
Politecnico di Milano

Facoltà di Ingegneria dell’Informazione

Corso di Laurea in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

A Query Distribution Algorithm for the

Context-ADDICT System

Relatore: Prof.ssa Letizia Tanca

Correlatore: Ing. Giorgio Orsi

Tesi di Laurea di:

Emanuele PANIGATI matr. 720917

Anno Accademico 2009-2010

To My Family

And Friends

Molti aspiranti inventori, quando falliscono nell’intento, si crucciano di

essere nati in un epoca in cui tutto é giá stato compiuto e non c’é piú nulla

di nuovo che si possa fare.

L’impressione sbagliata per cui, a mano a mano che si avanza, le possibilitá

di invenzione si stiano esaurendo, non é affatto rara.

In realtá, é tutto il contrario.

Nikola Tesla,1916

Acknowledgements

Milano, 21 Ottobre 2010,

First of all I would like to thank my advisor, Professor Letizia Tanca (who

really always supported me, and she also found me my first job!) and all the

Context-ADDICT team’s members for the technical support and revisions

during this thesis work.

A special thanks goes to two of them: Ing. Giorgio Orsi, who really helped

me a lot during this thesis work and revisions, and to Ing. Carlo A. Curino,

who helped me a lot with the kick-off of my work.

I thank also Giorgio Inglese, Andrea Gabrielli, Luca Macagnino and Andrea

Magni for their previous work on the CA system modules, so that I can

continue their work.

A special thanks to my family, who always support me in my life and also in

this particular moment that is my thesis work.

I would also like to thank a lot all my friends, especially my closest ones and

the ones that work with me in my city theatre (of which I am the ”Stage

Director”), whose insistence obliged me to try and get my master degree as

soon as possible.

A thank to all my colleagues engineers: Roberto Paulitti, Matteo, Paoli,

Matteo Maggioni, Luca Mantovani, Marco Muffatti, Claudia Olzeri, Armando

Natta, Stefania Penoni, Pietro Malossi, Alessandro Marin, Gabriele Maggioni,

Andrea Paganini, and lots of other, whose support during my studies and

exams is a key factor in order to obtain the result of which I am proud.

Thanks also to everyone I forgot...

Table of Contents

List of Figures xiii

List of Tables xv

1 Introduction 7

1.1 Outline of the Thesis . 10

2 Preliminary Concepts 11

2.1 Introduction . 11

2.2 Ontologies . 11

2.2.1 Ontologies in Information Systems 12

2.2.2 The OWL language . 14

2.3 Description Logics - DL . 15

2.3.1 Concepts and Roles . 16

2.3.2 Knowledge Bases and KRS 17

2.3.3 Interpretations . 17

2.3.4 Models . 18

2.4 Reasoning services . 18

2.5 Description Logics Families . 19

2.5.1 Constructors . 19

2.5.2 Families . 21

2.6 Data integration systems related concepts 23

2.6.1 An introduction to the problem of consistency in DIS . . 24

2.6.2 Mappings . 25

2.7 Conjunctive queries . 28

2.8 CA - ML . 28

2.9 SPARQL . 29

TABLE OF CONTENTS

3 Context - Addict Architecture 33

3.1 Introduction . 33

3.2 Project objectives . 33

3.3 Thesis objectives . 34

3.4 Architecture . 34

3.4.1 Data structures . 36

3.4.2 Overview . 38

3.4.3 Software modules . 38

3.5 Goals of this thesis . 40

3.6 Summary . 41

4 State of the Art 43

4.1 Introduction . 43

4.2 Information Manifold . 44

4.3 RDF/RDFS based relational database integration 45

4.4 Description logic and ontology based data access 47

4.5 The Piazza PDMS . 48

4.6 Highly Dynamic DIS . 49

5 Semantic Extraction of Relational Data Sources 51

5.1 Ontological Extensions for Relational Databases 51

5.1.1 DSO Extraction . 53

5.2 Summary . 56

6 Query Processing in Context-ADDICT 57

6.1 Overview of the process . 57

6.2 Useful structures . 60

6.2.1 Hyper-graph structure 60

6.2.2 Meta-query structure . 60

6.3 Heuristics . 61

6.3.1 Similarity . 61

6.3.2 Containment . 61

6.4 Feasibility of a query . 62

6.5 Filter clause and Order By clause 66

6.6 Query distribution and result retrieval process 67

6.6.1 Query distribution . 68

x

TABLE OF CONTENTS

6.6.2 Result retrieval and integration 78

6.7 Summary . 79

7 Design and Implementation 81

7.1 Introduction . 81

7.2 Common and useful structures and algorithms 82

7.2.1 hyper-graph implementation 83

7.2.2 Meta-query implementation 84

7.2.3 PropertiesTable and SubClassesList 85

7.3 Query Distribution algorithm 86

7.3.1 The query grapher sub-module 86

7.3.2 The query distribution sub-module 87

7.3.3 The main sub-module 90

7.4 Extensions to the SPARQLExplorer module 90

7.5 Data retrieval and Integration 91

7.6 Examples of query distribution 92

7.6.1 Example One: unfeasible query dropping 92

7.6.2 Example Two: query splitting 93

7.7 Summary . 95

8 Evaluation 97

8.1 Introduction . 97

8.2 Complexity . 98

8.2.1 Complexity analysis . 98

8.2.2 Consideration about the complexity 99

8.3 Analysis on the test results . 100

8.4 Summary . 102

9 Conclusions and Future Work 103

9.1 Original Contributions . 103

9.2 Further Remarks . 104

9.3 Future Works . 105

A Examples of ontologies 107

A.1 Vehicle domain ontology . 107

A.2 Mapping ontologies . 108

xi

TABLE OF CONTENTS

A.2.1 Mapping beetwen vehicle domain and rosex1 ontologies . 109

A.2.2 Mapping beetwen vehicle domain and rosex2 ontologies . 109

A.2.3 Mapping beetwen vehicle domain and rosex4 ontologies . 110

A.3 Datasources ontologies . 111

A.3.1 rosex1 semantic ontology 112

A.3.2 rosex2 semantic ontology 112

A.3.3 rosex4 semantic ontology 113

Bibliography 115

xii

List of Figures

1.1 Data Warehouse Architecture 8

1.2 Mediated Schema Data Integration Architecture 9

2.1 A conceptualization . 14

2.2 Three equivalent representation of the same class 16

2.3 Constructors of the most common DL Families 32

3.1 Context-ADDICT Architecture 35

6.1 Module Architecture of Context-ADDICT platform 59

List of Tables

5.1 The Relational.OWL ontology 52

5.2 Relational to ontology translation rules 55

List of Algorithms

1 isContainedInto Algorithm - Part 1. 63

2 isContainedInto Algorithm - Part 2. 64

3 Feasibility Check Algorithm . 66

4 Query Grapher algorithm. 71

5 Basic Split Generation Algorithm - Part 1 73

6 Basic Split Generation Algorithm - Part 2 (inner for) 74

7 Final Split Generation Algorithm - Part 1 76

8 Final Split Generation Algorithm - Part 2 (inner for) 77

Sommario

L’integrazione dei dati é un settore di ricerca presente sin dalla nascita dei

primi sistemi per lo storage dei dati, agli albori della teoria delle basi di dati.

In questa branca di ricerca, tutt’ora aperta ed in evoluzione, una delle

ultime innovazioni proposte é l’integrazione dei dati mediata da ontologie di

dominio e di contesto, che rappresentano l’ambiente in cui é nata e si sviluppa

la nostra ricerca.

Scopo di questo lavoro di tesi é stato quello di completare la piattaforma

Context-ADDICT con un algoritmo in grado di distribuire le varie query

prodotte dal modulo di riscrittura (giá implementato in un precedente lavoro)

in modo da renderne possibile l’esecuzione sulle varie sorgenti di dati, cosa che

al momento non era possibile fare.

Gli algoritmi che verranno presentati si occupano quindi in sostanza della

distribuzione delle query sulle varie sorgenti e dell’integrazione dei risultati

ricevuti da esse, in modo da fornire, nel piú ristretto tempo possibile, i miglio-

ri risultati possibili all’utente che aveva composto l’interrogazione iniziale al

sistema, mantenendo durante tutto il processo la correttezza e la completezza

dell’insieme di query che andranno distribuite sulle sorgenti.

Abstract

Data integration is a research branch that was born together with the database

theory and the first data storage systems.

In this research branch, actually open and always in evolution, one of the

most recently proposed data integration methods is the use of domain and

context ontologies mediated integration methods mediated through domain -

and context - ontologies, which represents our research field.

The ultimate purpose of this thesis work is to complete the Context-

ADDICT platform with an algorithm able to distribute all the queries pro-

duced by the already existing rewriting engine in order to execute them over

multiple data-sources. All the algorithms that we are going to expose in this

thesis have the purpose of distributing queries to datasources and integrate the

resultset that they give back to the system, in order to give, in the shortest

time possible, the best achievable results to the final user, who issued the

original query to the system. In the whole process the properties of soundness

and completeness of the process must be guaranteed.

Prefazione

Il problema dell’integrazione dei dati é presente sin dagli inizi degli studi sulle

basi di dati ed in particolare ai giorni nostri d́iviene piú accentuato a causa

dell’eterogeneitá delle possibili sorgenti di informazioni che possono prendere

parte al processo di integrazione (basi di dati relazionali, file XML o addiritura

il World Wide Web stesso.

Il problema puó sorgere in diversi ambiti, quali l’integrazione di dati prove-

nienti da diverse sorgenti interne ad una stessa compagnia oppure l’integrazione

di dati di diverse compagnie (per esempio in caso di fusioni od acquisizioni).

Nel corso degli anni, gli approcci al problema sono stati di vario tipo;

il primo esempio di architettura per l’integrazione dei dati é il cosiddetto

Data WareHouse, che grazie alla procedura nota come ETL (Extraction,

Transformation and Loading), consente di caricare dati provenienti da vari

sistemi all’interno di un unico database centralizzato, aggregandoli rispetto ad

alcune dimensioni (ad esempio tempo e/o spazio) in modo che risultino utili

per eventuali analisi sui dati.

Il passo successivo svolto dalla ricerca ci porta verso i sistemi con schema

mediato, ovvero sistemi in cui i dati rimangono fisicamente nelle varie sorgenti

e le interrogazioni vengono svolte su di una sorta di schema globale e vengono

poi tradotte nelle varie richieste da inoltrare alle varie sorgenti.

In questo caso, i possibili approcci sono essenzialmente due, GAV (Global-

As-View) e LAV (Local-As-View); nel primo caso lo schema mediato é uno

schema globale che in pratica una sorta di view sulle varie sorgenti (che con-

tengono i dati), mentre nel secondo caso sono le sorgenti che sono delle view

sullo schema globale (che contiene i dati). Inutile dire che il secondo caso é

generalmente piú complesso, ed a volte contorto, da gestire.

l’approccio basato su schema globale si basa sull’omogeneitá delle sorgen-

ti: infatti in questi sistemi di integrazione non ci si cura delle traduzioni tra

LIST OF ALGORITHMS

modelli e si suppone di partire da sorgenti basate sullo stesso modello dei dati.

Estensioni verso sorgenti eterogenee vanno integrate con appositi traduttori, o

wrappers .

Con l’avvento del World Wide Web (in particolare del Semantic Web) e di

tutti i vari formati collaterali utili alle gestione delle informazioni nell’era di

Internet (quali ad esempio i file XML, i file RDF, le ontologie, ...) la necessitá

di integrare dati provenienti da diversi tipi di sorgenti si é fatta via via piú

forte, rendendo necessario lo studio di tecniche di integrazione dei dati sempre

piú avanzate e complesse.

La piattaforma Context-ADDICT all’interno della quale si va ad inserire

il lavoro svolto in questa tesi, appartiene alla categoria di integrazione dei

dati guidata dalle ontologie (e, cosa che peró non sará particolarmente tenuta

in conto in questa tesi, in quanto nel lavoro svolto questa caratteristica é

poco utilizzata, context-aware), una delle ultime tecniche su cui la ricerca sta

investendo, in quanto consentirebbe una facile implementazione appunto data

nel web semantico.

Questo tipo di soluzione é stato raggiunto dopo che, in un primo tempo,

si era tentato di arricchire semanticamente gli schemi relazionali, cosa che ha

avuto poco successo, dato l’avvento successivo di strutture fortemente seman-

tiche quali le ontologie, che consentono una piú facile implementazione di un

livello semantico dei dati.

Il lavoro svolto in questa tesi mira a completare il cuore del sistema

Context-ADDICT, composto sostanzialmente dal motore di riscrittura del-

le query, con un motore di distribuzione delle stesse, in quanto i prodotti

della riscrittura sono spesso multi-sorgente, cosa che li rende inutilizzabili per

l’esecuzione sulle sorgenti di dati originali.

Il sistema di riscrittura genera un insieme di query corrette e complete,

ognuna delle quali puó multi-sorgente; lo scopo del nostro lavoro sará di esten-

dere questo sistema con la parte di distribuzione delle query, che genera un

insieme di query, ognuna delle quali é mirata a una sola sorgente.

Per fare ció sará necessario l’uso di due meta-modelli: il primo é una sor-

ta di semplificazione del concetto di ipergrafo, mentre il secondo é un meta-

modello della query, che verrá chiamato MetaQuery. Mediante l’utilizzo di

questi modelli ed applicando due euristiche (una di similaritá ed un’altra di

contenimento) verrá compiuto il processo di distribuzione e di ottimizzazione,

4

LIST OF ALGORITHMS

che porterá tra le altre cose ad un’accentuata riduzione del numero di query

da valutare da parte delle singole sorgenti.

Al termine di questo lavoro verrá inoltre eseguita una rapida valutazio-

ne a priori della complessitá degli algoritmi proposti ed una breve fase di

esposizione dei risultati ottenuti da una prima, blanda, attivitá di testing del

sistema.

5

Chapter 1

Introduction

Data Integration is the problem of integrating data which come from multiple,

sometimes heterogeneous (like Relational, XML or WWW itself), different

sources.

Actually the problem could arise in multiple different scenarios, such as in-

tegration of data inside the same company or integrating data among different

companies (e.g.: after the merger of different insurance companies they may

want to share data among the two information systems).

The first, well known, application of the techniques of Data Integration,

is the one called ”Data Warehousing”, in which data coming from different

information systems are collected and stored into a central database, using a

procedure named ”ETL” (Extraction, Transformation and Loading).

The main purpose of the Data Warehousing approach is to analyze the

data w.r.t different perspectives (e.g. market analysts may be interested in

analyzing sales data of a certain product, at certain time, in a certain place);

This approach is usually called ”off - line” since queries are submitted to the

Data Warehouse system, that usually does not contain real-time data, but

usually stores data aggregated under some dimension (such as time, place, or

any different dimension which allows data aggregation).

An example of the design of the Data Warehouse architecture is shown in

(Figure 1.1).

Recently researchers provide other approaches in order to obtain Data In-

tegration; in particular, in case of homogeneous systems we reach the definition

of two different way to provide integration the first way is called GAV (Global-

As-View) while the second one is called LAV (Local-As-View). The first one

Introduction

Figure 1.1: Data Warehouse Architecture

defines the global schema (the one which contains integrated data) as a set

of view over the multiple original sources schemas and is suitable when the

original sources schemas are not supposed to change; the second defines the

sources as sets of views over the global schema and is suitable when the global

schema is not supposed to change.

The mediated architecture is shown in Figure 1.2.

In the last years, partly due to the Semantic Web explosion, we have as-

sisted to the birth of ontologies and to the ”renaissance” of the so - called

”Knowledge Engineering”.

Using ontology in databases and informative systems made possible to ”en-

rich” data with more semantic information about them compared with the tiny

semantic information present in a standard database schema, making possible

a more articulate querying of the sources (in the ontology world, under some

assumption and with some limitation of the expressive power, it is possible

to ”reason” with concepts included in them) and also, by extracting semantic

models from the original sources, it is possible to integrate multiple heteroge-

neous systems.

8

Figure 1.2: Mediated Schema Data Integration Architecture

This thesis work is part of a larger project, named ”Context - ADDICT 1

[11]. The final target of this project is to produced an ontology - based tool

which allows to integrate multiple distributed (and mobile), heterogenous data

sources, which produce huge amounts of data which needs to be filtered and

tailored on the needs of the final user interest and context.

The work described in this thesis concentrate on the issue of data inte-

gration. It aims at describing (and producing) an algorithm to rewrite and

distribute a SPARQL query issued over a global domain ontology - describing

the domain in which we are interested - to each original data source by means

of the data source semantic ontologies (which describe the semantic of the

sources). The results coming from the data sources are finally integrated in

order to answer to the original query issued by the user.

This technique of data integration since them make it possible to interop-

erate very quickly and also can be easily used from interfaces of the kind used

by the Semantic Web, which in future can lead to a more user-friendly use of

the data integration systems (which are at the moment very specific and not

1Context Aware Data Design, Integration, Customization and Tailoring.

9

Introduction

easily accessible by average users).

1.1 Outline of the Thesis

In Chapter 2 we recall some preliminary concepts about the Data Integration

problem, ontologies and description logics, in order for the reader to better

comprehend where is the starting point of this work.

In Chapter 3 we are going to see which is the architecture of the Context -

ADDICT system and which are its modules. In Chapter 4 we are going to

see the current solutions for query rewriting and dispatching over multiple

heterogeneous sources. In Chapter 5 we will describe our semantic extraction

procedure from generic relational schemata. Then, in Chapter 6 we will de-

scribe the algorithm used in order to process and distribute the query while in

Chapter 7 we are going to see the detailed implementation of it in the related

modules of the Context - ADDICT system. In Chapter 8 we are going to

evaluate the resulting system and in the final Chapter 9 we report the final

conclusion about the whole work.

Finally, in Appendix A we report some examples of the ontologies men-

tioned in our work.

10

Chapter 2

Preliminary Concepts

2.1 Introduction

In this chapter we will provide some preliminary concepts needed to under-

stand better what is the scope of this thesis work. We will start with a quick

introduction on Ontologies and Description Logics, giving some formal defini-

ton useful to understand how the query processing and distribution algorithm

works.

We will also give basic notions about about CA−ML, the ontology map-

ping language that is used in Context-ADDICT and SPARQL, the query

language that is used in order to query our system.

Most of the concept that we discuss in this chapter has been borrowed from

[39] and [27], those discuss previously implemented modules of the Context-

ADDICT system.

2.2 Ontologies

Ontology is a branch of philosophy, it is the science of what is, of the kinds

and structures of the objects, properties and relations in every area of reality.

Ontology in this sense is often used in such a way as to be synonymous with

metaphysics. In simple terms it seeks the classification of entities. Each sci-

entific field will of course have its own preferred ontology, defined by the field

vocabulary and by the canonical formulations of its theories.

Traditional (philosophical) ontologists have tended to model their own research

Preliminary Concepts

fields on these scientific ontologies, either by producing theories which are like

scientific theories but radically more general than these, or by producing theo-

ries which represent a strong organization of scientific theories or a clarification

of their foundations.

Philosophical ontologists have more recently begun to concern themselves not

only with the world as this is studied by the sciences, but also with domains

of practical activity such as law, medicine, engineering, commerce. They seek

to apply the tools of philosophical ontology in order to solve problems which

arise in these domains.

2.2.1 Ontologies in Information Systems

The concept of ontology was first borrowed from the realm of Philosophy by

Artificial Intelligence researchers and has since become a matter of interest to

computer and information scientists in general. In Computer Science litera-

ture, the term takes a new meaning, not entirely unrelated to its philosophical

counterpart.

A definition of ontology is attributed to Tom Gruber[42] who defines it as

a shared and formal specification of a conceptualisation. This definition, in

its terms, borrows from the Artificial Intelligence literature on Declarative

Knowledge, which is concerned with the formal symbolic representation of

knowledge[34]. In this field, formal logical languages, such as first-order pred-

icate calculus, are used to describe models of the real world. This is necessary

because natural languages are too ambiguous for machine interpretation and

formal reasoning.

In an ontology, and as a consequence in a knowledge base reasoning is usually

based on the Open World Assumption (OWA), that assumes that knowledge of

the world is incomplete: if something cannot be proved to be true, then it does

not automatically become false. This is a key difference with classical database

theory where a Closed World is assumed: if something is already present as

an axiom then it is true and deducible, it is considered false otherwise.

Elements of an ontology

An ontology O can be formally defined as a 5-tuple; this 5-tuple contains

(according to [36]):

12

2.2 Ontologies

• a set C whose elements are called concepts.

• a set of relations R ⊆ C×C.

• a set of axioms on O, called AO.

To cope with the lexical level, the notion of a lexicon is introduced.

For an ontology structure O = {C, R, AO } a lexicon L is defined as

L = {LC, LR, F, G}

where:

• LC is a set whose elements are called lexical entries for concepts.

• LR is a set whose elements are called lexical entries for relations.

• F ⊆ LC×C is a reference for concepts such that:

F(lc) = {c ∈ C | (lc,c) ∈ F} ∀lc ∈ LC

F−1(c) = {lc ∈ LC | (lc,c) ∈ F} ∀c ∈ C

• G ⊆ LR×R is a reference for relations such that:

G(lr) = {r ∈ R | (lr,r) ∈ G} ∀lr ∈ LR

G−1(r) = {lr ∈ LR | (lr,r) ∈ G} ∀r ∈ R

Individuals: Individuals (or instances) are the ”Ground level” compo-

nents of an ontology. The individuals in an ontology may include concrete

objects such as people, animals, vehicles as well as abstract individuals such

as numbers and words. An ontology need not include any individuals, but

one of the general purposes of an ontology is to provide a means of classifying

individuals, even if those individuals are not explicitly part of the ontology.

Classes: Classes (or concepts) are abstract groups, sets, or collections

of objects. They may contain individuals, other classes, or a combination of

both. Ontologies vary on whether classes can contain other classes, whether

a class can belong to itself, whether there is a universal class (that is, a class

containing everything), etc.

Sometimes restrictions along these lines are made in order to avoid the loss of

13

Preliminary Concepts

decidability of the inference system.

Roles: Roles are relations binding two concepts (object properties) or

a concept to a datatype (datatype properties). Roles describe interactions

between concepts or their properties.

Person

Mary

Michael

Dog

Spot

Bruser

Snoopy

Joe

hasDog

Figure 2.1: A conceptualization

Axioms: Axioms are used to impose constraints on the values of classes

or instances. Axioms represents the starting point for the inference systems,

they are the hypothesis of a formal logic theory and are always true if used

inside the ontology.

2.2.2 The OWL language

OWL (Web Ontology Language[5]) is a language for defining and instantiating

Web ontologies based on XML, (Extensible Markup Language)[4] and RDF

(Resource Description Framework)[2]. OWL is designed for use by applications

that need to process the meaning of an information instead of just presenting

that information to the user.

OWL can be used to explicity represent the meaning of terms in vocabularies

and the relationships between those terms; by this language it is possible to

infer new knowledge from a conceptualization using a specific software called

reasoner.

14

2.3 Description Logics - DL

OWL provides three increasingly expressive sublanguages also called OWL

dialects :

• OWL Lite: Provides classification hierarchies and simple constraints,

it only permits to express relationships with maximum cardinality equal

to O or 1.

• OWL DL: Supports those users who want a high expressiveness while

retaining computational completeness and decidability. OWL DL in-

cludes all OWL language constructs, but they can only be used under

certain restrictions (i.e. a class cannot be an instance of another class).

OWL DL is so named due to its correspondence with Description Logics

(see below).

• OWL Full: Provides the maximum expressiveness and the syntactic

freedom of RDF with no guarantees on computational complexity. A

key difference of this dialect from the former is that a deductive process

within such a theory can be undecidable.

There are many other formalism to describe an ontology, one of the most used

is the N3 form[1]. It has the same expressivity as OWL and it is particu-

larly useful to machines because it is more compact than OWL with fever

constraints on the representation. The N3 form consists of a set of triples

(Subject - Predicate - Object) that describes the so called statements. The set

of the statements represents the final ontology.

In Figure 2.2 it is shown how the same class (in this case a military vehicle)can

be represented in different formalisms: OWL, N3 and a graph based represen-

tation. The last is equivalent to OWL and only used by designers to have a

graphical representation of the ontology.

2.3 Description Logics - DL

Description Logics (DL)[9] are a family of decidable logics for formal knowledge

representation. They can represent concepts and their relationships (roles)

giving them also formal semantics. In particular, we will refer to a description

logic named SHOIN(Dn) that is the underlying logic of the OWL language

described in Section 2.2.2.

15

Preliminary Concepts

<rdf:Description rdf:about="&weapons;MineWarfareVessel">
 <rdfs:subClassOf rdf:resource="&weapons;SurfaceShip"/>
 <rdfs:subClassOf rdf:resource="&weapons;ModernNavalShip"/>
 <rdf:type rdf:resource="&owl;Class"/>
</rdf:Description>

a:MineWarfareVessel
 a owl:Class;
 rdfs:subClassOf a:ModernNavalShip , a:SurfaceShip .

&weapons;
MineWarfare

Vessel

&weapons;
ModernNaval

Ship

&weapons;
SurfaceShip

rdfs:subClassOf rdfs:subClassOf

Figure 2.2: Three equivalent representation of the same class

The main descriptive tools of a DL are represented by its concepts constructors :

by combining them in a suitable form it is possible to describe the concepts and

their relations. One particular DL is defined on the basis of its constructors.

2.3.1 Concepts and Roles

In DL, like in ontologies in general, we can distinguish Concepts and Roles;

a concept is a set of individuals of the application domain that have some

common characteristics as it can be for people or cars. Roles are the logical

representations of relationships between concepts, for example, the role has-

Father or the role madeOf.

Concepts and roles are also divided into atomic and complex, where by atomic

we mean that it is not decomposable in terms of other concepts or roles inside

the same logic theory. A complex concept is made of other atomic or complex

concepts and roles combined by means of the constructors of the given DL.

The process of assigning a meaning to an atomic concept is called Symbol

Grounding and is related to the problem of interfacing the automatic system

to the real world (e.g. using sensors and trasducers). In DL there are two

special concepts named Top and Bottom, Top (>) is a concept that contains

16

2.3 Description Logics - DL

all the individuals of the domain, while Bottom (⊥) is the empty concept,

which also represents the contraddiction.

2.3.2 Knowledge Bases and KRS

A knowledge Base (KB) is a particular and evolved form of information system,

it can contain many different conceptualizations of different domains named

ontologies and it is managed through a Knowledge Representation System

(KRS) that gives the facilities for managing and querying the KB, defining

new concepts and roles and inferring new knowledge. If a KRS can only query,

the KB is called a Knowledge Inference System (KIS) or simply a Reasoner.

A KB is usually constituted by two elements: KB = 〈Tbox, Abox 〉

• TBox: The Tbox (Terminological box) contains all the concept and role

definitions, and also contains all the axioms of our logical theory (e.g.

“A father is a Man with a Child”). The axioms of a Tbox can be divided

into definitions (C ≡ D) and subsumptions (C v D), the former used

to say that a concept C is equivalent to another concept D (atomic or

complex), the latter used to say that a concept C is a subclass of the

concept D. The reader can find more precise definitions of these operators

in Section 2.4.

• ABox: The Abox contains all the assertions (also known as facts) of

the logic theory, an assertion is used to express a property of an in-

dividual of the domain (for example “Tom is a father” is represented

as Father(Tom)). An assertion is also R(a,b) where R is a role (e.g.

hasFather (James, Tom)).

2.3.3 Interpretations

An interpretation is the way to give a formal semantics to a KB. An interpre-

tation of a KB is a triple:

I=〈∆I ,ξI ,ψI〉

where:

∆I is called interpretation domain and contains all the individuals of the do-

main which we want to predicate on.

17

Preliminary Concepts

ξI : Θ −→ ℘(∆I) with Θ the set of the concepts, is the evaluation function

for the concepts and associates a concept C to a subset of ∆I .

ψI : Π −→ ℘(∆I × ∆I) with Π the set of roles, is the valuation function for

the roles and associates a role R to a subset of ∆I ×∆I .

2.3.4 Models

Given a Tbox T = {Ci v Cj, i, j ∈[0..n]} with Ci and Cj generic concepts,

and an interpretation I,

I is a model for T if and only if for all the subsumptions in T we have that CI
i

⊆ CI
j) where:

∀i ∈ [0..n] CI
i =

ξI(Ci) if Ci is a concept.

ψI(Ci) if Ci is a role.

Note that the Tbox is expressed only in terms of subsumptions; it obviously

comprehends also the equivalence definitions (Ci ≡ Cj) that are decomposed

in two subsumbtions (Ci v Cj and Cj v Ci)

2.4 Reasoning services

Reasoning services[20] are the tasks of the KRS. We can distinguish them into

services for the Tbox and services for the Abox [26]. The services that involve

only the Tbox are:

• Subsumption: This task verifies if a concept C is subsumed by an-

other concept D (Tbox |= CvD); this is true if and only if for all the

interpretations I we have that CI
i ⊆ DI

i .

• Consistency: This task verifies that there exists at least one interpre-

tation I for a given Tbox (Tbox 2 ⊥).

• Local Satisfiability: This task verifies, for a given concept C that there

exist at least one interpretation in which CI 6= ∅.

The services for the Abox are:

18

2.5 Description Logics Families

• Consistency: This task verifies that an Abox is consistent with respect

to a given Tbox (KB 2 ⊥).

• Instance Checking: This tasks verifies if a given individual x belongs

to a particular concept C (Abox |= C(x)).

• Instance Retrieval: This tasks returns the extension of a given concept

C, that is, the set of individuals belonging to C.

2.5 Description Logics Families

In this section we will describe what are the constructors of the DLs and, as

a consequence, what are the most common DL families. For every DL the

concepts Top and Bottom are interpreted as:

> ≡ A t ¬A =⇒ >I = ∆I

⊥ ≡ A u ¬A =⇒ ⊥I = ∅

2.5.1 Constructors

Negation:

The negation constructor is indicated as ¬C and the presence of such a

constructor in a specific DL is indicated with the character “C” in the logic’s

name (e.g. the logic AL with the addition of negation is named ALC); see

Figure 2.3.¬C is interpreted as (¬C)I = ∆I\CI . It is used to tell that a

concept is disjoint from another concept (e.g. Man v ¬Woman). There are

some logics that allow negation only for atomic concepts.

Concept Intersection:

The concept intersection constructor, denoted by CuD and interpreted as

(CuD)I=CI∩DI , is used to tell that a concept is defined by the intersection

of the individuals of two concepts (i.e. Driver v Person u ¬Blind).

Concept Union:

The “union of concepts” constructor is denoted by CtD (also called U in the

logic’s name) and is interpreted as (CtD)I=CI∪DI ; it can be used to tell

that a concept is defined by the union of the individuals of two concepts (i.e.

19

Preliminary Concepts

People v Male t Female).

Universal Qualified Quantification:

The universal qualified quantification is denoted by ∀R.C and it is interpreted

as (∀R.C)I={a∈ ∆I | ∀b, (a,b)∈RI ⇒ b∈CI}. It means that if an individual

a is in relation with another individual b through R then b belongs to the

concept C. This constructor can be also unqualified when > instead of C is

used. This constructor is useful when we need to define the range of a given

role R.

Existentially Qualified Quantification:

The existential qualified quantification is indicated as ∃R.C (also indicated

as ε) and it is interpreted as (∃R.C)I={a∈ ∆I | ∃b, (a,b)∈RI}. Also this

constructor can be used in an unqualified form.

Transitive and Inverse Roles:

When a role has the transitive property it is indicated as R+ and can be used in

constructors like the existential and the universal quantifications. A logic that

provides this constructor has the letter “S” in its name. This constructor is

useful for instance, when we need to build a meronymy relation like “partOf ”.

For example, if we have two axioms like:

Engine v ∃partOf.Clutch

Clutch ≡ ∃partOf.ClutchDisk

we can infer

Engine v ∃partOf.ClutchDisk

When a role represents the inverse relation of another concept S it is indicated

as S− and is interpretes as the inverse relation of the interpretation of S. This

constructor is also indicated as “I”. This constructor is used to define the

domain of a given role R, for example, to express that a role R has a domain

C and a range D we can write:

> v ∀R.D

> v ∀R−.C

20

2.5 Description Logics Families

Role Subsumptions:

There exists a constructor that gives the opportunity to define an hierarchy of

roles, this constructoris defined by RvS⇔ [(a,b)∈R⇒ (a,b)∈S]. A description

logic that provides this constructor has the letter “H” in its name.

Enumeration:

The constructor oneOf (also indicated by the letter “O”) is used when we

want to define a concept by enumeration of its individuals (e.g. RGBColors

= {Red, Green, Blue }).

Existential Qualified Quantification:

We can make a role R a functional role using the constructor≤1R (indicated by

the letter “F”) that is interpreted as (≤1R)I={s∈ ∆I | count(t):(s,t)∈RI ≤1}.
If we want to arbitrarly restrict the number of individuals that are involved in

a relation, we can use the constructors N interpreted as (≷nR)I={s∈ ∆I |]
t:(s,t)∈RI ≷n} and Q interpreted as (≷nR.C)I={s∈ ∆I | count(t):(s,t)∈RI ≷n

∧ y∈CI}. The key difference between this constructor and the existential

quantification is the possibility to restrict the number of individuals involved

in a given role R.

2.5.2 Families

The logic we are interested in is named SHOIN(Dn), and has the following

constructors:

• Negation

• Intersection

• Union

• Universal Qualified Quantification

• Existential Qualified Quantification

• Transitive Roles (S)

• Roles Subsumptions (H)

21

Preliminary Concepts

• OneOf (O)

• Inverse Roles (I)

• Existential Quantificated but not Qualified Quantification (N)

and it carries a datatype system (Dn).

There are more DL families; one of the most important is the logic SHIQ that

is used instead of SHOIN(Dn) in many KRS that use ontology language like

DAML-OIL instead of the OWL language.

The most common DLs and their constructors are shown in Figure 2.3.

22

2.6 Data integration systems related concepts

2.6 Data integration systems related concepts

In this section we give a formalization of a data integration system (DIS) ac-

cording to [31] and [40]. In a hierarchical DIS, elements of the global schema

and of data sources are linked by means of mappings. It follows that a hierar-

chical DIS is mainly composed by the global schema, the data sources and the

mapping between them. Data sources store the information of the system and

their structure is described by a source schema. The global schema is a virtual

integration of these source schemas, in order to provide an unified view to the

user. It works like a mediator between the user and the sources, allowing users

to query the mediator and receive results from data sources. Formally we can

define:

Definition: A data integration system I is a triple (G,S,M), where:

• G is the global schema, expressed in a language LG over an alphabet AG.

The alphabet comprises a symbol for each element of G (i.e. a relation

if G is relational, a concept or role if G is a Description Logic, etc.).

• S is the source schema, expressed in a language LS over an alphabet AS.

The alphabet AS includes a symbol for each element of the sources.

• M is the mapping between G and S constituted by a set of assertions in

the forms:

qS qG

qG qS

where qS and qG are two queries of the same arity, respectively over the

source schema S and over the global schema G. Queries qS are expressed

in a query language LM , S over the alphabet AS, and queries qG are

expressed in a query language LG over the alphabet AG,. Intuitively, an

assertion qS qG specifies that instances resulting from the query qS

over the sources correspond to instances in the global schema represented

by the query qG (similarly for an assertion of type qG qS).

Given a fixed infinite domain ∆ of elements, a domain of the databases of

the system, we can talk about the semantics of a DIS I. We start defining as

23

Preliminary Concepts

model of data present in the sources, the source database D over ∆, fixing the

extension of the predicates of AS. The extension of a predicate is the set of all

x that verify the predicate P (x) in the database. We also call global databases

for a DIS I an instance of the global schema G over a domain ∆.

Definition: The set of databases for AG (AG is the alphabet of the

global schema) that satisfy I relative to D, denoted sem(I,D) is the set of

databases B such that:

• B is a global database, and

• B satisfies the mapping M w.r.t. D (where D is the set of data sources).

The sentence B satisfies M w.r.t. D depends on the semantics of the

mapping assertions.

2.6.1 An introduction to the problem of consistency in

DIS

In other words, we call B a global database for a DIS I, if it satisfies all

the constraints over G and it also satisfies the mapping between G and D.

However, it may happen that a data integration system I be inconsistent

w.r.t D , i.e. , sem(I,D) = ∅. To get an idea of what we mean for in-

consistency, we can consider the global schema G as having only the con-

cept Person and a role emphhasSSN having as domain Person and as range

xsd:string1. If we express some form of key constraint over the role hasSSN

such as: ∀xPerson(x)?∃hasSSN.SSN saying also that hasSSN and its inverse

are functional (i.e. , Persons have at most one SSN and every SSN has at most

one Person). When data sources are mapped to the concept of Person we could

have inconsistencies deriving from the fact that two (or more) different indi-

viduals (belonging to Person) have the same SSN (or that the same individual

has two or more SSNs). This point requires particular attention because, as

also stated by [40], the issue of consistency in data integration systems despite

its importance, is a topic rarely discussed. Indeed, from a theoretical point of

view, query answering over an inconsistent system (over a contradictory the-

ory) is meaningless (ex falso quod libet principle). However, before concluding

1xsd:string in an XML Schema datatype.

24

2.6 Data integration systems related concepts

this topic we note that in this thesis we are not concerned with the problem

of consistency of the global query answering architecture and that consistency

will be the subject of future work. Anyway, due to our dynamic and semi-

automatic environment for data integration we expect inconsistencies to be

rather frequent and, probably, we will have to address the problem of verifying

the global systems consistency using a framework different from that of [40].

2.6.2 Mappings

In this section we describe the different approaches used to specify the relation-

ship between the global schema and the source schemas. The mapping task is

a crucial point of a DIS because it permits the translation of the query over the

global schema into queries over the data sources. Moreover it is also important

in the opposite way, when the answers coming from the different sources must

be rewritten in terms of global schema elements. Before continuing, we give a

particular classification of views common between GAV and LAV, that permits

to characterize each source with respect to the global schema. According to

[31] the specification as(s) determines how accurate is the source s with respect

to the associated global view qG. We have:

sound views: When a source s is sound (as(s) = sound), its extension pro-

vides any subset of the tuples satisfying the correspondent view qG, in

other words the tuples in source database are also present in global view,

but the elements in global view could not be present in the data source.

Formally speaking a database B satisfies the assertion s qG with

respect to D if

sD ⊆ qBG

complete views: When a source s is complete (as(s) = complete) its ex-

tension provides any superset of the tuples satisfying the corresponding

view. If a tuple is in s we can not say that it is also in global view, but if

the tuple is not in s we can conclude that the tuple doest not satisfy the

view. Formally, a database B satisfies the assertion s qG with respect

to D if

sD ⊇ qBG

25

Preliminary Concepts

exact views: When a source s is exact (as(s) = exact) its extension is exactly

the set of tuples satisfying the corresponding view. Formally, a database

B satisfies the assertion s qG with respect to D if

sD = qBG

Mapping forms According to data integration literature,in a DIS we have

the following types of mappings:

• GAV: (Global-as-view) where the mapping M associates to each element

g in G a query qS over S.

• LAV: (Local-as-view) where the mapping M associates to each element

s of the source schema a query qG over the global schema.

• GLAV: where there are no restrictions on the forms of mappings inside

a DIS (a query over a data source can be related to a query over the

global schema).

Rewritings Starting from the previously introduced mapping forms, we de-

fine three different strategies in order to rewrite queries:

GAV Global-As-View in a GAV mapping we have a global schema specified

as a view over the sources, so usually2 the process of query answering

is resolved by unfolding the original query Q over the global schema

G. This approach is good in stable environments, because as the global

schema is defined in terms of the data sources when we add a new data

source we have to re-define the global schema G taking into account the

new data source.

LAV Local-As-View in a LAV mapping we have each data source DSi speci-

fied as a view over the global schema G. The process of query answering

requires the so called view-based query answering, because we have a

query Q over the global schema G and we have to answer the query

basically exploiting view definitions. This process can be a difficult task,

but LAV approaches can be useful when data sources have to be fre-

quently added or removed from the system, because in this case adding

2Considering the absence of integrity constraints over the global schema.

26

2.6 Data integration systems related concepts

a new source simply requires to define the new data source in terms of

the global schema G.

GLAV A mixed approach of the two above.

Maximally-contained rewriting In order to handle LAV mappings a par-

ticularly useful concept is the one of maximally-contained rewriting, which is

defined as follows:

Let Q be a query, V = V1, ..., Vm be a set of view definitions, and L be a

query language. The query Q′ is a maximally-contained rewriting of Qusing V

w.r.t. L if:

• Q′ is a query in L that refers only to the views in V or comparison

predicates

• Q′ is contained in Q3 and

• there is no rewriting Q1 ∈ L such that Q ⊆ Q1 ⊆ Q and Q1 is not equiv-

alent to Q′. When a rewriting is contained in Q but is not a maximally-

contained rewriting we call it a contained rewriting.

In other words, the above definition states that given a set of data sources

which represent a subset of the virtual tuples of the Global schema, we search

for the rewriting Q′ which returns the maximal set of tuples and we state that

every query that returns a subset of those tuples is a contained rewriting. As

noticed in [24], this problem depends also on the query language which is used

to express the query.

Certain answer Another useful definition that we borrow from [24] is the

definition of Certain Answer which is useful when we have some partial view4,

so when we retain valid the Open World Assumption.

3We say that a query Q′ is contained in Q if it returns a subset of the tuples that would

be returned by Q
4Informally, with the Closed-Word Assumption, we assume that the views are as- sumed

to contain all the tuples that would result from applying the view definition to the database.

Conversely, with the Open-World Assumption the extension of the views may be missing

some tuples

27

Preliminary Concepts

Definition: LetQ be a query and V = V1, ..., Vm be a set of view definitions

over a Global schema and let the sets of tuples v1, ..., vm be extensions of the

views V1, ..., Vm respectively. The tuple a is a certain answer to the query

Q under the Open-World Assumption given v1, ..., vm if a ∈ Q(D) for all

databases D such that vi ⊆ Vi(D) for every i, 1 <= i <= m.

Intuitively, the extensions of V1, ..., Vm do not define a unique extension of

the database relations. Hence, given the extension of the views, we have only

partial information about the real state of the database. A tuple is a certain

answer of the query Q if it is an answer for any of the possible database

extensions that are consistent with the given extension of the views [24].

2.7 Conjunctive queries

In data integration literature the interest is usually on conjunctive queries, that

is, a query language that has at least the expressive power of select project

join queries in SQL. Although formal definitions of conjunctive queries are

given for example in [6], here we give a definition that is much more DL oriented

and that suits well to our case:

Definition: A conjunctive query has the form:

Q(X̄) := A1(X̄1) ∧ ... ∧ An(X̄n)

where x̄ are variables or individuals and each Ai is a binary or unary relation

(respectively, a role membership assertion or a class membership assertion).

More generally, a conjunctive query q over a knowledge base K is an expres-

sion of the form q(x) ← ∃y.conj(x, y) where x are the so-called distinguished

variables, y are existentially quantified variables called the non-distinguished

variables and conj(x, y) is a conjunction of atoms of the form C(a), R(a, b)

where C and R are respectively a concept and a role in K and a, b are constants

of a fixed infinite domain or variables in x or y.

2.8 Context ADDICT Mapping Language

CA - ML is an OWL-DL language subset which allows us to express every

kind of mapping between our Domain Ontology and our sources ontologies.

In order to define the language we need the following notation:

28

2.9 SPARQL

• A, which denotes a named concept (i.e. a concept that has been explicitly

named and that is part of the asserted hierarchy);

• M, which denotes a named concept belonging to a mapping ontology;

• C, which denotes an anonymous concept (i.e. a concept that has not

been explicitly named but exists and contains all the individuals that

satisfy certain conditions);

• R, which denotes a named role;

• the subscript DSO which denotes Data Source Ontology and the subscript

DO which denotes Domain Ontology.

Given this notation, it is possible to define an anonymous concept C, used

to define mapping concepts as:

C ::= A|C1 u C2|∃R.B
B ::= A|T |B1 uB2

With this concept, it is possible to define the following statements:

(Definition of Mapping Concepts)

MO ≡ CO

(LAV and GAV sound Mappings)

ADSO ⊆MDO (LAV)

MDSO ⊆ ADO (GAV)

(Full Implication Mappings)

RDSO ⊆ PDO

ADSO ⊆ ADO

More details about CA−ML can be found in [27].

2.9 SPARQL

SPARQL is the acronym for SPARQL P and RDF Query Language, which

is the language, developed by the Data Access Working Group of the w3c

consortium.

Actually it is a standard for RDF and ontology quering as recommended

by W3C in an official recommendation of the 15th of January 2008 [3].

29

Preliminary Concepts

This query language has become the central point of the Semantic Web,

allowing everyone to query and extract knowledge from RDF datafiles, using

a syntax similar to that of other query languages such as, for instance, SQL.

The basic element of a SPARQL query is the so called ”Triple”, which is

usually composed by:

• a subject, which is the concept (or variable) the property stated in the

predicate applies to

• a predicate, the property which correlates subject and object

• an object, which is a concept (or a variable, or a literal) the property in

the predicate is applied to

We can have different triple patterns, for instance we can have type

declarations (in which the predicate is the rdf:type property) or proper-

ties between two variables (usually those properties are ObjectProperties)

or properties between a variable and a literal (usually those properties are

DataTypeProperties; The query is composed by a mix of the previous ele-

ments, put together into the WHERE clause of the SPARQL query.

Moreover, a query can contain two more clauses, which do not properly

respect the pattern of a triple.

These two clauses are:

• the FILTER clause, which allows the user to make tests against one or

more of the variables involved in the query (e.g. testing if a variable is

equal to a determinate string)

• the ORDER BY clause, which makes it possible to order the result of our

query, by selecting the variables on which the ordering has to be com-

puted.

It is also possible to use the LIMIT and OFFSET clauses in order to limit

the number of results retrieved by the query and to move into subsets of the

result space.

Also we can have different types of queries; beside the standard Select

queries (that simply return each variable in the clause with direct bind to its

values) we can have also Construct, Ask and Describe queries.

30

2.9 SPARQL

First of all, the Construct statement allows the user to retrieve the result

into an RDF graph form (the graph structure has to be specified after the

Construct directive), instead of a list of variable - value bindings returned

by the Select clause.

The Ask statement instead, only returns true if the query has solution,

otherwise it will return false.

The Describe, returns an RDF graph containing RDF data about the

results of the query.

Despite this great variety of possible queries, in this thesis work we are

going to consider exclusively Select-statement-based queries, since they will

be the most used ones for our purposes of data retrieval and integration.

31

Preliminary Concepts

Logic Operators

AL

Negation of atomic concepts

Intersection

Universal Qualified Quantification

Existential Unqualified Quantification

All the constructors of AL

Union

Existential Qualified Quantification

Negation of complex concepts

S
All the constructors of ALC

Transitive roles

SI
All the constructors of S

Inverse roles

SHI
All the constructors of SI

Subsumption between roles

SHIF
All the constructors of SHI

Functional roles

SHIN
All the constructors of SHI

Existential Unqualified Quantificated Quantification

SHIQ
All the constructors of SHI

Existential Qualified Quantificated Quantification

SHOIN
All the constructors of SHIN

OneOf

All the constructors of SHOIN

A set of datatypes

AL [U] [ε] [C]

SHOIN(Dn)

Figure 2.3: Constructors of the most common DL Families

32

Chapter 3

Context - Addict Architecture

3.1 Introduction

In this chapter we briefly describe the Context-ADDICT (Context-Aware Data

Design, Integration,Customization and Tailoring) project [13]. To this aim, we

start by explaining its main objectives and then we give a general overview of

the system discussing its main components.

3.2 Project objectives

The main goal of the Context-ADDICT system1 is to create a middleware

infrastructure to support the development and the design of context-aware and

data-intensive applications. The focus is on mobile, peer-to-peer applications,

where the notion of context can be exploited to provide the user with a filtered

view over the data, retrieving only the information relevant to the user in

his/her current context. The main issues addressed by the system are:

• Definition of a user and context model.

• Semantic extraction from data sources (the process of creating a uniform

semantic representation of the data stored at a given data source).

• Semantic integration of different heterogeneous data sources.

1From this point on, we will eventually refer to the Context-ADDICT system with the

abbreviation CA.

Context - Addict Architecture

• Data Tailoring (the process of filtering data using a model of context).

• Support for query distribution (the process of querying multiple hetero-

geneous data sources).

• Synchronization of data.

3.3 Thesis objectives

In this thesis work we are going to focus on a particular aspect of the query

processing in the CA system, which is the one that has to deal with query

distribution over multiple sources. Indeed the currently available rewriting

module of the system, works well only in the case of single source and has

some problems when queries have to be distributed over several sources.

In particular, we are going to consider how query distribution works, start-

ing from a SPARQL query issued towards the Domain Ontology of the CA

system; that query will be translated by the Rewriting Engine in a way that

is Sound and Complete but not usable by the SPARQL-query-to-SQL-query

parser which is part of the CA system (which allows to translate only single

target source SPARQL queries into SQL queries) since its components are

declared onto different and multiple datasource ontologies.

Starting from these multi source rewritings, the algorithm presented in this

thesis will obtain a Complete set of Sound Queries that the query execution

module will be able to run on the SQL sources (since the SPARQL-query-to-

SQL-query parser will be able to translate them in SQL).

After that, every single result coming from the query execution module goes

back to the Global Query execution module which integrates all the results into

the Domain Ontology and retrieves the set of integrated results.

3.4 Architecture

In this section we give an overview of the Context-ADDICT architecture, which

is presented in Figure 3.1 . A detailed description of the entire system is

presented in [13]. The exposition proceeds as follows: first we give a brief

description of the principal data structures involved in the system, then we give

34

3.4 Architecture

an overview of the architecture and finally we present the principal software

components employed in CA.

Figure 3.1: Context-ADDICT Architecture

35

Context - Addict Architecture

3.4.1 Data structures

In this section we give a brief description of the principal data structures

employed in CA. These notions will be used to give an overview of the entire

system in the following sections.This exposition is given according to [35].

Domain ontology. The Domain ontology (DO) is a crucial component and

its aim is to model the domain of the application. While developing the

Domain ontology, the designer has to take into account all the concepts

and relations which are relevant for the particular domain of interest.

This step is a very important one because all the rest of the system,

from the integration of data sources to the query answering process,

depends heavily on the quality and on the formalism used during the

design of the Domain ontology. The Domain ontology has to describe the

application domain in all its relevant parts , while Data source ontologies,

will usually describe only a part of the domain in a more specific way .

An implicit assumption of CA is that, for the most of the cases, it will

be possible to create mappings between Data source ontologies and the

Domain ontology.

Dimension tree. The Dimension tree is a model aimed at describing the

user and the context in which the user interacts with the system. This

model is specified in [13] and it is described independently from the

specific implementation (e.g. OWL, DTD). The Dimension tree aims at

modeling the context in which a given user interacts with the system.

The model represents a context as composed by some dimensions such

as: space, time and holder (i.e. , the type of user interacting with the

system). For each of those dimensions the model specifies also a sub-

tree which represents the specific granularities of a particular dimension.

From the Dimension tree we can derive different contexts (given by a

specific assignment to each one of the dimensions) that the designer has

to associate to appropriate parts of the Domain ontology (i.e. , a context

configuration specifies a chunk of the Domain ontology that represents

the portion of domain relevant to the context configuration itself).

Enriched Domain ontology. The Enriched Domain ontology is an ontology

which contains classes and relations coming from the Domain ontology

36

3.4 Architecture

and the Dimension tree. The Enriched Domain ontology also contains

relations between the Dimension tree and the Domain ontology and the

metadata that will be used to instruct the Tailoring module during the

phase of Data tailoring.

Data source. In this work, we consider Data sources as sources of informa-

tion which can be: RDBMS, XML, RDFS, sensor networks etc. In other

words, we consider heterogeneous data sources.

Data source ontology. A Data source ontology DSOi is a semantic descrip-

tion of a given data source (DSi). This semantic description can be pre-

sented to CA by the data source itself (in this case we call the data source

cooperative) or has to be automatically extracted from the data source

(in this case we call the data source non cooperative). In the latter case

we have also the problem of translating (at run-time) queries expressed

on the semantic description of the data source to queries expressed in the

native format of the data source itself. The problem of query translation

is resolved using a mapping which explains how semantically described

data (at the Data source ontology level) is actually stored inside the data

source.

Mapping ontology. A Mapping ontology is a set of axioms used to link terms

belonging to the Domain ontology with terms belonging to a Data source

ontology. Formally, ∀i, where DSOi is a Data source ontology, we have

a Mapping ontology Mi which describes the relationships between DSOi

and the Domain ontology DO. In the following, we will eventually refer

to Mapping ontologies with the notation Mi. The language was quickly

presented in the Chapter 2.

Merged Schema. The Merged schema is the ontology resulting from the in-

tegration of Data source ontologies and the Enriched Domain ontology

Local Schema. The Local schema is the output of the Tailoring Module

which takes as input the Merged Schema and returns a view, called

the Local schema, defined considering informations provided by the Di-

mension tree instantiation. Moreover, for each non-collaborative data

37

Context - Addict Architecture

source, the Local schema contains metadata which will be used to trans-

late queries in the original data format.

3.4.2 Overview

Referring to Figure 3.1 we can split CAs architecture into two main sections

which are the Schema level and the Data level. The Schema level is further di-

vided in two distinct sections (corresponding to different phases of the systems

life cycle) : Design-time and Run-time. Design-time Schema Level refers to the

processes of Domain ontology development and Dimension tree instantiation,

while Run-time Schema level refers to the processes of data source integration

and Data Tailoring. Data level is the run-time part of the system which deals

with the problems of synchronization of data sources and query answering over

the integrated schema (the queries can be either local or remote).

3.4.3 Software modules

In CA, various software modules are employed in the different phases of the

systems lifecycle.

General Purpose Ontology editor. At design-time, during the ontologi-

cal engineering step (for example during the Domain ontology modeling

step) it is employed a standard ontology editor, such as Protégé [21] or

Swoop [28].

Context integrator. This tool assists the designer during the definition of

the relations that hold between the Dimension tree and the Domain

ontology and in the definition of the Domain ontology chunks for each

Dimension tree configuration.

Semantic extractors. These modules are used to deal with non-cooperative

data sources. Their main goal is to extract a semantic description of a

particular data source (i.e. , to extract a Data source ontology for a given

data source). A module for each type of non-cooperative data source has

to be developed. For the case of relational data sources an automatic

extraction module, named ROSEX, has been developed in [35]

38

3.4 Architecture

Ontology mapping. This module deals with the problem of finding map-

pings between Data source ontologies and the Domain ontology in a

(semi) automatic way. X-SOM (eXtensible Smart Ontology Mapper)

is a software component that has been developed for this purpose [16].

X-SOM executes mainly two different steps:

Ontology matching: where two different ontologies are compared in

order to find similarities between them. This process takes into ac-

count different modules to find similarities, such as syntactic-based,

structural-based and Bayesian network-based modules whose results

are subsequently weighted by some function (such as weighted av-

erage or a neural network).

Ontology mapping: where two different ontologies are mapped us-

ing informations from the previous step and OWL predicates [41]

such as owl:equivalentClass and owl:equivalentProperty or

rdfs:subClassOf and rdfs:subPropertyOf.

Tailoring Module This module uses information from the Enhanced Domain

ontology to produce the Local schema (i.e., it uses informations about

the users context to tailor the Merged schema).

Local Data Manager. Deals with the problem of storing data inside the

users device . This component differs depending on devices computa-

tional power . For example, in case of workstations with high compu-

tational resources, Local Data Manager can be either an RDBMS or an

XML processor, while on a small PDA the Local Data Manager has to

be developed ad-hoc, for example according to [12].

Query Processing Subsystem. This module has to sync different data

sources and addresses the following issues:

Query decomposition. 2 Considering the Local schema, which is the

schema obtained by the integration of Data source ontologies and

the Domain ontology subsequently tailored by the Tailoring module,

we have a tailored model which consists of a part of the Domain

ontology and parts of Data source ontologies.

2This module will be called rewriting engine, in the follow up of this document.

39

Context - Addict Architecture

Query distribution. 3 To obtain the data relevant for the user we have

to query this model distributing the query over the different Data

source ontologies. As already said, this thesis focuses on the dis-

tribution part of the query processing subsystem trying to solve

the issue of rewriting a query Q, expressed in terms of the Domain

ontology , in terms of Data source ontologies.

Query translation. Once we have distributed the query over each Data

source ontology, in the case of non-cooperative Data source , we

have to translate the query Q into the native data sources query

language, as explained above.

Data Integration Subsystem. After each query has been executed onto the

original datasource, the system must collect all the result and must in-

tegrate them together, in order to return the final, complete answer to

the final user.

3.5 Goals of this thesis

The final output of this thesis will be the implementation of the prototypes of

two new modules, DiSPARQL4, which is the completion of the Query Process-

ing Subsystem, and the data integration module that allows the generation of

the final answer to the original query.

The insertion point of the dispatching module is after the rewriting engine

and before the query execution modules.

The integration module is placed as the final module of the whole chain of

processing, after the execution module, and it will be also charged of sending

the final results to the user.

In Chapter 6 we will describe all the theories and algorithms that are useful

for the implementation of this two new modules, while in Chapter 7 we will

take a closer look to the effective implementation of DiSPARQL and Data

integration module.

3This module will be called dispatching engine or distribution engine, in the follow up of

this document.
4Dispatching SPARQL which is our ”dispatching engine”.

40

3.6 Summary

3.6 Summary

In this chapter we have introduced the architecture of the Context-ADDICT

system, giving an overview of its basic data structures and software modules.

More- over, we have clarified what is the aim of this thesis inside the Context-

ADDICT project.

41

Chapter 4

State of the Art

4.1 Introduction

Data integration system are actually one of the most open branches in which

DB researches are moving into.

Moreover, as it has been already said in the introductory chapter of this

thesis, nowadays researchers are very interested in mediated data integration

techniques.

This is because, in addition to the relational schemas integration, some-

times could be also necessary to integrate other, heterogeneous, data sources,

such as XML and the WWW itself.

In this chapter we are going to see which are actually the solution used

in order to make data integration focusing into two main areas: RDF/RDFS

based data integration systems, which represents the starting point of our work

with the Context-ADDICT system and ontology driven query distribution

algorithms, which is the main interest of this thesis work.

Since the aim of this thesis is to study a query distribution module which

will be used to semantically distribute queries in a data integration system,

we take into consideration also works such as Piazza [23] which, though con-

sidering XML data integration in a P2P environment, address the problem of

query answering through query rewriting.

As proposed in [44] we can group various methods in categories which are

different in the way ontologies are employed. In particular, here we unify

State of the Art

the definitions (given in [44]) of multiple-ontology approaches and hybrid ap-

proaches. Doing this distinction we have:

Single ontology approaches: where we have a single global ontology G and

we have to specify mappings between each data source Di and the global

schema G. This approach is good when we have sources which contain

data that provide nearly the same view of the domain. If we have a data

source containing data at a different level of granularity w.r.t the global

schema G then creating a mapping can be very difficult.

Multiple ontology approaches: In multiple ontology approaches we usu-

ally have a single Data source ontology DSOi for each data source DI ,

a global schema G and a mapping between the two. Recently, multiple

ontology approaches can be composed also by Data source ontologies

DSOi which are mapped one to each other in a way similar to P2P en-

vironments. The advantage of multiple ontology approaches is that they

permit to specify the mapping between the source and its own ontology

without considering the rest of the system, so this method in well suited

for information integration issues where there is frequently the need of

adding and removing sources from the integration framework.

Moreover, we can divide ([40]) different approaches according to the type

of the mapping we have between sources and the global schema G. Again, we

have three different approaches (for further details, see Section 2.6.2 and [27]):

GAV, Global-As-View.

LAV, Local-As-View.

GLAV.

All these type of mappings have been already described in Chapter 2.

Given these definitions, we can consider some relevant works in ontology-

based data integration systems.

4.2 Information Manifold

Information manifold is a DIS based on the CARIN Description Logic [32].

Information Manifold (IM) was the first system that addressed the problem

44

4.3 RDF/RDFS based relational database integration

of data integration using LAV mappings. Indeed, the goal of the Information

Manifold was to provide a uniform query interface to a multitude of data

sources, thereby freeing the casual user from having to locate data sources,

interact with each one in isolation and manually combine results. The prob-

lem of query answering inside Information Manifold was addressed through

query rewriting and LAV mappings were handled by the bucket algorithm [25]

which was the first bucket-based algorithm employed in order to answer queries

using views. Moreover, the IM addressed the problem of specifying mappings

using conjunctive queries (which was the same formalism used to query the

system) and addressed also the problem of considering inclusion dependencies

specified over the global schema. The query answering process consisted of two

steps which were the query rewriting phase (which considered the problem of

rewriting a query Q into a query Q′ using map- pings) and the query evaluation

phase which considered the problem of evaluating Q′ over the sources.

4.3 RDF/RDFS based relational database in-

tegration

An interesting approach is an integration framework based on the RDF/RDFS

formalism proposed in [15]. By the definitions we stated before, we can de-

fine their approach as a single ontology approach based on LAV mappings.

In [15] the concept of RDF views is used to specify mappings between local

sources and the global schema. RDFS constructs such as rdfs:subClassOf or

rdfs:subPropertyOf are used to specify integrity constraints (role and class

inclusions) over the global schema. Since the sources are expressed in terms of

the global schema (LAV), the problem is that of answering queries using views

[24]. To better understand what is intended by an RDF View [15] we consider

the following definition:

Definition: A typical RDF view is in the form:R(X̄)- : G(X̄, Ȳ)

1. R(X̄) is the head of the view and R is a relational predicate.

2. G(X̄, Ȳ) is called the view body and G is a set of RDF triples with some

node replaced by variables.

45

State of the Art

3. X̄, Ȳ contain variables or constants. Variables in X̄ are called distin-

guished variables, and variables in Ȳ (those in the bodys view but not

in the heads view) are called existentially-quantified variables.

Given this definition it is possible to formalize mappings in the form of

RDF views between every relational source and the target ontology (the global

ontology is a FOAF ontology1). In the following, we see an example taken from

[15] where a legacy employee database (from Zhejiang University) is mapped

to the domain ontology (FOAF). Although in [15] they formally describe the

semantics of the query answering as the result of evaluating the (original)

query over a Target RDF instance constructed from RDF view definitions and

RDFS constraints, they subsequently address the problem of query answering

by query rewriting. Given a set of RDF view definitions which describe the

sources in terms of the global ontology, the algorithm performs the following

steps:

• Start from view definitions and extend those definitions with integrity

constraints (this is done to enrich the query using semantic con-

straints in order to answer more types of query). For example,

semantic constraints can state that both foaf:schoolHomepage and

foaf:accountServiceHomepage are rdfs:subPropertyOf foaf:Homepage

and both foaf:OnlineChatAccount and foaf:OnlineEcommerceAccount

are rdfs:subClassOf foaf:OnlineAccount.

• Group triples in the view definitions by subject name, that is, parts of

the body of a view definition which have a common subject are grouped

together, creating the so called class mapping rules.

• Next the algorithm skolemizes ([6]) triples, substituting all existential

variables with their associated skolem functions.

• Construct and optionally merge class mapping rules (merging rules

means for example that if there are multiple rules for a given class,those

rules are merged).

1The Friend of a Friend (FOAF) project: http://www.foaf-project.org .

46

4.4 Description logic and ontology based data access

After this step there are a set of rules which can be used to rewrite the

original query Q1 (there is also a step of grouping and Skolemization on the

query Q1 similar to the steps commented before).

Next the algorithm begins to look for rewritings for each triple group by

trying to find applicable class mappings. If it finds one it rewrites the triple

group by the head of the class mapping rule and generates a new partial

rewriting. Finally, they show also soundness and completeness of the global

query answering algorithm.

An interesting approach in the direction of semantic access to data sources

is that of D2R [10], a mapping language which maps relational schemata to

RDF triples. Through the D2R-Server it is possible to query or even browse

with semantic or common browsers the tuples of a database as if they were

RDF documents.

4.4 Description logic and ontology based data

access

In [14], [7] and [29] the topic of interest is finding a formalism based on De-

scription Logics that allows query answering within PTIME data complexity;

to this aim several subsets of the OWL language have been developed to find

the best trade-off between expressive power and computational complexity of

sound and complete reasoning and query answering. In particular, DL-Lite

[14] is a fragment of OWL2- DL which allows to delegate query evaluation

to a relational engine; this language has been refined into other dialects such

as DL − LiteA or DL − LiteF , that extend the core DL-Lite language with

different combinations of DL constructors while preserving FO-reducibility [30]

in order to be able to efficiently perform tasks such as consistency checks and

query answering. Such systems are especially useful to access relational data

by querying the corresponding conceptual representation based on an ontology;

this access pattern is usually denoted as ontology-based data access (OBDA).

However, some of the approaches to OBDA [33] [19] are based on languages

that exceed the expressiveness of first-order queries and, in order to ensure

completeness of query answering, they require either deep access to the data

sources (i.e., in update) or enough temporary memory to produce those infer-

47

State of the Art

ences that cannot be captured by first order queries (e.g., transitive closure).

This may be a problem when accessing dynamic and transient data sources.

4.5 The Piazza PDMS

Classical mediator-based integration systems have problems in evolving en-

vironments where source schemas change over time. In [23] they point out

that frequently in a data integration system, a mediated schema becomes a

bottleneck for the entire system. In such an environment (a mediator-based

data integration system) data sources cannot change significantly and dur-

ing evolution they might violate the mappings to the mediated schema. In

some sense the typical flexibility of the Web (where new pages can be au-

thored,uploaded and quickly linked to existing pages) is missing, and as a

result data integration systems pro- vide limited support for large-scale data

sharing. The vision of a PDMS (peer data management system) is to blend the

extensibility of the HTML Web with the semantics of data management appli-

cations. In such a PDMS there is no hierarchy of mediators but the framework

supports any arbitrary relationship between peers; an important point is that

Piazza exploits relationships (between peers) in a transitive manner. In [23]

the logical model of a PDMS is given in terms of peer relations and stored

relations. The difference between the two types of relations is similar to that

of TBoxes and ABoxes in knowledge bases. Peer relations are relations of the

peer schema which represent only the structure of a peer (like virtual schemas)

while stored relations, like data sources in a data integration system, also con-

tribute data to the system. In [23] there are two types of mappings: mappings

between peer schemas and stored schemas (called storage descriptions) and

mappings between peer schemas and peer schemas (called peer descriptions).

Peer descriptions define the correspondences between the views of the world at

different peers. Storage descriptions on the other hand, map the data stored at

a peer into the peers view of the world (indeed these mappings have the same

function of mappings in a DIS). Stored relations are analogous to data sources

in a data integration system. Summarizing, in contrast to a hierarchical data

integration environment, which has a tree-based hierarchy with data sources

schemas at the leaf nodes and one or more mediated schemas as intermediate

nodes, a PDMS can support an arbitrary graph of interconnected schemas. In

48

4.6 Highly Dynamic DIS

particular, we have introduced Piazza because we are interested in its query

reformulation algorithm [23]. The query reformulation algorithm takes as input

a query Q and a set of peer mappings and storage descriptions. The output

is a query expression Q′ that refers only to stored relations. An important

assumption made in [23] is that all the peer mappings are available at a single

location, and hence the reformulation is done in a single place. The algorithm

presented in [23] is sound and complete which means that the evaluation Q′

will always only produce certain answers to Q (certain answers are found in

polynomial time). Q′ is called the maximally-contained rewriting of Q: that is

a query over the sources that produces all the answers to Q that are possible

from any query Q. In the Piazza PDMS the query reformulation algorithm

is seen as the construction of a rule-goal tree: goal nodes are labeled with

peer relations, while rule nodes are labeled with peer mappings. Mappings

can be both GAV and LAV mappings so the first challenge of the algorithm

is to combine and interleave the two types of reformulation techniques. The

first type of reformulation (GAV) replaces a subgoal with a set of sub-goals,

while the other (LAV) replaces a set of sub-goals with a single sub-goal. In the

case of LAV mappings an algorithm of answering queries using views [25] is

employed. The algorithm will produce the query rewriting by building a rule-

goal tree, while it simultaneously marks certain nodes as covering not only

their parent node, but also their uncle nodes.

4.6 Highly Dynamic DIS

A step toward more dynamic DISs is represented by [22], an infrastructure for

query answering over distributed ontologies. The approach virtually integrates

distributed and autonomous ontologies using ontology meta- data contained

in distributed registries. Query answering is performed through rewriting into

disjunctive Datalog programs with mappings expressed using DL-Safe rules [38]

that are much more expressive than those used in [14]. However, they only

refer to ontological data sources and they only consider manually-designed

mappings. A further contribution toward highly dynamic DISs is the Active

Ontology (ActOn) project [45] which is an ontology-based information inte-

gration system for highly dynamic distributed sources. ActOn is based on

a set of domain ontologies, that describe the meta-data information model,

49

State of the Art

and a single ontology describing all the available information sources which

are accessed through both dynamic and static wrappers. Differently from our

approach, the wrappers are not context-aware and the mappings are restricted

to manually-designed GAV mappings only.

50

Chapter 5

Semantic Extraction of

Relational Data Sources

Since our distribution algorithm has been studied in order to deal with dis-

tributed, non cooperative sources (cooperative sources, such as ontologies and

RDF files, could afford with multiple sources queries), we are going to introduce

some details about the semantic extraction from a relational data source, an

operation which represent the beginning of the whole integration process.

Concepts exposed in this chapter are borrowed from [35] and [43].

5.1 Ontological Extensions for Relational

Databases

In this section, we discuss the automatic generation of an ontological descrip-

tion of a relational schema with key constraints and inclusion dependencies [6].

This process provides the relational data source with an enriched, semantic

description of its content that can be used both for documentation purposes

through annotation (e.g., during schema evolution [17]) and to achieve inter-

operability in an open-world scenario (e.g., in data integration [13]). This

enriched description provides an infrastructure to access and query the con-

tent of the relational data source by means of a suitable query language for

ontologies such as SPARQL.

The access infrastructure to the relational data source consists of three

ontologies which are used to describe different aspects of its structure:

Semantic Extraction of Relational Data Sources

Table 5.1: The Relational.OWL ontology
Relational.OWL Classes

rdf:ID rdfs:subClassOf rdfs:comment

dbs:Database rdf:Bag Represents the relational schemas

dbs:Table rdf:Seq Represents the database tables

dbs:Column rdfs:Resource Represents the columns of a table

dbs:PrimaryKey rdf:Bag Represents the primary key of a table

dbs:ForeignKey rdf:Bag Represents the foreign key of a table

Relational.OWL Properties

rdf:ID rdfs:domain rdfs:range rdfs:comment

dbs:has owl:Thing owl:Thing General composition relationship

dbs:hasTable dbs:Database dbs:Table Relates a database to a set of tables

dbs:hasColumn dbs:Table

dbs:PrimaryKey

dbs:ForeignKey

dbs:Column Relates a tables, primary and foreign keys to

a set of columns

dbs:isIdentifiedBy dbs:Table dbs:PrimaryKey Relates a table to its primary key

dbs:hasForeignKey dbs:Table dbs:ForeignKey Relates a table to its foreign keys

dbs:references dbs:Column dbs:Column Represents a foreign-key relationship between

two columns

dbs:length dbs:Column xsd:nonNegativeInteger maximum length for the domain of a column

dbs:scale dbs:Column xsd:nonNegativeInteger scale ratio for the domain of a column

• Data Model Ontology (DMO): represents the structure of the data model

in use. This ontology does not change as the data source schema changes,

since it strictly represents the features of the data model such as the

logical organization of entities and attributes. For the relational model,

we adopt the Relational.OWL ontology [18] whose structure is shown

in Table 5.1. Since the current version of Relational.OWL does not

distinguish between composite (foreign keys that references more than

an attribute at the same time) and multiple foreign keys, we extended

the Relational.OWL with explicit foreign keys. Our extensions to the

Relational.OWL ontology are italicized in Table 5.11.

• Data Source Ontology (DSO): represents the intensional knowledge de-

scribed by the data source schema. This ontology capture the conceptual

schema (ER-like) from which the relational schema under analysis is de-

rived. The DSO does not contain individual names (instances), which

are stored in the DB and accessed on-demand.

• Schema Design Ontology (SDO): this ontology maps the DSO to the

DMO and describes how concepts and roles of the DSO are rendered

1multiple domains are considered in union.

52

5.1 Ontological Extensions for Relational Databases

in the particular data model represented through the DMO. This ontol-

ogy enables the separation of the schema’s metadata (by means of the

SDO) and schema’s semantics (described by the DSO). We remark that,

in general, the SDO can be extremely useful during schema evolution,

because it describes how the changes in the relational schema are going

to affect the semantics of the schema itself by detecting changes in the

conceptual model.

Note that, despite in this paper we focus on relational data sources, it is

easy to see that the same infrastructure can be straightforwardly replicated in

different settings, in order to access data stored under different data models,

i.e., by means of a DMO designed for that data model. To this, the appropriate

SDO must be associated at design-time, dictating how the elements of the data

source schema are rendered in the ontology.

The extraction procedure first generates the DSO by applying a set of

rules whose preconditions and effects are shown in Table 5.2. Concepts and

roles of the DSO are then connected through mappings of the SDO to the

corresponding concepts of the DMO.

5.1.1 DSO Extraction

An ontology can be defined as a 5-tuple 〈NC , NR, NT , NI , A〉 where NC is a

set of concept names, NR is a set of role names, NT is a set of attribute

names (i.e., roles whose range is a concrete domain), NI is a set of names for

individuals (i.e., constants) and A is the set of axioms of the theory. In this

work we assume ontologies whose semantics is given in terms of Description

Logic formulae [8].

We now describe in more detail the extraction process of the DSO start-

ing from a given relational schema extended with key constraints. Note

that, without loss of generality, we assume that attribute names be unique

within the database. The relational schema is represented as a 7-tuple

R=〈R,A,D, att, dom, pkey, fkey〉 where:

1. R is a finite set of n-ary relation schemata;

2. A is a finite set of attribute names;

53

Semantic Extraction of Relational Data Sources

3. D is a finite set of concrete domains (i.e., datatypes);

4. att is a function which associates to a relation schema r ∈ R its set of

attributes {a1, a2, . . ., an};

5. dom is a function associating each attribute to its concrete domain;

6. pkey is a function associating to a relational schema r ∈ R the set of

attributes of its primary key (with pkey(r) ⊆ att(r) and pkey(r) 6= ∅);

7. fkey is a function associating to a relational schema r ∈ R the set of

attributes which are (part of) foreign keys in r (with fkey(r) ⊆ att(r)).

In the following, we use the notation Cr to refer to a concept of the DSO

obtained from the translation of the relation schema r ∈ R, Ra to refer to a

role obtained from the translation of an attribute a ∈ att(r), while we denote

the domain and the range of a role R by Dom(R) and Ran(R) respectively.

Moreover, we use the notation r(a) to denote the relational projection (πar)

of an attribute a of a relation r. We now discuss the translation rules in Table

5.2 in order to provide their rationale.

Some of the rules (namely R1 to R4), address the translation of relational

tables by taking into account their primary keys and their relationships with

other tables through foreign keys. R1 generates new concepts in the ontology

for each table with at least one proper primary key (i.e., which is not also

a foreign key) which correspond to strong and weak entities in an Entity-

Relationship schema. R2 takes as input a relational table with arity n > 2,

where all the attributes composing the primary key are also foreign keys. Such

tables correspond to ER relationships which cannot be directly translated into

a (binary) role and are reified by means of a new concept representing the

association. In addition, a new role is generated for each attribute in the

table.

Each of these roles has as domain the concept obtained by reifying the

association, and as range the concept obtained from the translation of the

referenced table. It is worth noting that the application of the reification

does not guarantee the uniqueness of the individuals belonging to the reified

concept (which correspond to the tuples of the relational table). However,

this is not a problem if we do not allow updates, since the constraint is al-

ready enforced by underlying relational engine. R3 takes care of two-column

54

5.1 Ontological Extensions for Relational Databases

Table 5.2: Relational to ontology translation rules

Rule Preconditions Effects

R1 ∃r ∈ R such that: a concept Cr

| pkey(r) |= 1 a role Ra ∀a ∈ pkey(r) and a /∈ fkey(r)

or an axiom Cr ≡ ∃Ra.dom(a) ∀a ∈
pkey(r) and a /∈ fkey(r)

| pkey(r) |≥ 1 and ∃a ∈ pkey(r) | a /∈
fkey(r)

R2 ∃ri ∈ R such that: a concept Cri

| att(ri) |> 2, a role Ra∀a ∈ pkey(ri)

∀a ∈ pkey(ri), a ∈ fkey(ri), an axiom Cri ≡ ∃Ra.Crj ∀a ∈ pkey(r)

∀a ∈ fkey(ri)∃rj | ri(a) ⊆ rj(b) ∧ b ∈
pkey(rb) for some b ∈ att(rj)

an axiom Dom(Ra) v Cri ∀a ∈ pkey(r)

an axiom Ran(Ra) v Crj ∀a ∈ pkey(r)

R3 ∃ri ∈ R such that: a role Rri

| att(ri) |= 2, an axiom Dom(Rri) v Crj

att(ri) = pkey(ri), an axiom Ran(Rri) v Crk

fkey(ri) = pkey(ri),

∃rj , rk ∈ R,∃a1, a2 ∈ att(ri) | ri(a1) ⊆
rj(b) ∧ ri(a2) ⊆ rk(c) for some b ∈ att(rj)

and c ∈ att(rk)

R4 ∃ri ∈ R such that: a role Ra

| pkey(ri) |≥ 1 and ∃a ∈ att(ri) | a ∈
pkey(ri) ∧ a ∈ fkey(ri),

an axiom Cr v ∃Ra.Crj ∀a declared as not

null

∃rj ∈ R | ri(a) ⊆ rj(b) for some b ∈
att(rj)

an axiom Dom(Ra) v Cri

an axiom Ran(Ra) v Crj

R5 ∃ri ∈ R such that: ∃a ∈ att(ri) | a /∈
pkey(ri) ∧ a ∈ fkey(ri),

a role Ra such that Dom(Ra) v Cri and

Ran(Ra) v Crj ,

∃rj ∈ R | ri(a) ⊆ rj(b) for some b ∈
pkey(rj)

an axiom Cr v ∃Ra.Crj ∀a declared as not

null

R6 ∃r ∈ R such that: an attribute Ta with Dom(Ra) v Cr and

Ran(Ra) v dom(a),

∃a ∈ att(r) ∧ a /∈ fkey(r) an axiom Cr v ∃Ra.Crj ∀a declared as not

null

55

Semantic Extraction of Relational Data Sources

tables where primary and foreign key attributes coincide. Differently from R2,

this association is translated into a new binary role, whose domain and range

are the concepts obtained from the translation of the referenced tables. R4

completes the translation of tables where the primary key consists of foreign

key attributes and non-foreign key attributes. These tables are the result of

the translation of weak entities and are already rendered as concepts by R1.

However, the resulting concept must be related to the concept corresponding

to the strong entity providing the key for the weak entity. This connection is

rendered as a new role whose domain is the concept corresponding to the weak

entity, and whose range is the concept corresponding to the strong entity.

The two remaining rules (i.e, R5 and R6) address the translation of all the

table columns which are not covered by the above rules. In particular, R5

renders all the foreign key attributes of a table - which are not part of the

primary key - as new roles whose domain and range are the source and the

referenced table respectively. R6 takes care of all the remaining table columns

which are not part of a foreign key. The effect of R6 is the creation of a new

attribute for each column that matches the rule’s preconditions. The domain

of this attribute is the concept resulting from the translation of the table and

the range is the corresponding (or a compatible) concrete domain.

5.2 Summary

In this chapter we have seen how the semantic extraction step is performed

when we deal with relational data-sources and which are the rules involved in

the translation.

The process will also produce as output all the ontologies necessary in order

to perform the backward translation of the query (from SPARQL to SQL) that

will be performed by the query execution module.

56

Chapter 6

Query Processing in

Context-ADDICT

In this chapter we are going to review how the query distribution algorithm

works, presenting all the features which it needs in order to do correctly its

work. We are going to present two heuristics which allow us to reduce sensibly

the number of queries which we are going to distribute over each source.

In the next Chapter (Chapter 7) we are going to see how this algorithm is

implemented in our system.

In both this two Chapters we are going to refer to a basic case in which all

our data sources are Relational and non-cooperative sources.

6.1 Overview of the process

As a preliminary step, the system needs that each datasources make available

an own semantic description, written in an ontology form (the so-called Data

Source Ontology). Before beginning the query rewriting process, it is also

necessary to draw (automatically with X-SOM in case of simple mapping’s

types or manually in case of complex mapping’s types, like GAV or LAV)

the mappings between the enriched domain ontology and every data source

involved in the process; the mapping ontologies must be defined using the

CA−DL logic.

Then, starting from the query issued towards the Domain ontology1, the

1From now on this query will be called original query.

Query Processing in Context-ADDICT

system starts the query rewriting and distribution process by Reasoning and

then mapping the concept contained into the domain ontology to their related

concepts of the DSO.

After this has been done automatically by the rewriting engine, the system

generates the rewritings of the original query by combining each possible ele-

ment that can be mapped on the DSO in order to create queries that can be

answered by the DSO.

However, the product of the rewriting engine is a set of Sound and Complete

queries; each single query could be referred to multiple DSO; while this is good,

for instance, for queries issued over ontologies, this is not good for queries

issued over relational sources; in this final case we need that a query correspond

exactly to one and only one source.

So for our final purposes, we can say that we need a Complete set of Sound

queries; this means that every single query has to be sound (and also complete

towards the single source, not towards the original query), with respect to the

original query, and the whole set of queries has to be complete, which means

that running the whole set of queries will provide the same resultset as running

the original query.

After having this query set (the one which is possible to dispatch over

each single source), system runs it over each source (for relation data sources

there is an apposite module, called SPARQLExplorer, which allows to translate

SPARQL queries into SQL queries and to retrieve data coming from a relational

source in an ”ontological” format.

Then the system simply runs the original query over the domain ontology,

which meanwhile has been enriched with the result that comes from each DSO,

and gives to the user the final, integrated, results.

The whole process is represented in the following Figure 6.1.

Looking at Figure 6.1 we can understand how the system works in order

to respond to a query issued towards the system by a user, and shows which

are the modules involved in the whole process.

In particular we can see from the figure that we have three different queries

which flows through our system:

1. A query Q which is the original query, issued by the user towards the

enriched domain ontology of our system.

58

6.1 Overview of the process

Figure 6.1: Module Architecture of Context-ADDICT platform

2. A set of queries Qrew which is the output of the rewriting engine and,

after the tailoring made by the query decomposition module, goes to the

query distribution engine.

3. A set of queries Qdisp which is the final set of single-source queries that

can be sent to the query execution engines.

The query rewriting and query decomposition modules are subparts of a

more general system that is called Semantic Query Decomposition system

(SQD)2, which has been deployed in [27].

2Formerly, in [27], the acronym stays for Semantic Query Distribution but, since the

system lacks of the distribution feature, it has been renamed Semantic Query Decomposition,

not to confuse it with our newly implemented Query Distribution Engine.

59

Query Processing in Context-ADDICT

In the figure the query execution modules are not represented since it is

obvious that, once we need to process a query of the set Qdisp on a specific

data source we need to use the proper execution engine.

The output of this thesis are the two modules in the rightmost part of

the figure, the query distribution and results integration modules, which work

is crucial in order to allow the system to work properly exploiting all of its

functionalities.

6.2 Useful structures

In order to perform the query distribution task we need to define two useful

data structure, which we will use during the whole process: the hyper-graph

structure and the meta-query structure.

6.2.1 Hyper-graph structure

The hyper-graph structure we will use for the query distribution has the fol-

lowing characteristics:

• it will contain a set of vertexes, which we need in order to keep in mind

which are the result variables of the query;

• it will contains a set of hyper-edges, which represents the query pattern.

More details about the implementation of this structure can be found in

Section 7.2.1.

6.2.2 Meta-query structure

The meta-query model is a simple structure which allows our system to proceed

in the real distribution of the query.

The main components of this structure are:

• a field which indicate the DSO to which the model refers to

• the set of the variables used in the query

• the set of the result variables (which is a subset of the previous one)

60

6.3 Heuristics

• a structure which make easily possible to understand which variables

makes join together (in the follow-up we will call that structure Local

Joins)

• the set of elements (triples and filter clauses) included in the query

In this way, distributing queries become more easily.

Like Hyper-graph structure, also in this case more details about the imple-

mentation of this structure can be found in Section 7.2.2.

6.3 Heuristics

In order to reduce the numbers of queries produced by the system, we define

two heuristics, Similarity, which allows us to understand if a query is similar

to another (which means that probably the two queries will retrieve the same

resultset of data), and Containment, which allows us to understand if a query

is probably included in another one.

6.3.1 Similarity

This heuristics allows us to say that if a query is ”similar” to another one,

which means that all of the following clauses are satisfied:

• the two queries are issued against the same DSO

• the two queries have the same set of result variables

• the two queries involves exactly the same predicates in the WHERE

clause

In this case we can drop one of the query, keeping the other in our set.

6.3.2 Containment

This Heuristic allows us to drop one of the two compared query if we can assert

that all the following statements are true:

• the two queries are issued against the same DSO

61

Query Processing in Context-ADDICT

• one of the two queries contains the same set of result variables of the

other one plus, at least, another variable

• one of the two queries contains the same set of result predicates in the

WHERE clause of the other one plus, at least, another predicate

In this case we allow our algorithm to drop the queries which is contained,

keeping the one that contains it.

Notice that it would not necessarily means that the query which is con-

tained in the other one is less general than the other. Probably it would not.

Therefore, if we are interested in a smallest set of results than the one which

this would retrieve, it is not useful to retrieve the whole result set, which only

delays the time at which the final user get the answer to the original query.

The algorithm used in order to apply the containment heuristic to our set

of queries is the one described into Algorithm1 and Algorithm2 (we need to

split since it is too long to be reported into a single page).

It is possible to notice that the algorithm works with meta-queries, instead

of queries, so we can re-define the heuristic as:

• the DSO are the same in both queries

• all the sets which compose the first meta-query are subset of the sets

which compose the second one

In this case we can obviously drop the contained query.

6.4 Feasibility of a query

During the rewriting process, the only concern of the rewriting engine is to

make sound and complete queries. This means both that the product of this

process could be a multi-source query, but also could be a query in which two

variables, on which we declare a property prop1 that has domain x and range

y, could be declared of type t and z, because maybe on some sources prop1

could be rewritten as a property that has domain x and range y and on some

other source prop1 could be rewritten as a property which has domain t and

range z.

62

6.4 Feasibility of a query

Algorithm 1 isContainedInto Algorithm - Part 1.

Require: a meta-query mq that will be compared to the one on which the

method has been called

Ensure: True if the query on which the method has been called is contained

into mq ; otherwise false

if not this.sourceName is equals to mq.getSourceName then

return false

3: end if

if not this.triples size≤mq.triples size and not this.triples is empty then

for all elements in this.triple do

6: extract an element from the vector (lets call it current element)

if not mp.triples contains the current element then

return false

9: end if

end for

else

12: return false

end if

if not this.used variables size ≤ mp.used variables size and not

this.used variables is empty then

15: for all elements in this.used variables do

extract an element from the vector (lets call it current element)

if not mp.used variables contains the current element then

18: return false

end if

end for

21: else

return false

end if

In order to understand better, lets consider the following example: suppose

we have a general property drives that has domain person and range vehicle.

Suppose that class vehicle has two subclasses car and moto, and also drives

63

Query Processing in Context-ADDICT

Algorithm 2 isContainedInto Algorithm - Part 2.

if not this.result variables size ≤ mp.result variables size and not

this.result variables is empty then

for all elements in this.result variables do

3: extract an element from the vector (lets call it current element)

if not mp.result variables contains the current element then

return false

6: end if

end for

else

9: return false

end if

if not this.joins variables size ≤ mp.joins variables size and not

this.joins variables is empty then

12: for all elements in this.joins variables do

extract an element from the vector (lets call it current element)

if not mp.joins variables contains the current element then

15: return false

end if

end for

18: else

return false

end if

21: return true

could be specialized into drivesCar and drivesMoto (obviously the domain

remain the same as drives, but the range changes respectively into car and

moto).

Suppose we have two datasources: one in which we can find data about

persons which drives car and the other one that contains data on person which

drives motorcycles.

Lets suppose we send to the system the following query to be rewritten:

variable x is of type person, variable y is of type vehicle and x and y are

64

6.4 Feasibility of a query

”joined” by the drives property.

We expect to obtain as the output of the rewriting engine two queries in

which once y is of type car and the other time is of type moto and in the

first case we have the drivesCar property while in the second we have the

drivesMoto one.

However, it is possible for the rewriting engine, in order to have a complete

query (which at a quick analysis it is not sound), to create a query on which

x is of type person, y is of type car and the property is drivesMoto (and vice

versa).

This would lead to an inconsistent query, which the system must drop, in

order not to fake the result of our query process.

In order to verify if a query is feasible or not we apply the following algo-

rithm (Algorithm3):

65

Query Processing in Context-ADDICT

Algorithm 3 Feasibility Check Algorithm

Require: a meta-query MQ, the list of all properties contained in all the DSO

(with their domain and range) P and a list of all the subclasses of each

class contained in all the DSO C

Ensure: return true if the query is feasible, otherwise false

for all elements e in MQ.elements do

if e is a Triple then

3: if e is an OntProperty then

for all properties p in P do

if p.name = e.predicate.path then

6: if e.subject is a variable then

if not e.subject.type = p.domain and not e.subject.type =

”NONE” and not e.subject.type is a subclass of p.domain

then

return false

9: end if

end if

if e.object is a variable then

12: if not e.object.type = p.range and not e.object.type =

”NONE” AND not e.subject.type is a subclass of p.range

then

return false

end if

15: end if

end if

end for

18: end if

end if

end for

21: return true

6.5 Filter clause and Order By clause

As a preliminary decision is useful to point out some choices made about the

handling of the Filter and Order By clauses.

66

6.6 Query distribution and result retrieval process

Filter clause It is clearly understandable that it would be useful to push

the Filter clause on every source (on which it is possible to use it) of our DSO

set since this operation allows us to retrieve a smaller (because it is filtered)

resultset from each DSO, while not pushing it on the DSO can bring, in some

case, many useless result (since after the application of the filter clause they

would be destroyed).

So the final decision is to push every filter clause on every DSO it can be

pushed to.

Group By clause Otherwise, pushing the Group By clause to every source

it is useless, since it is not useful to order each single resultset coming from

the DSOs and then re-order the whole integrated resultset3.

So the choice would be to process the order by clause only at the end of

the integration process, when the result integration module have already put

together every result and runs the original query.

6.6 Query distribution and result retrieval

process

After that the rewriting module has produced the rewritten query set, it is

time to distribute the query over every single DSO.

This job is done by the dispatching algorithm in three steps, starting from

a single rewritten query of the set produced by the rewriting module4:

1. starting from the rewritten query, the dispatching engine produces a

hyper-graph model of the query, which is the beginning point of the

distribution

2. than, processing this hyper-graph, the engine produce a set of dispatched

queries, using another meta-model (the meta-query data structure); each

query produced by the engine is directed to each single data-source

3we can not suppose anything about the ordering between sources!
4In the following of this chapter we are going to refer to an element of this query set as

rewritten query.

67

Query Processing in Context-ADDICT

3. after having all the queries that could be dispatched over the sources,

the engine makes some optimizations, using the previously introduced

heuristics

Once we have the output of the dispatching engine, it is possible to send

each query to the matching DSO, and by means of the right execution module

(it should be one for every different type of source), the system execute the

query.

Each execution module should be able to insert the result of the query

execution into the DSO on which the query is stated, so it is possible to

include each execution result back in the domain ontology. If the execution

module it is not able to make this, the module is useless, since it probably

can retrieve the final result but it cannot give them back in an understandable

format to the Result Integration module.

The Result Integration module simply get back from the execution modules

a set of DSO enriched with the results of the query; then, it pushes these results

into domain ontology enriching it. The final step is running the original query

onto this domain ontology enriched with results, and return the final result of

the integration process to the final user.

6.6.1 Query distribution

In this section we are going to see how the dispatching engine works5

First step: Construction of the hyper-graph

The input of this step is a single rewritten query (one included in the set of

the ones that were generated by the rewriting engine).

The output of this step will be a hyper-graph representing the structure of

the queries.

The hyper-graph model Since our needs regarding the hyper-graph model

are particular and also ”basics” (we mean that we do not need any strange or

particular complex operation to be made on the graph), we decide to create

our own model of hyper-graph which has been already exposed in Section 6.2.1.

5For details about the implementation of the engine, see Chapter 7.

68

6.6 Query distribution and result retrieval process

In addition to the previously defined hyper-graph model we need to intro-

duce 3 standard operations:

• it should be possible to add or remove a vertex

• it should be possible to add or remove a hyper-edge

• it should be possible to retrieve the sets of vertexes and hyper-edges

Each vertex has a label (usually the variable of interest), while each hyper-

edge contains, in addition to the label, the set of vertexes of which the relation

is composed.

At this point we can refine the Similarity heuristic: we can say that two

queries are similar if their hyper-graphs are similar.

This means that, defining an appropriate method on hyper-graphs like, for

instance an hashcode which takes into account our specification of similarity,

we can simply drop similar queries using a hashmap - like data structure,

without any further and complex reasoning.

The hyper-graph generation Starting from the rewritten queries, the

hyper-graph generation algorithm should return a valid hyper-graph of it, by

visiting the query pattern.

The steps that the algorithm have to do are the following:

1. insert the result variables of the query into the set of vertexes of the

graph

2. visit the pattern of the query unfolding each element contained in it and,

once the visit reaches a triple, go to the next step

3. once the element visited is a triple, the algorithm has to add it as a

hyper-edge to the hyper-graph, providing also to associate to each edge

the correspondent vertexes representing the variables involved in the def-

inition of the edge.

4. until there is something to visit, restart form 2

In ontologies world, the - arity of an hyper-edge should be one of the

following:

69

Query Processing in Context-ADDICT

• 1 - arity if the edge represents a triple of the kind: ?var rdf:type

dso:class

• 2 - arity if the edge represents a triple which contains a property

(DataType or Object)

• n - arity (with n ∈ (1,∞)) if the edge represents a filter clause

The algorithm used for the hyper-graph construction is the following one

(Algorithm4).

Second step: from the hyper-graph to the meta-query

In order to distribute a query over the several DSOs, it is not enough to

produce the hyper-graph, but some more processing is needed. So we need to

move from a hyper-graph to another model, which is the meta-query6.

First optimization: dropping similar hyper-graphs Before moving to

the next step the engine will parse all the set of rewritten queries and it will

generate the matching set of hyper-graphs.

Using the similarity heuristic, is now possible to drop similar queries in

such a way to reduce the hyper-graph set which we are going to use as starting

point for the next steps, and reduce response times of the whole system.

Distribution algorithm: first step - splitting The first part of the dis-

tribution algorithm receives as input an hyper-graph and gives as output a

primary version of the meta-query which later will need some more processing,

in order to be sure that we are generating sound queries.

As it starts, the procedure generates a set of meta-query which only have

the DSO field set, for each DSO involved in the distribution process; later the

procedure will fill the respective meta-query with every element present in the

graph which belongs to it.

The algorithm visits randomly an edge of the ones included in the hyper-

graph under examination7.

6Basic definition of this structure has been already exposed in Section 6.2.2.
7Remember that the set of vertexes included in the hyper-graph has the purpose to store

the result variables.

70

6.6 Query distribution and result retrieval process

Algorithm 4 Query Grapher algorithm.

Require: a rewritten query Q

Ensure: a set of graph GS

create an empty set of hyper-graphs SG

create an auxiliary stack structure AS

3: create a new, empty hyper-graph G

for all result variables in Q do

add the result variable to the vertexes of G

6: end for

unfold the query pattern of Q, filling AS

for all elements in AS do

9: if element is a Triple then

if the predicate of the triple is equal to rdf:type then

add an unary hyperedge to G

12: else

add a binary hyperedge to G

end if

15: else

if element is a filter clause then

add an n-ary hyperedge to G

18: else

if element is a String and element is equal to NextGraph then

add G to SG and create a new, empty graph G

21: end if

end if

end if

24: end for

return SG

Before starting to split the query, the dispatching module visits the rewrit-

ten query and build into its own memory a structure, which later will allows

it to find incoherencies in the generated meta-queries. In the follow-up of this

thesis we are going to refer to this structure calling it Global Joins structure.

71

Query Processing in Context-ADDICT

Once the algorithm has ”pulled out” an edge from the hyper-graph, it has

to follow the following steps, to produce the right set of meta-query:

1. looking at the label of the edge, it has to choose the correspondent meta-

query model from the previous generated set (understanding which is the

DSO involved by comparing the DSO field of the meta-query with the

path of the DSO included into the label of the edge)

2. once the first step is complete, and the triples corresponding to the edge

has been inserted into the right meta-query, the algorithm should process

the vertexes included in the edge, adding them to the meta-query used

variables, and if they match any of the result variables, they should also

be added to the meta-query result variables

3. in order to make possible further optimizations, if the visited edge repre-

sent a triple which include an OntProperty, the variables involved (that,

in standard DB language are said to make join) should also be added to

the meta-query Join Variables structure

4. instead of the previous two steps, if the edge represents a filter clause,

at this step of the algorithm the only feasible operation is to add it to

every meta-query of the set

After this procedure has been executed we have a set of meta-queries that

maybe are not sound.

In order to perform a check on the soundness of the meta-queries, we must

perform another step, which actually is a ”cleaning step”, which makes possible

to fix all the unsoundness in our queries.

The details about the algorithm involved into this first step are described

into Algorithm5 and Algorithm6 (since it is to long to be reported in a single

page).

To properly understand how it is possible to retrieve the correspondent

element from the hyper-edge of the hyper-graph, we need to anticipate a detail

about the hyper-graph implementation8: in our internal representation of the

hyper-graph, the hyper-edge label is an Element of the query pattern (a Triple

or a Filter clause).

8All the details about all the implementations are going to be discussed in the following

chapter, Chapter 7.

72

6.6 Query distribution and result retrieval process

Algorithm 5 Basic Split Generation Algorithm - Part 1

Require: a hyper-graph H

Ensure: a set of meta-query MQ’

create an empty set of meta-queries MQ (one for each datasource), setting

only the respective datasource name field

create an internal structure to keep joins over variables in the original

query JV

3: create a new, empty hypergraph G

for all hyper-edge in the hyper-graph hyper-edge set do

if hyper-edge represents a Triple then

6: if hyper-edge represent a type declaration triple (it should include

rdf:type as the predicate URI) then

set isTypeDecl to true

path = the URI of the object of the triple represented by the hyper-

edge

9: else

path = the URI of the predicate of the triple represented by the

hyper-edge

end if

12: {In order to see what happens here, please check Algorithm6}
else

add the filter clause to the m.elements ElementGroup {if we are in

this branch of the if, hyper-edge represents a Filter clause}
15: end if

end for

MQ = generateFinalSplits(JV)

18: for all m in MQ do

if isFeasible(m) then

MQ’.add(m)

21: end if

end for

return MQ’

73

Query Processing in Context-ADDICT

Algorithm 6 Basic Split Generation Algorithm - Part 2 (inner for)

for all m in MQ do

if path contains the m.dataSourceName then

3: add the triple represented by the hyper-edge to the m.elements

ElementGroup

if isTypeDecl then

add the subject of the triple represented by the hyper-edge to

m.used variables list, setting also its type, provided by the path

variable

6: else

add the subject of the triple represented by the hyper-edge to

m.used variables list, without setting its type

end if

9: end if

if hyper-edge cardinality = 2 then

add both the object and subject variables to both JV and

m.joins variables list

12: end if

end for

Distribution algorithm: second step - cleaning The cleaning step is

fundamental in order to obtain sound queries, since during the previous step

(also if we begin our process from a sound and complete query) the ”splitting”

of the query over multiple DSO may have introduced some incoherence in the

single sources queries (such as, for instance, the loss of a join over two different

variables).

Moreover, we may also have filter clauses where they are useless, so they

are going to be removed from that meta-query.

The procedure start by visiting the set of triples included in the meta-query

structure.

The algorithm can follow two different procedures, if the element we are

considering is a Filter clause or if it is a Triple.

In the first case, the engine needs to retrieve the set of the variables used

74

6.6 Query distribution and result retrieval process

into the filter clause. If this set is included into the set of meta-query used

variables, the choice would be to keep the filter clause into the set of elements

of the meta-query (in this case it is feasible, and useful, to keep it).

Otherwise the engine must purge the filter clause, since keeping it would

lead to an unfeasible and not runnable query.

Instead, if the algorithm is evaluating a triple, we must do a simple step:

looking at the global joins structure (built before starting the splitting phase),

and comparing it with the used variable meta-query set, we have three possi-

bility:

1. the meta-query used variables set contains zero or only one of the vari-

ables which originally makes join: the meta-query is consistent (for this

join)

2. the meta-query used variables contains both the variables which origi-

nally makes join and the meta-query local joins structure also contain

them (i.e. the global joins which we are evaluating is contained into the

local join structure): the meta-query is consistent (for this join)

3. the meta-query used variables contains both the variables which origi-

nally makes join but the meta-query local joins structure does not contain

them (i.e. the global joins which we are evaluating is not contained into

the local join structure): the meta-query is not consistent (for this join)

and need some fixes

Obviously this reasoning has to be made for each element included into the

global joins structure.

As stated in the previous list, while case 1 and case 2 do not need any

further processing, case 3 needs another step of processing.

In this last case indeed we need to make another split of the query, in order

to obtain two distinct queries containing distinctly the two variables which

originally make join9.

The others tuple may go indistinctly in one of the new queries, unless there

is some joins on any query’s other variable (the algorithm keeps trace of it)

9Not performing this step usually leads to produce a query in which the original join has

been replaced by a cartesian product.

75

Query Processing in Context-ADDICT

which suggest to which of the two generated queries the other tuples has to be

moved.

The algorithm we use in the ”cleaning” step is the one described into

emphAlgorithm7 and Algorithm8 and it represent the generateFinalSplits

method called at line 17 of emphAlgorithm5.

Algorithm 7 Final Split Generation Algorithm - Part 1

Require: a set of meta-query MQ and a set of original query joins variables

set JV

Ensure: a set of sound meta-query MQ’

create an auxiliary meta-query AUX

for all meta-queries mq in MQ do

3: if not mq.isEmpty then

for all j in JV do

if mq.used variables contains both the two variables of j and

mq.joins variables contains j then

6: Add to AUX.joins variables j

for all variables v contained into j do

add v to AUX.used variables

9: end for

see Algorithm8 to understand what happens here

else

12: if not AUX.isEmpty then

add AUX to MQ’

end if

15: splits mq into mq1 and mq2, both instanced on the same data-

source, performing also the Filter clause check as in the previous

branch.

end if

end for

18: end if

add AUX to MQ’

end for

21: return MQ’

76

6.6 Query distribution and result retrieval process

Algorithm 8 Final Split Generation Algorithm - Part 2 (inner for)

for all elements e in mq.elements do

if e is a Triple then

3: if e is a variable type declaration involving one of the variable included

in j or e is a property which involves both the variables in j or e is a

property which involves one of the variables in j and a constant or e

involves only constants then

add e to AUX.elements

end if

6: else

if e.MentionedVars is contained into mq.used variables then

add e to AUX.elements {We are considering a Filter clause}
9: end if

end if

end for

At line 15 of Algorithm7 the algorithm simply separate the two problematic

variables type declaration10 putting them into two separate distributed queries,

fixing this type of problem. Other elements that are included into the query

are put into the second generated one, although for any other reason they

should be included in the first ones (for instance because there is a join or

because we are going to filter the variable included into the first query).

Distribution algorithm: third step - optimization At this point, we

have to use the second of the heuristics that we have previously defined and

refined.

After having the whole set of meta-queries it is possible to make some more

reasoning on it and drop, using the containment heuristic, queries that might

lead to large and useless resultsets, reducing the system response times (fewer

queries to be run and fewer result leads directly to response time reduction).

10If we are at this line of the algorithm it means that the distributed query contains both

the type declaration of the two involved variables, while it misses the property that at the

origin concatenates them.

77

Query Processing in Context-ADDICT

Distribution algorithm: fourth (and final) step - query generation

After having split, cleaned, and optimized (and also dropped empty queries

contained into) our meta-queries set, it is now possible, using the informa-

tion contained into each one of them, to generate the correspondent SPARQL

queries set, which is the ones of which the elements, passed to the executions

modules, are going to be parsed, translated and executed onto the original

DSO.

6.6.2 Result retrieval and integration

The Result Retrieval and Integration module has a double job:

• it is the end-point for each execution module, which means that, every

execution module submits its own result (integrated into the DSO of the

source that it has queried) to it

• after receiving the results, the module has to ”reverse” the mappings

that usually are used to map concept from domain ontology to DSO

and use them to map concepts (and individuals) from DSO to domain

ontology, in order to obtain an integrated knowledge base to query, to

get the final, integrated results.

The first job is quite simple, since it has not any particular purpose. It is

a pure data collection task.

The second step works with the mapping already defined and used by

rewriting engine (using them in reverse mode), so also in this case there are

not peculiar or strange features; it simply performs the following steps:

1. grab an individual from a DSO enriched with results (the one given back

by an execution module)

2. understand which is the DSO class of this individual

3. map this DSO class with the corresponding one into the domain ontology

4. put the individuals into the domain ontology, associating it to the corre-

sponding class found at previous step

5. repeat this process for every individual and every results’ enriched DSO

returned by the execution modules

78

6.7 Summary

After the integration step it is possible to execute the original query11 (the

one stated onto the domain ontology), including also any eventual order by

clause and obtain the final result that now has only to be returned to the final

user.

6.7 Summary

In this Chapter we have provided a high-level view of two of the new modules

that need to be implemented into the Context-ADDICT system, which are the

Query Distribution and the Result Retrieval and Integration modules.

These two modules are going to become two of the core modules of the sys-

tem, and their implementation will be presented into the next chapter (Chapter

7).

11While performing this step, we have already made some little modification to the original

query, dropping every filter clause because we have already filtered each single data source

result.

79

Chapter 7

Design and Implementation

In this chapter we are going to present how the algorithms and the features de-

scribed in the previous chapter are implemented into the Context-ADDICT

system and which are the interfaces involved in the communication between

the already existent modules of the system and the new ones.

All the algorithms mentioned into this chapter have been already exposed

into the previous chapter (Chapter 6) and we will refer to them only by re-

porting the respective algorithm number.

7.1 Introduction

The Context-ADDICT system architecture presented in Chapter 3 is com-

posed essentially by 4 modules:

ROSEX the Relational to Ontology Semantic EXtractor is the module

charged of obtaining a semantic description of the relational data sources1

X-SOM eXtensible Smart Ontology Mapper2 is the module which allows find-

ing automatically simple mappings between DSOi and Domain Ontology

RewSPARQL 3 the module which rewrites queries issued towards the Do-

main ontology in a format understandable by DSOi

1The process has been quickly explained in Chapter 5.
2Described in [39]
3The so-called rewriting engine.

Design and Implementation

SPARQLExplorer this module allows to translate a SPARQL query into

a SQL query (it is the query execution module for the relational data-

sources)

We are going to add two new modules to our system, which are:

DiSPARQL ”DIspatching SPARQL” is the module which distributes the

queries over the various DSOi; its position into the system is between

RewSPARQL and the various query execution modules

Result Retrieval and Integration it is the module which integrates all the

results, obviously placed after the various query execution modules

All this modules are written in Java language. In the following sections

of this chapter however we are not going to give the Java encoding of our

algorithm, but we will present the algorithm implementation in a more detailed

way and we will present the key features of each algorithm.

Three sub-modules compose the DiSPARQL module:

• The Main sub-module, the one that coordinates all the operations of the

other two

• The Graph Generator sub-module, which generates the hyper-graph of

the rewritten query under examination by DiSPARQL

• The Query Distribution sub-module, the one which generates the final

set of queries that we are going to distribute over our datasources.

Before giving the details about the modules implementation, we are going

to see some helpful structures implemented into the new modules which we

will help us to present some features of the algorithms presented.

7.2 Common and useful structures and algo-

rithms

In this section we are going to give a quick look on some useful structures

that come together with the new modules; this structures have a more general

82

7.2 Common and useful structures and algorithms

purpose definition than the one strictly used in the new modules (they can

also be helpful in already implemented ones, for optimization purposes), so we

have decided to present them separately, before presenting their usage into the

new modules.

Every structure is coded as a class into the package:

it.polimi.elet.contextaddict.util.

7.2.1 hyper-graph implementation

For our particular case of interest, since Java lacks of a good hyper-graph im-

plementation and since we are going to deal essentially with SPARQL queries,

we have decided to implement an ad-hoc solution for the hyper-graph model.

The choice we made is to implement a Vertex class which has only an

attribute of type Node that is the label of the vertex; then we have the

hyper-edge class that includes the two attributes label, of type Element and

a vector of vertexes called elements, which represents the set of variables

included into the hyper-edge.

Both Vertex and hyper-edge implement the standard (and ad-hoc) con-

structors, getters and setters and override the default toString, hashCode and

equals method; hyper-edge also implements a method to add to an edge the

vertexes included one-by-one and a method to retrieve the cardinality of an

edge.

The hyper-graph class contains two vectors:

• one containing the vertexes of the graph (that we will use in our algorithm

in order to keep trace of the result variables of the query)

• one containing the edges the graph, which represents the real structure

of the graph.

Besides all the default (and ad-hoc) constructors, getters and setters, the

override of the default toString, hashCode and equals method, the HyperGraph

class implements some ad-hoc methods to add vertexes, edges without vertexes,

edges with vertexes, retrieve an Iterator for the edges vector and finally a

method to understand if the graph does not contain any edges.

All the methods which allow to add something (vertexes or

edges) to the hyper-graph can throw a specific exception (named

83

Design and Implementation

AlreadyContainsElementException) in the case that the object we are

adding is already present into the graph.

This is the final implementation of hyper-graph that has been used into the

DiSPARQL module.

7.2.2 Meta-query implementation

In order to define the meta-query implementation, we need two other auxiliary

structures, which are the JoinVar and the UsedVar class:

JoinVar is the class that allows handling variables that make join. The at-

tributes of the class are two strings, which contain a variable name.

Besides the standard (and ad-hoc) constructors, getters and setters and

the override of the default toString, hashCode and equals method, the

class implements a method that, receiving two variables name as input,

return true if the variables represent a join

UsedVar is the structure used by the distribution module4 in order to re-

member which are the variables used into the query and of which type

they are5

The meta-query implementation is probably one of the key of the func-

tioning of the distribution algorithm; it has three vectors attributes (containing

respectively all the used variables, the result variables and the joins variables, a

string attribute which identify the source on which the query must be executed

and an ElementGroup attribute, that will contain all the triples (and filters

clauses) used into the query.

In this class we can find: the standard (and ad-hoc) constructors, getters

and setters and the override of the default toString, hashCode and equals meth-

ods; Moreover there are three more methods, which will become very useful in

our work:

4Distribution module is a synonym of dispathcing engine.
5Notice that, if the query does not contain any rdf:type declaration for a variable,

it would have as type a defined constant, which is NONE ; this means that we have no

information about this variable type, and it is an useful information for the next steps of

our algorithm.

84

7.2 Common and useful structures and algorithms

• the isEmpty method, that returns true if the query result variables

vector is ”empty” (this means that, also if we run the query it will return

an empty resultset)

• the toQuery method, which allows us to produce the Query6 from our

meta-query representation (this operation is necessary since, once we

have distributed the queries, passing by the hyper-graph and meta-query

models, we need to return back to a valid SPARQL Query)

• the isContainedInto method which is the implementation of the con-

tainment heuristic. Since this method is very peculiar for our optimiza-

tion purposes, we are going to discuss it in a little bit deeper way into

the next section (Section 7.2.2).

the isContainedInto method

This method has to manage the choice to drop a certain query in behalf of

another one if the second one contains the set of variables and clauses with

some more ones respect to the ones contained into the first one. This usually

means that the first query will return a super-set of the resultset that the

second one will give back (and usually the resultset returned by the first query

would contains many useless data). Both the query has, obviously, to be stated

onto the same DSO.

The algorithm used in order to make this choice is the one represented into

Algorithm1 and Algorithm2.

7.2.3 PropertiesTable and SubClassesList

PropertiesTable is the structure which target is to make possible to create

a list of all the properties, with their own domain and range, that would be

helpful in the cleaning phase of the distribution algorithm.

SubClassesList is the structure, used in order to check domain and range

properties consistency in the query distribution’s algorithm cleaning phase,

which simply maps all the eventually subclasses of a certain ontological class.

6The SPARQL version of the query.

85

Design and Implementation

It contains the list of all available subclasses for each class included in the

DSO.

7.3 Query Distribution algorithm

The whole process of query distribution, as it was explained into the previous

chapter, is made of two main steps: the creation of the hyper-graph of the

rewritten query and the distribution of the query onto the various datasources.

This two steps involves algorithms implemented into two classes: the

hyper-graph generation is handled by the createGraph method of the

QueryGrapher class, while the query distribution and cleaning tasks are

performed by generateAllBasicSplits, generateFinalSplits and isFeasible of the

class QueryDispatcher.

The query containment heuristic is used in the main DiSPARQL module,

after all the methods above has been used, to obtain the final set of query that

we are going to distribute over our datasources.

As we have already said in Section 7.1, besides the main module of DiS-

PARQL we have the graph generator and the query distributor module; in

the follow-up of this section we are going to explain which are the algorithms

(described in Chapter 6) implemented in each of them, in order to allow them

to work properly and give us the result that we expect.

We are going to present the main module only after we have seen how the

other two modules works, since the main module has only to coordinate the

execution of the other two modules and to use the two heuristics defined in

6.3 to optimize our result.

7.3.1 The query grapher sub-module

The query grapher module task is essentially to take in input a rewritten query

from the set of rewritten queries produced by the rewriting engine and output

a hyper-graph whose pattern reflect the original pattern of the query.

This operation is executed into the createGraph method that has to:

1. add all the result variables of the query to the set of vertexes of the

hyper-graph

86

7.3 Query Distribution algorithm

2. visit all the pattern of the rewritten query and, once it find a triple

element or filter element, has to create the corresponding edge and add

it to list of edges of the hyper-graph

The method createGraphs is the implementation of the algorithm de-

scribed in Algorithm4, Section 6.6.1.

If the rewritten query contains any UNION clause, the algorithm must

produce a graph for each query included into the union.

This will not generate any inconsistency in query processing, because we are

working with queries that are of the type ”disjunction of conjunctive queries”,

so we can split union queries when we send them on the datasources; we have

only to remember that we must perform a union when we will perform the

integration step.

In order to help us with the graph generation work, we are going to reuse

some useful methods which allows us to easily visit the rewritten query im-

plemented in the rewriting engine; this methods are the two unfolds methods

and more details about them could be found in [27].

7.3.2 The query distribution sub-module

The query distribution module task is composed by two sub-tasks:

1. firstly it must distribute the query over each source mentioned in the

query;

2. then it has to make some consistency check and optimizations on it, in

order to be sure that we are going to dispatch a sound query and that

we are not going to retrieve wrong or useless result from the datasources.

As we have already seen in Chapter 6, unfortunately, we cannot make the

two operation into a single step, but we need multiples passing through the

hyper-graph or through the meta-query.

So, the first step is to take the hyper-graph and put each element of the

query pattern into the meta-query structure that is going to be sent to the

DSO that is mentioned somewhere in the path of the element.

The module had previously generated a meta-query structure for each pos-

sible involved datasource.

87

Design and Implementation

While doing this, if the examined element is a binary edge (which means

that we have a join between two variables in the original query), the algorithm

must keep updated an internal structure, which traces the original joins (we

need this structure in order to make the consistency check in the next step).

If the element examined is a filter clause, at this step of the processing we

are not able to understand if it is necessary or not if pushed to a determinate

datasources. Our choice at this point of the processing is to push it onto all

the datasources, then when the algorithm generates the final version of our

query will decide to push or not it (at this moment the algorithm could clearly

understand it).

The method generateAllBasicSplits, contained in this module, is the

implementation of the algorithm described into Algorithm5 and Algorithm6 in

Section 6.6.1.

it is possible to notice, looking at lines 17 and 19 of Algorithm5, that is the

basic split algorithm which is charged to call the other two methods (gener-

ateFinalSplits and isFeasible) and than it returns back to its caller (which is

the Main sub-module of the distribution module) the final (and sound) set of

meta-query.

The further steps of the process are necessary since, after this preliminary

step of distribution, our distributed queries could still be unfeasible or unsound.

The first check we are going to perform is a soundness check. We are

going to verify if we have preserved the joins of the original query into each

distributed ones7; if we have lose any join and if the variables that make join

are both included in the same distributed query, it means that we have changed

a join request in a cartesian product request.

This will lead to wrong answers to the original query, since we are going to

give back results that we are not interested into.

This does not mean that every single query of the distributed query set

must contain every join present in the original query. This only means that,

if one of the distributed queries contains two variables which make join in the

original query, these two variables must make join also in the distributed query

which contains them.

7From now on, we are going to refer to this set as distributed queries set ; therefore we

are going to call a single element of this set distributed query.

88

7.3 Query Distribution algorithm

Moreover, at this point of the computation, it is possible to understand if

a filter clause can be usefully inserted into a distributed query, since we have

information about variables used in each distributed query.

We can leave a filter clause into a distributed queries if and only if the whole

set of variables mentioned into the filter clause is contained (or equals) into

the set of the distributed query used variables, otherwise it must be purged

out of the final distributed query version.

The generateFinalSplits method, which is the other method included into

this module, is the implementation of the algorithm described into Algorithm7

and Algorithm8 in Section 6.6.1.

The next check we need to perform is the feasibility check; it signify that

we need to check if there are not differences between the variables declared

type and any domain/range type of any eventual property which involves the

variables themselves.

The only admitted difference is that the variable declared class is a sub-class

of the domain/range allowed class.

In order to do this, before the module starts its own work, it needs an ini-

tialization phase in which (using two of the useful structure discussed in Section

7.2, PropertiesTable and SubClassesList), by visiting all the DSO, builds

the two structures in which the algorithm will find any useful information for

the feasibility check.

If the algorithm finds an unfeasible query, the algorithm simply drops it,

since it cannot be executed on the datasources or may lead to useless, ambigu-

ous results.

The method we are going to use to perform this is the implementation of

the algorithm described into Algorithm3 in Section 6.4.

After this process has been performed, we obtain our final set of deliverable

queries.

One objection to the order in which we process and drop unfeasible query

can be that it is possible to see if a query is unfeasible since the beginning of

the distribution process, looking at the original rewritten query.

This might not be true since, after the distribution process, elements of

the query that may result in an ”original” unfeasibility of the query may be

pushed onto different DSOs, obtaining at the end a set of distributed feasible

queries.

89

Design and Implementation

Also maybe only the part of the query distributed on a certain data source

might be unfeasible, while the others are not unfeasible.

In the next section we are going to explain how the main sub-module of

DiSPARQL works in order to coordinate the operation of the other two and

which final optimization it is going to perform on our queries.

7.3.3 The main sub-module

The main sub-module is the one that receives in input the rewritten queries

array from the rewriting engine.

The first operation that it will perform is to pass the elements contained in

this array to the query grapher sub-module, which will return a set of hyper-

graphs to be used in the follow up of the execution.

While receiving back hyper-graphs, by means of a hashmap-like data struc-

ture, the main sub-module apply the similarity heuristic and drops duplicates

of the hyper-graphs it receives.

After that, processing a hyper-graph at once, it forward the execution to

the query distribution sub modules, getting back results from it and storing

always in another hashmap-like data structure (so if the splits of the queries

had generated some similar query, the system will drop every duplicate of it).

After the previous step is completed, the algorithm applies to final resultant

array the containment heuristic, dropping useless queries.

At this point we have our final, distributable set of queries.

7.4 Extensions to the SPARQLExplorer mod-

ule

Since the SPARQLExplorer 8 module has been produced before the other main

modules of the system had been specified, which needs some extensions on its

interfaces to properly do its work.

In particular, at the beginning of our thesis work the module cannot re-

turn the results it gets from the relational datasource in an ontology format

8Some detailed note on SPARQLExplorer implementation and usage can be found in [37]

and [43].

90

7.5 Data retrieval and Integration

comprehensible by the integration module (i.e. the SPARQLExplorer module

will not ”insert” its result into the DSO).

In order to follow the integration module specification, SPARQLExplorer

has been extended by adding a method that, once called by passing a SPARQL

query and a configuration file, returns its result by enriching the DSO whose

name is contained in the configuration file by adding all the individuals which

satisfy our query (an individual is produced starting from the SQL retrieved

results).

This way it is possible to integrate the answers to each of our distributed

query.

7.5 Data retrieval and Integration

As it was said into the previous sections, the data retrieval process is per-

formed by each query execution module (e.g. SPARQLExplorer for relational

datasources, direct interrogation of OWL and RDF datasources by means of

ARQ), which will give back its result to the data integration module.

Once a resultset comes from a query execution module, the integration

module starts the integration process:

1. First of all, by means of the mappings between Domain ontology and

DSOs, the integration module translate a concept that is part of the

DSO into the related concept of the domain ontology, adding the related

individuals9 to the domain ontology.

2. Once all the result has been collected into the domain ontology, the

module (using ARQ runs the original query, issued onto the domain

ontology, on the domain ontology enriched by results, obtaining the final,

integrated answer to our original interrogation.

At this point the system can give the answer back to the user, at the

conclusion of the whole integration process.

9An individual in an ontology is an instance of a determinate concept.

91

Design and Implementation

7.6 Examples of query distribution

In this section we are going to show some examples of how, starting from a

query issued onto the domain ontology, we get our final distributed queries

array.

We are going to show only the examples about the two particular cases of

query dropping and query re-splitting, since we think that an example of the

standard case would not interest much for the understanding of this thesis.

Domain ontology, mappings ontology and everything can be useful to un-

derstand these examples can be found in Appendix A

The original query (the domain query), we are going to consider is the

following:
PREFIX rdf: 〈http://www.w3.org/1999/02/22-rdf-syntax-ns#〉
PREFIX rdfs: 〈http://www.w3.org/2000/01/rdf-schema#〉
PREFIX do: 〈file:///Users/Lele/Documents/workspace/TIS-RewSparQL progetto/ontologies/vehicledomain.owl#〉
SELECT ?x ?y ?z

FROM ¡〈ile:///Users/Lele/Documents/workspace/TIS-RewSparQL progetto/ontologies/vehicledomain.owl〉
WHERE { {

?x do:drives ?y.

?y do:hasBrand ?z.

?x rdf:type do:Person.

?y rdf:type do:Vehicle.

?z rdf:type do:Manufacturer.

?x do:hasName ?name.

FILTER regex(?name, ”cust1”)

}
}
ORDER BY ?x

7.6.1 Example One: unfeasible query dropping

The first example starts from this rewritten query, coming as output of the

rewriting engine:
SELECT ?x ?y ?z

WHERE

{
?x 〈file:///Users/Lele/Documents/workspace/TIS-RewSparQL progetto/ontologies/rosex2SemanticONTO.owl#drives moto〉

?y .

?y 〈file:///Users/Lele/Documents/workspace/TIS-RewSparQL progetto/ontologies/rosex1SemanticONTO.owl#

auto.manufacturer〉 ?z .

?x 〈http://www.w3.org/1999/02/22-rdf-syntax-ns#type〉 〈file:///Users/Lele/Documents/workspace/TIS-

RewSparQL progetto/ontologies/rosex2SemanticONTO.owl#cliente〉 .

?y 〈http://www.w3.org/1999/02/22-rdf-syntax-ns#type〉 〈file:///Users/Lele/Documents/workspace/TIS-

RewSparQL progetto/ontologies/rosex2SemanticONTO.owl#auto〉 .

?z 〈http://www.w3.org/1999/02/22-rdf-syntax-ns#type〉 〈file:///Users/Lele/Documents/workspace/TIS-

92

7.6 Examples of query distribution

RewSparQL progetto/ontologies/rosex4SemanticONTO.owl#brand〉 .

?x 〈file:///Users/Lele/Documents/workspace/TIS-RewSparQL progetto/ontologies/rosex2SemanticONTO.owl#cliente.name〉
?name .

FILTER regex(?name, ”cust1”)

}

The distributed queries will be:

SOURCE: rosex1SemanticONTO.owl
SELECT ?y

WHERE

{
?y 〈file:///Users/Lele/Documents/workspace/TIS-RewSparQL progetto/ontologies/rosex1SemanticONTO.owl#

auto.manufacturer〉 ?z .

}

SOURCE: rosex4SemanticONTO.owl
SELECT ?z

WHERE

{
?z 〈http://www.w3.org/1999/02/22-rdf-syntax-ns#type〉 〈file:///Users/Lele/Documents/workspace/TIS-

RewSparQL progetto/ontologies/rosex4SemanticONTO.owl#brand〉 .

}

SOURCE: rosex2SemanticONTO.owl
SELECT ?x ?y

WHERE

{
?x 〈file:///Users/Lele/Documents/workspace/TIS-RewSparQL progetto/ontologies/rosex2SemanticONTO.owl#drives moto〉

?y .

?x 〈http://www.w3.org/1999/02/22-rdf-syntax-ns#type〉 〈file:///Users/Lele/Documents/workspace/TIS-

RewSparQL progetto/ontologies/rosex2SemanticONTO.owl#cliente〉 .

?y 〈http://www.w3.org/1999/02/22-rdf-syntax-ns#type〉 〈file:///Users/Lele/Documents/workspace/TIS-

RewSparQL progetto/ontologies/rosex2SemanticONTO.owl#auto〉 .

?x 〈file:///Users/Lele/Documents/workspace/TIS-RewSparQL progetto/ontologies/rosex2SemanticONTO.owl#cliente.name〉
?name .

FILTER regex(?name, ”cust1”)

}

This final query will be dropped since the domain of drives moto could not

be auto, so the query is unfeasible.

7.6.2 Example Two: query splitting

The second example takes into consideration the following rewritten query.
SELECT ?x ?y ?z

WHERE

{
?x 〈file:///Users/Lele/Documents/workspace/TIS-RewSparQL progetto/ontologies/rosex2SemanticONTO.owl#drives moto〉

?y .

?y 〈file:///Users/Lele/Documents/workspace/TIS-RewSparQL progetto/ontologies/rosex1SemanticONTO.owl#

moto.manufacturer〉 ?z .

?x 〈http://www.w3.org/1999/02/22-rdf-syntax-ns#type〉 〈file:///Users/Lele/Documents/workspace/TIS-

93

Design and Implementation

RewSparQL progetto/ontologies/rosex2SemanticONTO.owl#cliente〉 .

?y 〈http://www.w3.org/1999/02/22-rdf-syntax-ns#type〉 〈file:///Users/Lele/Documents/workspace/TIS-

RewSparQL progetto/ontologies/rosex4SemanticONTO.owl#moto〉 .

?z 〈http://www.w3.org/1999/02/22-rdf-syntax-ns#type〉 〈file:///Users/Lele/Documents/workspace/TIS-

RewSparQL progetto/ontologies/rosex4SemanticONTO.owl#brand〉 .

?x 〈file:///Users/Lele/Documents/workspace/TIS-RewSparQL progetto/ontologies/rosex2SemanticONTO.owl#cliente.name〉
?name .

FILTER regex(?name, ”cust1”)

}

The distributed queries will be:

SOURCE: rosex1SemanticONTO.owl
SELECT ?y

WHERE

{
?y 〈file:///Users/Lele/Documents/workspace/TIS-RewSparQL progetto/ontologies/rosex1SemanticONTO.owl#

moto.manufacturer〉 ?z .

}

SOURCE: rosex2SemanticONTO.owl
SELECT ?x ?y

WHERE

{
?x 〈file:///Users/Lele/Documents/workspace/TIS-RewSparQL progetto/ontologies/rosex2SemanticONTO.owl#drives moto〉

?y .

?x 〈http://www.w3.org/1999/02/22-rdf-syntax-ns#type〉 〈file:///Users/Lele/Documents/workspace/TIS-

RewSparQL progetto/ontologies/rosex2SemanticONTO.owl#cliente〉 .

?x 〈file:///Users/Lele/Documents/workspace/TIS-RewSparQL progetto/ontologies/rosex2SemanticONTO.owl#cliente.name〉
?name .

FILTER regex(?name, ”cust1”)

}

SOURCE: rosex4SemanticONTO.owl
SELECT ?y ?z

WHERE

{
?y 〈http://www.w3.org/1999/02/22-rdf-syntax-ns#type〉 〈file:///Users/Lele/Documents/workspace/TIS-

RewSparQL progetto/ontologies/rosex4SemanticONTO.owl#moto〉 .

?z 〈http://www.w3.org/1999/02/22-rdf-syntax-ns#type〉 〈file:///Users/Lele/Documents/workspace/TIS-

RewSparQL progetto/ontologies/rosex4SemanticONTO.owl#brand〉 .

}

As it is possible to see, during the distribution process, the properties which

correlates the two variables x and y is stated in rosex1SemanticONTO.owl

while the two type declarations are stated in rosex4SemanticONTO.owl.

In this case we need a further split of the query issued to

rosex4SemanticONTO.owl: so we obtain the two queries:
SELECT ?y ?z

WHERE

{
?y 〈http://www.w3.org/1999/02/22-rdf-syntax-ns#type〉 〈file:///Users/Lele/Documents/workspace/TIS-

94

7.7 Summary

RewSparQL progetto/ontologies/rosex4SemanticONTO.owl#moto〉 .

}

and
SELECT ?y ?z

WHERE

{
?z 〈http://www.w3.org/1999/02/22-rdf-syntax-ns#type〉 〈file:///Users/Lele/Documents/workspace/TIS-

RewSparQL progetto/ontologies/rosex4SemanticONTO.owl#brand〉 .

}

In this way we do not have the join, but also we avoid retrieving the results

of a cartesian product, thing that will fake our answers.

7.7 Summary

In this chapter we have seen the implementation of the algorithms described in

the previous chapter, presenting their features and showing their peculiarity.

We ended the chapter presenting some examples of how the algorithms

work, focusing on two particular cases.

95

Chapter 8

Evaluation

In this chapter we are going to present some evaluation made on the new

DiSPARQL module and on the integration module.

This evaluation were made essentially by understanding which advantages

and problems present the new implemented algorithms and also by some test-

ing in some simple use case, providing it is not such specific that we may find

peculiar results (for better or for worse).

8.1 Introduction

First of all we need to specify that, without using the new implemented algo-

rithms, the Context-ADDICT system was not able at all to retrieve results

from sources other than OWL or RDF files.

With the introduction of the new algorithms the system becomes able to

perform queries onto datasources.

On this sources it is not usually possible, or maybe convenient (think of

the case of making joins between two relational datasources, at the opposite

sides of the world: maybe it is better, if not necessary, to get results separately

from the two datasources and joining them at a higher level), to process query

on multiple sources, so the distribution step becomes essential.

In our work we focus on distribution among distributed Relational data-

sources, which is the case that involves SPARQLExplorer, ROSEX and the

other modules presented in this thesis.

Evaluation

8.2 Complexity

In this section we are going to point out the asymptotic complexity of the new

implemented algorithms, trying to figure out if making some optimization on

them can reduce it.

In our evaluation we must consider essentially two metrics: we need to

evaluate time complexity, since the system has to keep a good level of inter-

activity (it must not require too much time to give the results of our request)

and, since the amount of data that may be retrieved could be very huge, also

spatial complexity must be kept under control.

8.2.1 Complexity analysis

First of all we are going to consider the hyper-graph generation algorithm.

Considering the time complexity of the algorithm we can notice that, while

the query unfold operation used for the kick-off of the process is a recursive

algorithm (one iteration for each element of the query pattern), the graph

generation algorithm only iterates over the elements of the unfolded query

pattern. So if we call n the elements of the query pattern the time complexity

of the whole algorithm would be 2n; this means that we have an asymptotic

complexity of the order of O(n).

Considering spatial complexity, we see that the algorithm uses some stack

structures in order to keep the results of the unfold process, and an array of

hyper-graph which contains the generation results.

Moreover, at a deeper look, it is possible to understand that only one of the

stack it is full at the same time, and considering also that stack structures are

stored into the heap (so they are composed by dynamic fields), we can consider

that the algorithm has an overall asymptotic spatial complexity of O(n).

Let now consider the first of the two algorithms used for query distribution,

generateBasicSplits.

Let us refer to n as the number of hyper-edges which are part of the hyper-

graph and to m as the number of datasources on which we are going to dis-

tribute our query.

Since we have that, for each hyper-edge we must check to which of the m

98

8.2 Complexity

datasource belongs, we have an average time complexity (due to the nested

cycles) of O(nm).

With regard to the spatial complexity of the algorithm, we only need to

store information about the distributed queries (each one composed by some of

the n elements), we can approximate the asymptotic complexity with O(mn).

Probably the more complex algorithm is the one that generate the final

results, generateFinalSplits.

Considering the temporal complexity of this algorithm we can see that the

asymptotic complexity of it is O(mno) in the best case (no need of further

splitting) while it becomes O(m2no), where m is the number of datasources, n

is the number of elements included in the query and o is the number of joins

in the query.

Instead, evaluating spatial complexity, we can see that the algorithm only

needs to store data about the produced query, so it asymptotic complexity

would be O(mn).

The only other interesting complexity element that we are going to evaluate

is the point where we apply the containment heuristic. Since, for every query

contained in our distributable query set we need to check if it is contained in

any of the other query of the set, we obtain that the algorithm has a temporal

complexity of O(n2), while it has a spatial complexity of O(n) in the worst

case, where n is the number of queries in the distributable set.

Evaluating the complexity of the integration process we can find that the

integration algorithm has a temporal asymptotic complexity O(mno) where m

is the number of individuals included in DSO enriched with results, n is the

number of mapping concepts included in the mapping and o is the number of

possible distinct rewrites of each mapping concept. Spatial complexity is not

important since the algorithm use structures that were already used during

previous step of the processing.

8.2.2 Consideration about the complexity

Since our intent is to produce not a real-time system but, at least, an interactive

system, we need to ensure that we are going to answer to query issued by the

final user in reasonable time, which means that query processing must not take

hours, days or maybe months, but that the whole process has to be brought

99

Evaluation

over and completed in the vicinity of second or minutes, depending of the

complexity of the interrogation.

As it is possible to understand by the previous evaluation, the first crucial

point in our processing is the generateFinalSplit algorithm, which is the most

complex from the time point of view.

However, since the operations that this algorithm makes are necessary for

the whole process, and since there are not other ways to do it, we cannot

rescind from using it.

Moreover, after some little testing, the algorithm does not behave so bad as

it is possible to imagine (w.r.t. the information given in the previous section),

giving answers in a quite little time1.

The other crucial point is the integration algorithm that, like the previous

one, has been already optimized for the work it has to do. However, also

this algorithm does not behave so bad has we will expect, making its job in

reasonable time, allowing our system to work in a good way.

At the end of this evaluation, we have understood that the system behave

according to the requirements we have expressed on it allowing us to retain,

after all the analysis and consideration made in this chapter, that it would on

average behave as we desire.

8.3 Analysis on the test results

Some simple test has been done on the system, in order to understand if the

system can be considered an interactive system and in order to check that the

system works properly and retrieves the right results from the datasources.

This simple test were made by using different queries and different data-

sources schemas (the datasources type is always the relational one)

The results of test were always comply with the expected ones; from this

we can deduce that we are moving in the right direction.

When the system was tested using a query that includes three datatypes

declaration, two joins and a filter clause, providing the system maps it to three

1The set of queries used in the test are the ones that were produced by rewriting the

original query presented in Section 7.6.

100

8.3 Analysis on the test results

different asymmetric2 datasources, we have seen that, starting from an array of

96 rewritten queries that are the output of the engine, our distribution module

obtain a set of 6 queries, which were verified to be the only 6 useful ones.

Otherwise, the same query issued onto three different symmetric data-

sources reduce the set of queries to be used from over a hundred of queries to

3 (obviously the only three needed by the system).

This means that also the containment heuristic works well, since the ob-

tained queries are the ones which are the ones that respect them, providing us

to retrieve only useful resultsets from the datasources.

At the end of this small test phase, we can say that the new implemented

algorithms seems to work as we expect and they should bring correct results

with every possible query that may be sent to the system.

Measurements made during this test highlights that the greatest percent-

age of system’s computation time still remain the one involved in the rewriting

engine reasoning time (which always states around 40-45 % of the total execu-

tion time), while operations made by our new algorithms seems not to be as

complex as it was possible to suppose with our preliminary complexity study.

The only other ”huge” operation that our system makes is the data inte-

gration operation that, after several tests, seems to absorb around the 20-25

% of the total execution time, while (in the simple tests that we have car-

ried out) the serial execution of the two algorithms (generateBasicSplits and

generateFinalSplits) only require around 2-5 % of the total computation time,

allowing us to assert that with algorithm we are moving in the right direction,

for our integration purposes.

Obviously, all the data shown in the last paragraphs of this section were

given as percentage on the total computation time; this thing will mean that,

more complex becomes the query more time will be elapsed by the whole

system in order to process the original request3.

Also as it is easily possible to understand that the integration time depends

directly from the number of the result that we have to integrate together; it

2Here with asymmetric we intend to say that the tree datasources schemas contains

different part of the information used by Context-ADDICT to retrieve the results, while

with symmetric we intend that the datasources schemas are the same.
3At the moment the integration module has not already been implemented in a parallel

architecture, that may reduce this ”integration time”.

101

Evaluation

is necessary a more intensive test in order to understand if we can reach some

maximum value (that we will not exceed anytime) or if it still vary depending

from the previously exposed dependencies (as it will probably be).

This may not be considered a problem, since also in SQL interrogation,

response times depend from the quantity of the data that the system has to

retrieve; the only thing that we must consider is to keep this time as little

as possible (possibly a linear or quadratic dependency from the number of

results).

8.4 Summary

In this chapter we have evaluate some results and exposed some consideration

about the expected and the real complexity of the new algorithms implemented

in the system.

After all this consideration, we have supposed that our system will now

react correctly to the interrogation that users may make to it.

102

Chapter 9

Conclusions and Future Work

9.1 Original Contributions

As it was already described in the previous chapters, the main objective of our

work is to produce a query distribution module which has to return a set of

single-source complete set of sound queries starting from a set of sound and

complete set of multi-source queries.

During the development of the new modules it become clear that also some

optimizations on the number of queries to be sent to the execution’s engines

must be done, since many useless and, redundant queries could be generated

by the rewriting engine.

Also sometimes it was necessary to drop some of the rewriting engine out-

coming queries since they are incorrect and, once ran on the datasource, they

may return wrong results (or they would lead the whole execution module to

fail, since the parse could not translate the query), faking the results of our

integration process.

After all these considerations were made, the new implemented query dis-

patching engine has been designed and developed into a prototype, respecting

all the previously stated requirements.

Since a ”integration” module lacks in the system, we have also proposed a

solution to this problem, implementing this module in order to complete the

CA system functionalities.

Conclusions and Future Work

9.2 Further Remarks

Probably many of the aspects of the work exposed in this thesis may be criti-

cized, starting from the many steps that the proposed algorithm has to make

in order to distribute a single query. Unfortunately, as we already said in

Chapters 6 and 7, all of these steps are necessary (e.g. it is not possible to

evaluate if a query, after the distribution, keeps the original joins until the

query has been distributed), because of the structure of a generic SPARQL

query and of the consequent modifications to be performed on it.

Another choice that might be criticized is the choice of the heuristics we

have made. Someone can say that sometimes verify if a query is contained in

another one could be more time consuming than sending the query itself to

the sources and retrieve the result for the integration step.

This, luckily, is not true, since we have already seen in Section 8.3 that the

most critical point of the newly developed algorithms is the data integration

step, since the wider it is the result space, the longer will be the integration

time.

However, for everyone who prefers not to use the optimization made by

containment heuristic, the usage of it has been parameterized, and it could be

disabled (obviously it is enabled by default choice), as a user wants it.

A possible objection to our choice of a mediator based architecture, is that

this type of architecture does not scale very well (since there is the specific

need of a central point of integration); However, considering the dynamicity of

the whole Context-ADDICT project, the approach we have followed seems

to be the most natural one.

Also a criticism can be made to the choice of the usage of RDFS(DL)

as domain ontology specification language (RDFS(DL) is poorer, in terms of

expressive power, than OWL(DL), but this makes it possible to use a reasoner

on its structure).

However, we note that in this work we have seen ontologies merely as

models used to distribute queries using semantic interconnections: we rewrite

queries using semantic links and once we have obtained results from the data

sources we have to return to the user these results in terms of the Enriched

Domain ontology. Using a formalism like RDFS means that basically we do

not express constraints over the global schema apart inclusions expressed by

104

9.3 Future Works

taxonomies: in this sense, considering sound mappings1 our query rewriting

and distribution algorithm returns only certain answers ([27]).

9.3 Future Works

During our thesis work, we have produced a prototype that, after the fast test

phase that has been carried out, seems to work well in most of the tested use

cases.

Besides, a lot of work has to be done in order to complete the Context-

ADDICT framework and allow it to do its job correctly and further investi-

gation must be done on the product of this thesis work too.

Let us specify that the testing of our work has been actually focused on

relational data sources, but many other types of sources can be used with

our system, although many components (like semantic extractors or query

executors) lack in the system, making impossible to perform tests on this

types of sources.

First of all, A more detailed index of the sources has to be implemented

since the system need to understand on which sources a query has to be split

in order to become a single-source query (e.g. relational datasources) or when

it can leave a multi-source query (e.g. RDF/ontology files).

More testing has to be done on the system too; Performing more tests can

make more data available and maybe, with the new data, it is possible to un-

derstand if some strange (but correct) pattern of query maybe discarded during

some of our processing step, suggesting any modifications to our algorithms.

Now that the system is, only in case of relational datasources integration,

complete it is also possible to start to design a graphical front-end for the

framework, since currently it is difficult to use the system for a final user.

Another thing that must be implemented is a query execution and data

integration parallelization (at the moment the integration module architecture

is serial), thing that probably will reduce the integration step computation

time, resulting in a smaller bottleneck for our application.

In addition it is necessary to modify the architecture of our core system

modules, since at the moment they work as a stand-alone application; a server

1Mappings stating that some terms belonging to data source ontologies (virtually) contain

instances that are a subset of those (virtually) contained by terms of the Domain ontology.

105

Conclusions and Future Work

or another type of an end-point implementation would be more suitable, since

the system has simply to receive a string which represent a SPARQL query

and has to return a ”table-like” (or a XML file) structure that contains the

result produced by the received query, once ran on the datasources.

106

Appendix A

Examples of ontologies

In this appendix we are going to report some of the ontologies that we have

used in the previous chapters for our examples and testing purposes.

A.1 Vehicle domain ontology

This ontology is the one which represent the domain in which we are interested;

the final user must issue queries on this ontology, and the system must rewrite

it in order to make possible to be sent on datasource ontologies. Also final

result must be inserted into this ontology, for the final integration step.

<?xml version="1.0"?>

<rdf:RDF

xmlns:p1="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xml:base="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl">

<owl:Ontology rdf:about=""/>

<owl:Class rdf:ID="Woman">

<rdfs:subClassOf>

<owl:Class rdf:ID="Person"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Risk"/>

<owl:Class rdf:ID="Motorcycle">

<rdfs:subClassOf>

<owl:Class rdf:ID="Vehicle"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Car">

Examples of ontologies

<rdfs:subClassOf rdf:resource="#Vehicle"/>

</owl:Class>

<owl:Class rdf:ID="High">

<rdfs:subClassOf rdf:resource="#Risk"/>

</owl:Class>

<owl:Class rdf:ID="Low">

<rdfs:subClassOf rdf:resource="#Risk"/>

</owl:Class>

<owl:Class rdf:ID="Mid">

<rdfs:subClassOf rdf:resource="#Risk"/>

</owl:Class>

<owl:Class rdf:ID="Man">

<rdfs:subClassOf rdf:resource="#Person"/>

</owl:Class>

<owl:Class rdf:ID="Manufacturer"/>

<owl:ObjectProperty rdf:ID="drives">

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="#Vehicle"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasRiskClass">

<rdfs:range rdf:resource="#Risk"/>

<rdfs:domain rdf:resource="#Person"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="hasMname">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="#Manufacturer"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasName">

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:FunctionalProperty rdf:ID="hasBrand">

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

<rdfs:domain rdf:resource="#Vehicle"/>

<rdfs:range rdf:resource="#Manufacturer"/>

</owl:FunctionalProperty>

</rdf:RDF>

<!-- Created with Protege (with OWL Plugin 3.3.1, Build 430) http://protege.stanford.edu -->

A.2 Mapping ontologies

In this section it is possible to review how our mappings between domain and

datasources ontologies are made, in order to understand how the rewriting

engine and the data integration module works.

108

A.2 Mapping ontologies

A.2.1 Mapping beetwen vehicle domain and rosex1 on-

tologies

<?xml version="1.0"?>

<rdf:RDF xml:base="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/mapping_rosex2.owl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rosex1SemanticONTO="file:///Users/Lele/Documents/workspace/TIS-ROSEX_progetto/result/tests/rosex1SemanticONTO.owl#"

xmlns:mapping_rosex2="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/mapping_rosex2.owl#"

xmlns:vehicledomain="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#">

<owl:Ontology rdf:about="">

<owl:imports rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl"/>

<owl:imports rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl"/>

</owl:Ontology>

<rdf:Description rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#motorcycle">

<rdfs:subClassOf rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#Motorcycle"/>

</rdf:Description>

<rdf:Description rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#auto">

<rdfs:subClassOf rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#Car"/>

</rdf:Description>

<rdf:Description rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#brand">

<rdfs:subClassOf rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#Manufacturer"/>

</rdf:Description>

<!-- OBJECT PROPERTIES -->

<owl:ObjectProperty rdf:about="file:/Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#hasBrand"/>

<owl:ObjectProperty rdf:about="file:/Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#hasRiskClass"/>

<owl:ObjectProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#auto.manufacturer">

<rdfs:subPropertyOf rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#hasBrand"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#motorcycle.manufacturer">

<rdfs:subPropertyOf rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#hasBrand"/>

</owl:ObjectProperty>

<!-- DATA PROPERTIES -->

<owl:DatatypeProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#hasMname"/>

<owl:DatatypeProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#hasName"/>

<owl:DatatypeProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#brand.name">

<rdfs:subPropertyOf rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#hasMname"/>

</owl:DatatypeProperty>

</rdf:RDF>

A.2.2 Mapping beetwen vehicle domain and rosex2 on-

tologies

<?xml version="1.0"?>

109

Examples of ontologies

<rdf:RDF xml:base="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/mapping_rosex3.owl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rosex2SemanticONTO="file:///Users/Lele/Documents/workspace/TIS-ROSEX_progetto/result/tests/rosex2SemanticONTO.owl#"

xmlns:mapping_rosex3="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/mapping_rosex3.owl#"

xmlns:vehicledomain="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#">

<owl:Ontology rdf:about="">

<owl:imports rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl"/>

<owl:imports rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl"/>

</owl:Ontology>

<owl:Class rdf:ID="M1">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<rdf:Description rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#Man"/>

<rdf:Description rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#Woman"/>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

<rdfs:comment xml:lang="en">LAV</rdfs:comment>

</owl:Class>

<rdf:Description rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#cliente">

<rdfs:subClassOf rdf:resource="#M1"/>

</rdf:Description>

<rdf:Description rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#motorcycle">

<rdfs:subClassOf rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#Motorcycle"/>

</rdf:Description>

<rdf:Description rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#auto">

<rdfs:subClassOf rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#Car"/>

</rdf:Description>

<!-- OBJECT PROPERTIES -->

<owl:ObjectProperty rdf:about="file:/Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#drives"/>

<owl:ObjectProperty rdf:about="file:/Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#hasRiskClass"/>

<owl:ObjectProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#drives_auto">

<rdfs:subPropertyOf rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#drives"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#drives_moto">

<rdfs:subPropertyOf rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#drives"/>

</owl:ObjectProperty>

<!-- DATA PROPERTIES -->

<owl:DatatypeProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#hasName"/>

<owl:DatatypeProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#cliente.name">

<rdfs:subPropertyOf rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#hasName"/>

</owl:DatatypeProperty>

</rdf:RDF>

A.2.3 Mapping beetwen vehicle domain and rosex4 on-

tologies

<?xml version="1.0"?>

110

A.3 Datasources ontologies

<rdf:RDF xml:base="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/mapping_rosex4.owl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rosex1SemanticONTO="file:///Users/Lele/Documents/workspace/TIS-ROSEX_progetto/result/tests/rosex4SemanticONTO.owl#"

xmlns:mapping_rosex2="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/mapping_rosex4.owl#"

xmlns:vehicledomain="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#">

<owl:Ontology rdf:about="">

<owl:imports rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl"/>

<owl:imports rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl"/>

</owl:Ontology>

<rdf:Description rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#motorcycle">

<rdfs:subClassOf rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#Motorcycle"/>

</rdf:Description>

<rdf:Description rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#auto">

<rdfs:subClassOf rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#Car"/>

</rdf:Description>

<rdf:Description rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#brand">

<rdfs:subClassOf rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#Manufacturer"/>

</rdf:Description>

<!-- OBJECT PROPERTIES -->

<owl:ObjectProperty rdf:about="file:/Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#hasBrand"/>

<owl:ObjectProperty rdf:about="file:/Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#hasRiskClass"/>

<owl:ObjectProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#auto.manufacturer">

<rdfs:subPropertyOf rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#hasBrand"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#motorcycle.manufacturer">

<rdfs:subPropertyOf rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#hasBrand"/>

</owl:ObjectProperty>

<!-- DATA PROPERTIES -->

<owl:DatatypeProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#hasMname"/>

<owl:DatatypeProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#hasName"/>

<owl:DatatypeProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#brand.name">

<rdfs:subPropertyOf rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/vehicledomain.owl#hasMname"/>

</owl:DatatypeProperty>

</rdf:RDF>

A.3 Datasources ontologies

Finally, in the follow up of this section we will report the three DSO used in

order to perform queries on the original relational datasources.

This ontology are the semantic ontologies extracted by the ROSEX module

once it is executed on the respective relational source.

111

Examples of ontologies

A.3.1 rosex1 semantic ontology

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:sem="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#"

xmlns:daml="http://www.daml.org/2001/03/daml+oil#">

<owl:Class rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#motorcycle">

<owl:disjointWith>

<owl:Class rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#auto"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#brand"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#brand">

<owl:disjointWith rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#auto"/>

</owl:Class>

<owl:ObjectProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#auto.manufacturer">

<rdfs:range rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#brand"/>

<rdfs:domain rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#auto"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#motorcycle.manufacturer">

<rdfs:range rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#brand"/>

<rdfs:domain rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#motorcycle"/>

</owl:ObjectProperty>

<owl:FunctionalProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#brand.name">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#brand"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#motorcycle.moto_plate">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#motorcycle"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#auto.auto_plate">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex1SemanticONTO.owl#auto"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

</owl:FunctionalProperty>

</rdf:RDF>

A.3.2 rosex2 semantic ontology

<?xml version="1.0"?>

<rdf:RDF

xmlns:sem="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:daml="http://www.daml.org/2001/03/daml+oil#">

<owl:Class rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#motorcycle">

<owl:disjointWith>

<owl:Class rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#cliente"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#auto">

<owl:disjointWith rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#cliente"/>

<owl:disjointWith rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#motorcycle"/>

</owl:Class>

<owl:ObjectProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#drives_moto">

<rdfs:range rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#motorcycle"/>

112

A.3 Datasources ontologies

<rdfs:domain rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#cliente"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#drives_auto">

<rdfs:range rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#auto"/>

<rdfs:domain rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#cliente"/>

</owl:ObjectProperty>

<owl:FunctionalProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#motorcycle.moto_plate">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#motorcycle"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#auto.auto_plate">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#auto"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#cliente.name">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex2SemanticONTO.owl#cliente"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

</owl:FunctionalProperty>

</rdf:RDF>

A.3.3 rosex4 semantic ontology

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:sem="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#"

xmlns:daml="http://www.daml.org/2001/03/daml+oil#">

<owl:Class rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#motorcycle">

<owl:disjointWith>

<owl:Class rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#auto"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#brand"/>

</owl:disjointWith>

</owl:Class>

<owl:Class rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#brand">

<owl:disjointWith rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#auto"/>

</owl:Class>

<owl:ObjectProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#auto.manufacturer">

<rdfs:range rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#brand"/>

<rdfs:domain rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#auto"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#motorcycle.manufacturer">

<rdfs:range rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#brand"/>

<rdfs:domain rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#motorcycle"/>

</owl:ObjectProperty>

<owl:FunctionalProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#brand.name">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#brand"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#motorcycle.moto_plate">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#motorcycle"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:about="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#auto.auto_plate">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="file:///Users/Lele/Documents/workspace/TIS-RewSparQL_progetto/ontologies/rosex4SemanticONTO.owl#auto"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

</owl:FunctionalProperty>

</rdf:RDF>

113

Examples of ontologies

114

Bibliography

[1] http://www.w3.org/DesignIssues/Notation3.

[2] http://www.w3.org/RDF/.

[3] http://www.w3.org/TR/rdf-sparql-query/.

[4] http://www.w3.org/XML/.

[5] OWL Web Ontology Language Guide.

[6] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-

Wesley, 1995.

[7] F. Baader, S. Brandt, and C. Lutz. Pushing the el envelope. pages 364 –

369, 2005.

[8] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-

Schneider. The description logic handbook: theory, implementation and

applications. Cambridge University Press, 2003.

[9] F. Baader and W. Nutt. Basic description logics. The Description Logic

Handbook: Theory, Implementation, and Applications, pages 43–95, 2003.

[10] C. Bizer and R. Cyganiak. D2r server: Publishing relational databases on

the semantic web. 2006.

[11] C. Bolchini, C. Curino, FA Schreiber, and L. Tanca. Context integration

for mobile data tailoring. Proceedings of the 7th International Conference

on Mobile Data Management (MDM’06)-Volume 00, 2006.

[12] Cristiana Bolchini, Carlo Curino, Marco Giorgetta, Alessandro Giusti,

Antonio Miele, Fabio A. Schreiber, and Letizia Tanca. Polidbms: Design

and prototype implementation of a dbms for portable devices. 2004.

BIBLIOGRAPHY

[13] Cristiana Bolchini, Carlo Curino, Fabio A. Schreiber, and Letizia Tanca.

Context integration for mobile data tailoring. In Proc. IEEE/ACM of Int.

Conf. on Mobile Data Management. IEEE, ACM, May 2006.

[14] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and

R. Rosati. Mastro-i: Efficient integration of relational data through dl

ontologies. 2007.

[15] Huajun Chen, Zhaohui Wu, Heng Wang, and Yuxin Mao. Rdf/rdfs-based

relational database integration. pages 94 – 94, 2006.

[16] Carlo Curino, Giorgio Orsi, and Letizia Tanca. X-som: A flexible ontology

mapper. In DEXA Workshops, pages 424 – 428, 2007.

[17] Carlo A. Curino, Letizia Tanca, and Carlo Zaniolo. Information systems

integration and evolution: Ontologies at rescue. In International Work-

shop on Semantic Technologies in System Maintenance (STSM), 2008.

[18] C. P. de Laborda and S. Conrad. Relational.owl: a data and schema

representation format based on owl. In Proc. of the 2nd Asia-Pacific

Conf. on conceptual modelling APCM’05, volume 43, pages 89–96, 2005.

[19] J. Dolby, A. Fokoue, A. Kalyanpur, L. Ma, E. Schonberg, K. Srinivas, and

X. Sun. Scalable grounded conjunctive query evaluation over large and

expressive knowledge bases. pages 403 – 418, 2008.

[20] F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in de-

scription logics. Principles of Knowledge Representation, pages 191–236,

1996.

[21] W. Grosso, H. Eriksson, R. Fergerson, J. Gennari, S. Tu, and M. Musen.

Knowledge modeling at the millennium the design and evolution of pro-

tege. 2000.

[22] P. Haase and Y. Wang. A decentralized infrastructure for query answering

over distributed ontologies. pages 1351 – 1356, 2007.

[23] A. Halevy, Z. Ivesa, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov.

The piazza peer-data management system. 2004.

116

BIBLIOGRAPHY

[24] Alon Y. Halevy. Theory of answering queries using views. IGMOD Record

(ACM Special Interest Group on Management of Data), 29(4):40 – 47,

2000.

[25] Alon Y. Halevy. Answering queries using views: A survey. The VLDB

Journal The International Journal on Very Large Data Bases, 10(4):270

– 294, 2001.

[26] I. Horrocks and P.F. Patel-Schneider. Reducing OWL entailment to de-

scription logic satisfiability. Proc. of the 2003 International Semantic Web

Conference (ISWC 2003), pages 17–29, 2003.

[27] G. Inglese. Ontology-based query processing in a dynamic data integration

system. Master’s thesis, Politecnico di Milano, 2007.

[28] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca-Grau, and

James Hendler. Swoop - a web ontology editing browser. Journal of Web

Semantics, 4(2):144 – 153, 2006.

[29] M. Krötzsch, S. Rudolph, and P. Hitzler. Elp: Tractable rules for owl 2.

pages 649 – 664, 2008.

[30] T. Lee. Arithmetical definability over finite structures. Mathematical

Logic Quarterly 49, 4:385 – 393, 2003.

[31] M. Lenzerini. Data integration: a theoretical perspective. Proceedings of

the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Princi-

ples of database systems, pages 233–246, 2002.

[32] A. Levy. The information manifold approach to data integration. 1998.

[33] C. Lutz, D. Toman, and F. Wolter. Conjunctive query answering in the

description logic el using a relational database system. pages 2070 – 2075,

2009.

[34] N. J. Nilsson M. R. Genesereth. Logical Foundations of Artificial Intelli-

gence. Morgan Kaufman Publishers, San Mateo, California, 1987.

[35] L. Macagnino. Estrazione di ontologie da basi di dati relzionali basata

sulla semantica. Master’s thesis, Politecnico di Milano, 2006.

117

BIBLIOGRAPHY

[36] A. D. Maedche. Ontology Learning for the Semantic Web. Kluwer Aca-

demic Publishers, Norwell, Massachusetts, 2003.

[37] A. Magni. Relazione progetto tecnologie per i sistemi informativi. 2006.

[38] B. Motik, U. Sattler, and R. Studer. Query answering for owl-dl with

rules. Intl Journal of Web Semantics 3, 1:41 – 60, 2005.

[39] G. Orsi. An ontology-based data integration system: Solving semantic

inconsistencies. Master’s thesis, Politecnico di Milano, 2006.

[40] A. Poggi. Structured and semi-structured data integration, 2006.

[41] Guus Schreiber and Mike Dean. Owl web ontology language reference.

w3c recommendation. 2004.

[42] T. Gruber. A Translation Approach to Portable Ontology Specifications.

International Journal of Human and Computer Studies, 1993.

[43] C. Curino G. Orsi E. Panigati L. Tanca. Accessing and documenting

relational databases through owl ontologies. FQAS 2009, pages 431 –

442, 2009.

[44] H. Wache, T. Voegele, T. Visser, H. Stuckenschmidt, H. Schuster, G. Neu-

mann, and S. Huebner. Ontology-based integration of information - a

survey of existing approaches. 2001.

[45] W. Xing, O. Corcho, C. Goble, and M. D. Dikaiakos. Active ontology: An

information integration approach for dynamic information sources. 2007.

118

