

POLITECNICO DI MILANO
Facoltà di Ingegneria dell’Informazione

POLO REGIONALE DI COMO

Master of Science in
Computer Engineering

Business Intelligence
Methodologies applied to Green IT

 Supervisor: Prof. Chiara Francalanci
Assistant Supervisor: Eugenio Capra

Giampaolo Agosta

Master Graduation Thesis by: Ricardo Planer
 Student Id. Number: 736465

Academic Year 2009/10

POLITECNICO DI MILANO
Facoltà di Ingegneria dell’Informazione

POLO REGIONALE DI COMO

Corso di Laurea Specialistica in
Ingegneria Informatica

Business Intelligence
Methodologies applied to Green IT

 Relatore: Prof. Chiara Francalanci
Correlatore: Eugenio Capra

Giampaolo Agosta

Tesi di laurea di: Ricardo Planer
 Matr.: 736465

Anno Accademico 2009/10

Agradecimento à minha família,

a vocês, que me deram a vida e ensinaram a vivê-la com dignidade, não

bastaria um obrigado. A vocês, que iluminaram os caminhos obscuros com

afeto e dedicação para que os trilhásse sem medo e cheio de esperança, não

bastaria um muito obrigado. A vocês, que se doaram inteiros e renunciaram

aos seus sonhos, para que, muitas vezes, pudésse realizar os meus. Pela

longa espera e compreensão durante as longas viagens, não bastaria um

muitíssimo obrigado. A vocês, pais por natureza, por opção e amor, não

bastaria dizer, que não tenho palavras para agradecer tudo isso. Mas é o que

nos acontece agora, quando procuro arduamente uma forma verbal de

exprimir uma emoção ímpar. Uma emoção que jamais seria traduzida por

palavras.

Muito obrigado!

i

SOMMARIO

Il consumo di energia relativo alla infrastruttura IT svolge un ruolo

importante sui costi operativi, incide direttamente sul scalabilità del sistema e

inoltre è importante per questioni di responsabilità ambientale. La ricerca dell’

efficienza energetica IT ha sempre puntato sull’ hardware, mentre nel dominio

del software, quest’ ultima è stata principalmente considerata per i sistemi

embedded. In questo documento, sarà introdotto un quadro di un'architettura

software che fornisce il supporto per migliorare l’ efficienza energetica. L’

accento sarà posto sul modulo Business Intelligence, che si occupa di

analizzare i dati in uscita e presentare le metriche di valutazione.

Parole chiave: Business Intelligence; Green Software; efficienza

energetica; qualità di software; sviluppo del software.

ii

ABSTRACT

The energy consumption related to IT infrastructure plays a major role

on the operational costs, in addition by affecting directly the system scalability

but also by being important for environmental responsibility issues. Research

on IT energy efficiency has always focused on hardware, while within the

software domain it has mainly being considered for embedded systems. In

this document, it will be introduced a software framework architecture that

provides support to improve energy efficiency. The focus will be on the

Business Intelligence module, which is responsible to analyze the output data

and present the evaluated metrics.

Keywords: Business Intelligence; Green Software; energy efficiency;

software quality; software development.

iii

TABLE OF CONTENTS

SOMMARIO ... I

ABSTRACT ... II

TABLE OF CONTENTS ... III

LIST OF FIGURES .. V

LIST OF TABLES .. VI

1. INTRODUCTION .. 1

2. STATE OF ART ... 6

2.1 Green IT .. 6
2.1.1 Impact of IT: environment and costs ... 7
2.1.2 Sustainable IT: Green IT .. 10

2.2 Green Software .. 14
2.2.1 From hardware to software ... 14

2.3 Software Profiling.. 18

3. OVERALL METHODOLOGY AND GREEN IT ARCHITECTURE 21

3.1 General overview of the problem .. 21
3.1.1 Thesis impact over corporate software ... 22
3.1.2 Tabulation as method for Software Optimization ... 22
3.1.3 Pure Function Definition ... 27

3.2 Green IT Architecture ... 29
3.1.1 Implementation .. 31

4. BUSINESS INTELLIGENCE .. 39

4.1 Timing Analysis ... 40

iv

4.2 Memory Analysis ... 42

4.3 Energy Analysis .. 45

4.4 Function Analysis ... 48

4.5 Scenarios ... 50
4.5.1 Priority ... 50
4.5.2 Memory ... 51
4.5.3 Central Processing Unit .. 52

4.6 Implementation .. 53

5. BUSINESS INTELLIGENCE RESULTS .. 57

5.1 Priority Evaluation... 57

5.2 Financial Software... 59
5.2.1 Energy Savings .. 61

6. CONCLUSION ... 65

6.1 Future Work ... 66

REFERENCES .. 68

APPENDIX A ... 70

APPENDIX B ... 71

v

LIST OF FIGURES

Figure 2.1 – Growing rate of IT infrastructure costs. ... 9
Figure 2.2 - Ratio between costs of new servers vs Power/cooling .. 10
Figure 2.3 – Percentual energy consumption of a data center .. 15
Figure 3.1 – Illustration of the system behaviour before and after modification 23
Figure 3.2 - Alpha value against Computation time ... 25
Figure 3.3 - High level abstraction of the architecture ... 30
Figure 3.4 - Package diagram of the architecture .. 31
Figure 3.5 - Class Diagram of Logic package .. 32
Figure 3.6 - Class Diagram of Memory package ... 33
Figure 3.7 - Class Diagram of Utils package ... 34
Figure 3.8 - Lookup execution flow – Hit.. 36
Figure 3.9 - Lookup execution flow - Miss ... 36
Figure 4.1 - Timing sample charts ... 41
Figure 4.2 – Memory sample charts .. 44
Figure 4.3 – Memory estimated charts .. 47
Figure 4.4 – Function Statistics charts ... 49
Figure 4.5 – Class diagram of Report package ... 54
Figure 4.6 - Class diagram of Report.Entities package ... 55
Figure 5.1 - Energy saving results from actual and prediction data .. 62

vi

LIST OF TABLES

Table 2.1 - Energy Consumption During PC Lifecycle .. 8
Table 4.1 - Timing profiling results ... 40
Table 4.2 – Memory profiling results .. 42
Table 4.3 - Memory size of each element used in tabulation .. 43
Table 4.4 – Energy estimated results .. 45
Table 4.5 – Function statistics results .. 48
Table 5.1 – Table of sample system under evaluation .. 58
Table 5.2 – Table of energy saving from different priorities... 58
Table 5.3 – Energy saving results from actual and prediction data ... 61

1

CHAPTER

1. INTRODUCTION

In the very urge of fast information technologies development, much may have been

lost regarding the quality of software systems. Although currently, new trends of research

are focusing on Green IT, i.e. the study of the energy consumption of IT, is attracting both

the academic and the industrial awareness. It has become an important subject for ethical,

cost and scalability reasons (Murugesan, 2008).

First of all, IT infrastructures are responsible for 2% of the CO2 world emissions

footprint, responsible for the greenhouse effect and consequently the first reason for global

warming. Second, energy costs have dramatically increased and their impact on the overall

IT infrastructural costs is becoming even more significant (e.g., according to Kumar, 2007,

nowadays yearly power and cooling costs for servers are almost 60% of the initial

purchasing cost). Moreover, energy requirements represent one of the data center

scalability issues, since providers often have difficulties in supplying data centers with all the

required energy (Lee and Brown, 2007). IT energy consumption sustainability is important

from an economic, societal and environmental perspective for organizations. These three

dimensions are overlapping factors for sustainability, but very often the economic and

CHAPTER 1: INTRODUCTION

2

societal are ultimately constrained by the environment. Energy efficient software can play an

important role in these three overlapping spheres of sustainability.

Research has always focused on hardware energy efficiency, and only marginally

on software. In particular, energy efficiency has been investigated mainly for embedded

systems and low-level software (Sivasubramaniam at al., 2002; Fornaciari et al., 2001), and

not at Information Systems (IS) level. Accordingly, hardware energy efficiency has

significantly improved in the last years, with particularly high gains in the energy efficiency of

mobile devices, as a response to battery autonomy issues. Over the past 30 years, the

value of MIPS/W of mainframe systems has increased of a factor of 28.000 (ACEEE, 2008),

which represents an improvement much higher than those achieved by production

machines in other industrial sectors, such as steel production or automotive. The starting

theoretical foundation of this work is that software is the main driver of power consumption

on CPUs as it indirectly causes all the commutations performed by the processor and thus

induces all the consumption of the infrastructural layers above (e.g., cooling, UPS, etc.) By

analogy, in order to reduce car pollution it is important to increase the mileage per liter of

gasoline, but also to optimize the trips in order to reduce the overall number of driven miles.

Similarly, it is important to reduce the energy required by hardware to perform elementary

computations, but also to optimize the number of computations required to satisfy a given

set of functional requirements and workloads.

With respect to the power consumption of hardware components within a server, a

CPU takes approximately 60% of the input power. Meanwhile, the power over memory and

hard drivers are almost independently from its utilization once the power mostly goes to the

RAM refresh cycles and disks spinning respectively. Thus, a better utilization of memory

and disks could reduce the number of operations executed on the CPU, and consequently,

minimizing the total amount of energy spent.

Summarizing, software can be more energetically efficient by means of:

CHAPTER 1: INTRODUCTION

3

• Optimization of the software code in order to reduce the CPU utilization;

• Usage of a less powerful CPU or by sharing the CPU with virtualization techniques;

• Improving the use of memory and disks, thus, reducing the CPU utilization;

Nevertheless, whereas hardware has been constantly improved to be energy

efficient, software has not recorded a comparable track. The software development life cycle

and related process management methodologies rarely consider this parameter. Not

surprisingly, the over 50 ISO software quality parameters do not include energy efficiency

[1] (cf. ISO 9126:2003). The prompt availability of increasingly efficient and cheaper

hardware components has lead designers up to now to neglect the energy efficiency of end-

user software, which remains largely unexplored. In the last decades research has focused

on optimizing the energy consumption of operating systems, infrastructural component and

embedded systems, for example by striving to develop power-efficient compilers (Daud,

Ahmad and Murthy, 2009), but very little research has been made on the energy efficiency

of end-user applications, and in particular of Information Systems (IS) software. A

paramount difference between embedded systems and IS is that in IS contexts hardware

and low level architectures are usually imposed and cannot be easily influenced. For

example, from a low-level programming point of view an emerging technique for reducing

energy consumption is the dynamic configuration of clock frequency (Huang, Li and Li,

2009), but if we assume an IS perspective it would be quite difficult for the CIO of a

company that wants to improve the energy efficiency of the any software to use such

technique.

This thesis is part of a wider project developed in collaboration with Politecnico di

Milano [2] and Italian Financial Institutions, which intend to analyze the performance issues

by exploring the concepts of Green IT, and later on to feedback better setup parameters to

the system. Most of the work will focus on financial algorithms which are widely used on

credit institutions and are rather computationally expensive. The document will focus on the

CHAPTER 1: INTRODUCTION

4

business Intelligence module, which is a JAVA application that can load the results from

profiling and evaluated the performance of the framework as a whole. The document is

structured as a brief introduction describing the scenario of green researches with

motivations and objectives followed by some details regarding the Green Area and some

important concepts. Then, it is presented the project itself with details about the analysis,

development, execution and result interpretations.

CHAPTER 1: INTRODUCTION

5

6

CHAPTER

2. STATE OF ART

In this chapter is presented the current state of art regarding to research and

development in the field of energy efficiency applied to information technologies. In the

section 2.1, it is introduced the concepts of Green IT and the fundamental aspects are

described. The section 2.2 introduces the concept of energy consumption from a software

perspective and how to measure it. Finally, section 2.3 describes how software profiling is

approached and why it is important in this work.

2.1 GREEN IT

Nowadays technology is an important part of our lives. The use of technology has

advanced in several areas, improving life and work offering great advantages. Almost every

appliance participates in technology and sometimes we do not even notice.

CHAPTER 2: STATE OF ART

7

The expression Green IT is from now on commonly used to indicate a new field of

research, focused on problems related to the energy consumption and environmental

impact of information systems. Particularly, the term can be referred to two specific subjects:

• IT energetic efficiency;

• Management of ecological compliancy of IT lifecycle;

Both of them are directly related to control the usage of natural resources and their

impact on the energy production chain.

More precisely, the first subject concerns to the improvement of energetic efficiency

by means of improvements on infrastructure management and systems, but avoiding any

undesired influence on legacy systems and the way they are used. We would say: a kind of

external layer of optimization on an atomic system. It is important to be mentioned that in

most recent years, the ratio between computational capacity and energy required has

enhanced. This was mainly motivated by mobility and low-power devices.

The second subject looks upon the lifecycle of IT equipments development, energy

needed in production, power consumption during the usage cycle and more.

2.1.1 IMPACT OF IT: ENVIRONMENT AND COSTS

In the last years, energy efficiency for IT is something which is assuming a growing

importance, either by the problem of global pollution and warming, and either by the

increasing costs sourced from infrastructural needs in order to keep an information system.

The Information and Communication system has a strong impact on carbon

footprint and climate change. It has been estimated that in fact the IT infrastructure is

responsible for 2% of global CO2 emissions [3]. A research conducted by Gartner Group

has estimated that a billion tones of CO2 emissions are attributed by the IT sector, while the

CHAPTER 2: STATE OF ART

8

total global amount is 49 billion of tones annually. As so, the reduction of energy

consumption is the key factor to reduce the CO2 footprint and its impact on global warming.

The IT interferes in the environment in different ways. The whole computer lifecycle,

from its manufacturing to disposal, is accountable for several environmental problems. The

chain of production of a computer consumes electricity, chemicals and water which cause

pollution. To illustrate the distribution of energy during a computer lifecycle at the early 21
st

century, approximately 72% of whole energy used by a Personal Computer (PC) was spent

in its production while the others 24% consumed in its 4 years mean usage. While now, the

statistics have inverted, once 23% of whole energy is consumed by a PC in its production

and 72% used during 4 years of usage. Then, one can infer that production process has

been optimized, reducing the amount of energy required, while the energy demanded by

usage has increased.

4 Years Lifecycle

Source Production Distribution Usage Disposal Total

[4] 6060 MJ
(72%)

336 MJ
(4%)

2020 MJ
(24%)

- 8416 MJ

[5] 5801 MJ
(76%)

- 1756 MJ
(23%)

<76 MJ
(<1%)

7633 MJ

[6] 3709 MJ
(26%)

713 MJ
(5%)

10270 MJ
(72%)

<142 MJ
(<1%)

14264 MJ

TABLE 2.1 - ENERGY CONSUMPTION DURING PC LIFECYCLE

Focusing on the energy required in order to run a server (computer, monitor,

network and refrigeration) in a data center is constantly increasing. In fact, every personal

computer (PC) produces a ton of CO2 annually [13, 12], while a server manufacturing

requires the same amount of CO2 emitted by a sport utility vehicle (SUV) to travel 25 Km.

The intensified technological development supports the creation of new processor s, every

time faster and more power consuming. A common Pentium IV dissipates 120W, an

increase of 120% with respect to an average 486 that consumed 10W.If one considers that

CHAPTER 2: STATE OF ART

9

a modern blade server consumes 1kW, as so as a refrigerator; a rack would consume

40kW, an entire building. An average data center consumes 250kW, as a neighborhood,

while big data centers reach 1MW, an entire city.

In the last fourteen years, as one can see at figure 2.1 and 2.2, the cost of new

hardware has grown less than the cost of power and cooling:

Source: IDC (2006)

FIGURE 2.1 – GROWING RATE OF IT INFRASTRUCTURE COSTS.

* CAGR - Compound annual growth rate

IDC estimates [7] that for each $1.00 spent on a new server, $0.70 cents are spent

on power and cooling. The data shows that costs on power and cooling increased four

times, also considering the increase on energy rates.

CHAPTER 2: STATE OF ART

10

Source: IDC (2006)

FIGURE 2.2 - RATIO BETWEEN COSTS OF NEW SERVERS VS POWER/COOLING

It is not only the cost of energy that is continually rising; but also the consumption

rises constantly (8-10% yearly). This phenomenon is limiting the scalability of big data

centers at high density urban areas. According to Forrester Research, in the next years 60%

of data centers are going to be limited by energy consumption, space and cooling [8].

2.1.2 SUSTAINABLE IT: GREEN IT

Green IT or Green Computing is the study and application to design, production,

use and disposal of a computer, server and associated sub systems, in an efficient way and

with the least environmental impact. Green IT seeks to meet the economic interest and

performance improvement considering ethical and social responsibility that derives from the

recent precarious ecological conditions.

The first occurrence of Green IT was in 1992, initiated by U.S. Agency responsible

by a program created to promote energy efficiency in electronic equipments. From this

CHAPTER 2: STATE OF ART

11

program, some new resources started being adopted in systems design such as Sleeping

and Stand By mechanisms to save energy.

Also, a certification program created by a Swedish organization called TCO started

evaluating equipments related to its magnetic and electrical emissions like Cathode Ray

Tube display and later every kind of energy consumption components. In 2006 the

certification program created in 1992 established a strict layered ranking for all computers

components and consequently the products which use such electronic parts.

There are three major areas where Green Computing is concerned:

• IT energy efficiency;

• Eco-compatible management of IT lifecycle;

• IT as a instrument for a green governance;

The IT energy efficiency can be improved by acting both on the design and

management of structures and data centers, and by changing the corporate culture and

practices of use. Actually, the energy efficiency (the relationship between energy

consumption and performance) has grown in the last years once performance has been

enhanced while energy consumption stayed steady. Considering the benchmark TPC-C [9]

widely used to assess the processor performance, the energy efficiency can be measured

as million transactions minute per absorbed Watt (Ktpm-c/Watt). The value of this index has

improved by a factor of 2.5 on the last decade. As the demand of computational capacity

grows as so the energy consumption, improvements in this area is essential.

The eco-compatible management of IT lifecycle includes all phases, from production to

disposal. Pollution caused by IT not is merely attributable to the consumption of electricity

but derives, in part, from the incorrect use and disposal of toxic substances used during

fabrication. The Waste of Electric and Electronic Equipment (WEEE) is defined as a

directive at the European Union (2002/95/CE) that establishes precise rules for recycling

CHAPTER 2: STATE OF ART

12

and recovery of such waste [10]. As a matter of fact, pollution derived from IT is responsible

for 70% of soil-derived contamination by plumb, cadmium and mercury

The IT as a instrument for a green governance, by detecting and measuring relevant

parameters throughout the whole business processes. Recent studies [3] have shown that

86% of ICT departments in United Kingdom have no knowledge of their weight of CO2

emissions, while 80% of organizations have no awareness of electricity expenditures. In

order to have a more sustainable IT is necessary a deep change of culture and corporate

management. The impact has to be monitored by appropriate KPIs (Key performance

Indicator) along with the other usual indicators.

2.1.3 Green IT: Solutions

In the next paragraphs, some examples of important approaches applied to Green

IT, in order to solve real issues by means of auxiliary software, hardware improvement or

both.

As a software method to increase the resource utilization and sharing, there are

virtualization techniques, which achieve power savings at system level. Virtualization is a

creation of virtual resources over a single hardware. It is usually created using modified

Operational Systems running into management software in attempt to reach the maximum

usage of resources, replacing the necessity of several physical computers under loaded.

The guest software or operational system runs as if it was installed normally into a single

physical platform. Widely used nowadays, although it requires a good knowledge in

performance assessments and resources configuration. Virtualization, therefore, offers

various advantages. A virtual machine can be more easily controlled and inspected from

outside than a physical one. New virtual machine can be created without the need to

purchase more equipment. Virtual machines can be easily migrated to different physical

CHAPTER 2: STATE OF ART

13

platforms once they are ultimately just files. Hence, virtualization is very important in Green

IT since it allows substituting several physical systems by virtual machines hosted in just

one single powerful system, thereby unplugging the original hardware and reducing

powering and mainly the cooling consumption.

Terminal Servers in last years have also been used to put the computing operations

in only the central computer, while terminals connected to it are simply thin clients and text

terminals with low power consumption. This solution offers advantages in security and

availability, since with a terminal breaking the service can still be provided. Advantages can

be found out in terms of energy optimization. In fact, thin clients use no more than 10% of a

regular workstation.

The Power Management for computer, also known as Advanced Configuration and

Power Interface (ACPI), is an open standard which defines protocols to allow the

operational system to control the power state of underlying hardware. The OS can turn off

autonomously a set of peripherals such as monitors and hard drivers during inactive

periods. The hibernation and stand by modes do use this standard. There are also

programs to give users the possibility to configure the CPU voltages where the user will

reduce of increase powering, frequencies and also heat dissipation. Modern CPUs are able

to configure its frequency autonomously according to the current load.

Power Suppliers are usually 70% efficient with 30% of energy lost in heat. This

means that for each 70W generated the supplier requires 100W in input. Better quality

power supplies can be over 80% efficient. Thus there is less energy wasted in heat and

consequently less power is used in cooling. The industry initiated the 80 PLUS which is a

initiative to manufacturing of powering units with more energy efficiency. It certifies products

using some different parameters of load and power factor. From July 2007 all certified

desktop computers are guaranteed to work with a maximum of energy waste of 20% of all

powering capacity.

CHAPTER 2: STATE OF ART

14

Other important topic is the displays, where sensitive enhancements were achieved

in last few years. Displays have slashed their power usage from an average value of 110W

to 40W in last decade representing a reduction of more than 60%. It was feasible since a

migration from CRT monitors to LCD occurred.

2.2 GREEN SOFTWARE

2.2.1 FROM HARDWARE TO SOFTWARE

The tiniest quantity of information is represented by a bit, which could be physically

associated to the presence of a charge or the state of a magnetic field. In CMOS

technology, which is used in the modern processors, the power consumption of the simplest

structure is divided in:

• Static: This refers to the energy spent to keep a CMOS circuit working (i.e. sub-

threshold leakage, Diode/Drain leakage and Gate Leakage). They depend on

physical characteristics of the technology only.

• Dynamic: Dynamic power is the power spent which depends on the activity

inside the circuit and proportionally dependent of frequency. Transition power is

the energy spent to charge the output capacitor on transitions from 0 �1. Short-

circuit power depends on the amount of time the circuit is short-circuited,

occurring in both transitions 0�1 and 1�0:

 ����������� =
� ∗
�� ∗ ��→� ∗ � (2.1)

 �������������� = ��� ∗
�� ∗ ����� ∗ ��/�→�/� ∗ � (2.2)

CHAPTER 2: STATE OF ART

15

A study conducted at the Massachusetts Institute of Technology (MIT) has fixed the

lower bound to the energy required to commute one bit between states at a certain

frequency. This limit is defined when every bit is associated to a quantum electron spin. A

computer using quantum electronic could achieve the 10
-25
J to commute a single bit at

1GHz, while in a traditional computer is 10
-16
J. This difference is due to the fact that

commutations occur in the lowermost in a computer system: all the upper levels contribute

to multiply it by a factor of 30.

In figure 2.3 it is shown the subdivisions regarding to the energy consumption in

typical a data center. It is clear how the energy efficiency problems have to be treated in

each level of the structure. Also, it is important to notice that to improve the lower levels is

fundamental. For instance, when the processor runs a software that is inefficient, and which

ultimately drives the amount of commutations, it will increase the amount of power needed

in order to execute. It starts a chain reaction that is seen in the upper levels, for example,

requiring the cooling system to act. Nowadays, the energy efficiency of IT systems are

estimated in theory to be 50% maximum.

Source: IBM (2007)

FIGURE 2.3 – PERCENTUAL ENERGY CONSUMPTION OF A DATA CENTER

CHAPTER 2: STATE OF ART

16

This work will focus in the software layer related to large Data Center, for example,

from Financial Institutions. Must be known that even the Figure above showing that the

software may handle a little amount of power consumed comparing to every part in

architecture, the software has a dramatic interference in the final value because it defines

the relation between idle and busy states of processor, and also can measure the

performance requirements. These requirements are able to address the resources which

must be available to the system, and also address possible virtualization.

Even though software does not consume energy directly, it drives the energy usage

in all levels of the system. From the physical point of view, the mean power consumption of

a processor running any application is:

 � =
�� ∗ � (2.3)

Variable P is the power, I is the mean current used and Vcc the powering voltage.

Then, the energy consumed by the processor running software is the integral of Power in

function of time, verifying:

 �
�������� =
�� ∗ � "� (2.4)

Therefore, to calculate the energy consumed by the system it is required to

measure the current and voltage powering the system. Moreover, the measures are

platform dependent and it is obvious that only the measure of these two components does

not guarantee the knowledge of each consumption points of the system. To analyze how an

application demands a certain amount of energy to compute, it is necessary to link Physical

and Logical domains

From the logical perspective can be inferred from Margolous Levitin theorem [11]

that the maximum frequency in state commutation from a physical system is directly

CHAPTER 2: STATE OF ART

17

proportional to the whole energy of the system. So, the minimum amount of commutation

energy needed by a system to work properly in a certain frequency is calculated with:

 �#��(�) = � ∗ ℎ
4 (2.5)

In the previous formula, f is the frequency and h is Plank constant. For example,

one bit with the electron spin direction, the energy required to commute at a 1GHz

frequency is �� ≅ 5 . 10�-�..

Going deeper, we reach other variables important in energy measuring. One of

them is the systems information measure used to define the amount of information needed

by it (i.e. number of bits). Also, we have entropy which is a level of disorder of data which

can be transcript as the computational complexity (Cc) for a desired output to be generated

by a system and the Thermodynamic deepness (Td) which is defined as the number of bits

neg-entropic required in order to build a system. These two last components respectively Cc

and Td, generate the logical Energy Consumed formula:

 �
��/���� = �(�) ∗
� ∗ 01 (2.6)

Finally, it is possible to design a methodology that allows one to compare different

applications from an energetic point of view. From expressions 2.4 and 2.6, one can infer

that energy consumption can be an approximation of energy from a logical perspective:

 �
�������� � �
��/���� (2.7)

CHAPTER 2: STATE OF ART

18

2.3 SOFTWARE PROFILING

Profiling the software is a resource available which allows the stakeholder to verify

where a program spends its time and which functions are being called while the whole

system is executed. This information can show which pieces of the program are slower than

is expected and those that might be candidates for rewriting or substitution to make the

program execute faster and save power and time. Moreover, other output is the

presentation of how often certain functions and procedures are being called for execution.

This may help to spot code blocks interesting for deep analysis.

Since the profiler uses information collected during the actual execution of your

program, it can be used on programs that are very large and/or complex to analyze by

reading the source directly. However, the way the program is running will affect the

information that shows up in the profile data. Thus, is mandatory that all the important

features and those with high performance influence are stimulated to provide reliability and

usability of profile information generated in profiling analysis. Software profiling has some

generic steps:

• Must be enabled profiling and/or the program must be compiled/linked with

profiling support;

• The program must be executed in a desired way to generate relevant profile

data;

• Must be executed a tool to interpret the generated data.

Depending on the language or platform (i.e. Java, C, C#) the steps above might be

joined or transparent for the user. Profilers use a wide variety of techniques to collect data,

including hardware interrupts, code instrumentation, instruction set simulation, operating

system hooks, and performance counters. Summary profile information is often shown

against the source code statements where the events occur, so the size of measurement

data is linear to the code size of the program. In contrast, the size of a (full) trace is linear to

CHAPTER 2: STATE OF ART

19

the program instruction path length, making it somewhat impractical. For sequential

programs, a profile is usually enough, but performance problems in parallel programs

(waiting for messages or synchronization issues) often depend on the time relationship of

events, thus requiring a full trace to get an understanding of what is happening. Our work is

based mostly on sequential programs, focused in mathematical/financial intensive execution

methods.

CHAPTER 2: STATE OF ART

20

21

CHAPTER

3. OVERALL METHODOLOGY AND GREEN IT

ARCHITECTURE

 This chapter will describe the methodologies that supported the creating of this

thesis, from the definition of the problem to the solution used in order to construct the final

architecture. Also, some of the implementation details are discussed.

3.1 GENERAL OVERVIEW OF THE PROBLEM

 There are many hypotheses regarding the energy efficiency of an IT system.

The general idea is that the energy saving derives from the data center structure

optimization. As for every Watt spent to supply a server CPU, 28 Watts are required to the

hosting data center. As so, the main idea was that to improve the energy efficiency would be

necessary to optimize the infrastructure only, and that software has no impact on

consumption,

 Finally, we tend to commonly associate the energy efficiency to performance;

and that improving the performance of the software is related to the reduction of CPU usage

CHAPTER 3: OVERALL METHODOLOGY AND SYSTEM ARCHITECTURE

22

and, consequently, to energy savings. Nowadays, after industrialization of software,

performance or energy saving is not primarily concern, but with maintainable software. This

is so because the most representative costs are related to software maintenance, therefore,

costs are reduced when maintainable software is developed. Unfortunately, the ISO

regarding software quality does not consider energy efficiency yet.

3.1.1 THESIS IMPACT OVER CORPORATE SOFTWARE

As every corporation should start thinking of Green IT and to define its own

strategies to address the problem. This work could demonstrate a possible approach

towards the progress of green computing targeted to companies that does not want to

modify radically its infrastructure.

This thesis proposes an architecture that is tactically incremental, which the

objective is to keep the infrastructure and business processes intact. The idea is to insert

code modification at some key points where software could be optimized by the use of data

tabulation. Therefore, the only thing that will be modified are some specific portion of the

software code, although, not changing the expected behavior nor results.

3.1.2 TABULATION AS METHOD FOR SOFTWARE OPTIMIZATION

The use of pre-calculation and tabulation is already been used widely by the

cryptography field where computational expensive algorithms are common, tabulation is

used in order to improve efficiency and make it possible to break cipher codes in reasonable

time. Usually an attack to cryptographic systems requires exhaustive algorithms and

therefore massive computing power and time. When the same attack has to be reproduced

CHAPTER 3: OVERALL METHODOLOGY AND SYSTEM ARCHITECTURE

23

more than once, the attacking system can pre-calculate all the necessary values and store it

in memory. The attack then is “instantaneous”.

Tabulation can contribute to improve the performance of software and thus its

energy consumption. The underlying idea is that instead of demanding the CPU to compute

the values (in the CPU, energy is a function of load); the data is retrieved from memory in its

place (in the memory, energy is constant and independent from use or load).

In order to choose consciously what prerequisites are important in order to decide

whether or not a portion of code is suitable for tabulation, it is important to analyze the

behavior aspects of the modified function against the normal execution flow. In the figure

3.1, we identify the possible change in the flow at the modified piece of code, from the

original execution flow on the left:

FIGURE 3.1 – ILLUSTRATION OF THE SYSTEM BEHAVIOUR BEFORE AND AFTER MODIFICATION

CHAPTER 3: OVERALL METHODOLOGY AND SYSTEM ARCHITECTURE

24

As one can see, the introduction of the mechanism for tabulation also inserts

overhead when the original code has to be executed. From a time perspective, it is possible

to identify the following timing information:

• Lookup Miss Time (Tmiss): Time spent to look for a specific value that is not

tabulated;

• Computation Time (Tcomputation): Time spent to compute the original code;

• TradeOff Time (Ttradeoff): Time spent by the trade off module to decide either to

tabulate or not the value;

• Lookup Hit Time (Thit): Time spent to look for a specific tabulated value;

Moreover, to better describe the model behavior, we extend it by considering also

the following variables:

• Hits Number (Nhits): Number of times a point was found tabulated;

• Miss Number (Nmiss): Number of times a point was not found tabulated;

• Hits Percentage (α): Percentage of hits provided by the system;

 � = 23456
23456728466

 , where 0 ≤ � ≤ 1 (3.1)

• Modified Computation Time (Tmodified): Time spent to compute the modified

function;

 0#�1�:��1 = � ∗ 0��� + (1 − �) ∗ (0#��� + 0=�#������� + 0���1��::) (3.2)

• Time saved (�Tsaved): Difference between Computation Time and Modified

Computation Time;

 ∆0��?�1 = 0��#�������� − 0#�1�:��1 (3.3)

C

• Break-even Hits Percentage

break-even point, that is, the point where the timing of the original code is the

same with tabulation mechanism

 ∆0��?�1 = 0

 0��#�������� = � ∗

 �@� =

 Bearing that in mind,

potential for a given function. Furthermore, the best functions to tabul

αbe � 0 once it is also the minimu

save execution time. Moreover, to give an idea of alpha behavior, we can visualize it in the

following chart, considering that the only variable value is the T

axis:

FIGURE 3.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.1

A
lp
h
a

Tcomputation

Alpha Break

CHAPTER 3: OVERALL METHODOLOGY AND SYSTEM ARCHITECTURE

25

even Hits Percentage (αbe): Percentage of hits needed to achieve the

, that is, the point where the timing of the original code is the

same with tabulation mechanism;

 → 0��#�������� = 0#�1�:��1, substituting 3.2

∗ 0��� + (1 − �) ∗ (0#��� + 0=�#������� + 0���1��::)

0#��� + 0���1��::
0#��� + 0��#�������� + 0���1��:: − 0���

Bearing that in mind, α can be used to distinguish between the energy saving

Furthermore, the best functions to tabulate are the ones with

is also the minimum value of α that the system needs to provide in order to

Moreover, to give an idea of alpha behavior, we can visualize it in the

following chart, considering that the only variable value is the Tcomputation on the horizontal

 - ALPHA VALUE AGAINST COMPUTATION TIME

1 10

computation - Computation Time (ms)

Alpha Break-Even

Feasible

Unfeasible

RCHITECTURE

: Percentage of hits needed to achieve the

, that is, the point where the timing of the original code is the

(3.4)

can be used to distinguish between the energy saving

e are the ones with

in order to

Moreover, to give an idea of alpha behavior, we can visualize it in the

on the horizontal

Feasible

Unfeasible

CHAPTER 3: OVERALL METHODOLOGY AND SYSTEM ARCHITECTURE

26

From the chart, we identify that there are values of TComputation that are unfeasible (α

> 1) due to the overhead inserted by the mechanism, and therefore, would not be

advantageous to tabulate.

Considering that only pure functions with computation intensive calculations are

going to be tabulated, which means, the processor utilization during the computation of the

function is 100%, then in this case one can derive the energy consumption of a single

modified portion of code during active execution as being:

 ����#�� = (�#�#��� + ���� ����?�) ∗ 0��#�������� (3.5)

 Considering that Pcpu active is the power spent by the processor during full utilization,

we could rewrite it as being function of Pcpu idle as so:

 ���� ����?� = ���� �1�� + ∆���� , where ∆���� = �����?� − ��1��

 ����#�� = (�#�#��� + ���� �1�� + ∆����) ∗ 0��#�������� (3.6)

In the other hand, when data is tabulated the amount of energy changes and

depends on the flow of the tabulation mechanism, which is the average time of execution of

the modified portion of code considering the time needed to seek the value in memory

(lookup time) and whether or not it is already present in the table. Also, we can consider the

utilization β of the processor during lookup. We can define that energy goes accordingly to

the following equation:

 ���@�����1 = (�#�#��� + ���� �1�� + A ∗ ∆����) ∗ 0#�1�:��1, where 0 < A ≤ 1 (3.7)

Ultimately, from the difference of energy spent on normal and tabulated execution,

we can compute the break-even point considering power:

 ∆���?�1 = ����#�� − ���@�����1 = 0 → ����#�� = ���@�����1,

CHAPTER 3: OVERALL METHODOLOGY AND SYSTEM ARCHITECTURE

27

substituting 3.6 and 3.7

(�#�#��� + ���� �1�� + ∆����) ∗ 0��#�������� = (�#�#��� + ���� �1�� + A ∗ ∆����) ∗ 0#�1�:��1

as Tcomputation = Tmodified

 0��#�������� = A ∗ 0#�1�:��1

 0��#�������� = A ∗ (� ∗ 0��� + (1 − �) ∗ (0#��� + 0=�#������� + 0���1��::))

 �@� = A ∗ (0#��� + 0��#�������� + 0���1��::) − 0��#��������
A ∗ (0#��� + 0��#�������� + 0���1��:: − 0���) (3.8)

Note: if the CPU utilization β is 100% the break-even point is the same as before.

3.1.3 PURE FUNCTION DEFINITION

The definition of pure function can be derived from the concept of mathematical

function, which is, a one to one mapping between input and output [14]. An software

application method can be considered pure if it satisfies the following properties:

• Does not produce any side-effect, that is, the method does not produce any

visible effect else than the result;

• Is Deterministic, that is, the method behavior depends only from the input

parameters;

In more detail, a function is free of side effects if the only objects the method

modifies are created within its execution. This definition let the method to create and modify

new objects but without allowing it to change variables that are observable outside the

method scope. In addition, a method is not allowed to cause any side effect outside the

system environment (i.e.: write in a file, print messages to the console and communicate on

the network).

CHAPTER 3: OVERALL METHODOLOGY AND SYSTEM ARCHITECTURE

28

public class ClassA {

 public ClassA() { }

 private int state = 0;

 public int Value(int a, int b) {

 int r = a + b;

 r += a * b;

 r += a - b;

 r += a/b;

 return r;

 }

}

public class ClassB {

 public ClassB() { }

 private int state = 0;

 public int Value(int a, int b) {

 int r = a + b + state;

 r += a * b;

 r += a - b;

 r += a / b;

 state = r;

 return r;

 }

}

 At the previous example, the function Calculate from ClassA would have no

problem to be tabulated once it does not alter any member of the class. Although, in ClassB

the method stores the result into the member state, which is reused in every call; if this

function is tabulated, this member would not be updated.

 Moreover, a mathematical relation is considered function if every input is

associated to an specific output; for two assessments of a mathematical functions with the

same set of inputs, it will generate the same results. The deterministic requirement of a

method is analogous to the mathematical function. The results must depend only on the

arguments passed as input parameters besides any global state or variable (i.e.: time of the

day).

By this property, one can define the concept of equality between parameters

applied to a programming language. In the case of primitive types, the equality can be

assessed by simply comparing the actual values of the variable. Although, regarding

complex classes, it is necessary to question: Can tow different call to a method be

equivalent if the inputs are the same but with a different alias? If possessing the same alias

but residing in different memory addresses? There is not definitive answer to the previous

questions because to any problem we have to deal will be an optimal choice rather than the

other ones. Therefore, the functions determinism is a parametric property given the

CHAPTER 3: OVERALL METHODOLOGY AND SYSTEM ARCHITECTURE

29

definition of equality between parameters; a method is deterministic if for every call with

equivalent arguments produces a undistinguishable result.

3.2 GREEN IT ARCHITECTURE

The architecture is developed to run at a JAVA environment and it is composed by

three main components: the static analysis of the application bytecode to identify pure

functions present on it; the other component is responsible to execute the Decision Maker –

a meta-model that represents the portion of modified code; a business intelligence

component that reports the performance of the system and is the object of this thesis.

The static analysis searches the whole application bytecode for pure functions. The

collected information (method name, signature, number of bytecode instructions) regarding

every function is then used by the bytecode Modification component to build the meta-

module Decision Maker. Indeed, before any modification it is necessary to verify if what

functions are suitable to be tabulated by using the alpha approach and some profiling

information.

During the executing of the modified application, the Java Virtual Machine (JVM)

executes it normally. Though, when it reaches a pure function, the JVM will not load the

original code from the class where the function was, but will load the modified instead. The

method, before the normal execution flow, performs a lookup into the table corresponding to

the current function passing the parameters that were used: if there is a hit, which means,

there is a return value already tabulated for those input parameters that were inserted in a

previous execution, then the flow returns the value found; otherwise the function is then

called and the set {Input Parameters � Return Value} is passed to the Trade Off module.

C

This component decides whether or not to save the result set to the table by following the

internal logic of memory optimization and energy saving.

Finally, the Business

report of the data related the architecture execution and behavior (executions time,

functions frequency, memory utilization,

The main reason is to support validation of the solutions deve

efficiency and to suggest new parameters that could improve even more the results.

To clarify how components are connected and communicates with other modules,

the following diagram shows the high level modules introduced before:

FIGURE 3.3 - HIGH LEVEL ABSTRACTI

CHAPTER 3: OVERALL METHODOLOGY AND SYSTEM ARCHITECTURE

30

hether or not to save the result set to the table by following the

internal logic of memory optimization and energy saving.

usiness Intelligence component is the one responsible to provide a

report of the data related the architecture execution and behavior (executions time,

functions frequency, memory utilization, and energy savings) by means of tables and charts.

to support validation of the solutions developed against energy

efficiency and to suggest new parameters that could improve even more the results.

To clarify how components are connected and communicates with other modules,

the following diagram shows the high level modules introduced before:

HIGH LEVEL ABSTRACTION OF THE ARCHITECTURE

RCHITECTURE

hether or not to save the result set to the table by following the

ble to provide a

report of the data related the architecture execution and behavior (executions time,

by means of tables and charts.

loped against energy

efficiency and to suggest new parameters that could improve even more the results.

To clarify how components are connected and communicates with other modules,

CHAPTER 3: OVERALL METHODOLOGY AND SYSTEM ARCHITECTURE

31

3.1.1 IMPLEMENTATION

The next step is to implement the architecture and the mechanism that enables the

system to perform. In the following paragraphs it is described the main elements that

enables the system to work.

FIGURE 3.4 - PACKAGE DIAGRAM OF THE ARCHITECTURE

To better separate all the sections in a logical structure, the application code is

organized in six different packages:

• logic: contain the classes responsible to evaluate if a call is eligible to be tabulated,

given information on available memory, functions priority and the alpha values;

• memory: classes in this package control the functionalities related to access to the

stored values and assessments of memory utilization;

CHAPTER 3: OVERALL METHODOLOGY AND SYSTEM ARCHITECTURE

32

• utils: contain supportive classes common to the other packages, i.e.: function,

parameters and helper classes;

• pureFunction: collection of classes used to execute the static analysis of the

bytecode and evaluation of eligible methods as pure functions;

• report: package containg the business intelligence classes, which are used to

evaluate the results of the architecture performance;

o entities: analogous to the utils package, containing particular classes to be

used by the business intelligence only;

LOGIC PACKAGE

FIGURE 3.5 - CLASS DIAGRAM OF LOGIC PACKAGE

The most important action - operation available to the actor (Decision Maker: a

conceptual module present in the whole project architecture) – is the TradeOff. The action

consists of an intelligent algorithm which determines whether a pure function and its entries

(parameters and return) will be kept in memory, characterized as a Cache Memory, to

improve the relation between computing and power consumption. Since the operations will

be reduced by the storage of determined values needed by the whole system, the

consumption of the processor and related electronic components will reduce.

The TradeOff uses some operations provided by the Memory Management like

insertions, updates and deletions: InsertData, UpdatePriorities and RemoveData,

respectively. After verifying the logic and deciding the including or not of a function into the

CHAPTER 3: OVERALL METHODOLOGY AND SYSTEM ARCHITECTURE

33

memory, it’s responsible to operate the memory sending requests to handle data. These

requests will keep also the memory state (Full, Available) and will provide methods to

remove functions with lower priorities to save new data.

MEMORY PACKAGE

FIGURE 3.6 - CLASS DIAGRAM OF MEMORY PACKAGE

The MemoryManagement class is by definition a singleton – a design pattern that

restricts the existence of objects of the class to one instance. It also provides functionalities

to dump and restore its data to a file (Vide appendix B). Although, the most important

function in MemoryManagement class is Lookup Result. It’s a simple and easy set of steps

to consult a required data in the memory. The function receives a function structure with

parameters - from the Decision Maker - and is responsible to follow the HashMaps and

CHAPTER 3: OVERALL METHODOLOGY AND SYSTEM ARCHITECTURE

34

return a miss if the data is not present in the cache and the system will need to execute the

whole mathematical method to get the result or the result itself.

UTILS PACKAGE

FIGURE 3.7 - CLASS DIAGRAM OF UTILS PACKAGE

 The TOFunction class is the representation of a pure function inside the

MemoryManagement. It collects a series of metrics regarding function calls to the real

function, such as: priority, execution time (ns), number of hits, number of calls and so on.

Each TOFunction contains a collection of all the parameters once passed as argument at a

call to the function and is defined as a HashMap<TOParameters. Return>.

 The other classes TOParameters and Return represent the actual data values

passed as the function input and the return value respectively. The class TOParameters is

projected to support only primitive types (i.e.: int, double, long, string, etcV) and arrays of

primitive types of one level deepness.

CHAPTER 3: OVERALL METHODOLOGY AND SYSTEM ARCHITECTURE

35

REPORT PACKAGE

 This package is the focus of this work and is full detailed at chapter 4.

LOOKUP EXECUTION FLOW

These sequence diagrams were built in order to provide an idea of internal module

interaction. The Decision Maker module is the process trigger, starting with a table lookup it

will use the method provided by the MemoryManagement to obtain any point needed by the

system. The input is the function parameters, which contains all data used by the module to

recognize the function and the parameters.

After asking a specific point, the MemoryManagement starts fitting the pure function

data into its own objects. The first step is to generate a function key that will be used to

distinguish different functions and types required. After having the Key it is possible to

identify the Function but not a specific point inside the values table. So, the role of the

TOParameters is to hold the parameters objects with the purpose to tell apart between all

the points on the value table. At this point of the sequence all the information needed is

already translated and the MemoryManagement will check if there exists the value for this

parameters. If yes (Hit) the value is returned and the sequence is over as seen in figure 3.8:

CHAPTER 3: OVERALL METHODOLOGY AND SYSTEM ARCHITECTURE

36

FIGURE 3.8 - LOOKUP EXECUTION FLOW – HIT

FIGURE 3.9 - LOOKUP EXECUTION FLOW - MISS

Another possible flow is that the data is not found (Miss) the Decision Maker

receives a miss from the lookup method. Whenever it happens, this point is calculated and

passed to the TradeOff module. In this case, an object TOFunction will be instantiated to

keep all data and the free memory will be checked. If there is enough room, this point is

added to the value table and the value 0 is returned to the Decision Maker. Supposing all

the memory is full and the function is already tabulated. The score of that point is calculated

CHAPTER 3: OVERALL METHODOLOGY AND SYSTEM ARCHITECTURE

37

and compared to the last score of the tabulated values, if the new point score is higher than

it is discarded and the value 1 is returned to the Decision Maker, otherwise the worst value,

in terms of score, is deleted and the new one is added returning the value 0. The sequence

diagram in figure 3.9 details this flow.

38

39

CHAPTER

4. BUSINESS INTELLIGENCE

In this chapter it is presented all the characteristics of the Business Intelligence

module, including the explanation of the details of each analysis the application provides:

energy, timing, memory and priority.

The Business Intelligence is actually a stand-alone dashboard application which has

access only to the output data. The output data referred is generated by the other modules

as they run concurrently with the system under analysis/profiling.

The main goal of the Business intelligence is to evaluate the data and provide a

graphical presentation in a convenient way to help determine the efficiency of the

architecture toward the target application. It will present some evaluations of memory usage

and timing as well as the power consumption (considering power consumption models of

CPU and memory components). Also, it needs the ability to forecast power consumption

given changes in hardware or software configuration.

CHAPTER 4: BUSINESS INTELLIGENCE

40

4.1 TIMING ANALYSIS

Timing analysis contributes to visualize how are the impacts of the function

tabulation are over the relative and absolute execution time. Initially, the system estimates

all the timings necessary to perform predictions. On the following table, it is presented all the

timing data profiled from a test application:

Function Id Frequency
One Exec.

(ms)
Normal Exec.

(ms)
Lookup
(ms)

Best Exec.
(ms)

Green Exec.
(ms)

Speedup α α-be

Idle Time - - 4,501.77 - 4,501.77 4,501.77 - - -

Function 3 33942 0.601 20,393.75 0.279 12,898.06 12,898.06 36.76% 0.834 0.469

Function 1 27325 0.572 15,642.91 0.279 10,766.05 10,766.05 31.18% 0.801 0.492

Function 0 21785 0.547 11,920.25 0.279 8,471.78 8,471.78 28.93% 0.801 0.515

Function 2 25710 0.401 10,306.60 0.279 8,913.46 8,913.46 13.52% 0.834 0.7

Function 4 15117 0.591 8,932.08 0.279 7,076.23 7,076.23 20.78% 0.683 0.477

71,697.34

52,627.34 52,627.34

TABLE 4.1 - TIMING PROFILING RESULTS

The table’s first column is the name of the function, followed by frequency that

represents the number of calls the function received (Ncalls). Then there is “One Exec.” which

is the average computation time for a single function call (Tcomputation). The fourth column is

the estimate of the value of time spent by the functions not being tabulated, calculated by

multiplying Ncalls*Tcomputation. The next column represents the lookup time (Thit) that is the time

spent to retrieve a value during a hit. Then, “Best Exec.” is the minimum amount of time

possible considering the quantity of misses are equal to the number of parameters

tabulated, while “Green Exec.” is the actual time spent considering there was lack of

memory to memorize values. “Best Exec.” and “Green Exec.” are respectively calculated by

the following equations:

 0C@��� = D0���1��:: + 0#��� + 0��#��������E ∗ FC����#����� + 0��� ∗ FC��� (4.1)

 0C/���� = D0���1��::

The last three columns present come statistics of the functions. The speedup refers

to the percentage of improvement between

the BI calculates the current value of

To estimate the Idle Time

were executing portions of code else than the tabulated funct

determine the absolute speedup. It is calculated from the total time used during

decremented by the amount of time used by n

accordingly to the equation:

 0�1�� = 0����� − GHD0���1��::
�

�I�

FIGURE

0 10000

Total Exec. (ms)

Best Exec. (ms)

Green Exec. (ms)

Idle Time

0 5000 10000 15000

Idle Time

Function 0

Function 1

Function 2

Function 3

Function 4

Absolute Timings

Green Exec. (ms) Best Exec. (ms)

CHAPTER 4: BUSINESS INTEL

41

���1��:: + 0#��� + 0��#��������E ∗ FC#��� + 0��� ∗ FC���

The last three columns present come statistics of the functions. The speedup refers

to the percentage of improvement between “Normal Exec.” and “Green Exec.”. Moreover,

the BI calculates the current value of α and αbe explained in chapter 3.

Idle Time, which corresponds to the amount of time the system

were executing portions of code else than the tabulated functions; this value is important to

determine the absolute speedup. It is calculated from the total time used during

decremented by the amount of time used by n-functions and the mechanism overhead

D ���1��:: + 0#��� + 0C��#��������E ∗ FC#��� + 0��� ∗ FC���J

FIGURE 4.1 - TIMING SAMPLE CHARTS

20000 30000 40000 50000 60000 70000

Comparison

Total Exec. (ms) Best Exec. (ms) Green Exec. (ms)

15000 20000 25000

Total Exec. (ms)

0 5000 10000 15000 20000

Function 0

Function 1

Function 2

Function 3

Function 4

Relative Timings

Green Exec. (ms) Best Exec. (ms) Total Exec. (ms)

ELLIGENCE

(4.2)

The last three columns present come statistics of the functions. The speedup refers

Exec.” and “Green Exec.”. Moreover,

, which corresponds to the amount of time the system

ions; this value is important to

determine the absolute speedup. It is calculated from the total time used during profiling

functions and the mechanism overhead

J (4.3)

80000

20000 25000

Total Exec. (ms)

CHAPTER 4: BUSINESS INTELLIGENCE

42

To better understand how time is consumed, the dashboard charts the information.

It is possible to visualize that “Best Exec.” and “Normal Exec.” work as lower and upper

bounds to “Green Exec.” respectively.

4.2 MEMORY ANALYSIS

Memory analysis contributes to visualize how the memory is being used and

managed within the Memory Management module. The main goal of this analysis is to

enable the evaluation of possible scenarios, by varying the amount of memory reserved to

tabulation and promote a forecast of the usage. i.e.:

Size (Bytes)

Function Id # Parameters Size (Bytes) Memory (Bytes)

Memory Size 268435456

Function 0 4328 224 969472

Memory Usage – System 142981120

Function 1 5433 224 1216992

Memory Free – System 125454336

Function 2 4277 224 958048

Memory Usage – Application 16252928

Function 3 5649 224 1265376

Memory Usage – Functions 5483296

Function 4 4792 224 1073408

Memory Free – Application 8355032

5483296

TABLE 4.2 – MEMORY PROFILING RESULTS

The table on the left brings memory measures for each aspect, from the system to

the application scope. From the application scope, Java runtime provides methods that

measures memory usage and free memory. Although, Java is not able to measure memory

information from processes outside the Java Virtual Machine (JVM), the architecture makes

use of an auxiliary library [15].

• Memory Size: defines the total amount of hardware memory installed

CHAPTER 4: BUSINESS INTELLIGENCE

43

• Memory Usage – System: defines the total amount of memory used by the system

(i.e: Operating System, other processes);

• Memory Free – System: defines the total amount of free memory on the whole

system;

• Memory Usage – Application: defines the total amount of memory being used by

the application under evaluation;

• Memory Usage – Functions: defines the total amount of memory being used by

the MemoryManagement to store functions parameters;

• Memory Free – Application: defines the total amount of free memory available in

the JVM;

The table on the right presents the memory consumption calculated for each

function. The value is computed from the number of parameters each function has times

the amount of memory each parameter occupies. The size of the parameter (Sparameter)

depends on the number of input arguments (Ninput) a function possesses plus an

overhead due to object representation in the Java environment. To calculate the size of

each entry (bytes) into the HashMap, it is used the equation below:

 K����#���� = 24 + 8 + 8 + 24 + F����� ∗ (8 + 32) + 24 + 16 + 32 + 48 (4.4)

For a single tabulation of a function with one input parameter, the

MemoryManagement requires 224 bytes to store the value. The amount of memory

needed for a stored value is derived from the space each element occupies in Java and

was estimated according to the table:

Class TOParameters Class Return Object HashMap

Class 24 Class 24 Entry 48

Members 8 + 8 Members 16

Objects 24 One Value 32

One Value 8 + 32

TABLE 4.3 - MEMORY SIZE OF EACH ELEMENT USED IN TABULATION

 To better understand how memory is consumed, the dashboard charts the

information. It is possible to visualize the impact of tabulation against the entire memory

usage and help to better parameterize the system to use memory more efficiently and

without causing much disturbance to other applications and the system itself.

FIGURE

 Memory analysis is important once memory itself is a limited resource and depends

on the amount of physical memory modules installed and motherboard capacity. In addition,

the correct estimation of memory use is important for what

decreasing the amount of memory results on

consequently on timing due to the

47%

1% 2%

3%

Absolute Memory

Memory Usage - System Memory Free

Memory Usage - Application Memory Usage

Memory Free - Application

CHAPTER 4: BUSINESS INTEL

44

To better understand how memory is consumed, the dashboard charts the

information. It is possible to visualize the impact of tabulation against the entire memory

and help to better parameterize the system to use memory more efficiently and

without causing much disturbance to other applications and the system itself.

FIGURE 4.2 – MEMORY SAMPLE CHARTS

sis is important once memory itself is a limited resource and depends

on the amount of physical memory modules installed and motherboard capacity. In addition,

the correct estimation of memory use is important for what-if scenarios; increasing or

g the amount of memory results on impact to the capacity of memorization and

consequently on timing due to the variation of miss rates.

47%

Absolute Memory

Memory Free - System

Memory Usage - Functions

17%

23%

20%

Relative Memory

Function 0 Function 1 Function 2

ELLIGENCE

To better understand how memory is consumed, the dashboard charts the

information. It is possible to visualize the impact of tabulation against the entire memory

and help to better parameterize the system to use memory more efficiently and

sis is important once memory itself is a limited resource and depends

on the amount of physical memory modules installed and motherboard capacity. In addition,

increasing or

the capacity of memorization and

18%

22%

Relative Memory

Function 3 Function 4

CHAPTER 4: BUSINESS INTELLIGENCE

45

4.3 ENERGY ANALYSIS

Energy analysis contributes to visualize how the energy is being spent regarding all

the possible timing analysis and what-if scenarios of memory. The main goal of this analysis

is to enable a comparison of each setup and provide savings report in terms of energy or

money. i.e.:

Scenario Memory (Wh)
CPU Idle
(Wh)

CPU Normal
(Wh)

CPU Green
(Wh)

Savings
(Wh)

CPU Best
(Wh)

Max Savings
(Wh)

Original Data 0.084 0.125 2.053 1.471 0.583 1.471 0.583

Memory - 16MB 0.084 0.125 2.053 1.471 0.583 1.471 0.583

Memory - 8MB 0.084 0.125 2.053 1.471 0.583 1.471 0.583

Memory - 4MB 0.084 0.125 2.053 1.683 0.371 1.471 0.583

Memory - 2MB 0.084 0.125 2.053 2.271 -0.218 1.471 0.583

Memory - 1MB 0.084 0.125 2.053 2.636 -0.583 1.471 0.583

TABLE 4.4 – ENERGY ESTIMATED RESULTS

 The table above shows the results of energy consumption estimated to every

configured scenario. The idea of scenarios, as seen before, comes to forecast changes in

energy, memory and timing. To put more in details, each column is explained:

• Memory: this column represents the amount of energy spent to power the memory

modules. It is estimated considering the total time spent during the profiling (Ttotal)

and the power consumption of the module. Given that the power of a physical

memory module is constant while in use or idle, the equation is:

 �#�#��� = 0����� ∗ �#�#��� (4.5)

• CPU Idle: this column represents the amount of energy spent to power the

processor during the period it is not used to execute any of the tabulated functions

or during any operation required by the MemoryManagement or TradeOff. It is

estimated considering the idle time (Tidle) and the power consumption of the

processor during inactivity, which is:

CHAPTER 4: BUSINESS INTELLIGENCE

46

 ���� �1�� = 0�1�� ∗ ���� �1�� (4.6)

• CPU Normal: this column represents the amount of energy spent to power the

processor during the period it is used to execute the tabulated functions but

considering they are not tabulated and executing the normal flow. It is estimated

summing the time of each function (Tcomputation) multipliedby the power consumption

of the processor during activity, which is:

 ���� ���#�� = G 0C��#�������� ∗ ���� ����?�
2

�I�
 (4.7)

• CPU Green: this column represents the amount of energy spent to power the

processor during the period it is used to execute the tabulated functions considering

the actual flow of the memorization architecture. It is estimated summing the time of

each function in green operation (Tgreen) multiplied by the power consumption of the

processor during activity, which is:

 ���� /���� = G 0C/���� ∗ ���� ����?�
2

�I�
 (4.8)

• Savings: this column represents the amount of energy saved by using the

tabulation mechanism. It considers the difference between the “CPU Normal” and

“CPU Green”. It correspond to the actual energy saved by means of tabulation:

 ���?��/� = ����#�� − �/���� (4.9)

• CPU Best: this column represents the amount of energy spent to power the

processor during the period it is used to execute the tabulated functions considering

the best possible flow of the memorization architecture. It is estimated summing the

time of each function in best operation (Tbest) multiplied by the power consumption

of the processor during activity, which is:

 ����

• Max Savings: this column represents the amount of energy saved by using the

tabulation mechanism. It considers the difference between the “CPU Normal” and

“CPU Best”. It correspond to the best possible scenario for energy savings by

means of tabulation:

FIGURE

 The previous chart shows the comparison between every configured scenario

against the original profiling data. As one c

influences the energy consumed and increase when it is restricted. The reason for it is

increase of the miss rate, once stored parameters have to be discarded and increases the

number of time the function has to

DecisionMaker.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Memory (Wh)

CHAPTER 4: BUSINESS INTEL

47

��� @��� = G 0C@��� ∗ ���� ����?�
2

�I�

: this column represents the amount of energy saved by using the

tabulation mechanism. It considers the difference between the “CPU Normal” and

“CPU Best”. It correspond to the best possible scenario for energy savings by

���?��/� = ����#�� − �@���

FIGURE 4.3 – MEMORY ESTIMATED CHARTS

The previous chart shows the comparison between every configured scenario

against the original profiling data. As one can immediately spot that memory directly

influences the energy consumed and increase when it is restricted. The reason for it is

increase of the miss rate, once stored parameters have to be discarded and increases the

number of time the function has to be calculated plus the overhead code of the

Energy Comparison (Wh)

CPU Idle (Wh) CPU Normal (Wh) CPU Green (Wh)

ELLIGENCE

(4.10)

: this column represents the amount of energy saved by using the

tabulation mechanism. It considers the difference between the “CPU Normal” and

“CPU Best”. It correspond to the best possible scenario for energy savings by

(4.11)

The previous chart shows the comparison between every configured scenario

spot that memory directly

influences the energy consumed and increase when it is restricted. The reason for it is the

increase of the miss rate, once stored parameters have to be discarded and increases the

be calculated plus the overhead code of the

CHAPTER 4: BUSINESS INTELLIGENCE

48

4.4 FUNCTION ANALYSIS

Function analysis contributes to visualize how the MemoryManagement prioritizes

functions during tabulation. It is important to notice that the priority weights the amount of

memory distributed to each function, which means, depending on the function’s priority the

higher the priority the higher the amount of memory it has reserved for memorization.

Originally, the architecture considers only timing information to calculate priority; the

business intelligence proposes new forms of memory distribution according to timing,

memory usage, power consumption. i.e.:

Function Id
Normal Timing

(%)
Green Timing

(%)
Best Timing

(%)
Memory

(%)
Parameter Size

(%)
Scenario
Priority

System
Priority

Function 3 30.350 26.801 26.801 23.077 20.000 0.267 0.304

Function 1 23.280 22.371 22.371 22.195 20.000 0.213 0.233

Function 0 17.740 17.603 17.603 17.680 20.000 0.204 0.177

Function 2 15.338 18.521 18.521 17.472 20.000 0.178 0.153

Function 4 13.293 14.704 14.704 19.576 20.000 0.138 0.133

TABLE 4.5 – FUNCTION STATISTICS RESULTS

 The table above illustrates how each aspect of the system behavior is related to

each other. The data is weighted to represent the proportion of each functions has to the

total value. The idea is to let the user free to configure different priorities considering

different combinations of each weight. For instance, the “System Priority” (PRsystem), which is

the current implementation of priorities, is calculated using “Normal Timing” only; the

“Normal Timing” corresponds to the time consumed by each function before the tabulation

mechanism is applied:

 �PC�����# = 0C���#��
∑ 0R���#��2SI�

 (4.12)

 Although, this approach may not be the best considering there are other parameters

such as memory that could influence a priority. As so, one example could be by combining

the “Normal Timing” and the inverse value of “Memory”, which therefore prioritizes functions

that requires more time while using less memory:

 �PC��������

 As the priority are normalized, it can be used to distribute the amount of memory

every function deserves by weighting the total available memory with the priority value.

FIGURE

 The previous chart shows the comparison between every

can be used to compose the priority

set of weights to compose a good

simulation.

0 5

Function 3

Function 1

Function 0

Function 2

Function 4

Normal Timing (%) Green Timing (%)

CHAPTER 4: BUSINESS INTEL

49

mal Timing” and the inverse value of “Memory”, which therefore prioritizes functions

that requires more time while using less memory:

�������� =
0C���#��∑ 0R���#��2SI�

∗ ∑ TR���#��2SI�TC���#��
∑ �PR��������2SI�

As the priority are normalized, it can be used to distribute the amount of memory

every function deserves by weighting the total available memory with the priority value.

FIGURE 4.4 – FUNCTION STATISTICS CHARTS

The previous chart shows the comparison between every weight component

can be used to compose the priority. Although, one cannot tell immediately what is the best

set of weights to compose a good priority and for that reason we let it to be determined by

10 15 20 25 30

Green Timing (%) Best Timing (%) Memory (%) Parameter Size (%)

ELLIGENCE

mal Timing” and the inverse value of “Memory”, which therefore prioritizes functions

(4.13)

As the priority are normalized, it can be used to distribute the amount of memory

every function deserves by weighting the total available memory with the priority value.

weight component that

Although, one cannot tell immediately what is the best

priority and for that reason we let it to be determined by

35

Parameter Size (%)

CHAPTER 4: BUSINESS INTELLIGENCE

50

4.5 SCENARIOS

The business intelligence module is developed to support the creation of what-if

scenarios. What-If scenarios are used to examine how the outcome of a given problem

would be having different input parameters or configuration. Applying this methodology to

the Green IT perspective, it would be interesting to evaluate how different configurations of

hardware (i.e.: processor, memory) and software (i.e.: priority, function scope) perform in

terms of final energy efficiency.

The next sections are going to explain how what-if scenarios can be configured in

the dashboard application and what the expected impacts of each approach are:

4.5.1 PRIORITY

Priority, as seen before, defines the preference a function have over the others. The

visible impact of priority comes when there is limited memory for tabulation. In this case,

every new call to a function, considering the parameter set is not yet tabulated, may require

that a prior stored value to be removed. Considering only high priority functions, it is

expected of them to take over the memory space, eliminating all the other functions.

This effect is probably intensified when a simple priority is defined. The underlying

idea is that only one aspect (timing, memory) would not define a best possible solution. As

an example, we can say that not only how much time a function is expected to use from the

total amount but also if this function uses less memory to do so – “Normal Timing” times the

“Parameters size” inversed could be a good fit.

From the function analysis in section 4.4, the dashboard application provides a set

of possible ways to configure the priority, by using the following definitions:

CHAPTER 4: BUSINESS INTELLIGENCE

51

• Tnormal / iTnormal: Is the percentage of each function regarding Normal

Execution Time and its inverse value;

• Tgreen / iTgreen: Is the percentage of each function regarding Green

Execution Time and its inverse value;

• Tbest / iTbest: Is the percentage of each function regarding Best Execution

Time and its inverse value;

• Mfunction / iMfunction: Is the percentage of each function regarding memory

occupied by a functions parameters and its inverse value;

• Mparameter / iMparameter: Is the percentage of each function regarding

memory occupied by a single parameter and its inverse value;

4.5.2 MEMORY

Memory space has direct impact on the system performance. As more parameters

set are tabulated, the bigger is the minimization of the overhead time spent by the tabulation

mechanism. The goal of memory being a parameter for what-if scenarios is to predict how

the system would execute considering increase and decrease of memory space for

memorization.

Additionally, it is also important that MemoryManagement provides enough

capabilities to enable the distribution of memory regarding priority. Considering policies of

memorization during reducing memory space, there are three possibilities:

• Naïve: based on the priority, every time there is need for space the memory

removes a random parameter from the lowest priority function. This lead to a

situation where the lowest priority function could be completely removed from the

memory.

CHAPTER 4: BUSINESS INTELLIGENCE

52

• Ordered: it is basically the same as naïve, but in this case parameters are removed

from the lowest to the highest frequency. As the frequency is incremented to the

miss quantity (Nmiss), the effects of the overhead is tried to be postponed at most.

• Even: having in mind that even if low priority functions have less achieved

efficiency, it might happen that parameters from low priority functions but with high

frequency are more effective than high priority functions but with low frequency

parameters. Therefore, the idea is to discard parameters proportionally among all

functions.

Considering policies of memorization during increasing memory space, it is

necessary to have more information about the limits of each function input parameter and its

precision. By doing so, it is possible to estimate the amount of parameters a function would

have at most and then by comparing to the profiled amount determine the percentage of the

function is memorized. By then, we can simulate by increasing the number of tabulated

parameters in each function proportionally to the priority and assign frequencies that follows

the mean and variance of the current frequency table.

 Ultimately, it is common sense that by changing the hardware configuration implies

in different power requirements, which is, increasing or decreasing the number and type of

physical memory banks we have different energy consumption. As so, the user has to

provide information about the characteristics of the memory modules used and its power

consumption. Vide appendix A.

4.5.3 CENTRAL PROCESSING UNIT

The processor or CPU is not referred before on the methodologies, but it has a

fundamental impact on the system performance. At the end of the day, the amount of time

needed to execute every piece of code is a function of the CPU capabilities. Furthermore, it

CHAPTER 4: BUSINESS INTELLIGENCE

53

can present different energy consumptions according the technology used to build as well

as the architecture (CISC, RISC).

As so, the dashboard application provides a simple support to configuration

regarding CPU power and time. Considering the processor has different power

requirements during idle and active periods, one could configure scenarios with for different

types of processors. Also, it is available a correction factor for the timing purposes, so for a

different CPU regarding the one used to profile, time could be corrected before evaluation.

Vide appendix A.

4.6 IMPLEMENTATION

The Business Intelligence dashboard application was built using Java programming

language and NetBeans as development environment. Moreover, all the evaluations

performed are done at the same classes the actual tabulation mechanism uses, that is, the

dashboard application is fully integrated with the common classes.

The application is designed to be a stand-alone application, and could run in

different computers considering that the profiling data is available. Once the dashboard

does not interfere in the running architecture and no real time requirements, performance is

not an issue. The following paragraphs are going to describe the classes of the report

package.

Classes in the report package are related to the support of the Graphical User

Interface (GUI). The entry point is the BusinessIntelligence class that controls the instance

of BusinessIntelligenceView. There are also separate classes that render each different

analysis (DashBoardTimingPanel, DashBoardMemoryPanel, DashBoardEnergyPanel,

CHAPTER 4: BUSINESS INTELLIGENCE

54

DashBoardFunctionPanel) and all implement the interface IDashBoardChartPanel used to

update the charting renderization.

FIGURE 4.5 – CLASS DIAGRAM OF REPORT PACKAGE

The class DashBoardHelper provides functions to facilitate the creation of charts

and to integrate the dashboard to the charting library [16]. Finally, DashBoardFunctionForm

and DashBoardEditorForm enable some further configuration of the application parameters

and scenarios.

Classes in the report.entities package are related to the support of the evaluation of

the profiling data and the simulation of every scenario. The main class is SystemEvaluation

which aggregates the data and provide methods to every information available on the

interface (charts, tables). To each scenario, there is a SystemConfig that interfaces the

configured memory and CPU, SystemMemory and SystemCpu respectively.

CHAPTER 4: BUSINESS INTELLIGENCE

55

FIGURE 4.6 - CLASS DIAGRAM OF REPORT.ENTITIES PACKAGE

Given that, the class SystemData collects the data from the MemoryManagement

restored from profile file and calculates all the statistics regarding a single SystemConfig .

Also, each function is adapted to a new class TOFunctionsStatistics, from the original

TOFunction , to make it easy to work and to provide further statistical information.

CHAPTER 4: BUSINESS INTELLIGENCE

56

57

CHAPTER

5. BUSINESS INTELLIGENCE RESULTS

In order to validate the information provided on the dashboard, this chapter is going

to present the evaluation of results from the profiling of real mathematical functions. Our

main focus will be the tabulation applied to methods used on most of financial institutions.

Then we are going to present different scenarios of memory and priority in order to

determine the best combination of parameters.

5.1 PRIORITY EVALUATION

To determine how priority interferes in the system performance and final results, we

are going to consider a sample system that will serve as a demonstration only. Let’s define

a system with the following hardware configuration given on table 5.1. Moreover, we

measure some of the system timing information for each tabulated function; in this case, we

have defined 5 functions with following characteristics:

CHAPTER 5: BUSINESS INTELLIGENCE RESULTS

58

Function Id Frequency
One Exec.

(ms)
Normal

Exec. (ms)
Green

Exec. (ms)
α α-be

Parameter
Size (bytes)

Function 1 183833 1.546 284,214.64 108,364.49 0.923 0.212 344

Function 2 178997 1.556 278,470.82 105,647.15 0.923 0.21 344

Function 0 162500 1.538 249,911.68 95,687.80 0.923 0.213 384

Function 3 194166 1.019 197,806.03 105,707.13 0.929 0.348 224

Function 4 173685 0.976 169,438.92 93,380.75 0.933 0.368 344

1,244,365.23 573,310.45

System Execution Time (ms) 573,310.45 Memory Power 5.766 W

Average Hit Time (ms) 0.486 Cpu Idle Power 100 W

Average Miss Time (ms) 0.270 Cpu Active Power 110 W

Average Trade Off Time (ms) 0.014

TABLE 5.1 – TABLE OF SAMPLE SYSTEM UNDER EVALUATION

The next step is to try different combinations of priorities and evaluate which gives

the best results. As a method to compare how each priority performs, we are going to use

the amount of energy savings (Wh) in each scenario. The following table presents a set of

best performers considering the system we defined:

Memory Size (MB) Ordered
Policy (Wh)

Even Policy (Wh)

Tnormal
Tnormal,

iMparameter
Mfunction Tnormal^4

128 - 138.009 137.205 135.321 148.044

64 - 68.327 67.905 66.953 73.291

32 - 33.466 33.263 32.79 35.583

(Original Data)
20.50

20.504 20.504 20.504 20.504 20.504

16 15.995 16.846 16.671 16.665 16.463

8 4.925 6.683 6.65 6.497 6.711

4 -1.324 0.245 0.258 0.135 0.362

2 -3.931 -3.426 -3.417 -3.493 -3.34

1 -5.631 -5.454 -5.443 -5.486 -5.392

TABLE 5.2 – TABLE OF ENERGY SAVING FROM DIFFERENT PRIORITIES

 When memory size is from 1 MB to 16 MB, lower with respect to the amount of

memory occupied from the original data (20.5MB), the dashboard evaluation class starts

removing parameters from the memorization table according to the priority. Although when

CHAPTER 5: BUSINESS INTELLIGENCE RESULTS

59

the policy is Ordered, it does not matter how the priority is composed once parameters are

removed from the lowest priority to the highest priority function, where the order is always

the same.

 With respect to policies that evenly distribute memory, we can verify how they

impact energy savings when limiting memory, but also, to predict how much energy is going

to be saved when the memory is increased. To forecast how function parameters are

distributed, we consider range and precision which enables to estimate how many

parameters a function could possess. In this case, we increase the number of parameters

and assign frequencies according to the distribution model.

 From the table we verify that Tnormal has a good performance when reducing

memory while Tnormal^4 provide better results when memory is expanded. The interesting

fact is that the parameter size and how much memory a function uses has low or null

improvement toward a better priority. As we can see in <Tnormal,iMparameter>, the results

of every memory scenario has less energy savings than when using only Tnormal. Having

that in mind, not only Tnormal constitutes the best priority as so as it is the simpler to

implement, which would reduce any overhead due to complexity of implementation and data

acquisition.

5.2 FINANCIAL SOFTWARE

Nowadays, several financial institutions use complex systems to manage all its

resources, including fees, taxes, accounts, investments and prices in general.

These systems are well-known as heavy computational operations including

libraries and routines used to calculate various different values related to personal and

corporate economies and accounting at all. They are complex because use math with

CHAPTER 5: BUSINESS INTELLIGENCE RESULTS

60

exponential, rational numbers and series. Obviously, as the most of managerial systems, a

set of variables and changeable parameters are available to the user, and this turn the

servers into operations which if not run in high performance equipments may take several

amounts of time.

This work will focus in software layer of Green IT field and furthermore, will take

place in systems related to financial operations and calculations. Analyzing operations and

using software profiles to verify and identify routines, it will be possible to optimize such

executions, release idle resources and probably improving the all available resources.

Initially the work will take place in analysis of a set of functions traditionally used in

system to manage credit and insurance companies. They are:

• Implied Volatility: of an option contract is the volatility implied by the market price

of the option based on an option pricing model. In other words, it is the volatility that,

when used in a particular pricing model, yields a theoretical value for the option

equal to the current market price of that option. Non-option financial instruments

that have embedded optionality, such as an interest rate cap, can also have an

implied volatility. Implied volatility, a forward-looking measure, differs from historical

volatility because the latter is calculated from known past returns of a security;

• Binomial Option Pricing Model: is widely used as it is able to handle a variety of

conditions for which other models cannot easily be applied. This is largely because

the BOPM is based on the description of an underlying instrument over a period of

time rather than a single point. As a consequence, it is used to value American

options that are exercisable at any time in a given interval as well as Bermudan

options that are exercisable at specific instances of time. Being relatively simple, the

model is readily implementable in computer software;

CHAPTER 5: BUSINESS INTELLIGENCE RESULTS

61

These calculations presented above are also considered the algorithmically

bottleneck of Financial Enterprise Systems, compromising overall performance. In fact, to

attack those points, it will be necessary to identify the pure functions, in other words,

mathematically pure functions (functions without any other functionality but math no output,

no interface, no event handling).

The study regards some substitutions of Series calculation by Tables with pre

calculated values depending of chosen parameters to optimize time of financial software

execution.

5.2.1 ENERGY SAVINGS

To determine the system prediction performance, we executed the tabulation

architecture against the financial functions defined: Implied Volatility, Binomial Option

Pricing Model. The idea to limit the memory size and then execute the system with a fixed

amount of calls for each function. The system will then run toward a steady state. The we

compare the predicted value of savings the dashboard will provide considering memory

dump of each scenario. The following table presents the data collected regarding energy

savings

Scenario Actual From

2048KB

From

1024KB

From

512KB

From

256KB

From

128KB

From

64KB

From

32KB

2048 7.097 7.097 5.075 5.015 4.858 4.850 4.725 4.961

1024 5.024 4.755 5.024 4.694 4.316 4.209 3.99 4.243

512 4.165 4.083 4.445 4.165 3.532 3.290 3.043 3.278

256 2.568 2.821 3.208 3.228 2.568 2.283 2.045 2.213

128 1.379 1.570 1.945 1.906 1.839 1.379 1.174 1.329

64 0.588 0.654 1.052 0.926 0.968 0.901 0.588 0.688

32 0.301 0.102 0.505 0.342 0.396 0.422 0.369 0.301

TABLE 5.3 – ENERGY SAVING RESULTS FROM ACTUAL AND PREDICTION DATA

 In the end, energy savings depends only on the difference of processor power

between idle and active states. In this case, the values may change for different processors

but the proportions will be kept.

FIGURE 5.1 - ENERGY SAVING RESULT

 In the figure 5.1, the bold line represents the actual savings achieved from running

the system. The thin lines are predictions according to the data restored from each

execution.

 As expected, prediction data is more accurate as we have more information of the

system behavior, that is, when there is more memory space, more function data is tabulated

as well as their frequency information. Considering prediction data for 2048KB, we can

verify a big gap which is due to unbalanced memory distribution, that is, memory was not

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

2048 1024

S
a
v
in
g
s
 (
W
h
)

CHAPTER 5: BUSINESS INTELLIGENCE

62

In the end, energy savings depends only on the difference of processor power

between idle and active states. In this case, the values may change for different processors

but the proportions will be kept.

ENERGY SAVING RESULTS FROM ACTUAL AND PREDICTION DATA

In the figure 5.1, the bold line represents the actual savings achieved from running

the system. The thin lines are predictions according to the data restored from each

pected, prediction data is more accurate as we have more information of the

system behavior, that is, when there is more memory space, more function data is tabulated

as well as their frequency information. Considering prediction data for 2048KB, we can

rify a big gap which is due to unbalanced memory distribution, that is, memory was not

512 256 128 64 32

Scenario

Energy Predictions (Wh)

Actual

From 2048KB

From 1024KB

From 512KB

From 256KB

From 128KB

From 64KB

From 32KB

E RESULTS

In the end, energy savings depends only on the difference of processor power

between idle and active states. In this case, the values may change for different processors

In the figure 5.1, the bold line represents the actual savings achieved from running

the system. The thin lines are predictions according to the data restored from each

pected, prediction data is more accurate as we have more information of the

system behavior, that is, when there is more memory space, more function data is tabulated

as well as their frequency information. Considering prediction data for 2048KB, we can

rify a big gap which is due to unbalanced memory distribution, that is, memory was not

Actual

From 2048KB

From 1024KB

From 512KB

From 256KB

From 128KB

From 64KB

From 32KB

CHAPTER 5: BUSINESS INTELLIGENCE RESULTS

63

divided accordingly to the functions priorities. In addition, timing results (Tcomputation, Tmiss, Thit

and Ttradeoff) will slightly change in every execution. Even though, the final results are

satisfactory.

CHAPTER 5: BUSINESS INTELLIGENCE RESULTS

64

65

CHAPTER

6. CONCLUSION

Green IT is a research field becoming even more important nowadays when natural

resources are considered important to sustainable development. With importance increasing

and researches, new technologies are starting to appear in the direction of natural

resources saving and environmental impact avoidance. Since energy is directly related to

Green impact, and beside is also becoming an expensive attribute in many companies’

budget, the Green IT is trying to find the least intrusive answer to already existent solutions.

Why?! Because modifying equipments and change systems running currently in industry

organizations are very expensive and may not guarantee the reliability and safety previously

analyzed.

Then, taking into account companies with huge datacenters that provide

computational power over business information, this work started focusing in software layer

which is an very customizable field and also flexible to changes. Previous researches had

demonstrated that the way the software layer is executed in huge datacenters with high data

load impact differently in the overall hardware behavior by means of microprocessor power

consumption, amount of memory banks powered permanently and also the generated heat.

Heat, a very important issue in Green IT and datacenters configuration, is responsible for a

CHAPTER 6: CONCLUSION

66

large slice of the power consumption in IT since the air conditioning systems are usually

high energy consumers.

This work, the Business Intelligence Module, is part of a larger project that aims to

develop architecture to support function tabulation and which includes Pure Function

Recognition, Bytecode Modification, Trade-Off and Memory Management. The Business

Intelligence Module is an external tool to better evaluate and understand how the rest of the

architecture is performing. The implementation has been done in Java.

It is verified that tabulation is best when there is infinite memory space and priority

has no effect. Although there is I no such thing as infinite memory, the first set of results is

regarding the priority mechanism. For simplicity, the current implemented priority

mechanism only takes into account the original computational timing to determine it. The

results confirmed that the use of the function total computational time is the best performer

in terms of energy saved, plus the data for calculating this priority is easier comparing to

other data.

Now regarding the acuity of the predictions made by the application, as expected,

prediction data is more accurate as we have more information of the system behavior, that

is, when there is more memory space, more function data is tabulated as well as their

frequency information. Even though, timing results (Tcomputation, Tmiss, Thit and Ttradeoff) will

slightly change in every execution the final results are satisfactory.

6.1 FUTURE WORK

Having in mind the promising results obtained in this project, there is a set of

possible enhancements to be put in practice in subsequent work steps. The future work to

be develop is to integrated static function analysis from the pure function module, even

CHAPTER 6: CONCLUSION

67

more, some totally new information like: cpu usage, parameter range, parameter precision

and so on.

Other possible improvement is regarding the power model. It should be validate

through physical tests and made as accurate as possible by determining what kind of

characteristic should be taken into account when calculating the final value. Moreover, as

known that cpu generates heat according to its usage level, the power model could consider

how energy consumption is reduced from the point of view of cooling requirements.

68

REFERENCES

[1] ISO/IEC, TR9126:2003, Software engineering - Product quality, International

Organization for Standardization, Geneva, Switzerland., 2003.

[2] C. Francalanci, E. Capra, and G. Agosta. Developing Energy-Efficient Software:

Enersoft., 2009.

[3] T. Restorick. An inefficient truth. global action plan. IT Professional, 2007.

[4] E. Williams. Energy intensity of computer manufacturing: Hybrid assessment

combining process and economic input-output methods. Environ. Sci. Technol.,

(38):6166–6174, 2004.

[5] Berkeley National Lab. Lawrence. Optimization of product life cycles to reduce

greenhouse gases in california. Report for California Energy Commission.,

(CEC-500-2005-110-F), 2005.

[6] Industrial Research and Development Corporation. Personal computers

(desktops and laptops) and computer monitors. Report for the European

Commission, August 2007., 2007.

[7] Kenneth Cayton and Jed Scaramella. Ibm system x4 : Delivering high value

through scale up. Technical report, IDC, 2008.

[8] Brown E.G. and JLee C. Topic overview: Gren it. Technical report, Forrester

Research, 2007.

[9] http://www.tpc.org.

[10] http://www.ambiente.it/impresa/legislazione/leggi/2005/digs151-05.htm.

[11] N. Margolus and L.B. Levitin. The maximum speed of dynamical evolution.

Phisica, D120:pp. 188–195, 1998.

[12] C. Francalanci and E. Capra. Green it. sfide e opportunit`a.

http://www.mondodigitale.net/Rivista/08_numero_4/Francalancip.36-42_.pdf,

2007.

69

[13] San Murugesan. Harnessing green it: Principles and practices. IT Professional,

vol.10 no.1:pp. 24–33, 2008.

[14] Matthew Finifter, Adrian Mettler, Naveen Sastry, and David Wagner.Veri_able

functional purity in java. In CCS '08: Proceedings of the 15
th
 ACM conference

on Computer and communications security, pages 161-174, 2008.

[15] http://github.com/jezhumble/javasysmon/

[16] http://www.jfree.org/jfreechart/

70

APPENDIX A

The following XML file corresponds to a possible dashboard configuration file

(SystemConfig.xml):

<?xml version="1.0" encoding="UTF-8"?>
<!--
 Document : SystemConfig.xml.xml
 Created on : March 11, 2010, 11:59 PM
 Author : planer
 Description: Configures the system properties
 Purpose of the document follows.
-->
<config>
 <!--
 <memory id="{int}" description="{String}" totalsize="{long:Bytes}" totalpower="{double:Watts}" />
 totalsize: describes the size of memory used.
 totalpower: describes the power spent. Used to calculate energy over time.
 -->
 <memory id="1" description="Memory 128MB" totalsize="134217728" totalpower="0.24025" />
 <memory id="2" description="Memory 256MB" totalsize="268435456" totalpower="0.4805" />
 <memory id="3" description="Memory 512MB" totalsize="536870912" totalpower="0.961" />
 <memory id="4" description="Memory 1GB" totalsize="1073741824" totalpower="1.922" default="1" />
 <memory id="5" description="Memory 2GB" totalsize="2147483648" totalpower="3.844" default="1" />
 <memory id="6" description="Memory 4GB" totalsize="4294967296" totalpower="7.688" />
 <memory id="7" description="Memory 8GB" totalsize="8589934592" totalpower="15.376" />
 <!--
 <cpu id="{int}" description="{String}" totalpower="{double:Watts}" />
 factor: describe the efficiency of the CPU comparing to the default/measured CPU.
 totalidlepower: describes the power spent during idle operation.
 Used to convert from processing time(s) to power.
 totalprocessingpower: describes the power spent during processing operation.
 Used to convert from processing time(s) to power.
 -->
 <cpu id="1" description="AMD Athlon XP 2700+" factor="0.9" totalidlepower="90" totalprocessingpower="9" />
 <cpu id="2" description="AMD Athlon XP 3200+" factor="1.1" totalidlepower="110" totalprocessingpower="11" />
 <cpu id="3" description="AMD Athlon XP 2700+" factor="1.2" totalidlepower="120" totalprocessingpower="12" />
 <cpu id="4" description="Intel Core2Duo 2.1GHz" factor="1.0" totalidlepower="100" totalprocessingpower="10"
default="1" />
 <!--
 <evaluation description="{String}" functionmemorysize="{long:Bytes}" />
 functionmemorysize: amount of memory dedicated to function memorization.
 installed:especifies the scenario configuration where profiling was done.
 -->
 <evaluation description="Original Data" installed="1">
 <priority compose="Tgreen,iMfunction"/>
 <cpuref refid="4" />
 <memoryref refid="4" />
 <memoryref refid="5" />
 </evaluation>
 <evaluation description="Memory - 4MB - Ordered" functionmemorysize="4194304" >
 <priority compose="Tgreen,iMfunction" policy="ordered" />
 <cpuref refid="4" />
 <memoryref refid="4" />
 <memoryref refid="5" />
 </evaluation>
</config>

71

APPENDIX B

The following table presents the current DTD validation to the MemoryManagement

dump and a sample piece of file from a real profiling execution.

<!-- DTD definition -->
<?xml version="1.0" encoding="UTF-8"?>
<!-- Root Node -->
<!ELEMENT MemoryManagement (information, functions)>
<!ELEMENT information (info+)>
<!ELEMENT info (#PCDATA)>

<!ELEMENT functions (function+)>
<!ELEMENT function (timing, frequency, hits, memory, priority, frequencies)>
<!ELEMENT timing (#PCDATA)>
<!ELEMENT frequency (#PCDATA)>
<!ELEMENT hits (#PCDATA)>
<!ELEMENT memory (#PCDATA)>
<!ELEMENT priority (#PCDATA)>
<!ELEMENT frequencies (frequency+)>

<!-- Function Attributes -->
<!ATTLIST function signature CDATA #REQUIRED>
<!-- Info Attributes -->
<!ATTLIST info name CDATA #REQUIRED>
<!ATTLIST info type CDATA #REQUIRED>
<!ATTLIST info value CDATA #REQUIRED>
<!-- Data Attributes -->
<!ATTLIST frequency name CDATA>
<!ATTLIST frequency type CDATA>
<!ATTLIST frequency value CDATA #REQUIRED>
<!ATTLIST timing type CDATA #FIXED "Long">
<!ATTLIST timing value CDATA #REQUIRED>
<!ATTLIST memory type CDATA #FIXED "Long">
<!ATTLIST memory value CDATA #REQUIRED>
<!ATTLIST priority type CDATA #FIXED "Float">
<!ATTLIST priority value CDATA #REQUIRED>
<!ATTLIST entries type CDATA #FIXED "Long">
<!ATTLIST entries value CDATA #REQUIRED>

<!—XML Exemple -->
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<MemoryManagement date="2010-06-23 05:41:54">
 <information>
 <info name="systemExecTime" type="Long" value="146513485911"/>
 <info name="lookupAverageHitTime" type="Double" value="279127.460513073"/>
 <info name="lookupAverageMissTime" type="Double" value="257300.179745903"/>
 <info name="tradeoffAverageTime" type="Double" value="27096.0166673471"/>
 <info name="memorySize" type="Long" value="3215851520"/>

72

 <info name="memoryUsageSystem" type="Long" value="2337640448"/>
 <info name="memoryUsageApplication" type="Long" value="109117440"/>
 <info name="memoryUsageFunctions" type="Long" value="1312288"/>
 <info name="memorySystemFree" type="Long" value="878211072"/>
 <info name="memoryApplicationFree" type="Long" value="83100184"/>
 </information>
 <functions>
 <function methodName="binomialOptionPricing" signature="binomialOptionPricing">
 <timing type="Long" value="2249919"/>
 <frequency type="Long" value="498670"/>
 <hits type="Long" value="498670"/>
 <memory type="Integer" value="424"/>
 <priority type="Float" value="0.1864267"/>
 <frequencies>
 <frequency name="100.0+120.0+1.0+1000+0.032+0.28" value="13"/>
 <frequency name="100.0+120.0+1.0+1000+0.081+0.61" value="1"/>
 <frequency name="100.0+120.0+1.0+1000+0.059+0.76" value="17"/>
 <frequency name="100.0+120.0+1.0+1000+0.078+0.77" value="1"/>
 <frequency name="100.0+120.0+1.0+1000+0.072+0.46" value="75"/>
 .
 .
 .
 </frequencies>
 </function>
 </functions>
</MemoryManagement>

