
DEVELOPMENT OF DISTRIBUTED
AND EXTENSIBLE BUILDING

AUTOMATION SOFTWARE
SYSTEMS

by

Pham Van Vung

A Tesina submitted in partial fulfillment
of the requirements for the degree of

Maser Degree in Engineering Computer
Systems

Politecnico di Milano

2010

Approved by ___
Chairperson of Supervisory Committee

__

__

__

Program Authorized
to Offer Degree ___

Date __

ABSTRACT

The current requirements for software systems, especially in Building Automation

Industry, are first able to extend its functionality to adapt to customers’

requirement changes, second accessible over the network, third able to scale well

with the varieties of client application needs, and fourth able to scale well with

varieties of client devices and their platforms. This writing presents a four step

methodology for development of software systems which satisfy these

requirements. The four steps include Step 1: Development of a core server with

functionalities implemented as add-ins, Step 2: Development of a communication

channel as Web Service, Step 3: Development of the client applications and client

components, and Step 4: Development of a GUI Designer and Client devices’

platforms’ simulators.

These steps are realized after a real life experiment which develops a Building

Automation System at Omniabit s.r.l. Milano, Italy. This experiment leads to a

software system which has extensible functionalities implemented as add-ins. It is

accessible over the network using Web Service as its communication endpoint. It

scales well with the large varieties of customers’ client applications’ needs by

providing customers a GUI Designer lets users (customers or developers) with

little programming experience design the client applications visually. It also scales

well with the large varieties of client devices and their platforms in building

automation industry with simulators built for them.

This proposed development methodology is applicable not only in the building

automation industry software development but in general will help to develop

software systems which adapt well with customer requirements change overtime.

TABLE OF CONTENTS

Chapter 1... 1

INTRODUCTION... 1
Chapter 2... 4

REQUIREMENT ANALYSIS AND PROPOSED SOLUTION.................. 4
2.1 Requirement analysis ...4

2.2 Proposed solution with technologies and development
methodologies...6

Chapter 3...11
LITERATURE STUDIES ..11

3.1 Add-Ins Pipeline Architectures...11
3.2 Windows Communication Foundation (WCF) ..12

3.3 Windows Presentation Foundation (WPF) ..15
3.4 Silverlight ...15

3.5 CommandFusion...15
3.6 ProntoPhilips ..18

3.7 PRISM - Composite Application ...19
3.8 Terminologies definitions ..21

Chapter 4...23
DEVELOPMENT METHODOLOGIES ...23

4.1 Development of the core server component...23
4.2 Development of the communication channel (Web Service)
component..27
4.3 Development of the client components...33

4.4 Development of the GUI Designer and Simulators’ components....................43
Chapter 5...48

IMPLEMENTATIONS ..48
5.1 Implementation of core functionalities server ...48

5.2 Implementation of client applications ...51
5.3 Implementation of the GUI Designer..54

Chapter 6...58
RESULTS AND DISCUSSIONS..58

6.1 Results and discussions of the core server development58
6.2 Results and discussions of the communication channel
development...59
6.3 Results and discussions of the client development ...61

6.4 Results and discussions of the GUI Designer and simulators
development...63

Chapter 7...65

 ii

CONCLUSIONS ..65

Chapter 8...68
FUTURE WORKS ...68

BIBLIOGRAPHY..71
APPENDIX...72

A. Summary of ELK Functions ...72
B. ProntoScript client applications development tutorial.................73

 iii

LIST OF FIGURES

Number Page
Figure 1 Software Architecture to develop an extensible, and distributed software

system..8

Figure 2 Pipeline Architecture ..11
Figure 3 Concept of CommandFusion...17

Figure 4 Pronto TSU9800 Device ...18
Figure 5 An example of a composite system ...21

Figure 6 Core Server Architecture of the Building Automation System..25
Figure 7 Design Architecture of the Communication Channel ...31

Figure 8 Varieties of Client Devices in Client Applications Development....................................34
Figure 9 Client Design using WPF and Silverlight Technologies ..36

Figure 10 Architecture implementing ProntoScript Widgets. ...42
Figure 11 Generic Design Architecture of GUI Designer..45

Figure 12 Application of GUI Designer Architecture in Building Automation
System ...46

 iv

ACKNOWLEDGMENTS

I would like to express deepest appreciation to my committee chair, Professor

Mezzalira Lorenzo. Without his guidance and persistent help this writing would

not have been possible.

I would like to thank my supervisor at Omniabit s.r.l., Milano, Italy, Mr. Manuel

Elia, who guided me in eliciting the system requirements for software systems in

building automation industry. A thank you to my colleague, Domenico Orsini,

who gave me useful feedbacks and design guidance during the real life

development of the Building Automation System at Omniabit s.r.l.

I thank Omniabit s.r.l. which allows me to have a real life experiment in

developing software systems for building automation industry. This helps me to

realize this development methodology.

1

C h a p t e r 1

INTRODUCTION

Currently the developments of industrial and real life software systems are having

a challenge which is the system requirements change over time. New business

opportunities may come, new technologies may become available, or even

ongoing customer feedback during the development cycle which affects the

requirements of the software systems. Therefore, it is important to have the

methodology to build the software systems so that it is flexible and can be easily

modified or extended in the future even when it is already deployed into industry.

Development of such software systems requires an architecture that allows

individual parts of the application to be independently developed and tested and

that can be modified or updated later, without affecting the rest of the application

even if it is already deployed in the industry.

Most software systems’ developments need a large team of developers such as

graphical user interface designers, system analysts, business logic coders, etc. The

difficulty the developers face is to design the software systems in such the way

that multiple developers or sub-teams can work effectively on different pieces of

the system independently, still making sure that the artifacts coming out from

each team are integrated and work together correctly.

This writing will propose a solution for developing distributed systems which

have requirements change over time. It was realized after the development of a

“Building Automation System” at Omniabit s.r.l. This “Building Automation

System” is extensible, scalable and can be deployed not only in individual houses,

but also in industries such as Government Offices (for Video Conferences, for

instance) or Companies (for Camera Surveillance and lightning systems, for

 2

instance). Sometimes, the word “home” is used instead of “building”, it means

the devices which the built software applications control are the “home

automation” devices such as the Cameras, the TV, the Sound Systems, the

ProntoPhilips, etc.

The outcome artifacts of the development of this “Building Automation System”

include of a core server which directly controls the home automation devices, the

client applications used directly by the clients (customers), and a GUI Designer

which the users can use to design the client applications. In this case, “users” may

be the clients/customers who use the GUI Designer to design their own client

applications or the developers who develop client applications based on the

clients/customers’ requirements.

This writing starts with Chapter 1 (this chapter) which is an introduction to the

background problem and brief descriptions about the proposed solution.

Chapter 2 presents the requirement analysis of software systems in building

automation industry and proposes a methodology to develop such the systems

which satisfy the analyzed requirements. Chapter 3 presents some materials and

technologies in order for readers to understand and be able to experience their

own development. Chapter 4 explains the methodologies, reasoning about

choices of technologies being used, and how to apply the technologies and the

development architectures in development of the software systems. This chapter

can be used as guidance to readers to experience by their own the development

of extensible, distributed software systems, especially for building automation

industry. Chapter 5 presents some real implementations of some special parts in

development of the Building Automation System. Readers who are not interested

in detail coding implementation could skip this chapter. Chapter 6 presents the

results of the development methodologies and some further discussions about

noticing points. Chapter 7 presents conclusions of this writing. Chapter 8

 3

presents the future works or the directions which should be applied in this

development methodology.

 4

C h a p t e r 2

REQUIREMENT ANALYSIS AND PROPOSED SOLUTION

2.1 Requirement analysis

This part will present the requirement analysis of software systems in general and

in building automation industry specifically. The current urging challenges in

developments of software systems are the functionalities change over time, the

accessibility over the network, the varieties of client devices and their operating

platforms. To deal with these challenges the to-be-built systems should have

following requirements: functionality extensibility, distributed over the network,

supporting varieties in types of client applications (desktop based, web based,

mobile phone based systems, and other types of client applications for

embedded systems), and supporting multiple platforms (Windows, Mac OS,

iPhone, Palm Os, and devices with embedded operating systems, etc). These

requirements could be described as follows.

The first requirement is the Extensibility of the software systems; the critical

requirement of current software systems is the ability to extend its functionalities

dynamically without having to recompile the code of the systems. I.e., the systems

must face challenges such as discovering, activating and managing the lifetime of

the functionalities. Therefore, there is a requirement for an infrastructure that is

designed to include hooks and mechanisms for expanding/enhancing the system

with new capabilities without having to make major changes to the system

infrastructure, even if it has been deployed in the industry.

The second requirement of the current software systems is the requirement to be

Distributed Systems. Many software systems require the capability to be able to

communicate with each other over the network. For example, the user of the

 5

Building Automation System may be at work and would like to connect to

his/her security system at home via the Internet. The use of a distributed system

is beneficial for many further reasons. For instance, it may be more cost-efficient

to obtain the desired level of performance by using a cluster of several low-end

computers, in comparison with a single high-end computer [2]. A distributed

system can be more reliable than a non-distributed system, as there is no single

point of failure. Moreover, a distributed system may be easier to expand and

manage than a monolithic uni-processor system [3]. There are lots more

advantages including the ability to connect remote users with remote resources in

an open and scalable way. The system can be easily altered to accommodate

changes in the number of users, resources and computing entities.

The third requirement is to support the varieties in platforms of operating

systems and based programming language running the software systems. In many

software systems, there is a variety of clients such as Desktop based clients, Web

based clients, Mobile Phone based clients, etc. These clients’ interfaces should be

unified as closely as possible. For instance, in case of a Building Automation

System, the user may have a desktop installed in their house to control the

system, s/he may also have an iPhone and would like to run the client application

on it, s/he may also like to access to the security system at her house from the

internet when she is traveling, etc. And the clients’ interfaces should look alike for

the convenience of the users.

The fourth requirement is to support varieties in types of client devices with

different capacities such as different processing powers and memory capacities.

In this era of pervasive computing, there are many devices with their own

operating systems in the building automation industry. Such as computers with

Microsoft Windows, Mac OS, or Linux, mobile phones with Windows Mobile,

and other devices with their embedded OS such as ProntoPhilips. Therefore, the

 6

next requirement is the software systems must be able to accommodate such

varieties in the client platforms.

The fifth requirement is to support the varieties in client interfaces

combinations and functionalities. Different clients may need different

combination of the functionalities of the software system. Therefore, the system

must accommodate a combination of functionalities which meets the clients’

needs. For instance, one user of the Building Automation System may need an

application to control a security system and a heater; another user may need a

different client application to control the lightning system and a video conference

system, not the heater or security system, and so on. There should be an easy

way, with less programming requirements, which lets the users easily create their

own clients’ applications as they need.

Besides these mentioned requirements, there are, of course, many more quality-

of-service requirements such as security, ease of use, reliability, and so on.

2.2 Proposed solution with technologies and development methodologies

This part will present the development architectures and technologies, which

were studied at OMNIABIT, Milan, Italy. It is used to solve the mentioned

problems in developing software systems, especially for building automation

industry. I.e., this development methodology has been built after the real life

development of Building Automation System in OMNIABIT. The architectures

and technologies are depicted as in Figure 1 and could be briefly described as it is

divided into four main parts. Part I is the core server implementing main

functionalities of the system. Part II is the Web Service enabling the distributable

and multiple platforms of the clients (Web based, Desktop based, Mobile Phone

based client applications) communicating with the core sever over the network.

Part III the client applications/components are developed to be communication

 7

interfaces between users and the core server. Part IV is the GUI Designer used to

design the client applications using client components developed in Part III, this

enables the reusability and ease of client application developments. These parts

can be briefly described as follows.

Part I: The core server

This part the technology and architecture used should enable the functionalities

of the software systems to be extensible. Meaning the new functionalities can be

added to the system in the future without any major modification or having to

shutdown the currently deployed systems. The technological solution provided in

this writing is the System.AddIn [5], this enables building extensible application that

dynamically loads add-ins into it. It helps in solving challenges such as

discovering, activating, and managing the lifetime of the add-ins. For instance, the

Building Automation Software may first have add-ins built to control Lightning

(turn on, turn off), Camera Surveillance, etc. At a later time if a customer requests

further functionalities to control the other devices (Heater, or Television for

instance) the developers only need to develop the add-ins for these and copy

them into the add-in folder, the add-ins (functionalities) will be enabled

dynamically.

Part II: The Communication Channel

This part the technology and architecture used should enable the communication

between the client applications and the core servers of the software systems over

network. The technology used is the WCF (Windows Communication

Foundation) which enables building service-oriented applications that

communicate across the web and the enterprises. The client applications then are

extensible and decoupled from the server core. We could build Windows based

client applications, Web based client applications, Mobile based client

 8

applications as needed and they all could communicate with the single server core

via WCF. Therefore, the client applications can be distributed in the network.

Figure 1 Software Architecture to develop an
extensible, and distributed software system

 9

Part III: The client applications/components

This part, the technology and architecture used should enable the ease of

development of client applications which is able to communicate with the

communication channel over the network, and in many cases should be

asynchronous or duplex communication. The technologies used in this part are

the WPF (Windows Presentation Foundation) to build the Windows based clients

applications/components and the Silverlight to build Web based client

applications/components, and some further technologies for specific devices

such as CommandFusion for iPhone/iPod/iPad and ProntoScript for

ProntoPhilips, and so on. The client components are reused in the GUI Designer

developed in Part IV.

Part IV. The client GUI Designer and client simulators

This GUI Designer is required due to the variety of client applications for

different customers. One customer may have interests in composition of some

client components (developed in part III), the others may have interests in

different composition of some other client components. Furthermore, different

client may have different platforms. This designer, first, makes use of the basic

client components developed in part III, it enables the user to visually drag/drop

and wire these components together to meet his/her needs of what client

applications should be. This is a GUI Designer, meaning the components are

dragged, dropped and wired visually, with less user-programming-experience

requirement. This allows the easy and dynamic compositions of client

components for clients’ needs. Furthermore, the output comes out from this

GUI Designer is described in XML. One simulator is built for each platform (one

for Mac OS, one for Windows, one for iPhone, etc). These simulators are able to

read the XML descriptions of the applications created by GUI Designer in their

 10

designated platforms and realize the real client applications. This solves the

problem of having to build one project for each platform.

At the implementation point of view, the implementation pattern used in all the

parts of software development is the PRISM developed by the Microsoft patterns

& practices group (http://compositewpf.codeplex.com/). This helps design and

build flexible client applications using loosely coupled, independently evolvable

pieces that work together and are integrated into the overall application. This type

of application is known as a composite application. Furthermore, it has built in

infrastructure which is used as standard backbone of the application. Enabling

developers developing different parts in parallel, integrating together,

understanding each other code due to using the same “language” of

communication that developed by the PRISM.

As a summary, using these technologies together with the architecture and

implementation patterns depicted in Figure 1. The development of the software

system is flexible and parallel, the developments of the components are

decoupled. Interface, communication, and business logic are well defined and

separated. They are still unified and developers easily understand each other using

the “language” of PRISM. The software is extensible to meet the flexible changes

in functionalities of enterprises. It scales well for many platforms like Windows,

Mobile, etc and Interface requirements (by using GUI Designer and Simulator),

and is accessible (distributed) over the network (with the Web Service).

 11

C h a p t e r 3

LITERATURE STUDIES

This chapter will present the necessary materials about the technologies used in

order to understand and be able to apply the architectures in developing

extensible, distributed software systems.

3.1 Add-Ins Pipeline Architectures

This part will present the first technology used in the architecture for the

extensibility of the functionalities of the software systems, the System.AddIn

namespace in C#. The architecture for Managed Add-Ins is briefly described in [5]

which could be depicted as Figure 2.

Figure 2 Pipeline Architecture

An Add-In Communication Pipeline defines a series of abstractions that allow

hosts and add-ins to version independently and be completely unaware of how

the other side is built or how information is passed across isolation boundaries.

The host and add-in only ever depend on one component (the view) which itself

has no dependencies elsewhere on the system. This means the host and add-in

are completely unaware of each other and the contracts that are used to cross the

 12

boundary. Contract is the only thing that the two sides have in common. The

pipeline components are Views, Contract, and Adapters.

The Views’ components include the host and the add-in views. They are

assemblies that contain nothing but a series of abstract classes that represent host

and add-ins view of each other. These views assemblies take no dependencies on

other components in the system. This is the object model and the public surface

area a host would expose to its add-ins or vice-versa.

Next component is the Contract. Its assembly contains the non-versioning types

(contracts) that are loaded in both sides of the isolation boundary and define the

communication protocol over that boundary. These assemblies also take no

dependencies on other components. Neither the host nor the add-in ever

program directly against the contract and thus they often sacrifice a nice

programmable surface area in favor of a more efficient/stable protocol.

Another component is the Adapters. Its role is to convert to and from the views

and the contracts. It is in these adapters that you would put any code to adapt

between different versions of views and contracts. For detail documentation

about this technology you can read article “.NET Application Extensibility, Part

2” [6].

3.2 Windows Communication Foundation (WCF)

Next technology is the Windows Communication Foundation (WCF) that is used

to publish the functionalities built in previous step as network service endpoints.

WCF is described in details in article [7]. It is a framework for building service-

oriented applications. Using WCF, we can send data as asynchronous messages

from one network service endpoint to another. The network communication

 13

channel could be duplex communication for some types of client applications

which enable the server pushing data to the client applications as it is available.

A network service endpoint can be part of a continuously available service. A few

sample scenarios include: A secure service to process business transactions, a

service that supplies current data to others, such as traffic report or other

monitoring service, a Silverlight application to poll a service for latest data feeds,

etc. While creating such applications was possible prior to the existence of WCF,

WCF makes the development of endpoints easier than ever. In other words,

WCF is designed to offer manageable approach to creating Web services and web

service clients.

The WCF includes the following set of features. For more information see “WCF

Feature Details” [8].

• Service Orientation, WCF enables creating service oriented applications.

Service-oriented architecture (SOA) is the reliance on Web services to

send and receive data. SOA is described in [9]. The services have the

general advantage of being loosely-coupled instead of hard-coded from

one application to another.

• Interoperability, it implements industry standards for Web service

interoperability.

• Multiple Message Patterns, messages are exchanged in one of several

patterns. The most common pattern is the request/reply pattern, where

one endpoint requests data from second endpoint. The second endpoint

replies. There are other patterns such as a one-way message. A more

complex pattern is the duplex exchange pattern where two endpoints

establish a connection and send data back and forth.

 14

• Service Metadata, WCF supports publishing service metadata using

formats specified in industry standards. This metadata can be used to

automatically generate and configure client for accessing WCF services.

• Data Contracts, the easiest way to handle data is by creating classes that

represent a data entity with properties that belong to the data entity. Once

you have created the classes that represent data, your service

automatically generates the metadata that allows clients to comply with

the data types you have designed.

• Security feature, messages can be encrypted to protect privacy and you

can require users to authenticate themselves before being allowed to

receive messages.

• Multiple Transports and Encodings, messages can be sent on any of

several built-in transport protocols and encodings. These messages can be

encoded as text or using an optimized binary format.

• Reliable and Queued Messages, WCF supports reliable message exchange

using reliable sessions.

• Durable Messages, it is one that is never lost due to a disruption in the

communication. The messages in a durable message pattern are always

saved to a database. If a disruption occurs, the database allows you to

resume message exchange when the connection is restored.

• Other features such as Transactions, and Extensibility, WCF architecture

has a number of extensibility points. If extra capability is required, there

are a number of entry points that allow you to customize behavior of a

service.

 15

3.3 Windows Presentation Foundation (WPF)

Next technology is the Windows Presentation Foundation (WPF) which is used

to design the Desktop based client applications which are able to communicate

with the WCF Web Services established in previous step. WPF is described in

[10]. WPF is the next-generation presentation system for building Windows client

applications with visual user experiences. The core of WPF is a resolution-

independent and vector-based rendering engine that is built to take advantage of

modern graphics hardware. WPF extends the core with a comprehensive set of

application-development features that include Extensible Application Markup

Language (XAML), controls, data binding, layout, etc.

3.4 Silverlight

The details about Silverlight are described in “Top Silverlight Features” [12].

Silverlight is a powerful development platform for creating engaging, interactive

user experiences for Web, desktop, and mobile applications. Silverlight is built on

Microsoft’s industrial-strength application development tools and a platform that

promotes stability, scalability, reliability, and performance. It works through all

major browsers on Mac, Windows, and Linux client operating systems, mobile

devices such as Windows Phone 7, Nokia Series 60 and set top boxes. Silverlight

extends browser experiences to the desktop and devices with innovative tools,

servers and frameworks. Silverlight creates rich Web-based applications that

quickly integrate with your existing back-end systems. It enhances existing Web

and SharePoint sites by incrementally adding Silverlight components.

3.5 CommandFusion

Currently the iPhone/iPod/iPad devices are the preferable client devices on

which the customers would like to be able to run Building Automation Client

 16

Applications. Coding client applications for these devices may need developers to

learn to code Objective C in Mac OS or so. This would lead to some

development time and cost. However, CommandFusion

(http://www.commandfusion.com) helps the windows developers develop

Building Automation Applications in Windows OS. The concept behind

CommandFusion is its communication protocol [21].

The first important point of this concept is its message format. All messages in

the CommandFusion protocol take the form of [identifier]=[value][h03]. Each

message is delimited with the End of Message (EOM) of hex value of 03.

Another point is the way it divides and defines the Identifier types. The following

identifiers are valid within the protocol:

• Digital Joins ‐ d#

• Analog Joins ‐ a#

• Serial Joins ‐ s#

• Password Validation ‐ p

• Initialize ‐ i

• Orientation Mode Change – m

• Heartbeat Message – h

• Lists – l# (lowercase L)

A join is a type of signal which is sent or received among building automation

devices. Digital, Analog and Serial join identifiers must be combined with a join

 17

number (starting at 1). For example d12=0h03, where the join number is “12”,

the value of the signal is “0”.

The concept of CommandFusion is depicted in Figure 3, it provides users a GUI

Designer which has the primitive controls such as a button control, label control,

gauging control, text control, and so on, which can be bound to digital join,

analog join, or serial join. This GUI Designer lets user visually design the client

applications for iPhone/iPod/iPad client devices in Windows Operating System

environment.

Figure 3 Concept of CommandFusion

There is an infrastructure which enables behaviors of these controls. For instance,

a button is bound to a digital join number 12 with the value 1. When user clicks

the button the infrastructure will automatically create a command “d12 =1\x03”

 18

and send to the CommandFusion command handler server over the network. In

the other way, when the server sends to a client a command “d12=0\x03” the

infrastructure will parse and see the button bound to digital join number 12, has

value 0 (indicating a button is is in an inactive state for instance) ,and therefore,

set the button in the inactive state. This GUI Designer, the communication

protocol, and the infrastructure enable developers to develop the client

applications for building automation systems in Windows OS. In the

iPhone/iPod/iPad devices, there is an iViewer acts as a simulator which will load

the file created from GUI Designer and realize client applications. For further

details about CommandFusion please refer to [21].

3.6 ProntoPhilips

In Building Automation Industry, one client device which is often being used is

the ProntoPhilips (http://www.pronto.philips.com). Figure 4 is the Pronto

TSU9800 which is being used at Omniabit s.r.l. as a client device.

Figure 4 Pronto TSU9800 Device

 19

The ProntoPhilips is a device which is able to let developers develop and execute

client applications with ProntoScript programming language [22]. ProntoScript

allows one to add flexible 2-way communication and dynamic UI's to the Pronto

system, bringing an even higher level of home automation sophistication. It is

based on JavaScript, a popular and proven scripting language. Integrated into

ProntoEdit Professional, it unlocks the full power of the WiFi-enabled Prontos

and Extenders:

• JavaScript is a modern, very high level programming language, allowing

rapid development of rich end user applications

• The web offers plenty of references and solutions to general

programming challenges in JavaScript, more than any other language.

• Encapsulated into a single Pronto Activity (Device), that can be merged

into projects; the complexity of the code can be shielded completely from

the custom installer. Users just want to plug in a 2-way module for

controlling his selected equipment. A few standardized hidden pages with

instructions and parameters allow users to configure the module to

operate seamlessly within his specific system.

3.7 PRISM - Composite Application

The complete description of PRISM is described in “Composite Application

Guidance for WPF and Silverlight” [13]. It is a set of guidance designed to help

developers more easily manage the complexities they may face when building

enterprise-level Windows Presentation Foundation (WPF) client applications and

Rich Internet Applications with Silverlight. This will help developers design and

build flexible client applications using loosely coupled, independently evolvable

pieces that work together and are integrated into the overall application. The

 20

approach it use to solve these challenges is to partition the application into a

number of discrete, loosely coupled, semi-independent components that can then

be easily integrated together into an application to form a complete task.

Composite applications provide many benefits, including the follows:

• They allow modules to be individually developed, tested, and deployed by

different individuals or teams. The modules can be modified or extended

with new functionality more easily, thereby allowing the application to be

more easily extended and maintained.

• They provide a common main interface composed of interface

components contributed from various modules that interact in a loosely

coupled way. This reduces the coupling that arises from multiple

developers adding new functionality to the interface, enabling a common

appearance.

• They promote re-use and a clean separation of concerns between the

application's capabilities, such as logging and authentication, and business

functionality that is specific to applications.

• They help maintain a separation of roles by allowing different individuals

or sub-teams to focus on a specific task or piece of functionality

according to their focus or expertise. It provides a cleaner separation

between the user interface and the business logic of the application—the

interface designer can focus on creating a richer user experience.

Composite applications are highly suited to a range of client application scenarios.

For example, a composite application is ideal for creating a rich end-user

experience over a number of disparate back-end systems. Figure 5 shows an

example of this type of a composite application.

 21

Figure 5 An example of a composite system

3.8 Terminologies definitions

This part summarizes again some terminologies that frequently used in this

writing together with their intended meanings.

WCF (Widows Communication Foundation). It is a framework for building
service-oriented applications.

WPF (Windows Presentation Foundation). It is a graphical subsystem for
rendering user interfaces in Windows-based applications.

 22

Silverlight. It is a powerful development platform for creating engaging,
interactive user experiences for Web, desktop, and mobile applications when
online or offline.

Prism. It is formerly known as Composite Application Guidance for WPF and
Silverlight, designed to help you more easily build modular Windows Presentation
Foundation (WPF) and Silverlight client applications

CommandFusion. It is a software vendor who provides a GUI Designer to let
developers develop home automation software in Windows Operating Systems.

ProntoPhilips. It is a new class of programmable touchscreen remote controls
for intuitive operation.

Extensibility. It is the ability to enhance, extend, or replace pieces of the
software system without requiring you to redesign the system.

Add-in (also called Add-On, Extension, Plug-In, Snap-In). It is a component you
can add to a system to increase its capabilities.

Host. It is an application that supports extensibility.

Pipeline. It is the machinery that enables the host and add-in to communicate
over a version-resilient, secure protocol.

GUI Designer. It is software which lets the users visually design their client
applications.

Simulator. It is software which runs in client devices and realizes the client
applications based on XML description of the client applications.

 23

C h a p t e r 4

DEVELOPMENT METHODOLOGIES

This chapter will explain the methodologies in developing the extensible,

distributed Building Automation Systems. It will explain the steps of applying the

technologies and the architectures in developing the Building Automation System

at OMNIABIT, Milan, Italy. It will then show in each part of the architecture,

which technologies were applied with rational explanations of the choices of the

technologies together with how to apply them in solving the software system

development challenges. This chapter can be used as guidance to readers who

would like to experience the development of extensible and distributed software

systems, especially for building automation industry using the development

methodology proposed in this writing.

The development steps will be divided as the architecture depicted in Figure 1.

We start with development of the core server component, then the development

of the communication channel, the development of the client

applications/components, and the development of the GUI Designer and the

simulators.

4.1 Development of the core server component

This part will first present the challenge in developing the core server (core

functionalities of the to-be-built system) of the software systems. Then it will

present the reasoning about technologies used in the development of the core

server together with the steps of how to apply the technologies in developing it

for the Building Automation System as a real life experiment of the architecture.

 24

The challenge in this part that we need to overcome is the ability to extend the

functionalities of the software systems. The functionalities may need to be added

or modified over time due to business requirements change, or due to new

devices, new technologies come to life. For instance, in case of the Building

Automation System, the developers can make the modules to control, let’s say, a

Lighting system, a Camera surveillance system, a Security system, a Heater, or

some other popular devices that the developers can think of. However, in this era

of pervasive computing, there are many devices in Building Automation Industry

that the developers can’t think of and those may be needed to be controlled in

the future.

In addition, the potential customers of the Bilding Automation System are

unknown. They may have different needs in controlling devices. For instance,

some may only need to control a lighting system and a heater system. Other may

only need to control the camera surveillance system and not the others. Even the

developers could make a system which is able to control all the types of devices

(in many cases, developers cannot) but it may not be efficient because of the

differences in the needs of customers. Therefore, the functionality should be

modularized and could be added, removed, or modified easily without affecting

the other functionalities.

The solution architecture of this core server is depicted in Figure 6. One

functionality (one device to be controlled, for instance) will be implemented by

one add-in. The developers will first develop a set of specific add-ins in order to

control the popular devices in the current markets such as a lighting control add-

in, a heater control add-in, a camera surveillance control add-in, etc. Once a client

comes with a new device or new requirements, the add-ins will be developed and

put into the “add-ins” folder and the functionalities for the requirements will be

enabled in the system.

 25

Figure 6 Core Server Architecture of the Building
Automation System

In the implementation point of view, it uses the System.AddIn framework in C#.

This framework solves the problem well. It automatically loads, activates, and

manages life time of the add-ins. In another case, when the customer wants to

modify the behavior of a controlling system the add-in is easily identified,

isolated, and modified without affecting the other add-ins. Even, when a client

would like to remove a device control when it is not needed the add-in is just

simply removed from the “add-ins” folder, to increase the performance for

instance.

Another reason for choosing the C# System.AddIn framework to implement this

server core is that at the developers’ point of view, there are several tools and

 26

samples [14] which make the development a lot easier. The noticing tool that we

have used in implementing the add-in feature is the Pipeline builder tool (which

can be downloaded from http://clraddins.codeplex.com). Using this tool, the

developers only need to implement some relatively simple programming

interfaces (the add-in view) and putting some annotation attributes (saying this

module is an add-in, and specifying add-in name, etc.,) in order for the

System.AddIn framework know the module is an add-in. It then will automatically

load, activate, and manage the life time of the add-in without developers having

to know how to code the tasks themselves.

With this tool, the code for enabling the add-in behavior (discovering, loading,

and activating) is done for developers and is managed code. In other words,

Pipeline builder is designed to offer manageable approach to creating expandable

applications. Developers only need to concentrate on their own business logic

which is how to control a device. Moreover, the developers can be divided into

teams which develop different add-ins in parallel at a time and at the later time

can still work together seamlessly.

The more difficult part in the real implementation of this architecture is the

design of the contract (explained in Chapter 3). The contract is a programming

interface that both the add-in and the host must implement in order for the host to

be able to activate the add-in. And the contract must be a stable programming

interface which means its set of members and methods must be fixed. However,

as mentioned, there are many types of devices with many different functionalities

leading to many different possible functions in each add-in and many are

unknown in advance. The contract must be as generic as possible and should be in

a form which is able to express all the possible functions in add-ins. Therefore,

the contract will expose one generic method called “Execute”. The method is of

the form “Execute (int id, string methodName, Object [] arguments)”. The id is the id of

 27

the add-in module, the methodName is the name of the method which is being

called, and the arguments is a generic array which contains the set of arguments

passing as the parameters of the calling methodName.

The host is in charged of parsing the Execute method arguments to know which

add-in is being called to load/activate the corresponding add-in (if it’s not already

done) and call to the corresponding method passing the arguments. Having a

generic method to express all the methods is a very important design decision

since it solves all the problems of the unknown number of functions in unknown

add-ins. Furthermore, the programming interface in communication channel also

needs to have a stable interface to be published to the client applications. This

will be further explained in next part when we develop the communication

channel of the system.

As a short summary, the development the core server (implementing core

functionalities) of the software applications for building automation industry has

many unknown information challenge. The add-in architectures together with its

tools and samples help the development of the extensible core server possible.

Furthermore, the design decision of making a generic method “Execute(int id,

string methodName, Object[] arguments)” as a contract between the host module and all

the add-ins makes it possible for the host to accommodate all types of methods in

different add-ins. In addition, this design decision also helps in the next step

when we develop the communication channel which needs a stable and generic

programming interface to be exposed to the client applications over the network.

4.2 Development of the communication channel (Web Service) component

After having the core server which implements the functionalities of the Building

Automation System as extensible to scale for the varieties of customers’ needs,

the next challenge is to make the system (its functionalities) as easily accessible

 28

and extensible over the network as possible i.e., to scale over the network. This

means to be able to expose the server core functionalities over the network in an

end point with a stable view (programming interface) which the client

applications are able to communicate with via some network protocols (TCP,

HTTP, and so on). The view (programming interface) given to the end-users

should be a unified view (stable programming interface) and the communication

over the network should be secured and trustable.

The client programs need no more to discover where to find the server for the

relevant functionality. The client programs need no more to interact with each

functionality server individually (if they are located in several servers). This part

will explain about why we should use WCF to implement the communication

channel among the core server and the client applications. Then it will present the

detail implementation architectures of the WCF Web Service of the Building

Automation System. Specifically, the Communication Manager will be

emphasized. This part also mentions one important aspect of any communication

service, which is the Security technologies applied in order to secure the

communication between client applications and the WCF Web Service.

There are several ways to enable a application to be accessible over the internet

such as Middleware, Enterprise Application Integration (EAI) [15, 16, 17 and 18]

and Web Services. Middleware provides the programmer with functionalities

which, otherwise, should be built anew each time needed. It is a large software

infrastructure required in order to create these programming abstractions such as

RPC (Remote Procedure Call) based systems, TP Monitors (Transaction

Processing Monitors), Object Brokers, Message Based Systems (asynchronous).

Enterprise Application Integration (EAI) extends the middleware concept from

new application logics creation to complex application integration. It mainly uses

 29

asynchronous communications such as message-broker, publish/subscribe

paradigm, workflow management systems, etc.

The Web service could be a procedure, a method or an object provided with a

stable and public interface which can be invoked by clients. It is a way to expose

functionalities of an information system making them available through standard

web technologies. It is a software application identified by a URI (Uniform

Resource Identifier). Its interfaces and connections can be defined, described, and

discovered by means of XML components. It supports direct interactions with

other agents by means of XML messages exchanged via internet protocols. The

web services are used as sophisticated wrapper in a tier above conventional

middleware services. Web Service is the reincarnation of traditional EAI

solutions. In this implementation of Building Automation System we are using

WCF (Window Communication Foundation) to build web service as its

communication channel.

WCF is a framework which is compatible with the technologies used in

developing core server functionalities (System.AddIn in the C# 3.5). It is a part of

the Microsoft .NET Framework that provides a unified programming model for

rapidly building service-oriented applications which communicate across the web

and the enterprises. The WCF Web Services also provides set of ready to use

development tools, embedded with Visual Studio 2008, which ease the

development of the Web Services in software systems. In other words, WCF is

designed to offer manageable approach to creating Web services and web service

clients.

Communication between the WCF Web Service and its client applications is via

XML messages. The transportation protocol could be HTTP, TCP, and others.

The communication protocol via HTTP is very common for computer based

client applications. Furthermore, for many other types of client devices such as

 30

iPhone/iPod/iPad, or the Pronto Phillips, Camera, etc., are equipped with

processors which are able to communicate with other devices via TCP.

Therefore, this solution for building the communication channel using WCF Web

Service would satisfy the needs for network communication for all types of client

devices.

The biggest challenge in making the WCF Web Service as flexible yet stable to be

published to the client applications is to be able to have one generic interface

which can expose all the possible methods coming from all add-ins for to-be-

controlled devices. However, in our add-in architecture the methods are different

and changing over time. For instance, one add-in, say for lightning, may have the

“dim_up”, “dim_down” methods, another add-in, say for Sound System, may have

“volume_up”, “volume_down” methods. Even if the method names are foreseen, it

will be a big challenge to expose all the methods for all the add-ins as

programming interface for this communication endpoint (web service). In fact,

the developers will never know the unforeseen method names for unforeseen

add-ins and unforeseen devices from unforeseen customers. These many levels of

unforeseen information that make the WCF Web Service seem to be

unreasonable to provide a stable interface to the publics since the methods are

not stable.

As mentioned in the step developing the core server of the system (Part 4.1), the

solution to this problem is that instead of exposing all the methods, the WCF

Web Service exposes only one generic method which is Execute. The Execute

method is of the form Execute(int id, string methodName, Object[] arguments). The first

parameter is the id which is the id of the add-in in which the client application

would like to execute the method. The method in the add-in is specified by the

next parameter as the string, the methodName. The third parameter is also another

“trick” which helps to solve another problem of the method varieties in number

 31

of arguments. One method may have one parameter, another may have two,

some may not have any, etc. Therefore, a generic array of generic Object type

could express all of these problems. I.e., if the method has only one parameter,

the array should only have one element, if it has two the array should have two,

and so on. Another noticing point is the Object generic type, the Communication

Manager will just pass the arguments to the method, the method will itself know

what types of parameters it is expecting and cast the generic Object type to the

types it is expecting.

Figure 7 Design Architecture of the
Communication Channel

Figure 7 depicts the design architecture of the WCF Web Service. The main

component of this architecture is the Communication Manager which has the

responsibility to direct the command message coming from client applications to

corresponding add-in based on the “id” in its message. Furthermore, it has also

 32

another important method which is a callback method, for the add-in to be called

when there is some event happened in the add-in. This callback method then will

forward the data sent by client devices to the WCF and finally to the client

applications who subscribed for the event.

The WCF interface is simply exposing the methods of this Communication

Manager which is stable and satisfies the needs from all client applications and

be able to execute all the unforeseen methods from unforeseen add-ins. And

therefore, the interface published to the public is stable.

Another important aspect in developing software systems which are distributed

over the Network is about the Security of the communication channel. The

security used in this communication channel between the WCF Web Service and

the client applications is made at two levels: the authentication and the

authenticity. The authentication is implemented by the user credential

information such as the username and password. The Authenticity is made by

using the Certifications. Since the service is published over the network, there

may be many unauthorized devices who would like to access the network. The

certification will only authorize the devices installed the client applications which

have the certificates installed to be able to access to the communication channel.

Many client devices for Building Automation Systems are supporting Certificate

installation such as the Computers (of course), PDA(s), Smart Phone(s), etc. For

some devices which do not support certification, the simpler version of security

will be applied such as the username, password simple authentication method.

As a short summary, the development of the Communication channel part using

WCF together with the implementation design architecture depicted in Figure 7

allows the to-be-built system to expose all the possible methods developed in all

possible device add-ins a stable public programming interface to client

 33

applications over the network. This communication channel has two main

methods. The first one is the generic method called “Execute” which processes

commands coming from the client applications. The second one is the Callback

method which is used to receive messages coming from add-ins and forward to

the client applications. For security (authentication and authenticity) of the

communication channel, the certificates and user credentials (username and

password) are used.

4.3 Development of the client components

After having the Web Service developed with the external architecture which

eases the client application accessibility to the servers with possibility to discover,

reference, and invoke the services provided by the WCF Web Service. This part

will present the rational reasons for choosing technologies to develop client

applications and the detail implementation architectures of the client applications

using the chosen technologies. This part will start with the explanation about the

varieties of types of client applications which make the case of “no magic bullet”

as there is no one complete solution in development of client applications. It will

next explain the design architectures in development of client applications using

WPF and Silverlight. It then explains about the design architectures and

development of client applications for other devices (such as ProntoPhilips,

iPhones, iPod, etc.,) using other technologies (ProntoScript, CommandFusion,

etc).

As depicted in Figure 8, in this era of pervasive computing, there are many

devices in building automation industry with different processing powers and

different memories capabilities (Cell-phones, PDA(s), Portable Devices,

Computers, and so on). They also have different operating environments. In

addition, for different customers there are different client applications’

requirements. Therefore, the development of the client applications seems to be a

 34

difficult step at the design aspect. A solution should be as compatible with as

many devices, operating environments, and as flexible in building the client

applications as possible.

Figure 8 Varieties of Client Devices in Client
Applications Development

There is no “magic bullet” as there is no “one complete solution” could solve all

these problems. For instance, one requirement is about the duplex asynchronous

communication between the Web Services with the client applications. One

example of such case is the Security System from a House would like to push an

alarm signal to a web-client which the user is browsing in a browser. The server

cannot push data to the normal web-client due to the security reason.

 35

If WPF or Silverlight is used to develop the client applications, the WCF Web

Service is able to push data to the WPF and the Silverlight client applications

(with little modification and code for Silverlight). In case of the WPF, a WPF

application is a Desktop based application and a user needs to install it and

executes it before having it running in their devices. That means the client trusts

this client application and therefore the WCF Web Service is able to initialize a

communication channel to this client and push data to it. In case of Silverlight,

Silverlight is actually also an application which is running in the web browser. It is

as Flash application but it has a more powerful feature which is instead of using

Scripting programming language as its code-behind, Silverlight has C# as its

programming language for it code-behind. Microsoft Silverlight 4 Beta unveiled at

PDC 2009 enables Silverlight clients to have a duplex communication with a

Windows Communication Foundation (WCF) service using the net.tcp protocol

[19].

However, the WCF Web Services cannot push data to a normal web application

such as a normal ASP Web Application. The reason for a server cannot push data

to a web browser is due to security concern of client devices running the

browsers. In case, a normal web application (such as ASP web application) would

like to receive update data coming from a server, it needs to implement a polling

implementation to poll the server every period of time to receive the update

information. The polling is relatively complex to be implemented and managed.

Moreover, the receiving data coming from polling may not be up to date (since

the data is polled every period of time).

Another reason for using WPF and Silverlight for developing client applications
is their projects’ types, if developed in Visual Studio 2008, has wizards allows user
discover, reference, and create an reference instance to the web service with only
few clicks. They make the development of client applications easier than ever. In
other words, they are designed to offer manageable approach to creating web
service clients. With the way of designing the core application server as described

 36

in Part 4.2, if the client application has a reference to the service provided by the
WCF Web Service and it would like to send a command to the core server, it only
makes a call to the server with the corresponding message. The core server once
gets the command will know how to parse the command to get information
about which command and for what add-in device it should raise an event to ask
the add-in device to execute the command. With these reasons, the WPF
Framework is used to develop Desktop based client applications and the
Silverlight is used to develop Web based client applications for computers as
client devices.

In Figure 9, the main programming interface for the WPF and Silverlight

application is the IWPF interface. It contains two methods, the first one is of form

“update(string)”, this method lets the application update the interface to reflect

changes sent from the WCF communication server. Another member is the event

OnCommandRequest(EventArgs) an event which is raised when a client interface

would like to send a command to the WCF Communication server.

Figure 9 Client Design using WPF and Silverlight
Technologies

As depicted in Figure 8 the development of the client applications, besides the

Desktop based applications and the Web based applications, there are many other

 37

devices with different capabilities. The first client platform besides the other

mentioned two (WPF and Silverlight) is the Windows Mobile OS which runs on

many Mobile devices. As the time of writing this document, there is one potential

solution for this which is Microsoft promises to support Silverlight in its

Windows Mobile OS in the near future. Therefore, if there is no rush from some

specific clients the solution for client applications for devices running Windows

Mobile OS could wait till the Silverlight is supported in these operating systems.

The next device type which, currently, many customers are requesting to be

supported as device which is able to run Building Automation System client

applications is the iPhone/iPod/iPad devices type. Programming for

iPhone/iPod/iPad devices normally requires working with Objective C

programming in Mac OS. This technologically means that there should be

another team which is expert at Objective C or a team ready to learn to code

Objective C in Mac OS and some costs at buying Mac Computers and Mac

OS(s). Fortunately, there is a program called CommandFusion [20] which enables

the developers of the building automation systems to design client applications in

Windows OS(s) and the learning barrier is relatively small.

The concept of the CommandFusion for developing building automation systems

is that it divides commands or communication messages between a client device

and a server into several types as followings:

• Digital join – its value is either 1 or 0. For instance, 1 means on and 0

means off.

• Analog join – its value is normally range from 1 to 65355. For instance,

this value may be used to describe the light intensity or the volume level

of a sound system, etc.

 38

• Serial join – its value is normally a string message. For instance, this could

be used to send a message saying the title of a song playing in a sound

system, etc.

• There are many more types of joins (please refer to iViewer Developers’

Manual [21] for details list of types and their meaning).

Moreover, it has a communication protocol which could be shortly described as

follows (please refer to iViewer Developers’ Manuel [21] for further details about

this communication protocol). Corresponding to the mentioned types of joins,

there are corresponding message types for communication such as a digital join

message which is of the form “d#=value\x03”, an analog message which is of the

form “a#=value\x03”, and serial join message which is of the form

“s#=value\x03”. In which, the “#” means the number of the join defined by the

developer (for instance 1 for button number 1 and 2 for label 2, etc), value is the

value of the join that the command would like to send (0, 1 for digital join for

instance). And “\x03” is the message delimiter, which is used to identify end of

message.

The described definitions of join types, and the communication protocol for

message exchanging are the concepts to build the infrastructure of

CommandFusion. With this infrastructure, CommandFusion provides developers

with a GUI Designer and a simulator called “iViewer”. The GUI Designer is a

Windows application which lets users specify the client application interfaces with

primitive controls such as button, panel, label, etc., and bind them to digital join,

analog join, serial join, etc., correspondingly. This GUI Designer is only a tool for

the Windows Developers to develop the interface and the commands of the

client applications. In other words, it is used to describe the client interfaces and

the client behaviors. The result is a configuration file which is not the real

application going to run in iPhone/iPod/iPad devices. The real interfaces and

 39

behaviors of the client applications are realized by the iViewer application which

runs in the iPhone/iPod/iPad devices. iViewer acts as a simulator which parses

the configuration files and builds the real client.

This solves well the problems of building the client applications for the

iPhone/iPod/iPad devices. One problem left is that the CommandFusion uses its

own communication protocol as briefly described above which is different from

that of the Core Server and the WCF Web Services which have been built to

handle the commands’ messages sent from client applications. However, the two

protocols are pretty much similar, and it is relatively simple to build an adapter

which translates messages coming from the iViewer client applications to

messages which are understandable by the WCF Web Services and the Core

Server application built.

The next famous and important client device in the area of the current building

automation industry is the ProntoPhilips (http://www.pronto.philips.com) device

which supports the ProntoScript programming language. The ProntoScript is

built based on the JavaScript standards. Therefore, making client applications for

ProntoPhilips is actually developing them using JavaScript. The main idea in

developing client applications for this type of device is to reuse as much as

possible the development artifacts we have got so far. Moreover, the client

interfaces should be unified with those for other devices (such as the interfaces of

applications developed in CommandFusion for the iPhone/iPod/iPad devices).

The programming or communication protocol should be the same between client

applications for this device type and other developed client applications for other

device types. Specifically, the communication from client applications developed

for ProntoPhilips device could communicate well with severs developed for

CommandFusion applications. Therefore, the communication protocol should be

the same. Meaning it also divides it signal types into list of join types such as

 40

digital joins, analog joins, serial joins. The message format is also the same, of the

form “joinType#=value\X03”. For detail information, please refer to [21] or

previous part about the message format and the communication protocol

between CommandFusion client applications and its server.

The solution for this problem is a ProntoScript infrastructure which builds the

controls and commands as used in the CommandFusion for the ProntoPhilips

devices. In CommandFusion the GUI Designer provides the infrastructure which

is built in their “iViewer”. It decides the behavior of its controls (sometimes called

widgets in CommandFusion). For instance, a button can be bound with a digital

join and a join number. When a button is bound with a join number (10 for

example), and it has a value (1 for example) CommandFusion has an

infrastructure to automatically build and send a command “d10=1\x03” to the

CommandFusion command handler server when the button is clicked. In the

other way, when a message is received from the server such as “d9=0\x03”, the

infrastructure will parse the message and know this message is for widget bound

to digital join number 9, and the value is 0 (indicating the button should be in an

inactive state for instance), then this infrastructure sets the button to inactive

state. Similarly the infrastructure builds the behaviors for the other types of

controls (widgets). The aim of this ProntoScript infrastructure is to build a

ProntoScript (JavaScript) library which implements ProntoScript controls with

behaviors as widgets in CommandFusion [20].

Figure 10 depicts the architecture of the implemented infrastructure (as a

ProntoScript library). It has a TCPConnection component which is used to

send/receive the commands to/from the Command Processing Server

(CommandFusion command processing server, in this case). It builds the control

classes for widgets (button, panel, gauging, etc). For each type of widgets, there is

a MessageProcessor. The appearance of a widget depends on its MessageProcessor.

 41

When a message comes from TCPConnection, it is parsed by the MessageProcessor.

This will pass the message to corresponding MessageProcessorType (button message

processor, panel message processor, etc) based on the header of the message (d1

for button 1 or a1 gauging 1 for instance).

The widget message processor (MessageProcessorType) will parse the value in the

message and decide the appearance of the widget. One example of the flow is: a

message of form “d10=1\x03” comes to the TCPConnection. The message

processor will process this and know that its header is “d10” which is a digital join

and should be processed by the DigitalJoinMessageProcessor. The

DigitalJoinMessageProcessor processes the message and see the value is “1”. This

indicates the button should be in the “active state” and therefore sets the button in

“active state”. Similarly the behaviors are built for other widgets types.

For the way of communication coming from the client widget to the

CommandFusion command handler server, when a command is activated, its

content (value and join header) is forwarded to the command maker. Based on

these values, the command maker makes a command and uses the TCPConnection

to send the command to the server. For instance, a button which is bound to

digital join 10 with value 1, when it is clicked, its values (d-digital join, 10-join

number, 1-value) are passed to the command maker, then it will make a command

of form “d10=1\x03” and then use the TCPConnection to send the command to

Command Handler. The command handler knows the digital join number 10 is

used to switch the light for instance, and therefore, switch the light on (as 1

indicates on status).

 42

Figure 10 Architecture implementing ProntoScript
Widgets.

Using this infrastructure, the programmers can easily develop ProntoScript client

applications with less coding requirements since the behaviors of the widgets are

already implemented by the infrastructure. Moreover, the developers can develop

client applications for ProntoPhilips as the way they design client applications for

 43

CommandFusion. This leads to ease and rapid client applications’ development.

Furthermore, client applications’ behaviors and interfaces are unified with what

appears in “iViewer” client applications for iPhone/iPod/iPad devices. These

unifications lead to higher usability.

As a short summary, there is no “magic bullet” or no single-complete-solution to

build a generic client application for all types of client devices in building

automation industry. They have different processing powers/memories

capacities, different operating systems and different programming bases. So the

aim is to maximize the reusability of the artifacts made from one client type in

others. In addition, the interfaces and the behaviors for different types of client

devices should be as unified as possible.

In this implementation, WPF is used to build desktop based client applications;

Silverlight is used to build web based client applications for Computers used as

client devices. Silverlight is also used to build client applications for some client

devices running Windows Mobile OS which supports Silverlight client

applications. For iPhone/iPod/iPad devices, CommandFusion is used. For

ProntoPhilips device, a library is built in ProntoScript which simulates the

infrastructure of CommandFusion. This library allows developers develop client

applications for ProntoPhilips as developing for CommandFusion. Furthermore,

the client applications for the two types have the unified interfaces and behaviors.

4.4 Development of the GUI Designer and Simulators’ components

This part will present the challenges which are the varieties in client operating

systems with different capabilities and different client interface requirements.

Then it will provide a solution which is a GUI Designer and explain how

providing a GUI Designer would help solving the problem of varieties in client

needs in interface requirements. Next it will explain why and how having GUI

 44

Designer output as an XML configuration file to be loaded/executed by

simulators will solve the requirements in multiple programming platforms and

operating systems.

Previous part (Part 4.3) developed some main client applications for popular

types of devices and popular known types of users. It also described the

development of the client applications which mentioned times the varieties of the

different needs in client application interface requirements as unknown

information. These problems could be mainly categorized into two types:

• The first is the unknown information about what type of user needs in

client applications. For instance, one customer may need to have a

camera surveillance system together with a lightning system in their client

applications; another may need a camera surveillance system together

with a heater control system and a sound control system, not a lightning

system (for some reason). It is nearly impossible, or not efficient to have

one single client interface program which satisfies all these combination

of needs.

• The second is that we can’t know what types of client devices with what

types of operating systems and basing on what types of programming

languages which are going to run the client applications. For instance, one

customer may have a computer which is running Windows OS, another

may like to run their client applications in an iPhone/iPod/iPad device,

some may want to run in Windows Mobile, some other may use

ProntoPhilips, etc.

The first problem can be solved by providing users a Client GUI Designer which

enables the users (customers or developers) with little programming experiences

to build applications by their own. The interface components are built in previous

 45

step (Part 4.3), they can be primitive controls (such as button, label, and so on)

or custom defined controls (such as set of controls for lightning control system

and so on). The GUI Designer will let the users visually design (drag and drop)

the interface components and wire them together to create their own needs of

client applications.

The second problem of varieties in client devices and their platforms is solved as

each client application produced by the GUI Designer will be in a configuration

file which is in XML format. XML format is generic and common for all types of

programming languages in all types of operating systems (in building automation

industry) because they all can read and parse XML file for information. For each

type of devices or operating systems, there is one simulator developed which will

be able to parse the common XML configuration file and builds the interface and

behaviors of the client applications as defined in the XML file.

Figure 11 Generic Design Architecture of GUI
Designer

Figure 11 depicts the generic design architecture of the development of the GUI

Designer implementation. In this implementation, the common interface

components are identified (and mostly were built in previous part, Part 4.3).

 46

These common interface components could be primitive controls such as a

button, a panel, a label, etc or a set of user defined, related set of controls such as

a set of controls for a dimmer including of two buttons “dim-up” and “dim-down”

and so on. The developers need to analyze the client applications to see the

reusability of the interface components to create them. Next, the GUI Designer

is a graphical interface which allows the developers to drag and drop interface

components into the designer, arrange them, and wire them together as the user

needs. Finally, the result is actually a configuration file in XML output which

describes the interface components, their values, and their behaviors in XML

format. For each type of platforms for client devices there is one simulator built.

This simulator will read the XML Configuration file and create the interface with

behaviors for client applications for its own platform correspondingly.

Figure 12 Application of GUI Designer
Architecture in Building Automation System

Figure 12 depicts the application of the architecture described in this part in

implementing Building Automation System. The interface components are ELK

Interface component, Camera Surveillance interface component, and so on. They

are built in client development part, Part 4.3. Several simulators are developed

 47

for types of devices and their operating systems such as Silverlight simulator,

WPF Simulator and so on.

As a short summary, applying this architecture in developing client applications

overcomes the varieties in the needs of client interfaces by providing a simple

GUI Designer which lets users create client applications by visually combining

the common interface components with less programming experience

requirements. Its XML Output and Simulators overcome problem of having to

create many applications for many platforms.

 48

C h a p t e r 5

IMPLEMENTATIONS

This chapter will present some technical descriptions of the implementations of

the Building Automation System at Omniabit.s.r.l. The readers who are not

interested in technical details could skip this chapter. My main job at Omniabit.

s.r.l is not coding the real applications but more about researching what system

architectures, what technologies (programming languages, frameworks, and

libraries) should be used in implementation of each part of the specified Building

Automation System. Based on the studying, I will only code the samples which I

will present and discuss with my Supervisor Mr. Manuel Elia and other

developers about how to use them. Specifically, I code one ELK add-in for the

core server, one ProntoScript library for the client applications run in

ProntoPhilips device and the GUI Designer.

5.1 Implementation of core functionalities server

This core functionalities server is implemented using System.Addin framework in C#

programming language. The pipeline is in charge of discovering, loading and

activating its add-ins. It is implemented using the pipeline builder [14] which is

made by Microsoft. My job in this part is to implement a sample add-in to control

the ELK M1 security system [23]. The M1 Gold offers a rock solid security

foundation with the most imaginative automation functionality available. Key

features include the versatile keypad, flash memory firmware, fast PC

programming, and ease of installation. It offers the flexibility to integrate with

industry standard systems and components for easy upgrades and system

expansion. This ELK add-in is implemented in C#. It includes the following

functions.

 49

RequestAllLogs() function. It has no parameters and is used to request all the

logged data which were logged in the ELK Device. According to the ELK

Protocol [24], the ELK device is able to record 511 lines of log which is indexed

from 1 to 511. If a client program calls to this function the entire log file will be

returned.

RequestPagedLog(int pageIndex, int pageSize) function. This function is

used to request for specific number of log lines (pageSize) starting from a

specific index (pageIndex) instead of entire number of logs.

• pageSize is the number of log line per page that the client application

would like to display (for instance 10 means every page there are 10 lines

of log).

• pageIndex is the starting index of the log

RequestPageCount(int pageSize) function. This function is used to request

number of pages of log based on the pageSize. For instance if the total number of

log lines are 500 and the pageSize is 10, this function will return 5 as number of

log pages. This is used to display to the client applications the available log pages

that the user could view.

• pageSize is the number of lines of log for a single page.

RequestStatus() function. This function is used to request the current status of

the ELK Device. The status could be arm, disarm, or alarm. For specific

descriptions of what is the meaning of each status please refer to the ELK

Protocol [24].

 50

RequestArmStatus(int area) function. This function is used to request the arm

status in specific area. The arm status could be a0 for disarmed, a1 for armed to

away, etc.

• area is the id of the area that caller would like to ask for the arming

status.

RequestReadyStatus(int area) function. This function is used to request the

ready status in specific area. The ready status could be ready to arm or not

ready to arm, etc.

• area is the id of the area that caller would like to ask for the ready status.

RequestAlarmStatus(int area) function. This function is used to request the

alarm status in specific area. The alarm status could be fire alarm or medical

alarm, etc.

• area is the id of the area that user would like to ask for the alarm status.

RequestArmStatusMessage(int area) function. This function is used to

request for arm status message (“disarmed”, “armed to away”, etc instead of

their id as “a0”, “a1”, and so on).

• area is the area that the caller would like to ask for arm message

Disarm(string userCode, string area) function. This function is used to disarm

the ELK system.

• userCode is the four or six characters of the user code.

• area is the area that the user would like to disarm.

 51

The next functions are ArmedAway, ArmedStay, ArmedStayInstant,

ArmedToNight, ArmedToNightInstant, ArmedToVacation,

ArmStepToNextAwayMode, and ArmStepToNextStayMode functions.

They all have (string userCode, string area) as their parameters. These

functions are used to activate the Armed Away, Armed Stay, Armed Stay Instant,

Armed To Night, Armed To Night Instant, Armed To Vacation, Armed Step To

Next Away, Armed Step To Next Stay Mode correspondingly for the specific

area of the ELK system.

• userCode is the four or six characters of the user code.

• area is the area that the user would like to disarm.

For summary of these functions, their descriptions and their parameters please

refer to Appendix A. After this add-in is implemented and added to the add-in

folders. The core server has the functionalities used to control the ELK System.

Other add-ins of the Building Automation System are developed by other

developers using this add-in as their sample add-in.

5.2 Implementation of client applications

The client applications are implemented in several programming languages such

as WPF, Silverlight, CommandFusion, and ProntoScript. The programming

languages such as WPF and Silverlight are familiar with the developers at

Omniabit s.r.l.. For iPhone/iPad/iPod devices, the CommandFusion GUI

Designer allows users with less programming requirements visually design the

client applications. Therefore, the developers at Omniabit s.r.l do not have much

problem developing client applications using these programming languages and

tools. However, developing client applications for ProntoPhillips devices requires

developers to study to code with ProntoScript. To reduce the development

 52

barrier, I developed two ProntoScript libraries which let the developers easily

create the client applications for ProntoPhillips with less ProntoScript

programming requirements.

The first library is the com.omniabit.PageLibrary. It is called a page library

because it is going to be loaded in every page of the client applications run in

ProntoPhilips devices. This library has one TCPSocket named socket which is

used to send and receive message to/from the core functionalities server. It has

the onData handler which is used to parse every message comes to the

ProntoPhilips device running the library. This onData handler will parse message

as analog join, digital join, serial join, and heartbeat join with regular expressions

“^a”, “^d”, “^s”, “^h”, correspondingly and bind the value to widget which is

bound to the join.

This library also provides a class called CFButton (CommandFusion Button).

This class is used to enable a primitive button to behave as button in

CommandFusion with properties such as Simulate Feedback, SyncState, on press

value, on release value, and so on (for the complete list of properties and their

meanings please refer to [21]). This CFButton class has a function called

btn_initialize(ipbutton, simulatefeedback, syncstates, value, state,

releaseValue). This function is used to set the properties for the button.

• ipbutton is the reference to the button that we would like to set the

property values

• simulatefeedback if is set to true, the button will simulate feedback

(toggles its state as pressed or released without waiting for feedbacks

from the server), false otherwise.

 53

• syncstates if is set to true, the button will track the feedbacks from the

server for its state and toggle its state based on the value from the

feedbacks, false otherwise.

• value is the value that should be sent to the server when the button is

pressed (could be 0 or 1 for digital join bound to this button).

• state is the state of the button, 1 means it is in normal state (released

state) and 0 means it is in pressed state.

• releaseValue, if not null, is the value to be sent to the server when the

button is released.

This class also provides two more methods which is the onPressHandler and

onReleaseHandler. They are used to send the value and releaseValue to the

server when the button is pressed or released correspondingly.

The second library is the com.omniabit.CVS. This library has a Base64 object.

This object is used to encode the user name and password the Authentication to

the camera server.

This library provides one main function which is getImage(cam_w_s, url,

username, password). This function gets an image from a url with credentials

information of username and password and sets the image to the widget named

cam_w_s. This function uses a http request (HttpRequest) built in

ProntoPhilips Http Library (com.philips.HttpLibrary) to get the image from

the network. Since cameras provide their videos as sequence of images, calling

this function every period of time (5 seconds for instance), we will have the

widgets displays the videos from the requesting cameras.

 54

Appendix B is a tutorial which guides developers how to use these libraries to

create Building Automation System client applications for ProntoPhilips using

ProntoScript.

5.3 Implementation of the GUI Designer

This GUI Designer allows users (customers, developers) with less programming

experiences to design client applications for Building Automation System. The

users can move, resize and rotate objects of any type on a canvas. It has the

following functions

• MoveResize: This function is used to move and resize objects without

WPF Adorners.

• MoveResizeRotate: This function is used to provide rotation of objects,

still without WPF Adorners.

• MoveResizeRotateWithAdorners: This function is used to move, resize

and rotate items with the help of WPF Adorners. It also shows how

Adorners can be used to provide visual feedback to indicate the actual

size of an object during a resize operation.

This GUI Designer has several important classes such as DesignerCanvas,

Designer Item, Toolbox, and ToolboxItem.

• DesignerCanvas is the space that users use to design the client

applications. It will keep its size, even if you drag an item far beyond the

borders of the canvas. DesignerCanvas will never notify the

ScrollViewer of a size change, just because there is none. The solution is

that we must force the DesignerDanvas to adjust its size every time an

item is moved or resized. Fortunately the Canvas class provides an

 55

overridable method named MeassureOverride that allows the

DesignerCanvas to calculate its desired size and return it to the WPF

layout system.

• DesignerItem is inherited from ContentControl, so that we can reuse

the ControlTemplate. The DesignerItem provides an IsSelected

property to indicate if it is selected or not. Then it implements an event

handler for the MouseDown event to support multiple selections of

items. Finally it implements the template for the DesignerItem such that

the resize decorator is only visible when the IsSelected property is true,

which can be handled with a simple DataTrigger.

• Toolbox is an ItemsControl that uses the ToolboxItem class as default

container to display its items. For this we have to override the

GetContainerForItemOverride method and the

IsItemItsOwnContainerOverride method. Additionally the Toolbox

uses a WrapPanel to layout its items.

• ToolboxItem is the place where drag operations are actually started if

you want to drag an item from the toolbox and drop it on the canvas. It

will take care of how to copy an item from the drag source (Toolbox) to

the drop target (DesignerCanvas). In this case, it uses the

XamlWriter.Save method to serialize the content of the ToolboxItem

into XAML.

This GUI Designer also provides several commands such as Open, Save, Cut,

Copy, Paste, Delete, Print, Group, Ungroup, Align (Left, Right, Top, Bottom,

Centered horizontal, Centered vertical), Distribute (horizontal, vertical), and

Order (Bring forward, Bring to top, Send backward, Send to back).

 56

• Grouping, its approach to group items is to use a DesignerItem object

that should work as a group container. For this, it creates a new instance

of the DesignerItem class with a Canvas object as its content. On this

canvas, it positions the designer items to be grouped.

• Save, to save a design, it uses a combination of XML and XAML. For

the DesignerItem related data it uses XML, and the content is serialized to

XAML.

• Open, when loading a design from an XML file, we have to start with the

designer items because we need their information to wire them together.

• Copy, Paste, Delete, and Cut, the Copy and Paste commands work

analogous to the Open and Save commands, except that they are applied

only to the selected items and that they read and write the serialized

content to the Clipboard. The Delete command simply removes all

selected items from the designer canvas' Children collection, and the Cut

command finally is a combination of Copy and Delete command.

• Align, and Distribute, reference item for alignment is the item that was

selected at first (also called primary selection). This works only when you

select items with the LeftMouseButton + Ctrl, or LeftMouseButton +

Shift, but not if you use rubberband selection.

• Order, the Panel class (from which Canvas is derived) provides an

attached property named ZIndex that defines the order on the z-plane in

which the children appear, so we only have to change that property to

bring an item forward or backward.

 57

As a short summary, this chapter presents some implementation details of the

development of the Building Automation System. It dose not present all the

implementations of the whole systems but only the development of some special

samples (the ELK add-in) and some libraries (the ProntoScript library). The other

developers could use these samples to code the other parts of the system.

Additionally, it also presents the implementation of the GUI Designer.

 58

C h a p t e r 6

RESULTS AND DISCUSSIONS

This chapter will evaluate the results coming out from applying the architectures

and technologies in developing the Building Automation System at Omniabit s.r.l.

Then it will present some further discussions about noticing points in applying

the architectures and using the technologies.

6.1 Results and discussions of the core server development

The artifacts coming out from this development step is a core server which

implements main functionalities for the Building Automation System. These

functionalities can be easily modified or extended. Any unforeseen functionalities

from unforeseen customers to control unforeseen building automation devices

can be relatively simple to be extended to the core server without affecting other

functionalities even if the system is already deployed in the industry.

At the development point of view, the functionalities are divided into modules.

This increases decoupling among modules for functionalities and they can be

developed in parallel. Besides, some customers may require some functionalities

some other customers may require other functionalities. The developers only

have to add/remove (copy/delete) the add-ins for those functionalities in the

add-in folder.

The important design decision in development of this part is having a generic

method of form “Execute (int id, string methodName, Object[] arguments)” to represent

any method in add-in id, with method name methodName, and arguments stored in

arguments. This generic method representation lets the contract between the host

 59

and the add-ins stable but still let the client programs which know the method

call it.

The idea of having this implemented using System.AddIn namespace in C# is just

implementation decision for ease of coding and availability of development tools.

The add-in features can be implemented using different methods with different

programming languages as long as we are able to develop the add-in separately

and deployed relatively simply and then they are discovered and loaded

automatically. In other words, using add-ins for extensibility of functionalities can

be done in many programming languages in many applications. However, in this

specific case, due to the availability of tools and programming experience of

developers, the System.AddIn namespace in C# is used.

6.2 Results and discussions of the communication channel development

The artifact coming out from this development part is a network communication

endpoint as a Web Service implemented in WCF Framework. This WCF Web

Service is able to push data to client applications which support duplex

communication. It also enables client applications to communicate with it in

several transportation protocols, especially HTTP and TCP protocols due to

many devices in Building Automation area are able to communicate with each

other in the network via HTTP and TCP connection.

In this era, the internet connected systems such as world-wide-web is the best

access interface over the heterogeneous interconnected systems with mobile

components. Furthermore, this communication channel is actually a tier in the

famous, currently practiced “three tiers architecture” with Presentation tier as

browser (Netscape navigator, Internet Explorer, etc) and other client applications,

Functional tier as application and network management functions server, and Data

tier. Furthermore, making these Building Automation Systems distributed systems

 60

meaning they are parallel systems executed in multiple processors. This increases

the performance and scalability over the network.

This Web Service as the network communication endpoint is a stable interface

published to the public so that the client applications need no more to discover

where the functionalities are but always send the command to this service

endpoint. The interface is stable and unified. It only needs to have enough

information about the method it is calling (in what add-in, what method name,

and the required arguments). Then it will call to the generic method of form

“Execute(int id, string methodName, Object[] arguments)”.

The important component in this part is the Communication Manager (in Figure 7)

implemented in the host of the communication pipeline. This Communication Manager is

built in the event based style. Meaning when there is a message coming from a

client application the event OnCommandReceived is raised. The handler of this event

will parse the message and direct the method call to appropriate add-in and call

the function. The communication is asynchronous. Meaning when an add-in has

a message (may be after processing the method call from client or some events

happened in the being-monitored devices) to send back to client applications the

OnMessageReceived of the Communication Manager will be raised. Its handler will create

the message and forward it to the appropriate client applications.

The important design decision in this communication channel is the design of the

communication protocol. What message and message format are important in

order for client applications and the communication managers to understand

each other in order to forward the method calls. Different devices may have

different communication protocols. Therefore, it is important to design a

standard protocol which is compatible with as many other protocols as possible

or at least it is easy to create an adapter component which is able to convert the

message from one protocol to another. In the development of Building

 61

Automation System in Omniabit s.r.l., the protocol used is the protocol for

communication of CommandFusion mentioned in [21]. This protocol is simple

but sufficient for applications in building automation industry. It has ability to

control all the building automation devices and ability to deliver response

messages from them to the processing server.

Also in this development part, choosing WCF to implement this communication

endpoint is just a choice of technologies due to its availability of tools,

experiences of programmers, developing programming languages, and the

compatibilities with the programming languages and tools used in developing

other components such as System.AddIn in server core component, WPF, and

Silverlight in client components. WCF makes the development of endpoints

easier than ever. In other words, WCF is used to offer manageable approach to

creating Web services and web service clients

6.3 Results and discussions of the client development

The artifacts coming out from this development part are the client applications

for some specific devices, their specific operating platforms, and specific

programming languages they are based on. These may be the ready-to-use client

applications or client application components (part of a complete application).

The ready-to-use client applications are the ones for the popular types of

customers with specified interface requirements or for the specific types of

devices. Normally, these are the devices which are hard to build simulators for.

These may also be client application components. These components will be used

by the GUI Designer to design complete client applications. The ideal

development of this GUI Designer should be as specified in next part, the GUI

Designer should be able to describe all the interface types and behaviors of client

applications in XML and then there can be simulators which will be able to read

these XML configuration files and realize the client applications.

 62

These client components should be analyzed carefully so that they should be as

common as possible, yet still be useful. Since some primitive controls (such as

button, label and so on) are always common but they are not so useful in

reusability compared to, let’s say, a set of primitive controls which control a

device such as an interface component which controls the Lightning system. This

set may have two buttons for light on, light off, then gauging control which

displays light level, or a slider for light level modifier, etc. These primitive controls

can be grouped into client components. Then they will be reused by many client

applications. They will be used by the GUI Designer to design client applications

configuration. These configuration files will be used by the Simulators to really

realize the client applications running in the clients’ devices.

The main important part in this client development is to have the client

applications running in different devices basing on different programming

languages, yet they still have as similar interface appearances and similar behaviors

as possible. This increases the usability client applications. For instance, the

CommandFusion provides the users with a GUI Designer to design client

applications for the iPhone/iPod/iPad devices. This GUI Designer provides

users with primitive widgets (controls) with built in behaviors. One example of

such the behaviors is for instance, when a button named buttonName is clicked

and it is bound to a digital join number 10, with a value 1 then a command as

“d10=1\x03” will be sent to the defined server. This behavior of primitive

controls are built by an infrastructure of CommandFusion (please refer to [21] for

detail information about this infrastructure).

In the other hand, the ProntoPhilips device has ability to run client programs in

ProntoScript. ProntoScript is designed based on JavaScript standard. This means,

the client programs may have the primitive controls such as buttons, labels, text,

etc., as CommandFusion. However, there are no such the built-in behaviors as of

 63

the controls of CommandFusion. Furthermore, there is already a

CommandFusion command handler which is able to handle the command sent

from the CommandFusion client applications. Therefore, there should be a

ProntoScript library built to enable the behaviors of the ProntoScript primitive

controls as of the controls in CommandFusion. Moreover, this library will enable

also the developers to design programs for ProntoPhilips in the similar way as

they do for CommandFusion. This would reduce the learning barrier to code in

ProntoScript for other programmers once the library is done. Another advantage

of such library is that the programmers don’t have to code again and again such

the behaviors for every primitive control in every place of the client applications.

And the client applications developed using this library will behave as the client

applications developed by CommandFusion GUI Designer.

6.4 Results and discussions of the GUI Designer and simulators

development

This development part is a very challenging part, out from which the ideal

artifacts that the developers are striving to have are a GUI Designer and

simulators for realizing the client applications, produced by the GUI Designer, in

individual platforms.

The GUI Designer ideally should allow users to define the client applications for

any platform (iPhone/iPod/iPad, Computers, ProntoPhilips, etc.,) and output

them to XML configuration files. However, for many of device types, many of

programming bases it is difficult to build simulators for them. The current

version of the GUI Designer supports the design of Silverlight and WPF client

applications. However, it is still feasible to build a GUI Designer application

which allows the users to design client applications for different types of devices

with different capacities running in different platforms and basing on different

programming languages. The main idea of such GUI Designer is providing the

 64

users with common client components and let the users visually design client

applications then export the result to XML configuration files. Since the output is

in XML format, the job is now for the simulators to read/parse the file and

realize the client applications as described.

In other words, it is feasible to build one simulator for each client device with its

platform and based programming language. For instance, there should be one

WPF Simulator, one Silverlight Simulator, one iPhone/iPod/iPad simulator, one

ProntoPhilips simulator, and so on. However, some client devices are based on

less powerful programming language such as the ProntoScript for the

ProntoPhilips device. Currently the GUI Designer allows users to design the

WPF and Silverlight client applications. We still have to develop the client

applications for other devices such as iPhone/iPod/iPad, ProntoPhilips using

their own provided GUI Designers.

This development part will take more effort to have a unified and stable solution

compared to developments of other parts. Specifically, the development of the

core server with extensible functionalities is stable. The communication channel

with stable interface for all types of controlling communication is also stable.

Only the client development part would take more time and effort to be really

stable and flexible.

 65

C h a p t e r 7

CONCLUSIONS

This writing presents a four step methodology for development of extensible,

distributed, software systems which satisfy the challenge of requirements change

over time. In each step it also presents the design architectures and the

technologies used to develop the components of the over all software system.

The four steps include:

• Step 1: development of the core server

• Step 2: development of the communication channel

• Step 3: development of the client applications and client application

components (parts of complete client applications)

• Step 4: development of a GUI Designer and simulators.

In Step 1, the design decision is to have the functionalities built as add-ins. The

core server is first developed with core functionalities for popular devices and

popular customers. For each new functionality comes to life, a new add-in is

implemented to realize such the functionality. The add-in is discovered, loaded,

and activated automatically by the system. In the implementation point of view,

the System.AddIn framework in C# is used to realize the add-in behaviors. It is in

charge of discovering, loading, and activating the add-ins. The main important

design point in this step and also the next step is having a generic method of

form “Execute(int addInID, string methodName, Object[] arguments)”. This generic

method is able to express all the functions inside any add-in. It helps to have a

 66

stable programming interface among the add-ins, the communication channel,

and the client applications.

In Step 2, the design decision is to have the system’s functionalities exposed over

the network via a Web Service. This web service enables the client applications

over the network communicate with the functionalities built in the core server.

The client applications need no more complicated code to discover where the

functionality is located or how to load, activate, and call to the functionalities.

This step makes the system a distributed system which benefits not only about

the accessibility but also the performance increase due to multi-processors are

processing the tasks in parallel. The technology used in this step is the Window

Communication Foundation (WCF) framework. WCF is used due to the

availability of its tools, ease of development, and development background of

developers.

In Step 3, the design decision is to have the complete client applications built for

most popular devices and most common customers’ needs and at the same time

identify and build the common client components (partial components of

complete client components) which will be combined together to create complete

client applications at the later time. These client components are important,

because there is no “magic-bullet” for building one complete client application

for all types of devices and all types of customers’ needs. Therefore, we have to

provide these client components which will be combined together by the

customers for their needs (using a GUI Designer). In this step the Windows

Presentation Foundation (WPF) and Silverlight are used to build Desktop based

and Web based client applications/components correspondingly. Furthermore,

for specific devices and their operating platforms such as iPhone/iPod/iPad the

CommandFusion is used and for ProntoPhilips the ProntoScript is used to build

client applications.

 67

In Step 4, the design decision is to provide the users (can be customers or

developers) a GUI Designer that users can visually design their client applications

then save them to XML configuration files and to have a set of simulators which

realize the client applications in individual client devices’ platforms. The GUI

Designer will help users with little programming experiences develop their own

client applications as they need. The GUI Designer describes the client

applications in XML. Each client device platform will have a simulator built for it.

This simulator will be in charge of realizing the real client applications in the

device based on the descriptions in the XML configuration file.

 68

C h a p t e r 8

FUTURE WORKS

While we have got the core server and the communication channel shown

promising efficiency implementation; it is clear that at the current version of the

Building Automation System, the development of the client applications is still

below what would be desirable. This chapter will present the possibility to make

the Building Automation System be more scalable for many types of clients,

client devices, and client based programming languages.

The client applications were primarily developed as separated for individual

clients’ needs. This way of development of the client applications is not

constructed to scale well to satisfy the needs in client applications for many

different types of clients. In our future works, we plan to address this issue by

reworking on the Client GUI Designer. The current version of the GUI Designer

allows the users to visually design the client applications from client components.

However, the client components and the target applications are of either WPF or

Silverlight applications. The GUI Designer is not yet able to support design for

client applications of other types of programming languages (the developers are

currently developing them separately). When we have the GUI Designer which

supports other client applications in different programming languages (such as

ProntoScript for ProntoPhilips, Objective C for iPhone/iPod/iPad, etc.,) the

issue will be diminished.

Another pressing area of future works is to be able to accommodate the different

types of client devices with different capacity in processing powers, memories

capacity, operating systems, and supporting programming languages. The first

work in this part is to design a schema to describe the results of client

 69

applications (interfaces and behaviors) designed by the GUI Designer in XML.

Since at the current era, any client device in building automation industry can read

and parse XML data, having the applications described in XML will enable the

devices to understand what the interfaces of the applications are and how they

behave to construct the corresponding client applications. The current version of

the Building Automation System, the GUI Designer is able to describe only the

client applications written in WPF or Silverlight. The future version this GUI

Designer should be able to describe client applications in different programming

languages such as ProntoScript, or Objective C, etc.

The second work in this part is building the simulators for each type of client

programming languages. Current version of Building Automation System we are

able to build the simulators which could load the XML description of the client

applications designed by GUI Designer for WPF and Silverlight client

applications and realize the real client applications running in the client devices

correspondingly. However, for other types of programming languages we haven’t

got simulators. The client applications were primarily developed separately for

individual client devices running different operating systems basing on different

programming languages. Such implementation is not constructed to scale under

many types clients’ devices. In our future works, we plan to address these issues

by working on building the simulators for other types of client applications such

as one ProntoScript simulator for ProntoPhilips, one Objective C simulator for

iPhone/iPod/iPad, and so on.

While developing the perfect application which is extensible for different types of

clients’ needs, different types of devices and different types of programming

languages represents a particularly difficult challenge. We believe that the

development efficiency promises of a GUI Designer which is able to describe

client applications for many different types of programming languages in XML

 70

together with simulators built for these types of programming languages in

different types of devices will adequately let the Building Automation Systems

scale well.

71

BIBLIOGRAPHY

[1] Jack. G and Jesse. K “.NET
Application Extensibility, CLR
Inside Out, 2007, Mcrosoft
(http://msdn.microsoft.com/en-
us/magazine/cc163476.aspx
accessed May 25, 2010).

[2] Distributed computing,
http://en.wikipedia.org/wiki/Dis
tributed_computing accessed May
25, 2010

[3] Elmasri. R, Navathe. S. B. (2000),
“Fundamentals of Database
Systems” (3rd ed.), Addison–
Wesley, ISBN 0-201-54263-3.,
Section 24.1.2.

[4] Sape. M. Distributed Systems, 2nd
Edition, 1993, Addison Wesley
Publishing Company.

[5] Jesse. K. “Brief Introduction to
our Architecture for Managed
Add-Ins”, Microsoft MSDN,
Microsoft.
(http://blogs.msdn.com/clraddin
s/archive/2007/02/23/brief-
introduction-to-our-architecture-
for-managed-add-ins.aspx
accessed May 25, 2010)

[6] Jack. G and Jesse. K “.NET
Application Extensibility, Part 2”
Microsoft MSDN, Microsoft,
(http://msdn.microsoft.com/en-
us/magazine/cc163460.aspx
accessed May 25, 2010).

[7] “What Is Windows
Communication Foundation”,
Microsoft MSDN, Microsoft,
(http://msdn.microsoft.com/en-
us/library/ms731082.aspx
accessed May 25, 2010).

[8] “WCF Feature Details”, Microsoft
MSDN, Microsoft,
(http://msdn.microsoft.com/en-
us/library/ms733103.aspx
accessed May 25, 2010)

[9] Service Oriented Archtiecture.
http://en.wikipedia.org/wiki/Ser
vice-oriented_architecture
(accessed date May 26, 2010).

[10] “Metadata”, Microsoft MSDN,
Microsoft
(http://msdn.microsoft.com/en-
us/library/ms731823.aspx
accessed May 25, 2010)

[11] “.NET Framework 4 - Windows
Presentation Foundation”,
Microsoft MSDN, Microsoft
(http://msdn.microsoft.com/en-
us/library/aa970268.aspx
accessed May 25, 2010)

[12] “Top Silverlight Features”,
Microsoft Silverlight, Microsoft
(http://www.microsoft.com/silve
rlight/features/ accessed May 25,
2010)

[13] “Composite Application
Guidance for WPF and Silverlight
- October 2009”, 2009 by
Microsoft Corporation.

[14] Jesse. K. , “System.AddIn Tools
and Samples”, Last edited Feb 8
2008 at 11:19 PM by Jesse
Kaplan, version 12,
http://clraddins.codeplex.com
(accessed May 25, 2010).

[15] “Middleware”, From Wikipedia,
the free encyclopedia,
http://en.wikipedia.org/wiki/Mi
ddleware (accessed June 5, 2010).

 72

[16] In its April 2001 report for AIIM
International, "Enterprise
Applications: Adoption of E-
Business and Document
Technologies, 2000-2001:
Worldwide Industry Study,"
Gartner defines EAI as "the
unrestricted sharing of data and
business processes among any
connected applications and data
sources in the enterprise."

[17] Gable, Julie (March/April 2002).
"Enterprise application
integration". Information
Management Journal.
http://findarticles.com/p/articles
/mi_qa3937/is_200203/ai_n9019
202. Retrieved 2008-01-22.

[18] Trotta, Gian (2003-12-15).
"Dancing Around EAI 'Bear
Traps'".
http://www.ebizq.net/topics/int
_sbp/features/3463.html.
Retrieved 2006-06-27.

[19] “WCF net.tcp protocol in
Silverlight 4”, last updated

Wednesday, November 18, 2009,
from
http://tomasz.janczuk.org/2009/
11/wcf-nettcp-protocol-in-
silverlight-4.html, accessed June 6,
2010.

[20] CommandFusion,
http://www.commandfusion.co
m, accessed June 6, 2010.

[21] “iViewer Developer's Manual
v1.2”,
http://www.commandfusion.co
m/downloads.

[22] “ProntoScript Developer's
Guide”, 2009, Koninklijke Philips
Electronics N.V.,
http://www.pronto.philips.com

[23] “Experience the Powerful M1
Control Family”, ELK Products,
Inc. P.O. Box 100, Hildebran,
N.C. 28637 USA (828) 397-4200.

[24] “M1 Security and Automation
Controller”. Elk Products, Inc.
Hildebran, NC 28637 USA.

 72

APPENDIX

A. Summary of ELK Functions

 73

B. ProntoScript client applications development tutorial

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

