 20% of energy savings. The work accom-

plished showed us up that a software layer optimization may produce powering

reduction beside time computation decreasing. This implies the cutback of energy

demand through all segments of a Data Center infrastructure.

iii

Sommario

Oggi, l’evidenza dell’impatto ambientale umano è facilmente notata. I cambia-

menti climatici e l’esaurimento delle risorsi naturali hanno innescato le preoccu-

pazioni del mondo. I costi crescenti di energia e la sua influenza sul bilancio delle

aziende per quanto riguarda l’infrastruttura IT, cioè Data Centers, hanno direzion-

ato il fuoco per ottimizzazione della potenza. Questa ricerca mira la creazione

di un miglioramento nel software per ridurre l’energia richiesta dagli apparecchi

perchè ci sono indicazione che il software incide nel consumo energetico. La tesi

presenta una metodologia di cache in software per abbassare il tempo di calcolo

matematico in sistemi con alto carico di lavoro di uso comune nelle istituzioni

finanziarie. Considerando che le hardware più usati richiedono più potenza, il

tempo risparmiato induce la riduzione del consumo energetico. Inoltre, un mod-

ello numerico è stato generato per assortimento dei metodi del software e le deci-

sioni della cache. Dopo lo sviluppo, una serie di test è stato effettuato ei parametri

definiti e misurazioni ci è rivelato circa il 20 % di risparmio energetico. Il la-

voro svolto ci ha mostrato che su una ottimizzazione nel livello del software può

produrre riduzione della potenza insieme con il tempo di calcolo. Ciò implica la

riduzione della domanda di energia attraverso tutti i segmenti di una infrastruttura

di Data Center.

v

Contents

1 Introduction 1

2 State Of The Art 5

2.1 Green IT . 5

2.1.1 Motivation . 6

2.1.2 Initiatives and Solutions 8

2.1.3 Focus in Software Layer 12

2.2 Software Profiling . 14

2.3 Financial Software . 16

3 A Green Software Approach 21

3.1 Software Architecture . 22

3.1.1 Memory Management 23

3.1.2 Trade-Off . 24

3.2 Memory Organization . 26

3.3 Use Cases . 26

3.4 Classes Diagrams . 29

3.4.1 Utils Package . 29

vii

3.4.2 Memory Package . 33

3.4.3 Logic Package . 36

3.5 Execution Sequences . 38

3.5.1 Lookup Scenarios . 39

3.5.2 Trade-Off Scenarios . 41

3.5.3 Sample Source Code . 46

4 Power Optimization By Caching 47

4.1 Trade-Off Modes . 47

4.1.1 Full Tabulation . 48

4.1.2 Range Tabulation . 48

4.2 Alpha Approach . 51

4.2.1 Execution Flow . 51

4.2.2 Time Consuming Blocks 52

4.2.3 Variables . 53

4.2.4 Flow Execution Analysis 53

4.2.5 Time Saving Analysis 55

4.2.6 Conclusion . 55

4.3 Allocated Memory Control . 56

4.3.1 Metrics Extraction . 57

4.3.2 Memory Estimation . 58

5 Tests and Results 61

5.1 Experimental Setup . 61

5.2 Benchmark Applications . 64

5.3 Results . 66

5.3.1 First Test . 66

5.3.2 Analysis . 70

5.3.3 Second Test . 70

5.3.4 Analysis . 75

6 Conclusion and Future Work 77

6.1 Conclusion . 77

6.2 Future Work . 79

Appendix A- Simulation Reports 81

List of Figures

2.1 Ratio between New Equipments and Energy Consumption 7

2.2 IT Layers and Proportional Consumptions 12

2.3 Time Execution for a low number of operations 19

2.4 Time Execution for a high number of operations 19

3.1 System Architecture . 23

3.2 Memory Schema to keep the function data 26

3.3 Use Case Diagram . 27

3.4 Utils Package - Important Classes 30

3.5 Memory Package - Memory Management Class 34

3.6 Logic Package - Trade-Off Class 36

3.7 Lookup with Miss in Memory. Requires Trade-Off execution . . . 39

3.8 Lookup with Hit in Memory. Get the return and continues 41

3.9 Trade-Off with memory available 43

3.10 Trade-Off with full memory. Handle cleaning/Insertion 44

3.11 Source Code of a Modified Function 46

4.1 Trade-Off Range Mode Configuration and Verification 50

4.2 Execution Flow and Code Blocks 51

xi

4.3 Source Code related to Flow Blocks 52

4.4 MemoryTestBench Used to Compute Memory Consumption . . . 57

4.5 Objects organization with labels to be referred in each memory

consumption description, enumerated below 59

5.1 Choosing Functions . 65

5.2 First Test . 68

5.3 Lookup Time for the Binomial Option Pricing Function 71

5.4 Percentage of hits (α) and the alpha breakeven (αbe) for the Bino-

mial Option Pricing Function . 71

5.5 TradeOff Time for the Binomial Option Pricing Function 72

5.6 Computation Time for the Binomial Option Pricing Function, con-

sidering the function withou any optimization 72

5.7 Lookup Time for the Implied Volatility Function 73

5.8 Percentage of hits (α) and the alpha breakeven (αbe) for the Im-

plied Volatility Function . 73

5.9 TradeOff Time for the Implied Volatility Function 74

5.10 Computation Time for the Implied Volatility Function, consider-

ing the function withou any optimization 74

List of Tables

2.1 Energy Consumption During PC Lifecycle 7

4.1 Alpha Variables Table . 56

5.1 Functions Alpha Values . 65

xiii

Chapter 1

Introduction

Currently many institutions and committees are being formed to upgrade the ef-

ficiency of power consumption. Power became a very important issue regarding

the sustainable development and care of natural resources of our planet. Thus,

organizations are facing the need to develop energy efficient data centers.

No doubts data centers are continuously growing fast and in high proportions,

as energy costs increases in even higher rates. Consequently, energy has turned

into a very important part of companies budget. This has led to the creation of a

research field focused in power consumption and IT optimizations called Green

IT.

The term green came up as an analogy to world’s natural resources and the

relation of its preservation. It is known that energy production is related to the

consumption of our exiguous and finite environmental resources. Hence, energy

efficiency has become important and has been analyzed deeply. It can be charac-

terized in three distinct aspects.

The first concerns whole energy needed by a Data Center taking into account

1

CHAPTER 1. INTRODUCTION

cooling systems, machines powering, overall infrastructure and its continuous in-

creasing costs. The next aspect is the Data Center and its expansions. Usually, IT

structures dwell in high density regions with limited infrastructure flexibility. So,

the second aspect is related to scalability and the hardness for power providers to

supply the necessary energy. In the third one can be considered the environmental

impact caused by non-optimized resources being used in Information Technology

sector.

Usually, the analysis of power consumption and optimization stops in direct

causes like cooling systems but more in-depth researches are needed to identify

higher-levels drivers. This case - we are going to verify in this work - proves the

indirect participation of software executions in energy consumptiom. We mention

Operational Systems, Drivers, firmware and ERP as important participants of be-

havior changing in IT equipments and therefore they are indirectly responsible of

the overall consumption.

Nowadays, the software engineering still has the main focus bind to perfor-

mances and classic software quality metrics where energy optimization and con-

sumptions are not taken into consideration. This affects also the enterprise world

where trade-off among costs and performances does not esteem software energy

efficiency. If we specialize the software field, we can focus in the financial world,

where computation and mathematical processes are heavy and demand a complete

IT infrastructure (important budget).

This thesis refers a wider project which analyzes Green IT energy efficiency

issues and which has been developed in collaboration with Politecnico di Milano

and italian financial institutions. This document was structured as a brief introduc-

tion describing the scenario of Green Researches with motivations and objectives

2

CHAPTER 1. INTRODUCTION

followed by some details regarding the Green Area and some important concepts.

Then, will be presented the project itself with details about the analysis, develop-

ment, execution and result interpretations.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

State Of The Art

This chapter will describe the Green IT and its current state of art. The following

sections present a brief overview of this research field, motivations with statis-

tical data and also a set of foundations which have been created to handle this

environmental issue.

2.1 Green IT

Nowadays technology is an important part of our lives. The use of technology

has exploded in several areas, improving life and work offering great advantages.

Almost everything has a participation in technology and sometimes we do not

even notice.

The expression Green IT is from now on commonly used to indicate a new

field focused on problems related to environmental impact and the energy con-

sumption of information systems. Particularly, the term can be referred to two

specific themes: the IT energetic efficiency and the management of ecological

5

CHAPTER 2. STATE OF THE ART

compliancy of IT lifecycle. Both of them are directly related to the control of

natural resources usage and the known impact of the required energy production.

More precisely, the first theme concerns the improvement of energetic effi-

ciency by means of infrastructure management and systems changing avoiding

any influence in already used systems and the way they are used. We would

say: a kind of external layer of optimization on an atomic system. Its important

to be mentioned that in last years the ratio between computational capacity and

energy required has become better. This was mainly motivated by mobility and

low-power devices.

The second theme looks upon the lifecycle of IT equipments development, en-

ergy needed in production, power consumption during the usage cycle and more.

2.1.1 Motivation

Statistical data related to Green Research and some facts are being published very

often. Nothing better them practical data to justify the current growth of Green

Field. Illustrating this, we see that in beginning of 21st century approximately

72% of whole energy used by a Personal Computer was spent in its production

while the others 24% consumed in its 4 years mean usage. Since performance

and high frequencies was for a long time and still motivate designers, power con-

sumption increased considerably. Now, the statistics turn up that the percentages

inverted - 23% of whole energy consumed by the PC (industry and usage) required

in its production and 72% during 4 years of utilization. Then, we infer that pro-

duction process has been optimized but the equipments with high performances

and the current users profile requires a huge amount of energy.

6

CHAPTER 2. STATE OF THE ART

4 Years Lifecycle
Source Procution Dist Use End of Life Total MJ

[1] 72% 4% 24% 8416
[2] 76% 23% <1% 7633
[3] 23% 5% 72% <1% 14264

Table 2.1: Energy Consumption During PC Lifecycle

It is important to mention that is also considered a slice of whole power con-

sumption the disposal phase of the equipment, generating an impact on environ-

ment. Within this information we redirect energy issues to the direct natural re-

sources impact. Hence, it is time to focus in carbon and emissions resulting in

some studies [4] which have shown us up that IT is responsible of more than 2%

of world total CO2 emission, the first reason of the global warming. In addition

IT hardware introduces other important problems both during its production and

its disposal. We have to face the strong impact technology is creating on the envi-

ronment and try to propose solutions able to reduce or eliminate its growing.

Figure 2.1: Ratio between New Equipments and Energy Consumption

Moreover, as verified in Figure 2.1 [5], the hardware costs has been increas-

ing slowly for 14 years and in the other hand costs referred to power and cooling

have been raising four times the equipments cost. Currently, all the costs of power

7

CHAPTER 2. STATE OF THE ART

required to be provided to IT infrastructures are almost 70% of overall IT costs.

Forecasts say that the proportions will continually change in this way, since gov-

ernments and power suppliers (worried with sustainable development and power

consumption education) are planning to create special fees for periods when the

consumption is generally higher during the day.

2.1.2 Initiatives and Solutions

The first occurrence of Green IT was in 1992, initiated by U.S. Agency responsible

by a program created to promote energy efficiency in electronic equipments. From

this program, some new resources started being adopted in systems design such

as Sleeping and Stand By mechanisms to save energy.

Also, a certification program created by a Swedish organization called TCO

started evaluating equipments related to its magnetic and electrical emissions like

Cathode Ray Tube display and later every kind of energy consumption compo-

nents. In 2006 the certification program created in 1992 established a strict lay-

ered ranking for all computers components and consequently the products which

use such electronic parts.

The governmental side has begun focusing on Green IT during the last few

years. Possibly the most important is the Climate Savers Computing Initiative.

This non-profitable organization has groups of people responsible of publishing

of power efficient new technologies. Furthermore there are some manufacturers

participating of the mentioned organization. Their main objective is the reduction

of computer power consumption to approximately 50% of the current consump-

tion by 2010, which means a reduction of almost 54 millions of tons of CO2 each

8

CHAPTER 2. STATE OF THE ART

year. In the same field, there is the Organization called Green Computing Impact

Organization which aims users guiding into a friendly behaving regarding envi-

ronmental aspects related to electrical and electronic products. With the acronym

GCIO, it organizes events in order to accomplish educational goals. This goal is

considered the most important part of this organization.

Another respected organization is the Green Grid with more practical objec-

tives, in other words, it has the target in optimization of overall IT products trying

to increase their energy efficiency. The way it goes through the attempt to increase

efficiency is the metrics and standards adoption to measure Data Centers energy

levels for data analysis and further identification of feasible reduction points. Big

multinational companies already joined Green Grid: HP, IBM, Sun, Dell and Mi-

crosoft. With the recent statistical information regarding this organization, it is

the more promising green organization of current days.

From the participation of those organizations and consciousness of manufac-

tures some solutions and innovative ideas have started to appear. Well show in

following paragraphs some important ways to which Green IT issues have been

addressed.

Computer virtualization is a creation of multiple computer resources into a sin-

gle hardware. It is usually created using modified Operational Systems running

into management software in attempt to use the maximum of the resources avoid-

ing the existence of several physical computers underloaded. The guest software

or operational system runs as if it was installed normally into a single physical

platform in a transparent way to the user. Widely used nowadays, it requires a

good knowledge in performance requirements and resources configurations. It

must be known the availability of the resources that software needs to verify if the

9

CHAPTER 2. STATE OF THE ART

whole amount of software installed into a single physical platform will not com-

promise the quality of service provided. Virtualization, therefore, offers various

advantages. Many physical servers can be replaced by a larger one, in order to

increase the utilization of costly hardware. A virtual machine can be more easily

controlled and inspected from outside than a physical one. New virtual machine

can be created without the need to purchase more equipment. Virtual machines are

just files and this allows the easy migration among different physical machines.

Hence, virtualization is very important in Green IT since with it is possible to

combine several physical systems into virtual machines hosted in just one single

powerful system, thereby unplugging the original hardware and reducing power-

ing and mainly the cooling consumption.

Terminal Servers in last years have also been used to put the computing opera-

tions only in the central computer, while terminals connected to it are simply thin

clients and text terminals with low power consumption. This solution offers ad-

vantages in security and availability, since with a terminal breaking the service can

still be provided. Advantages can be found out in terms of energy optimization.

In fact, thin clients use no more than 10% of a regular workstation.

The Power Management, also sometimes known as Advanced Configuration

and Power Interface (ACPI), is an open standard which defines ways to allow oper-

ation system to directly control the power saving aspects of underlying hardware.

The OS can turn off autonomously a set of allowed components such as moni-

tors and hard drivers during the inactivity period. The hibernation and stand by

modes do use this standard. There are also programs to give users the possibility

to configure the CPU voltages where the user will reduce powering, frequencies

and also heat dissipation. Modern CPUs are able to configure it autonomously

10

CHAPTER 2. STATE OF THE ART

without users intervention.

Power Suppliers are usually 70% efficient with 30% of energy spent in heat

dissipation. This means that for each 70W generated the supplier requires 100W

in input. Hence this aspect became another topic to be addressed by Green IT.

Higher quality power supplies can be over 80% efficient. There is less energy

wasted in heat and surely less power is used in cooling. The industry initiated

the 80 PLUS which is a initiative to building of powering units with more energy

efficiency. It certifies products using some different parameters of load and power

factor. From July 2007 all certified desktop computers are guaranteed to work

with a maximum of energy waste of 20% of all powering capacity.

Other addressing targets of Green IT are Storage Units. Hard disk drives are

the more mechanical equipments used in personal computers for example and re-

quires a good amount of energy to work. Moreover, for instance, smaller drives

(2.5 inches) consume less energy than larger ones (3.5 inches). Solid state drives

consume even less energy, since their do not need power to mechanically squeeze

the internal disk. These last types of drives use flash memory of a DRAM to

store the data reducing power consumption. The trade-off in this case is the per-

formance because is known that flash based drives are usually slower than the

traditional hard disk drives.

Finally other important topic covered by the hall of Green IT Solutions are

the displays with sensitive enhancements in last few years. Displays have slashed

their power usage from an average value of 110W to 40W in last decade repre-

senting a reduction of more than 60%. This data was feasible since occurred a

migration from CRT monitors to LCD and also because the prices of these new

technologies dropped down very fast.

11

CHAPTER 2. STATE OF THE ART

2.1.3 Focus in Software Layer

The Figure 2.2 presents the layers involved in IT structure and the proportional

power consumption of each part used in full architecture. For a total of 100W

spent with Data Centers system powering, approximately 60% is used in the server

machine and from this value is extracted around 42% with processor summing its

idle and calculating states.

Figure 2.2: IT Layers and Proportional Consumptions

This work will focus in the software layer related to large Data Center, for

example, from financial institutions. Must be known that even the Figure above

showing that the software may handle a little amount of power consumed com-

paring to every part in architecture, the software has a dramatic interference in

the final value because it defines the relation between idle and busy states of pro-

cessor, and also can measure the performance requirements. These requirements

are able to address the resources which must be available to the system, and also

address possible virtualization.

12

CHAPTER 2. STATE OF THE ART

From the physical point of view, the mean power consumption of a processor

running any application is:

P = I ∗V cc (2.1)

Variable P is the power, I is the mean current used and Vcc the powering

voltage. Then, the energy consumed by the processor running software is the

integral of Power in function of time, verifying:

E =
∫

I ∗V ccdt (2.2)

Therefore, to measure the energy consumed by the system must be known

Current and Voltage powering the system. Moreover, its obvious that only the

measure of these two components also does not guarantee the knowledge of each

consumption points of the system. A deep analysis measuring each part separately

can show up the specific consumption proportioned by running processor. From

the logical perspective can be inferred from Margolous Levitin theorem [6] that

the maximum frequency in state commutation from a physical system is directly

proportional to the whole energy of the system. So, the minimum amount of

commutation energy needed by a system to work properly in a certain frequency

is calculated with:

Emin(f) = f ∗h/4 (2.3)

In the equation above, f is the frequency and h the Planck constant. Now, going

deeper, we reach other variables important in energy measuring. One of them is

13

CHAPTER 2. STATE OF THE ART

the systems information set measure used to define the amount of information

need by it (i.e. number of bits). Also, we have entropy which is a level of disorder

of data which can be transcript as the computational complexity for a desired

output to be generated by a system. These two last components respectively Cc

and Td, generate the Energy Consumed formula:

Elogical(f) = E(f)∗Cc∗T d (2.4)

Its clear that there is a trade-off between frequency and energy where one in-

creases the other runs after. Therefore, with the metrics and presentation of how

information and complexity have influence in energy measurements is possible

to clearly address the focus of this work, which consists of a set of software opti-

mizations aiming the reduce of computational weight and consequently the energy

required by the system to accomplish its tasks.

2.2 Software Profiling

Profiling the software is a resource available which allows the stakeholder to ver-

ify where a program spends its time and which functions are being called while the

whole system is executed. This information can show which pieces of the program

are slower than is expected and those that might be candidates for rewriting or sub-

stitution to make the program execute faster and save power and time. Moreover,

other output is the presentation of how often certain functions and procedures are

being called for execution. This may help to spot code blocks interesting for deep

analysis.

14

CHAPTER 2. STATE OF THE ART

Since the profiler uses information collected during the actual execution of the

program, it can be used on programs that are very large and/or complex to analyze

by reading the source directly. However, the way the program is running will

affect the information that shows up in the profile data. Thus, is mandatory that all

the important features and those with high performance influence are stimulated

to provide reliability and usability of profile information generated in profiling

analysis. Software profiling has some generic steps:

• Must be enabled profiling and/or the program must be compiled/linked with

profiling support;

• The program must be executed in a desired way to generate relevant profile

data;

• Must be executed a tool to interpret the generated data.

Depending on the language or platform (i.e. Java, C, C#) the steps above might

be joined or transparent for the user. Profilers use a wide variety of techniques to

collect data, including hardware interrupts, code instrumentation, instruction set

simulation, operating system hooks, and performance counters. Summary profile

information is often shown against the source code statements where the events

occur, so the size of measurement data is linear to the code size of the program. In

contrast, the size of a (full) trace is linear to the program instruction path length,

making it somewhat impractical. For sequential programs, a profile is usually

enough, but performance problems in parallel programs (waiting for messages

or synchronization issues) often depend on the time relationship of events, thus

requiring a full trace to get an understanding of what is happening. Our work

15

CHAPTER 2. STATE OF THE ART

is based mostly on sequential programs, focused in heavy mathematical/financial

methods.

2.3 Financial Software

Nowadays, several financial institutions use complex systems to manage all its

resources, including fees, taxes, accounts, investments and prices in general.

These systems are well-known as heavy computational operations including

libraries and routines used to calculate various different values related to personal

and corporate economies and accounting at all. They are complex because use

math with exponential, rational numbers and series. Obviously, as the most of

managerial systems, a set of variables and changeable parameters are available to

the user, and this turn the servers into operations which if not run in high perfor-

mance equipments may take several amounts of time.

This work will focus in software layer of Green IT field and furthermore, will

take place in systems related to financial operations and calculations. Analyzing

operations and using software profiles to verify and identify routines will be pos-

sible to optimize such executions, release idle resources and improve the available

resources.

Initially the work will take place in analysis of a set of functions traditionally

used in system to manage credit and insurance companies. They are:

• Return on investment (ROI): is the ratio of money gained or lost (whether

realized or unrealized) on an investment relative to the amount of money

invested. The amount of money gained or lost may be referred to as inter-

est, profit/loss, gain/loss, or net income/loss. The money invested may be

16

CHAPTER 2. STATE OF THE ART

referred to as the asset, capital, principal, or the cost basis of the investment.

ROI is usually expressed as a percentage rather;

• Future Value (FV): the value of an asset or cash at a specified date in the

future that is equivalent in value to a specified sum today;

• Present Value (PV): is the value on a given date of a future payment or series

of future payments, discounted to reflect the time value of money and other

factors such as investment risk;

• Net Present Value (NPV): a time series of cash flows, both incoming and

outgoing, is defined as the sum of the present values (PVs) of the individual

cash flows.

• Duration : the duration of a financial asset, specifically a bond, is a measure

of the sensitivity of the asset’s price to interest rate movements. Duration

is known in the context of the ”Greeks” used for derivative pricing as the

Lambda.In contrast, the absolute change in a bond’s price with respect to

interest rate (Delta) is referred to as the dollar duration. The units of du-

ration are years, and duration is generally between 0 years and the time to

maturity of the bond. It is equal to the time to maturity if and only if the

bond is a zero-coupon bond. Duration indicates also how much the value V

of the bond changes in relation to a small change of the rate of the bond.

• Convexity : Convexity is a measure of the curvature of how the price of a

bond changes as the interest rate changes.Specifically, duration can be for-

mulated as the first derivative of the price function of the bond with respect

to the interest rate in question, and the convexity as the second derivative.

17

CHAPTER 2. STATE OF THE ART

• XIRR:calculates the annualized internal rate of return of a cash flow at arbi-

trary points in time.Values lists the payments (negative values) and receipts

(positive values) with one value for each entry in dates.

• Binomial Option Pricing (BOPM): The model provides a generic numerical

method for the valuation of options. Essentially, the model uses a discrete-

time model of the varying price over time of the underlying financial instru-

ment.

• Implied Volatility :The implied volatility of an option contract is the volatil-

ity implied by the market price of the option based on an option pricing

model. In other words, it is the volatility that, when used in a particular

pricing model, yields a theoretical value for the option equal to the current

market price of that option. So, this function returns the implied volatility

by a given option and its parameters.

18

CHAPTER 2. STATE OF THE ART

Figure 2.3: Time Execution for a low number of operations

Figure 2.4: Time Execution for a high number of operations

19

CHAPTER 2. STATE OF THE ART

Those calculations presented on previous page are also considered the algo-

rithmically bottleneck of financial enterprise systems, compromising overall per-

formance. In fact, to attack those points, it will be necessary to identify the pure

functions, in other words, mathematically pure functions (functions without any

other functionality but math, no output, no interface, no event handling and no

classes attributes changing).

The study regards some substitutions of series calculation by Tables with pre

calculated values depending on chosen parameters to optimize time of financial

software execution.

An example for execution time behavior of some financial computations is

presented in both Figures 2.3 and 2.4. The difference between the charts is the

number of operations range.

20

Chapter 3

A Green Software Approach

The project developed in this thesis consists of a deployed Java software modifi-

cation to improve performance in mathematical operations by caching often used

values in memory instead of reprocessing them every time. More specifically, this

thesis concerns about a module of data storage (for caching) and also a module

of decision (when caching). The target companies to be used as use case for the

development will be financial companies such as banks and insurance providers.

Their software commonly have a large set of mathematical functions to calculate

taxes, fees and prices (i.e. Stock Market).

Within this mathematical environment, was defined a Green approach of power

saving to these companies with the idea to modify the running systems to fit the

saving of energy consumption. The target is the set of pure functions, already ex-

plained previously. Since there are various different students involved in analysis,

development and testing the project is modularized.

The first step of the project, running on the same time as other modules devel-

opment, is the definition of which methods are capable of modification without

21

CHAPTER 3. A GREEN SOFTWARE APPROACH

any damage to the whole system behavior. Since the software language is Java,

there is bytecode tools useful for code behavior identification. The methods must

not have any other operation than the mathematical calculation and nor change

any class attribute during its execution, as described in pure function definition.

The following step is the generation of a new set of operations to substitute

the original one. This new set of operations is the, for instance, the call for the

lookup table to verify if that set of parameters are already stored in the cache

system. If not, the system will have the mathematical original code to be executed

to generate a result, and then, will call a module responsible to keep the data in

cache if the constraints are satisfied. All the architecture modules and constraints

will be clearly explained in sections below.

Bearing this in mind, is possible to affirm that the system working for a long

time has a trend to generate a great saving in processing time and consequently

in power saving, since the processor will not be charged with heavy operations

every time. After successful testing, the adapted system will be deployed to the

production environment.

3.1 Software Architecture

The architecture of tabulation and decision modules is described in Figure 3.1.

The first module, called Decision Maker, is an abstract module which represents

the Byte Code modification applied to the original system. The Decision Maker

itself is the function and the sequence of Lookup / Processing / Trade-Off exe-

cution flows. The following two sections explain in details the functionality and

behavior of Memory Management and Trade-Off modules, respectively.

22

CHAPTER 3. A GREEN SOFTWARE APPROACH

Figure 3.1: System Architecture

3.1.1 Memory Management

This is the module responsible to operate the data inside the pure functions cache

systems. The module is composed by a set of memory control, such as Total Mem-

ory, Free Memory, Lookup Status and the Storage Structure using a HashMap.

The HashMap has a key of String type with information related to Package, Class

and Method names with also the Java Signature. This is a unique key to identify

the functions. The HashMap has values in TOFunction format, described in

details in Figure 3.4. All useful data will be stored inside the TOFunction.

As a typical Memory Management module, it uses the Singleton Pattern which

23

CHAPTER 3. A GREEN SOFTWARE APPROACH

makes available to the system always the same object instance to guarantee con-

sistency. Also provide an API to the whole system to execute data operations

like insertions, deletions and updates. For the abstract module Decision Maker,

the main operation and the most used feature is the lookup, where the pure func-

tions will look for previously tabulated values prior to mathematical computation.

Moreover, are provided methods for sizing computation, which allows other mod-

ules to verify whether a data will have enough space to be kept before trying to

execute the insertion itself.

3.1.2 Trade-Off

The main role of this module is to manage the data inside the Memory Manage-

ment accordingly to defined logic and rules. The module Trade-Off is responsible

to provide the intelligence of decision regarding the recording or not of some spe-

cific pure function information (parameters and result). It provides the API to be

accessed by the Decision Maker abstract module and to access the Memory Man-

agement singleton. This module keep a priority reference of each TOFunction

stored in memory and is deeply used when removing of previous tabulated func-

tions is required by the absence of free space in memory.

The submodule of Trade-Off called Priorities Manager makes (when executed

the method UpdatePriorities) the automatic updating of the priorities ref-

erence by consulting the available API provided by the Memory Management

module. Actually, the priorities are not stored in Memory Management because

this logic is not relevant to Memory Management. Since Trade-Off is the intelli-

gence, it is responsible to handle all priorities. Priorities are explained in a finer

24

CHAPTER 3. A GREEN SOFTWARE APPROACH

way in the subsequent sections.

Function Level Priorities

The function priority is a way to split the free memory among the function data

spaces required, trying to decide in an optimized way the amount of points al-

lowed to be recorded to each function and how to prioritize one function instead

of another. The priority is obtained using the formula:

Priority(f) =
Ncalls(f)∗Texec(f)

∑(Ncalls(f i)∗Texec(f i))
(3.1)

Value Level Priorities

The Value Level allows two different approaches to determine the TOFunction

individual priority. The first and simplest one is using the Frequency of each entry

considering Lookups for that value and also its computation. Another provided

method, and a computationally heavier one, is when the Value priority is known

as the point score and it gives the opportunity to compare different points based on

the existing data, working as a clusterization algorithm. Whenever it achieves the

equilibrium it is expected to have, as chosen values to compound the value table

of a function, the set of points near the inputs average. The mathematical formula

to compute these values is the Mahalanobis distance:

d(x,y) =

√
N

∑
i

(xi− yi)2

σ2 (3.2)

The practical usage of the method will depend on the performance verified

during preliminary execution tests.

25

CHAPTER 3. A GREEN SOFTWARE APPROACH

3.2 Memory Organization

In this section is described how the data (most important functions inputs/output)

will be kept in the memory structure for cached values during execution of the

system. In Figure 3.2 is shown the organization of the HashMaps used to fast

access of whole data.

Figure 3.2: Memory Schema to keep the function data

3.3 Use Cases

In Figure 3.3 is presented the main usage methods of the module developed for

this thesis. The most important action - operation available to the actor (Deci-

sion Maker: a conceptual module present in the whole project architecture) - is

the Trade-Off. The action consists of an intelligent algorithm which determines

whether a pure function of the financial system and its entries (parameters and

return) will be kept in memory, characterized as a cache memory, to improve the

26

CHAPTER 3. A GREEN SOFTWARE APPROACH

Figure 3.3: Use Case Diagram

relation between computing and power consumption. Since the computation will

be reduced by this storage mechanism, the consumption of the processor and re-

lated electronic components will reduce.

The Trade-Off uses some operations provided by the Memory Management

like insertions, updates and deletions: InsertData, UpdatePriorities

and RemoveData, respectively. After verifying the logic and deciding the in-

cluding or not of a function into the memory, the Trade-Off is responsible to op-

erate the memory sending requests to make the memory module handles the data.

These requests will keep also the memory state (Full, Available) and will provide

methods to remove functions with lower priorities to save new data.

Lookup Result is the second most important use case. This is a simple and

easy set of steps to consult a required data in the memory. The function receives a

function structure with parameters - from the Decision Maker - and is responsible

to follow the HashMaps and return a miss if the data is not present in the cache

and the system will need to execute the whole mathematical method to compute

27

CHAPTER 3. A GREEN SOFTWARE APPROACH

the result.

The creation of the FunctionSignature is made by the Decision Maker

and this signature will be later translated to a simplified structure to keep in mem-

ory aiming the optimization of the spaced used by the function data storage. This

whole scenario describes the architecture involved in decision of data keeping and

will be detailed in following sections presenting sequence diagrams.

28

CHAPTER 3. A GREEN SOFTWARE APPROACH

3.4 Classes Diagrams

This section will present all classes used in the software architecture created for

this thesis. Each package subsection will present a graphical presentation of the

classes and then a brief explanation about the methods and attributes.

3.4.1 Utils Package

The utils package 3.4 has the common business rules classes to support both

Trade-Off Decision and Memory Management modules. Must be known that all

classes used in trading operation have TO prefix in its name. This is the acronym

of Trade-Off. Thus, the most important attributes and methods of the classes are

described below:

1. Return: used to store the original function result;

• pValue: reference to the return object (Integer, Double,. . .);

2. TOParameters: used to store and manipulate the set of input parametes;

• mHashCode: keep the calculated HashCode since the values will not

be changed during execution and this improves HashMap operation

speed;

• input[]: vector or objects to make reference to the set of input parame-

ters of the function. This structure allows the use of at most one more

array level. In other words, this means that each position of the input

vector supports the reference of more a vector. This limitation is im-

portant because the content of the vector and its aditional dimension is

used to compute the HashCode for further HashMap processing;

29

CHAPTER 3. A GREEN SOFTWARE APPROACH

Figure 3.4: Utils Package - Important Classes

• hashCode(): overridden method to compute the HashCode by the

convertion of all input[] content into String to guarantee the unique-

ness;

30

CHAPTER 3. A GREEN SOFTWARE APPROACH

• toString(): creates a String with the input[] content;

• deepToString(): processes the aditional dimension of the input[] con-

tent;

3. TOFunction: used to keep the function information and its values;

• mValues: a HashMap containing all the pairs TOParameters and

Return related to that function. The TOParameters is the key

object and Return the value. TOParameters has the HashCode

overridden, since it has to behave like a key;

• mFrequencies: a HashMap to keep information about the frequency of

each TOParameters and Return pair. The key of this map is the

same of the mValues (TOParameters) and the value is an Integer.

This frequency increases following the number of calls made to that

TOParameters by means of the Lookup operation executed in the

Memory Management module;

• mFunctionId: the attribute used as key in the Memory Management

HashMap. This is a unique identification to each function tabulated.

Format: ;package;class;method;java signature;

• mPriority: this value represents the priority of that method in relation

with the all others being processed to be tabulated or not. The calcula-

tion of this field is explained in the Priority Section of this document;

• mExecTime: field to save the execution time of the method. The exe-

cution time consists of the running of the original mathematical code

of the function. The value is in nanoseconds;

31

CHAPTER 3. A GREEN SOFTWARE APPROACH

• mCallsNum: this is the sum of all frequencies of all entries in the

mValues HashMap. In other term, this is the total number of calls the

function had, be with HIT in lookup, be with mathematical calcula-

tion;

• mEntrySize: this attribute has the size of each TOParameters and

Return stored inside the TOFunction. This attribute is very important

to control the amount of memory being consumed to tabulate each

function. The value must vary according to the number of input pa-

rameters of the function and the type of the Return object;

• TOFunction(): constructor;

• getFunctionId(): returns the unique identification of the function;

• getPriority(): returns the priority;

• getExecTime(): returns the execution time in nanoseconds;

• getFirstTOParameter(): since the TOFunction is used every execution

that must call Trade-Off module, when this situation happens, the TO-

Function will contain exactly one entry in mValues attribute. And this

method is used when the value must be inserted in the cached TO-

Function structure, by copy operation;

• setupTime(): update Execution Time;

• setupFrequency(): update Frequency of an individual entry. Also up-

dates the total frequency (mCallsNum) of the function;

• getValues(): return the reference to HashMap with values;

• removeEntries(): used by the Memory Management module to clean

32

CHAPTER 3. A GREEN SOFTWARE APPROACH

data to get space to a higher priority function be tabulated. This func-

tion receives the number of entries to be cleaned from a specific func-

tion table;

• insertEntry(): insert a new TOParameters and Return pair to the

function’s table;

4. TOLogger: a simple class to log the execution of the system;

• mEnabled: a configurable attribute to activate or deactivate the logging

operation (file writing);

3.4.2 Memory Package

The Memory Package 3.5 consists of a unique big class. It uses the Singleton

pattern to provide a unique instance to any call to it since it must guarantee con-

sistence of the data stored. Below the most important information of Memory-

Management class is mentioned:

1. MemoryManagement: used to store the original function result;

• mMemory: a HashMap containing all the structured data kept from

Functions and its values (TOParameters and Return). This HashMap

has a key of String Type. This key is the field mFunctionId of the

TOFunction class. The value is the full TOFunction object with all

relevant information;

• mTotalMemory: configurable attribute to set the maximum size used

to store the data from the functions;

33

CHAPTER 3. A GREEN SOFTWARE APPROACH

Figure 3.5: Memory Package - Memory Management Class

• mFreeMemory: a internal control to determine how the memory is

being used by the data storage;

• mLastLookupState: a cached status to facilitate to discover which op-

eration was executed before. If there was a miss in a function (the

function is still not inserted in tables) or an specific pair TOParameters

34

CHAPTER 3. A GREEN SOFTWARE APPROACH

and Return. This is used for further Trade-Off execution;

• MemoryManagement(): private constructor;

• getInstance(): the method used by system to retrieve the unique in-

stance. Method specified by the Singleton Pattern;

• lookupResult(): try to retrieve a already stored TOParameters. If

there is any, return a Return object, otherwise, Null;

• insertTOFunction(): inserts a function to tabulation. It is possible to

exist functions stored with no values inside, because the system must

keep the frequencies and other function relevant information in order

to generate statistics of all tabulable functions, even with low priori-

ties;

• updateTOFunction(): makes the target TOFunction update its values

with the new one passed in parameter;

• removeTOFunctionEntries(): removes an specific number of entries of

a TOFunction to liberate memory space;

• getTOFunction(): returns the TOFunction related to that String ID;

• getMemImageRef(): returns a reference to the HashMap containing

all information of memory (mMemory);

• verifySpace(): method used to verify if the TOFunction passed as pa-

rameter would have enough space in momory to be kept in internal

table;

• updateSpace(): private method to update the memory space control

after a determined operation with TOFunction Entries - removal or

35

CHAPTER 3. A GREEN SOFTWARE APPROACH

insertion;

3.4.3 Logic Package

Figure 3.6: Logic Package - Trade-Off Class

The Logic Package 3.6 is composed by a class called TradeOff, responsible to

process all the logic regarding the data saving, priorities manipulation and mem-

ory verification. Following are cleared some aspects of the presented diagram:

1. TradeOff: class with the decision logic of storing or not cacheable infor-

mation;

• mFunPriorities: this attribute is LinkedList ordered by TOFunction

priority. The content inside each position of the list is the String ID

used to reference a certain TOFunction inside the Memory HashMap;

• MEM CLEAN FACTOR: important configuration of the Trade-Off

module. This values determines the amount of memory to be cleaned

before inserting a new information (with higher priority) in case of

36

CHAPTER 3. A GREEN SOFTWARE APPROACH

absence of space for a new insertion. This value is actually a multi-

plication factor. If the new entry requires 10 bytes to be cached and

the attribute value is 4, then the TradeOff module will clean 40 bytes.

This value is important to avoid a removing operation in every attempt

to store new information in memory;

• MEM PRIORITY UPDATE FREQ: another important performance

configuration. Must be known that the operation of Priority List (mFun-

Priorities) is a heavy operation and is unfeasible to be executed every

time. Then, this attribute control to the system update the priorities list

only every N accesses, where de N is the number set of this class field;

• mCallsNum: auxiliary variable to control the priorities updating ex-

plained in the item above;

• tradeOff(): the main function of the TradeOff module. A TOFunction

is passed as parameter and the module decides whether to store it or

not;

• getMemorySpace(): method used to logically liberate space in mem-

ory for a higher priority function be kept. The method starts by the

lowest priority, iterating and removing until the defined amount of

memory (see MEM CLEAN FACTOR) be free;

• updatePriorities(): private method to update priorities;

• computeTotalTime(): private method to update priorities;

• getOrderedTOFunction(): this method returns an Iterator to navigate

through TOFunction String Ids following priorities ordering;

37

CHAPTER 3. A GREEN SOFTWARE APPROACH

3.5 Execution Sequences

These sequence diagrams were built in order to provide an idea of internal module

interaction. The Decision Maker module is the process trigger, starting with a ta-

ble lookup. That will use the method provided by the Trade-Off module to obtain

any point (result) needed by the system. The input is the object TOFunction,

which contains all data used by the module to recognize the function and the pa-

rameters.

After asking a specific point, the Trade-Off starts fitting the pure function data

into its own objects. The first step is to generate a function key that will be used

to distinguish different functions and types required. After having the key it is

possible to identify the function but not a specific point inside the values table. So,

the role of the TOParameter is to hold the parameter objects with the purpose

to tell apart among all the points on the value table. At this point of the sequence

all the information needed is already translated and the Memory Management will

check if there exists the value for this parameters. If yes (Hit) the value is returned

and the sequence is over and if not (Miss) it is returned the value null.

The second step of the sequence is started if the Decision Maker receives a

miss from the lookup method. Whenever it happens, this point is calculated and

passed to the Trade-Off module. In this case, an object TOFunction will be

instantiated to keep all data and the free memory will be checked. If there is

enough room, this point is added to the value table and the value 0 is returned to

the Decision Maker.

Supposing all the memory is full and the function is already tabulated. The

score of that point is calculated and compared to the last score of the tabulated

38

CHAPTER 3. A GREEN SOFTWARE APPROACH

values, if the new point score is higher than it is discarded and the value 1 is

returned to the Decision Maker, otherwise the worst value, in terms of score, is

deleted and the new one is added returning the value 0.

Another possible scenario is having the memory full, but the function is not

yet tabulated. In this case the priority of the functions is taken into consideration

and compared to the new function, if the new function has a higher priority than

the worst priority of the tabulated functions, the worst function is deleted and the

new function is added. With this description all possible scenarios were explored

and the sequence diagrams can be found below.

3.5.1 Lookup Scenarios

Scenario Miss

Figure 3.7: Lookup with Miss in Memory. Requires Trade-Off execution

In this scenario, presented in Figure 3.7, the modified pure function creates

39

CHAPTER 3. A GREEN SOFTWARE APPROACH

the object TOParameters with a vector of inputs (parameters) of the original

function and then call the lookup method of the Memory Management passing

two parameters: FunctionID (String) and TOParameters. The Memory

Management singleton tries to execute a get in its HashMap of storage with the

FunctionID. If the return of the get execution is NULL, then a function miss

occurred and the lookup will immediately return. If the content was found in

the HashMap with the used key (FunctionID), then the system looks for the entry

composed by the parameters passed to the pure function. The TOParameters is

the key of the TOFunction values HashMap. The same get method is executed.

If NULL is returned, a miss in Parameters level occurred and then the lookup

returns a miss.

The situation above required the execution to be continued inside the modified

function. The mathematical computation will be done and then the Trade-Off

function will be called to verify if the function just computed needs to be kept in

memory or not. Thus, the continuation of this scenario and the various situations

are found on the following Trade-Off scenarios section.

Scenario Hit

On the opposite way as shown in Figure 3.8, if any valid Return value was found

given the successive keys (FunctionID for the first-level HashMap and then

TOParameters for the TOFunction HashMap), the lookup executed a hit

procedure and the Return value is sent to the modified pure function and no more

mathematical computation is required to that case since the value was already

present in cache structure.

40

CHAPTER 3. A GREEN SOFTWARE APPROACH

Figure 3.8: Lookup with Hit in Memory. Get the return and continues

3.5.2 Trade-Off Scenarios

The Trade-Off scenarios are mapped into a flow where in first steps the Lookup

execution returned a miss, Figure 3.7: Function not tabulated or even a particular

entry. In other words, the modified method tries to find the cached value for that

specific execution. Then, if no value is found, it executes the normal mathemat-

ical operation and initializes the structure (TOFunction) to call Trade-Off. In

the procedural sequence, the system will verify regarding priorities, frequencies

and execution times whether the recording of tabulated value will save proces-

sor activities and therefore power. The following two sections describe each of

possible situations.

41

CHAPTER 3. A GREEN SOFTWARE APPROACH

Available Memory

The first scenario illustrated in Figure 3.9, and the simplest one, regards the ex-

ecution of Trade-Off memory with available space in memory. Hence, it is not

required to verify priorities before deciding about value recording or not. Basi-

cally, the modified function runs the mathematical procedure and computes the

result. This result is stored in the structure Return and then used to create the

TOFunction itself. The time spent to math execution is calculated for posterior

priority purpose. After, the method calls Trade-Off.

The first execution step is the verification of the last lookup execution result.

There are two miss types: function and parameters. The Function Miss indicates

that the function itself is not in memory, so information like signature, execution

time is not available. In this case the Trade-Off creates the function in memory

(this function object with no entries - parameters and return - are not considered

in memory consumption control since it can be neglected by the exiguous usage

of memory comparing to the gross amount of entries stored inside the object, in

HashMap). Later, the Trade-Off requires to Memory Management a calculation

of memory availability based in the space required by the new function - remem-

bering that each function has particular number of inputs and then may consume

more ou less than another function.

In this case, the manager indicates available space and no cleaning proce-

dure is required. The following step, so, is the function update. Relying on the

TOParameters, the Trade-Off module calls the method updateTOFunction

sending the TOParameters as parameter. The procedure inserts the new entry

inside the TOFunction. Right after, the Trade-Off returns the operation result

42

CHAPTER 3. A GREEN SOFTWARE APPROACH

to the Decision Maker and the last step is the updating of frequencies by the call-

ing of setupFrequency, where the system updates the number of calls of a

particular TOFunction entry tabulated.

Figure 3.9: Trade-Off with memory available

43

CHAPTER 3. A GREEN SOFTWARE APPROACH

Figure 3.10: Trade-Off with full memory. Handle cleaning/Insertion

Full Memory

Comparing to the situation where there is available space, Figure 3.9, to keep data

in memory, this scenario, Figure3.10, can be a copy of the mentioned situation

44

CHAPTER 3. A GREEN SOFTWARE APPROACH

with an intermediate execution step responsible to clean the memory for the new

TOFunction, of course, if needed. The Trade-Off module keeps an ordered

list with the FunctionID to control the priorities. When the function to clean

memory is called, the ordered list is roam and the priorities with already saved

function are compared to the new one.

If the priority of the new function is higher, the lower priorities TOFunction

have entries deleted till the needed space in created. One important configuration

resides in the memory cleaning operation: MEM CLEAN FACTOR. This value is

multiplied by the required new TOFunction entry space and then is an operation

that allows the system to create more space then really need to save performance.

Is known that, is the memory is already full and the system have a granularity of

a single entry of a single TOFunction, the performance would decrease drasti-

cally removing elements with priority control to each Trade-Off decision execu-

tion. Moreover, if the needed space is not fit with the deletion of all entries of a

TOFunction with lower priority, the system will go to the next TOFunction

with lower priority. The iteration will remain until the needed space is reached.

In a condition where the priority of the new function to be kept is lower than

all other priorities already saved in memory, then the TOFunction is simply

discarded and in case of a new execution of the same method with the same pa-

rameters a miss will occur in lookup execution and the pure function will need to

recalculate the result. After the cleaning process, the execution calls the update

TOFunction in the same way as the memory had available space, how was

described in the Available Memory scenario.

45

CHAPTER 3. A GREEN SOFTWARE APPROACH

3.5.3 Sample Source Code

To illustrate the sequences described above, there is a practical example of Java

source code of how a modified pure function behaves. The Figure 3.11 presents

the blocks responsible to each flow and each scenario, varying from a lookup with

HIT result (the fastest execution possible) to the Trade-Off flow with no available

memory to keep data (the slowest execution).

Figure 3.11: Source Code of a Modified Function

46

Chapter 4

Power Optimization By Caching

This chapter will present to the reader all the logic definitions used in the devel-

opment of the Memory Management and Trade-Off modules. This will explain

in details how the tabulable functions are identified, how the memory usage is

estimated and further features used for decision support.

4.1 Trade-Off Modes

The implementation of Trade-Off module provides two distinct operation modes:

Full Tabulation and Range Tabulation. These both modes will be described more

in details in sections below but the basic idea is to allow the users to have different

way to decide whether to tabulate one information of not. This may improve the

quality of stored data and also optimize the memory organization inside tables.

47

CHAPTER 4. POWER OPTIMIZATION BY CACHING

4.1.1 Full Tabulation

In Full Tabulation operation mode no tests will be performed over the entry data.

In this way, the Trade-Off module will take into account only decisions support

such as priority and time execution among all possible functions. In other words,

all the functions modified by the abstract Decision Maker modules will have the

same change to be stored depending on its priorities, independently of how spread

or not are their data. Within this type of execution, the system may experience a

kind of memory wasting seen that functions with high priorities might have a set

of data stored in memory but those data will be seldom accessed by the Look Up

execution.

This operation mode will be controlled by the attribute private static

int mLogicMode;, inside the class TradeOff.java. The operation mode of full

tabulation without discarding data according to mathematical tests is: MODE KEEP ALL.

By this time, no interface is provided by the class to change this attribute, and it

is configured inside the code. Dynamism is considered a next step to the system

development, when enhancements will be incorporated.

4.1.2 Range Tabulation

In other hand, the Trade-Off operation mode can be set up as Rage Keeping by the

TradeOff.java class attribute: MODE KEEP RANGE. In this mode, every Trade-Off

execution will initially analyze the entry values and verify if they match the de-

fined cut configuration. This execution flow will use three different configuration

attributes concerning the modified method to be tabulated or not. They are ap-

plied to TOParameters values, in the way where the Trade-Off will verify if

48

CHAPTER 4. POWER OPTIMIZATION BY CACHING

for determined function the parameters are according to the Range desired to be

kept and the continue the module table insertion flow.

• Average: the average value to be tested with each TOParameters value

and verify whether it’s matching the definition. This value is independent to

each value of TOParameters because the entry values are not correlated

among themselves;

• Standard Deviation: these values count how spread values are going to be

processed of not. This control will avoid values far from average to be kept

in memory since they possibly will have low probability to be looked up

again. This value is also parameter independent;

• Cut Standard Deviation Number: this value indicates how many Standard

Deviations need to be considered, up and down, in values verification. This

value is a generic configuration of internal Trade-Off module control. Once

modified, this will affect all the parameters of all functions which use Trade-

Off tabulation.

In Figure 4.1 is shown how works the configuration described in the enumera-

tion above. In the image there is the function table that means the memory where

functions and values are kept. Inside each of the functions (i.e. Present Value

and XIRR) there are the values saved. The first rounded rectangle with three

values represents the input parameters and the other with a single value repre-

sents the function output to the written inputs. The gray rectangle shows us up

the XIRR configuration that is a defined array inside the modified XIRR function

which defines the average and standard deviations considered to each value of

input (TOParameters).

49

CHAPTER 4. POWER OPTIMIZATION BY CACHING

Figure 4.1: Trade-Off Range Mode Configuration and Verification

As mentioned before, beside the Average and Standard Deviation there is a

configuration to define how many deviations up and down must be considered

to process the range inside the storage table. In the example illustated in the

Figure 4.1, we consider this value 2. By this way, we can verify that Trade-Off

module will discard the first set of input values, because the first input 0.9 in

out of the range 0.42 ± (2)x0.15 configured to XIRR function. The acceptable

interval would be, in this instance, 0.12 ≤ x ≤ 0.72. The rule applies to all input

parameters independently.

Therefore, this verification will make Trade-Off discard the entries with no

correspondence to the configuration as seen in the first input set of the Figure 4.1.

50

CHAPTER 4. POWER OPTIMIZATION BY CACHING

4.2 Alpha Approach

The Alpha Approach is the document session which will analyze the different

code blocks and their executions to verify time consumption and create a model

to evaluate how good for tabulating a function is and the breakeven point to save its

data in memory or not. To illustrate and code blocks is presented a flow diagram

in Figure 4.2.

4.2.1 Execution Flow

Figure 4.2: Execution Flow and Code Blocks

Furthermore, the correspondence between flow and code is presented in Figure

4.3 where the colors related to each block is relative to the colors in flow presented

51

CHAPTER 4. POWER OPTIMIZATION BY CACHING

in Figure 4.2.

Figure 4.3: Source Code related to Flow Blocks

The presented source of Figure 4.3 shows us up the Present Value function op-

erating with Full Tabulation Trade-Off mode explained earlier. That is why there

are no Mathematical (average and standard deviation) attributes settled inside the

modified source code. In this way, there is no information Trade-Off module can

use to discard the values before inserting or not inside the Functions Table struc-

ture.

4.2.2 Time Consuming Blocks

Going deeper in analysis of the Flow Diagram presented in Figure 4.2 we can get

the division of time consumption:

• Lookup Miss: Time spent to look for a specific value that is not tabulated.

The Memory management try to access the HashMaps with desired key but

a null return is sent back;

52

CHAPTER 4. POWER OPTIMIZATION BY CACHING

• Computation: Time spent to compute the original function;

• Trade-Off: Time spent by the Trade-Off to decide either to tabulate or not

the value;

• Lookup Hit: Time spent to look for a specific tabulated value.

4.2.3 Variables

Besides the time consuming variables, to better describe the model, is used:

• Modified Computation Time: Time spent to compute the modified function;

• Hits Percentage: Percentage of hits provided by the system;

• Break-even Hits Percentage: Percentage of hits needed to achieve the break-

even point;

• Time saved: Difference between Computation Time and Modified Compu-

tation Time;

• Hits Number: Number of times a point was found tabulated;

• Miss Number: Number of times a point was not found tabulated.

The variables are described in Table 4.1.

4.2.4 Flow Execution Analysis

Introduction

The idea of this subsection is to come up with the minimum hit ratio needed to

guarantee the same execution time for the optimized function.

53

CHAPTER 4. POWER OPTIMIZATION BY CACHING

Considering α % of hits, it is possible to write:

tmod = α∗ thit +(1−α)∗ (tmiss + tcomp + ttradeo f f)

∆time = tcomp− tmod

If ∆=0 the break-even point is found. So:

tcomp− tmod = 0⇒ tcomp = tmod

Substituting tcomp = tmod in the first equation:

tcomp = α∗ thit +(1−α)∗ (tmiss + tcomp + ttradeo f f)

αbe =
tmiss + ttradeo f f

tmiss + ttradeo f f + tcomp− thit

Results

This result can be used to check if either the function can be tabulated or not,

because as an assumption α was considered the hit percentage wich means 0 ≤

α≤ 1.

Thus, any function with α out of this range is not worth to tabulate and can be

ignored as a part of the system.

Moreover, αbe is also the minimum value of hits that the system needs to

provide in order to save execution time.

54

CHAPTER 4. POWER OPTIMIZATION BY CACHING

4.2.5 Time Saving Analysis

Introduction

The idea of this subsection is to come up with a superior boundary of time saving

for the optimized function.

Considering ∆time = tcomp− tmod , it is possible to write:

∆time = tcomp−α∗ thit− (1−α)∗ (tmiss + tcomp + ttradeo f f)

As 0≤ α≤ 1, using the extreme points of α:

α = 0⇒ ∆time =−tmiss− ttradeo f f

α = 1⇒ ∆time = tcomp− thit

Results

Hence, the maximum ∆time is given for α= 1 and it also gives a superior boundary

for the execution time saving.

4.2.6 Conclusion

Supposing processing time as an approach for power consumption, as lower is the

processing time as higher will be the power saving.

Bearing that in mind, α can be used to distinguish between the energy saving

potential for a given function. Furthermore, the best functions to tabulate are the

ones with αbe→ 0.

55

CHAPTER 4. POWER OPTIMIZATION BY CACHING

Table 4.1: Alpha Variables Table
Block Name Variable
Lookup Miss tmiss
Computation tcomp
TradeOff ttradeo f f
Lookup Hit thit
Modified Computation Time tmod
Hits Percentage α

Break-even Hits Percentage αbe
Time saved ∆time
Hits Number Nhits
Miss Number Nmiss

In order to compare different functions, the α for each one is given by:

α =
Nhits

Nmiss +Nhits

Therefore, having α as far as possible from αbe is the best choice for saving

energy.

4.3 Allocated Memory Control

One of the issues regarding Java Low-Level Applications is the control of memory

allocation by the Objects. Since Java does not provide an API to verify how the

memory is consumed by the allocated objects, a set of workarounds are used to

estimate the memory that is used by Java. And as Java uses a virtual machine

which controls the memory by itself, is not possible to test and to measure the

allocation of the objects since it is dynamic and controlled by the JVM.

56

CHAPTER 4. POWER OPTIMIZATION BY CACHING

4.3.1 Metrics Extraction

In this way, memory management is not possible to implement using Java lan-

guage. For this purpose, usually are used low-level languages such as C and C++.

Thus, this work proposes an approach to estimate the memory usage by the objects

that are kept in memory to tabulate the inputs and outputs of modified functions.

Figure 4.4: MemoryTestBench Used to Compute Memory Consumption

The image 4.4 shows a class used to compute how the instantiation of an object

57

CHAPTER 4. POWER OPTIMIZATION BY CACHING

consume the memory and allows us to estimate the consume of, for example, the

HashMap entry overhead, class attributes used to point objects and also the over-

head of an object array creation. Since the Java memory fluctuates in the way it

allocates and deallocates objects, then, the MemoryTestBench presented calls

Garbage Collector to stabilize the memory before measuring it by the difference

between total and free memory.

4.3.2 Memory Estimation

The Figure 4.5 shows the schema of how objects are positioned among TOFunctions

structures. Based on that image, we are going to describe the memory usage es-

timation. First, the letters A, B, C and D points to structures which will handle

objects kept in memory and also represents an overhead in Java’s memory con-

sumption. Beside the explanation of how the memory is estimated we will refer

also to data we have obtained by the use of the MemoryTestBench described

in the section above.

Therefore, going to estimation information, we enumerate below the informa-

tion in details:

• 48 Bytes (HashMap Entry Overhead - A): the memory consumed by the op-

eration of inserting one element inside the HashMap. This consume regards

reference to hash key, hash value, the object which key refers to and also

the 24 bytes used by a empty object;

• 24 Bytes (TOParameters Object): a simple object in Java costs this bytes

number;

58

CHAPTER 4. POWER OPTIMIZATION BY CACHING

Figure 4.5: Objects organization with labels to be referred in each memory consumption
description, enumerated below

• 16 Bytes (TOParameters Attributes): one reference to Integer and Array

costs 8 Bytes each;

• 24 Bytes (Array Object Instance - C): one intantiated array costs 24 Bytes.

This must be summed to the Array reference that uses 8 Bytes (mentioned

in item above);

• 8 Bytes (Each Array Position - D): since the array position is a reference, it

consumes 8 Bytes as any reference;

59

CHAPTER 4. POWER OPTIMIZATION BY CACHING

• 24 Bytes (Return Object - B): a simple Object in Java, similar to TOParameters;

• 16 Bytes (Return Attributes - B): this amount is summed to the whole cost;

• 32 Bytes (Data Object - D): this is the cost of each object pointed by array

position references individually. This object keeps the input or output value

of a function and therefore is a value like Double, Integer, Float and

so on. All these objects consume 32 Bytes.

From the description enumerate before, we reach the calculation that provides

the memory consumption of each entry inside the TOFunction HashMap.

Since the functions will increase their values accordingly to the system execu-

tion, the HashMap will become the uniquely important memory measurement.

TOFunction and other objects overhead in comparison become neglected as

the memory required does not get over than a couple of bytes. So these last values

will not be taken into account for the memory usage control.

The formula is: (24 + 8 + 8 + 24 + <Parameters Array Size> * (8 + 32) + 24

+ 16 + 32 + 48) to get the TOFunction entry size.

60

Chapter 5

Tests and Results

In this chapter is presented the tests used to evaluate all savings obtained by in-

troducing the software usage by financial functions. First it was analyzed many

financial applications that could be used by this kind of approach. After the sys-

tem was stable it was possible to identify some applications worth applying this

method, so there were two main applications being tested and used to identify how

the parameters could be tuned in order to achieve the best behavior and maximum

savings.

5.1 Experimental Setup

Regarding a specific application, for each of the two functions previously chosen

a test class was implemented individually and for a function call it has been ran

ten times the same function with different inputs, this methodology was used in

order to make all tests more consistent and faster, because for every call it was

needed to come up with random inputs and running ten times in a row makes the

61

CHAPTER 5. TESTS AND RESULTS

time execution faster. For instance, if you execute 10 calls it is going to run 100

times the function.

Moreover, to simulate the execution of the functions as close as possible to the

real world, each one of the functions was randomly chosen to execute its iterations.

The probability density for the inputs was chosen as Gaussian, based on the central

limit theorem, and to select which function to execute was used equally likely

probability density.

Furthermore, a precision was given for each input in order to limit the to-

tal possible combinations inside the range of two standard deviations chosen by

tabulating all the points. This assumption was made to come close to the real

workload, for example the stocks listed in most of the stock exchange markets

have as minimum movement one cent of the currency.

Another point related to simulation is the environment used to run all the test-

ing routines. It was not used any dedicated environment but personal computer.

The station used is a Core 2 Duo 2.1 Ghz with 3GB of memory. It is running a

Windows 7 x64. Since the computer is personal and runs other tasks in paralel,

this configuration may create a considerable deviation in simulation times. We

have included standard deviation in our results to present the behavior of time

fluctuation when the tests were executed.

62

CHAPTER 5. TESTS AND RESULTS

It is possible to check an example of the tests code below:

Program 1 Example of Test Class.
public static void testExecutionsVar() {

for (nExec = 100000; nExec < nExecTotal; nExec++)
{
int testsNumber = nExec;
int[] fNumber = new int[testsNumber];
fNumber = MathFunctions.generateRandomFunction
(2, testsNumber);
for (int i = 0; i < testsNumber; i++) {

switch (fNumber[i]) {
case 0:

testbinomialOptionPricing();
break;

case 1:
testimpliedVolatility();
break;

}
}
MemoryManagement.resetMemory();

}
}

63

CHAPTER 5. TESTS AND RESULTS

Program 2 Example of Test Function Class.
public static void testbinomialOptionPricing() {

Integer inputsNumber = 10;
Integer nPeriods = 1000;
double[] S = MathFunctions.generateRandom
(100, 0, inputsNumber, 2);
double[] X = MathFunctions.generateRandom
(120, 0, inputsNumber, 2);
double[] T = MathFunctions.generateRandom
(1, 0, inputsNumber, 2);
double[] r = MathFunctions.generateRandom
(0.05, 0.01, inputsNumber, 3);
double[] v = MathFunctions.generateRandom
(0.5, 0.1, inputsNumber, 2);
for (int i = 0; i < inputsNumber; i++) {

ModifiedFunctions.binomialOptionPricing
(S[i], X[i], T[i], r[i], v[i], nPeriods);

}
}

5.2 Benchmark Applications

The two functions chosen to run the tests were Binomial Option Pricing and Im-

plied Volatility, in order to choose these specific functions it was used the ap-

proach explained in Section 4.2. All the financial functions listed in Section 2.3

were modified and tested, using the alpha approach as showed in the Table 5.1.

After all these tests and also using the fact that 0≤ α≤ 1, as explained in Section

4.2.4, it was clear which functions were worth tabulating.

Calculating the alpha for a specific function gives important information about

the behavior of this function when applied the modifications and integrated to the

system.

64

CHAPTER 5. TESTS AND RESULTS

Table 5.1: Functions Alpha Values
Function Name α(%)
ROI 179,24
FV 182,41
PV 122,72
NPV 155,82
XIRR Time 22,92
BOPM 3,19
Implied Volatility 4,59
Duration 158,67
Convexity 149,64

To exemplify the process of function selection it is presented this flowchart

below:

Figure 5.1: Choosing Functions

65

CHAPTER 5. TESTS AND RESULTS

Where:

• Apply function modifications: It means apply the modifications proposed

in Subsection 3.5.3

• Compute time constraints: Compute the time constraints needed to calculate

the function Alpha, this approach is proposed in Section 4.2

• Compute Alpha: Compute Alpha itself, given by:

αbe =
tmiss + ttradeo f f

tmiss + ttradeo f f + tcomp− thit

• Generate Reports: Using Alpha computed on the last step, it is possible to

classify a function, regarding memory size and also Energy Savings.

5.3 Results

Concerning the possible system speed up and energy saving, it is necessary to

have a better and deeper knowledge about its behavior. In this interest it was

built two different sets of tests, the first one was made using the total amount of

memory available on the computer and the second set was simulated by varying

the memory size to identify important points, as minimum memory size or also

maximum number of hits.

5.3.1 First Test

For this test was used the total available memory of the java virtual machine (1

GB), moreover it was done by executing 500,000 calls which means approxi-

66

CHAPTER 5. TESTS AND RESULTS

mately 2,500,000 executions of each function. The total energy saved was com-

puted by using as assumption the power value published by Fiorelli and Polleto

thesis [7] for this specific computer, the value is 62,83 W for fully stressed work-

load (Pconsumption).

67

CHAPTER 5. TESTS AND RESULTS

Figure 5.2: First Test

68

CHAPTER 5. TESTS AND RESULTS

Where the fields on the Report represented by Figure 5.2 are described as:

• Miss Time (tmiss): Time spent to look for a specific value that is not tabulated

• Computation Time (tcomp): Time spent to compute the original function

• TradeOff Time (ttradeo f f): Time spent by the trade off to decide either to

tabulate or not the value

• Hit Time (thit): Time spent to look for a specific tabulated value

• Number of Miss (Nmiss): Number of times a point was not found tabulated

• Number of Hit (Nhits): Number of times a point was found tabulated

• Hits (α): Percentage of times a point was found tabulated.Computed as:

α =
Nhits

Nhits +Nmiss

• Total Time (ttotal): Number representing the new computation time using

the system, given by :

ttotal = α∗ thit +(1−α)∗ (tmiss + tcomp + ttradeo f f)

• Saved Time (tsaved): Difference between Computation Time and Modified

Computation Time in percentage, computed as:

tsaved =
tcomp− ttotal

tcomp
∗100%

69

CHAPTER 5. TESTS AND RESULTS

• Alpha Breakeven (αbe): Minimum percentage of hits needed to achieve the

break-even point.

αbe =
tmiss + ttradeo f f

tmiss + ttradeo f f + tcomp− thit

• Total Energy Saved (Esaved): Energy saved in kJ, give by:

Esaved = (tcomp− ttotal)∗Pconsumption ∗ (Nhits +Nmiss)

5.3.2 Analysis

It is possible to conclude that the tests were successful, because the execution time

of both functions was reduced. In other words, for the same workload set, it was

needed to use less processing time after applying the optimization. This can be

translated to energy saving by using the saved time, given by:

tsaved =
tcomp− ttotal

tcomp
∗100%

Regarding the speed up, it is computed that instead of running for 190 minutes the

same work was done in 10 minutes. Translating to energy, it was saved 680kJ in

10 minutes of execution.

5.3.3 Second Test

The impact of memory availability on optimization. To this end, memory size was

change in a range from 500 bytes to 100MB and the number of calls was set to

10,000 calls.

70

CHAPTER 5. TESTS AND RESULTS

50

60

70

80

90

T
im

e
 (

µ
s)

Lookup Time

Miss Time (µs)

Hit Time (µs)

0

10

20

30

40T
im

e
 (

µ
s)

Memory Size (Bytes)

Figure 5.3: Lookup Time for the Binomial Option Pricing Function

60

70

80

90

100

A
lp

h
a

 (
%

)

Alpha

Hits (%)

Alpha break even (%)

0

10

20

30

40

50

A
lp

h
a

 (
%

)

Memory Size (Bytes)

Figure 5.4: Percentage of hits (α) and the alpha breakeven (αbe) for the Binomial

Option Pricing Function

71

CHAPTER 5. TESTS AND RESULTS

300

350

400

450

500

T
im

e
 (

µ
s)

TradeOff Time

TradeOff Time (µs)

0

50

100

150

200

250

T
im

e
 (

µ
s)

Memory Size (Bytes)

Figure 5.5: TradeOff Time for the Binomial Option Pricing Function

2350

2400

2450

T
im

e
 (

µ
s)

Computation Time

Computation Time (µs)

2200

2250

2300

T
im

e
 (

µ
s)

Memory Size (Bytes)

Figure 5.6: Computation Time for the Binomial Option Pricing Function, consider-

ing the function withou any optimization

72

CHAPTER 5. TESTS AND RESULTS

40

50

60

T
im

e
 (

µ
s)

Lookup Time

Miss Time (µs)

Hit Time (µs)

0

10

20

30

T
im

e
 (

µ
s)

Memory Size (Bytes)

Figure 5.7: Lookup Time for the Implied Volatility Function

80

100

120

A
lp

h
a

 (
%

)

Alpha

Hits (%)

Alpha break even (%)

0

20

40

60

A
lp

h
a

 (
%

)

Memory Size (Bytes)

Figure 5.8: Percentage of hits (α) and the alpha breakeven (αbe) for the Implied

Volatility Function

73

CHAPTER 5. TESTS AND RESULTS

250

300

350

400

450

T
im

e
 (

µ
s)

TradeOff Time

TradeOff Time (µs)

0

50

100

150

200

T
im

e
 (

µ
s)

Memory Size (Bytes)

Figure 5.9: TradeOff Time for the Implied Volatility Function

1500

2000

2500

T
im

e
 (

µ
s)

Computation Time

Computation Time (µs)

0

500

1000

T
im

e
 (

µ
s)

Memory Size (Bytes)

Figure 5.10: Computation Time for the Implied Volatility Function, considering the

function withou any optimization

74

CHAPTER 5. TESTS AND RESULTS

5.3.4 Analysis

Observing the Alpha Breakeven Figures: 5.4, 5.8 and the Trade-Off Time Fig-

ures: 5.5, 5.9 is possible to notice they have a correlation, based on its shapes

and also the maximum point of each one stands on the same memory size value.

This correlation exists due to Alpha Breakeven computation explained in Section

4.2. The trend reversal presented can be explained by the total number of com-

binations given the input parameters. Additionally, the hits rate becomes stable

after the maximum alpha point and it is also explained by the tabulation of a high

percentage of the possible inputs.

75

CHAPTER 5. TESTS AND RESULTS

76

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Green IT is a research field becoming even more important nowadays when nat-

ural resources are considered important to sustainable development. With impor-

tance increasing and researches, different approaches start being created in the

direction of natural resources saving to avoid environmental impact. Since en-

ergy is directly related to Green impact, and beside is also becoming an expensive

attribute in overall companies budget, the Green IT is trying to find solutions not

intrusive to already existent solutions. Why?! Because modifying equipments and

change systems running currently in industry organizations are very expensive and

may not guarantee the reliability and safety previously analyzed.

Then, taking into account companies with huge datacenters to provide re-

sults and processing of their business, this work started focusing in software layer

which is an very customizable field and also flexible to changes. Earlier researches

had shown us up that the way the software layer is executed in huge datacenters

77

CHAPTER 6. CONCLUSION AND FUTURE WORK

with high data load impact differently in the overall hardware behavior by means

of microprocessor power consumption, number of memory banks powered per-

manently and also the heat generated. Heat, a very important issue in Green IT

and datacenters configuration, handles a large slice of the power consumption in

IT since the air conditioners usually are high consumer equipments.

This work aimed to create mechanisms to reduce the microprocessor energy

consumption by decreasing work load in chips. The main idea is to take in consid-

eration methods able to be modified from the original behavior trying to substitute

the original code by one responsible by tabulating the data usually reprocessed.

Those methods, known also as Pure Functions already mentioned in this work are

methods with only mathematical code, without any other type or interaction with,

for instance, graphical user interface, network, or anything else.

Regarding software modification, this work is also part of a large architecture

with Pure Function recognition, Trade-Off Module, Memory Management and

also Business Intelligence to analyze generated data. More precisely, this thesis

concerns the Trade-Off Module and Memory Management modules, with the idea

to decide whether some information will need to be kept in memory of not also

managing the remaining space and also function priorities already described in

previous sections of this document. The development of all modules were done

in java and was exported a set of different statistics about systems behavior in

different usage conditions.

The results got in systems analysis overcome our expectations with high in-

dexes of time and energy saving. Indeed, the idea of tabulate all the complex

mathematical inputs and output from the Pure Functions have dealt with energy

saving by decreasing of 100% workload time on microprocessor. The percentages

78

CHAPTER 6. CONCLUSION AND FUTURE WORK

run around 90% of saving considering large amount of data being tabulated and

also the approaches created to measure numbers of hits and misses in memory

architecture to keep information. But the actual impact of this huge saving is ap-

proximately 20%, taking into consideration the benchmark used, in the end just

two functions out of nine were worth applying the optimization, which tells us

that 22% of the applications chosen had around 90% of savings.

Therefore, handling the software layer in Green IT is an important issue to be

researched since saving microprocessor workload will reduce computation time

allowing the hardware platform to hold more workload. Will also reduce the heat

generated by the architecture making air conditioners decrease the energy required

to cool the environment. Considering this cascade the overall power consumption

of whole Data Center structure will be cut down.

6.2 Future Work

Considering promising results presented in this work, there is a set of enhance-

ments planned to be put in practice in subsequent work steps. The first future

work to be developed is the improvement of the deletion mechanism of the Trade-

Off module. Nowadays, the deletion behavior iterates through the ordered by

priorities data structure to eliminated that entries with priorities lower than the

new entry to be inserted in Memory. The call to deletion process is made pas-

sively, in other words, there must be a call to Trade-Off module to verify if the

entry must or not be kept in cache system and if must be, then space must be find

to new data. That is when the deletion operates. Also, there is a configuration

to define the number of calls required to execute the cleaning methods to reduce

79

CHAPTER 6. CONCLUSION AND FUTURE WORK

performance impact of Trade-Off functionality. Thus, the improvement would be

the creation of an active method to delete useless or low priorities entries from

memory without the need to call the method by the original system. This will also

ease the control of memory percentage available to each function tabulated.

Beside the approach created in this work to define whether a function must

be tabulated of not considering execution times, a possible enhancement is the

insertion of new attributes for this verification. The idea would be the insertion

of a Beta correction factor which would correlate the pure function times (orig-

inal execution time and new modified function times: hit/miss, computation and

trading-off), power consumption considering idle/busy microprocessor and mem-

ory powering - constant power required to each inserted memory bank. A more

complex set of variables to analyze the tabulation or not for a function would give

more precise information about functions behavior relating to memory usage.

80

Appendix A- Simulation Reports

In this appendix is going to be presented the reports generated for some of the

points plotted on Section 5.3.3.

81

Appendix

82

Appendix

83

Appendix

84

Appendix

85

Appendix

86

Appendix

87

Appendix

88

Appendix

89

Appendix

90

Appendix

91

Appendix

92

Appendix

93

Appendix

94

Bibliography

[1] E. Williams. Energy intensity of computer manufacturing: Hybrid assess-

ment combining process and economic input-output methods. Environ. Sci.

Technol., (38):6166–6174, 2004.

[2] Berkeley National Lab. Lawrence. Optimization of product life cycles to re-

duce greenhouse gases in california. Report for California Energy Commis-

sion., (CEC-500-2005-110-F), 2005.

[3] Industrial Research and Development Corporation. Personal computers

(desktops and laptops) and computer monitors. Report for the European Com-

mission, August 2007., 2007.

[4] S. Murugesan. Harnessing green it principles and practices. IT Professional.,

10:24–33, 2008.

[5] Chiara Francalanci. Green it: Sfide e opportunita. Mondo Digitale., pages

36–42, 2008.

[6] N. L. B. Levitin Margolous. Physica D., page 188, 1988.

[7] Poletto Erick B. Fiorelli, Ricardo A. Data center energy efficiency: Analysis

and test of energy consumption benchmark tools. page 44, 2009.

95

