
 

_______________________________________________________________ 

________________________________________________________________ 

 

Politecnico Di Milano 
Facoltà di Ingegneria Industriale 

Corso di Laurea in Ingegneria Meccanica Orientamento Trasporti 

 

 

 

An Integrated Approach to a Condition 

Based Maintenance policy and applications 

 

Relatore: Prof. Stefano Beretta 

Co-relatore: Prof. Giovanni Jacazio 

 

      Tesi di laurea di: 

      Mattia Gabriele Vismara 

      Matr. 720285 

 

 

Anno Accademico 2010/2011 





 

_______________________________________________________________ 

________________________________________________________________ 

 

Acknowledgments 

I would like to thank prof. Beretta for his fairness, support and availability.  

I’m also grateful for prof. Jacazio who gave me the opportunity to study in deep 

this innovative field and for his patience and support during these two years. 

without which this work would not have been possible.  

I would eventually reserve my special thanks to professors Pastorelli and Sorli for 

their suggestions and encouragement. 





 

_______________________________________________________________ 

________________________________________________________________ 

 

Abstract 

Unexpected system failures pose a significant problem in human safety and 

health care applications, service and manufacturing sectors, national 

infrastructure (nuclear power plants and civil structures), and national security 

(military operations). The main challenges associated with unexpected failures 

are related to characterizing the failure uncertainty and the stochastic nature of 

the degradation processes. An accurate failure time prediction and a reliability 

assessment are necessary if the appropriate maintenance resources (personnel, 

tools, spare parts, etc.) are to be assembled. For this reason the thesis  presents a 

mathematical framework for integrating degradation-based sensor data streams 

with high-level logistical decision models. To achieve this goal, a software has 

been realized in order to simulate a discontinuous operational scenario (such as 

aircraft operations) in which two different maintenance policies were applied, a 

scheduled and a condition-based one. The former refers to a typical maintenance 

policy, in which no prognostic data are available, so that maintenance is 

scheduled basing only on prior knowledge of components’ failure behavior. The 

latter approach, instead, implements the information given by prognostics in 

order to fully exploit the component’s residual useful life and reduce the lead 

time to deliver spare parts. The last change is achieved through a revision and a 

modification of the entire supply chain model in a Just-In-Time-like perspective: 

thanks to a more precise knowledge of the time to failure, spare parts can be 

stored in depots so to be in the maintenance zone just before they are needed. 

Thus, it is possible to move these parts to higher level depots, where hold 

stocking costs are typically lower. As for prognostics, it has been made possible 

through the realisation of  a RUL estimation algorithm. It is to say that many 

techniques have been found in literature, but none of them faced the prognostic 

problem with the aim of finding a closed form for RUL estimation The most 

promising predictive algorithm, among those developed before this work, turned 

out to be a Bayesian estimator based on the degradation pattern of the monitored 

component, under the likely assumption of exponential shape of such pattern. 

This algorithm has been the starting point for the one developed in this work. 

Leveraging on Bayesian probability theory, the up-to-date RUL probability 

density function of the component is evaluated at each time step, starting from 

the prior knowledge of the component’s residual life, a stochastic parameter that 

is evaluated from experimental tests always done before commissioning. The 
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information about RUL prediction was then used to define the optimal moment 

at which scheduling and performing maintenance. These values were found 

through an objective function optimization that took into account the main 

drivers associated to condition-based maintenance decision making process. 

Furthermore the opportunity to introduce CBM (condition based maintenance) 

concepts based on prognostic into a cracked railway axle management is 

investigated. The performances of two different prognostic algorithm are 

assessed on the basis of their RUL (remaining useful life) predictions accuracy. 

The CBM approach is compared to the classical preventive maintenance  

approach to railway axle maintenance management based on expensive and 

regular NDT. The effect of monitoring frequency and the monitoring 

infrastructure size error is assessed as well. 
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1. Introduction to CBM 

The area of intelligent maintenance and diagnostic and prognostic–enabled 

CBM of machinery is a vital one for today’s complex systems in industry, 

aerospace vehicles, military and merchant ships, the automotive industry, and 

elsewhere. The industrial and military communities are concerned about critical 

system and component reliability and availability. The goals are both to 

maximize equipment up time and to minimize maintenance and operating costs. 

As manning levels are reduced and equipment becomes more complex, 

intelligent maintenance schemes must replace the old prescheduled and labor 

intensive planned maintenance systems to ensure that equipment continues to 

function. Increased demands on machinery place growing importance on 

keeping all equipment in service to accommodate mission-critical usage.  

While fault detection and fault isolation effectiveness with very low false alarm 

rates continue to improve on these new applications, prognosis requirements are 

even more ambitious and present very significant challenges to system design 

teams. 

A significant paradigm shift is clearly happening in the world of complex 

systems maintenance and support. Figure 1 attempts to show the analogy of this 

shift between what is being enabled by intelligent machine fault diagnosis and 

prognosis in the current world of complex equipment maintenance and how the 

old-time coal miners used canaries to monitor the health of their mines. The 

‘‘old’’ approach was to put a canary in a mine, watch it periodically, and if it 

died, you knew that the air in the mine was going bad. The ‘‘new’’ approach 

would be to use current available technologies and PHM-type capabilities to 

continuously monitor the health of the canary and get a much earlier indication 

that the mine was starting to go bad. This new approach provides the predictive 

early indication and the prognosis of useful mine life remaining, enables 

significantly better mine maintenance and health management, and also lets you 

reuse the canary. 
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Figure 1 The shift in condition monitoring paradigm 

Prognosis is one of the more challenging aspects of the modern prognostic and 

health management (PHM) system. It also has the potential to be the most 

beneficial in terms of both reduced operational and support (O&S) cost and life-

cycle total ownership cost (TOC) and improved safety of many types of 

machinery and complex systems. The evolution of diagnostic monitoring 

systems for complex systems has led to the recognition that predictive prognosis 

is both desired and technically possible. By exploiting the data provided by the 

enhanced monitoring systems and turning them into information, many features 

relating to the health of the aircraft can be deduced in ways never before 

imagined. This information then can be turned into knowledge and better 

decisions on how to manage the health of the system. 

The increase in this diagnostic capability naturally has evolved into something 

more: the desire for prognosis. Designers reasoned that if it were possible to use 

existing data and data sources to diagnose failed components, why wouldn’t it 

be possible to detect and monitor the onset of failure, thus catching failures 

before they actually hamper the ability of the air vehicle to perform its 

functions. By doing this, mission reliability would be increased greatly, 

maintenance actions would be scheduled better to reduce the asset down time, 

and a dramatic decrease in life-cycle costs could be realized. It is with this mind-

set that many of today’s ‘‘diagnostic systems’’ are being developed with an eye 

toward prognosis.  
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Figure 2 Maintainer's requirements [1] 

If you were to ask a fleet user or maintainer what his or her most pressing needs 

were, you most probably would get a mixture of many answers. He or she would 

identify many needs, including some of the following responses: maximize 

sortie-generation rates and system availability, minimum or no periodic 

inspections, low number of spares required and small logistics footprint, quick 

turn-around time, maximized life usage and accurate parts life tracking, no false 

alarms, etc. Figure 2 depicts some of these and other fleet user needs. What the 

maintainer actually may want most of all is no surprises. He or she would like to 

be able to have the ability to predict future health status accurately and to 

anticipate problems and required maintenance actions ahead of being surprised 

by ‘‘hard downing’’ events. Capabilities that would let the maintainer see ahead 

of both unplanned and even some necessary maintenance events would enable a 

very aggressive and beneficial opportunistic maintenance strategy. These 

combined abilities both to anticipate future maintenance problems and required 

maintenance actions and to predict future health status are key enablers and 

attributes to any condition-based maintenance (CBM) or new logistics support 

concept and to ‘‘enlightened’’ opportunistic maintenance decisions. These 

predictive abilities and prognostic capabilities are also key enablers and very 
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necessary attributes to both the evolving performance-based logistics (PBL) 

concepts and paradigm-changing new business case approaches. 

A modern and comprehensive prognosis and health management system needs 

to interface with the logistic information system to trigger (1) the activities of 

the supply-chain management system promptly to provide required replacement 

parts, (2) planning needed to perform the required maintenance, and (3) training 

of the maintainer.  The main benefits and costs related to the implementation of 

a PHM system are [2][3]: 

Reductions in the use 

of spare components 

Accurate diagnosis of problems0 by PHM system will reduce the 

number of  removals of parts where no trouble is found in ground 

testing. 

Reductions in direct 

maintenance 

manpower  

PHM provides several ways in which direct maintenance 

manpower will be reduced, including: 

• PHM provides a capability to predict failures in terms of 

remaining useful life  thereby providing the opportunity 

to remove the component before it can contribute to an 

accident or failure. 

• PHM accurately identifies failed components so they can 

be quickly replaced.  

• Fewer removals of parts where no trouble is found with 

ground testing. 

• Less time will be spent on ground inspections because 

PHM will determine whether a problem exists. 

• Less time will be spent diagnosing and isolating failure 

because PHM will perform these functions. 

• Less time will be spent checking out repair actions 

because PHM will do the checkout when the repair 

action is complete. 

• Since there will be fewer repair actions because of the 

reduction incidents where no trouble is found, there will 

also be less damage inadvertently done by maintainers 

during removal and replacement operations. 

• Reduced need for maintainers to set up and use ground 

test equipment because PHM will provide on-board 

diagnostics, fault isolation and checkout, and 

• Since PHM will determine the condition of a component, 

parts previously removed on a time interval basis, some 

components can remain on the aircraft until their 

condition warrants removal. 

• These all contribute to reduced MTTRs and ultimately a 

reduction in the number of maintainers required 

supporting the system 
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Reductions in 

indirect maintenance 

manpower 

With significant reductions in direct manpower, the numbers of  

indirect support staff can also be reduced. 

Reduction in the 

amount of ground 

support equipment  

Since PHM will provide an on-board diagnosis, fault isolation and 

checkout, there is a reduced need for ground support equipment. 

Reduction in training 

costs  

Less direct maintenance manpower means fewer people have to 

be trained.  

Lighter workloads in some specialty areas provides an opportunity 

to cross train people in more occupational specialties providing 

more flexibility in assignment of maintenance crews and further 

reducing the numbers of people to be trained. 

Reduction in the 

rated of major 

accidents  

PHM provides a capability to predict failures in terms of 

remaining life thereby providing the opportunity to remove the 

component before it can contribute to an accident. 

Increased 

availability/reliability 

Consequence of decreased average repair times due to the 

improved fault isolation abilities, and of  reduced unnecessary 

repairs, removals, inspections, reduced time awaiting spares 

Extended component 

Life 

The capability of removing/repairing the component/subsystem 

just before failure imply an increase in component life. 

Investment costs A PHM approach requires high investments, such as: 

• Experimental tests (Accelerated degradation tests) 

• High R&D expenses required, to be replicated for each 

new/different component 

• System development (IT infrastructure, hardware, software, 

systems integration) 

• Processes reengineering 

 

Missed and False 

Alarms, failure 

modes coverage 

False alarms: 

• Cause extra  maintenance actions 

• May result in unnecessary removals 

• Reduces User’s confidence in system 

 

Missed Alarms: 

• Missed detections result in greater problems after PHM since 

Inventory levels would have been reduced so likelihood of 

having convenient replacement is much lower. 

• Significantly Reduces Users Confidence in system. 

 

Table 1 Main Cost and benefits of CBM 
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Historically, such predictions would have been more of a black art than a 

science. Essentially, prognosis provides the predictive part of a comprehensive 

health management system and so complements the diagnostic capabilities that 

detect, isolate, and quantify the fault, and prognosis, in turn, depends on the 

quality of the diagnostic system. 

From an operator’s, maintainer’s, or logistician’s—the user’s—point of view, 

what distinguishes prognosis from diagnosis is the provision of a lead time or 

warning time to the useful life or failure and that this time window is far enough 

ahead for the appropriate action to be taken. Naturally, what constitutes an 

appropriate time window and action depends on the particular user of the 

information and the overall system of systems design one is trying to optimize. 

Thus prognosis is that part of the overall PHM capability that provides a 

prediction of the lead time to a failure event in sufficient time for it to be acted 

on. 

What, then, constitutes a prognostic method—essentially any method that 

provides a sufficient answer (time window) to meet the user’s needs. This is an 

inclusive approach and one that is seen as necessary to get the system of 

systems-wide coverage and benefits of prognosis. Some would argue that the 

only true prognostic methods are those based on the physics of failure and one’s 

ability to model the progression of failure. While this proposition has scientific 

merit, such an unnecessarily exclusive approach is inappropriate Within security 

limitations, failure data should be available to all levels, including sustaining 

engineering personnel, OEMs, major command staff, and unit-level war fighter 

personnel. Some of the benefits of such a PHM system are listed below. given 

the current state of the art of prognostic technologies and the most likely 

outcome of insufficient coverage to provide system-wide prognosis. 

Thus prognostic methods can range from the very simple to the very complex. 

Examples of the many approaches are simple performance degradation trending, 

more traditional life usage counting (cycle counting with damage assessment 

models and useful life remaining prediction models), the physics of failure-

based, sometime sensor driven and probabilistic enhanced, incipient fault (crack, 

etc) propagation models, and others. 

To understand the role of predictive prognosis, one has to understand the 

relationship between diagnosis and prognosis capabilities. Envisioning an initial 

fault to failure progression timeline is one way of exploring this relationship. 

Figure 3 represents such a failure progression timeline. This timeline starts with 
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a new component in proper working order, indicates a time when an early 

incipient fault develops, and depicts how, under continuing usage, the 

component reaches a component or system failure state and eventually, if under 

further operation, reaching states of secondary system damage and complete 

catastrophic failure.  

 

Figure 3 Failure progression timeline[1] 

Diagnostic capabilities traditionally have been applied at or between the initial 

detection of a system, component, or subcomponent failure and complete system 

catastrophic failure. More recent diagnostic technologies are enabling detections 

to be made at much earlier incipient fault stages. In order to maximize the 

benefits of continued operational life of a system or subsystem component, 

maintenance often will be delayed until the early incipient fault progresses to a 

more severe state but before an actual failure event. This area between very 

early detection of incipient faults and progression to actual system or component 

failure states is the realm of prognostic technologies.   

If an operator has the will to continue to operate a system and/or component 

with a known, detected incipient fault present, he or she will want to ensure that 

this can be done safely and will want to know how much useful life remains at 
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any point along this particular failure progression timeline. This is the specific 

domain of real predictive prognosis, being able to accurately predict useful life 

remaining along a specific failure progression timeline for a particular system or 

component.  

To actually accomplish these accurate useful life remaining prediction 

capabilities requires many tools in your prognostic tool kit. Sometimes available 

sensors currently used for diagnosis provide adequate prognostic state awareness 

inputs, and sometimes advanced sensors or additional incipient fault detection 

techniques are required.   

A CBM program consists of three key steps [4] (see Figure 4): 

1. Data acquisition step (information collecting), to obtain data relevant to system 

health. 

2. Data processing step (information handling), to handle and analyze the data or 

signals collected in step 1 for better understanding and interpretation of the 

data. 

3. Maintenance decision-making step (decision-making), to recommend efficient 

maintenance policies. 

 

Figure 4 CBM program steps [5] 

Diagnostics and prognostics are two important aspects in a CBM program. 

Diagnostics deals with fault detection, isolation and identification when it 

occurs. Fault detection is a task to indicate whether something is going wrong in 

the monitored system; fault isolation is a task to locate the component that is 

faulty; and fault identification is a task to determine the nature of the fault when 

it is detected. Prognostics deals with fault prediction before it occurs. Fault 

prediction is a task to determine whether a fault is impending and estimate how 

soon and how likely a fault will occur. Diagnostics is posterior event analysis 

and prognostics is prior event analysis. Prognostics is much more efficient than 

diagnostics to achieve zero-downtime performance. 

Diagnostics, however, is required when fault prediction of prognostics fails and 

a fault occurs. A CBM program can be used to do diagnostics or prognostics, or 
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both. No matter what the objective of a CBM program is, however, the above 

three CBM steps are followed.  

Data acquisition is a process of collecting and storing useful data (information) 

from targeted physical assets for the purpose of CBM. This process is an 

essential step in implementing a CBM program for machinery fault (or failure, 

which is usually caused by one or more machinery faults) diagnostics and 

prognostics. Data collected in a CBM program can be categorised into two main 

types: the so-called event data and condition monitoring data. Event data include 

the information on what happened (e.g., installation, breakdown, overhaul, etc., 

and what the causes were) and/or what was done (e.g., minor repair, preventive 

maintenance, oil change, etc.) to the targeted physical asset. Condition 

monitoring data are the measurements related to the health condition/state of the 

physical asset. 

Data processing is a process of cleaning the acquired data from noise and errors 

(data clearing), and afterwards data analysis through appropriate algorithms (see for a 

list [5] depending on the type of data available. The aim of this phase is to compute a 

measure or a set of measures strictly correlated to health state of the 

component/subsystem/system. 

Maintenance decision-making is the last step of a CBM program is 

maintenance decision-making. Sufficient and efficient decision support would 

be crucial to maintenance personnel’s decisions on taking maintenance actions. 

Techniques for maintenance decision support in a CBM program can be divided 

into two main categories[5]: diagnostics and prognostics. As mentioned earlier, 

fault diagnostics focuses on detection, isolation and identification of faults when 

they occur. 

1.1. Diagnostics 

Diagnostics in engineering systems is a relatively well understood field of study. 

It deals with the detection of conditions of anomaly (faults or failures), the 

isolation of the subsystem or the interested component and, possibly, the 

identification of fault severity. It is important, for clarity, to introduce some 

definitions [1]: 
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• Fault diagnosis: Detecting, isolating and identifying a pending or 

incipient failure condition. The affected component (subsystem, system) 

is still operational even though in a degraded mode; 

• Failure diagnosis: Detecting, isolating and identifying a component 

(subsystem, system) that has ceased to operate. 

Moreover: 

• Fault/failure detection: an abnormal operating condition is detected and 

reported; 

• Fault/failure isolation: determining which component (subsystem, 

system) is failing or has failed; 

• Fault/failure identification: estimating the nature and extent of the 

fault/failure. 

Many are the fields of application and consequently the number of enabling 

technologies that have been experimented over the time to deal with this kind of 

problems. However, some features are common to the major part of applications 

and thus can be used to give a general description of what is included within a 

diagnostic system: 

• Sensors to collect data of the observed process variables and parameters 

(hardware); 

• A feature extractor that reduces raw data dimensions and extracts 

condition indicators (features) to be 

• used within the diagnostic algorithms (software); 

• One or more diagnostic algorithms used to assess the current state of 

monitored components (software). 

Diagnostic algorithms, in particular, must detect system performance, 

degradation levels and the eventual presence of abnormal conditions by 

evaluating physical property changes through detectable phenomena. For 

complex systems, like aircrafts, the number of possible faults is too high to 

create a diagnostic system having extended identification abilities. The number 

and type of faults to be taken into account are normally identified using of 

Failure Mode, Effects and Criticality Analysis (FMECA), by evaluating 

frequency and potential impact of failures and by cost considerations. However, 

detection capacities must be kept, in any case, sufficiently high. 
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A reduced false negative rate, indicating the frequency of undetected anomaly 

conditions is in fact one of the main requirements of a diagnostic system. A set 

of these typical requirements is presented below[1] : 

• Maximum false positive rate, or false alarm rate; 

• Maximum negative rate, to be reduced as much as possible; 

• Minimum percentage of detection on monitored failures; 

• Minimum percentage of identification on monitored failures; 

• Minimum fault isolation rate on monitored subsystems; 

• Minimum operating period between false alarms (MOPBFA); 

• Maximum time window between fault initiation and detection. 

The designer’s objective is to achieve the best possible performances or at least 

to fulfill the minimum requirements. To reach this objective, it is important that 

some basic considerations are kept in mind during the design process. First of 

all, when working on diagnostic algorithms, a sufficient amount of data is 

always needed from both normal and faulted conditions of the monitored 

system. Significant results can be achieved only if massive experimental 

databases are available. Optimal feature selection is then another focal point. For 

this, good knowledge of the system is required together with a significant 

amount of time to be spent on experimental data analysis. The choice of the type 

of fault detection/identification algorithm to be used is of course another key 

point. One algorithm can be used for different faults or more than one algorithm 

can be used on the same component with the aim of improving the diagnostic 

abilities of the system. In the latter case, the way in which evidences coming 

from different algorithms are merged together (data fusion) is a crucial point 

too. 

The enabling technologies typically fall into two major categories: model-based 

and data-driven. Model-based techniques rely on an accurate dynamic model of 

the system and are able to detect even unanticipated faults. They generate from 

the actual system’s and model’s output a residual between the two outputs that is 

indicative of a potential fault condition. On the other hand, data-driven 

techniques often address only anticipated fault conditions, where a fault model 

is a construct or a collection of constructs, such as neural networks, expert 
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systems, etc. that must be trained first with known prototype fault data before 

being employed online for diagnostic purpose. 

1.2.  Prognostics 

Prognostics refers to the capability to provide early detection of the fault 

condition of a component, and to have the technology and means to manage and 

predict the progression of this fault condition to component failure[6]. 

The early-detected fault condition is monitored and safely managed from a small 

fault as it progresses until it warrants maintenance action and/or replacement. 

Impacts on other components and secondary damages are also continually 

monitored and  considered during this fault progression process. Through this 

early detection and the monitoring of fault progression management the health 

of the component is known at any point in time and the future failure event can 

be safely predicted in time to prevent it. That is, useful life remaining can be 

predicted with some reasonably acceptable degree of confidence.  

The aspect that prognostics takes place in the present requires to be a dynamic 

process evolving in time from the moment a component is working until it has 

reached failure. Prognostics is fundamentally different from a static, prior 

knowledge of its time to failure. In this context, prognostics is a remaining life 

estimation methodology that is condition-based and dynamic in both accuracy 

and uncertainty. 

Condition-based assessments, the underpinning of the Condition-Based 

Maintenance philosophy, usually emphasized the diagnosis of problems rather 

than the prediction of remaining life. Prognoses are considerably more difficult 

to formulate since their accuracy is subject to stochastic processes that have not 

yet happened. 

As a consequence of uncertainty, prognostics methods must consider the 

interrelationships among accuracy, precision and confidence. For our purposes, 

accuracy is a measure of how close a point estimate of failure time is to the 

actual failure time (FT), whereas precision is a measure of the narrowness of an 

interval in which the remaining life falls.  

The interval is enclosed by upper and lower bounds. Confidence is the 

probability of the actual remaining life falling between the bounds defined by 

the precision. We use this interpretation of confidence in the figures and 
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discussions that follow to reflect the generic use of the term. With this in mind, 

consider the following paradox: the more precise the remaining life estimate, the 

less probable this estimate will be correct. In order to clarify this assertion, we 

begin by reviewing the distinction between the following four idealized 

Probability Density Functions (pdfs) for remaining life [7] 

a) True prior pdf at time zero; 

b) Modelled pdf estimating the true pdf at time zero; 

c) True posterior pdf conditioned on observations during component use; 

d) Modelled pdf estimating the true posterior pdf during component use. 

 

Figure 5 Truth and models of prior and posterior PDFs [6] 

A notional illustration of all four is shown in Figure 5. The true prior pdf for an 

arbitrary component type reflects the actual frequency of lifetimes for all the 

components ever made (past, present and future). For obvious reasons, we 

usually settle for a model of this function (pdf B) that can be formed either from 

a limited number of samples available from real life, or similar experiences 

derived analytically and/or empirically. The objective of the model is to 

approach the true distribution so that any differences are inconsequential. Pdf B 

represents our best estimate of the a priori failure pdf at time zero for any new 

component of the given type (the so-called "bathtub curve").  
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Experience shows that components have variations in quality, and are subjected 

to different use and abuse. From the moment a component is first put into use, 

the a priori pdfs should be updated since the probability of infant mortality 

gradually diminishes with operation. In the absence of any other information, a 

reasonable PDF model can be formed at each moment in time by normalizing 

the original basic shape of the future portion of the distribution to maintain a 

cumulative probability of 1.0. 

Intuition suggests that a better estimate of remaining life for a specific instance 

can be found during use by knowing the current condition of the component. 

This gives rise to the conditional remaining-life pdfs (pdf (c) and pdf (d)). At a 

given point in time and for a particular observation of component condition (i.e., 

the point labelled "present" in Figure 5), there exists a posterior pdf for the true 

remaining life (pdf (c)), and a prognostic model that approximates this truth (pdf 

(d)). Note that these remaining life distributions ideally are narrower and taller 

to maintain a total area of 1, yielding more precise but less uncertain estimates. 

They represent a subset of all possible instances where the distribution has been 

conditioned on additional information beyond the simple fact that the 

component is still operating. Note also that the true distributions need not be 

smooth or symmetrical, whereas the models are often forged into well-

understood functions for computational convenience. pdfs (a) and (b) reflect the 

view before the component is used at time zero, while pdfs (c) and (d) reflect an 

instantaneous view at some point during use after some damage indication is 

observed. These are drawn on the same figure for comparative purposes. 

Remaining life estimates can be formed from prior models (pdf (b)) prior to 

component use, normalized prior models from the moment use begins, or 

refined pdfs models (i.e., pdf (d)) if something is known about component 

condition. Each of these remaining life estimates is covered under the broadest 

definition of "prognostics". Of course there are many issues associated with 

predicting expected remaining life, such as how do we recognize current 

condition and how can we derive the pdfs without a large database of failures. 

To the extent that we cannot control the future, the determination of remaining 

life is a probabilistic computation[6]. Without omniscience, one cannot know 

exactly when a component will fail because the factors responsible for failure 

generally have unknown future values. Finding where an extrapolated trend 

meets a condemnation threshold may provide an expectation of remaining life, 

but it does not provide sufficient information to make a decision. The 
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probability of failure at this exact moment is essentially zero, and the 

corresponding confidence interval is unknown. The most informative solution 

furnishes the estimated pdf, but this is sometimes viewed as too much 

information. An acceptable solution might provide expected remaining life, and 

the lower and upper bounds that enclose an area under the PDF that equals the 

desired confidence. For example, suppose we are required to find the latest point 

in time for servicing a component that will preclude 95% of the previously 

experienced failures of components having a specific health condition. Figure 6 

illustrates a hypothetical remaining life PDF model for components with the 

specified condition. 

The expected point of failure is shown as the middle of the distribution, but the 

decision point is actually earlier and is a function of the shape of the pdf. Note 

that expected value is one way of describing the ’centre’ of the distribution. 

 

Figure 6 Max Lead-Time interval for 95% confidence [6] 

Depending on the nature of the distribution, one might choose to use the median 

or the point of maximum likelihood. The place labeled Just-In-Time Point 

(JITP) where 5% of the pdf area has passed, is the point in time where 95% of 

the failures, estimated from previous experience and/or analysis, have not yet 

happened. The time interval from the present to the JITP is defined as the Lead-

Time Interval (LTI). In this example, the upper bound is technically plus infinity 

indicating an estimate with poor precision. Ideally, we would prefer the 

distribution to be as narrow as possible so that all failures are avoided and no 
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unnecessary maintenance is performed. Unfortunately, the shape of the pdf is 

not under our control as will be explained later. Assigning values to any two of 

the three parameters (upper bound, lower bound, and confidence) uniquely 

determines the remaining parameter. As an example, Figure 7 illustrates three 

possible JITPs that satisfy the 95% confidence requirement, that is to say, 95% 

of the anticipated failures occur in the hashed in area (between the lower and 

upper bounds). In all three cases, the expected remaining life is the same while 

the LTI varies from 0 to the maximum (as shown in Figure 6). 

The upper and lower bounds in each graph are indicated by the letters U and L  

respectively. Note that the lower bound corresponds to the JITP by our previous 

definition. The top graph suggests that servicing has to be done now. This most 

conservative philosophy has the side effect of precluding 100% of the possible 

failures while also having the highest unnecessary maintenance and zero 

component availability. The bottom graph ensures instead that 95% of the 

anticipated failures will be avoided. The perceived problem with the bottom 

graph is 10 the width of the confidence interval, spread between upper and 

lower bounds. Having a distant upper bound leads to the perception that 

unnecessary maintenance will be performed since the component may last for 

quite some time in the future. Of the three shown, this affords the least 

precision, and counter-intuitively, the least unnecessary maintenance for the 

same 95% confidence. Knowing only that the upper bound is far in the future 

does not reveal the likelihood of failures far in the future. The middle graph 

precludes 97.5% of anticipated failures and also has the smallest spread between 

upper and lower bounds and thus offers the best precision. 
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Figure 7 Prognosis with 95% confidence and various LTIs [6] 

The fact that the expected remaining life is midway between the upper and 

lower bounds in this example is simply due to the pdf symmetry and is not 

necessarily true in general. These examples show that having the tightest 

tolerance is not always desirable from a prognostic health management point of 

view given criteria based on 95% confidence. In reality, as time marches along, 

the pdfs are updated making the LTI a moving target. 

The fact that the expected remaining life is midway between the upper and 

lower bounds in this example is simply due to the pdf symmetry and is not 

necessarily true in general. These examples show that having the tightest 

tolerance (least uncertainty) is not always desirable from a phm point of view 

given criteria based on 95% confidence. In reality, as time marches along, the 

PDFs are updated making the LTI a moving target. 

Putting the mechanics of prognostic methods aside for the moment, if 1000  

components having identical conditions at a given time tl were allowed to run to 

failure in a realistic environment, we should not be surprised to have 1000 

different failure times. This is especially true if the damage condition at time tl is 

only slight. The pdf formed by this experiment might be used to model the 

remaining life for the given condition. If this model were statistically accurate, it 

would reflect the theoretical best that any prognostics model and attendant 



 

________________________________________________________________ 

 

 

 

algorithms could achieve at time tl. It is essential to realize that there is a 

theoretical limit to the accuracy and precision of any condition-based prognostic 

method regardless of our ability to know component condition, sensor data 

quality, preprocessing, feature extraction methods, remaining life projection and 

associated algorithms. 

1.3.  Research Objectives and Organization 

An integrated approach to obtain and exploit the benefits related to a CBM 

policy is fundamental.  

Seeking for an optimal solution to CBM requires an integrated approach that 

links maintenance scheduling and replacement decision policy to prognostic 

algorithm performances and to the supply chain design. 

The objective of this work is to present an approach to CBM that links the 

prognostic algorithm, maintenance scheduling and replacement decision and 

supply chain design in order to demonstrate the feasibility and the benefits 

resulting from to a CBM approach. To perform this study a Bayesian  prognostic 

algorithm will be applied to artificial degradation signals representing the 

degradation of a general LRU with an exponential degradation pattern. Form the 

information provided by the algorithm, a maintenance scheduling and 

replacement cost based decision rule will be formulated. Afterwards, the 

benefits resulting from the CBM approach regarding the spare part supply chain 

redesign will be highlighted through modeling a (1-S,S) multi-echelon spare part 

supply chain.  

This framework will be applied to an artificial operational scenario representing 

an aircraft fleet equipped with the LRU mentioned above. The benefit that could 

arise from applying a CBM policy to the maintenance of the LRU will be 

qualitatively computed. 

Moreover, several sensitivity analysis will be performed to assess the effect of 

some key variables on the maintenance scheduling and replacement decision 

policy and to the supply chain design.  

Once introduced the integrated framework, the crack growth in railways axles 

issue will be tackled by a prognostic approach. A CBM approach to cracked 

axles could reduce the maintenance costs associated to the numerous NDI 

required to guarantee safety operations. This thesis will investigate the 
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opportunities that a prognostic approach offers to improve the maintenance of a 

railway cracked axle. Particularly a prognostic algorithm based on a crack 

propagation model and a Bayesian prognostic algorithm will be compared. 

The remainder of this document is structured as follows: 

Chapter 2 reviews some of the literature on prognostic algorithms applied to 

CBM as well as a brief review of the literature focused on CBM benefits 

assessment. 

In Chapter 3 the integrated framework is described. After explaining how the 

degradation signals are generated, a Bayesian prognostic algorithm is presented 

and applied. Some sensitivity analysis is performed on several key variables in 

order to evaluate how the RUL predictions are affected. Next  the maintenance 

scheduling and replacement decision rule is presented and applied. Sensitivity 

analysis are performed to evaluate the effects on the overall performances 

evaluated through three metrics, the lead time guaranteed and its variability, the 

percentage of the exploited life and the risk taken. Eventually the multi-echelon 

supply chain is modeled and several considerations are made on the key 

variables that play a key role in the supply chain design in a CBM environment. 

In Chapter 4 the problem of the railway axles maintenance management is 

faced. The usual preventive maintenance is presented. Next, through the use of a 

crack propagation model based on fracture mechanics principles, two 

prognostics algorithm are described and eventually their predictive performance 

are compared. The conclusions and future research constitute Chapter 5.  





 

_______________________________________________________________ 

________________________________________________________________ 

 





 

_______________________________________________________________ 

________________________________________________________________ 

 

2. Literature Review 

The literature review is focused on two main topics. The first part is oriented to 

review the main prognostic algorithms used in CBM programs and how they are 

used in the context of maintenance management. The second part is focused on 

review some of the studies on CBM cost benefit assessment as well as on 

methodology used.  

2.1. Prognostic Algorithms in CBM 

2.1.1. Markov Processes 

A Markov process is a special case of a stochastic process for which the 

distribution of a future random variable or state depends only on the present 

state and not on how it arrived in the present state. Since changes in parameters 

that define equipment degradation are generally probabilistic, as Christer [8] 

points out, many of the published theoretical CBM models adopt a Markov 

approach to model the degradation, where states are usually ‘operating’, 

‘operating but fault present’, and ‘failed’. Transitions between these states occur 

according to probabilistic laws, with each state being associated with the 

coincident occurrence of an inspection and some associated maintenance action. 

Monplaisir et al. [9] formulated a seven-state Markov chain to model the 

deterioration process taking place in the crankcase locomotive diesel engines. 

The authors defined the state-space in terms of certain known pathologies 

commonly associated with lubricant deterioration. The weekly probabilistic 

change in physical crankcase oil condition was used as the monitored condition 

variable. They demonstrated the utility of the model as a maintenance decision 

support for fault diagnosis, specification of preventive maintenance tasks, and 

evaluation of alternative policies. 

Coolen et al.[10] analyzed a basic model for the economic evaluation and 

optimization of inspection techniques. The model assumed that for a specific 

failure mode the system passed through an intermediate state, which could be 

detected by inspection. They presented a 2-phase semi-Markov model to 

determine the optimal inspection time that minimized maintenance costs. They 

performed sensitivity analysis to simplify their model and determined which 



 

________________________________________________________________ 

 

 

 

model parameters could be kept constant without seriously affecting optimal 

decision making. Assuming that the time spent in the intermediate state can be 

represented by a unimodel distribution, the authors concluded that an estimation 

of the mean and standard deviation of this state was enough to provide good 

decisions about the monitoring interval. 

Kallen and van Noortwijk [11] presented a decision model for determining the 

optimal time between periodic inspections of an object with sequential discrete 

states. The deterioration model used a Markov process to model the uncertain 

rate of transitioning from one state to the next, allowing the decision maker to 

properly propagate the uncertainty of the component’s condition over time. The 

model was illustrated by an application to the periodic inspection of road 

bridges. The author also showed that the model could be applied to production 

facilities to optimize the threshold for preventive maintenance. 

Chen and Trivedi [12] presented a semi-Markov decision process for the 

maintenance policy optimization of condition-based preventive maintenance  

problems, and presented the approach for joint optimization of inspection rate 

and maintenance policy. The joint optimization of the inspection rate and 

maintenance policy was performed by taking the inspection rate as the input 

parameter to the semi-Markov decision process model. For each individual 

inspection rate the model was solved for the optimal maintenance policy. 

Glazebrook et al. [13] formulated a Markov decision process to schedule 

maintenance routines to minimize the total expected discounted cost incurred in 

operating a collection of deteriorating machines over an infinite time horizon. 

Information on the condition of each machine was continuously available to the 

decision-maker and was expressed through the machine’s state. The 

methodology was illustrated via analyses of two different machine maintenance 

models. 

Saranga and Knezevic [14] developed a mathematical model for reliability 

prediction of condition-based maintained systems in which the component 

deterioration was modeled as a Markov process. A system of integral equations 

was used to compute the reliability of the system at any instant of operating 

time. When the reliability of the item reached the minimum required reliability 

level, it was assumed that the item has reached a critical state and hence the 

required maintenance activities should be carried out to restore the system to an 
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acceptable level. The authors suggested that a well designed condition 

monitoring strategy incorporated into CBM could offer improved reliability and 

availability at the system level.  

2.1.2. @eural @etworks 

Artificial Intelligence techniques such as neural networks use sensory 

information to detect equipment defects and classify their functional condition. 

A neural network is a data processing system consisting of a large number of 

simple, highly interconnected processing elements in an architecture inspired by 

the structure of the cerebral cortex portion of the brain. Because of the topology 

of the systems and the manner in which information is stored and manipulated, 

neural networks are often capable of doing things that humans or animals do 

well but that conventional computers do poorly. For example, neural networks 

have the ability to recognize patterns even when the information comprising 

these patterns is noisy or incomplete, to do matching in high-dimensional 

spaces, and to effectively interpolate and extrapolate from learned data [15]. 

Perhaps the most important characteristic of neural networks is their ability to 

model processes and systems from actual data. The neural network is supplied 

with data and then “trained” to mimic the input-output relationship of the 

process or system. The ability of artificial neural networks to capture and retain 

nonlinear failure patterns make them an excellent CBM tool, since equipment 

condition and fault developing trends are often highly nonlinear and time-series 

based. 

Choudhury et al. [16] used neural networks to monitor tool wear without having 

to interrupt the machining process. They presented an on-line monitoring 

technique to predict flank wear and concluded that flank wear values estimated 

by the neural network were close to the actual flank wear measured under the 

tool maker’s microscope. 

Booth et al. [17] used neural network-based condition monitoring techniques to 

evaluate and classify the operating condition of power transformers in power 

plants. They demonstrated that neural networks could be used to ascertain the 

on-line condition of the transformer through estimating the level of vibration 

based upon other sensor data input, and comparing this with the observed sensor 

output. They also showed that neural networks could be used to classify the 
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“health” of the transformer based upon the interrelationships between load 

current, and thermal and vibration parameters.  

Bansal  [18] introduced a real-time, predictive maintenance system based on the 

motion current signature of DC motors. They proposed a system that used a 

neural network to localize and detect abnormal electrical conditions in order to 

predict mechanical abnormalities that indicate, or may lead to the failure of the 

motor. The author developed a simulation model to map the system parameters 

to the motion current signature, and then used the mapping to generate training 

data for the neural network. The study showed that the classification of the 

machine system parameters, on the basis of motion current signature, using a 

neural network approach was possible. 

Sinha et al. [19] developed a neural network model to predict the failure 

probability of an underground pipeline system. The neural network was trained 

using the results of a simulation-based reliability analysis. Several test cases 

were analyzed, demonstrating that the proposed network was very accurate in 

predicting the probability of failure directly from the in-line inspection data on 

depth and length of corrosion defects. 

Luxhoj and Shyur [20] compared neural network and proportional hazard 

models for the problem of reliability estimation extrapolated from accelerated 

life testing data for a metal-oxide-semiconductor integrated circuit. Both 

modeling approaches were discussed, and their performance in fitting 

accelerated failure for metal-oxide semiconductor integrated circuits was 

analyzed. The neural network model resulted in a better fit to the data based 

upon minimizing the mean square error of the predictions when using failure 

data from an elevated temperature and voltage to predict reliability at a lower 

temperature and voltage. 

Alguindigue et al. [15] discussed their work on developing a methodology for 

interpreting vibration measurements based on neural networks. The 

methodology made it possible to automate the monitoring and diagnostic 

processes for vibrating components. The authors thought that the potential of 

neural networks to operate in real-time and to handle data that may be distorted 

and noisy makes the methodology an attractive complement to traditional 

vibration analysis. They illustrated the effectiveness of the neural network 
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technique to a data set consisting of vibration data from a steel sheet 

manufacturing mill. 

 

2.1.3. Proportional Hazard Models 

Proportional hazard models a system’s risk of failure with its working age and 

external operating conditions that are captured using explanatory covariates 

[21]. One of the first proportional hazard models was developed by Cox to 

analyze medical survival data [22]. Proportional hazard models were then used 

in various engineering applications, such as aircrafts, marine applications, and 

machinery [23][24][25] [26]. 

Kumar and Westberg [27] developed a PHM to estimate the optimum 

maintenance time interval for a system by considering planned and unplanned 

maintenance costs.  

Kobacy et al. [28] used simulation techniques to schedule PM intervals for 

pumps used in a continuous process industry. The authors proposed a 

proportional hazard model to evaluate the risk of failure and demonstrated that 

their model lead to an increase in system availability and better performance.  

Jardine et al [29] proposed a PHM with a Weibull baseline hazard function and 

time-dependent stochastic covariates representing monitored conditions to 

incorporate condition monitoring information when estimating a component’s 

reliability. A Markov stochastic process was assumed as a model for stochastic 

covariates. The optimal replacement policy was either to replace at failure or 

replace when the hazard function exceeded a threshold level determined to 

minimize the expected total cost per unit time. This study was part of a 

continuous research effort in the area of CBM to develop software which could 

assist engineers to optimize decisions in a CBM environment. A case study 

dealing with diesel engine inspections and replacements illustrated the use of the 

decision model and software under development. The finished software, called 

EXAKT, was used by Campbell’s Soup to optimize CBM decisions. A study 

was carried out that compared their current replacement policy of shear pump 

bearings with other replacement policies, including one that used EXAKT. The 
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results showed that replacements that are made according to the output from 

EXAKT  resulted in a documented cost reduction of 33%. 

Ghasemi et al. [30] derived an optimal CBM replacement policy that assumed 

that the diagnostic state of the equipment was unknown, but could be estimated 

based on the observed condition. The authors assumed that the information 

obtained at inspection times could only be used to calculate the probability that 

the system is in a certain diagnostic state. This assumption brought the model 

closer to real world situations since most information is noise corrupted and 

should not be treated as perfect information. In addition, in many situations a 

specific value of an observation can belong to more than one diagnostic state. In 

this paper, the equipment deterioration process was formulated by a PHM. Since 

the equipment’s state was unknown, the optimization of the optimal 

maintenance policy was formulated as a partially observed Markov decision 

process (POMDP), and the problem was solved using dynamic programming. 

Combining the PHM and POMDP enabled the model to take into account two 

causes of system deterioration: the ageing process and the conditions under 

which the system was used. In addition, the model took into account the 

manufacturer knowledge, which is an important source of information. 

Prasad and Rao [31] used PHM techniques to assess the failure characteristics of 

three different case studies. The first case was the failure analysis of electro-

mechanical equipment under renewal process with type of failure (electrical, 

compressed air, cable) as a covariate. Non-parametric PHM methods were used 

to obtain failure rate ratios of the equipment at different covariates. The second 

case study was maintenance scheduling of a thermal power unit under a non-

homogeneous poisson process with type of failure mode (boiler, electrical, 

turbine) as a covariate. Three different non-parametric cumulative hazard rate 

function estimators were discussed to evaluate rate ratios of system covariates. 

The last case was accelerated life testing of a small D.C. motor with voltage, 

load current and type of operation as covariates. In this case study, the failure  

behavior of the motor at different operating condition using non-parametric 

PHM methods was compared with the results obtained by the Weibull PHM. 

Luxhoj and Shyur [32] compared proportional hazard and neural network 

models for the analysis of time-dependent dielectric breakdown data for a metal-

oxidesemiconductor integrated circuit. The study showed that the neural 

network model presented a more accurate technique for using accelerated failure 



 

________________________________________________________________ 

 

 

51 

 

data for estimating reliability at normal operating conditions than the 

proportional hazards model.  

Kumar and Westberg [27] suggested a reliability based approach for estimating 

the optimum maintenance time interval for a system or threshold values of CM 

variables under the age replacement policy. A PHM was used to estimate the 

reliability function, which was based both on the failure times and the values of 

the monitored variables. 

Then, the authors formed a maintenance cost equation based on the planned and 

unplanned maintenance costs and the reliability function. In order to find the 

optimum maintenance time interval or the threshold values of the monitored 

variables, a total time on test (TTT) plot was used to find the minimize the long 

run maintenance cost. The authors used an example based on pressure gage 

failure data to illustrate their approach. 

Vlok et al. [33] described a case study in which the Weibull PHM was used to 

determine the optimal replacement policy for a critical item which was subject 

to vibration monitoring. The case study considered CBM for circulating pumps 

in a coal wash plant. The CBM policy recommended in this study was based on 

lifetime data collected over a period of 2 years, and was compared with current 

practice. The policy was validated using data that arose from subsequent 

operation of the plant. 

Proportional hazard models attempt to characterize degradation processes at an 

aggregate level compared to other methods that focus on modeling the evolution 

of sensory-based condition monitoring information. In addition, these models 

require a baseline hazard function, which is time-based rather than condition-

based[34]. As a result, the use of degradation models is becoming increasingly 

popular in CBM applications. 

2.1.4. Degradation Models 

Components usually degrade during their service life. The degradation of 

identical components can differ drastically. Degradation processes are typically 

accompanied by specific physical phenomena that evolve over time, such as 

increased vibration, temperature changes, and increased crack propagation. 

Generally, such physical phenomena can be observed using sensor-driven 

condition monitoring technology. Many components exhibit characteristic 
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patterns in their sensor signals known as degradation signals and these signals 

evolve with respect to the component’s state of degradation [35]. If properly 

modeled, degradation signals can be used to predict a component’s remaining 

life distribution. In degradation modeling, failure is defined in terms of the 

degradation signal reaching a predetermined failure threshold. Degradation 

modeling focuses on using degradation signals developed via condition 

monitoring techniques that capture the deterioration of a component over time. 

Degradation models can be used to estimate the residual life distribution of the 

monitored component. In particular, degradation modeling literature can be 

divided into two main categories based on the approaches used to evaluate 

degradation states of equipment. 

The first category consists of random coefficients models and time series 

techniques to model the path followed by a component’s degradation signal. 

Generally, the model parameters are derived from degradation characteristics 

associated with the  component’s population. Tseng et al. [36] studied the 

degradation of fluorescent lamps by monitoring their luminosity. The authors 

developed a linear random coefficients model of luminosity with experimental 

design to improve the reliability of fluorescent lamps. The degradation model 

was used to identify the combination of manufacturing settings that provided the 

slowest rate of luminous degradation. Yang and Jeang [37] also used a random 

coefficients model to study the effect of cutting tool flank wear on surface 

roughness in metal cutting. Tool degradation was quantified by the roughness 

value of the machined part. The degradation model was used to develop an 

inspection strategy for optimal tool replacement. Yang and Yang [7] developed 

a random-coefficient-based approach that uses the lifetimes of failed devices 

plus degradation information from operating devices to estimate parameters of 

life distributions. Goode et al.  [38] developed a predictive model for monitoring 

the condition of a hot strip mill. They developed a vibration-based degradation 

signal that grows exponentially as the component degrades. They concluded that 

the degradation model dominates the reliability model. Swanson [39] used time-

series techniques, namely Kalman filters, to track changes in vibration 

characteristics of degrading devices. A Wiener process has also been used to 

model degradation signals from accelerated tests [40][41]. In [40] drift and 

diffusion parameters changed according to the on-the-stress level. The authors 

illustrated how to estimate mean life under normal stress levels. Whitmore [41] 
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illustrated how the Wiener process can be used to account for measurement 

errors in degradation signals. 

The second category of degradation modeling literature utilizes artificial 

intelligence approaches such as neural networks and fuzzy logic [42] [43] to 

model degradation. Most of these approaches focus on quantifying the level of 

degradation, classifying the type of defects and forecasting degradation signals 

to compute failure time values [43]. Lee et al. [42] developed a neural-network 

model based on cerebral model articulation controllers (CMAC) in order to 

classify machine degradation. Gebraeel et al. [44] developed a neural-network 

model that uses vibration-based degradation data from rolling element bearings 

to predict failure time values of partially degraded bearings. Chinnam et al. [45] 

utilized neural networks to forecast the degradation signal of individual 

components and evaluate their reliability characteristics given predetermined 

failure thresholds. 

The most prominent research efforts in finding a close form for RUL 

distribution has been done by Lu and Meeker [46]. The authors developed 

statistics-based degradation models to estimate time-to-failure distributions for 

general degradation models and demonstrated some special cases for which it is 

possible to obtain closed form expressions. The authors assumed that the path 

taken by the degradation signal (a.k.a. degradation path) can be defined 

accurately if the values of specific degradation parameters are known. However, 

these parameters are based on reliability characteristics evaluated across the 

component’s population and are not unique to individual components. In 

contrast, this research proposes a degradation modeling approach that 

establishes a linkage between reliability characteristics and condition monitoring 

information. Reliability characteristics capture the general characteristics 

common to a component’s population whereas condition monitoring 

information captures degradation states of individual components in real time. 

The first paper proposing an effective solution to the prognostic problem of 

RUL estimation is Gebraeel[47], dated 2006, in which a Bayesian approach was 

introduced in order to predict the residual useful life of a component subject to 

degradation. It is to say that the Bayesian prognostic algorithm developed in this 

work can be considered a concrete improvement of Gebaeel’s model.
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2.2.  Benefit of CBM policy assessment 

Several studies have been carried out to assess the actual benefits and impacts 

that the implementation of a prognostic maintenance policy could generate, in 

terms of safety and inexpensiveness. This attention to the issue is due to the 

significant investment required to develop this kind of system, that involves 

extensive and expensive experimental researches on items failure modes and the 

reengineering of the entire maintenance operations. 

Moreover, detailed analysis must be done to ensure an appropriate solution to be 

developed given both the technical design characteristics and the concept of 

operations. Different approaches have been followed to tackle this issue, that 

are: 

• Cost Benefit Analysis [48][49][50][51] [52] 

• Life Cycle Cost [53] 

• Discrete Event Simulation [54][55][56] 

The first category typically uses an analytic approach to determine the 

costs/benefits of implementing a prognostic maintenance policy, while the 

second category’s approach is somehow similar to the previous one, but it’s 

more prone to be implemented in a simulation model as one of the performance 

indicators. Both requires as inputs the cost data of the technologies implemented 

as well as maintenance process data. Conversely, the last category’s main focus 

is that of emphasizing the dynamics of the whole modeled system. While in the 

first two cases performances are somehow known, in the last one the system 

performances assessment is the main goal. 

The most important system performance indicator in a military operation 

environment is the assets availability[57] .This issue is well known and is 

reflected in the body of literature produced so far. Maintenance policy and  

operations are the main variables influencing assets availability, that is the 

outcome of different aspects, such as logistic support, maintenance engineering, 

system technology, fleet management and human factors [49]. All these issues 

have to be considered in order to design and assess the effects of a maintenance 

policy. 



 

________________________________________________________________ 

 

 

55 

 

Before the introduction of new technologies that have enabled the application of 

prognostic paradigm in maintenance policy, simulations have been conducted to 

test different scenarios in which the same system variables are modified in order 

to find an optimum with respect to some predefined indicators or to evaluate the 

performance indicators deviation derived from a known variable shift, the so-

called ’what if’ analysis. For example [57] evaluates the aircraft availability at 

three repair levels under battlefield conditions, including the evaluation of 

logistic delays (spare parts, equipments and maintenance crew). In [58] author 

address the problem of human resource planning in the Continental’s Line 

Maintenance (also called short routine maintenance) station at Newark, in which 

the total number of technicians working overtime was used as an objective 

function and the optimization algorithm was set to minimize this entity. The 

capability of computer simulation of handling complex requirements allows 

practitioners to model systems characterized by complex stochastic events and 

processes[58]. The technical driven possibility to implement prognostic 

techniques in performing maintenance tasks and the high costs related to its 

development have led to the necessity of evaluating a priori the theoretical 

potential benefits that can be generated, considering the operational scenario in 

which this approach will be implemented. 

The benefits correlated to the implementation of a prognostic maintenance 

policy can’t be pursued without considering the interaction between the 

maintenance related aspects mentioned before. The technology employed 

influences the maintenance engineering process and logistic support, which 

consequently influences fleet management decisions, the needed workforce and 

eventually the asset’s readiness and availability. In other words, in order to 

completely exploit the potential benefits allowed by prognostics, information 

produced by the system has to be processed in order to make smart decisions 

integrating all the issues involved. Indeed, benefits will be attained only when 

all the components are coordinated and successfully integrated. Another 

component that turns the scenario to higher complexity is the high number of 

actors involved in the entire maintenance process. As a matter of fact, 

outsourcing maintenance tasks are a common issue, most of all when it is not the 

core business or when it is too expensive or risky to be performed in house. This 

highlights and  enhances the coordination capabilities of the whole maintenance 

chain. The variables that influence the system performance are numerous and 
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moreover not deterministic. The information provided by prognostics, as 

described in paragraph 1.2, is probabilistic itself and evolves as time elapses. 

Prognostic maintenance decision process emphasizes the uncertain aspects that 

already characterize maintenance activities. Performing cost benefit analysis in 

this context appears to be too simplistic as far as the dynamic and uncertain 

aspects are not considered [49]. As a matter of fact, when assessing the 

influence of several system parameters on different system performance metrics 

in a prognostic environment, discrete event simulation has been chosen as the 

ideal candidate [53][55][50] [56] [56]. 

These studies have mainly focused on: 

• [53] presents a model that enables the optimal interpretation of 

prognostics and health management (PHM) results for electronic 

systems. In this context, optimal interpretation of PHM results means 

translating PHM information into maintenance policies and decisions 

that minimize the LCC or maximize availability or some other utility 

function. The result of this model is a methodology for determining an 

optimal safety margin and prognostic distance for various PHM 

approaches in single and multiple socket systems where the LRUs, in the 

various sockets that make up a system, can incorporate different PHM 

approaches (or have no PHM structures at all). 

• Case studies proposed in [54] were conducted using a stochastic model 

to predict the LCC impact associated with the application of PHM to 

helicopter avionics. The life cycle costs of systems that assumed 

unscheduled maintenance and fixed-interval scheduled maintenance 

were compared to the costs of precursor-to-failure and life consumption 

monitoring PHM approaches and the optimal safety margins and 

prognostic distances were determined. 

• The purpose of [56] is to identify the overall categories for 

understanding the different types of impacts and benefits a PHM system 

can have from a logistics support perspective. This paper also discusses 

how prognostics can be assessed by a modelization, implemented in a 

legacy logistics support discrete-event simulation. 

• [55] presents a sensory-updated-degradation-based predictive 

maintenance policy. The proposed maintenance policy utilizes 

contemporary degradation models that combine component-specific real-
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time degradation signals, acquired during operation, with degradation 

and reliability characteristics of the component’s population to predict 

and update the residual life distribution (RLD). By capturing the latest 

degradation state of the component being monitored, the updating 

process provides a more accurate estimate of the remaining life. Thanks 

to a stopping rule, maintenance routines are scheduled basing on the 

most recently updated RLD. The performance of the proposed 

maintenance policy is evaluated using a simulation model of a simple 

manufacturing cell. Frequencies of unexpected failures and overall 

maintenance costs are computed and compared with two other 

benchmark maintenance policies: a reliability-based and a conventional 

degradation-based maintenance policy (without any sensor-based 

updating). 

• In [35] authors develop a sensor-driven decision model for component 

replacement and spare parts inventory. 

Elwany et al.[35] integrate a framework for computing remaining life 

distributions using condition based sensor data with existing replacement and 

inventory decision models. This enables the dynamic updating of replacement 

and inventory decisions based on the physical condition of the equipment. 

In the first three studies mentioned, the issues related to RUL prediction don’t 

refer to a particular case study but simply describe the main dynamics. In this 

framework, as shown in Figure 8 a random failure event 3 occurs with �4 pdf, 

mean ,4 and standard deviation �4. No assumption is made regarding the pdf 

shape. At time 5, a PHM system predicts a random failure event 6, with pdf �7, 

mean ,7 and standard deviation �7. Similar to 3, no assumption is made 

regarding the shape. This prediction is made at random time 8 (with pdf �9 and mean :) before the predicted failure (;). A maintenance opportunity < can occur during the interval 8, that is, between time of prediction 5 and 

predicted failure ;. Logistic Lead Time is the time between event < and 

prediction ;. There can be one or more < events, or none, depending on the 

distributions of < and ;. It is assumed that a planned maintenance event can 

only occur if the maintenance opportunity < is to occur before predicted failure ;. In other words, until a maintenance event occurs because of a maintenance 
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opportunity after predicted failure ; and before actual failure 3, it is not a 

planned event. 

 

Figure 8 RUL prediction dynamics 

In the first two studies, the main concepts regarding RUL estimation have been 

described, that are the concepts of estimate precision and accuracy but authors 

missed to consider the dynamic aspects of RUL estimation.  

As a matter of fact, as will be done in paragraph 0 RUL estimation is not 

performed once in time but is continuously updated so to have information 

changing over time. This aspect changes the framework in which decisions have 

to be taken. The time at which scheduling and performing maintenance has to be 

decided once provided information on TTF estimation with the related 

confidence bounds and unknown accuracy. The dynamic aspects of RUL 

prediction are tackled in [35] and [55] In [55] a rule is presented to establish 

when maintenance tasks have to be performed, while in [35] a maintenance 

scheduling and repair policy is proposed. Further analyses and comments of 

these two approaches will be carried out in the paragraph 3.2.2. 

However no literature, as far as we know, explicitly addresses the problem of 

the time scale mismatch between RUL prediction and maintenance scheduling 

and exploit decreasing RUL precision. RUL estimation is referred to a 

continuous time scale, that means that the TTF value is measured in operational 

hours and not in calendar time, as it should intuitively be. As a matter of fact, as 

for aircrafts, RUL estimation has to be translated in calendar time. Translating 

RUL estimates in calendar time can be an easy task when the utilization 

schedule is known, but when the usage is stochastic, such as in military 

environment, further analyses and assumptions are required. 
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3. The Integrated framework 

3.1. The Prognostic Algorithm 

3.1.1. Degradation Signal Generation 

The problem is defined as the determination of the residual useful life of a 

mechanical component basing on an associated exponential degradation pattern. 

From literature, in fact, it is known that almost in every kind of mechanical 

degradation a feature can be found which evolves in time following an 

exponential shape. In order to initialize the prognostic algorithm, i.e. to calculate 

the prior =>8 distribution, preliminary  experimental tests were simulated by 

creating 50 exponential curves. These curves were realized by defining a 

stochastic variable which accounts for the time in which the component will 

break. This variable was called t? and it was defined as belonging to a Gaussian 

distribution with mean ,@A = 1800 h and a standard deviation �@A of 180 h. 

Then, the instant of initial failure was defined as a stochastic variable ti with 

normal distribution with mean ,@B = 1260 h and standard deviation �@B = 88.2 h. 

So, from 0 to �� the component will follow the shape associated to the healthy 

component, whereas from tC to t? the exponential evolution will manifest. 

Moreover, a threshold has been defined indicating the amplitude of the level the 

signal reached before failing. This parameter was called ℎ� and it follows a 

Gaussian distribution with a mean value of 1.11 and a standard deviation of 

0.011. Note that this parameter has been defined as the failure amplitude 

obtained from experimental tests after normalization over the mean failure 

amplitude, so that the treatment won’t loose generality with respect to all the 

possible components’ failure this algorithm could be applied to. Then, the 

mentioned exponential shape was realized by interpolation. The exponential 

curve was defined as follows: 

 DE�, tC ≤ t ≤ t?G = � + IJK@ 3.1 

where � is the constant value associated to the linear trend of safe behaviour for 

the component, whereas I and L are two constants which define the shape of the 

curve. In order to determine these coefficients, the passage through points EtC, CG 
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and Et?, ℎ�G was imposed. By making the logarithm of the system of equations 

the following linear system is obtained: 

 
<% = N 

O1 �C1 �?P Qlog IL R = S log �log ℎ�T 3.2 

From inversion of matrix <, % vector is trivially obtained. Afterwards, the final 

shape of the signal was achieved by defining an initial behavior from � = 0 to � in which the component follows a linear trend. 

The curve realized is composed by a horizontal line at D = 0.11, on which 

Gaussian white noise with 3 different frequencies was applied with zero mean 

and exponentially growing variance, so that �VW = 2 10XY�W.Z[. The second part 

of the signal is made by the exponential pattern on which white Gaussian noise 

is applied. That noise has zero mean and variance low-exponentially growing �V\ = 3.1 10XY�W.W. The choice of giving the noise variance an exponential 

growth is based on the physical assumption that while failure is increasing 

measurements become less accurate and other non-deterministic behaviors will 

appear. The 3 noise periods are: 3 hr, 100 hr and 800 hr.  

At the end of this procedure the signal appears as follows (Figure 9):  

 
Figure 9 Simulated exponential degradation signal 
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Now 100 experimental signals have been created, from which the prior estimate 

of the coefficients will be obtained. However, actually the right time tC in which 

failure starts to propagate is unknown, so an estimate of it is needed. To do so, a 

technique, taken from the field of signal processing, has been designed 

involving two connected moving averages in which the former is composed by 

30 samples whereas the latter is made by the following 5 samples. Hence, at 

each time iteration �V  a comparison is done between the 30-samples average 

(called ,]Z ^_`) plus six time the standard deviation of the samples considered �]Z ^_` and the 5-samples average (called ,[ Vab) minus six time its standard 

deviation �[ Vab. So the estimated instant of incipient failure �̃C is defined as the 

moment in which the second quantity overcomes the first one, i.e.: 

 �̃C = td|,[ Vab − 6�[ Vab ≥ ,]Z ^_` + 6�]Z ^_` 3.3 

By doing so, the results are plotted in Figure 10 and Figure 11. 

 
Figure 10  ĩj Estimation (blue line) and ij real value obtained from 50 simulations 
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Figure 11 k̃j lstimation percentage error 

As it can be noticed, the error made by this estimation never goes beyond 5%. 

The following step consists of the estimate concerning the coefficients of the 

exponential curve. In order to achieve this task, a regression problem was set up 

in which an exponential curve has to fit the signal. The objective function used 

in this regression will aim to minimize the squared error between the simulated 

experimental signal D and the fitting signal DAB@, defined as: 

 DAB@ = � + IJK@ 3.4 

So the objective function is: 

 min noEDB − IJK@pG\V
BqW r = 

=  min nosDB − DAB@t\V
BqW r 

3.5 

where the coefficients I and L minimizing this function have to be found. Since 

it is a nonlinear minimization problem, an ad hoc optimization technique has 
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been designed. The best performances in term of accuracy and time saving were 

obtained with �elder-Mead’s downhill simplex method. 

This method is based on the concept of simplex, that is a geometric entity 

defined as an -dimensional polytope with +1 vertices. These vertices are used 

to extrapolate the behavior of the objective function in this way: the algorithm 

replaces the vertex in which the function assumes the highest value among the 

values observed by all the vertices. The new vertex will be created through a 

reflection through the centroid of the remaining points. If the new point is better 

than the old one, then the algorithm tries to stretch the simplex exponentially 

along this direction. If it isn’t so, then the simplex is moving across a zone of 

minimum of the function. When this happens the algorithm has reached 

convergence. Note that the only drawback of this optimization strategy is that it 

is heuristic and it can converge to a non-stationary point when the simplex 

enters a low-gradient zone.  

In order to avoid such a misbehavior, great attention was paid when choosing an 

appropriate starting point for the algorithm. As it can be stated from figure 7.6, 

the results obtained from the regression were acceptable.  

 
Figure 12 Exponential interpolation using simplex least square regression 
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Then, the set of the exponential model values were stored as well as the 

residuals. This set of data will represent the prior knowledge of failure mode. 

The following step consists in the simulation of a signal obtained from a 

hypothetical monitoring of a mechanical component. In order to realize such a 

signal, the same stochastic variables taken before were used, on which white 

noise was applied with the same features described above. The point of starting 

failure ℎB is then determined by comparing two connected moving average as 

previously done. Then, the prognostic algorithm will be applied starting from 

this point, because before that time it wouldn’t be able to appreciate any 

noteworthy variation in order to predict the residual life distribution. 

3.1.2. Bayesian degradation predictive algorithm 

The leading concept of Bayesian approach is that of considering probability as a 

measure of the state of knowledge, whereas in traditional frequentist statistics 

probability is considered as a physical property of a system. So, the Bayesian 

and the frequentist approach to a statistical hypothesis become quite different. 

As a matter of fact, the Bayesian approach suggests to give the hypothesis a 

prior probability, that will be subsequently updated basing on data provided in 

support or in confutation of that hypothesis. On the other side, frequentist 

approach doesn’t associate to the hypothesis a prior probability, but the 

hypothesis is simply rejected or not rejected depending on the degree of 

frequency associated to the event the hypothesis describes. So defined, Bayesian 

approach results in a very powerful tool, in that it allows to formulate statistical 

problem in a way very close to human reasoning. As for its mathematical bases, 

it relies on a single wide-usage theorem, called Bayes’ theorem, which is 

reported below: 

 �EI|LG = �EL|IG�EIG�ELG  3.6 

where �EIG is the prior probability, i.e. the probability of the event I without 

taking into account any information concerning the event L. On the other side, �ELG is the prior probability of event L and it is always taken as a normalizing 

factor. �EL|IG is the conditional probability of L given I, while �EI|LG is the 

posterior probability of I, i.e. the probability of I conditioned by event L. As 

we will see herein, this simple idea will represent the core of the prognostic 

algorithm. 
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According to [47][59] the degradation model is defined as a stochastic process uIE�G;  � > 0x that captures the evolution of the degradation signal over time, 

where IE�G is the amplitude of the degradation signal at time �. The degradation 

signal is a characteristic pattern in the sensory information that captures the 

physical transitions associated with the degradation process. Examples of 

degradation signals obtained from experimental tests are illustrated in Figure 13 

and Figure 14. 

 

Figure 13 Vibration-based degradation signal of bearings [47] 

 

Figure 14 The MQE of three degradation processes: (a) Test 1, bearing 3; (b) Test 1, 

bearing 4; (c) Test 2, bearing 1 [60] 

The path of the degradation signal was modeled through the stochastic equation IE�G  =  ℎEI, L, �, �G  + yE�G, denoting the value of the degradation signal at 

time �. The functional form ℎE∙G of the signal depends on the type of component 

under consideration and represents a relationship between the operating time 

and signal amplitude. The degradation model consists of deterministic and 

stochastic parameters. The deterministic parameter represent a constant physical 
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phenomenon common to all components of a given population such as an initial 

degradation level for non defective components. The stochastic parameter 

follows a certain distribution and captures variations of the degradation 

processes among individual identical components. 

Noise and random effects associated with the degradation signals are captured 

by a random error term yE�G, which is modeled as a stochastic process with 

independent and normally distributed components. In other words, at sampling 

epochs �W <  �\  <  ⋯  <  �} the error terms yE�WG, yE�\G, ⋯ , yE�}G are 

independent and identically distributed. The same assumption can be found in 

Lu and Meeker [61] and Gebraeel et al. [47], where the error in the degradation 

signal is considered independent and identically distributed (iid) with Gaussian 

distribution �E0; �V\G across the population of devices. The degradation signal 

is observed at discrete points in time �W, �\, ⋯ , �} where �B ≥ 0 and signal 

amplitude at a given sampling epoch IE�BG is modeled as: 

 IE�BG =  � + IJK@p~�E@pGX���\ = 
 = � + IJK@pJ�E@pGX���\  

3.7 

where � is a constant deterministic parameter, I and L are random 

variables, and yE�BG is a normally distributed random error term with mean 0 

and variance �V\. It could be shown that ![J�E@pGX���� ]  =  1 and, consequently ![IE�BG|I, L] = � + IJK@p. For convenience, the logged signal 8B at time �B will be taken, so that: 

 8E�BG = logEIE�BG − �G = log I + L�B + yE�BG − �V\2  3.8 

If we let 8B = 8E�BG and I� = logEIE�BG − �G then Eq.3.8 can be rewritten as 

follows: 

 8B = I′ + L�B + yE�BG 3.9 

These parameters I′ and L are assumed to be jointly distributed and follow a 

bivariate normal distribution with ,′Z and ,W, variances �′Z and �W, respectively, 
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and correlation coefficient �Z. The prior distribution of the stochastic parameters I′and L can be estimated from the 50 previously simulated signals. Once the 

prior distribution is evaluated, the degradation model can be used to compute an 

initial estimate of the residual life distribution. Sensory signals from similar 

components operating in the field are then used to update the prior joint 

distribution of the stochastic parameters. The updated degradation model is then 

utilized to compute an updated residual life distribution that is unique for the 

individual component used for the updating procedure. Hence, the Bayesian 

method requires two components. The first one is the conditional distribution of 

the degradation signal given the stochastic parameters, i.e.�E8B|I�, LG. 

From Eq.3.12, it is clear that the conditional density function of 8B given I�
 and L follows a normal distribution with mean 0 and variance �V\. The second 

component is the prior joint distribution of the stochastic parameters, which is 

assumed to follow a bivariate normal distribution �E+G with parameters E,, ΣG, 

where + = [I� L] is the parameters vector , = [,′Z ,W] and Σ is covariance 

matrix. Figure 15 and Figure 16 shows the A’ dataset fitted with a normal 

distribution on a normal probability plot and the B dataset fitted with a normal 

distribution on a normal probability plot respectively. 

 
Figure 15 A' normal probability plot 
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Figure 16 B normal probability plot 

As can be noticed, the parameter A’ is fitted with acceptable results with a 

normal distribution, while parameter B normal approximation doesn’t lead to 

good results. However, for our purpose the hypothesis of normal distribution 

was conserved to do not increase the computational problem. 

The prior information is combined with knowledge of the current degradation 

signal level using the Bayesian approach to compute posterior joint distribution ��E+G.  

Assuming that we have obtained a partial degradation signal 8} = E8W, ⋯ , 8}G′ 
by monitoring a component over times �W, ⋯ , �}, because the error are assumed 

to be iid, if we know +, than the conditional joint density function of 8W, ⋯ , 8}, 

given + is expressed as 

 �E8W, ⋯ , 8}| +G � J%� �− 12�V\ E8 − 3+G\� 3.10 

Where 3 = �1 �W⋮ ⋮1 �}�. 
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We are interested in evaluating the posterior distribution of the vector + given 

that we have observed a partial degradation signal 8 = E8W, 8\ ⋯ , 8}G′. The 

conditional distribution of + updated at the 2@� time epoch can be expressed as: 

 �E+|8W, ⋯ , 8} G � �E8W, ⋯ , 8}|+G�E+G 3.11 

From [62] [59] we see that, given the observed data 8 = E8W, 8\ ⋯ , 8}G′, and the 

prior distribution of + is also a multivariate s-normal �s,�, ��t where: 

 ,�� = �+�� 3�3�\ + ,��XW� �3�3�\ + �XW�XW
 3.12 

 �� = �3�3�\ + �XW�XW
 3.13 

Where +� = E3�3GXW3�8  

The proof is given in [59] and for completeness it is reported below: 

To arrive at this result, we note that given the prior distribution , and conditional 

joint density �E+G , the posterior distribution �E+}|&G is given by 

 �E+}|&G � �E&|+G�E+G   3.14 

Where: 

 �E+G � J%� u−E1/2G[E+ − ,G′�XWE+ − ,G]x  3.15 

and 

 �E&|+G � expu−E1/2�\GE& − 3+G\x  3.16 

By substituting in expression 3.16 , we have 
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 �E+}|&G � exp �− 12�\ E& − 3+G\� x exp �− 12 [E+ − ,G��XWE+
− ,G]� 

3.17 

We let +�  be the solution for & = 3+, hence +� = E3�3GXW3�&. 

 �E+}|&G � exp �− 12�\ �s+ − +�t�3�3s+ − +�t
+ s& − 3+�t�s; − 3+�t�� 

x exp �− 12 [E+ − ,G��XWE+ − ,G]� 
 

3.18 

 �E+}|&G � exp �− 12�\ �s+ − +�t�3�3s+ − +�t
+ s& − 3+�t�s; − 3+�t�� 

x exp �− 12 [E+ − ,G��XWE+ − ,G]� 

� exp �− 12�\ �s+ − +�t�3�3s+ − +�t  − 12 [E+ − ,G��XWE+ − ,G]� 

3.19 

If we define the posterior distribution of + as �E,�, ��G than we can express �E+}|&G in the following form: 

 �E+}|&G � exp �− 12 [E+ − ,�G���E+ − ,�G]� 3.20 

By comparing the expressions of  �E+}|&G we see that 
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 1�\ �s+ − +�t�3�3s+ − +�t  + [E+ − ,G��XWE+ − ,G] 
 � [E+ − ,�G���E+ − ,�G] 3.21 

Therefore, 

 1�\ �s+ − +�t�3�3s+ − +�t  + [E+ − ,G��XWE+ − ,G] = 

= +� �3�3�\ � + − 2+�" �3�3�\ � + + +�� �3�3�\ � +� + +��XW+
− 2,��XW+ + ,��XW, 

= +� ¡�3�3�\ � + �XW¢ + − 2 ¡+�� �3�3�\ � + ,��XW¢  
x ¡�3�3�\ � + �XW¢XW ¡�3�3�\ � + �XW¢ + + ¡+� �3�3�\ � +� + ,��XW,¢ 

 

3.22 

By comparing 3.22 to the expression E+ − ,�G���E+ − ,�G, we find that the 

posterior distribution of + follows a multivariate s-normal distribution with 

mean, ,�, and variance, ��, given by 3.12 and 3.13 respectively. 

Next, we use the updated distributions of the stochastic parameters to compute 

the predictive distribution of the signal 8E�}  +  �G which is Normal with the 

following mean and variance[59]: 

 ,̂9E@¤ ~ @G = ,�¥� + ,�KE�} + �G 3.23 

 �¦\9E@¤  ~ @G = ��¥�\ + ��K\E�} + �G\ + 2��Z��K��¥� + �V\ 3.24 
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Where ,�¥� and ,�K are the updated mean of the model parameters at time �}, i.e 

the first and second element of the vector ,�. ��K and ��¥� are the elements on the 

diagonal of the covariance matrix �� and ��Z is the updated I′ and B correlation 

coefficient. 

Using the predictive distribution of the degradation signal, we calculate the 

updated RLD of the component that is being monitored as the distribution of the 

time until the degradation signal reaches a predetermined failure threshold ℎ§̈. 
Let " be a random variable that denote the residual life of the partially degraded 

component. Therefore, " satisfies 8E�}  +  �G  =  log ℎ§̈, and its distribution is 

given by: 

 ©�E�G = �E" ≤ �|8W, ⋯ , 8}G = ª �,̂9E@¤ ~ @G − log ℎ§̈�¦9E@¤ ~ @G � 3.25 

where ªE∙G is the cumulative distribution function (cdf) of a standardized 

Normal random variable. Note that the domain of "  is E−∞, +∞G. Since " 

represent the residual life time it is physically impossible that " ≤ 0, therefore 

we redefine " as the truncated conditional cdf of " with the constraint " ≥ 0. 

The truncated "cdf is;  

 ©�E�G = ©�E�G − ©�E0G1 − ©�E0G  3.26 

As highlighted by Gebraeel [47], " is distributed as Bernstein pdf. As 

demonstrated by [63] this distribution doesn’t have a close form for its first and 

second moment., therefore the median is taken as the expected RUL at time 

epoch �} as suggested in[47]. 

The threshold ℎ§̈ is set at the 1
st
 percentile of the ℎ� cdf because for safety reason 

ideally no failures should happen at health index greater than ℎ§̈. 
Figure 17 shows an example of the updated mean and variance of the parameter I′ and B pdf as function on the updating time epoch, while Figure 18 shows the 

updated correlation coefficient between the two variables. 
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Figure 17 Updated mean and variance of the exponential model parameters 

 
Figure 18 Updated correlation coefficient 
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Figure 19 shows several RUL pdfs computed at different time steps. Generally, 

as will be described afterwards and displayed in Figure 21, the precision 

(confidence interval amplitude) decreases as time elapses, therefore the plotted 

RUL pdfs the flatter the earlier  are computed (i.e blue-green-red-cyan). 

 
Figure 19 RUL pdfs estimated at different time steps 
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Figure 20 Synopsis of RUL estimation (blue line), real RUL (gray line) and RUL lower 

bound at 97.5% level of confidence 

 
Figure 21 RUL estimation confidence interval amplitude  

Figure 20 shows how RUL prediction converge on the real RUL as new 

measurements become available. Another interesting feature that can be seen in 
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Figure 21 is the decreasing pattern of the RUL predictions confidence interval 

amplitude. This result confirm what stated in paragraph 1.2. The RUL 

confidence interval is considered as the left sided confidence interval, that is the 

difference between RUL corresponding to the 2.5% of confidence level of the 

RUL cdf and the median of the RUL pdf. 

Since it would be dangerous to trust overestimated predictions, a strategy to 

define a reliability threshold for the RUL predictions has necessarily to be 

defined. The objective is to find an algorithm that tells us when the RUL 

predictions can be trusted for maintenance scheduling decision purposes, that is 

for example, approximately the time epoch 250 for the instance displayed in 

Figure 20. 

To do so, a linear moving regression of the RUL estimate can be carried out. 

This sub-algorithm considers at each sensor sampling time �V, 20 previous RUL 

estimates, called =>8V, and makes a linear regression =>8 =  $� +  ¬ in order 

to obtain mean , and variance �\ of the line slope m and the linear 

coefficient of correlation following the procedure below: 

 ,@V = ∑ �}V}qVXW¯20  

,°±9V = ∑ =>8}V}qVXW¯20  

&²² = ∑ E�} − ,@VG\V}qVXW¯19  

&²³ = ∑ E�} − ,@VGE=>8} − ,°±9VGV}qVXW¯ 19  

$V = &²³&²² 

¬V = ,°±9V − $V,@V 

 

 =>8V́ = ¬V + $V�V 
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&&! = o E=>8V − =>8VG\V
}qVXW¯  

� = µ &&!18&²² 

 

3.27 

for �·B ≤ �V ≤ �·A. Then, the algorithm sets the instant in which RUL prediction 

can be considered reliable as the moment �¸ in which the slope estimate belongs 

to a 95% bilateral interval of confidence, centered on the expected value of the 

regression, and meanwhile the coefficient of correlation is greater than 90%, i.e 

when both the conditions in Eq 3.28 hold. 

 

¹º»
º¼−1 − �WX½/\,W¾�E�¸G ≤ $VE�¸G ≤ −1 + �WX½/\,W¾�E�¸G

=\E�¸G = ∑ s=>8} − ,°±9E@¿Gt\V}qVXW¯∑ s=>8} − ,°±9E@¿Gt\V}qVXW¯ ≥ 0.9 À 3.28 

where -1 refers to the fact that RUL real trend is a line with slope equal to -1 

because at time 01 we have the entire useful life, whereas at the instant �A all the 

component life has been wasted, so RUL is equal to 0. 

The RUL predictions that are considered reliable by using this algorithm, for the 

same example shown in Figure 19, is shown in Figure 22. As can be noted the 

time epoch �¸ computed using this algorithm is approximately 250 hr, that is the 

value identified by visual inspection from Figure 19.  

                                                 
1
 Time epoch at which the RUL estimation begins (estimated ti) 
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Figure 22 Synopsis of reliable RUL estimation 
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3.2.  Maintenance Scheduling and replacement model 

3.2.1. Introduction 

The problem of scheduling maintenance and replacement policy in a prognostic 

contest has already been faced in [64] and [35]. In [64] the case analyzed 

concerns the definition of the instant in which maintenance tasks have to be 

performed, but as stated by the author, the policy adopted is provisional and 

incomplete because the information provided by the prognostic algorithm is not 

used properly. As a matter of fact, the instant in which maintenance is 

performed is the instant at which the following condition is satisfied: 

 minZÁ@�ÁÂu1 − [©�E�V~ÃG − ©�E�VG]x ≥ = 3.29 

Where =  is the desired reliability level, ©�E�VG is the cdf of the remaining life 

updated at time �V, where �V is the time or epoch at which the last degradation 

signal was observed, and . represents a small time increment in the future (used 

for calculating the cdf). Obviously, this policy can’t be applied in our case 

because it corresponds to an unscheduled maintenance event since no prior 

information is given before the condition is verified. 

In [35] ,instead, the policy is well defined. As a matter of fact, given the failure 

time distribution of a component, the objective of the replacement model is to 

find the optimum planned replacement time �Ä∗ . The optimal replacement time 

is the time that minimizes the expected costs of preventive replacement and 

failure replacement. The long-run average cost per cycle is expressed as 

 �ÄB = ÅÆ©ÇBE�G + ÅA©BE�ÄG
È ©ÇBE�GN� +@ÉpZ �B

 3.30 

Once the optimal replacement time �Ä∗ has been computed, then it is used to 

decide when to order the spare unit. Due to the assumption of a single-unit 

storage capacity, the order quantity is always a single unit. The optimal ordering 

time is the ordering time that minimizes the spare parts holding costs and 

stockout costs. The long-run average inventory cost per cycle is expressed as 
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 � B̂ = 2Ê È ©ËE�G@Ìp@ÌÍ N� + 2� È ©ÇBE�G@Îp@ÌÍ~9
È ©BE�GN� + È ©ÇBE�G@ÎpZ@Ìp ~9@Ìp + �B

 3.31 

Where �ÄB � and � B̂
 are the replacement and inventory ordering cost rates per 

cycle, respectively, at updating time �B. ©BE�G is the updated cdf of the residual 

life at the updating time �B, ©ÇBE�G = 1 − ©BE�G, ÅÆis the planned replacement 

cost, In other words, ÅA is the failure replacement cost, 2Ê is the shortage cost 

per unit time, 2� is the holding cost per unit time and 8 is the fixed lead time 

elapsed from the moment of placing the order up till order receipt.  

In other words, given that the component has survived up to time �B and that we 

have observed a partial degradation signal up to time �B, ©ÇBE�G is the cumulative 

probability that the component fails after an additional � time units.The terms �ÄB  

and �ZB  are the optimal replacement and inventory ordering times, respectively, at 

the given updating epoch. Each cycle is now composed of two components, a 

fixed term given by the time up to which the component has survived and a 

random component given by the integral of the RUL. The computation is 

continuously performed until the following condition is verified: 

 �Ä ≥ �A − 8" 3.32 

Where �A is the median of RUL pdf. �Ä is the last optimal replacement time 

compute and 8" is Lead Time for ordering a replacement component. It is 

shown that the more time approaches �A, the lower the replacement costs per 

unit time and the inventory costs per unit time will be. 

3.2.2. The model 

In the previous model Lead Time is considered as a deterministic variable, 

assumption that could be too simplistic. Besides, the model doesn’t consider the 

risk associated to the amplitude of the confidence interval, i.e. it can happen that �Ä is greater than �A, a risky condition whose hazard is not taken into account by 

the model. In the model here proposed, instead, the time at which scheduling 
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and performing maintenance is determined through a function optimization. 

This function considers the main aspects involved in the maintenance decision-

making process governed by uncertainty, that are listed below: 

• Precision of RUL prediction increases in time as time goes by, resulting 

in a better knowledge of the component’s health condition. 

• Lead Time is considered as a stochastic Gaussian variable with mean ,9� , that means that scheduling and performing maintenance at the 

same instant of time implies waiting for spare parts delivery for a certain 

amount of time. 

• The substitution of the component due to maintenance performed at an 

early stage in the component’s life implies a significant loose of useful 

life. 

• Performing maintenance too close to the median of RUL estimation 

implies taking a risk proportional to =>8 − �Ä and to the amplitude of 

the confidence interval. 

• Scheduling maintenance too early with respect to �Ä implies stocking 

spare parts for a certain amount of time, sustaining a cost proportional to 

the stocking cost per unit time. 

• The subsystem operating time provides time windows in which to 

perform maintenance. 

Moreover, as stated in section 2.2, RUL estimation is in the operational time 

domain, that means that, in order to be compared with variables expressed in the 

calendar time domain, it has to be converted through the knowledge of the 

planned flight hours. This piece of information is not always available, such as 

in the case in which the aircraft is employed in a mission, in which flight plans 

are charged for a strong stochastic component. 

In these cases, the rate of increase of flight hours with respect to calendar hours 

has to be estimated. Figure 23 represents the main dynamics that stand at the 

base of the maintenance decision-making process: assuming that maintenance is 

scheduled at time � = �ÊW  the purple solid line represents the RUL pdf estimated 

at time �ÊW given the information provided by sensors until the instant �ÊW. Blue 

solid line represents, instead, the probability of having spare parts available at 

time � > �ÊW  given the fact that spare parts procurement process has started at 
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time �ÊW. The integral of RUL pdf evaluated between �ÊW and �Ä represents the 

risk associated to performing maintenance at time �Ä, while the integral of RUL 

pdf between �Ä and ∞ represents the potential unexploited useful life. Then, if 

maintenance scheduling is postponed to �Ê\, the blue dashed line becomes the 

new representation of 8"  , while the dashed purple line represents the RUL pdf 

computed at time �Ê\. As can be noticed from the figure, if �Ä remains the same, 

the risk is lower, because the precision of RUL pdf estimate has grown. 

Moreover, even the unexploited potential useful life has decreased, whereas at 

the same �Ä the probability of having spare parts available has decreased 

because the procurement process has been postponed. 

The time between �Ä and �Ê determines the mean time that the spare parts will 

have to be stocked in the depot waiting for the aircraft arrival. thus, the higher �Ä − �Ê, the greater the stocking costs. 

 
Figure 23 Dynamics of maintenance decision-making process 

If the information about the system operations schedule and the component’s 

MTTR are known, then the probability of concluding maintenance tasks before 
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the next planned flight, given the time �Ä, can be easily computed. All these 

aspects, translated into formulas, become: 

 �W = 1�· − �W 
3.33 

 �\ = �[""= < E�Ê@¸Ä@ BÊÊ~W − �aV` BÊÊXWG] 3.34 

 �] = Ï 8"Æ`AN�@Î
@Ð  

3.35 

 �Ñ = �Ä − 1�Ä − �Ê Ï 8"Æ`AN�@Î
@Ð  

3.36 

 �[ = Ï =>8ÒÆ`AN�@Î
@Ð  

3.37 

 ÓE�ÄG = o ÅB�B
[

BqW  

3.38 

 �Ä∗|�Ê = �Ä| �NÓE�ÄGN�Ä �@Î∗
= 0 

3.39 

Where �· = W� È =>8ÒÆ`AN�∞@Î  and =>8ÒÆ`A is the RUL probability density function 

expressed in the domain of calendar hours. Finally, ÅB for � = 1,2, ⋯ , 5 are the 

costs associated to each aspect. Then, it is to say that in the case in which the 

component is functioning or if the operations schedule is unknown �\ is taken 

equal to zero. By multiplying each of these values by a proper coefficient, 

representing the cost associated to each event (i.e the stocking cost per unit time 

for Eq.3.36, the cost of performing unscheduled maintenance for Eq.3.37, the 

cost of missing a mission for Eq.3.35 and for Eq.3.34 and a the marginal 
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opportunity cost associated to exploiting one time unit of the LRU for Eq.3.33) a 

unique value can be obtained representing the potential cost related to 

performing maintenance at a generic time �. Obviously the time at which the 

function reaches its minimum should be chosen as the optimal �Ä, given the time 

at which scheduling maintenance �Ê. This computation can be performed at 

different time indexes, supposing to postpone the maintenance scheduling time �Êto a time �Ê + ., where . is an appropriate time index (i.e the mean time 

between missions) at which the standard deviation of =>8Æ`A is equal to: 

 �°±9ÔÐÕÖ = �°±9ÔÐ − %E�G 3.40 

where %E�G is a function that describes the �°±9 decreasing trend. For example  

the function could represent the mean decreasing rate of �°±9, as reported in 

Figure 24. If the decreasing pattern is similar among the instances, a Bayesian 

approach could be used to predict the future �°±9 values once measured the �°±9 up the time now. This approach will be explained later in paragraph 3.2.4. 

 
Figure 24 Decreasing trend of  RUL from different simulations 

The several functions for a given �� are plotted in Figure 25. 
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Figure 25 ×Ø, ×Ù, ×Ù, ×Ú, ×Û computed at a given time iÜ 

A series of �Ä∗ is computed at different scheduling times. At each time, the global 

optimum will be the instant �Ê∗ in which the function, given by the series of 

points s�Ê , ©E�Ä∗|�ÊGt, reaches the minimum, while the optimal �Ä∗ will be the 

time step at which the function � given �Ê reaches its minimum, as shown in 

Figure 26. This computation is performed at each time step � ∈ Þ�¸, �A�. So, 

maintenance will be scheduled at the instant �B in which �B ≥ �ÊÔpßà∗ , where �ÊÔpßà∗  is the time index �Ê∗ evaluated at time �BXW. As for maintenance, it will be 

performed at time �Ä∗ given �Ê∗. 
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Figure 26 Example of iá∗  and iÜ∗ computation 
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3.2.3. The operational scenario 

In order to demonstrate the performance of the scheduling and replacement 

model and the influence of some key variables, an operational scenario is 

defined. It is assumed that the degradation pattern described in section 3.1.1 can 

be representative of a degradation pattern of some logistic replacement unit 

(LRU) characterized by an exponential degradation pattern. The scenario chosen 

is a discontinuous operational scenario similar to that one that characterizes the 

operations of an aircraft which is described by its flight plan. Therefore a 

degradation pattern represents a degradation process of a component installed on 

an aircraft whose operations is described by a flight plan that has been defined 

as a connection between two stochastic variables: the flight time and the time 

between two flights. The former is a random variable with Gaussian distribution 

and its mean value has been taken equal to 2.5 hours while its standard deviation 

is 0.5 hours; the latter is a Gaussian random variable with mean 18 hours and 

standard deviation 3 hours. In this way, the flight plan is realized by simply 

assembling these couples of variables until the simulation time horizon is 

reached.   

In order to evaluate how the maintenance scheduling and replacement model 

behaves and therefore to demonstrate the benefits that a CBM approach could 

generate, a set of 41 simulations have been performed. Each simulation run 

simulates an aircraft equipped with an unique LRU. At each time step, the LRU 

health index is acquired from the monitoring system and the LRU RUL is 

computed. If the cumulative flight hours are greater than the actual �¸       2 (different 

among each aircraft), then the maintenance scheduling and replacement model 

optimizes �Ä and �Ê through the function minimization described in paragraph 

3.2.2. Maintenance scheduling and replacement model is interrogated at each 

time step until � = �Ê∗ when the maintenance will be performed at time �Ä∗. At  

time step �, if �Ä∗ ≥ �A, an unscheduled maintenance action is generated. 

The benefits that are intended to be modeled by the 41 simulations are: 

Reduced Lead Time/lower spare parts stocked 

                                                 
2
 Time at which the RUL predicted can be considered reliable 
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The key benefit of prognostics in this scenario is to identify the need for a 

resource that requires a non negligible lead time to acquire. An example of such 

a resource could be a replacement item (spare) or a maintenance resource that 

must come from off-site. Prognostics helps to reduce or eliminate the Lead 

Lime, resulting in less downtime and in the case of spares, fewer pipeline 

spares. 

Extended Life/Reduced Maintenance Frequency/Increased Availability 

The benefit of prognostics in this scenario is to implement a condition-based 

rather than time-based scheduled maintenance. By scheduling maintenance 

considering each individual item’s predicted RUL versus a population statistic, 

the period between maintenance tasks is expected to increase, thus reducing the 

frequency of maintenances tasks (and its costs). This statement is well explained 

in Figure 27: the mean period between two maintenances tasks in a CBM 

environment will approach, thanks to prognostics, the mean time between 

failure (MTBF) of the item, as prognostics is able to predict failure with more 

accuracy. In time based maintenance environment (preventive) we can suppose 

[56] that maintenance tasks are performed always at the same cumulative 

operational hours. This threshold can be set on the basis of the a priori 

component TTF pdf. Once set a reliability level, i.e 99,9%, scheduled 

maintenance actions should be performed always at time instant �B at which the 

condition È ""©@pXÂ N� = 1 − = is satisfied. 

Obviously, reducing the maintenance action frequency, also the asset 

availability will increase, as explained later in paragraph 3.2.4. 
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Figure 27 Extending life by transitioning to condition based maintenance 

To evaluate these gains the metrics that have been chosen are: 

• Availability I =  "©â/E"©â +  ""=G; 
• Spares stocked total cost (see par.3.3.2); 

• Unscheduled maintenance events E�Ä∗ ≥ �AG 

• Life exploited  

• �Ä − �Ê  variance  

Where "©â stands for total flight hour flown, ""= stands for time to rapair. 

Life exploited percentage is defined as 8!% = s�A − �Ät/�A. 

3.2.4. Results  

Performing the optimization described in paragraph 3.2.2 at each time step 

requires long simulation times. To face this difficulty, an algorithm that speeds 

up the computation has been defined. Our goal is to select the right time steps at 

which computing the maintenance scheduling and replacement optimization 

among the entire time lag �A − �¸. The risk related to run the optimization using 

wider time spans is to miss the optimum and therefore to compromise the 

results. Theoretically, the time that elapses between two successive time steps in 

which performing maintenance scheduling and replacement, should not be 

linear. The updating of the optimal maintenance schedule and replacement must 

be more frequent nearby the optimum. The solution adopted consists of defining 
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the time step � + 1 as a function of the time between �B and the previous 

estimation of time scheduling �Êpßà . As a result, the optimization subroutine has 

to indicate the time step �B~W so that the ratio E�B~W − �BG/E�B − �BXWG tends to 

zero as the difference �Êpßà − �B decreases. The function chosen is reported in the 

following equation: 

 �B~W = �B + εs�Êpßà − �Bt + C 3.41 

where the constant C is a parameter set to control the convergence velocity of 

the algorithm when approaching the optimal �Ê value. The fact that a constant 

has been introduced in the advancement rule leads to a certain loss in accuracy, 

whose value can be qualitatively controlled by varying this constant. Once 

optimized the solution finding procedure, it is possible to run several 

simulations to praise the improvements of the approach proposed so far and 

consequently assess the potential benefits of a prognostic approach to 

maintenance. The case study framework has been described in the previous 

paragraph 3.2.3. Since no data were available that fitted properly to our case, we 

made some plausible assumptions regarding the values of the variables used 

(Table 2) 

Simulation Variables 

Variable Value Description  

�@ 
N (2.5,0.025) Flight Time [h] 

�åA N (6,1.8) Time Between Flights [h] 

LRU Failure and Feature Variables 

""= N (8,1) Time To Repair [h] 

"L© N (1800,180) Time Between Failures [h] 

ℎ� N (1.11,0.0111) Health Index at Failures [/] 

ℎ�@� ,�B − 3��B Health Index Threshold [/] 

�B N (1260,88.2) 
Time to Failure Trigger 

[h] 
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Maintenance Scheduling and Replacement Optimization Function  

Variables  

ÅW 0.01 
Marginal Opportunity Cost for 

Exploiting Component’s Life 
[/] 

Å\ 1 Missing Mission Cost index [/] 

Å] 0.001 Unavailability Cost index [/] 

ÅÑ 0.00001 
Marginal Spare Part Holding Cost 

index 
[/] 

Å[ 40 IFSD
3
 cost index [/] 

LT 450,350,350,150 Lead Time [h] 

ε 
1/3 Computation Optimization 

Function Constant 
[1/hr] 

� 3 
Computation Optimization 

Function Constant 
[h] 

Table 2 Values used in the case study simulation 

In this case study  the LT is considered as a deterministic variable. This is 

because the LT variance is not an important issue to be analyzed, it would be 

invariant among the simulations.  

In order to study the relationship between the maintenance scheduling and 

replacement model and the supply chain organization, 4 different simulation 

runs are performed with different LTs whose values are reported in Table 2. 

Before performing all the 4 simulations run, remembering Eq.3.39, a 

comparison between keeping �°±9ÔÐÕÖ  constant and using a Bayesian approach 

is performed. In the first case the underlying assumption is that no inference is 

made upon the future values of the RUL predictions confidence interval 

amplitude �°±9. Therefore, �°±9 future values are kept constant and equal to last 

computed �°±9. Whereas the second approach aims to exploit the information 

that �°±9 decreasing patter as new measurements become available is similar 

                                                 
3
 IFSD (In flight Shut Down) 
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among different degradations paths. This is evident observing Figure 21. 

Assuming that from experimental tests or from the field some �°±9E�G functions 

(i.e several curves as those displayed in Figure 21)  are known, an approach 

similar to that used to predict the RUL can be followed. This upgrade can let us 

estimate the �°±9 future values combining the a priori information and the 

computed  �°±9 value vector. Supposing that we are at time �} and we have 

computed �°±9 = �°±9E�WG, ⋯ , �°±9E�}G, we can estimate the future values  �°±9′=�°±9E�} + 1G, ⋯ , �°±9Þ�Aæ E�}G� that can be used by the maintenance 

scheduling and replacement model to determine the optimal �Ä and �Ê. �Aæ E�}G is 

the estimated TTF at the time epoch �} by the prognostic algorithm. Hopefully 

the overall performances would be better than the performance obtained keeping �°±9 = Åç��. 

The �°±9 degradation pattern is modeled as a 4
th

 degree polynomial with 

random coefficients distributed as a multivariate normal with parameters E,�, ��G and with a normal iid error with mean equal to zero and variance �a\. 

Therefore we have: 

 �°±9E�G = 3è + ! 3.42 

Where: 

3 = [�Ñ ⋯ � 1] , è =
éêê
êëèWè\è]èÑè[ìíí

íî
, ! = �E0, �aG, ,� = 

éêê
êë,W,\,],Ñ,[ìíí

íî
, �� = [5 3 5] matrix  

Let suppose that we have computed �°±9 = [�°±9E�WG, ⋯ , �°±9E�}G]� and we 

have the a priori information on the è parameters pdf  E,�, ��G  the updated 

parameters means ,��, remembering Eq.3.12, will be: 

 ,��� = �+�� 3�3�a\ + ,����XW� �3�3�\ + ��XW�XW
 3.43 
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Where +� = E3�3GXW3��°±9, 3 = ï�WY ⋯ 1⋮ ⋱ ⋮�}Y ⋯ 1ñ 

Therefore the mean �°±9′ future values will be:  

 �°±9′E�} + �G = 3�,�� 3.44 

Where 3� = [E�} + �GÑ ⋯ E�} + �G 1].  
The comparison between two methods was computed assuming a LT=250 hr. 

Each run is composed of 41 aircrafts, therefore a total of 82 simulations was 

performed. 

The comparison is made using the metrics “exploited life” and  �Ä − �Ê introduced in the paragraph 3.2.3.  

Table 3 shows the results of the simulations. As can be noticed, from the metric 

Exploited life point of view, the Bayesian methodology led to better results. As 

matter of facts the mean exploited life in the Bayesian case is equal to 95.4% 

while in the �°±9 constant case is equal to 91.4% with a difference of 4 

percentage points (72 operative.hr or 420.37 calendar hr). From the metric  �Ä − �Ê point of view the constant  case should be preferred since guarantees less 

variable �Ä − �Ê. The reasons will be described in the following paragraph. 

Method Metric Mean Value 
Standard 

deviation 

Const Exploited life 0.91386 0,0339 

Bayes Exploited life 0.95470 0,0369 

Const �Ä − �Ê 248,7 [hr] 19,03 [hr] 
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Bayes �Ä − �Ê 297,4 [hr] 153,83 [hr] 

Table 3 Methodology results comparison 

For the successive simulations, the Bayesian methodology will be used.  

LT [hr] 
Exploited 

life 
òóô 

Unscheduled 

events 

% 

Unscheduled 

Events 

õiáXiÜ 

[days] 

150 0,9548 0,0312 0 0% 6,912 

250 0,9547 0,0339 0 0% 6,410 

350 0,9572 0,0400 4 10% 7,259 

450 0,9586 0,0426 8 20% 9,415 

 

LT [hr] 
Availability 

CBM 

Availability 

SM 
∆÷ø÷ùú % ∆ûüýû  % 

150 99,537% 99,419% 0,119% -25,63% 

250 99,537% 99,419% 0,119% -25,62% 

350 99,538% 99,419% 0,120% -25,95% 

450 99,538% 99,419% 0,121% -26,13% 

Table 4 Results from the scheduling and replacement model for different LT 

The results obtained from the simulations with different LT are reported in 

Table 4. Particularly, if we observe the first column of the first table we can say 

that as LT increases the exploited life increases. For LT=150 hr we have an 

exploited life of 95,5 %, while for LT=450 we obtain an exploited life equal to 

95,86%. Observing the second column that represent the standard deviation of 

the exploited life we have that �þ9increases. However, to analyze correctly the 

result obtained, we have to consider the number of missed faults obtained. From 

the third column we have that for LT=350 hr we have registered 4 unscheduled 

maintenance events (4%) while for LT=450 hr we have registered 9 missed 

faults (20%). The underlying reason is that increasing the LT the model will 

shift backwards �Ê  in order to keep the optimization function low, determining a 

loss in precision and accuracy of RUL estimation. Due to high LT the system is 

forced to schedule maintenance basing on an unreliable estimation. This may 

cause a degradation in the performances as for missed and false alarms, since 
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the high LT forces the system to schedule maintenance basing on an unreliable 

estimation. Hence, this may cause a global degradation in the performances of 

the system, determining situations that can be interpreted as false alarms or 

missed alarms. The last column of the first table the standard deviation of the 

metric σ��−�� is reported. This value increases as LT increases. This phenomenon has 

to be taken into account for spare parts supply chain design.  

In the second table a comparison between a CBM approach and a Scheduled 

Maintenance approach is made by comparing the availability that each approach 

guarantee and the frequency of the maintenance actions.  

In the case of Time Based Maintenance the maintenance tasks are scheduled at a 

given time before the prior estimate of �A pdf. This time is established setting a 

reliability threshold equal to 99,9%, therefore  the scheduling threshold is a 

fixed value. This lead to the fact that in case of time based maintenance, the 

exploited life is always equal to 0.76. This value is strictly correlated with the 

asset availability. Since this percentage is also an index of the <"L< (Mean 

Time Between Maintenance) that is on average equal to: 

 <"L< = 8! x <"L© 3.45 

Where 8! is the average life exploited and MTBF stands for mean time between 

failures. Moreover, considering that the <""= (Mean time to repair) is 

constant in both the scheduled and condition-based maintenance scenarios, the 

improvement observed thanks to prognostic directly result in an increment of the 

availability. In fact, if we express the canonical availability equation as a 

function of 8!, we obtain: 

 I�K� = <"L<<""= + <"L< = 

= <"L© 8!<""= + <"L© 8! = 

<"L©<""=8! + <"L© 

3.46 
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Since 8!�K� > 8!��, the availability in a CBM framework is greater than the 

availability allowed by a SM policy. The availability computed in a CBM 

scenario, in this example, is on average 0.11% greater than in a SM approach. 

The main benefits however comes from the decrease of the maintenance task 

frequency that it is proportional to the increase of MTBM, therefore the increase 

in LE. In this example a 25.63% decrease is computed.  

3.3.  Spare Part Supply Chain model 

3.3.1. The Model 

The cost model for the logistic supply chain is focused on the level of safety 

stock required, at each depot to support the assets and the on-time repairs with 

the desired quality-of-service level basing on a prior estimate of the average rate 

of repair and the its variance. The impact of a prognostic maintenance policy on 

the spare parts supply chain has been described in [65], adapting the classical 

approach to safety stock problem as displayed in Figure 28 [66]. 

In [65] it is assessed the influence of prognostics on the distribution and the 

level of spare parts safety stock along the supply chain, which is considered as a 

serial network of 6 nodes with deterministic transfer times between them. In the 

model proposed, the safety stock level optimization, both in the scheduled 

maintenance, corrective maintenance and in the conditional maintenance policy 

scenario, follows the approach proposed in[66] considering the additional lead 

time provided by the CBM as a random variable E�Ä − �ÊG and not as a constant. 

Considering �_ = �Ä − �Ê as a stochastic variable is necessary since, as 

demonstrated in the previous paragraph, its variance could be not negligible. 

 

Figure 28 Classical approach to safety stock problem[66] 



 

________________________________________________________________ 

 

 

97 

 

The baseline model, i.e. without PHM, consists of a 4-stage serial system 

(� = 4). This system is composed of the Spare parts manufacturer depot, depot 

I, depot II and the base depot with node � supplying node � + 1, for 0 <  � < N, 
characterized by the E� ,1 − &G inventory policy. Node 0 represents a location of 

plentiful supply from which resources may be drawn with zero delays and node 

4 (Base depot) represents the repair site. There are no capacity constraints 

limiting the amount of resources that may be held at node �.  
Intermediate nodes are potential depots in which resources may be best aged and 

pre-processed en route to the repair site. The overall number of repairs in the 

fleet at each period is an independent Poisson-distributed random variable with 

mean � and variance �. "B represents the time required to transfer resources from 

depot "B to depot "B~W once they are available, and to process them for the 

delivery to the next node. The incremental holding cost for resources at node �, 
following whatever processing is required, is ℎB. Typically, nodes in the supply 

chain closer to the end have smaller transfer lead times "B but greater stocking 

costs ℎB [65]. 

Each node quotes and guarantees a service time &B, which is the maximum delay 

to supply parts for delivery to the next node. In the baseline model (Scheduled 

maintenance or corrective maintenance), &Z = &�= 0, since it is presumed that 

there are no delays at node 0, and that the goal is to enable a repair as soon as a 

fault is detected to maximize availability of the asset. The variables &W ⋯ &�  are 

independent variables. To determine the total stock required at a given node, we 

define 2 as the quality of service level for node �, which denotes the percentage 

of time service guarantees that are met. 

The safety stock 	B, at node � must be sufficient to address demand during the 

time gap from the service time guarantee &B and the time to replenish stock &BXW + TC  according to the following equation ([66][65][67]): 

 	B = 2�
&BXW + TC − &B 3.47 

Further, we can deduce some bounds on the service time &B, that at a given node 

is at best zero, in which case the stock is always sufficient to supply deliveries, 

and at worst it always requires replenishment from the previous node, which 
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takes time &BXW + TC. This leads to the following problem statement for the 

baseline supply chain model: 

 min o ℎB
�

BqW 	B 3.48 

 
	B = 2�
&BXW + TC − &B    � = 1, ⋯ , � 0 ≤ &B ≤ &BXW + TC      � = 1, ⋯ , � &Z = &� = 0 

 

3.49 

The supply chain problem defines an optimization of a nonlinear function over a 

region of convex constraints. The classical analysis of Simpson [66], however 

demonstrated in the following theorem: 

If × is a function of �  − Ø real variables �Ø ⋯��XØ of the form ×E�Ø ⋯��XØG =  + ∑ áù
�ùXØ + üù − �ù�ùqØ   (where ��, ��,  and áù are 

constants) whose domain � is the � − Ø dimensional polyhedron obtained by 

restricting the variables in such a way that each radicand above is nonnegative 

and each variable �ù is nonnegative then the minimum of the function × occurs 

at one of the vertices of �. 

As a result, the problem has its unique optimal solution on a vertex of the 

boundary such that &B∗� u0,�ùXØ + üùx therefore the scan over service times 

becomes a binary choice. The solution has to be chosen between all the possible 

combinations of &B, the optimal value is the one that minimizes the function in 

Eq.3.48. 

Considering the case in which PHM system provides additional lead time at the 

terminal node, equal to �Ä − �Ê, the supply chain can use it to reduce costs. 

However, this prediction is not deterministic, but it has a stochastic component 

as demonstrated in paragraph 3.2.4. The higher the variance of this variable, the 

lower the gains, as depicted in Figure 32. This modifies the terminal boundary 

conditions to
4
: 

 &Ñ = �_ 3.50 

                                                 
4
 Assuming �_ as a normal random variable 
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	B = 2�
&] + TÑ − �_ + �@_2� 

where �_ is the lead time afforded by PHM and ��� is its standard deviation. 

Plotting the number of stocked spare parts at each four depots as function of �_ 
(keeping �@_ constant)  and supposing that TC and ℎB assume the values in Figure 

29 we obtain Figure 30. As can be noticed the number of stocked parts that 

guarantees the same service level 2 decrease as �_ increases. The required spare 

parts are pushed backwards along the supply chain. Meanwhile, as can be 

noticed from  Figure 31, keeping �_ constant and varying  �@_ the required 

stocked parts increases to guarantee the same service level. 

Figure 32 represents the spare parts holding costs as function of �@_  and �_. 
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Figure 29 �j and �ù  values  

 

 

 
Figure 30 @umber of stocked spares in the four depots as a function of iú 
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Figure 31 @umber of stocked spares in the four depots as a function of òiú 

 
Figure 32 Total stocking costs as a function of iú and  òiú 
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3.3.2. Results  and Sensitivity Analysis 

The optimal supply chain design has been computed for all the simulations 

performed, that is 4 simulation runs, on for each LT. The maintenance 

scheduling and  replacement model  gave us the �@_ for each simulation run, as 

reported in Table 4. Moreover, we obtained the values of the mean exploited life 

LE. This value is necessary to compute the expected spare part demand. It is 

assumed that the spare parts supply chain has to support a fleet composed of 40 

elements of the same type. 

The mean spare parts demand is proportional to the MTBM through a 

coefficient that represents the  ratio between the actual hours flown and the 

calendar hours, since the aircraft utilization is discrete. The steady state expected 

demand for each scenario is reported in Table 5. 

Maintenance 

Policy 

Demand E�G 

[parts/day] 

CBM_150 0,191579 

CBM_250 0,191551 

CBM_350 0,191095 

CBM_450 0,190847 

Time Based 0,240838 

Corrective 0,1829 

Table 5 Expected demand 

As we can observe the expected demand is lower for a CBM policy than the 

demand in a SM policy case since LE is greater in the CBM scenario. The table 

reports also the expected demand when LE=1, that is the case of a corrective 

maintenance. Given the LT and �@_  values for each scenario (assumed to be zero 

for the SM and corrective maintenance scenario) we can compute the safety 

stock required for each depot. The results are displayed in  Figure 33. As we can 

observe the benefits resulting from a CBM policy are not completely evident 

especially in the CBM scenario with LT=150 hr and LT=250 hr. This is due to 

the fact that, even if  �� > 0 its variance dissipate its benefits. 

Figure 34 sums up the most important results for each scenario. The blue bars 

represent the expected demand percentage variation with respect to the 
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corrective maintenance policy. As we can observe the worst case is the SM 

(Time based) policy since has the lowest LE. The expected demand is 31% 

greater that the case of corrective maintenance policy. Meanwhile, the red bars 

represent the spare parts holding costs variation with respect to the corrective 

maintenance policy. We can observe that generally the CBM policy can lower 

the total spare parts stocked. However several considerations have to be made 

upon the correct lead time that is used as an input for the maintenance 

scheduling and replacement model.   

From these results we can conclude that, considering only the supply chain 

holding costs, the CBM approach imposing a LT equal to 350 hr represent the 

optimum. In other words the combination of the expected demand, �@_ and �� for 

the CBM_350 scenario minimizes the spare parts holding costs. Obviously this 

is not the global optimum because other metrics has to be considered, such as 

those introduced in the paragraph 3.2.4.  

 

Figure 33 Safety Stock for each scenario 
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Figure 34 Results from the supply chain model, percentage variations with respect to 

corrective maintenance policy
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4. Case Study 

4.1.  Introduction 

Railway axles are designed to have an infinite lifetime[68]. However occasional 

failures have been and are observed in service. The typical failure positions are 

the press-fits for wheels, gears, and brakes or the axle body close to notches and 

transitions. Such failures always occur as fatigue crack propagations whose 

nucleation can be due to different causes [69]. In the case of railway axles, the 

presence of widespread corrosion[70][71] or the possible damage due to the 

ballast impacts [72] may constitute such causes. 

This kind of failures is usually tackled by employing the ‘damage tolerance’ 

methodology, whose philosophy consists [69][73] in determining the most 

opportune inspection interval given the ‘probability of detection’ (PoD) of the 

adopted non-destructive testing (NDT) technique or, alternatively, in defining 

the needed NDT specifications given a programmed inspection interval.  

The negligible number of axle failures is reached thanks to role played by 

inspections carried out with the aim of keeping developing fatigue problems at 

bay. As reported by [74] in the United Kingdom there have been about 1.6 axle 

failures per year over the last 25 years, out of a population of about 180,000 

axles. (A similar number of new axles are introduced every year in PR China, 

where some 2.5 x 10
6

 wheelsets are in fleet service.) These large numbers of 

axles are subjected to inspections in order to try to identify cracks before failures 

occur. In general, the examinations are expensive, time consuming and not 

particularly effective in finding cracks. Furthermore, the dismantling needed to 

examine axles, such as the drawing-off of bearings, can cause scratching 

damage that is sufficiently severe to cause an axle to be retired. The rationale 

behind the frequency of testing is that the largest crack that would not be 

detected in an inspection should not grow to failure during the service interval to 

the next inspection. This implies that crack propagation calculations should be 

performed with sufficient accuracy to set the inspection interval. However, as 

stated by [74] some difficulties arises: 

1. Because of the difficulty in determining the reliability and sensitivity of the 

inspection techniques, the initial crack length chosen for the life calculation 
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must be set larger, leading to shorter intervals between inspections than are 

really necessary. 

2. The service loads are much more stochastic in nature than the well-defined 

hypothetical loads used for the initial design rule suggest. In many cases, in the 

absence of experimental measurement, the magnitudes and frequencies of these 

events are unknown, thus making cycle-by-cycle crack growth predictions 

unreliable. 

3. Important inputs to fatigue calculations are material properties such as crack 

growth data, fatigue limits and fatigue thresholds, which are very sensitive to 

material condition, manufacturing route, surface treatment, orientation and load 

sequence. In many cases these data are lacking, particularly from large 

specimens representative of axles. 

5. Abnormal conditions may arise in service. There is debate about the best 

means of protecting axles from corrosion and the extent to which coatings may 

hinder inspection. The interactions between fatigue and corrosion mechanisms 

in extending defects are still inadequately understood. Higher speeds have led to 

increased examples of damage of axles from flying ballast, which may be of the 

form of crack-like indentations on axle surfaces that initiate premature failure. 

These considerations can lead to think that maybe, instead of using a preventive 

maintenance approach a predictive maintenance approach based on prognostics 

could be convenient. Several aspects has to be considered in order to assess the 

technical and economical feasibility of this approach. The first and the most 

important is the assessment of the prognostic algorithm predictions accuracy and 

its sensibility to the goodness of the diagnostic and monitoring  equipment used. 

This section constitute the first attempt to answer to this  answer to this question 

through an explanatory assessment of two prognostic algorithms. The first one is 

based on statistical methods, similar to that one proposed in paragraph 3.1, the 

second one exploit the good understanding of the crack propagation physical 

process to estimate the time to fail of a cracked axle. Moreover, the predictive 

maintenance approach is qualitatively compared to the classical preventive 

approach.  
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4.1.1. Data  

∆K�� = N E11.32,0.857) MPa√m  =1.9966 α[ = −1.916 D = 160 mm 

∆K��Z =5.96 MPa√m C�� = −0.02 αY = −0.3927 K� = 1.2 

R = −1 αW = −194.024 β = 0.656  

∆K� C� = 24  MPa√m α\ = 322.544 ε = 10 <�#  

� = 1.3 α] = −177.24 ϑ = 2.5  

¬ = 0.001 αÑ = 41.957 SZ = 0.2  

 

4.2.  Simulation of the crack growth paths – The stochastic crack 

growth algorithm 

In this paragraph the stochastic crack growth model used in this work is 

presented. The non-powered railway axle considered in the present study is 

manufactured in A1N steel and used in Y25 bogie with a diameter D equal to 

160 mm. 

Service loads acting on railway axles are the result of vertical and lateral forces 

[68] due to their normal functioning, and the maximum bending moments can be 

found in the area of the wheels press-fit [69][72]. On the basis of these 

considerations, fatigue crack growth has here been analyzed at the typical T-

transition between the axle body and the press-fits.  

Different algorithms for simulating the crack growth of cracked components are 

available in literature. Some of them consider the crack growth modeling as 

stochastic process, see for example [75],[76].[77]. However, the likelihood of 

lifetime calculations depends on the adopted FCG algorithm and only the most 
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complex algorithms are able to adequately describe crack propagation under 

variable amplitude loading in railway axles [78]. 

In the present work the NASGRO algorithm [79] will be considered. This FCG 

model has been chosen because it is the reference algorithms in analyses where 

random loadings are involved, since it takes into account the ‘‘plasticity-induced 

crack closure’’ phenomenon [68]. Moreover, NASGRO has been used in several 

papers addressing the propagation of fractures in railway axles [69] [80][81] 

The considered software adopts the Paris-based crack propagation law called 

‘‘NASGRO equation’’: 

 dadN = C OS 1 − f1 − RT ∆KPd Q1 − ∆K��∆K RÆ
S1 − ∆KE1 − RG∆K� C�T$ 4.1 

where ‘‘C’’, ‘‘n’’, ‘‘�’’ and ‘‘¬’’ are empirical constants, ‘‘=’’ is the stress 

ratio, ‘‘∆K��’’ is the threshold SIF range and ‘‘∆K� C�’’ the critical SIF. The 

most important parameter is ‘‘f’’ representing the crack closure effect (Eq.4.10). 

Eq.4.1 is a development of the classical Forman’s formulation and incorporates 

all the three propagation regimes (from threshold to ∆K� C�). In order to 

introduce the dependence of thresholds on crack size and stress ratio, the ∆K�� 

parameter included in Eq.4.1 has been described by the expression: 

 ∆K�� = ∆K��Z 1
O 1 − fE1 − AZGE1 − RGPWX&'() 4.2 

Where ‘‘=’’ is the stress ratio, ‘‘f’’ is the closure function, ‘‘AZ’’ (Eq.4.10), is a 

constant used in the formulation of ‘‘f’’(Eq.4.10), ‘‘∆K��Z’’ is the threshold SIF 

range at = = 0, ‘‘C��’’ is an empirical constant.   

To analyze cracked bodies under combined loading, the stress intensity factor is 

expressed as: 

 ∆Kd*+ = �oαC QaDRCY
CqW + β� E1 − RGES + εG√πa 4.3 



 

________________________________________________________________ 

 

 

109 

 

Where αC and β are empirical constants, S is the applied bending stress, a is the 

crack size and ε is a random coefficient (introduced later in the paragraph). The 

bending stress is considered plane since NASGRO is not able to consider 

rotating bending conditions. This assumption has not a significant influence on 

estimated life predictions as demonstrated in [82][83]. 

The closure function is defined as: 

 f = AZ + AWR 4.4 

Where 

 AZ = 0.825 − 0.34ϑ + 0.05ϑ\ �cos Qπ2 SZR W/
 

AW = E0.415 − 0.071ϑGSZ 

4.5 

ϑ is a plane stress/strain constraint and SZ is the ratio of the maximum applied 

stress to the flow stress. 

Since NASGRO does not consider the geometry of the typical transitions of  

axles, equation 4.9 is modified in terms of the maximum SIF present at the 

notch root and calculated as 

 ∆K = K�∆Kd*+ 
4.6 K� represents the experimental stress concentration [81]. 

As demonstrated by [78], the crack growth randomness can be described 

considering the stress intensity factor threshold as a random variable. 

Particularly, it is demonstrated that ∆K�� can be considered as belonging 

indifferently to a lognormal distribution or normal distribution. In this work is 

considered as a normal variable with mean given by expression 4.2 and standard 

deviation �∆0'(. The empirical calibration of all the other parameters is carried 

out by means of dedicated fracture mechanic experiments. Their values are 

listed in paragraph  4.1.1 

Another relevant source of uncertainty is the randomness of the applied load 

[69][72]. Therefore service loads have been considered derived from 

experimental results on a high speed train. Next, the service stress spectrum has 

been approximated with a simple block loading consisting of twelve blocks 
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(Table 6). To take into account the within block variability a random term ε is 

added in the Eq.4.9. It is assumed to be uniformly distributed with mean equal to 

0 and with a span of 2ε. 

The so defined block loadings were then applied to growth calculations with a 

time sequence in accordance to Gassner suggestions[84]. Starting from the 

discrete spectrum in Table 6, the random history loads sequence is built by 

permutations of the whole set of the blocks. Each load sequence is 3.222.887 km 

long, composed of 20 consecutive complete permutations.  An example of load 

sequence is displayed in Figure 35. Some simulated crack growth path, 

considering all the uncertainties described (load history, ∆K�� and ε) are shown 

in  Figure 36.  

Cycles 
Load 

[MPa] 

1 145 

8 135 

75 125 

825 115 

15.000 105 

110.025 95 

357.675 85 

678.900 75 

1.621.725 65 

3.046.500 55 

8.165.775 45 

39.718.275 35 

Table 6 The 12 service time blocks 
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Figure 35 Example of a load history 

 
Figure 36 Examples of simulated crack growth paths 

Eventually, once determined an initial crack size and a limiting crack depth 

value at failure, through the Monte Carlo technique is possible to estimate the 

TTF pdf. Each simulation run is characterized by a random ∆K�� and a random 
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load history. Considering an initial crack size of 2 mm and a limiting crack size 

of 60 mm, the TTF pdf is shown in Figure 37. 

 
Figure 37 TTF probability distribution 

The TTF pdf for the purposes of this work is considered as a lognormal 

distribution as can be observed in Figure 38. It can be noticed how a lognormal 

distribution fits well the TTF data for almost the whole TTF variability range, 

only the right hand tail significantly diverge for the TTF. This is demonstrated 

also by Beretta et al. [78] and Schijve [85]. 
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Figure 38 Lognormal fit plot for TTF pdf 
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4.3.  Design of the preventive maintenance approach 

The preventive maintenance approach is designed according to the damage 

tolerant approach well described by [69] [73]. Figure 39 well describe the steps 

that have to be followed to design a design an axle preventive maintenance plan. 

The steps indicated are: 

1. establishment of the initial crack shape and size for further analysis 

Within a damage tolerance concept the initial crack size, #Z, is not identical to 

the size of a real flaw, e.g., from the manufacturing process but is a fictitious 

size, which usually refers to the detection limit of the NDI technique. The basic 

idea is that the largest crack that could escape detection is presupposed as 

existent. 

2. simulation of sub-critical crack extension, 

This kind of crack growth is designated as sub-critical since it will not lead to 

immediate failure until a critical length of the crack is reached. For railway applications 

the common mechanism is fatigue. 

3. determination of critical crack size for component failure, 

The sub-critical crack extension is terminated by the failure of the component. This 

may occur as brittle fracture or as unstable ductile fracture. Critical states may, 

however, also be defined by other events such as stable ductile crack initiation or the 

break-through of a surface crack through the wall or setting a maximum allowable 

crack size threshold. 

 

4. determination of residual lifetime of the component, 

The residual lifetime is that time or number of loading cycles which a crack needs for 

extending from the initial crack size, #Z, (step 1) up to the allowable crack size, #¸², 

established in step (3). 

5. specification of requirements for non-destructive testing. 

The constitution of an inspection plan is the aim of a damage tolerance analysis. From 

the requirement that a potential defect must be detected before it reaches its critical size 

it follows immediately that the time interval between two inspections has to be smaller 

than the residual lifetime. Sometimes inspection intervals are chosen to be smaller than 

half this time span. The idea is to have a second chance for detecting the crack prior to 

failure if it is missed in the first inspection. It is, however, also obvious that frequently 

even two or more inspections cannot guarantee the crack being detected since this 

would require a 100% probability of detection. 
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Figure 39 The damage tolerant approach to design a preventive maintenance approach[69] 

The procedure described by [69] aims to define the NDT specifications 

following the ‘last chance’ approach introduce in [72]. In this case, the PoD is 

not a variable to be optimized but is given. Therefore the maximum inspection 

interval was defined instead of the requirements for non destructive testing. The 

steps from 1 to 4 has already been done in the previous paragraph.  

4.3.1. The PoD curve 

The PoD can be derived from the calibration function of the particular NDE 

equipment used  that relates the crack dimension (length,depth or area) to the 

output. In this case, the NDE method considered is the ultrasonic inspection. 
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Since output from an NDE measurement process is a continuous response, the 

calibration curve is modeled as a linear function in which the measurement (dB 

of the signal) is given by a linear combination of two parameters and the crack 

area (#¦ [$$\]) plus a normal zero mean error with constant variance (Eq.4.7). 

 ;E#¦G =  +Z + +W logWZ #¦ + � E0, �ÄG 4.7 

The parameters +Z , +W, �Ä are estimated through the LSE or through the MLE 

methods. Is assumed that 1000 dB and -1000dB are respectively the saturation 

and observable limits. 

The data provided from which the parameters are estimated have been obtained 

from real inspections of railway axles. The graph in Figure 40 the data and the 

linear interpolating function are plotted, while the dashed blue lines are the 95% 

confidence interval bounds.  

The parameters value are reported in Table 1. 

Parameter Value
5
 

+Z Xxo 

+W Yyo �Ä Zzo 

Table 1: Calibration Curve Parameters 

                                                 
5
 Values are omitted for confidentiality reasons 
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Figure 40 MLE results 

In order to use the calibration curve in the following analysis, the crack size has 

to be expressed in term on depth instead of  surface area. The crack geometry is 

assumed  to be semicircular [72]. Therefore, the resulting calibration curve 

function becomes: 

 ; =  +Z +  +W logWZ �1#\2 � + � E0, �ÄG 4.8 

In order to derive the PoD function, a threshold is fixed that represents the 

measure’s bound that if it’s overcame, the presence of a crack is diagnosed. This 

limit is set at 50.6 dB that corresponds to a crack depth of 5.492 mm.  

The reference limit and the final calibration curve with the constant 3�Ä confidence limits is shown in Figure 1.  
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Figure 1: Final Calibration Curve 

At this point the PoD curve can be derived as it represents the probability that a 

crack of size # can be detected, given that the threshold is set at #@�. According 

to this statement and making the hypothesis of a normal distributed error, the 

PoD of a crack depth # is: 

 �ç E#G =  �[;E#G > ;E#@�G] = 

= 1 − Φ3;E#@�G − S+Z +  +W logWZ S1#\2 TT�Ä 4 

= 1 − Φ350.6 − S+Z +  +W logWZ S1#\2 TT�Ä 4 

4.9 

 

where Φ is the standard normal cdf. In Figure 2  is shown the resulting PoD 

curve.  
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Figure 2: PoD 

The PoD as discussed above in paragraph 4.3 is used to determine the maximum 

inspection interval in order to detect with a probability = the maximum allowed 

crack size. In the following paragraph, according to the problem defined in 

paragraph 4.3, the  maximum inspection interval is determined. 
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4.3.2. Identification of the maximum inspection interval 

The maximum safe inspection interval is determined through examining the 

effect of the interval of inspection on the overall probability of detection in the 

case of a fast growing crack. The inspection interval is therefore the maximum 

interval of inspection that allows the detection of the maximum allowable crack 

size with a defined reliability. The worst case is when the time (or distance) 

before the failure occurs (TTF) is minimum. This happen when, once the 

maximum defect present in the system is set, the crack growth rate is the 

highest. The inspection interval is therefore dependent on the largest defect 

present in the system, that is the defect that will eventually cause failure.  

The maximum defect size is set at 2 mm as suggested by the literature 

reviewed[72][69] and as set in the crack growth simulations. At this point the 

fastest growth crack has to be chosen as the reference upon which the maximum 

allowable inspection interval has to defined. 

Starting from the TTF distribution shown in Figure 37, the fastest growth crack 

has been chosen. It is the crack growth path with the minimum TTF in 300 

simulations and that falls in the first bin of the TTF distribution. In Figure 41 is 

shown the path selected and its relative position with respect to the TTF 

distribution (blue line). As can be seen it falls in the left tail of TTF pdf. 
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Figure 41 Fastest growth crack 

Once the worst case is chosen and the reference PoD has been defined, the 

maximum inspection interval can be found.  

Given an inspection interval, ‘	 ’, the cumulative PoD PCDET of a defect, 

potentially observable in a given number of inspections, �, is calculated from the 

PoD curve of the adopted NDT technique. Figure 42 shows how the cumulative 

probability of detection is calculated, that in formulae results. 

 ��6þ� = 1 –8�ç B
V

BqW  

�ç B = 1 − �çNB 
 

4.10 

Here, ��6þ�  is the theoretical cumulative �ç  and �ç  (‘probability of non-

detection’) represents the probability of failing to detect in a given inspection.  
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(a) 

 

(b) 

Figure 42 Calculation of the cumulative probability of detection (a) and the fault tree of 

the inspection (b) (adopted from [72]) 

The �ç B depends on the actual crack size # that corresponds to the cycle � 
according to the Eq.4.9. The more the  inspections the more the ��6þ� will be. 

Since a 100% ��6þ� is impossible to reach theoretically, a ��6þ� threshold was 

set at 0.99. 

In order to determine the inspection interval the final ��6þ� is evaluated at 

different intervals of inspection. Particularly, the final ��6þ� was evaluated 

starting from 1 to 60 inspections that results in the same number of intervals. 

The final ��6þ� is the �6þ� that results from the last inspection. Figure 43 

shows the results of the assessment, it shows the ��6þ� as a function of the 

inspection interval. The figure confirm what stated previously: as the number of 

inspection increases and the inspection interval decreases ��6þ� increases. The 

optimal inspection interval is the largest that guarantee a ��6þ� = 0.99.  
From Table 7 we can see that the inspection interval at 0.99 falls between 

34,988 km and 32,297 km. By linear interpolation we can find that the interval 

at 99% PCDET is 33,663 km. 

 

@° 

inspections 

Inspection 

Interval [km] 
9:�óü 

1 419,856 0.000000 
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3 209,928 0.000014 

5 139,952 0.003680 

7 104,964 0.003694 

9 83,971 0.007346 

11 69,976 0.007360 

13 59,979 0.010992 

15 52,482 0.011006 

17 46,651 0.026369 

19 41,986 0.026967 

21 38,169 0.397817 

23 34,988 0.834808 

25 32,297 0.999981 

Table 7 PCDET with different inspection interval 

 

  

Figure 43 9:�óü as function of the inspection intervals  

The literature reviewed [69][72] [78] suggests to determine the inspection 

intervals referring to the average  crack growth path, i.e whose TTF is equal to 

the mean TTF. In this case, once selected the right crack propagation lifetime, 

the maximum inspection interval is computed as well. The result is that the 

optimal inspection interval should be performed each 153,197.8 km. It is worth 
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noting that in case of the fast crack growth crack, with an inspection interval 

equal to 153,197.8 km the PCDET is equal to 0,2986 %. 

4.4.  Prognostic Modeling of the Crack Size Growth 

In this section two methods able to predict the RUL of cracked railway axles  

are introduced and compared  in term of their prediction performances. 

The first model uses a statistical approach introduced in the paragraph  0 based 

on the Bayesian probabilistic theory and the second one uses the physical model 

introduced in the paragraph 4.2, the same used to generate the crack growth 

paths. Since the model accurately describe the real crack growth in railway 

axles[78], it can be used both to substitute experimental tests and to generate the 

database needed to support a statistical approach to evaluate the axles’ TTF and 

RUL. 

The aim of the section is to introduce and give evidence of the capability of a 

prognostic approach based on these algorithms to reduce the uncertainties 

associated to the prediction of the TTF of a continuously monitored cracked axle 

meanwhile  it operates. This approach can be helpful to increase the inspection 

interval and, as a best result, inspects the axle only when the wheels have to be 

maintained without reducing the system’s safety.  

4.4.1. Setting the threshold 

In the paragraph 1.2 as the meaning of prognostic is introduced, the concept of  

RUL is defined as the time units that remain till the system eventually fail. 

In order to design a prognostic algorithm capable of updating the axle’s TTF the 

concept of failure has to be clearly determined. In this case it is trivially derived 

since the axle is considered faulty when the maximum allowable crack size is 

reached. Obviously, the threshold has to fixed considering the errors that affects 

the whole monitoring and prognostic system. Figure 45 shows a scheme of the 

different types of errors that has to be considered in setting the threshold. A 

safety margin has to be introduced against the errors that affect the estimation. 

The first error was introduced in the paragraph 4.3.1.  
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Figure 44 Illustration of the meaning of the size error 

It is the error associated with the calibration curve of the ultrasonic inspection. 

This error introduces an uncertainty in the determination of the crack size given 

that the ultrasonic probe measures x dB. 

Figure 44 illustrates what is meant for the size error. Given the calibration curve 

in Eq.4.8, the size error yÊ is defined as: 

 
yÊ = �+W 

yÊ = � S0, �Ä+WT 

4.11 
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Figure 45 The errors affecting the monitoring and prognostic system 

The other errors that are present are those associated with the model describing 

the crack growth, that are the residuals between the actual crack size and the that 

one predicted by the model and eventually the noise that affects the 

measurements process.  

In this case the size error is only considered since no data are available about the 

other error sources. The error considered can be considered as the sum of those 

making the hypothesis that the used diagnostic system’s performances are better.  

Given a crack depth #¸² as the maximum crack size allowed, the threshold that 

will be used as a reference for estimating the axle TTF is that one that 

guarantees at 99% of confidence that #¸² won’t be missed.  

Starting from the calibration function in Eq.4.8 we have to find #�@� (different 

from that in Eq.4.10) that corresponds to �E#¸² ≤ #�@�G = 0.99. 
Starting from Eq.4.9, given the measure ;, the related crack size is: 

 # = µ21 107X;Ì;à 10 �;à 4.12 

Remembering that <Ü = =>Ø, we have: 

 # = µ21 107X;Ì;à 10�Ð 4.13 
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Given that ;?  corresponds to the measurement of the crack size #¸², we have: 

 #¸² = @\A 10BCßDÌDà   4.14 

 

The crack size that corresponds to the measurement ;?  is: 

  # = @\A 10BCßDÌDà 10�Ð  

# = #¸² 10EÐ�  
4.15 

 

From Eq.4.15 we have that given a real crack depth of #¸² the crack size 

associated # (estimated from the measurement) is a random variable distributed 

as a lognormal with an associated mean of logWZE#¸²G and a standard deviation 

of 
�Î\;à. 

 
logWZ # = logWZ Q#¸²10�Ð\ R logWZ # = logWZE#¸²G + logWZ yÊ2  

logWZ yÊ2 = � S0, �Ä2+WT 

4.16 

 

Now we can define the threshold #�@�: 

 
�E#�@� − #¸² ≤ 0G ≥ 0.99 

ª F logWZ #�@� − logWZ #¸²�Ä2+W
G ≥ 1 − 0.99 

4.17 

 

The result is #�@� = �.�ÚÚ. 

If we let vary both �Ä and #¸² and calculate the corresponding #�@� we obtain a 

surface plotted in Figure 46. As we can see the relation is not linear and as the 

standard error increases, given a maximum crack size, the corresponding crack 

depth threshold decreases. 
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Figure 46 Crack size threshold as a function of òá and ÷H÷I 

 

4.4.2. Bayesian updating algorithm 

This section develops methods that combine two sources of information, the 

reliability characteristics of a axle’s population and real-time sensor information 

from a functioning axle, to periodically update the distribution of the axles’s 

residual life. 

We first model the degradation signal for a population of axles with an 

appropriate model assuming error terms from an iid random error process. A 

Bayesian updating method is used to estimate the unknown stochastic 

parameters of the model for an individual component. Once we have determined 

the posterior distribution for these unknown parameters, we derive the residual-

life distribution for the individual component. 
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In this case there is not simple functional form that fit well the simulated crack 

growth pattern. Nevertheless, an approximation of the paths can be performed 

by splitting the signal in two parts, that can be modeled as two exponential 

functions as shown in Figure 47. 

 

Figure 47 The two exponential models 

The shift from the first model to the second is based on a crack depth threshold 

that is plotted in Figure 47 as a black dash dotted line. The TTF of the axle 

monitored is therefore defined as: 

 ""© = "W + "\ 4.18 

Where "Wis a random variable that express the predicted time to reach the 

threshold &J@� and "\is a random variable as well that denote the time that takes 

the crack to grow from the threshold to #�@�.  

Let &E�G denote the degradation signal as a continuous stochastic process, 

continuous with respect to cycle . We observe the degradation signal at some 

discrete points in cycles, W, \, . . ., where B ≥ 0. Therefore, we can model the 

degradation signal at cycles B = W, \, . . ., as follows: 



 

________________________________________________________________ 

 

 

131 

 

 K&EBG = 
W + *Wexp[+WB + �WEBG]
&EBG = 
\ + *\exp[+\B + �\EBG]À & ≤ &J@�  

 &J@� ≤ & ≤ #�@�  
4.19 

 

If we redefine 8WEBG =  &EBG − 
W for  & ≤ &J@� and 8\EBG =  &EBG − 
\ for &J@� ≤ & ≤ #�@� we obtain: 

 

 K8WEBG = *Wexp[+WB + �WEBG]
8\EBG = *\exp[+\B + �\EBG]À & ≤ &J@� 

 &J@� ≤ & ≤ #�@� 
4.20 

The choice of threshold &J@� has to be based on an optimization rule. In this case, 

the threshold is that one that bound the maximum residual of the first fitted 

model to 0.0012. Obviously the rule can be changed, for example the threshold 

could be that one that minimize the overall fitting error. The value 0.0012 at 

which the first residual error is bounded is chosen upon that willingness to 

prefer a better fit in the first part of the signal in order to achieve better 

predictions in the first stage of the degradation process. The reason is that good 

predictions (more precise) in the first part of the degradation path can restrict the 

uncertainties on the final RUL estimation form the beginning. As matter of 

facts, the main part of the uncertainty on the TTF comes from the uncertainty 

associated with the variable "W. In other words, the variance of the cycles taken 

by the crack to grow from the initial size to &J@� is much greater that the number 

of cycles taken by the crack to grow from &J@� to #�@�. 

After several simulations, the threshold that bound the maximum residual error 

of the first part of & is a random variable as shown in Figure 48. 
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Figure 48 Threshold �� i� distribution 

Eventually the final threshold chosen is the mean value of  distribution, that is �� i� = Û, Ø HH. 

Once determined the threshold, through an appropriate number of crack growth 

simulations, we can build our a priori information on the crack growth behavior. 

Our a priori information, a part form the a priori TTF distribution shown in 

Figure 37, is composed of the random parameters *W, *\, +Wand +\ probability 

distributions. Their values are obtained through the LSE technique though fitting 

the crack growth functions with the models in Eq.4.19. The final distribution 

PDFs are plotted in Figure 49.  
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 (a) (b)

(c) (d)

Figure 49 (a) LMN OØ PDF, (c) LMN OP PDF, (b) >Ø PDF, (d) >P PDF 

As can be noted from the figure above, *W,*\,  +W and +\ can be approximated 

by lognormal distributions
6
 with parameters: 

*W = 8�E,QW, �QWG *\ = 8�E,Q\, �Q\G 

                                                 

6
 In the Appendix can be found the probability charts of those distributions. 
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+W = 8�E,;W, �;WG +W = 8�E,;\, �;\G 

In the Appendix (Ch.7) are reported the probability charts of those distributions. 

For these exponential models, it will be convenient to work with the logged 

signal &. We can then define the logged signal at cycle B as follows: 

 K8&WEBG = log *W ++WB + �WEBG
8&\EBG = log *\ ++\B + �\EBGÀ Å ≤ &J@� 

 &J@� ≤ & ≤ #�@� 
4.21 

We will use the observations 8&B,W , 8&B,\7
, ..., obtained at cycles W, \ , ..., as 

our data.  Next, suppose we have observed  8&B,W , ..., 8&B,} at cycles W, ..., R. 

Since the error terms, ∈B E@G, � =  1, 2 and � = 1,… 2, are assumed to be iid 

normal random variables, if we know *W,\ and +W,\, then the likelihood function 

of 8&B,W , ..., 8&B,}, given  *W,\ and +W,\, is: 

�s 8&W,W , . . . , 8&W,}T*W, +Wt
= � 1
21�ÄW\� expF− o �8&W,U − log *W − +WË2�ÄW\ �}

ËqW G 
 & ≤ &J@� 
 

4.22 

 �s 8&\,W , . . . , 8&\,}T*\, +\t
= � 1
21�Ä\\� expF− o �8&\,U − log *\ − +\Ë2�Ä\\ �}

ËqW G 
 &J@� ≤ & ≤ #�@� 
 

4.23 

Assumed that *W,*\,  +W and +\ are lognormal random variables with parameters 

defined above, their a posteriori joint distributions, according to the Bayes 

theorem are: 

                                                 
7
 � is used to denote the belongings of 8& to the first (� = 1) or second model ( � = 2) in Eq 4.19. 
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�s*W, +W T8&W,W ,… , 8&W,}t
=  �s 8&W,W , . . . , 8&W,}T*W, +Wt�E*WG�E+WGÈ �s 8&W,W , . . . , 8&W,}T*W, +Wt�E*WG�E+WG~ÂXÂ N*WN+W 

 & ≤ &J@� 
 
 �s*\, +\ T8&\,W ,… , 8&\,}t

=  �s 8&\,W , . . . , 8&\,}T*\, +\t�E*\G�E+\GÈ �s 8&\,W , . . . , 8&\,}T*\, +\t�E*\G�E+\G~ÂXÂ N*\N+\ 
 &J@� ≤ & ≤ #�@� 

4.24 

Where �s 8&W,W , . . . , 8&W,}T*W, +Wt and �s 8&\,W , . . . , 8&\,}T*\, +\t are defined in 

Eq. 4.22 and Eq.4.23 respectively and: 

�E*WG = V
W 1@21*W\�QW\X

Y exp �12 Slog *W − ,QW�QW T\� 
 

�E+WG = V
W 1@21+W\�;W\X

Y expZ12 �log +W − ,;W�;W �\[ 
 

�E*\G = V
W 1@21*\\�Q\\X

Y exp �12 Slog *\ − ,Q\�Q\ T\� 
 

�E+\G = V
W 1@21+\\�;\\X

Y expZ12 �log +\ − ,;\�;\ �\[ 
 

4.25 

The a posteriori mean of the parameters can be obtained from: 
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,̂QW = Ï *W Ï �s*W, +W T8&W,W ,… , 8&W,}tN+WN*W~Â
XÂ

~Â
XÂ  

 ,̂;W = Ï +W Ï �s*W, +W T8&W,W ,… , 8&W,}tN+WN*W~Â
XÂ

~Â
XÂ  

 ,̂Q\ = Ï *\ Ï �s*\, +\ T8&\,W ,… , 8&\,}tN+\N*\~Â
XÂ

~Â
XÂ  

 ,̂;\ = Ï +\ Ï �s*\, +\ T8&\,W ,… , 8&\,}tN+\N*\~Â
XÂ

~Â
XÂ  

 

4.26 

And their a posteriori variances from: 

�¦QW = Ï E*W − ,̂QWG\ Ï �s*W, +W T8&W,W ,… , 8&W,}tN+WN*W~Â
XÂ

~Â
XÂ  

 �¦;W = Ï s+W − ,̂;Wt\ Ï �s*W, +W T8&W,W ,… , 8&W,}tN+WN*W~Â
XÂ

~Â
XÂ  

 �¦Q\ = Ï E*\ − ,̂Q\G\ Ï �s*\, +\ T8&\,W ,… , 8&\,}tN+\N*\~Â
XÂ

~Â
XÂ  

 �¦;\ = Ï s+\ − ,̂;\t\ Ï �s*\, +\ T8&\,W ,… , 8&\,}tN+\N*\~Â
XÂ

~Â
XÂ  

4.27 

Since the solution to the problem stated has not been found in the statistical 

literature and recognizing the computation problem associated with solving the 

equations numerically, we have to make other assumptions on the parameters’ 

pdf functional forms. In order to reduce problem complexity the assumption of  +W and +\ as normal distributed parameters is reasonable. This assumption let us 

to exploit the problem solution described in the paragraph 0 and proposed by 

Lindley [62] and  Gebraeel[59]. Therefore , log *W,log *\,  +W and +\ are 

assumed to be normal random variables with parameters: 
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log *W = -W = �E,\W, �\WG log *\ = -\ = �E,\\, �\\G 

+W = �E,;W, �;WG +W = �E,;\, �;\G 

Before proceeding to the formal definition of the problem statement, an 

assessment of the errors computed after relaxing the hypothesis of lognormal 

distributed  +W and +\ can be done through a comparison of the a priori TTF 

calculated by the model with  +W and +\ as normal random variables with the 

true TTF computed through the crack growth simulations. 

The a priori TTF probability distribution, given the model described by the Eq. 

4.20, can be computed as the probability that the degradation signal (crack size) 8& is smaller than the crack maximum size allowed for each cycle C > 0, given 

the a priori model parameters pdfs. The statement, remembering the Eq.4.18, 

can be formally written as, 

 ""©ER = 0G = "WC + "\C  4.28 

Where "WC and "\C  are the a priori pdf distributions of "W and "\. They can be 

expressed as: 

 "WC EC|nR = 0G = PsLSWECG ≥ &J@� Tω̂W, β?Wt 4.29 

 "\C sUTnR = 0t = PsLS\sUt ≥ #�@�Tω̂\, β?\t 4.30 

Where  ω̂W, β?W, ω̂\ and β?\ are the a priori pdf of  -W,-\,  +W and +\ respectively. 

Given that ω̂W, , ω̂\, β?Wand β?\ are normal random variables, the degradation 

signal LSW and LS\ computed at cycles C and U respectively, are normal 

variables as well [59][47][61] with mean variance given by: 

 
μ`aWECG = ,\W + ,;WC 

 σ\`aWECG = �\\W + �\;WC\ + 2�W�\W�;W + �ÄW\ 4.31 
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μ`a\sUt = ,\\ + ,;\U 

 σ\`a\sUt = �\\\ + �\;\U\ + 2�\�\\�;\ + �Ä\\ 4.32 

Remembering the Eq.4.29 and 4.30, we can write for "WC : 

 
"WC EC|nR = 0G = 1 − PsLSWECG ≤ &J@� Tω̂W, β?Wt= 

= 1 − � V
W5 < &J@� − μ`aWECG@σ\`aWECG X

Y 

= ΦV
W&J@� − μ`aWECG@σ\`aWECG X

Y 

 

 

 

 

4.33 

And for "\C : 

 
"\C sUTnR = 0t = 1 − PsLS\sUt ≤ #�@� Tω̂W, β?Wt= 

= 1 − � V
W5 < #�@� − μ`aWECG@σ\`aWECG X

Y 

= ΦV
W#�@� − μ`a\sUt@σ\`a\sUt X

Y 

 

 

 

 

4.34 

Where Φ stands for the standard normal cdf. The domain of  "WC and "\C ,  is ≤ 0 , 

thus can take on negative values, which is practically impossible from an 

implementation standpoint. Consequently, we use the truncated cdf for "WC  and "\C  with the constraint "bC ≥ 0,  i=1,2  which is given as: 

 "WC = "WC − "WC EC = 0G"WC EC = 0G  
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"\C = "\C − "\C sU = 0t"\C sU = 0t  
4.35 

As observed by [47],  "WC  and "\C  are three parameter truncated Bernstein 

distributed random variables for which the first and second moment closed form 

don’t exist[63]. As suggested by [47] the median is taken as the central moment. 

This can be justified, from one side by the not-existence of a closed form for the 

mean, and for the other hand, considering that the "B pdfs  are skewed and 

therefore the use of the median is more appropriate and conservative. 

To compute the sum of the two random variables the Monte Carlo technique is 

followed, given the "WC  and "\C  numerical pdfs shown in Figure 50. The ω̂W, β?W, ω̂\ and β?\ a priori pdfs parameters are reported in Table 8. 

 ĉØ dCØ ĉP dCP =Ø =P 

e -10.35 6.95e-009 -8.85 1.07e-007 0 0 

òP 0.69 6.92e-035 47.65 3.55e-029 1.76e-008   1.5e-005 

f -0.1421 -0.2039   

Table 8  ĉØ,dCØ, ĉP ghi dCP a priori pdfs parameters 

The pdfs are simply obtained differentiating the two cdfs with respect to . 
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(a)  

(b)  

Figure 50 (a) üØj pdf (b) üPj pdf 

Eventually the modeled a priori TTF is shown in Figure 51 compared to the 

simulated a priori TTF on a lognormal probability plot. The green circles belong 

to the simulated a priori TTF, while the black ones belong to the modeled a 

priori TTF. 
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Figure 51 Simulated a priori TTF and a priori modeled  TTF comparison – probability 

plot 

A further comparison is between the two TTF pdfs is shown in Figure 52 in 

which both the cdfs are plotted. From the two figures can be observed that the 

left hand distributions’ tail are similar, while for large values of  TTF the two 

distributions differs. The modeled TTF has the right hand tail longer than the 

simulated one. However, for our purposes the left hand tail is much more 

important than the right one. For this reason the β?W and β?\  normality 

assumption can be acceptable. 
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Figure 52 Simulated a priori TTF and a priori modeled  TTF comparison – cdf 

It is worth noting that if the two model’s parameters are somehow correlated, It 

would be possible to update the second model’s parameter instead of using the a 

priori information to compute the ""© till the threshold  &J@� is reached. This 

situation would be valuable to exploit because better predictions could be 

performed since the beginning of the crack growth. Unfortunately this is not the 

case since the two pairs of coefficients are not significantly correlated as can be 

observed  from Figure 53. 
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*?W − *?\ *?W − β?\

−+�W − θ?\ +�W − β?\

Figure 53 Correlations between the couple of model parameters 

Now, once we have computed the a priori parameters’ pdfs, we can write the 

equations that update these pdfs’ parameters once obtained the signals 8&W,W ,… , 8&W,}  or  8&\,W ,… , 8&\,} from the monitoring system, depending in 

which  & interval the signals are. Since the problem statement is reduced to that 

explained in the paragraph 0, i just report the final formulas form which the 

updated pdfs parameters are obtained.  

The models can be rewritten as: 

 K8&W = 3W[I]W
8&\ = 3\[I]\

À & ≤ &J@�  
 &J@� ≤ & ≤ #�@�  

4.36 

Where: 
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[I]W = �ωW
βW � 3W = �1 W⋮ ⋮1 V� [I]\ = �ω\

β\ � 3\ = ï1 W,\⋮ ⋮1 V,\ñ 

At a cycle @, given the measures 8&B,W,   8&B,\,… , 8&B,@, � = 1,2 the updated ωW,βW, ω\, β\  pdfs parameters are: 

 ,�W� = ��s3W�3WtXW3W�8&W � 3W�3W�ÄW\
+ ,̂W��?WXW� �3W�3W�ÄW\ + �?WXW�XW

 
4.37 

 ��W = �3W�3W�ÄW\ + �?WXW�XW
 4.38 

 ,�\� = ��s3\�3\tXW3\�8&\ �� 3\�3\�Ä\\
+ ,̂\��?\XW� �3\�3\�Ä\\ + �?\XW�XW

 

4.39 

 ��\ = �3\�3\�Ä\\ + �?\XW�XW
 

4.40 

Where: 

,̂W = [,\W ,;W] ,̂\ = [,\\ ,;\] 
�?W = � �\W �\W,;W�\W,;W �;W   �?W = � �\\ �\\,\�\\,;\ �;\   

are the vectors of the a priori pdfs means and the covariance matrixes while: 
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,�W = [,�\W ,�;W] ,�\ = [,�\\ ,�;\] 
��W = O ��\W ��\W,;W��\W,;W ��;W P ��\ = O ��\\ ��\\,\��\\,;\ ��;\ P 

are the vectors of the a a posteriori pdfs means and the covariance matrixes . 

Now, given the a posteriori pdfs’ parameters the  "W or "\ distribution can be 

computed.  

Remembering Eq.4.31 and 4.32 the updated mean and the variance of the 

degradation signal at a cycle C or U will be: 

 
μ�`aWECG = ,�\W + ,�;WC 

 σæ\`aWECG = ��\\W + ��\;WC\ + 2��W�\W��;W + �ÄW\ 4.41 

 
μ�`a\sUt = ,�\\ + ,�;\U 

 σæ\`a\sUt = ��\\\ + ��\;\U\ + 2��\��\\��;\ + �Ä\\ 4.42 

And therefore from Eq.4.33 and 4.34 the updated "W or "\ pdf will be: 

 "W� sCT 8&W,W   8&W,\,… , 8&W,@t = ΦV
W&J@� − μ`aWECG@σ\`aWECG X

Y 
�àlmZnop   "�W − "�WE0G"�WE0G  

4.43 

And for "�\: 
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 "\� sUT8&\,W   8&\,\,… , 8&\,@t = ΦV
W#�@� − μ`a\sUt@σ\`a\sUt X

Y 
��lmZnop   "�\ − "�\E0G"�\E0G  

4.44 

An Example: 

Given a crack growth path shown in Figure 54, at each time step we can update 

the a priori ""© given in Figure 37, exploiting the information gained form 

monitoring the crack growth.  

Using Eq. 4.37, 4.38 for the first part of the degradation pattern ("W in Figure 54) 

and the Eq.4.39 and 4.40 for the second part, we can compute the a posteriori ω̂W, β?W, ω̂\ and β?\ pdfs’ parameters, that are the means and the standard 

deviations. 

 &J�ℎ  

 #��ℎ  

 
Figure 54 Crack growth path 

From the initial cycle to that one that corresponds to a crack size of 5.1 mm the 

updated  ""© is given by Eq.4.7 where "\ is given by Eq.4.35, that is the a 

priori modeled "\.  
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a)  

b)  

Figure 55 a) updated  eæqØ and b) updated eæ>Ø 

Figure 55 a) shows the updated ,�\W as a function of cycles, while the plot b)  

shows the updated ,�;W. 

At each time step, given the updated ,�\W and ,�;W we can compute the a actual ""© where "W�  is given by the Eq.4.43. For each time step the  ""©  median and 

the 1
st
 percentile is stored. These two values are plotted in Figure   . As can be 

observed, cycle after cycle the predictions converge to the true TTF even before 

the second degradation phase. In this case, both the 1
st
 percentile and the mean 

fall within the 5% error interval. The interval in which the ""© median and its 
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1
st
 percentile lines are interrupted means that the predicted  ""© falls beyond the 

timescale. 

 
Figure 56 Predicted TTF - 1

st
 phase 

Once the threshold &J@� is passed, the ""© is equal to the cycle "W, that is no 

more a random variable (it is deterministic), plus the predicted  "�\.  "�\ is given by Eq.4.44, once computed the updated ,;\ , ,\\ and the related 

variances given by  Eq.4.39 and 4.40.  

Figure 57  shows the  updated  ,;\ and ,\\ respectively.  
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a)  

b)  
Figure 57 a) updated  eæqP and b) updated eæ>P 

As previously done for the first degradation phase, the ""© pdf can be 

computed using Eq.4.39, 4.40, 4.42 and eventually 4.44. The updated ""©  
median and its 1

st
 percentile are shown in Figure 58. 
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Figure 58 Predicted TTF – 2

nd
 phase 

Can be observed how the predictions converge to actual failure time. This time 

the prediction variances are smaller than those of the first phase. This is due to 

the fact that the 1
st
 phase predictions include the uncertainties related to the a 

priori "\ pdf. 

4.4.3. Prognostic through the physical model 

The same problem faced by the Bayesian prognostic model can be pursued 

through a recursive application of the crack growth model presented in 

paragraph 4.2. The physical phenomenon analyzed in this context has been 

faced by numerous researches, therefore numerous models have been proposed 

capable of describing and highlighting the main variables and their relations that 

influence the crack growth. The NASGRO model used in this context is 

recognized to be the most reliable to describe crack growth in railway 

axles[78][69][81], therefore can be used to predict accurately the ""©. 

The main idea at the basis of this approach is that, once measured and estimated 

the actual crack size and the loads history, we can estimate the ""© through 

simulating the possible growth paths by using a Monte Carlo technique. 
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Figure 59 TTF prediction through the @ASGRO crack growth model 

 

This approach is shown in Figure 59. Let suppose that through the monitoring 

infrastructure we have measured the crack size at the time now, we can simulate 

the crack propagation considering as random variables the load applied and the 

SIF threshold and the initial crack size equal to the measured one. The functions 

plotted and originating from the time now, are some simulated crack growth 

paths. Starting from the crack growth paths set, it is possible to estimate the ""© 

pdf. In Figure 59 the black dotted line represents the predicted ""© pdf, while 

the red line represents the actual failure time. 

The estimated  ""© at each time step can be approximated by lognormal 

distribution, as shown in paragraph 4.2 and in  Figure 60.  
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Figure 60 The approximated TTF probability plot 

As in the Bayesian approach, at each time step, the ""© 1
st
 percentile, the  

median and the TTF at 98% level of confidence is stored. However, for 

computational reasons, the ""© up dating times are set at the 5%, to the 99% of 

the actual  ""© with a 5% gap. Figure 61 shows the ""© estimations at different 

time steps. Can be observed how the predictions converge to the actual failure. 

At the last updating time step all the  ""© distribution falls into the 5% error 

interval. 
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Figure 61 TTF predictions 

Figure 62 shows how the confidence interval diminish as we approach to the 

actual failure. The green dotted line represents the difference between the ""© 

median and the ""© at the 0.01 confidence level, while the red dashed dotted 

line represents the ""© pdf upper bound, at the 0.99 confidence level.   
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Figure 62 Estimated TTF at the 0.01 and 0.98 confidence level 

 

4.4.4. The size error and the updating frequency effect on TTF predictions 

In the case of the physical model, the size error and the updating frequency 

effect on the estimations can be approximately evaluated through simple 

geometrical considerations. The assessment of these effects on the predictions 

performances is an important issue since they characterize the monitoring and 

diagnostic equipment goodness. Higher size errors characterize low performance 

diagnostic, while lower updating frequency entails lower monitoring equipment 

cost.  

In this case the effect of the updating frequency on the prediction performances 

is not relevant since the ""© estimation relies on just the last crack size 

measurement and not, as in the Bayesian case, on the complete set of 

measurements. The  ""© updating frequency effect can be considerable when 

maintenance scheduling decisions is considered. By this point of view, high 

frequency updating is preferable since the decisions can be based on more 

updated ""©.  
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In this case we can apply a predictive maintenance policy similar to that one 

proposed by Kaiser et.al. in [64]. The stopping rule, i.e the cycle } at which the 

axle should be substituted, is defined as in Eq.4.45. 

 } r ""©_åE}G − } − . ≤ 0 4.45 

Where } is the first cycle at which the rule is verified, ""©_åE}G is the TTF 

prediction computed at a 0.01 confidence level at the cycle }, . is the updating 

interval. From this simple rule is self-evident that the greater . the lower }.  

This simple rule can be easily understood by analyzing the graph shown in 

Figure 63. The blue line represents the estimated ""© at the 0.01 confidence 

level while the black dotted line represents the equality n = TTFtu. The dashed 

line represents the equality  = ""©_å + δ. Therefore, for Eq. 4.45, the cycle } 

is the first intersection point of the ""©_å (blue line) with the black dashed line. 

Particularly, referring to what stated in the previous chapters, the quantity ""©_åE}G − }  is the RUL computed at the 0.01 confidence level (RUL_ in 

Figure 63). The main idea associated with this rule is that the axle can be safely 

run till it reaches the last ""©_å estimation. 
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Figure 63 The effect of updating frequency on TTF predictions 

The size error effect on the ""© predictions can be approximately computed 

making the hypothesis that the crack growth path can be approximated with an 

exponential function. Generally, as described in 4.4.1, the more the size error the 

lesser the threshold. The analysis framework is shown in Figure 64. Let us 

suppose that for a given size error , the failure threshold is set at the value #@� 

and that we are at the cycle B and we measure the crack size exp E8&BG.  

Through the method explained in paragraph 4.4.3, we can compute the  ""© pdf 

(blue line) and therefore we know the ""©a`B¸V and the  ""©WÐÔÆ at the 0.01 

confidence level.  

Next, suppose that the new size error is greater to the previous one, 

consequently, from Eq.4.17 keeping #¸² constant, we obtain the failure 

threshold #@�\ lower than #@�. This threshold shift causes a change in the ""© 

pdf parameters and therefore to the reference points  ""©a`B¸V and  ""©WÐÔÆ. 

The new reference points  ""©�a`B¸V and  ""©�WÐÔÆ computed at cycle B, 
thanks to the hypothesis made, can be computed as follows: 

 ""©�a`B¸V  = ""©a`B¸V − log a�� − log a��\+  4.46 

 ""©�WÐÔÆ = ""©WÐÔÆ − log a�� − log a��\�  4.47 

Where: 

 � = log a�� − LSC""©WÐÔÆ − B 4.48 

 + = log a�� − LSC""©WÐÔÆ − B 4.49 

 



 

________________________________________________________________ 

 

 

157 

 

L
S

 
Figure 64 The error size effect on TTF predictions 

The lower confidence interval �	 = (""©a`B¸V − ""©WÐÔÆG, as stated in 1.2, 

decreases when the size error increases, i.e the prediction is more accurate. This 

can be easily demonstrated, subtracting term by term Eq. 4.46 with Eq. 4.47 we 

obtain: 

 �	� = �	 − ∆Elog #@�G S1+ − 1�T 4.50 

Since + <  � and ∆Elog #@�G > 0 for increasing size errors �	� < �	. 
It is worth noting that, from Eq. 4.47, the ratio  

��wàÐÔx��wyàÐÔx is not linear with respect 

to the ratio 
z'(z'(� and from Eq.4.17 the ratio 

z'(z'(� is not a linear function of the size 

error ratio.  
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The updating frequency and size error combined effect on the cycle } 

normalized with respect the actual failure (i.e % of the life exploited) on 

particular crack growth curve is shown in Figure 65. As we can see the 

relationship between the size error and the ratio 
V¤V{¿p|}Î~. As the size error 

increases, for a given updating frequency,  the life exploited decreases, while the 

relationship between the updating frequency and the life exploited  for a given 

size error is linear: the more frequent the ""© updating the greater the life 

exploited. 

 

Figure 65 The updating frequency and size error combined effect
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4.5.  Results 

Our goal, as stated in paragraph , is to assess the predictive performances of 

both the prognostic models and eventually highlight the differences between the 

predictive and preventive maintenance policy.  

The probabilistic aspect of the issue has clearly arisen during the dissertation, 

therefore a reliable and a definitive answer to the questions proposed has to be 

given after numerous simulations that guarantee a reliable representation of the 

probabilistic aspects involved. However, some preliminary considerations can 

be outlined analyzing a limited number of instances.  

The method used to select the instances analyzed is based on the stratified 

sampling technique. Particularly, the TTF pdf represented in Figure 37 has been 

divided in 10 equal spaced intervals, that corresponds to the bins shown in the 

same figure. For each bin a crack growth path was selected obtaining a set of 10 

possible degradation curves as shown in Figure 28. 

 

Figure 66 The 10 selected crack growth paths 
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For the whole set of track selected, the Bayesian prognostic algorithm and the 

physical model was applied. Moreover, the maximum number of inspections Ninsp  and the expected number of inspections NinspÇÇÇÇÇÇÇ was computed.  

In order to evaluate the prognostic algorithms described, two metrics were used, 

one of which suggested by [86]. 

This metric, called Timeliness 
, exponentially weighs RUL prediction errors 

through an asymmetric weighting function. Penalizes the late predictions more 

than early prediction. The formula is: 

 

  

ªEG =
¹º»
º¼exp �|�EG|# �

exp �|�EG|� �
À � ≥ 0
� ≤ 0 4.51 

 
 = 1� o ªEG�
VqW  4.52 

Where �EG = ""©̧ �@�¸_ − ""©a`B¸VEG is the prediction error computed at 

cycle , while # and � are two constants where # > �. In this case # = 100 and � = 10. 

Ideally the perfect score is 
=1. To be comparable, the updating frequency has 

to be the same between the two algorithms, therefore the TTF predictions in the 

physical model case have been linearly interpolated.   

The other metric chosen is simply the predictions percentage error computed at 

fixed time steps } = 0.25©", 0.5©", 0.75©", 0.98©" , where FT is the cycle 

at which the failure occurs. 

In the appendix (Chapter 7) the comparison of the predictions at different time 

steps and the PCDET  for each of 10 sampled paths can be found. Moreover, the 

size error and the updating frequency effect on the exploited life are plotted for 

each instance. 
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As can be noticed form these figures, both the algorithms’ predictions converge 

to the actual failure time. The information about the actual degradation path 

increase as time elapses, resulting in an improved knowledge about the actual 

TTF. Better knowledge of the crack growth behavior allow more accurate 

predictions. The advantage of continuous monitoring with respect to the a priori 

information is clearly evident observing  Figure 67. It shows the TTF pdf 

obtained from the prognostic algorithms described and the a priori TTF pdf 

(black line). It is clearly noticeable how prognostics can improve the knowledge 

on the actual failure path followed by an individual axle.  

 
Figure 67 Comparison of the a priori TTF pdf and the updated TTF pdf obtained from the 

prognostics algorithms described (green-Bayesian, blue physical based model, black - a 

priori) 

However, substantial differences among the two prognostic approach exists. 

Particularly, what differs is the distribution of the prediction errors along the 

degradation timeline and the prediction confidence interval. The last statement is 

evident observing the figures in the appendix in which the predictions paths are 

compared. In all the instances selected the physical model confidence interval is 

larger than that one computed by the Bayesian approach.  
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However, the most important differences among the two approaches have to be 

evaluated  in term of the prediction errors. The following graphs display the 

prediction errors for both the algorithms and for the whole crack growth track 

set at fixed residual life percentile (i.e 0.25, 0.5, 0.75, 0.98). The same 

information are displayed in a tabular form in Table 9. The percentage 

prediction error is simply calculated as: 

 J��% = ©" − ""©a`B¸V©" 100 4.53 

From the graphs can be concluded that: 

1. Physical model prediction errors decrease approaching the FT 

2. Bayesian algorithm prediction errors decreases till the 75° percentile of 

the residual lifetime, while at 98% the errors are greater that in the 75 

percentile  

3. Physical model predictions are lower for FT near the average (bins 3,4,5) 

4. Bayesian predictions seems to outperform the physical model predictions 

for till the 75
th

 percentile, while for the 98
th 

the physical model 

predictions are more accurate.  
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Figure 68 Percentage prediction error @ 25% FT 

 

 

Figure 69 Percentage prediction error @ 50% FT 
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Figure 70 Percentage prediction error @ 75% FT 

 
Figure 71 Percentage prediction error @ 98% FT 

 

% Life Model c_1 c_2 c_3 c_4 c_5 

25 

Physical 

model 
-98,50% -66,59% -1,20% -26,69% -11,19% 

 Bayes 44,95% -3,96% -4,85% 58,58% 62,57% 

50 

Physical 

model 
-86,08% -66,11% -0,55% -32,95% -20,08% 

 Bayes 19,36% 5,77% 4,00% 30,77% 35,70% 

75 

Physical 

model 
-31,09% -39,44% 10,52% -20,11% -11,21% 

 Bayes 2,31% -4,42% 7,53% 11,24% 15,22% 

98 

Physical 

model 
-5,52% -3,31% 0,84% 1,72% 0,39% 

 Bayes 1,87% 1,81% -17,90% -40,00% -5,68% 

  
     

% Life Model c_6 c_7 c_8 c_9 c_10 

25 

Physical 

model 
32,56% 27,98% 41,74% 28,29% 57,91% 

 Bayes 25,64% 39,37% 40,14% 41,39% 31,19% 
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50 

Physical 

model 
18,24% 11,76% 22,84% 12,63% 35,59% 

 Bayes 15,11% 12,08% 12,15% 15,37% 19,54% 

75 

Physical 

model 
8,09% 4,64% 10,39% 6,87% 16,52% 

 Bayes 4,38% -3,27% 2,87% 2,34% 9,91% 

98 

Physical 

model 
1,44% -0,76% -0,61% 0,48% 0,61% 

 Bayes 1,90% -12,61% -10,32% -9,04% -3,06% 

Table 9 Percentage prediction errors 

General considerations can be drafted form the conclusive graph in Figure 72 

that display the mean squared percentage error among the whole set for each 

residual life percentile. The statements of the list above are confirmed.  

 

Figure 72 MS of the percentage prediction errors for each residual life percentile 

Using the other metric chosen, expressed by Eq.4.52 the results displayed in 

Table 10 are obtained. The main difference between the metric defined before, 

is that this metric considers the whole set of predictions and not only those that 

corresponds to particular moments. The results found are very similar among the 
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two approaches. The physical model index is slightly smaller than the Bayesian 

one. 

 

 

 Physical 

model 

Bayes 
NDI - max NDI - mean 

c_1 1,07595 1,02061 34 33,24 

c_2 1,05471 1,00486 40 39,49 

c_3 1,00225 1,02235 47 42,41 

c_4 1,02188 1,01337 61 58,98 

c_5 1,01014 1,01547 71 68,61 

c_6 1,00199 1,00774 75 73,04 

c_7 1,00143 1,00769 86 82,14 

c_8 1,00251 1,00787 100 96,19 

c_9 1,00163 1,00240 105 100,35 

c_10 1,00355 1,00484 115 110,70 

MS 1,01791 1,01074   

Table 10 Results – �, �ù�Ü� and ���Ü�ÇÇÇÇÇÇÇ 

The last two columns of Table 10 reports respectively the maximum non 

destructive inspections  number and the expected NDI number. The last result is 

obtained multiplying the NDI cumulative number with the corresponding PCDET.   

Obviously, the expected NDI number increases as the FT increases. The NDI 

number that should be performed to guarantee a 99% chance to detect a crack 

before it reaches the length of 6cm is relevant. As a consequence, the 

availability of the asset is highly affected from this maintenance policy. The 

loose of availability and the numerous maintenance activities imply a 

considerable maintenance costs build up. 

In Figure 73 the effect of an increase of the size error is displayed
8
, considering 

the updating frequency of 90 km. Can be noticed that generally, as previously 

stated, the greater the size error, the lower the life exploited. However, the life 

exploited reduction is not relevant. An increase of 3 times of the size error 

                                                 
8
 Computed considering the physical model predictions only 
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causes a life exploited reduction of about 5% on average. For the figures in 

appendix can be noticed that the effect of the updating frequency is lower with 

respect to the error size effect.  

The scarce effect of this important variables to the exploited life is due to the 

fact that an increase of the size error cause a reduction of the threshold #@� that 

however corresponds to a negligible life loss reduction thanks to the high crack 

growth rate that characterize the last part of the degradation phase. Greater 

effects shall be noticed when the size error is large enough to force the threshold #@� to be set at crack sizes at which the growth rate is lower (i.e at the end of the 

first degradation phase). 

 
Figure 73 The size error effect on life exploited given � = �� �H9 

 

                                                 
9
 Life exploited is normalized with respect to the life exploited that corresponds to the first size 

error considered 
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5. Conclusions 

The objective of this thesis research was to propose an integrated approach to a 

condition based maintenance policy in order to preliminary assess its benefits 

and to understand the main variables that influence the overall approach 

performance. Moreover, an explanatory study was carried out to evaluate the 

possibility to introduce prognostic concepts into railway axle maintenance 

management.  

It is argued that in order to assess completely the benefits of a CMB approach an 

integrated framework that integrate the technical issues, the maintenance 

scheduling and replacement decision policy and the spare part supply chain 

design is necessary. A linkage between low-level degradation-based sensor data 

with upper-level decision models, is necessary for improving the decision-

making process. 

The degradation Bayesian modeling framework presented in [59] for computing 

RULs of partially degraded components is presented. Since no available signals 

were available, the degradation signals from functioning components were 

artificially generated and then used to continuously/periodically update RUL 

distributions in real-time. The assumption made in this step is the exponential 

shape of the degradation pattern, condition that is often reached in most of the 

mechanical components These RUL distributions are used to compute, at each 

time step, the optimal scheduling and replacement times assuming a 

discontinuous component utilization, such as in the case of an aircraft LRU. The 

resulting replacement and scheduling  policies are therefore driven by the 

underlying degradation process.  

The results of several simulations were used to design a single-unit (S,1-S) spare 

parts supply chain. A comparison between different maintenance policies are 

then carried out. Simulations’ results with different LT show a better 

exploitation of the component’s life in a CBM scenario, resulting in an increased 

system availability with respect to a SM scenario. Besides, a certain degradation 

of performances and some misbehaviors are observed for high LT values. The 

main explanation is that in this condition the system is forced to schedule 

maintenance basing on an early and unreliable RUL estimation, since Bayesian 
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prediction needs a certain assessment time in order to reach high precision and 

accuracy. As for depot stock level, the related cost index follows a nonlinear 

trend, indicating an optimum for LT equal to 350 hrs and substantial savings 

with respect to scheduled maintenance scenario. Simulations in CBM scenarios, 

based on different LTs, shows a generally increase of the system availability and 

lower maintenance tasks frequency. 

The opportunity to introduce prognostics maintenance policy into the railway 

axle maintenance management was also investigated. Through a reliable 

probabilistic crack growth model a comparison between a prognostic 

maintenance approach based on Bayesian probabilistic theory, a prognostic 

maintenance approach based on the same crack growth physical model and the 

classical preventive maintenance policy based on regular NDT was carried out. 

The probabilistic crack growth model considers the SIF as a random normal 

variable and a random load history derived from measured load spectra. The 

diagnostic-monitoring infrastructure precision was described by a size error, 

directly derived from the calibration curve of an ultrasonic NDT. Assuming the 

hypothesis introduced in chapter 4, the results suggests that further research 

should be conducted validating the approach proposed on a real case study. As 

matter of facts both the prognostic algorithms described guarantee an average 

absolute predictions errors lower than 50 % at 25% of the actual axle life. The 

later predictions guarantees lower prediction errors, approaching the 7% on 

average. Earlier predictions errors are generally lower for the Bayesian 

prognostic algorithm than those computed through the physical model. Whereas, 

for later predictions the physical model seem to provide more accurate RUL 

estimations. However, the gap between predictions error computed by the two 

models are, on average, comparable. The effect of the updating frequency and 

the size error on predictions errors in case of prognostic physical model 

algorithm scenario and therefore, on the overall approach performance (life 

exploited with a determined reliability threshold) is assessed as well. The results 

show that the higher the size error and the lower updating frequency the lower 

life exploited. However the effect of updating frequency and size error in terms 

of life exploited is limited till the maximum crack size threshold, derived from 

the error size of the diagnostic infrastructure, becomes lower than about 5 mm, 

i.e the crack size at which the crack growth rate significantly increases. 

Generally speaking, a CBM approach needs a deep system/component 

knowledge. This need implies high investment costs to perform experimental 
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tests (high fixed costs). System/component knowledge in high safety 

requirement environments, such as in the aviation industry, has to be known 

before commissioning for obvious safety reasons. Low Accuracy PHM May Be 

Worse Than No PHM. Costs and the benefits resulting from a prognostic 

approach could be distributed differently across the actors involved, therefore  

an “integrator” that manages all the process is suggested or partnership between  

the main actors involved  committed to  share the  investment  costs. Moreover 

it is worth noting that a trade off exists between  system usage pattern and the 

resulting benefits, higher usage allows  a better return on investment but  lowers 

tADV , i.e the main prognostic benefits driver. 

After all these considerations, it is possible to sum up the results in the matrix 

displayed in Figure 74. Profitability of a PHM (CBM) approach can be thought 

as a function of two variables: 

• Component  criticality  

• Easiness to acquire data of component’s failure modes 

 

Figure 74: PHM applicability 
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Difficulties to describe and acquire data on the component’ failure behavior 

imply high R&D costs while the components criticality and value can boos the 

benefits allowed by a PHM approach. The case in which a PHM approach is 

suggested is the case in which it is easy to acquire and data and knowledge on 

the component failure behavior and in which the component monitored and 

maintained is critical for the whole system availability and/or it has a very high 

value. In the other two situations further investigation aimed to better estimate 

the costs and the benefits involved is suggested. 



 

_______________________________________________________________ 

________________________________________________________________ 

 

6. References 

[1] F.L. Lewis, M. Roemer, A. Hess and B. Wu G. Vachtsevanos, Intelligent 

Fault Diagnosis and Prognosis for Engineering Systems. New York: John 

Wiley & Sons Inc., 2006. 

[2] A. Mehr, I. Tumer and W. Chen C. Hoyle, "On Quantifying Cost-Benefit of 

ISHM in Aerospace Systems," in IEEE Aerospace Conference, 2007, pp. 1-

7. 

[3] A.Hess and L.Fila B. Byer, "Writing a convincing cost benefit analysis to 

substantiate autonomic logistics," in Proceedings of the IEEE Aerospace 

Conference, vol. 6, Big Sky, MT, 2001, pp. 3095-3103. 

[4] R. Abujamra, A.K.S. Jardine, D. Lin and D. Banjevic J. Lee, "An integrated 

platform for diagnostics, prognostics and maintenance optimization," in 

The IMS ’2004 International Conference on Advances in Maintenance and 

in Modeling, Simulation and Intelligent Monitoring of Degradations, Arles, 

France, 2004. 

[5] D. Lin and D. Banjevic K.S. A. Jardine, "A review on machinery 

diagnostics and prognostics implementing condition-based maintenance," 

Mechanical Systems and Signal Processing, vol. 20, pp. 1483–1510, 2006. 

[6] B.J. Gilmartin, K.Bongort and A. Hess S.J. Engel, "Prognostics, The Real 

Issues Involved With Predicting Life Remaining," in Proceedings IEEE 

Aerospace Conference, vol. 6, 2000, pp. 457-469. 

[7] G.Yang K.Yang, "Degradation reliability assessment using severe critical 

values," vol. 5, pp. 85-95, 1998. 



 

________________________________________________________________ 

 

 

 

[8] A.H. Christer, "Operational research applied to industrial maintenance and 

replacemen," Developments in Operational Research, pp. 31-58, 1984. 

[9] N.S Arumugadasan M.H Monplaisir, "Maintenance decision support: 

analyzing crankcase lubricant condition using markov process modeling," 

Journal of the Operational Research Society, vol. 45, pp. 509-518, 1994. 

[10] R.Dekker F.P.A Coolen, "Analysis of a 2-phase model for optimization of 

condition monitoring intervals," IEEE Transactions on Reliability, vol. 55, 

pp. 505-511, 1995. 

[11] J.M. van Noortwijk M.J. Kallen, "Optimal periodic inspection of a 

deterioration process with sequential condition states," International 

Journal of Pressure Vessels and Piping, vol. 83, no. 4, pp. 249-255, 2006. 

[12] K.S Trivedi D.Chen, "Optimization for condition-based maintenance with 

semi-Markov decision process," Reliability Engineering and System Safety, 

vol. 90, no. 1, pp. 25-29, 2005. 

[13] H.M. Mitchell, P.S Ansell K.D. Glazebrook, "Index policies for the 

maintenance of a collection of machines by a set of repairmen," European 

Journal of Operational Research, vol. 165, no. 1, pp. 267-284, 2005. 

[14] J. Knezevic H. Saranga, "Reliability prediction for condition-based 

maintained systems," Reliability Engineering and System Safety, vol. 71, 

no. 2, pp. 219-224, 2001. 

[15] A. Loskiewicz-Buczak and R.E Uhrig I.E Alguindigue, "Monitoring and 

diagnosis of rolling element bearings using artificial neural networks," 

IEEE Transactions on Industrial Electronics, vol. 40, no. 2, pp. 209-217, 



 

________________________________________________________________ 

 

 

175 

 

1993. 

[16] V.K Jain V.K., and Rama Rao Ch V.V., S.K Choudhury, "On-line 

Monitoring of Tool Wear in Turning Using a Neural Network," 

International Journal of Machine Tools & Manufacture, vol. 39, no. 3, pp. 

489-504, 1999. 

[17] J.R McDonald C.Booth, "The Use of Artificial Neural Networks for 

condition Monitoring of Electrical Power Transformers," �eurocomputing, 

vol. 23, pp. 97-109, 1998. 

[18] D.J Evan and B.Jones D. Bansal, "A real-time predictive maintenance 

system for machine systems," International Journal of Machine Tools & 

Manufacture, vol. 44, pp. 759-766, 2004. 

[19] M.D. Pandey S.K. Sinha, "Probabilistic neural network for reliability 

assessment of oil and gas pipelines," Computer-Aided Civil and 

Infrastructure Engineering, vol. 17, no. 5, pp. 320-329, 2002. 

[20] H.J Shyur J.T Luxhoj, "Comparison of proportional hazards models and 

neural networks for reliability estimation". 

[21] D.Banjevic, and A.K.S Jardine D.Lin, "Using principal components in a 

proportional hazards model with applications in condition-based 

maintenance," Journal of the Operational Research Society, vol. 57, no. 8, 

pp. 910-919, 2006. 

[22] D.R Cox, "Regression models and life tables," Journal of the Royal 

Statistical Society, B, vol. 34, pp. 187-220, 1972. 



 

________________________________________________________________ 

 

 

 

[23] M.Anderson A.K.S. Jardine, "Use of concomitant variables for reliability 

estimation," Maintenance Management International, vol. 5, no. 2, pp. 135-

140, 1985. 

[24] P.M Anderson and D.S Mann A.K.S. Jardine, "Application of the Weibull 

proportional hazards model to aircraft and marine engine failure data," 

Quality Reliability Engineering International, vol. 3, no. 2, pp. 77-82, 

1987. 

[25] P. Ralston, N. Reid and J. Stafford A.K.S. Jardine, "Proportional hazards 

analysis of diesel engine failure data," Quality & Reliability Engineering 

International, vol. 5, no. 3, pp. 207-216, 1989. 

[26] V. Makis and A.K.S Jardine Y. Zhan, "Adaptive Model for Vibration 

Monitoring of Rotating Machinery Subject to Random deterioration," 

Journal of Quality in Maintenance Engineering, vol. 9, no. 4, pp. 351-375, 

2003. 

[27] U. Westber D. Kumar, "Maintenance scheduling under age replacement 

policy using proportional hazars model and TTT-plotting," European 

Journal of Operational Research, vol. 99, pp. 507-515, 1997. 

[28] B.B. Fawzi, D.F. Percy and H.E Ascher K.A.H. Kobbacy, "A full history 

proportional hazards model for preventive maintenance scheduling," 

Quality & Reliability Engineering International, vol. 13, pp. 187-198, 

1997. 

[29] V. Makis, D. Banjevic, D. Braticevic and M. Ennis A.K.S Jardine, "A 

decision optimization model for condition-based maintenance," Journal of 

Quality in Maintenance Engineering, vol. 4, no. 2, pp. 115-121, 1998. 



 

________________________________________________________________ 

 

 

177 

 

[30] S.Yacout and M.S Ouali A. Ghasemi, "Optimal condition based 

maintenance with imperfect information and the proportional hazards 

model," International Journal of Production Research, vol. 45, no. 4, pp. 

989-1012, 2007. 

[31] K.R.M Rao P.V.N Prasad, "Reliability models of repairable systems 

considering the effect of operating conditions," in Proceedings of the 

Annual Reliability and Maintainability Symposium, 2002, pp. 503-510. 

[32] H.J. Shyur J.T Luxhoj, "Comparison of proportional hazards models and 

neural networks for reliability estimation," Journal of Intelligent 

Manufacturing, vol. 8, no. 3, pp. 227-234, 1997. 

[33] J.L Coetzee, D. Banjevic, A.K.S. Jardine and V. Makis P.J. Vlok, "Optimal 

component replacement decisions using vibration monitoring and the 

proportional-hazards model," Journal of the Operational Research Society, 

vol. 53, no. 2, pp. 193-202, 2002. 

[34] Modeling accelerated life testing based on mean, "Modeling accelerated 

life testing based on mean residual life," International Journal of Systems 

Science, vol. 36, no. 11, pp. 689-696, 2005. 

[35] N.Z. Gebraeel A.H. Elwany, "Sensor-driven prognostic models for 

equipment replacement and spare parts inventory," IIE Transactions 

(Institute of Industrial Engineers), vol. 40, no. 7, pp. 629-639. 

[36] M. Hamada and C. Chiao S.Tseng, "Using degradation data to improve 

fluorescent lamp reliability," Journal of Quality Technology, vol. 27, pp. 

363-369, 1995. 



 

________________________________________________________________ 

 

 

 

[37] A.Jeang K.Yang, "Statistical surface roughness checking procedure based 

on a cutting tool wear," Journal of Manufacturing Systems, vol. 13, no. 1, 

pp. 1-8, 1994. 

[38] B. Roylance and J.Moore K. B. Goode, "Development of a predictive 

model for monitoring condition of a hot strip mill," in IoM Steel Division 

Annual Meeting �°2, vol. 25, 1998, pp. 42-46. 

[39] D.C Swanson, "A general prognostic tracking algorithm for predictive 

maintenance," in IEEE Aerospace Conference Proceedings, vol. 6, 2001, 

pp. 2971- 2977. 

[40] A.Hoyland K.A Doksum, "Models for variable-stress accelerated life 

testing experiments based on Wiener processes and the inverse Gaussian 

distribution," Technometrics, vol. 34, no. 1, pp. 74-82, 1992. 

[41] G. Whitmore, "Estimating degradation by a Wiener diffusion process 

subject to measurement error," Lifetime Data Analysis, vol. 1, pp. 307-319, 

1995. 

[42] J.Lee, "Measurement of machine performance degradation using a neural 

network model," Computer Industry, vol. 30, no. 3, pp. 193-209, 1996. 

[43] K.Nezu Y.Shao, "Prognosis of remaining bearing life using neural 

networks," Proceedings of the Institution of Mechanical Engineers, Part I: 

Journal of Systems and Control Engineering, vol. 214, no. 3, pp. 217-230, 

2000. 

[44] M. Lawley N.Z. Gebraeel, "Life distributions from component degradation 

signals: a neural net approach," IEEE transactions on automation science 



 

________________________________________________________________ 

 

 

179 

 

and engineering, vol. 5, no. 1, pp. 153-163, 2008. 

[45] P. Mohan R.B Chinnam, "Online reliability estimation of physical systems 

using neural networks and wavelets," Journal of Smart Engineering System 

Design, vol. 4, no. 4, pp. 253-264, 2002. 

[46] W.Meeker C.Lu, "Using degradation measures to estimate a time-to-failure 

distribution," Technometrics, vol. 25, no. 2, pp. 161-174, 1993. 

[47] M. Lawley, R. Li, and J. K. Ryan N. Gebraeel, "Life distributions from 

component degradation signals: A Bayesian approach," IIE Trans., vol. 37, 

no. 6, pp. 543–557, 2005. 

[48] L. Bennett, C. Ligetti, J. Banks and S. Nestler J. Hines, "Cost-Benefit 

Analysis Trade-Space Tool as a Design-Aid for the U.S. Army Vehicle 

Health Management System (VHMS) Program," in Annual Conference of 

the Prognostics and Health Management Society, San Diego, 2009, pp. 1-

18. 

[49] Z. Williams, "Benefits of IVHM: an analytical approach," in Proceedings 

of the 2006 IEEE Aerospace Conference, Big. Sky, Montana, 2006, pp. 1-9. 

[50] M.E Malley, "A Methodology for Simulating the Joint Strike Fighter’s 

(JSF) prognostics and Health Management System," 2001. 

[51] A. Mehr, I. Tumer and W. Chen C. Hoyle, "On quantifying cost-benefit of 

ISHM in aerospace systems," in ASME 2007 International Design 

Engineering Technical Conferences, 2007, pp. 1-10. 



 

________________________________________________________________ 

 

 

 

[52] D.A. Murphy R.M. Kent, "Health Monitoring System Technology 

Assessments Ð Cost Benefits Analysis," Hampton, Virginia, 2000. 

[53] K.L Feldman, S.Ghelam, P. Sandborn, M.Glade and B.Foucher E. Scanff, 

"Life cycle cost impact of using prognostic health management (PHM) for 

helicopter avionics," Microelectronics Reliability, vol. 47, pp. 1857-1864, 

2007. 

[54] D.J Haas C.G Schaefer Jr, "A Simulation Model To Investigate the Impact 

of Health and Usage Monitoring Systems (HUMS) on Helicopter 

Operations and Maintenance," in Proceedings American Helicopter Society 

58ˆth Annual Forum, 2002. 

[55] N.Z. Gebraeel K.A. Kaiser, "Predictive maintenance management using 

sensor-based degradation models," IEEE Transactions on Systems, Man, 

and Cybernetics Part A:Systems and Humans, vol. 39, no. 4, pp. 840-849, 

2009. 

[56] J.J Luna, "Metrics, Models, and Scenarios for Evaluating PHM Effects on 

Logistics Support," in Proceedings PHM Conference 2009, San Diego. 

[57] N.K.Srinivasan S.K.Upadhya, "Availability of weapon systems with 

multiple failures and logistic delays," International Journal of Quality & 

Reliability Management, vol. 20, no. 7, pp. 836-846. 

[58] M.Bazargan, and R.N. McGrath P Gupta, "Simulation Model for Aircraft 

Line Maintenance," in Proceedings Planning Reliability and 

Maintainability Symposium, 2003. 

[59] J. Pan N. Gebraeel, "Prognostic Degradation Models for Computing and 

Updating Residual Life Distributions in a Time-Varying Environment," 



 

________________________________________________________________ 

 

 

181 

 

IEEE Transaction on Reliability, vol. 57, no. 4, pp. 539-549, 2008. 

[60] J. Lee, J. Lin and G.Yu H. Qiu, "Robust performance degradation 

assessment methods for enhanced rolling element bearing prognostics," 

Advanced Engineering Informatics, vol. 17, no. 3-4, p. 2003. 

[61] W.Q. Meeker C.J. Lu, "Using Degradation Measures to Estimate a Time-

to-Failure Distribution," American Society for Quality, vol. 35, no. 2, pp. 

161-174, 1993. 

[62] A. F. M. Smith D. V. Lindley, "Bayes estimates for the linear model," 

Journal of the Royal Statistical Society, Series B, Statistical, vol. 34, no. 1, 

pp. 1–41, 1972. 

[63] M Ahmad and T.S Mirza A.K Sheikh, "Renewal Analysis Using Bernstein 

Distribution," Reliability Engineering, vol. 5, pp. 1-19, 1983. 

[64] K.A. Kaiser N.Z Gebraeel, "Predictive Maintenance Management Using 

Sensor-Based Degradation Models," IEEE Transactions on Systems, Man, 

and Cybernetics, Part A: Systems and Humans, vol. 39, no. 4, pp. 840-849, 

2009. 

[65] J.Tierno A.Khalak, "Influence of prognostic health management on logistic 

supply chain," in Proceedings of the 2006 American Control Conference, 

Minneapolis, 2006, pp. 3737-3742. 

[66] K.F. Simpson Jr, "In-Process Inventories," Operations Research, vol. 6, no. 

6, pp. 863-873, 1958. 



 

________________________________________________________________ 

 

 

 

[67] S.P.Willems S.C Graves, "Strategic Safety Stock Placement In Supply 

Chains," in Proceedings of the 1996 MSOM Conference, 1996. 

[68] EN13103, "Railway applications – wheelsets and bogies – non powered 

axles – design method," 2001. 

[69] M. Vormwald, C. Andersch U. Zerbst, "The development of a damage 

tolerance concept for railway components and its demonstration for a 

railway axle," Engineering Fracture Mechanics, vol. 72, pp. 209–239, 

2005. 

[70] D.S. Hoddinot, "Railway axle failure investigations and fatigue crack 

growth monitoring of an axle," Proceedings of the Institution of 

Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 218, 

pp. 283–292, 2004. 

[71] D.H. Stone C.P. Lonsdale, "North american axle failure experience," 

Proceedings of the Institution of Mechanical Engineers, Part F: Journal of 

Rail and Rapid Transit, vol. 218, no. 4, pp. 293–298, 2004. 

[72] S. Beretta M. Carboni, "Effect of probability of detection upon the 

definition of inspection intervals for railway axles," Proceedings of the 

Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid 

Transit, vol. 221, no. 3, pp. 409-417, 2007. 

[73] K. Madler, H. Hintze U. Zerbst, "Fracture mechanics in railway 

applications––an overview," Engineering Fracture Mechanics, vol. 72, pp. 

163–194, 2005. 

[74] S.Hillmansen R.A. Smith, "A brief historical overview of the fatigue of 

railway axles," Proceedings of the Institution of Mechanical Engineers, 



 

________________________________________________________________ 

 

 

183 

 

Part F: Journal of Rail and Rapid Transit, vol. 218, no. 4, pp. 267-277, 

2004. 

[75] A.S.Kiremidjianb K.Ortiza, "Stochastic modeling of fatigue crack growth," 

Engineering Fracture Mechanics, vol. 29, no. 3, pp. 317-334, 1988. 

[76] B.M. Hillberry, P.K.Goel D.A. Virkler, "The statistical nature of fatigue 

crack propagation," ASME, Transactions, Journal of Engineering Materials 

and Technology, vol. 101, pp. 148-153, 1979. 

[77] F. Kozin J.L Bogdanoff, Probabilistic models of cumulative damage. New 

York: John Wiley & Sons, 1985. 

[78] M. Carboni S. Beretta, "Experiments and stochastic model for propagation 

lifetime of railway axles," Engineering Fracture Mechanics, vol. 73, pp. 

2627–2641, 2006. 

[79] Anonymus, Fracture Mechanics and Fatigue Crack Growth 4.2, 2006. 

[80] M.Carboni S.Beretta, "Simulation of fatigue crack propagation in railway 

axles," J ASTM Int, vol. 2, no. 5, pp. 1-14, 2005. 

[81] M. Carboni, S. Cantini, A. Ghidini S. Beretta, "Application of fatigue crack 

growth algorithms to railway axles and comparison of two steel grades," 

Proceedings of the Institution of Mechanical Engineers, Part F: Journal of 

Rail and Rapid Transit, vol. 218, no. 4, 2004. 

[82] M.Carboni S.Beretta, "Rotating vs. plane bending for crack growth in 

railway axles," in ESIS-TC24 Meeting, Geesthacht, 2005. 



 

________________________________________________________________ 

 

 

 

[83] M. Madia, M.Schoedel and U.Zerbst S.Beretta, "SIF solutions for cracks at 

notches under rotating bending," in Proceedings of the 16th European 

Conference on Fracture (ECF16), Alexandropoulos, 2006. 

[84] E. Gassner, "Performance fatigue testing with respect to aircraft design," in 

Fatigue in Aircraft Stuctures. New York: Academic Press, 1956. 

[85] J. Schijve, Fatigue of structures and materials. Dordrecht: Kluwer 

Academic Publishers, 2001. 

[86] J. Celaya, E.Balaban, K. Goebel, B. Saha, S. Saha, and M. Schwabacher 

A.Saxena, "Metrics for Evaluating Performance of Prognostic Techniques," 

in International Conference on prognostics and health management , 

Denver, CO, 2008, pp. 1-17. 

 



 

_______________________________________________________________ 

________________________________________________________________ 

 

7. Appendix



 

________________________________________________________________ 

 

 

 



 

________________________________________________________________ 

 

 

187 

 

 



 

________________________________________________________________ 

 

 

 

C1
10

                                                 
10

 Blue line: Physical model TTF estimation with confidence bounds (dotted) 
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Green Line: Bayesian model TTF estimations with lower confidence bound (dotted) 
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