
Politecnico di Milano

Facoltà di Ingegneria dell’Informazione

Dipartimento di Elettronica e Informazione

Corso di Laurea Specialistica in Ingegneria Informatica

A FRAMEWORK FOR DESIGN-TIME CONFIGURATION OF A
RUNTIME MANAGEMENT SYSTEM FOR MANY-CORE

ARCHITECTURES

Relatore: Prof. Gianluca Palermo

Tesi di Laurea Specialistica di:
Massimiliano Gentile
Matricola n. 731238

Anno Accademico 2009-2010

To all my dears

We learn wisdom from failure
much more than from success.

We often discover what will do,
by finding out what will not do;

and probably he who never made a
mistake never made a discovery.

Samuel Smiles

Abstract

The Many-Core Architectures are the next big turning-point in the devel-
opment of architectures. We have to be ready to make the most of them
by exploiting the advantages that they can offer, but it is not trivial to effi-
ciently utilize the available computing power. The currently used solutions,
by themselves, do not scale well with great number of cores, particularly in
the presence of concurrent parallel applications.

The goal of this thesis is the development of an efficient Runtime Manage-
ment System that allows to exploit the advantages offered by the Many-Core
Architectures through the dynamic choice of the parallelization level of the
applications. In order to be used with a wide range of applicative scenarios,
it has also been implemented a Design-Time Configuration Framework that
helps finding the best configuration of the Runtime Manager parameters.

Experimental results have been conducted on a real Many-Core system,
to analyze the difference in system throughput and individual application
performance when using the Runtime Management System. They show that
it is introduced low overhead and that it is obtained a consistent performance
improvement in the execution of multiple concurrent running applications.

iii

Ringraziamenti

Prima di tutto vorrei ringraziare chi mi ha permesso di arrivare fin qui, soste-
nendomi e incoraggiandomi: grazie mamma e papà per avere esaudito ogni
mia richiesta, per i riti scaramantici prima degli esami (!) e per il supporto
che è stato indispensabile, grazie a Federica per tutto l’amore che mi ha dato
in questi anni e per avermi sopportato anche nei momenti peggiori, riuscendo
a farmi ritrovare l’allegria, grazie a Federico per aver sempre creduto in me.

Grazie al Professore Gianluca Palermo per la proposta di questa tesi, per
la costante disponibilità e per avermi sempre fatto sentire a mio agio.

Grazie anche agli amici emigrati a Milano: Cinzia e Gianluca, Clara, Elio
e Giallo per la compagnia, le mangiate, le serate al birrificio e per tutte le
esperienze passate insieme. Grazie anche a tutto il gruppo Quinta E, anche
se ci vediamo poco, per avermi fatto capire come una amicizia forte può
resistere alle lunghe distanze. Grazie a Fausto, per avermi fatto superare
in allegria il trauma dei primi mesi a Milano, anche se avrei voluto averlo
accanto per molto più tempo.

Infine grazie a Dezo, Manuel, Yan, Ghira, Ghiso e Giorgio, fondamentali
per riuscire a sopravvivere ai semestri più noiosi e con i quali ho passato cin-
que anni fantastici tra Worms Golf, Tokyo, Talking Paper, Poker, Mundial e
tutto il resto.

Massimiliano Gentile

iv

Introduzione

Quando i primi sistemi di elaborazione furono sviluppati, erano grandi com-
puter capaci di elaborare piccole quantità di dati attraverso l’esecuzione di
una singola applicazione, scritta specificatamente per quel computer. In
questa situazione non vi era bisogno di condividere risorse tra diverse ap-
plicazioni. Quando il potere di elaborazione dei computer e il numero di
applicazioni iniziò ad aumentare, si rese necessario sviluppare sistemi capaci
di condividere le risorse disponibili. Inoltre è via via aumentato il livello di
complessità delle applicazioni e l’opportunità di eseguire in parallelo alcune
porzioni di codice ha portato alla creazione delle applicazioni multi-task : al-
cune elaborazioni sono suddivise in sezioni di codice più piccole ed eseguite
parallelamente. In questo modo il numero di processi in esecuzione su un
singolo computer è aumentato ancora di più.

Per far fronte alla sempre maggiore richiesta di prestazioni, i grandi pro-
duttori di processori hanno, fino a qualche tempo fa, tentato di trovare una
soluzione attraverso l’aumento delle frequenze e della complessità delle ar-
chitetture. Questa scelta ha portato in breve tempo alla nascita di problemi
legati all’eccessivo calore e alla dissipazione di potenza. I produttori hanno
quindi cercato un rimedio attraverso lo sviluppo di architetture composte da
core multipli. Oggigiorno un personal computer in commercio è capace di
gestire centinaia di processi eseguiti su sistemi che possiedono fino ad otto co-
re. Altre architetture utilizzate in campi diversi, come ad esempio i Network
Processors o le unità grafiche, presentano un numero di core ancora più ele-
vato. Attualmente la tendenza nello sviluppo di nuovi processori prevede la

v

produzione di architetture costituite da un numero sempre maggiore di core,
dalle centinaia alle migliaia di unità, e che prendono il nome di Architetture
Many-Core.

Sfruttare i vantaggi offerti da questi nuovi prodotti è una grande sfida
perché non è banale riuscire ad ottenere un utillizzo efficiente della potenza
computazionale che viene fornita. Le applicazioni dovranno essere modificate
o, persino, completamente riprogettate per poter essere eseguite su unità di
esecuzione multiple. Il lavoro di parallelizzazione delle applicazioni è un com-
pito molto complesso e richiede notevoli sforzi. Fortunatamente sono stati
sviluppati strumenti software, come ad esempio OpenMP [1], che aiutano il
programmatore semplificando questa operazione e che richiedono l’introdu-
zione di piccole modifiche al codice sorgente per ottenere l’esecuzione paralle-
la di porzioni di codice. È stato recentemente verificato che questa soluzione,
da sola, non ottiene miglioramenti delle prestazioni adeguati su processori
con un elevato numero di core, e in modo particolare quando devono essere
eseguite più applicazioni parallele [2].

In questa tesi mi sono concentrato su una categoria particolare di siste-
mi, detti Sistemi Embedded Many-Core. Si tratta di sistemi costituiti da una
Architettura Many-Core, sviluppati per l’esecuzione di compiti dedicati. Per
questo motivo, durante la fase di progettazione del sistema vengono imple-
mentati anche i software dei servizi principali. Queste applicazioni devono
rispettare specifici requisiti di Qualità del Servizio (QoS), ovvero garantire
che l’esecuzione dei servizi avvenga senza creazione di disagi all’utente. Que-
sta categoria di sistemi deve essere, inoltre, capace di eseguire applicazioni
che non possiedono questo genere di requisiti e che sono aggiunte al sistema
dopo la sua commercializzazione.

Principali Contributi di Questa Tesi

L’obiettivo di questa tesi è lo sviluppo di un Runtime Management System
efficiente, che permetta di sfruttare i vantaggi offerti dalle Architetture Many-

vi

Core attraverso la scelta dinamica del livello di parallelizzazione delle appli-
cazioni in ambiente multi-task. Per poter essere usato in un ampio insieme di
scenari applicativi, è stato inoltre implementato un Design-Time Configura-
tion Framework, che aiuta a trovare la migliore configurazione dei parametri
del Runtime Manager. Per maggiore chiarezza, vengono di seguito forniti
maggiori dettagli sui diversi contributi realizzati in questo lavoro.

Il primo contributo è costituito dallo sviluppo di un Runtime Manage-
ment System, capace di gestire l’assegnamento delle risorse, in particolare
le unità di esecuzione, alle applicazioni attive e che sia capace di scegliere il
loro livello di parallelizzazione sulla base dello stato di utilizzo del sistema. Il
Manager implementato è stato specificatamente progettato per Sistemi Em-
bedded Many-Core e, quindi, è in grado di gestire l’esecuzione, su sistemi con
centinaia di core, sia dei servizi principali del sistema, che delle applicazioni
aggiunte successivamente. Il Manager è stato realizzato prestando partico-
lare attenzione all’overhead introdotto. Una caratteristica fondamentale è la
possibilità di configurare il Manager. Infatti non è possibile progettare un
Runtime Manager che sia efficiente per qualunque Sistema Embedded. Attra-
verso la modifica di una serie di parametri, il Manager può essere adattato
e ottimizzato per gestire nel migliore dei modi diversi scenari applicativi.

Trovare l’assegnamento dei parametri che rappresenta la migliore confi-
gurazione per un sistema può essere un compito oneroso. Eseguire questa
operazione manualmente è impraticabile perché bisognerebbe testare singo-
larmente un numero molto elevato di configurazioni. Per risolvere questo pro-
blema, ho sviluppato un Design-Time Configuration Framework. Si tratta
di uno strumento che nasce dalla integrazione di due applicazioni: un Simu-
latore di Scenari Applicativi e uno strumento di Design Space Exploration.
La prima è una applicazione capace di simulare e analizzare il comportamen-
to del Runtime Management System, di cui si specifica una configurazione,
quando è utilizzato per gestire un particolare scenario applicativo. In altre
parole, una volta specificato uno scenario di esecuzione, cioè un insieme di
applicazioni di cui si definisce la dinamica e l’intervallo di esecuzione, il Simu-

vii

latore valuterà il comportamento del Runtime Manager durante la gestione
delle applicazioni specificate, per una data configurazione dei parametri. Il
secondo strumento, invece, è capace di eseguire il simulatore di scenari ap-
plicativi su insiemi di configurazioni del Manager e, in seguito, permette di
analizzare i risultati delle simulazioni per trovare la soluzione che ottimizza
il comportamento del Runtime Manager per lo specifico scenario definito.

Inoltre, per permettere la simulazione del Runtime Management System e
del Design-Time Configuration Framework su una Architettura Many-Core,
ho implementato un Simulatore di Architetture, capace di simulare sia l’ar-
chitettura di un processore con un numero di core configurabile, che lo sche-
duler che assegna i processi alle unità di esecuzione seguendo le direttive del
Runtime Manager.

Organizzazione

La tesi è organizzata come segue.

Il Capitolo 2 presenta i concetti chiave che sono considerati necessari come
conoscenza di base per la comprensione di tutti gli aspetti discussi in questa
tesi. Viene descritto lo stato dell’arte per la gestione della esecuzione e le
applicazioni autonome, e una descrizione delle tecnologie usate durante lo
sviluppo della tesi.

Il Capitolo 3 definisce e descrive il Runtime Management System, con-
centrandosi sulla composizione architetturale del software, sulla interfaccia
offerta alle applicazioni e sulle politiche di parallelizzazione adottate.

Il Capitolo 4 illustra la struttura del Design-Time Configuration Fra-
mework, attraverso la descrizione del Simulatore di Architetture Many-Core,
del Simulatore di Scenari Applicativi e di come si integrano con lo strumento
di Design Space Exploration.

Il Capitolo 5 mostra i risultati sperimentali delle analisi eseguite sul Run-
time Management System, che riguardano le politiche di parallelizzazione e i

viii

tempi di esecuzione aggiuntivi introdotti dal Manager.
Infine, il Capitolo 6 riassume i principali risultati della tesi e presenta

alcuni possibili sviluppi a partire da questo lavoro.

ix

Contents

1 Introduction 1

1.1 Thesis Contribution . 2
1.2 Thesis Organization . 4

2 Background 5

2.1 OpenMP . 5
2.2 Runtime Management . 8
2.3 Autonomic Applications . 9
2.4 Design Space Exploration . 10

3 Runtime Management System 15

3.1 Overview of the System . 15
3.2 Operating points . 19
3.3 OpenMP Extensions . 21
3.4 Scheduler and Operating System Role 22
3.5 Local Runtime Manager . 23
3.6 Runtime Management API . 25
3.7 Parallelization Policy . 28

3.7.1 Profiled Guarantee-Throughput Applications 28
3.7.2 Profiled Best-effort Applications 30
3.7.3 Not-profiled Best-Effort Applications 31

4 Framework Implementation 37

4.1 Many-core Architecture Simulator 37

x

CONTENTS

4.2 Design-time Configuration Framework 39
4.2.1 Scenario Simulator . 41
4.2.2 Design Space Exploration 43

5 Experimental Results 49

5.1 Analysis of the Parallelization Policy 49
5.2 Overhead Analysis . 54

5.2.1 Execution Time of the Principal Methods 55
5.2.2 Evaluation of the Overhead over a Benchmark 56

6 Conclusions and Future Works 67

A OpenMP Extensions 70

xi

List of Figures

2.1 Two-dimensional design space with Pareto-optimal designs 1,
4, 5, and 6. 12

2.2 A components view of Multicube Explorer. 14

3.1 The interaction scheme of the Runtime Management System. . 16
3.2 The block scheme of the Runtime Management System. 18
3.3 An example of how the operating points are ordered based on

the completion time and the execution time. 29
3.4 The scheme of the adaptation of the policy based on the last

execution time. 32

4.1 The graphical user interface of the Many-core Architecture
Simulator. 39

4.2 The objectives space focused on cpu_for_profiled, projected
on profiled_avg_load and not_profiled_avg_load. 46

4.3 The objectives space focused on load_limit_percent, projected
on profiled_app_queued and not_profiled_app_queued. . . . 47

4.4 Box plot of not_profiled_avg_load, focused on np_filter_msec. 48

5.1 An example of the assignment of cores when four applications
with fast dynamic are executed sequentially. 50

5.2 An example of the assignment of cores with applications that
have all the three kind of dynamic. 51

xii

LIST OF FIGURES

5.3 An example of the assignment of cores with a scenario that
saturates all the available resources. 52

5.4 An example of the assignment of cores when the number of
cores reserved for not-profiled applications varies. 53

5.5 The result of the profiling of four benchmark applications. . . 58
5.6 The performance variation for profiled and not-profiled appli-

cations of a benchmark executed with the same parallelization
level. 61

5.7 The performance variation for profiled and not-profiled ap-
plications of a benchmark executed with the parallelization
policies described in this thesis. 63

5.8 The performance variation for profiled and not-profiled appli-
cations of a benchmark executed pairwise with the paralleliza-
tion policies described in this thesis. 65

A.1 An example of a profiled application with highlighted modifi-
cations. 71

xiii

List of Tables

3.1 The execution units assigned to different sets of applications
with the same dynamic, that run concurrently. 35

5.1 The configuration of the experimenting platform. 55
5.2 The measurement of the execution time of two functions, per-

formed on the experimenting platform. 55
5.3 The execution parameters and the number of parallel sections

of the benchmark applications. 57
5.4 The results of the overhead measurement over a set of bench-

mark applications. 60
5.5 The results of the execution time measurement when a single

benchmark applications is executed with the parallelization
policies described in this thesis. 62

5.6 The results of the execution time measurement when a pair
of benchmark applications is concurrently executed with the
parallelization policies described in this thesis. 64

xiv

Chapter 1

Introduction

When the first computing systems were deployed, they were very big comput-
ers able to process a small amount of data by executing a single application,
that was written specifically for that hardware. In this situation there was no
need to share resources among multiple applications. As the computational
power of computers and the amount of applications started to increase, it
was necessary to develop systems capable of sharing the available resources.
Moreover, the applications have become more complex and the opportunity
to parallelize some portion of them has led to the creation of multi-task ap-
plications: some calculations are divided in smaller parts and executed con-
currently. In this way the number of processes running in a single computer
has increased even more.

To face the increasing request of computational power, the major pro-
cessor vendors, until recently, have tried to find a solution by increasing the
frequency and the circuit complexity. This choice has given rise to problems
relative to excessive heating and power consumption. Therefore, the vendors
have remedied by starting developing architectures composed of multiple
cores. Nowadays, a commercial personal computer is capable of handling
hundreds of processes that share up to eight cores. Other architectures, used
in different fields, like Network Processors or Graphics Processing Units, are
composed of even more cores. The current trend in the design of new proces-

1

Chapter 1. Introduction

sors is to embed more and more cores. These new architectures are named
Many-Core Architectures and will be constituted of hundreds of cores.

Exploiting all the advantages offered by these products is a great challenge
because it is not trivial to efficiently utilize the available computing power.
The applications should be modified, or even completely rewritten, in order
to be executed over multiple execution units. The task of the parallelization
of the applications is very difficult and requires a lot of efforts. Fortunately,
it has been developed tools, like for example OpenMP [1], that help the pro-
grammer and simplify this operation. It is required to slightly modify the
sources, in order to let the applications execute selected portions of code over
all the available cores. However, it has been verified that, using these solu-
tions by themselves, the performance does not scale well with great number
of cores, particularly in the presence of concurrent parallel applications [2].

In this thesis I focus on Many-Core Embedded Systems. They are systems
with an underlying Many-Core Architecture, that are designed to perform
dedicated functions. Therefore, they are deployed with a set of core services
applications, developed in the design phase of the system, that have to re-
spect Quality of Service (QoS) requirements. In other words, it should be
guaranteed that the execution of those services does not cause annoyances
to the user because of quality reductions. These systems can also execute
applications that do not have such requirements and that are loaded in the
system after the deployment.

1.1 Thesis Contribution

The goal of this thesis is the development of an efficient Runtime Manage-
ment System that allows to exploit the advantages offered by the Many-Core
Architectures through the dynamic choice of the parallelization level of the
applications. In order to be used with a wide range of applicative scenarios,
it has also been implemented a Design-Time Configuration Framework that
helps finding the best configuration of the Runtime Manager.

2

Chapter 1. Introduction

First, it has been designed the Runtime Management System, capable of
handling the assignment of the resources, in particular the execution units, to
the active applications and that is able to choose their parallelization level on
the basis of the current status of the system. The implemented runtime man-
ager has been designed for Many-Core Embedded Systems and, therefore it
is able to handle both core services and not constrained applications running
on processors with hundreds of cores. Particular attention has been given to
the minimization of the overhead. An essential characteristic is the possibil-
ity to configure the manager. Indeed, it is not possible to design a runtime
manager that is good for every Embedded System. Therefore, through the
modification of a set of parameters, it can be adapted and optimized for any
applicative scenario.

Finding the assignment of the parameters that represents the best config-
uration for a system can be a difficult task. There are too many configurations
that should be tested and it is not feasible to do this task manually. To solve
this problem, as the second step of the thesis, I have developed a Design-Time
Configuration Framework that automatize the analysis of the space of the
possible configurations. It is the integration of two software applications: a
newly implemented scenario simulator and an already existent Design Space
Exploration tool. The first is a tool capable of simulating and evaluating
the behavior of the Runtime Management System with a specified configu-
ration, when it is used to manage a particular applicative scenario. In other
words, it is possible to specify a scenario of execution, by indicating a set
of applications with their execution dynamic and the interval of execution,
along with the values of the parameters to configure the runtime manager
and evaluate how it performs when handling those applications. The second
tool is, instead, capable of executing the scenario simulator over a set of con-
figurations of the runtime manager and, then, it allows the analysis of the
results to easily find the solution that optimizes the behavior of the Runtime
Manager for the specific scenario.

In addition, to allow the simulation of the Runtime Management System

3

Chapter 1. Introduction

and the Design-Time Configuration Framework over a Many-Core Archi-
tecture, it has been implemented an architecture simulator, that is able to
simulate a processor architecture with a configurable number of cores and
a scheduler, that assigns the threads to the execution units following the
directions provided by the runtime manager.

1.2 Thesis Organization

The thesis is organized as follows.

Chapter 2 presents the key concepts that are considered necessary as
a background for the comprehension of all the aspects of the thesis. It is
described the state of the art for the runtime management and the autonomic
applications, and a description of the technologies used in the thesis.

Chapter 3 defines and describes the Runtime Management System, focus-
ing on the architectural composition, the interface offered to the applications
and the adopted parallelization policies.

Chapter 4 illustrates the structure of the Design-Time Configuration
Framework, with the descriptions of the Many-core Architecture Simulator,
the scenario simulator and how they integrate themselves with the Design
Space Exploration tool.

Chapter 5 shows the experimental results of the analysis conducted over
the Runtime Management System, more specifically on the parallelization
policy and on the overhead.

Finally, Chapter 6 summarizes the main contributions of the thesis and
reports some possible future developments, starting from this work.

4

Chapter 2

Background

This chapter presents the background necessary to understand all the as-
pects of this thesis. First, it is introduced OpenMP, that will be considered
the basis technology for the parallelization of the applications. Then it is
outlined the state of the art for the Runtime Management and Autonomic
Applications. The first is the field from which this thesis starts, while the
second studies the applications that are able to adapt themselves depending
on the status of the system. Finally it is presented the Design Space Ex-
ploration technique, used to optimize parameters at design-time when the
solution space is large and complex.

2.1 OpenMP

Open Multi-Processing [1], better known as OpenMP, is an application pro-
gramming interface for parallelizing programs in a shared-memory environ-
ment. OpenMP provides a set of compiler directives, runtime routines, and
environment variables that programmers can use to specify shared-memory
parallelism in Fortran, C, and C++ programs. It is a widely accepted speci-
fication, jointly defined by a group of major computer hardware and software
vendors like Intel, AMD, IBM, and Oracle. When OpenMP directives are
used in a program, they direct an OpenMP-aware compiler to generate an ex-

5

Chapter 2. Background

ecutable that will run in parallel using multiple threads. Despite the necessity
of just little source code modifications, it has been verified that applications
that are not memory-intensive exhibit large speedups [3]. OpenMP directives
enable you to use an elegant, uniform, and portable interface to parallelize
programs on various architectures and systems by creating and managing
the threads for you. All you need to do is to insert appropriate directives
in the source program, and then compile the program with a compiler that
supports OpenMP, specifying the appropriate compiler option. When using
compilers that are not OpenMP-aware, the OpenMP directives are silently
ignored. The code is automatically parallelized using the fork-join model of
parallel execution. At the end of the parallel region, the threads terminate
or are put to sleep. The work inside such a region may be executed by all
threads, by just one thread, by distributing the iterations of loops to the exe-
cuting threads, by distributing different sections of code to threads, and any
combination of these. OpenMP also allows for nested parallelism, as threads
working on a parallel region may encounter another parallel directive and
start up new threads to handle it. Nested parallelism can dynamically create
and exploit teams of threads and is well-suited to codes that may change
their workloads over time.

In order to allow the compiler to parallelize an application it is necessary
to insert into the source code the appropriate pragmas. They are defined as
compiler directives and specifies how to process the block of code that follows.
The most basic pragma is the #pragma omp parallel to denote a parallel
region. An OpenMP program begins as a single thread of execution, called
the initial thread. When a thread encounters a parallel construct, it creates a
new team of threads composed of itself and zero or more additional threads,
and becomes the master of the new team. All members of the new team,
including the master, execute the code inside the parallel construct. There
is an implicit barrier at the end of the parallel construct. Only the mas-
ter thread continues executing the user code beyond the end of the parallel
construct.

6

Chapter 2. Background

OpenMP supports two basic kinds of work-sharing constructs to specify
that the work in a parallel region is to be divided among the threads in the
team. The #pragma omp for is used for loops, and #pragma omp sections

is used for sections, that are blocks of code that can be executed in paral-
lel. In the version 3.0 of the specification it has been added a new pragma,
#pragma omp task, that defines an explicit task. It can be useful for paral-
lelizing irregular algorithms, such as pointer chasing or recursive algorithms,
for which other OpenMP work-share constructs are inadequate. Of course,
all of these pragmas can be used only in the context of a parallel region.

The pragmas can be followed by one or more so-called clauses, each sep-
arated by a comma. They are used to further specify the behavior or to
control the parallel execution. One example is the shared clause: it is used
to specify which data will be shared among the threads executing the region
it is associated with. On the contrary, with the private clause it is possible
to specify that a variable must be used locally by each thread, so that each
of them can safely modify the local copy.

The number of threads in the team executing a parallel region can be
controlled in several ways. One way is to use the environment variable
OMP_NUM_THREADS. Another way is to use the num_threads clause in con-
junction with the parallel pragma. These ways to control the number of
threads do not take into account the current occupation of the execution
units of the system. If the programmer does not specify a preference for the
number of threads, this value is typically set by default equal to the number
of the cores of the system.

OpenMP is fully hardware architecture agnostic and if threads and data
of an application happen to live apart, the performance will be reduced.
Terboven et al. [4] show how to improve the performance of OpenMP appli-
cations, by exploiting data and thread affinity, with the implementation of a
next touch mechanism for data migration.

7

Chapter 2. Background

2.2 Runtime Management

The management of the execution of applications, especially for embedded
system and for multi-core architectures, is a well studied field, for which it
is now described the current state of the art.

Illner et al. [5] focus on embedded system and their lack of resources to
handle the runtime management. They propose to split the management in
two phases, by creating a model at design-time and enforcing the policies at
runtime.

Ykman-Couvreur et al. [6, 7] present a runtime manager for multi-
processors, capable of supporting profiled applications with different configu-
rations and Quality of Service requirements. The runtime manager choose a
system configuration for all the active applications resolving a multi-dimen-
sional multiple-choice knapsack problem (MMKP) with a greedy algorithm,
after a design-time reduction of the search space.

Shojaei et al. [8] propose a solution for the same MMKP problem, that is
optimized for embedded systems that contain chip-multiprocessors (CMPs).

Mariani et al. [9, 10] introduce a methodology, based on evolutionary
heuristics, to identify optimal operating points at design-time with a re-
duction of the overall design space exploration time. They also introduce
a light-weight resource manager that select the optimal parallelism of each
application to achieve the Quality of Service constraints.

Corbalán et al. [11] propose an adaptive loop scheduler which selects
both thread numbers and scheduling policy for a parallel region through a
runtime measurement of the applications.

The Runtime Management of applications parallelized with OpenMP has
been examined by different studies. The most known approaches are now
presented.

Curtis-Maury et al. [12] find that OpenMP code scales better on CMPs
architectures. They also propose an adaptive runtime manager that pro-
vides performance improvements for simultaneous multithreaded processors

8

Chapter 2. Background

(SMTs), monitoring the execution time to identify if the use of the second
execution context is beneficial for performance.

A series of papers from Broquedis et al. [13, 14, 15] introduce a runtime
system that transpose affinities of thread teams into scheduling hints. With
the help of the introduced BubbleSched platform, they propose scheduling
strategy suited to irregular and massive nested parallelism over hierarchi-
cal architectures. They also propose a NUMA-aware memory management
subsystem to facilitate data affinity exploitation.

Yan et al. [2] implement a scheduler, called SWOMPS, that assigns the
threads of all the concurrent applications based on the hardware configura-
tion and on hints of scheduling preference for each application provided by
a design-time analysis. The results show that exploiting the affinity of the
threads of parallel applications is a valid way to improve performance over
many-core architectures.

2.3 Autonomic Applications

Self-tuning, self-aware, or adaptive computing has been proposed as one
method to help application programmers confront the growing complexity
of multi-core software development. Such systems ease the application bur-
den for the programmer by providing services that automatically customize
themselves to meet the needs of the application. The state of the art of this
field is now presented.

Blume et al. [16] give a comprehensive review of the state of the art in
this area, as well as a good description of the challenges. They state that
a combination of static and runtime techniques can improve compilers to
the extent that a significant group of scientific programs can be parallelized
automatically.

Anane [17] investigates the convergence between QoS management and
autonomic computing, highlighting the autonomic ability of QoS mecha-
nism to adapt to prevailing environmental conditions through monitoring

9

Chapter 2. Background

and management mechanism, inherent to autonomic behavior.
Kounev et al. [18] present an approach to autonomic QoS-aware resource

management that makes a Grid Computing middleware self-configurable and
adaptable to changes in the system environment and workload, to honor the
service level agreements.

Chen et al. [19] present an adaptive OpenMP-based mechanism to gen-
erate different multi-threaded version of a loop, allowing the application to
select at runtime the most suitable version to execute.

Scherer et al. [20] develop a system that allows parallel OpenMP pro-
grams to execute on network of workstations (NOW) with a variable number
of nodes, thanks to adaptive parallelism techniques that enable the system
to distribute the computation between idle nodes.

Wang et al. [21] use a model learned offline to select at runtime the
best configuration for parallel programs which are adapted through dynamic
compilation.

Hoffmann et al. [22] implement a framework, called Application Heart-
beats, which provides a standardized interface that applications can use to
indicate their performance and goals. Adaptive system software can use this
interface to query the performance and choose better the policies for adap-
tation.

2.4 Design Space Exploration 1

The term Design Space Exploration has its origins in the context of logic
synthesis. Clearly, a circuit can be made faster by spending more parallel
gates for a given problem description at the expense of area overhead. By ex-
tensively playing around with synthesis constraints, designers have been able
to generate a delay-area tradeoff curve in the design space defined by speed
and area costs. This process of systematically altering design parameters has
been recognized as an exploration of the design space.

1For the description of the Design Space Exploration, I refer to [23]

10

Chapter 2. Background

Design Space Exploration tasks today often deal with high-level synthesis
problems, such as the automation of resource allocation, binding of computa-
tion and communication to resources, and scheduling of operations, for vary-
ing design constraints, given a fixed problem description. In order to support
early design decisions and due to increasing design complexity, exploration
tasks are more and more performed on the system level. The solution space
for a system-level design space exploration will quickly become large if arbi-
trary allocations and mappings are allowed. The complexity increases even
further if multiple objectives are subject to the search. In this case, to eval-
uate a design it is necessary to use the concepts of Pareto dominance and
Pareto-optimal solution, that are now introduced.

Definition 1 (Pareto criterion for dominance) Given k objectives to be
minimized without loss of generality and two solutions (designs) A and B
with values (a0; a1; ...; ak−1) and (b0; b1; ...; bk−1) for all objectives, respectively,
solution A dominates solution B if and only if

∀0≤i<ki : ai ≤ bi and ∃j : aj < bj

That means, a superior solution is at least better in one objective while being
at least the same in all other objectives.

Definition 2 (Pareto-optimal solution) A solution is called Pareto-op-
timal if it is not dominated by any other solution. Non-dominated solutions
form a Pareto-optimal set in which neither of the solutions is dominated by
any other solution in the set.

An example is visualized in Figure 2.1. The two-dimensional design space
is defined by cost and execution time of a design, both to be minimized.
Six designs are marked together with the region of the design space that
they dominate. Designs 1, 4, 5, and 6 are Pareto-optimal designs, whereas
design 2 is dominated by design 4 and design 3 by all other designs, respec-
tively. Without further insights into the design problem, all designs in the
set {1,4,5,6} represent reasonable solutions.

11

Chapter 2. Background

Ex
ec

ut
io

n
Ti

m
e

Dominated
Region

Cost

Figure 2.1: Two-dimensional design space with Pareto-optimal designs 1, 4, 5, and

6.

In order to evaluate one design whether it is Pareto-optimal with respect
to a set of solutions, all objective values of the design must exhaustively be
compared with the corresponding objective values of every other design in
the set.

To evaluate a single design point there are different approaches, but the
most used is the simulation. It means to execute a model of the system
under evaluation, with a defined set of stimuli. Simulations are particularly
well suited to investigate dynamic effects in the system. Simulation-based
evaluation can only estimate a single stimulus setting at a time, representing
one particular implementation of a problem specification. The simulated
workload must be chosen by the designer in a way that it represents a variety
of typical working scenarios to avoid the optimization of the design for a
special case. One drawback of simulations is the need for an executable
model. In an early phase of the design providing such a model may impose
an unsubstantiated burden for evaluating early design decisions.

There are different strategies for covering the design space. The most
used are:

12

Chapter 2. Background

• Exhaustively evaluating every possible design point

This straightforward approach evaluates every possible combination of
design parameters and therefore is prohibitive for large design spaces.
The design space can be reduced by limiting the range of parameters
and/or by parameter quantization.

• Randomly sampling the design space

Evaluating only random samples is the obvious choice for coping with
large design spaces. It also has the advantage of revealing an unbiased
view of the characteristics of the design space.

• Incorporating knowledge of the design space

Search strategies in this category try to improve the convergence be-
havior towards optimal solutions by incorporating knowledge of char-
acteristics of the design space into the search process. The knowledge
may be updated with every iteration of the search process or may be
an inherent characteristic of the search algorithm itself.

To perform a Design Space Exploration and to analyze the results, it is
necessary to use specific tools, able to simplify and automatize these tasks.

Multicube Explorer [24], shortly M3Explorer, is an interactive program
that lets the designer to explore, analyze and optimize a design space of con-
figurations for a parameterized architecture for which a simulator exists. It
is an advanced multi-objective optimization framework used to drive the de-
signer towards near-optimal solutions in architectural exploration problems,
given multiple constraints. M3Explorer allows a fast optimization of a pa-
rameterized system architecture towards a set of objective functions such as
energy, delay and area, by interacting with a system-level simulator, through
XML files. The final product of the computation is a Pareto curve of config-
urations within the design evaluation space of the given architecture.

This tool is entirely command-line/script driven and can be re-targeted to
any configurable platform by writing a suitable XML design space definition

13

Chapter 2. Background

Figure 2.2: A components view of Multicube Explorer.

file and providing a configurable simulator. It supports also the construction
of automated exploration strategies which can be implemented by means of
command scripts interpreted by the tool without the need of manual interven-
tion. One of the strengths of M3Explorer is the modularity of its components,
as it is illustrated in Figure 2.2. The simulator, the optimization algorithms
and the other DSE components are dynamically linked at runtime, without
the need of recompiling the entire code base. The tool is basically composed
by an exploration kernel which orchestrates the functional behavior of the
design of experiments and optimization algorithms.

The design space exploration is performed by using the simulation ab-
straction layer exported by the XML driver to the optimizer plugins. The
optimizer instantiates a set of architectural configurations by means of the
design space iterators, and passes the corresponding representation to the
XML driver which will execute the simulator.

14

Chapter 3

Runtime Management System

This chapter describes how the Runtime Management System, shortly RMS,
is composed. In particular it provides a description of the software architec-
ture, the constituting blocks, the interface offered to the applications and the
policies that will be used to improve the resource sharing.

3.1 Overview of the System

The RMS is a system in which the main element is a local runtime manager.
A runtime manager is considered local with respect to an application, when
the decisions that it makes are related on the information collected analyzing
the behavior of the application itself and on some general information on the
system provided, for example, by the operating system. This is the main
difference between this class of runtime managers and the so-called System-
wide ones. In this case, the runtime manager is an independent process
that collects information on every running process and chooses the resource
assignment being aware of the overall status of the active applications. On
the contrary, a local runtime manager is typically implemented with a library
that is executed inside the context of the application. This is an advantage
because, in this way, the overhead due to the invocation of the runtime
manager is low.

15

Chapter 3. Runtime Management System

OpenMP Applications

Profiled Apps Not Profiled Apps

Libgomp

Librtmgmt

Scheduler / Operating System

Not Profiled Apps

Figure 3.1: The interaction scheme of the Runtime Management System.

In this work the library has been developed with the name librtmgmt.
In Figure 3.1 it is possible to see the interaction between the elements of

the RMS in the scenario used in this thesis. At the first level there are the
applications. They have been classified into three groups:

• Profiled Applications that use OpenMP:

During the design time, these applications are executed with different
parallelization levels and some details of the execution, like for exam-
ple the execution time, are saved in data structures called operating
points. These will be used at runtime to identify the optimal number
of execution units to use, as described in detail in section 3.7.1. It is
possible to distinguish two kind of profiled applications, on the basis
of the service class: Guarantee-Throughput and Best-Effort. The first
ones are typically core services of a system and are characterized by
the presence of Quality of Service (QoS) requirements. The parallel
sections are handled by the GNU OpenMP library (libGOMP) and
should be executed within a completion time to avoid the violation of
the requirements. A typical example is a video decoder that should

16

Chapter 3. Runtime Management System

decode at least a frame every 40 ms to obtain a smooth visualization.
The Best-Effort Applications, instead, do not have to respect QoS re-
quirements but should be executed in order to maximize the through-
put.

• Not-Profiled Best-Effort Applications that use OpenMP:

These applications can be considered as additional services added to
the system after it is released. For this reasons they can’t be profiled
and, not being core services, they don’t have requirements to fulfill
but they are executed with a Best-Effort service, to maximize the ap-
plication throughput. The applications are parallelized following the
OpenMP specification. As it is possible to see in Figure 3.1, the not-
profiled applications do not interact directly with the runtime manage-
ment library. Therefore, all the applications of this class do not need
any change in the source code to use the functionalities of the run-
time manager. It is necessary just a recompilation with the toolchain
that was developed during this work and that will be described in the
following sections.

• Not-Profiled Applications that do not use OpenMP:

These applications are also included in the proposed scenario, even
though they are not controlled by the runtime management library
and interact directly with the operating system. These programs do
not benefit of the advantages of the runtime manager, but it has been
modeled the possibility of the presence of legacy software, or applica-
tions that cannot be recompiled.

In Figure 3.1 it is also possible to see that the runtime management library
(librtmgmt) is placed between the libGOMP library and the scheduler/op-
erating system, acting as a mediator between them. The principal interaction
of the librtmgmt library is to evaluate the correct level of parallelization, by
collecting data from the operating system, every time libGOMP is going to
start a parallel section. The information gathered from the operating system

17

Chapter 3. Runtime Management System

Runtime Management System

Local
Runtime
Manager

API for Profiled
applications

Policies
Handler

Runtime
Configurator

Figure 3.2: The block scheme of the Runtime Management System.

is the status of utilization of the resources, and it represents the view of the
local runtime manager over the system and the complete set of active appli-
cations, included those that, as it has been described before, do not support
the Runtime Management System. The library librtmgmt will then spawn
the threads providing additional information to the scheduler to allow low
level optimizations.

In Figure 3.2 it is shown the composition of the RMS. In addition to the
already presented local runtime manager, that will be described further in
Section 3.5, there are other three main blocks. The Runtime Configurator is
a tool that allows to change the runtime manager configuration without the
need of a recompilation. The configurability is necessary because it is not
possible to produce a manager that is good for every system. The knowledge
of the properties of a system, that can be intrinsic, like the kind of applica-
tions that will be executed, or requested, like the minimum throughput of
a particular procedure of a core application in the worst case scenario, can
be used to tune up the runtime manager and to obtain better results. The
configurable parameters of the runtime manager can be changed in two ways:
by modifying the default values that are stored in the librtmgmt.h header
file and then recompiling the library, or at runtime by setting the values in
environment variables that have the same name of the parameters. For the

18

Chapter 3. Runtime Management System

latter case, it is necessary to set the environment variable RTMGMT_CHANGED

to 1. This is the way to indicate to the runtime manager that it has to update
the value of the parameters from the environment variables.

The API for Profiled Applications are a set of functions that can be
used by importing the library header file. They include the methods to load
the operating points or to specify a priority for the application. They are
described in detail in Section 3.6.

The Policies Handler is a block that manages the different policies for
all the classes of the applications that the RMS is able to support. There
are different policies for the Profiled Guarantee-Throughput, Profiled Best-
Effort and Not-Profiled Applications and in the case of the Not-Profiled ones,
there are specialized rules for different classes distinguished by the execution
dynamics of the programs. It is possible to find a complete description in
Section 3.7.

3.2 Operating points

For the applications that constitute the core set of a system, it is possi-
ble to evaluate their execution during the design phase of the system. This
technique allows a runtime manager to have information on how a program
behaves when it is executed with a particular configuration. The set consti-
tuted of a configuration of the system and the related execution information
is called operating point. Considering that an application can be composed
of various sections with different execution dynamics, an operating point is
referred to a section. In the development of the RMS, an operating point is
a tuple that contains:

• Section ID:

An identification number for the section, as it will be specified better
in Section 3.3.

• Execution Units:

It represents the configuration of the system used during the profiling

19

Chapter 3. Runtime Management System

of the section, intended as the number of processors used in parallel to
execute the code of the program.

• Execution Time:

The elapsed time to execute the section, expressed in milliseconds.

• Power Consumption:

It represents the amount of power dissipated during the execution of the
section with the specified configuration. It is expressed in milliwatts.
This value is not used by the runtime manager, but it has been inserted
to allow a further development in the direction of the minimization of
the power consumption.

• Affinity:

In many hardware architectures, but especially in those with Non-
Uniform Memory Access (NUMA), the assignment of a set of threads,
generated to execute a parallel section, to different sets of execution
units may affect considerably the performance. Indeed, in a NUMA ar-
chitecture, every cluster of processors has access to a local memory and
the access time is different when accessing local and non-local memory.
In particular, the parallel sections often work on the same set of data
and, therefore, assigning the relative threads to processors of the same
cluster can improve the performance. To generalize, it is possible to
specify for every operating point the affinity of the threads with an
integer number. The affinity can be considered an hint that should be
provided to the scheduler, to improve the choice of the assignment of
the threads. An affinity of zero means that the threads are not affine
and that can be assigned to any processor. If the value is greater than
zero, the threads generated for the particular section are affine and
should be put in the same cluster or as close as possible, in order to
exploit the advantages of the locality of the memory.

20

Chapter 3. Runtime Management System

3.3 OpenMP Extensions

The OpenMP specification 3.0 has been extended with two new clauses, in
order to allow a programmer to specify information on parallel sections in the
applications that will be profiled. The first clause is named section_id and
can be used in the parallel, for, sections and task directives. Through
this clause it is possible to number a section. This is a way to identify and
distinguish the different sections, and it allows the assignment of operating
points to sections instead of to an entire application. Therefore, the informa-
tion provided by the operating point as, for example, the execution time or
the power consumption, is referred just to portions of code. An application
is usually composed of many blocks of code with different characteristics.
Operating points which define the execution time of an entire application,
or even of a set of heterogeneous blocks of code, do not allow to find a good
policy with a runtime manager because the information provided is too much
coarse-grained. The section_id must be specified with a positive integer.
If the clause is not specified, the compiler will assign a unique identification
number, so the sections can be identified as different, during the execution.
This feature is particularly useful for not-profiled applications, because the
sections can be distinguished by the runtime manager without the modifica-
tion of the source code.

The second clause added to the original OpenMP specification is named
completion_time. It is used in the same directives of the section_id clause.
It allows to indicate the maximum amount of time in which the programmer
expects the execution of a section to be completed, in order to guarantee the
Quality of Service (QoS). In other words, it is a way to define an execution
deadline. The applications must be able to tolerate the situation in which
the deadline is not respected, by causing only a decrease of the QoS. The
completion_time must be specified in milliseconds and must be a positive
constant or a variable. If the variable used in the clause assumes a negative
value, the runtime management system will halt, so it is necessary to be
careful when using a variable instead of a constant.

21

Chapter 3. Runtime Management System

3.4 Scheduler and Operating System Role

The scheduler and the operating system have a very important role on the
functioning of the runtime manager. The scheduler is the executor of the in-
dications provided by the manager and must be able to handle the different
kind of applications and to perform low level optimization when assigning
the resources. Also, the locality of the manager makes necessary to have
an external arbiter that provides overall information about the status of the
system. In order to exploit all the functionalities offered by the runtime
manager, the scheduler of the system should be implemented in order to be
able to create a logical distinction of the execution units in two sets: the
first one reserved for the guarantee-throughput processes, and the second
one for best-effort applications. The guarantee-throughput processes need to
have reserved units because they should always respect the QoS requirements
and they should not be slowed down in a situation in which the best-effort
processes are using all the resources of the system. In the case of a satu-
ration of the units reserved to the guarantee-throughput applications, the
scheduler should assign the exceeding threads to the units of the best-effort
set. Obviously, if the best-effort units are all in use, the exceeding threads
of best-effort applications will not use the units reserved for the guarantee-
throughput applications, but will just be queued. The scheduler should also
be ready to receive additional information from the runtime manager. As
it has been already described, in every operating point the developer can
specify the affinity of the threads of that section. This information can be
used by the scheduler during the allocation of the threads to the processors,
as an additional knowledge that can improve the execution performance.

The operating system should be able to provide information on the active
processes differentiating between the set of processors that will be used by
the guarantee-throughput applications and the remaining ones. To improve
the performance of the runtime management system, the operating system
should also provide information that is updated frequently, in order to allow
the runtime manager to know the current status of the system.

22

Chapter 3. Runtime Management System

The current Linux kernel, version 2.6.35.5, does not implement completely
these requirements. The execution units cannot be divided logically in sets
and it is not possible to provide the affinity information directly to the sched-
uler. It also provides information on the average load related to a temporal
window of one, five and fifteen minutes and that cannot be considered valid
indexes of the current status of the system. However, through the special
file /proc/loadavg, it is possible to find on a single line the three average
loads and the number of active processes, allowing a fast parsing of this
information.

To verify that all the functionalities implemented in the runtime manager
works appropriately, it has been implemented an architecture simulator that
is able to simulate an hardware architecture with a configurable number of
processors and, also, the scheduler that assigns the threads to the cores. Its
implementation will be described in detail in Section 4.1.

3.5 Local Runtime Manager

As it was described in the overview, the runtime manager is the main block of
the system. It has been developed to be light, fast and configurable. It should
be light and fast because it is necessary to reduce the overhead introduced
by the runtime management methods. The runtime manager procedures
that handle the parallelization policies are invoked by a modified version of
the libGOMP library. This choice was made to avoid the need to change
the source code of an OpenMP application to use the runtime manager. The
recompilation with a modified toolchain is the unique operation requested for
not-profiled OpenMP applications in order to take advantage of the runtime
manager optimizations. This is not a real concern for a software developer
because it is already common use, for the hardware producers, to provide a
specific toolchain to those who want to develop software for a specific system.
For the profiled OpenMP applications and for not-profiled ones that do not
use OpenMP directives, it is also necessary to add a few lines of code to the

23

Chapter 3. Runtime Management System

int rtmgmt_start_section (int sect ion_id ,
int∗ thread_id ,
unsigned nest_leve l ,
double completion_time ,
unsigned num_threads) ;

int rtmgmt_end_section (int sect ion_id ,
int∗ thread_id ,
unsigned nes t_ l eve l) ;

int rtmgmt_start_thread (pthread_t ∗ thread ,
const pthread_attr_t ∗ att r ,
void ∗(∗ s ta r t_rout ine) (void ∗) ,
void ∗arg) ;

void rtmgmt_exit_thread () ;

Listing 3.1: The API for the invocation of the parallelization policies.

sources, because it is necessary to add some functionalities that were not
present before. In Appendix A it is possible to find an example of a profiled
application where the added lines are highlighted and to see how few changes
are necessary in the sources to utilize the runtime manager.

The librtmgmt library offers an Application Programming Interface (see
Listing 3.1) that allows the evaluation of the parallelization policies. In this
thesis it is used only by the libGOMP, but these methods can be invoked
also from other libraries or from autonomic applications.

The runtime manager is executed before a parallel section begins its ex-
ecution with a call to the method rtmgmt_start_section, that receives as
input the id of the section, the id of the parent threads and the nesting level
only if the section is nested, the execution deadline and the request of a
preferred parallelization level by the programmer (that can be specified in
OpenMP with the clause num_threads) and returns an integer that repre-
sents the parallelization level. The main aim of this method is to determine
the best parallelization policy for the section that is going to start, using a

24

Chapter 3. Runtime Management System

set of information collected from the operating system and from the behav-
ior of the application itself during previous executions. For the applications
that are not profiled, these are the only data that will be used. The profiled
applications can also use the information stored in the operating points, that
provides hints on the execution time of the section.

The runtime manager executes some operations also at the end of each
section, in order to evaluate if the QoS requisites are fulfilled and to measure
and store the effective execution time of that section, so it will be possi-
ble in the subsequent executions to make a better choice. The method in-
voked by the libGOMP library is called rtmgmt_end_section, in which it
is necessary to supply the data to identify the ending section, that must
have the same values of the three parameters used in the corresponding
rtmgmt_start_section method when the section was starting.

In order to allow a low-level optimization that can be performed by the
scheduler, the runtime manager library is also executed when the threads are
spawned and killed through the invocation of the methods rtmgmt_start-
_thread, with the same input parameters of a pthread_create method,
and rtmgmt_exit_thread. In this way the runtime manager can inform the
scheduler of some properties of the threads before they are spawned, like the
processor affinity. In some architectures it is important to choose where a
process will be executed, because different processors have different access
time to the memory hierarchy. If the scheduler knows in advance if the
threads are affine and need to be executed on the same cluster of processors,
its choices can be improved and optimized.

3.6 Runtime Management API

Other than the procedures invoked as an integration with libGOMP, the
runtime manager library offers a set of functions that should be used in
order to profile an application, load the operating points and get information
on how the application itself is performing. It is defined an Application

25

Chapter 3. Runtime Management System

int rtmgmt_load_op (char ∗op) ;
int rtmgmt_best_effort (char ∗op) ;
void rtmgmt_prof i le (int∗ sect ion_ids ,

unsigned num_sections ,
unsigned num_repetit ions) ;

void rtmgmt_end_profile () ;
int rtmgmt_set_priority (unsigned p r i o r i t y) ;
f loat rtmgmt_get_section_period () ;

Listing 3.2: The API for the applications.

Programming Interface (API), shown in Listing 3.2, for six methods that
can be invoked inside the applications that include the rtmgmt.h header file.
The first pair of methods can be used to load the operating points:

• rtmgmt_load_op:
It loads the operating points from a file specified as the first parameter.
When an application use this function and a valid file is provided, the
operating points are loaded through a new thread and the runtime
manager will consider the application as profiled. The use of a new
thread is a way to avoid to slow down the execution of the application
while the operating points are loaded.

• rtmgmt_best_effort:
It loads the operating points as the previous method, but labels the
application to be serviced as best-effort.

The runtime manager is also capable of profiling an application. This func-
tionality can be used through two methods:

• rtmgmt_profile:
With this method it is possible to perform a complete profiling of the
application that uses it. First, it is necessary to load a set of operating

26

Chapter 3. Runtime Management System

points, that represent the list of configurations that will be tested dur-
ing the profiling. The points may contain any value as the execution
time, because this value is not considered and it will be replaced with
the result of the process. It is also necessary to provide a list of the
id numbers of the sections that should be profiled and the number of
times that each configuration, namely each operating point, should be
measured. When the profiling mode is activated, the parallelization
policy is modified. When a section is starting, the runtime manager
will choose an operating point related to that section, randomly. When
every operating point has been used for the number of times specified in
the rtmgmt_profile call, the runtime manager will save all the profiled
date and will shut down the application.

• rtmgmt_end_profile:
If the application is not able to perform a complete profiling, for exam-
ple if its execution time is short and there are a lot of operating points
to be measured, it is necessary to invoke this method just before the
application exits. All the profiling information collected will be saved
and, therefore, it is possible to profile completely the application with
few executions.

There are also two useful methods to specify the priority and to obtain an
indication of the performance of the application:

• rtmgmt_set_priority:
It allows to set a priority level for the current application as a non-
negative integer. The maximal priority is zero and the priority level
decreases as the specified number increases. The priority will be passed
to the scheduler and used in the case of a preemptive scheduler and
few idle processors. In this situation the scheduler may use the priority
information to choose to preempt a process with low priority to privilege
the execution of a process with higher priority. The use of this method
is not allowed for not-profiled applications.

27

Chapter 3. Runtime Management System

• rtmgmt_get_section_period:
It is created to allow the application to know the execution time of a
section. If the method is called inside a section it will return the last
execution time of that block of code. If it is called outside any section
or if it is the first execution, the result of the invocation will be zero.
This functionality can be extremely useful for applications that can
modify their behavior at runtime and is essential for the development
of autonomic applications. A practical example is a video decoding ap-
plication that can adapt the parameters of the decoding routine based
on the number of frames decoded per second. If the application is able
to identify if the performance is decreasing, for example if other ap-
plications are using all the resources of the system, it may decide to
reduce the output quality or to change the decoding algorithm with a
faster but lighter one.

3.7 Parallelization Policy

In this section it is described how the runtime manager decides the paral-
lelization level that will be assigned to the application. In other words, the
choice of how many threads will be spawned to execute the parallel section.
The policy is different for the profiled and not-profiled applications. For the
first ones, it is possible to use the information provided by the operating
points in order to decide which is the best parallelization level. For the sec-
ond ones, there is no information until the program executes some iteration
of the parallel sections.

3.7.1 Profiled Guarantee-Throughput Applications

As it has already been shown before, a profiled guarantee-throughput appli-
cation is composed of a binary executable and a text file that contains the
operating points. The objective of this kind of applications is to provide a
service that respects Quality of Service (QoS) requirements, expressed as a

28

Chapter 3. Runtime Management System

Figure 3.3: An example of how the operating points are ordered based on the

completion time and the execution time.

completion time that is specified by the programmer for each parallel sec-
tion. The runtime manager must identify the operating point that allows to
execute the section without violating the QoS requirements, using the min-
imum number of resources in order to minimize the power consumption of
the system.

The first step of the algorithm is the identification of the minimum com-
pletion time, in case of nested sections. In this situation, the runtime man-
ager should guarantee that also the parent sections respect their completion
time. For example, if a parent section specifies a completion time of 500 ms
and a nested section specifies 1000 ms, the runtime manager will choose the
parallelization policy in order to execute the nested section in at least 500
ms minus the time already passed between the start of the parent and the
nested section. After having chosen the valid completion time, the operating
points are ordered in a list using the difference between the execution time
of the point and the completion time.

In Figure 3.3 it is shown an example of a set of operating points with their

29

Chapter 3. Runtime Management System

execution time on the y-axis and the number of execution units on the x-axis.
The red line represents the completion time of the section. The number in
the circles represents the order in which the points are added to the list. The
first chosen point is the closest one to the completion time line but that has
an inferior execution time. It is the best operating point because it has an
execution time sufficient to respect the requirement and it uses the minimum
number of execution units. Then the other points are added to the list in
descending order of the execution time (numbers 2-5). In this way the
other operating points that respect the QoS requirement are inserted in the
higher positions in the list. Then, the remaining ones are added to the list
in ascending order of their execution time (numbers 6-8). These are all the
points that have an execution time superior to the completion time specified
by the programmer. After the creation of the list, it is requested that the
operating system provides the number of currently idle processors reserved
for the guarantee-throughput applications. The list is then traversed and the
first point with a number of execution units that is at most the number of
idle processors is selected. If a point with this characteristic is not found in
the list, the first point of the list is selected.

3.7.2 Profiled Best-effort Applications

These best-effort applications are profiled, and therefore their behavior at
runtime is described in a set of operating points, but they do not have to
respect any QoS requirement. The runtime manager should execute these
kind of processes in order to maximize the throughput. The policy used for
these applications is very similar to the one used for guarantee-throughput
applications. The operating points are still ordered in a list, but without
considering the completion time line. The points are just added to the list
in ascending order of the execution time. The parallelization level will be
chosen, as for the profiled applications, traversing the list to find the first
point with a number of execution units that is less than or equal to the
idle units of the system reserved for the best-effort processes. Indeed, these

30

Chapter 3. Runtime Management System

applications will not occupy the execution units reserved for the guarantee-
throughput processes.

3.7.3 Not-profiled Best-Effort Applications

In the scenario of the applications that are not profiled, it is not possible
to know in advance how the application itself performs when it is executed
on a particular number of execution units. It is worth to remember that
these applications do not have to guarantee QoS requirements but should
be executed in order to maximize the throughput. The allocation of all the
execution units to a single application can be the best choice to optimize the
performance when there are not other applications that need to share the
resources. In the case of systems with concurrent processes, it is necessary
to use policies that maximize the performance of every process and allocate
the resource equitably. If a single application saturates the resources, any
other application would be queued and its throughput would be highly re-
duced. Rosti et al. [25] show that, in multiprocessors systems, processor
saving scheduling policies, that are policies that keep some of the available
processors idle in the presence of work to be done, yield better performance
than their corresponding work-conserving counterparts, especially when the
workload is heterogeneous or with irregular execution time distributions.

The policy for not-profiled applications is based on the measurement of
the last execution time of each section. This value is then used to classify
the section as fast, medium or slow dynamic. The distinction between these
three classes allows the application of different rules and a better utilization
of the resources. Indeed, a fast section executes short burst of computation
and thus it is possible to assign more resources because it will release them
in a short time and, in case of a saturation of the execution units, the as-
signment can be rapidly modified. On the contrary, a section with a slow
dynamic could block the resources for too much time and it is better to make
a more conservative assignment. The execution time of a section is evalu-
ated as fast if it is below a threshold defined as a parameter of the runtime

31

Chapter 3. Runtime Management System

Fast Dynamic Policy Slow Dynamic Policy

Medium Dynamic
Policy Medium

Medium - Slow Medium - Fast

Slow - Medium Fast - Medium

Slow Fast

Figure 3.4: The scheme of the adaptation of the policy based on the last execution

time.

manager, that is called FREQUENT_NP_SEC, expressed in seconds. It is evalu-
ated as medium if the time is between the parameters FREQUENT_NP_SEC and
NOT_FREQUENT_NP_SEC, otherwise the execution time is considered slow.

When a section is executed for the first time, it is classified as Medium.
By using the last execution time of the section, the classification is adapted,
following the scheme of Figure 3.4. If the last execution is evaluated as
fast, the classification is modified following the green line. Otherwise if it
is evaluated as medium it will be used the yellow line, and finally the red
line when the execution time is marked as slow. If the section is classified
as Medium, Medium-Slow or Medium-Fast it is adopted the Medium Dynamic

Policy, if it is classified as Slow or Slow-Medium it will be chosen the Slow

Dynamic Policy and for the remaining two classes, Fast and Fast-Medium,
it will be adopted the last policy, namely Fast Dynamic Policy.

32

Chapter 3. Runtime Management System

For example, if the section is classified as Medium and the last execution is
measured as fast (green line), the section will be classified as Medium-Fast,
but it will still use the Medium Dynamic Policy. If the subsequent execution
time is measured again as fast, the section will be classified as Fast-Medium,
and it will use the Fast Dynamic Policy. If the section is classified as Fast
and the last execution is evaluated as Slow, the classification will become
Medium and the policy will be changed. This scheme allows an adaptation
between the three policies in case of a change in the dynamic of the section.
It is also noise-resistant, because a single evaluation that is different from the
current classification is not enough to adopt the relative policy.

The three policies used in the runtime manager are similar and differ
only by one parameter. Therefore, it is possible to describe just the general
scheme of the policies and focus on the differences to fully understand the
algorithm. Firstly, the algorithm check if the section is nested. In this case
the parallelization policy assigns just one unit, because a choice has already
been taken in the parent parallel section. The application will continue to
execute with the same level of parallelization assigned in the parent section.
To avoid an excessive overhead in applications that execute a great number of
short parallel sections, the execution of the code that choose the paralleliza-
tion level is not performed at every start of a section, but it is executed once
every a number of seconds, specified in a parameter called NP_FILTER_SEC.
During this window of time, it is used the parallelization level found when it
was performed the last choice.

The choice is based on the current number of idle execution units, on
the average idle units during the last second and on the classification of
the section. The average measure can be considered a prediction of the
status of the system in the following second. The current and the average
number of execution units are added up and multiplied by a factor that is
different for the three classes. In other words, the result of this operation
is a combination of the instantaneous number and the prediction for the
next second, of idle units. If the factor has a value of one half, the result is

33

Chapter 3. Runtime Management System

the average between the two numbers. The factors are specified with three
configurable parameters of the runtime manager:

• FAST_DYNAMIC_FACTOR is the factor that will be used directly when the
section is classified as fast

• MEDIUM_DYNAMIC_CORRECTION is a value that will be multiplied by the
FAST_DYNAMIC_FACTOR to obtain the factor for the medium dynamic
sections

• SLOW_DYNAMIC_CORRECTION is used in the same way of the
MEDIUM_DYNAMIC_CORRECTION but for the slow dynamic sections.

The two correction parameters must have a value between zero and one,
because the medium and slow factor must be lower than the fast factor.

The difference between the number of execution units assigned in the
last execution of the section and the result of the multiplication of the class
factor with the sum of the average and current idle units is, then, divided by
two. This operation is made in order to create a transient. The result of the
division is added again to the number of units assigned in the last execution
to form the new assignment.

The policy that has been just described has the advantage of being deter-
ministic. The assignment of the execution units between a set of applications
can be described by an equation. It represents the total number of assigned
units when the transient state ends and can be expressed as:

2

(1
factor1

−1)
+ 2

(1
factor2

−1)
+ ...+ 2

(1
factorN

−1)

1 + 2

(1
factor1

−1)
+ 2

(1
factor2

−1)
+ ...+ 2

(1
factorN

−1)
∗ numEU (3.1)

where factor represents the value of the class factor of the application, and
numEU is the number of execution units assigned to the not-profiled ap-
plications. As it is possible to see in the equation, the order of execution
of the applications is not relevant for the number of assigned units after

34

Chapter 3. Runtime Management System

the transient state. It is also possible to determine the assignment for each
application of the set:

(numEU − totalEUassigned) ∗ 2(
1

factor
− 1

) (3.2)

where totalEUassigned is the result of the Equation 3.1. It is also possible
to simplify the Equation 3.1 to show the assignment when the applications
have all the same dynamic and, therefore, an equal factor:

2 ∗N(
1

factor
− 1

)
+ 2 ∗N

(3.3)

where N is the number of executing applications. Let’s suppose to have a
scenario in which two, three or four applications with the same dynamic, run
concurrently on a system with 100 processors. In the Table 3.1 it is possible
to see how the number of assigned units changes when the factor is set to
1/2, 2/3 and 3/4.

Factor

1/2 2/3 3/4

2
Total 80 89 92
Each 40 44 46

3
Total 86 92 95
Each 29 31 32

4
Total 89 94 96
Each 22 24 24

Table 3.1: The execution units assigned to different sets of applications with the

same dynamic, that run concurrently.

An additional feature has been added in order to obtain the complete
utilization of the resources. It is possible to specify, through a configurable
parameter called LOAD_LIMIT, the maximum value of the load of the system
for which the policy just described will be applied. When the load exceeds

35

Chapter 3. Runtime Management System

the value specified in the parameter, an application that is going to start
a parallel section will be parallelized over all the remaining idle execution
units. In this way the resources are saturated and it is possible to reach
the complete utilization of the execution units. It is necessary to be careful
when choosing the value of the parameter, because if the value is too low,
the system will saturate with few applications and all the processes that will
start afterwards would remain queued.

36

Chapter 4

Framework Implementation

After the description of the Runtime Management System, this chapter re-
ports how it can be tuned up through a design space exploration technique,
in order to find the best configuration of the parameters for a system, based
on the kind of applications that will be executed on it. In order to evaluate
the RMS and the Configuration Framework on a Many-Core Architecture,
it has been developed a simulator with a configurable number of processors
and that simulates the allocation of threads to the execution units. Then, it
will be described the software architecture of the Framework and it will be
shown the results of the utilization of the tool in an example case.

4.1 Many-core Architecture Simulator

The main goal of this thesis is to develop a system that is able to optimize
the execution of applications and the resource sharing between them. The
hardware architecture target for this work is the family of processors that are
called Many-Core processors because they support up to hundreds of cores.
These kind of architectures are still in a developing phase and are not avail-
able in the consumer market. This is the reason why it has been necessary
the implementation of a simulator.

37

Chapter 4. Framework Implementation

The main task of this software are:

• the simulation of a processor architecture that is composed of a config-
urable number of cores;

• the simulation of a scheduler that assigns the threads to the execution
units following the directives provided by the runtime manager;

• the possibility to show the status of the allocation of the cores during
a simulation on a graphical user interface and to output a trace of the
simulation that can be analyzed offline;

The cores of the simulated architecture are partitioned in two sets: the first is
the set of execution units reserved for the guarantee-throughput applications,
and the second is the set used by the best-effort applications. The scheduler
provides information on the number of active and queued processes, the
number of idle execution units and the average load in the last second with
distinct values for the two sets of cores. It is also able to receive additional
information on the threads like the affinity, but in this work this kind of data
is not used to modify the allocation of the threads.
The runtime manager interacts with the simulator through shared memory.
Every time the runtime manager is generating new threads to parallelize an
application, it enqueues the number of threads to be allocated, plus other
information, in a data structure of the shared memory segment. The same
operation is done also when the parallelized section ends. The structure can
enqueue in an array multiple set of information from different applications.
Every 100 ms the main routine of the scheduler is executed. Firstly, it checks
if the processes currently allocated are still running. If a process is found to
be dead, the cores that was allocated to him are freed up. Then, all the sets
that was added in the data structure are processed in order. The routine
ends with an update of the graphical interface and with the output of a trace
of the status of the cores after the assignments just made. In Figure 4.1 it is
possible to see an example of the graphical interface during a simulation, with
an architecture constituted of twelve cores, where four cores are assigned to

38

Chapter 4. Framework Implementation

Figure 4.1: The graphical user interface of the Many-core Architecture Simulator.

the profiled applications. In the central part it is placed a grid of cells that
represents the set of cores. The green cells are the free cores, while the cells
with a number inside are the used cores. The number is the process identifier
of the process that is currently using the core. The grid on the right side
represents the queue of active processes and it is filled when a process cannot
be allocated to a core because there are not free execution units. In the
bottom of the figure it is also shown the number of idle execution units both
for the cores reserved to the profiled application and for the remaining ones.

4.2 Design-time Configuration Framework

As it was described in Section 3.5, the runtime manager developed in this
thesis is configurable in order to be adapted to different scenarios. There
are five parameters that can be changed and that modify the behavior of the
manager:

39

Chapter 4. Framework Implementation

• cpu_for_profiled:

It is the number of execution units reserved to the profiled guarantee-
throughput applications.

• np_filter_msec:

For this amount of time, the runtime manager does not modify the
number of core assigned for the not-profiled applications. It is used to
reduce the overhead.

• frequent_np_msec:

If a section of a not-profiled application is executed within this amount
of time, it is classified as a fast section.

• not_frequent_np_msec:

If a section of a not-profiled application has an execution time greater
than this amount of time, it is classified as a slow section.

• load_limit_percent:

When the average load of the system is greater than this value multi-
plied by he number of execution units, the runtime manager will assign
to the first request all the remaining idle resources. It is a solution to
allow the complete utilization of the resources.

Obviously, it is not simple to choose the correct value for this parameters to
allow an optimal execution of the application of the system. It is also intuitive
to notice that there is not a single optimal configuration, but it depends
on the set of applications that will be executed in the system. For these
reasons, it is necessary to find a tool that may help a system administrator
in the complex task of finding the best configuration for a particular system.
The administrator should provide a description of an expected scenario of
applications in execution and the tool should test different configurations of
the Runtime Management System and evaluate their goodness. The best one
will be the more appropriate configuration for the provided scenario.

40

Chapter 4. Framework Implementation

<?xml version=" 1 .0 "?>
<frms path=’ / abso lu t e /path/ to / scenar i o−s imu la to r / ’>

<p r o f i l e d num=’ 2 ’>
<app f i l ename=’ / abso lu t e /path/ to /app1 ’

args=’ argument1 argument2 ’ />
<app f i l ename=’ / abso lu t e /path/ to /app2 ’ />

</ p r o f i l e d>
<sc ena r i o s imulat ion_time=’ 4 ’>

<slow s t a r t=’ 0 ’ end=’ 3 ’ />
<medium s t a r t=’ 0 ’ />
<f a s t s t a r t=’ 1 ’ end=’ 2 ’ />

</ s c ena r i o>
</ frms>

Listing 4.1: An example of the description of a scenario.

4.2.1 Scenario Simulator

In order to allow the simulation of a scenario of executing applications, it has
been implemented a tool that receives as input the description of a scenario
and the configuration of the Runtime Management System. Then, the sce-
nario is simulated following the details specified in the inputs and the final
result of this execution is a set of values that indicates some characteristics
of the system during the simulation.
The first step for the utilization of the tool is the definition of a scenario. It
should be described by the system administrator, that is aware of the set and
of the dynamic of the applications that will be run on the system. It can be
defined through an XML document, in which it is necessary to specify a set
of profiled applications and the dynamic of a set of not-profiled applications.

In Listing 4.1 it is possible to see an example of scenario. In the profiled
section it is possible to specify any number of applications that will be run
during all the simulation. It is also possible to specify a list of arguments

41

Chapter 4. Framework Implementation

<?xml version=’ 1 .0 ’ encoding=’UTF−8 ’ ?>
<s imulator_input_inte r face>

<parameter name=’ cpu_for_prof i l ed ’ va lue=’ ’ />
<parameter name=’ np_fi lter_msec ’ va lue=’ ’ />
<parameter name=’ frequent_np_msec ’ va lue=’ ’ />
<parameter name=’ not_frequent_np_msec ’ va lue=’ ’ />
<parameter name=’ load_l imit_percent= value=’ ’/>

</s imulator_input_inte r face >

Listing 4.2: An example of the configuration input.

that will used when the application is executed. These programs should be
the core services of the system or, in general, the set of profiled applications
that will be executed on the system. In the scenario section, it is possible
to indicate the duration of the simulation, expressed in seconds, and a set
of applications, defined by their execution dynamic. For each application in
the scenario it is possible to specify if it has a slow, medium or fast dynamic
and the execution interval. Through the attributes start and end, it can be
specified after how many seconds the application starts and when it ends. If
the attributes are not specified or exceed the simulation interval, the default
values are start equal to zero and end equal to the simulation_time.
This tool receives as input also the set of parameters of the Runtime Manage-
ment System that will be used during the simulation. It is possible to see an
example of the format of the XML file in Listing 4.2. The five parameters are
the same that was described earlier in this chapter and the attribute value

must be filled with the value of the parameter.
If all the input are correct, the simulation starts. After that the simulation

time, specified as input, has elapsed, all the processes are killed, and the tool
creates an XML document with this set of metrics:

• profiled_app_queued & not_profiled_app_queued: the num-
ber of threads that have been queued because there were not available

42

Chapter 4. Framework Implementation

cores.
This value is distinguished between profiled and not-profiled applica-
tions. This metric should remain close to zero, because it would be
the cause of a slow down in performance due to the stalemate of some
threads.

• profiled_avg_load & not_profiled_avg_load: the average load
of the cores.
Also this value is expressed as two numbers: the first is referred to
the cores reserved for the guarantee-throughput applications and the
second for the best-effort ones. This value should be maximized for
the cores reserved for best-effort applications, because it indicates how
much the execution units have been used.

• qos_failures: the number of violations of the QoS requirements, for
the guarantee-throughput applications.
This metric should be zero to consider acceptable a configuration. If
the tool reports a value that is greater than zero, the system is not
respecting the requirements in the simulated scenario.

• profiled_overflows: the number of threads of guarantee-throughput
applications that use the cores reserved for the best-effort ones.
This situation happens when the execution units reserved for the guar-
antee-throughput programs are all in use. If this number is greater
than zero, the administrator should consider the possibility to reserve
more cores for the profiled applications.

In Listing 4.3 it is possible to see the format of the XML output document
where in the attribute value it will be placed the value of the metric.

4.2.2 Design Space Exploration

The Scenario Simulator tool is able to evaluate the execution of a set of
application with a single configuration of the Runtime Management System.

43

Chapter 4. Framework Implementation

<?xml version=’ 1 .0 ’ encoding=’UTF−8 ’ ?>
<simulator_output_inter face>
<system_metric name=’ profi led_app_queued ’ va lue=’ ’ />
<system_metric name=’ not_profiled_app_queued ’ va lue=’ ’ />
<system_metric name=’ prof i led_avg_load ’ va lue=’ ’ />
<system_metric name=’ not_profi led_avg_load ’ va lue=’ ’ />
<system_metric name=’ qo s_ fa i l u r e s ’ va lue=’ ’ />
<system_metric name=’ p ro f i l e d_ove r f l ows ’ va lue=’ ’ />

</ s imulator_output_inter face >

Listing 4.3: An example of the output XML document.

However, we are interested in the evaluation of a set of configurations, to find
the best solution for the system that has been modeled during the definition of
the scenario document. This kind of task is an optimization technique, called
Multi-Objective Design Space Exploration, that has already been illustrated
in Section 2.4. In this thesis, it will be used the frameworkMulticube Explorer
to perform this task, for which it is just required to specify the design space
to be explored. It is necessary to indicate the absolute path to the Scenario
Simulator with the path of the scenario description as the first parameter,
the input parameters to the simulator for the configuration of the Runtime
Management System with their intervals, and the expected output.

In Listing 4.4 it is possible to see a reduced version of an example of
the design space definition. The system metrics are the same that have al-
ready been described for the output of the Scenario Simulator. It is possible
to specify the range for each input parameter and how the values are in-
cremented. In the shown example, the parameter cpu_for_profiled will
assume the values 2, 4, 6 and 8. The framework will invoke the simulator
with all the possible combinations of the specified parameters, and it will
collect the results. Other than executing a series of simulations, Multicube
Explorer is also able to generate a graphical report of all the design space,
that allows to easily identify the property of the system and to choose the

44

Chapter 4. Framework Implementation

<?xml version=’ 1 .0 ’ encoding=’UTF−8 ’ ?>
<design_space xmlns=’ h t tp : //www. mult icube . eu/ ’
version=’ 1 .3 ’>

<s imulato r>
<simulator_executab le
path=’ / abso lu te /path/ to / the / scenar i o−s imu la to r /
−−s c ena r i o=/abso lu t e /path/ to / the / s c ena r i o . xml ’ />

</ s imulato r>
<parameters>

<parameter name=" cpu_for_prof i l ed "
type=" i n t e g e r " min="2" max="8" step="2"/>
<parameter name="np_fi lter_msec "
type=" i n t e g e r " min="400" max="600" step="100"/>
<parameter name="frequent_np_msec"
type=" i n t e g e r " min="100" max="300" step="100"/>
<parameter name="not_frequent_np_msec"
type=" i n t e g e r " min="300" max="600" step="100"/>
<parameter name=" load_l imit_percent "
type=" i n t e g e r " min="70" max="90" step="10"/>

</parameters>
<system_metrics>

<system_metric name="profi led_app_queued"
type=" i n t e g e r " un i t="" de s i r ed=" smal l " />
. . .

</ system_metrics>
</design_space>

Listing 4.4: An example of the design space definition XML document.

45

Chapter 4. Framework Implementation

Figure 4.2: The objectives space focused on cpu_for_profiled, projected on pro-

filed_avg_load and not_profiled_avg_load.

best values.
In Figure 4.2 it is possible to see a projection of the objectives space on

profiled_avg_load and not_profiled_avg_load. The points are classified
by the values of the parameter cpu_for_profiled. The dot with a red circle
is the Pareto efficient point. This figure is indicating that the reservation
of six cores for the profiled applications is the best trade-off that maximizes
the average load both for profiled and not-profiled cores. It is also possible
to see that if the goal is to maximize just the profiled average load, the best
choice is the dot that is the first on the left side, and that represents eight
reserved cores. On the contrary the best choice to optimize just the not-
profiled average load is the first dot on the top of the graph, that represent
a reservation of two cores for the profiled applications.

46

Chapter 4. Framework Implementation

Figure 4.3: The objectives space focused on load_limit_percent, projected on

profiled_app_queued and not_profiled_app_queued.

In Figure 4.3 it is possible to see another example of objectives space. In
this case we are looking for a value of the parameter load_limit_percent
that minimizes the threads queued for both profiled and not-profiled appli-
cations. The graph shows that this condition is respected when the value is
90. During these simulations, when the parameter is set to this value, the
applications have never been queued.

Multicube Explorer allows also the representation of box plots, that shows
the effect of the variation of a parameter on a system metric. In Figure 4.4
it is shown the variation of the parameter np_filter_msec and the effect on
the metric not_profiled_avg_load. The black line represent the median,
while the box is delimited by the first and third quartiles. It is possible to
see that if the runtime manager maintains an assignment for a longer time,
the performance of the not-profiled applications improves. In this case, on
average, two more cores are used when the filter is set to 600 ms with respect
to the other two values.

This Framework is a great tool for a System Administrator, because it
allows to run automatically a series of simulations of the system that is going

47

Chapter 4. Framework Implementation

Figure 4.4: Box plot of not_profiled_avg_load, focused on np_filter_msec.

to be designed. The administrator should only define the test scenario and
the intervals of the parameters. After that, he will have a series of graphs
that shows the system behavior and allows to take the appropriate decisions
to optimize the configuration, with a consistent time-saving.

48

Chapter 5

Experimental Results

In this chapter it is shown the behavior of the Runtime Management Sys-
tem through different experimental analysis. First, it has been traced the
functioning of the parallelization policy for not-profiled applications. This
analysis has been conducted on the Many-core Architecture Simulator, that
has been introduced in Section 4.1, with one hundred cores. To verify the
impact of the Runtime Management System on a real system, it has also
been carried out an overhead analysis on a 16-cores processor.

5.1 Analysis of the Parallelization Policy

After the theoretical description of the policy that is applied to the not-
profiled applications, it is interesting to analyze how the Runtime Manage-
ment System performs when it is used on a system with many cores. The
analysis has been realized on a simulated architecture with one hundred cores,
all reserved to the not-profiled applications. The main goal of this analysis
is to highlight the behavior of the system under particular situations. In the
first example, in Figure 5.1, it is possible to see the assignment of cores with
four equal applications that start sequentially every two seconds, in a simula-
tion of ten seconds. The violet line represents the sum of all the assignments
and it coincides with the line of the first application, the blue one, as long

49

Chapter 5. Experimental Results

Figure 5.1: An example of the assignment of cores when four applications with fast

dynamic are executed sequentially.

as it is the only application that is being executed. In the assignment of the
first application it is noticeable a peak at 0.5 seconds. It is due to the use of
the average utilization of the resources during the last second as a parameter
for the calculation of the assignment. This parameter underestimates the
real utilization before the first second has passed. The red, green and orange
lines are the representation of the assignments for the other three applica-
tions. Because of the fact that the applications have the same dynamic, the
assignment of execution units stabilize itself on equal or very close values.
At the end of the simulation the sum of all the assignments is equal to 89
and the four applications use 22, 22, 25 and 20 cores. All these applications
have a fast dynamic and the FAST_DYNAMIC_FACTOR parameter of the run-
time manager is set to 1/2. In the Table 3.1, by looking at the third row and
at the first column, it is possible to see that the values of the simulation have
been well predicted by the equation 3.3, that specifies a total assignment of
89 with 22 cores for each one of the four processes.

50

Chapter 5. Experimental Results

Figure 5.2: An example of the assignment of cores with applications that have all

the three kind of dynamic.

In Figure 5.2 it is shown a simulation with a more variegated scenario. The
first process that starts is a slow application, marked with a red line. As it
is noticeable, it changes the assignment with a low frequency. This delay in
the adaptation to the system changes is the principal reason why the policy
elaborated in this thesis assigns less resources to this kind of applications:
they are less ready to release the cores if the system is in a condition of sat-
uration. As in the previous graph, the violet line represents the sum of the
utilization of the execution units by all the processes. The second process is
an application characterized by a medium dynamic and it is marked with a
yellow line. It starts at the third second and ends at second ten. After one
second, the number of assigned cores overcomes the assignment of the slow
application and the values become stable. Then it is added to this scenario a
fast application with three burst, represented with a green line. Each burst
has a duration of two seconds. In particular in the second burst, when at
second 10 the medium dynamic application ends, it is possible to see how
the assignment is adapted when the number of active applications changes.

51

Chapter 5. Experimental Results

Figure 5.3: An example of the assignment of cores with a scenario that saturates

all the available resources.

In the third example, in Figure 5.3, it is shown a scenario in which it is
already active a process with a slow dynamic. Then, at the same time, three
applications with fast dynamic start. The effect of this execution scheme
is the saturation of all the resources for a few milliseconds, followed by the
reduction of the resources assigned to the slow process and the adaptation
of the three fast ones to leave some resource available for an eventual new
process. The assignment of the execution units to the three fast processes is
not equal when they start because of the order in which they are scheduled
to start. The first of them sees more idle units and it will fill a part of them.
Then, the second and the third will see less available resources. By the way,
after few seconds, the assignments stabilize themselves to close values. When
the three fast processes end, at the third second of the simulation, the slow
one progressively increments its parallelization level, being the unique pro-
cess in execution.
Finally, in Figure 5.4, it is possible to see the last example, that is a simu-
lation of a realistic situation in which the assignment of cores to not-profiled

52

Chapter 5. Experimental Results

Figure 5.4: An example of the assignment of cores when the number of cores

reserved for not-profiled applications varies.

applications needs to be adapted to a change in the number of the reserved
cores. The variation of the reserved cores is determined by the operating
system and can be due to various causes:

• the guarantee-throughput applications are saturating their reserved
units and, to guarantee the QoS, more cores are reserved to them;

• some execution unit fails and does not work, so they are excluded from
the available cores;

• for overheating problems, some execution units may be turned off and,
later, reactivated;

• a legacy software, not handled by the runtime manager, starts to exe-
cute and the cores assigned to it are excluded from those reserved to
the not-profiled applications.

The simulation is realized with the composition of a slow dynamic application
already running (the red line in the graph), and a fast dynamic application

53

Chapter 5. Experimental Results

that executes four bursts (the green line). As usual the violet line represents
the sum of the assigned cores and, in this graph, the orange line shows the
cores reserved to the applications. In this simulation, at the fifth second,
the number of reserved cores drops to 70 and it is possible to see that the
assignment for the second burst is adapted to this new scenario, with a
reduction of 25 cores. At the ninth second the reserved units are incremented
to 85 and the assignment is, again, modified due to the possibility of using
more cores. It is possible to notice that the adaptation is gradual when it is
possible to increase the assignment, to avoid sudden changes.

5.2 Overhead Analysis

To evaluate the system it is fundamental to perform an analysis that mea-
sures the overhead caused by the runtime manager methods. The addition
of this functionality to a system must not degrade considerably the overall
performance. The minimization of the overhead is an important factor for a
library to be adopted in real systems. Depending on the scenarios, a library
with high overhead may be discarded, no matter how well it performs or how
many new functionalities it adds.

It has been realized two analysis: a measurement of the execution time of
the two principal methods of the library and an evaluation of the overhead
and of the performance in the execution of a benchmark composed of 16
applications. The analysis has been conducted on a platform constituted
of four AMD Opteron 4-cores processors, for a total of 16 physical cores.
The configuration of the platform can be found in Table 5.1. The system
is equipped with local L1 and L2 caches, shared L3 caches between each
processor and 24GB of memory. The platform has a Non-Uniform Memory
Access (NUMA) as the memory architecture, where the memory access time
depends on the memory location relative to a core.

54

Chapter 5. Experimental Results

Number of Sockets 4

Processor AMD Opteron 8378 @ 2.4 Ghz

Number of Cores 16

L1 Cache Configuration 128KB x 16

L2 Cache Configuration 512KB x 16

L3 Cache Configuration 6MB x 4

Memory Configuration 6GB x 4

Table 5.1: The configuration of the experimenting platform.

5.2.1 Execution Time of the Principal Methods

In this analysis, the two principal methods of the library have been profiled.
These methods are start_section and end_section. They are executed
every time a parallel section is starting or ending and they perform the in-
vocation of all the other functions of the library, including for example the
methods that handle the parallelization policies. The methods have been
executed over one hundred times on the experimenting platform and it is
possible to see the average execution times in Table 5.2.

start_section end_section

Not Profiled
First 300us

2usNormal 60-120us
No Update 2us

Profiled
First 1250us

4us
Normal 70-135us

Best Effort
First 1250us

4us
Normal 70-130us

Table 5.2: The measurement of the execution time of two functions, performed on

the experimenting platform.

55

Chapter 5. Experimental Results

The column that contains the results of the start_section method mea-
surement, is divided into several parts. This is due to the different execu-
tion behavior of the runtime manager. At the first execution all the data
structures are initialized, and in the case of the profiled and best-effort ap-
plications, the operating points are loaded from a file and, therefore, the
execution time is increased. The Normal row reports the result for all the
subsequent executions. Because of the non-uniform access to the memory,
the execution time may assume two average values, that are reported in the
table, based on the code location in memory. The not-profiled applications
have a third modality of execution: the maintenance of the policy to avoid
too many calculations and to reduce the overhead. As it is possible to see in
the table, this modality adds an overhead that, on average, is 2 microsecond.
The end_section method, on the contrary, has a unique behavior for all the
executions. As a final remark, we can consider this library efficient: the over-
head of the most used methods is in the order of one hundred microseconds,
with the possibility of an execution time that is at most 2 microsecond for
particular situations.

5.2.2 Evaluation of the Overhead over a Benchmark

In this analysis the objective is the measurement and comparison of the ex-
ecution times of a benchmark, composed of sixteen applications, to show
the differences between when they are executed without the Runtime Man-
agement System and when they are considered not-profiled applications and
profiled applications. The set of applications used for this analysis is con-
tained in the OpenMP Source Code Repository (OmpSCR) version 2.0
[26]. It is a collection of various programs that are all parallelized with the
OpenMP directives.
In Table 5.3 it is possible to see the applications used during this analysis,
the command line parameters and the number of parallel sections executed
at runtime.
The benchmark has been compiled with GCC version 4.4.1. Considering

56

Chapter 5. Experimental Results

Name Command Line Parameters Parallel Sections

FFT 4096 8387808

FFT6 4096 10 61

Jacobi01 -test 2

Jacobi02 -test 1

loopA.badSolution 1000000 10000 10000

loopA.solution1 200000 10000 20000

loopA.solution2 1000000 10000 1

loopA.solution3 200000 10000 10000

loopB.badSolution1 1000000 10000 10000

loopB.badSolution2 1000000 10000 10000

loopB.pipeSolution 1000000 10000 1

Lu 5000 4999

Mandel 50000 1

Molecular Dynamic -test 21

Pi 1000000000 1

Qsort 2000000 17808180

Table 5.3: The execution parameters and the number of parallel sections of the

benchmark applications.

that the libGOMP library parallelize each section over all the cores of the
system, the librtmgmt library has been modified to assign always an equal
number of cores. Practically, the runtime manager executes all its routines
but, in the end, the level of parallelization is forced to be equal to the number
of the cores. In this way a difference in the execution time cannot be associ-
ated to a different parallelization of the application but only to the different
methods used to evaluate how many cores should be assigned.
In the first execution it has been used the original version of the compiler and
of the applications. For the second execution, the applications have to be
executed as not-profiled using the Runtime Management System. Therefore

57

Chapter 5. Experimental Results

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1500

2000

2500

0

500

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Cores

Number of Cores

Number of Cores

Ex
ec

ut
io

n
tim

e
in

 m
s

Ex
ec

ut
io

n
tim

e
in

 m
s

Ex
ec

ut
io

n
tim

e
in

 m
s

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Cores

Ex
ec

ut
io

n
tim

e
in

 m
s

(a) Lu (b) Qsort

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1500

2000

2500

0

500

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Cores

Number of Cores

Number of Cores

Ex
ec

ut
io

n
tim

e
in

 m
s

Ex
ec

ut
io

n
tim

e
in

 m
s

Ex
ec

ut
io

n
tim

e
in

 m
s

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1500

2000

2500

0

500

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Cores

Number of Cores

Number of Cores

Ex
ec

ut
io

n
tim

e
in

 m
s

Ex
ec

ut
io

n
tim

e
in

 m
s

Ex
ec

ut
io

n
tim

e
in

 m
s

(c) FFT6 (d) LoopA.solution2

Figure 5.5: The result of the profiling of four benchmark applications.

it has been used the modified version of the compiler but still the original
version of the applications. As it was said in Section 3.1, it is not necessary
to modify the sources to execute a not-profiled application with the support
of the runtime management library. During this execution, the parameter
NP_FILTER_SEC has been set to 0.2 seconds. For the third execution, the
goal was to measure the execution time of profiled applications. The first
operation has been the generation of one file for each application with empty
operating points. Then it has been done the modification to the sources in
order to let the runtime manager know where to find the file with the op-
erating points. At this point it was necessary to profile the applications, to
have valid operating points and, after that, everything was done to complete
the analysis.

The profiling phase has shown that not every application benefits from
being executed by all the available cores. In Figure 5.5 it is possible to see
four sets of profiled operating points. In the graphs, it is illustrated how

58

Chapter 5. Experimental Results

the execution time varies when the application is parallelized over different
number of cores. In Figure 5.5(a) it is represented the profiling of the Lu ap-
plication. This is an intuitive situation, in which the execution time decreases
as the number of used cores increases. The Figure 5.5(b) is an example of
an application that has a similar behavior with almost all the parallelization
levels. The Figure 5.5(c) shows a different dynamic from the FFT6 bench-
mark: the minimum execution time is associated to eleven-twelve cores, and
not to sixteen. This means that when using all the cores, there is a reduction
of the performance. The LoopA.solution2 application (Figure 5.5(d)) has
a completely counterintuitive behavior: the execution time increases as the
number of cores increases and the best performance is obtained when the
application executes on a single core and, therefore, it is not parallelized at
all.
The simulations have been conducted five times for each execution type and,
after the removal of the outliers, it is considered the median of them as the
result. The comparison of the results is shown in Table 5.4 and in Figure
5.6.

Considering the sum of all the execution times, it is possible to see that
the Not-Profiled policies add an overhead of just 1.77%, while the Profiled
ones add less than 16%. By looking at the overhead of the single applications,
it is shown that for most of the applications, the Not-Profiled version adds
less than 1%, and for the Profiled version the overhead is less than 5%. It
is possible to notice some negative values, that is mostly due to the variance
of the simulation when the execution time is small (see Mandel, Molecular
Dynamic and Pi) or to the presence of nested sections, that are not evaluated
by the runtime manager if the nesting level is bigger than two, considering
that the parallelization choice has been already taken in the parent sections
(FFT6). The biggest overhead can be found in the applications FFT and
Qsort that, as it is shown in Table 5.3, execute a very large number of sections
within short execution times generating a great overhead, especially for the
profiled applications because the policies are more computational intensive.

59

Chapter 5. Experimental Results

Name Normal Execution Time Not Profiled Profiled

FFT 5.6499 +8.78 % +126.97 %

FFT6 12.9068 +1.05 % -17.85 %

Jacobi01 0.2583 +3.45 % +0.53 %

Jacobi02 0.3022 +0.27 % -0.20 %

loopA.badSolution 298.2916 +0.86 % +0.68 %

loopA.solution1 129.3920 +0.66 % +1.97 %

loopA.solution2 298.4712 +0.22 % +48.74 %

loopA.solution3 17.4466 +0.41 % +4.80 %

loopB.badSolution1 347.0923 +0.26 % -13.02 %

loopB.badSolution2 299.9623 +0.34 % +0.42 %

loopB.pipeSolution 323.2340 +7.58 % +41.66 %

Lu 77.1879 +0.17 % +15.23 %

Mandel 1.1248 +2.56 % -4.12 %

Molecular Dynamic 5.8968 +1.41 % -0.34 %

Pi 1.4114 -0.80 % -1.17 %

Qsort 12.5801 +8.19 % +251.55 %

Total 1831.2085 +1.77 % +15.83 %

Table 5.4: The results of the overhead measurement over a set of benchmark ap-

plications.

60

Chapter 5. Experimental Results

-0,50

0,00

0,50

1,00

1,50

2,00

2,50
FF

T
FF

T6
Ja

co
bi

01
Ja

co
bi

02
lo

op
A.

ba
dS

lo
op

A.
so

l1
lo

op
A.

so
l2

lo
op

A.
so

l3
lo

op
B.

ba
dS

1
lo

op
B.

ba
dS

2
lo

op
B.

pi
pe

S Lu
M

an
de

l
M

d Pi
Q

so
rt

Not-Profiled

Profiled

-1,00

-0,50

0,00

0,50

1,00

1,50

2,00

2,50

FF
T

FF
T6

Ja
co

bi
01

Ja
co

bi
02

lo
op

A.
ba

dS
lo

op
A.

so
l1

lo
op

A.
so

l2
lo

op
A.

so
l3

lo
op

B.
ba

dS
1

lo
op

B.
ba

dS
2

lo
op

B.
pi

pe
S Lu

M
an

de
l

M
d Pi

Q
so

rt

Not-Profiled

Profiled

Figure 5.6: The performance variation for profiled and not-profiled applications of

a benchmark executed with the same parallelization level.

The profiled and not-profiled application have also been executed with
the parallelization policies described in Section 3.7. In this way it is pos-
sible to evaluate if the policies allow to achieve better performance on the
execution of single applications. We expect a general worsening of the per-
formance of not-profiled applications, because the policy allocates about half
of the idle execution units for a single application, to leave the possibility of
execution to new processes. For the profiled applications we expect, instead,
a performance improvement due to the profiling that represents additional
knowledge for the runtime manager. The result are shown in Table 5.5 and
Figure 5.7.

These simulations shows that the parallelization policies are able to op-
timize the execution of single applications when they are profiled. The not-
profiled applications, instead, have worst performance. It is interesting to
see the result of the simulation for the LoopA.solution2 benchmark. As it

61

Chapter 5. Experimental Results

Name Normal Execution Time Not Profiled Profiled

FFT 5.6499 +19.48 % +115.16 %

FFT6 12.9068 +67.81 % -15.96 %

Jacobi01 0.2583 +5.20 % -29.40 %

Jacobi02 0.3022 -28.83 % -35.83 %

loopA.badSolution 298.2916 +4.97 % +5.76 %

loopA.solution1 129.3920 +11.51 % +12.89 %

loopA.solution2 298.4712 +8.82 % -70.24 %

loopA.solution3 17.4466 -0.16 % +3.57 %

loopB.badSolution1 347.0923 -8.47 % -7.29 %

loopB.badSolution2 299.9623 +3.36 % +8.52 %

loopB.pipeSolution 323.2340 -53.16 % +54.80 %

Lu 77.1879 +8.32 % +9.70 %

Mandel 1.1248 +160.46 % -4.00 %

Molecular Dynamic 5.8968 +115.60 % +135.14 %

Pi 1.4114 +159.90 % -1.46 %

Qsort 12.5801 +8.87 % +253.12 %

Total 1831.2085 -5.84 % -16.41 %

Table 5.5: The results of the execution time measurement when a single benchmark

applications is executed with the parallelization policies described in this thesis.

62

Chapter 5. Experimental Results

-0,70

-0,20

0,30

0,80

1,30

1,80

2,30
FF

T
FF

T6
Ja

co
bi

01
Ja

co
bi

02
lo

op
A.

ba
dS

lo
op

A.
so

l1
lo

op
A.

so
l2

lo
op

A.
so

l3
lo

op
B.

ba
dS

1
lo

op
B.

ba
dS

2
lo

op
B.

pi
pe

S Lu
M

an
de

l
M

d Pi
Q

so
rt

Not-Profiled

Profiled

Figure 5.7: The performance variation for profiled and not-profiled applications of

a benchmark executed with the parallelization policies described in this thesis.

has been shown in Figure 5.5, it performs better when executed over few
cores: this is an information used by the runtime manager and not known
by libGOMP and the result is a -70% in the execution time.

It has also been conducted another set of simulations, this time with two
applications executing concurrently and, again, leaving the runtime manager
to decide the parallelization level of the applications. During the execution
of the benchmark without the use of the runtime manager, libGOMP will
parallelize each of the applications over sixteen cores, creating in this way
thirty-two threads. Because of the multi-task capability of the experimenting
platform and, therefore, the presence of a preemptive scheduler, it is possible
to consider the architecture as constituted of thirty-two equivalent units.
For this reason, to obtain correct results, the runtime manager has been
configured to work on a system with thirty-two cores. The results of this
simulation are shown in Table 5.6 and in Figure 5.8.

63

Chapter 5. Experimental Results

Name Normal Execution Time Not Profiled Profiled

FFT 6.3035 +0.20 % +177.08 %

FFT6 13.0591 +67.66 % -10.62 %

Jacobi01 0.4113 -37.84 % -43.17 %

Jacobi02 0.4045 -48.92 % -25.77 %

loopA.badSolution 428.8755 -20.26 % -19.33 %

loopA.solution1 420.4414 -63.76 % -40.90 %

loopA.solution2 473.3049 -55.31 % -81.22 %

loopA.solution3 314.5117 -94.32 % -94.27 %

loopB.badSolution1 466.5492 -11.62 % -7.22 %

loopB.badSolution2 615.6112 -32.10 % -27.03 %

loopB.pipeSolution 687.9206 -56.90 % -59.09 %

Lu 166.4205 -35.35 % -45.60 %

Mandel 2.2461 -2.45 % -21.71 %

Molecular Dynamic 7.1144 -14.89 % -24.86 %

Pi 2.1943 +27.22 % -3.79 %

Qsort 13.0527 +2.68 % +236.80 %

Total 3287.4687 -43.12 % -42.07 %

Table 5.6: The results of the execution time measurement when a pair of benchmark

applications is concurrently executed with the parallelization policies described in

this thesis.

64

Chapter 5. Experimental Results

-1,00

-0,50

0,00

0,50

1,00

1,50

2,00

2,50
FF

T
FF

T6
Ja

co
bi

01
Ja

co
bi

02
lo

op
A.

ba
dS

lo
op

A.
so

l1
lo

op
A.

so
l2

lo
op

A.
so

l3
lo

op
B.

ba
dS

1
lo

op
B.

ba
dS

2
lo

op
B.

pi
pe

S Lu
M

an
de

l
M

d Pi
Q

so
rt

Not-Profiled

Profiled

Figure 5.8: The performance variation for profiled and not-profiled applications of

a benchmark executed pairwise with the parallelization policies described in this

thesis.

In the Total row of the table, it is possible to see that both the profiled
and not-profiled applications reduce the execution time of more than 40%.
This is due to the fact that libGOMP parallelizes all the applications over
all the cores of the system. The generation of 32 processes causes an addi-
tional overhead due to the continuous context switch. The runtime manager,
instead, considers the current occupation of the execution units and the exe-
cution time of each parallelization level, thus avoiding the generation of too
many processes. Almost all the applications obtain a speedup in the execu-
tion time, with the exclusion of FFT and Qsort, for which it has already been
shown that they are slowed down by the great number of parallel sections
with respect to the execution time.

65

Chapter 5. Experimental Results

As a final summary, the Runtime Management System shows low over-
head both when it is used with profiled applications and with not-profiled
ones. Some benchmarks worsen their performance, particularly if they are
handled as profiled applications, if they tries to parallelize sections with
few instructions. In the other cases, the a-priori knowledge of the different
parallelization levels, provided by the operating points, allows the profiled
programs to perform better. The not-profiled applications shows a general
worsening of the performance when executed individually, due to the con-
servative policy that does not assign all the available execution units to a
single application. It is, instead, proved that with just two applications exe-
cuting concurrently, the performance increases consistently for both profiled
and not-profiled applications, because of the adaptive policies that avoid the
saturation of the cores and the context switch overhead.

66

Chapter 6

Conclusions and Future Works

Nowadays we are assisting to a change in the way the architectures of the pro-
cessors are being implemented. The need to reduce the power consumption
and the heating has led to the development of processors with an increasing
number of cores. The Many-Core Architectures are the next big turning-
point in the development of architectures and we have to be ready to make
the most of them by exploiting the advantages that they can offer.

OpenMP follows this purpose, helping the programmers in the difficult
task of the parallelization of the applications. However, the assignment of
the parallelization level of an application does not take care of the current
status of utilization of the system, and basically every portion of parallel
code is subdivided over all the cores of the architecture. Although this can
be a rational choice with architectures constituted of two, four or eight cores,
it is hard to say the same when there are hundreds or thousands of avail-
able execution units. This consideration explains the necessity to develop a
runtime manager, able to handle the parallelization over many cores.

In this thesis I have proposed a runtime manager that is capable of sup-
porting both profiled and not profiled applications, and that can be integrated
and improve the parallelization policy of the GNU OpenMP library and that
is, also, configurable through a series of policy parameters. Therefore, it can
be adapted to a wide range of applicative scenarios just by tuning it. Con-

67

Chapter 6. Conclusions and Future Works

sidering the difficulty of a trial and guess assignment of the parameter to find
the optimal configuration, I have also implemented a tool that is capable of
simulating and evaluating the behavior of the runtime manager with a par-
ticular configuration when it handles a set of applications. By integrating it
with an already existent Design Space Exploration tool, capable of testing
the runtime manager over different configurations and plotting the results
of all the evaluation, I have obtained a Design-time Configuration Frame-
work. Following the results given by this framework it is possible to easily
find the configuration that minimizes the QoS requirements violations and
the queued threads while maximizing the throughput of all the applications.
Experimental results have been conducted on a real Many-Core system, to
analyze the difference in system throughput and individual application per-
formance when using the Runtime Management System. They show that it
is introduced low overhead and that it is obtained a consistent performance
improvement in the execution of multiple concurrent running applications.

The work done in this thesis can be the starting point for future develop-
ments. The first thing to consider more carefully is the power consumption.
The runtime manager already supports the possibility to add an indicator
of the dissipated power for every operating point, but this value is not used
in the evaluation of the parallelization policies. With this improvement, the
runtime manager would acquire energy saving capability. Another possible
extension can be made over the interaction with the Operating System. It
can be very interesting to improve the data exchange between the Runtime
Management System and the OS, in order to obtain new possibilities for
the optimization of the execution of the applications. An example of data
that could be exchanged is the processor affinity. Also in this case, the run-
time manager already supports the specification of a value that indicates the
affinity between the parallel threads, but it is not used by the scheduler to
improve the assignment of the cores. First, it would be necessary to study
the different kind of affinity that the threads may have and, then, to evalu-
ate the advantages of the different allocations. It could be also interesting

68

Chapter 6. Conclusions and Future Works

to study new policies for the applications to satisfy different necessities. For
example, it may be considered a priority the minimization of the changes
in the parallelization level, in order to reduce the overhead caused by the
allocation/deallocation of the cores, by the possible thread migration and by
the cold start latency of the caches.

69

Appendix A

OpenMP Extensions

In order to better understand how to use the extensions to the OpenMP
specification 3.0 and the API for the profiled applications developed in this
thesis, it is now shown an example of a benchmark application where the
modifications needed to make the application profiled, are highlighted. This
example can be very helpful for a programmer that wants to use the Runtime
Management System, but it is also a way to show how few changes are needed
to have a profiled application.

In Figure A.1 it is shown the code of the Pi benchmark, where the col-
ored lines are related to the Runtime Management System. First of all, we
start from the center of the code at line 16: in this line it is possible to
see the OpenMP extensions described in Section 3.3. These are two clauses
used to identify the section with a number and to specify a desired time, in
milliseconds, in which the parallel section should be completed. The identi-
fication number can be any integer greater than zero, while the completion
time can be also specified as a variable, initialized before the declaration of
the section, that obviously must be always greater than zero. A section with
a completion time not specified or with a value equal to zero will be executed
as a best-effort application.

The orange lines of code (1, 3 and 4) are those needed to inform the
runtime manager that the current application is profiled. The first line is the

70

Chapter A. OpenMP Extensions

1
int main (int argc , char ∗argv []) {2

char ∗ ops = "c_pi . ops " ;
4

int p r o f [] = { 1 } ;
6
7

double PI25DT = 3.141592653589793238462643;8
double l o c a l , w, total_time , p i ;9
long i , N; /∗ Prec i s ion ∗/

13

for default (shared)

17
for (i = 0 ; i < N; i++) {

∗ w;
∗ l o c a l) ;

∗= w;

23
return 0 ;

3
rtmgmt_load_op (ops) ;

5
rtmgmt_profi le (prof , 1 , 5) ;

16
sec t ion_ id (1) completion_time (3000)

22
rtmgmt_end_profile () ;

21
p i

24
}

20
}

19
p i += 4 .0 / (1 . 0 + l o c a l

18
l o c a l = (i + 0 . 5)

15
p r i va t e (i , l o c a l) r educt i on (+: p i)

14
#pragma omp p a r a l l e l

12
p i = 0 . 0 ;

11
w = 1 .0 / N;

10
N = OSCR_getarg_int (1) ;

25

#include "rtmgmt.h"

#pragma omp p a r a l l e l

Figure A.1: An example of a profiled application with highlighted modifications.

71

Chapter A. OpenMP Extensions

inclusion of the API methods definition, the second is the initialization of a
string with the path to the file that contains the operating points, while the
third is the call to the function of the runtime manager that will fetch the
points from the specified file.

The violet lines (5, 6 and 23) are used to profile the application, and can
be utilized only if the red and orange lines have been inserted, because it is
necessary to identify all the sections and to load the operating points. These
lines should be inserted only during the profiling phase, and then removed or
commented. First, it is necessary to specify an array with the identification
numbers of the sections that should be profiled. Then it is called the func-
tion rtmgmt_profile, with three parameters: the array defined before, the
dimension of the array, or in other words the number of sections to be profiled
(in this case 1), and the number of times that every operating point should
be profiled (in this case 5). After this number of times the application will
be terminated and all the results will be saved. If the application is not long
enough to execute the specified number of times every operating point, it is
necessary to insert the command rtmgmt_end_profile just before the end
of the application. The method will save all the collected data, allowing a
complete profiling of the application with few complete executions.

72

Bibliography

[1] OpenMP. The openmp api specification for parallel programming.
http://www.openmp.org/.

[2] Jianian Yan, Jiangzhou He, Wentao Han, Wenguang Chen, and Weimin
Zheng. How openmp applications get more benefit from many-core era.
In Beyond Loop Level Parallelism in OpenMP: Accelerators, Tasking and
More, volume 6132 of Lecture Notes in Computer Science, pages 83–95.
Springer Berlin / Heidelberg, 2010.

[3] Toshihiro Hanawa, Mitsuhisa Sato, Jinpil Lee, Takayuki Imada, Hideaki
Kimura, and Taisuke Boku. Evaluation of multicore processors for
embedded systems by parallel benchmark program using openmp.
In IWOMP ’09: Proceedings of the 5th International Workshop on
OpenMP, pages 15–27, Berlin, Heidelberg, 2009. Springer-Verlag.

[4] Christian Terboven, Dieter an Mey, Dirk Schmidl, Henry Jin, and
Thomas Reichstein. Data and thread affinity in openmp programs. In
MAW ’08: Proceedings of the 2008 workshop on Memory access on fu-
ture processors, pages 377–384, New York, NY, USA, 2008. ACM.

[5] S. Illner, A. Pohl, H. Krumm, I. Luck, D. Manka, and T. Sparenberg.
Automated runtime management of embedded service systems based on
design-time modeling and model transformation. In Industrial Infor-
matics, 2005. INDIN ’05, pages 134 – 139, aug. 2005.

73

BIBLIOGRAPHY

[6] Ch. Ykman-Couvreur, V. Nollet, Fr. Catthoor, and H. Corporaal. Fast
multi-dimension multi-choice knapsack heuristic for mp-soc run-time
management. In System-on-Chip, 2006. International Symposium on,
pages 1 –4, nov. 2006.

[7] Ch. Ykman-Couvreur, V. Nollet, Th. Marescaux, E. Brockmeyer, Fr.
Catthoor, and H. Corporaal. Design-time application mapping and plat-
form exploration for mp-soc customised run-time management. Com-
puters Digital Techniques, IET, 1(2):120 –128, mar. 2007.

[8] H. Shojaei, A.-H. Ghamarian, T. Basten, M. Geilen, S. Stuijk, and
R. Hoes. A parameterized compositional multi-dimensional multiple-
choice knapsack heuristic for cmp run-time management. In Design
Automation Conference, 2009. DAC ’09. 46th ACM/IEEE, pages 917
–922, jul. 2009.

[9] G. Mariani, G. Palermo, C. Silvano, and V. Zaccaria. A design space
exploration methodology supporting run-time resource management for
multi-processor systems-on-chip. In Application Specific Processors,
2009. SASP ’09. IEEE 7th Symposium on, pages 21 –28, jul. 2009.

[10] G. Mariani, P. Avasare, G. Vanmeerbeeck, C. Ykman-Couvreur,
G. Palermo, C. Silvano, and V. Zaccaria. An industrial design space
exploration framework for supporting run-time resource management on
multi-core systems. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2010, pages 196 –201, mar. 2010.

[11] Julita Corbalán, Xavier Martorell, and Jesús Labarta. Performance-
driven processor allocation. In OSDI’00: Proceedings of the 4th con-
ference on Symposium on Operating System Design & Implementation,
pages 5–5, Berkeley, CA, USA, 2000.

[12] Matthew Curtis-Maury, Xiaoning Ding, Christos D. Antonopoulos, and
Dimitrios S. Nikolopoulos. An evaluation of openmp on current and

74

BIBLIOGRAPHY

emerging multithreaded/multicore processors. In First International
Workshop on OpenMP, 2005.

[13] Samuel Thibault, François Broquedis, Brice Goglin, Raymond Namyst,
and Pierre-André Wacrenier. An efficient openmp runtime system for hi-
erarchical architectures. In Barbara Chapman, Weiming Zheng, Guang
Gao, Mitsuhisa Sato, Eduard Ayguadé, and Dongsheng Wang, editors,
A Practical Programming Model for the Multi-Core Era, volume 4935 of
Lecture Notes in Computer Science, pages 161–172. Springer Berlin /
Heidelberg, 2008.

[14] François Broquedis, Nathalie Furmento, Brice Goglin, Raymond
Namyst, and Pierre-André Wacrenier. Dynamic task and data place-
ment over numa architectures: An openmp runtime perspective. In
Matthias Muller, Bronis de Supinski, and Barbara Chapman, editors,
Evolving OpenMP in an Age of Extreme Parallelism, volume 5568 of
Lecture Notes in Computer Science, pages 79–92. Springer Berlin / Hei-
delberg, 2009.

[15] François Broquedis, François Diakhaté, Samuel Thibault, Olivier Au-
mage, Raymond Namyst, and Pierre-André Wacrenier. Scheduling dy-
namic openmp applications over multicore architectures. In Rudolf
Eigenmann and Bronis de Supinski, editors, OpenMP in a New Era of
Parallelism, volume 5004 of Lecture Notes in Computer Science, pages
170–180. Springer Berlin / Heidelberg, 2010.

[16] W. Blume, R. Eigenmann, J. Hoeflinger, D. Padua, P. Petersen,
L. Rauchwerger, and Perg Tu. Automatic detection of parallelism: A
grand challenge for high performance computing. Parallel Distributed
Technology: Systems Applications, IEEE, 2(3):37, aug. 1994.

[17] R. Anane. Autonomic behaviour in qos management. In Autonomic and
Autonomous Systems, 2007. ICAS07. Third International Conference
on, pages 57 –57, jun. 2007.

75

BIBLIOGRAPHY

[18] Samuel Kounev, Ramon Nou, and Jordi Torres. Autonomic qos-aware
resource management in grid computing using online performance mod-
els. In ValueTools ’07: Proceedings of the 2nd international conference
on Performance evaluation methodologies and tools, pages 1–10, ICST,
Brussels, Belgium, Belgium, 2007. ICST (Institute for Computer Sci-
ences, Social-Informatics and Telecommunications Engineering).

[19] Xuan Chen and Shun Long. Adaptive multi-versioning for openmp par-
allelization via machine learning. In Parallel and Distributed Systems
(ICPADS), 2009 15th International Conference on, pages 907 –912, dec.
2009.

[20] Alex Scherer, Thomas Gross, and Willy Zwaenepoel. Adaptive paral-
lelism for openmp task parallel programs.

[21] Zheng Wang and Michael F.P. O’Boyle. Mapping parallelism to multi-
cores: a machine learning based approach. In PPoPP ’09: Proceedings
of the 14th ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 75–84, New York, NY, USA, 2009. ACM.

[22] Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E.
Miller, and Anant Agarwal. Application heartbeats: a generic interface
for specifying program performance and goals in autonomous computing
environments. In ICAC ’10: Proceeding of the 7th international confer-
ence on Autonomic computing, pages 79–88, New York, NY, USA, 2010.
ACM.

[23] Matthias Gries. Methods for evaluating and covering the design
space during early design development. Integration, the VLSI Journal,
38(2):131–183, 2004.

[24] Multicube Explorer. Multi-objective design space exploration of
multiprocessor-soc architectures for embedded multimedia applications.
http://home.dei.polimi.it/zaccaria/multicube_explorer_v1/Home.html.

76

[25] E. Rosti, E. Smirni, L.W. Dowdy, G. Serazzi, and K.C. Sevcik. Processor
saving scheduling policies for multiprocessor systems. Computers, IEEE
Transactions on, 47(2):178 –189, feb. 1998.

[26] OmpSCR. Openmp source code repository.
http://ompscr.sourceforge.net.

77

	Introduction
	Thesis Contribution
	Thesis Organization

	Background
	OpenMP
	Runtime Management
	Autonomic Applications
	Design Space Exploration

	Runtime Management System
	Overview of the System
	Operating points
	OpenMP Extensions
	Scheduler and Operating System Role
	Local Runtime Manager
	Runtime Management API
	Parallelization Policy
	Profiled Guarantee-Throughput Applications
	Profiled Best-effort Applications
	Not-profiled Best-Effort Applications

	Framework Implementation
	Many-core Architecture Simulator
	Design-time Configuration Framework
	Scenario Simulator
	Design Space Exploration

	Experimental Results
	Analysis of the Parallelization Policy
	Overhead Analysis
	Execution Time of the Principal Methods
	Evaluation of the Overhead over a Benchmark

	Conclusions and Future Works
	OpenMP Extensions

