

POLITECNICO DI MILANO

Facoltà di Ingegneria Industriale

Corso di Laurea in
Ingegneria Energetica

Differential Evolution for the optimization of complex technological systems:
application to the oil&gas and nuclear industries.

Relatore: Prof. Enrico Zio

Co-relatore1: Ing. Francesco VERRE

Co-relatore2: Ing. Alberto CASAROTTI

Tesi di Laurea di:

Giorgio VIADANA Matr. 734550

Anno Accademico 2009 - 2010.

Index

1. Optimization...1
2. Introduction on Evolutionary Algorithms for opti mization5
3. Genetic Algorithms: the ancestors of Differential Evolution7
 3.1 Generalities...7
 3.2 Genetic Algorithm operations ..9
 3.3 Multi-objective optimization with Genetic Algorithms...................13
4. Differential Evolution ..17
 4.1 Basics ...17
 4.2 Variants and sophistications...24
 4.2.1 Mutation options...24
 4.2.2 Crossover options ...34
 4.2.3 Further sophistications ...36
 4.3 Constrained optimization ...41
 4.4 Control parameters’ setting ..44
 4.5 Adaptive and self-adaptive approaches for control parameters’

setting ...52
 4.5.1 Deterministic parameters’ control ..53
 4.5.2 Adaptive parameters’ control ...54
 4.5.3 Self-adaptive parameters’ control ..56
 4.6 Multi-objective optimization with Differential Evolution58
5. Case studies..63
 5.1 Comparison in single and multi-objective optimization on

benchmark problems ..63
 5.1.1 Single-objective optimization...64
 5.1.2 Multi-objective optimization..84
 5.1.3 Conclusions ..94
 5.2 A real case study. Giant oil field integrated production asset: a

highly constrained optimization for productivity.............................94
 5.2.1 Introduction ..95
 5.2.2 Problem’s generalities ..95
 5.2.3 The case study ..99
 5.2.4 Integrated optimization...102
 5.2.5 The algorithm’s strategies and properties...........................106
 5.2.6 Results ..111
 5.3 A real case study. A nuclear safety system: multi-objective

optimization of inspection intervals ...116
 5.3.1 The problem ...116
 5.3.2 The optimization schemes ..120

 5.3.3 Results ..123
 5.3.4 Conclusions ..133

References ..134

Appendix A Benchmark problems for single-objective optimization.......139

Appendix B Benchmark problems for multi-objective optimization........145

Listo of figures

3.1 The binary encoding of the variable for GA..8
3.2 The single-site crossover operation for GA...11
3.3 Example of population ranking for a maximization problem....................15
4.1 Noisy vector generation by mutation...18
4.2 Binomial crossover for DE ..20
4.3 DE current-to-best representation for a two-dimensional problem26
4.4 Sensitivities of the three DE parameters F, CR and NP on the
 Rastrigin’s function for the final minimum obtained................................30
4.5 Probabilities for the lenght of jumps for three scaling factor
 definitions: fixed, Gauss random variable and Cauchy random variable .32
4.6 Scheme of the exponential crossover for DE..35
4.7 Cosine mixture problem for a two dimensional problem..........................45
4.8 Population size effects on the three measures: fucntion
 evaluations, success rate and cputime...46
4.9 Scaling factor effects on the three measures: fucntion evaluations,
 success rate and cputime ...46
4.10 Crossover rate effects on the three measures: fucntion evaluations,
 success rate and cputime ...46
4.11 Mutation probabilities for binomial (dashed line) and exponential
 (solid line) crossover for three dimensionality..49
4.12 Contour plot for the k-parameter...52
4.13 Success rate for the minimum seeking on the Cosine Mixture Problem ..52
5.1 Sum of the function evaluations for three GA tested and for DE
 random over 23 SO problems ...72
5.2 Sum of the cputime used for three GA tested and for DE random
 over 23 SO problems...72
5.3 Sum of the success rates for three GA tested and for DE random
 over 23 SO problems...72
5.4 Sum of the lambda obtained for three GA tested and for DE random
 over 23 SO problems...73
5.5 Population size’s (NP) effect on the four measures for the
 Ackley’s problem (f6) for DE random with F=0.5 and CR=0.5...............73
5.6 Scaling factor’s (F) effect on the four measures for the Ackley’s
 problem (f6) for DE random with NP=30 and CR=0.574
5.7 Crossover rate’s (CR) effect on the four measures on the
 Ackley’s problem (f6) for DE random with NP=30 and F=0.5................74
5.8 Scaling factor’s (F) effect on the four measures for the Ackley’s
 problem (f6) for DE random with CR=0.1...75
5.9 Sum of the function evaluations for the eleven DE variants

 over 23 SO problems...81
5.10 Sum of the cputime for the eleven DE variants over 23 SO problems81
5.11 Sum of the success rates for the eleven DE variants over 23 SO
 problems..82
5.12 Sum of the lambda achieved for the eleven DE variants
 over 23 SO problems...82
5.13 An example of two Pareto front achieved...87
5.14 MO performed on ZTD1 benchmark problem with MODE,
 GA-toolbox and MOGA ..88
5.15 MO performed on ZTD1 benchmark problem with MODE,
 GA-toolbox and MOGA...89
5.16 DE random, NSDE and SACPDE Pareto fronts obtained in MO for
 ZTD1...90
5.17 DE random, NSDE and SACPDE Pareto fronts obtained in MO for
 ZTD1...91
5.18 DE random, NSDE and SACPDE Pareto fronts obtained in MO for
 ZTD1...91
5.19 The production chain for a hydrocarbon field...96
5.20 Simplified scheme for an oil process plant..99
5.21 The gathering system for the real case study ..100
5.22 The interactions between the three programs: MATLAB,
 GAP and HYSYS..104
5.23 FWHPs resultant from the three optimizations.......................................114
5.24 Oil production achieved by the three optimizations114
5.25 HPIS simplified scheme..117
5.26 Event tree for the initiating event small LOCA......................................119
5.27 Function evaluations and cpu-time used for U optimization
 by DE variants...125
5.28 Function evaluations and cpu-time used for C optimization by DE
 variants ..125
5.29 Ten solutions obtained with ten different settings on weighted-
 sum scheme applied to DE, compared with MOGA Pareto frontier128
5.30 The Pareto fronts obtained by MOGA, MODE-random and
 GA-toolbox in the inspection intervals optimization...............................130
5.31 The Pareto frontiers of Figure 9 in two dimension: U and C

for GA-toolbox, MOGA and MODE-random and for the three
MODE variants..131

Listo of tables

4.1 k-parameter and success rates for three scaling factor’s
 setting on the optimization of the Cosine Mixture Problem......................51
5.1 GA-toolbox and simple GA results on the 23 benchmark functions
 for SO...71
5.2 Function evaluations, cputime, success rate and lambda
 obtained on Ackley’s problem (f6) by different settings on DE random. .75
5.3 Summed measures for different CR settings used in the test
 on 23 problems for two variants: DE random and DE best.......................76
5.4 Results on 23 benchmark problems with different dimensionality and

complexities for DE random, DE best and De current to best variants77
5.5 Results on 23 benchmark problems with different dimensionalities
 and complexities for DERL, DERL 2 and NSDE variants78
5.6 Results on 23 benchmark problems with different dimensionality
 and complexities for TDE, DE adapt and SACMPDE variants.................79
5.7 Results on 23 benchmark problems with different dimensionality
 and complexities for SACPDE and SDE variants......................................80
5.8 Summed results of the measures of the optimization by SACPDE
 on 23 SO problems with two different settings ...83
5.9 Summed results of the measures of the optimization performed by
 DERL and a mixed variant SACPDE-NS on 23 SO problems...................84
5.10 Cputimes and number of non-dominated solutions found by the
 three algorithms in the three tests ZTD1, ZTD2 and ZTD3 at the
 end of the searchs...90
5.11 Direct comparison between the three variant tested of MODE for
 ZTD1..92
5.12 Number of final solutions in the last population and direct
 comparison between the two parameters’ dependant variants of
 MODE: DE random and NSDE...93
5.13 Direct comparison between DE random with a tuned setting (CR=0.3)
 and the SACPDE variant. The values reported are referred to ZTD193
5.14 Number of final solutions in the last population and direct
 comparison between the two parameters’ dependant variants of
 MODE with an opportune setting ..93
5.15 Typical specifications for a process plant released fluids97
5.16 GOR and sour gas content of the reservoir fluids....................................101
5.17 Variables’ boundaries ..104
5.18 The minimum FBHP allowable ...105
5.19 Constraints and specifications for the plant...106
5.20 Variables and results for the gathering system for the three

 optimization ...112
5.21 Variables, constraints and results in the HYSYS environment
 for the optimization 1,2,3...113
5.22 Optimization times for the three optimizations.......................................113
5.23 Minimal cut sets for the safety system reported in Figure 5.25...............118
5.24 MOGA results on single-objective optimization of inspection intervals .123
5.25 Mean unavailability results by DE optimization. Cost is the constraint..124
5.26 Cost results by DE optimization. Mean unavailability is the constraint..125
5.27 Function evaluations and cputimes for the five variants tested in
 weighted sum-scheme..127
5.28 Cputime and number of Pareto solutions present in the final archive for the

MOGA, GA-toolbox and the three MODE variants129
5.29 Direct comparison between the three algorithms and the three MODE

variants for inspection intervals optimization..132

Sommario

L’ottimizzazione di processi complessi, come quelli industriali, spesso risulta
essere un obiettivo difficilmente perseguibile senza specifiche competenze ed
esperienze acquisite sul campo. La difficoltà di tali sistemi deriva
principalmente dalla complessa forma che essi possono avere, dalle diverse
interazioni che legano proprietà, operatività e performance unite all’incertezza
che ne deriva. Il mondo dell’Oil&Gas e quello del Nucleare sono due tra le
branche dell’industria dove più si sente il bisogno di strumenti in grado di
ottimizzare, simulare e dare risposte a quesiti di difficile risoluzione tramite una
semplice analisi del sistema. Gli algoritmi evolutivi, come gli Algoritmi
Genetici o il Differential Evolution, possono dare notevoli miglioramenti nella
definizione di gestione di asset produttivi o di impianti nucleari.
Tale tesi espone in maniera completa le varie tecniche del Differential Evolution
sviluppate in questi anni, analizzando la bontà di tali tecniche, le situazioni in
cui possono essere utilizzati e la sensitività dei loro parametri. Inoltre, due casi
studio su problemi reali del mondo dell’industria sono presentati e risolti grazie
all’applicazione di questo potente strumento di ottimizzazione.

Abstract

The optimization of complex processes, such as industrial systems, often turns
out to be a goal difficult to pursue without specific expertise and experience in
the field. The difficulties of such systems are derived primarily from the
complex form they may have, the different interactions that bind ownership,
operation and performance combined with the uncertainty it brings. The Oil &
Gas world and the Nuclear industry are two of the branches where tools to
optimize, simulate and provide answers to questions difficult to resolve by a
simple analysis are necessary. Evolutionary algorithms, such as Genetic
Algorithms or Differential Evolution, can make significant improvements in the
definition of asset management or production of nuclear plants.
The thesis sets out comprehensively the various techniques of Differential
Evolution developed in recent years, analyzing the goodness of such techniques,
the situations in which they can be used and the sensitivity of their parameters.
In addition, two case studies on real problems of industry are presented and
resolved through the application of this powerful optimization tool.

Keywords: Evolutionary Algorithms, Genetic Algorithms, Differential
Evolution, Single-objective optimization, Multi-objective optimization

Chapter 1

Optimization

Optimization is the process of adjusting the variables or parameters of a
system or process to achieve the minimum or maximum of some given
objectives. Several ways could be taken to find the optimum; anyway its
definition is unique. For simplicity, from here on we will speak in terms of
minimization.

Say the system of interest has P properties

 { }; 1,2, ,kp k P∈ … (1.1)

and C constraints

 { }; 1,2, ,mh m C∈ … (1.2)

which are dependent on n real variables

 { }; 1,2, ,jx j n∈ … (1.3)

Usually the variables have a domain defined by the upper and lower bounds

 ,L U
j j jx x x ∈   (1.4)

and the whole of these variables form a solution inside the domain D

 ()1 2, , , : n

nx x x x x D= ∈ ⊆… ℝ (1.5)

They affect the pk properties and hm constraints, so

()
()

k k

m m

p f x

h f x

=

=
 (1.6)

Chapter 1

 2

The constraints can be equality constraint, like

 0mh = (1.7)

or inequality constraint, like

 0mh ≤ (1.8)

They define the feasible region DΩ ⊆ within finding the optimized set of

variables

 ()* * * *
1 2, , , nx x x x= … (1.9)

that satisfies the optimization problem.

When the optimization goal is to minimize a single property, the task is to find

 () ()* *
k kx f x f x x< ∀ ∈Ω (1.10)

where fk is referred to the property pk to minimize.

The problem must be reformulated in the case of multi-objective optimization:
the aim is to generate a list of non-dominated solutions, called Pareto list, within
which each solution cannot be said to be better of another one considering all
the objective functions. The solution of this kind of problems generates a so
called Pareto frontier which represents the whole of non-inferior (or equally
good) sets of variables that satisfy optimization and constraints.

In that case the optimization target is a vector of objective functions

 () () () ()()1 2, , , PF x f x f x f x= … (1.11)

The problem can be formulated defining these two operators, ≅/ and ≺ ,

related to the concept of non-dominance [1].

Assuming two candidate vector solutions, x and y, we say that they are
different

 , |j j j jx y if x x y y x y≅ ∃ ∈ ∈ ≠/ (1.12)

Optimization

 3

And that y is dominated by x

 , |j j j jx y if x x y y x y and x y∀ ∈ ∈ ≤ ≅/≺ (1.13)

An efficient, non-inferior/Pareto-optimal solution is a vector

 () ()* *|x if x F x F x∈Ω ∃ ∈Ω/ ≺ (1.14)

The difference between single and multi-objective optimization is relevant: in

the first case the finding of the global optimum for a single property leads to
obtain just one solution, one set of variables that satisfies the condition of
dominance in the domain D for the required objective. On the contrary, when
optimization means finding a vector of equally good solutions, the optimization
task becomes hard and some degree of complexity is introduced.

The multi-objective optimization problem requires the finding of many
configurations that satisfy the concept of arrays’ superiority. This situation is
quite frequent in real optimization, especially for complex industrial systems:
many conflicting targets to optimize, constraints to satisfy and the difficulty to
homogenize their different quantities, such as reliability, costs, pollution impacts
and health consequences, impose a multi-objective optimization.

The finding of only one solution does not satisfy the target of the problem,
since other non-dominated configurations exist. In practice, after the definition
of the Pareto frontier by multi-objective optimization, only one solution could
be applied to the real case. The final choice of the solution to realize is left to the
human decision, affected by other considerations (e.g. economic, politic, side
effects or environmental considerations not included into the optimization).
Nevertheless, the definition of the Pareto front must be as clear as possible, to
give to the user all the information available for the decision.

Chapter 1

 4

Chapter 2

Introduction on Evolutionary Algorithms for
optimization

Chapter 1 describes the optimization task for single-objective (SO) or multi-
objective (MO) optimization. An important aspect of the optimization is the
number of variable involved into the definition of the problem and the number
of constraints introduced.

If the number of these variables is small and the objective functions are
differentiable and linear, as for the constraints, a typical gradient method’s
optimization works well and fast. If the objective functions depend from several
parameters and non-linear constraints, or the objective functions are not
differentiable, a direct search approach is really useful. The direct search
methods belong to the class of optimization that do not compute derivatives.
Algorithms like Nelder and Mead simplex method [2], parallel direct search
algorithm (PDS) [3] or Simulated Annealing [4] are examples of powerful
methods.

Anyhow, classic optimization and direct search methods have the risk to be
trapped by local minima, since they find only one solution every search. Local
perturbation of the solutions is one interesting attempt made to escape from
local minima, but for problems with high complexity and high multimodality
this method fails (e.g.: functions 6, 15, 19, 22 and 23 of Appendix A).

Evolutionary Algorithms (EAs) are an attractive alternative to traditional
methods of optimization, especially for problems with high complexity, high
number of constraints or high dimensionality.

They are a class of stochastic algorithms for optimization inspired by the
Darwin’s theory of evolution: a population of potential solutions is launched in
the search and it is able to adapt to its surrounding environment; it evolves, ruled
by heuristics, in a way that those solutions best satisfying the optimization
objectives are more likely to contribute to the future generations of solutions
(the survival of fittest); the fitness definition is made by a fitness or objective
function that describes the features of any solution. EAs need only information
about the environment and about the fitness function itself, without any further
information about continuity or differentiability: in fact, they lay into the class
of direct search method, but the revolutionary idea is their global searching from
a population of solutions rather than one single solution.

Thanks to their population-based approach, they have high capabilities to
escape from inconvenient situations like local optima, since their simultaneous

Chapter 3

 6

probabilistic manipulation of several solutions; farther, this approach is
extremely suitable for MO, because of the need of several solutions as result.
Furthermore, their evolution concept gives to the process flexibility respect to
the different problem’s nature.

These features are extremely hopeful for the optimization, both in SO and MO
optimization.

To overcome this difficulty of a MO optimization, a non-dominated
comparison is usually adopted [1], but in these years several different strategies
for MO in EA are been proposed [5-11].

For EAs, each individual is represented by a specific combination of

independent variables, or, mathematically speaking, by a n-dimensional vector
(called also chromosome) contained inside the domain D that is a hypothetical
solution of the optimization problem:

 ()1 2, , , : n

i ii i nix x x x x D= ∈ ⊆… ℝ (2.1)

Each solution vector’s fitness needs to be evaluated and the corresponding

values are used to probabilistically rule the constitution of the successive
generation.

Since their population approach, we need to define the population S with NP
chromosomes of the G generation

 { }, ; 1, 2, ,i Gx i NP∈ … (2.2)

 { }1, 2, ,, ,G G NP GGS x x x= … (2.3)

The generation is the reference of the population S in a specific evolution time.

Obviously, the first generation has index G = 1.
Heuristic rules, different for each family of EAs, are applied to this set of

chromosome in order to find the global optimum. The population SG is altered
by these rules, its solutions are discarded if fittest ones are found and a new
population, SG+1, undergoes another time to the same procedure. In the long
runs, this repetitive process allows the attainment of the optimal solution.

Proved the reliability of EAs in many artificial or real cases [12-17], the
progresses obtained by these optimization techniques have inspired a number of
alternatives; the two most widespread evolutionary techniques are Genetic
Algorithms (GAs) and Differential Evolution (DE).

GA and DE generate offspring combining the chromosomes, generation by
generation, and select by different rules solutionss to carry on the next
generation.

Chapter 2

Chapter 3

Genetic Algorithms: the ancestors of
Differential Evolution

Genetic Algoritms (GAs) were firstly defined as optimization methods by
Holland [18]. GAs are a particular class of EAs, and their functioning is inspired
by the rules of the natural selection; furthermore, the procedures for
recombination and generation of solutions resemble the principles of genetic, so,
many terms in their definitions are borrowed by biology, coherently redefined to
fit the algorithm contest.

3.1 Generalities

As the other EAs, GAs are characterized by a global searching based on a

population approach.
The chromosome’s variables are usually represented in binary coding, but,

theoretically, any alphabet could be used [1].
To each variable is assigned a gene (see Figure 2.1). The length of each gene

depends on the accuracy of the encoded variable. The combination of the n-
genes is called chromosome, and its representation in any code is called
genotype; in binary coding, the individual is characterized by a unique string of
0s and 1s.

Processing the information contained in the binary string, the fitness of any
individual could be evaluated by the objective function: the genotype is
decodified into real numbers, the control factors, one for each gene, defining the
phenotype. The objective function (or fitness function) takes as input the
phenotype and it renders the fitness. This value is then used as comparison for
selection between individual in the population.

Defined a range [xj
L, xj

U] for any j th variable and assigned the number of bits
nbj for any gene, the relation between the control factor and its binary
representation β is:

2 j

U L
j jL

j j nb

x x
x x β

−
= + (3.1)

The values xj

L, xj
U and nbj are called phenotyping parameters of the gene.

Chapter 3

 8

Figure 3.1 represents this concept on a problem with three variables involved:
the number of genes is three, and, thanks to the coding/encoding procedure, the
control factors x1, x2 and x3 are obtained from the bit string. The resulting fitness
is assigned to the chromosome.

This process is repeated for the entire population.

Figure 3.1 The binary encoding of the variable for GA [19]

GAs use specific operations in order to evolve the population: the main

purposes of this evolution are the exploration of the search domain space and the
consequent attainment of the global optimum of the system.

The GA search is performed by constructing a sequence of populations of
chromosomes, the individuals of each population being the children of those of
the previous population and the parents of those of the successive population.
The initial population is generated by randomly sampling the bits of all the
strings. At each step, the new population is then obtained by manipulating the
strings of the old population in order to arrive at a new population hopefully
characterized by increased mean fitness. This sequence continues until a
termination criterion is reached. As for the natural selection, the string
manipulation consists in selecting and mating pairs of chromosomes in order to
groom chromosomes of the next population. This is done by repeatedly
performing on the strings the four fundamental operations of selection,
crossover, replacement and mutation, all based on random sampling: the
parents’ selection step determines the individuals which participate in the
reproduction phase; reproduction itself allows the exchange of already existing
genes whereas mutation introduces new genetic material; the substitution

Genetic Algorithms: the ancestors of Differential Evolution

 9

defines the individuals for the next population. This way of proceeding enables
to efficiently arrive at optimal or near-optimal solutions.

The classical GA steps are:

1. creation of a initial population of NP potential solutions to the problem
and evaluation of their fitnesses;

2. selection of pairs of individuals as parents for reproduction;
3. crossover of the parents, with generation of two children;
4. evaluation of the children fitnesses;
5. replacement in the population with some rule, so as to maintain NP

constant;
6. genetic mutation.
7. control for the stopping criteria, if some criterion is met stop, else go to

step 2

When the children’s fitnesses are evaluated, a replacement is made inside the
population between parents and children and the population is dynamically
updated. The new population is ranked by fitness criterion: in the long runs the
best individuals will have a greater probability to be selected for mating,
transmitting their genes to the children; these children have high chances to have
good fitnesses, since they inherit good properties by their parents.

An important feature of the population is its genetic diversity: if the population
is small, the scarcity of genetic information may provoke premature stagnation
of the evolution, since the low possibility to exchange genetic material.
However, if the population is too large, the overabundance of genetic material
can lead a clustering of the population around local optima, decreasing the
abilities of the reproduction process; then, the offspring fitness could be poor,
because of lacking of good properties of either of the parents. Furthermore, the
management of large population may be expensive in terms of computation
time, with a high percentage of useless genetic material’s processing. So, the
population size, usually a used defined parameter, should not be too large or too
small.

To avoid the premature stagnation or clustering, fresh genetic material is
inserted by genetic mutation inside the population.

3.2 Genetic Algorithm operations

As deduced from this brief description, GA uses four operations to allow

evolution: selection, crossover, replacement and mutation.
The first procedure performed by GA is the selection of parents for

reproduction: the choice of the parents is one of the most important aspects,
since it affects the goodness of the offspring.

Chapter 3

 10

Several variants exist, everyone with strengths and weaknesses: the choice
from these variants is often affected by the problem nature and by the other
choices made for the algorithm behaviour. They usually use fitness information
that influence the selection; this device derives from the concept of the natural
selection: individuals with high fitnesses has more probability to survive in the
environment and to transmit their good properties to the progeny. The same
approach is applied in GA.

The most used selection rules for mating are [19]:
� Standard Roulette Selection: the cumulative sum of the fitnesses of the

individuals in the population is computed and normalized to sum to unity.
A temporary population is generated by random sampling individuals, one
at a time with replacement, from this cumulative sum. Then, the parents
for mating are taken from this population. This procedure allows to the
fittest individual in the population to be selected for this temporary
population; by so doing, the mean fitness for the next population has good
probabilities to be larger.

� Hybrid Roulette Selection: one disadvantage of the previous selection
procedure is the fast lost on diversity for the next populations, since their
mean fitnesses are fairly dispersed around the mean. In this procedure,
after the normalization of the sum of the fitnesses, this cumulative term is
multiplied by the population size: the integer part of this product is the
number of individuals in the temporary population taken as they are from
the current population. The remainder is selected with the Standard
Roulette Selection. The permanence of good individuals is favoured, but
the diversity could decline.

� Random Selection and Mating: the two parents are randomly selected over
the entire population. This selection does not give any advantage to good
individuals respect to the worse, with the possibility to destroy any
achieved improvement.

� Fit-fit selection and Mating: after a ranking based on fitnesses, two parents
are selected consequently from their rank. On the average, this procedure
is highly conservative and the weakest individuals are soon eliminated.
This method could provoke premature stagnation to local optima if the
population size is not sufficiently high.

� Fit-weak Selection and Mating: the population is ranked as for the
previous procedure, but each individual is paired with its symmetrical in
the ranking. This practice improves the diversity but the improvements are
small during the evolution.

Crossover is the main operator for GA: its main purpose is to mix the

properties of different individuals, opportunely chosen.
During the generation of the offspring, the crossover concept is used to reduce

the search space to promising regions and at the same time to allow the

Genetic Algorithms: the ancestors of Differential Evolution

 11

proceeding of the genome (the input variables) of a specific parent combined
with the genome of a second parent using different strategies, like single or
multi-site crossing.

In each pair of individual, chosen for mating, the corresponding genes are
divided into two portions (one-site crossover) by a separation in the same
position in both genes. Then, the first portions of the genes are exchanged. Two
new chromosomes, the children, are produced, thanks to the combination of
genetic material.

Figure 3.2 shows a single-site crossover.
A variation of this procedure consists on performing crossover only with an

assigned probability pc: a random number is generated by uniform distribution,
R~U(0,1), and the crossover is performed if R<pc. otherwise, the two children
are copies of the parents.

Figure 3.2, The single-site crossover operation for GA [19]

After the children generation and evaluation of their fitnesses, the replacement

process mimics the survival of the fittest, allowing directly or indirectly the best
solutions to continue the evolution: from the four chromosomes (two parents
plus two children) two of them are selected to continue the evolution. The
simplest recipe consists in the children replace the parents. Anyway, in GA
many types of selection are proposed; this choice influences the entirely
evolution process in terms of convergence speed and robustness, often
connected with the diversity. The alternative procedures apply the replacement
to selecting the chromosomes for substitution from the entire population; the
most common are [19]:

Chapter 3

 12

� Fittest Individuals: the fittest two individuals from the group of four
involved in and generated by crossover (two parents and the consecutive
two children) replace the parents in the next generation; this procedure
should not be used when the parent selection is too greedy and it does not
select weak individuals (e.g. the Standard Roulette Selection).

� Weakest Individuals: the children just created replace the two weakest
individuals in the population: this procedure could provoke premature
stagnation, so it is recommended only if the population size is sufficiently
high.

� Random Replacement: the children replace two randomly selected
individual from the population; no fitness criterion is adopted in this
procedure, so the attainment of the best is a task leaved to an efficient
reproduction phase. This procedure works well in small population, and it
allows deep search on the domain space.

The choice of one of the previous two operators (crossover and replacement)
is affected by the other one: a correct interaction between these two is essential
for the success of the search.

At the end, to increase the outcome of a GA, also random perturbations,
mutations, can be introduced to avoid the possibility to be trapped in a local
minimum: a defined percentage of the population is randomly mutated in order
to insert new genetic material inside the population. The mutation is typically a
flipping between two random bits or a random change from actual value to the
opposite one. The mutation is performed on the basis of assigned mutation
probability for any single bit (usually this value is quite small, like 10-3).

When these operations are terminated, a control for stop is executed; the
stopping criteria could be based on mean fitness of the solutions in the
population, on best chromosome fitness, on weakest chromosome fitness or
when a maximum number of generations is reached.

The option for GA that deserves attention is its encoding: GA in its basic
version works manipulating a string containing 0s and 1s and altering or mixing
the binary coding of different individuals with the purpose to generate fittest
children. With the binary version of GA, the mating concept between parents is
easily deducible.

Anyway, GA works also with real-coded variables, loosing in mating concept.
The need of this encoding change arises from the quantization limitations of the
binary one: when the variables are quantized, the binary GA fits nicely, but
when the problem becomes continuous or the required precision becomes high,
the floating-point representation is more appropriate. Then the chromosome
does not have the semblances of a long string of 0s and 1s, as the chromosome,
but becomes a mathematic entity of a vector. Also the evolutionary operations
need some modification: the crossover concept is maintained, even in single or
multi-cutting version, but a blending method remedy [20] is introduced. This
method is simply a linear combination between two parents in order to enhance

Genetic Algorithms: the ancestors of Differential Evolution

 13

the perturbations into the population, since the classic crossover applied to a
vector is a merely interchanging of variables: when the dimensionality of the
problem is small, this reproduction operation alone fails completely. The
blending method is applied to each variable of the chromosome array:

()

()
1 1 2

2 1 2

, , ,

, , ,

1

1

c j p j p j

c j p j p j

x x x

x x x

α α

α α

= ⋅ + − ⋅

= − ⋅ + ⋅
 (3.2)

{ }1,2, ,j n∀ ∈ …

Where the subscript c1-2 stays for child and p1-2 stays for parent. The blending
parameter α is taken from the range [0,1]. The other features, like parents
selection, replacement and mutation are the same as for binary encoding.

3.3 Multi-objective optimization with Genetic Algorithms

When the optimization is SO optimization, the previous evolutionary operators
use a simple comparison between the fitnesses (only one property of the system
is the optimization target) of the individuals to select the parents or the
individuals to be discarded.

When tackling a multi-objective problem by GAs, the various approaches to
fitness definition may be distinguished into three categories [5] [18]:
• Aggregation methods combine the multiple objectives of the optimization

into a scalar fitness function that is used to evaluate the goodness of a
solution; an example is represented by the weighted-sum approach [1] [11],
in which the fitness of solution is computed by the following weighted sum
of the individual optimization objectives:

 () ()
1

P

weight k k
k

f x w f x
=

= ⋅∑ (3.3)

where the arbitrary constant weights wk, k=1,2,…,P satisfy the following
relation:

 []
1

0,1 1
P

k k
k

w and w
=

∈ =∑ (3.4)

The optimization of a single fitness function, combination of the objectives
has the advantage of producing a single compromise solution, requiring no
further selection by the decision maker. However, if the solution were found
a posteriori not acceptable as a good compromise of the decision maker
preferences, tuning of the aggregating weights may be required, followed by
new runs of the optimizer, until a suitable solution is found.

Chapter 3

 14

• Population-based non-Pareto approaches are able to evolve multiple non-
dominated solutions concurrently in a single simulation run: for instance,
sub-populations of the next generation are reproduced from the current
population separately for each of the objectives; then, the overall population
at each generation is formed by merging and shuffling the sub-populations.
The downside of this method is that it achieves a population of individuals
that perform well for each objective separately, with no consideration given
to trade-offs among them.

• In typical implementations of Pareto-based methods [1], the chromosomes
of a population are ranked according to the Pareto dominance criterion
applied to the fitnesses. With reference to the non-domination ranking,
firstly, all non-dominated individuals are identified and rank 1 is assigned to
them. Then, these solutions are virtually removed from the population and
the next set of non-dominated individuals are identified and assigned rank 2;
this process continues until every solution in the population has been ranked.
Every solution belonging to the same rank class is Pareto-equivalent to any
other of the same class and has the same probability of the others to be
selected as a parent for the mating. Figure 3.3 shows an example of ranking
for a set of solutions.
During the optimization search, an archive of solution vectors, each one
constituted by a non-dominated chromosome and by the corresponding
fitnesses, representing the dynamic Pareto optimality set can be recorded and
updated. This procedure also allows implementation of elitism in the genetic
algorithm: in this work, every individual in the archive (or a pre-established
number of individuals) is chosen once as a parent in each generation to
guarantee a better propagation of the genetic code of non-dominated
solutions and a more efficient evolution of the population towards Pareto
optimality.
At the end of the search procedure the result of the optimization is
constituted by the archive itself which hopefully gives the Pareto-optimal
set.
The performance of a Pareto-based MOGA depends largely on its ability to
maintain genetic diversity through the generations so as to arrive at a
population of individuals which uniformly represent the real non-dominated
solutions of the Pareto set, [11]. This can be achieved by resorting to niching
techniques such as sharing [11].

Genetic Algorithms: the ancestors of Differential Evolution

 15

Figure 3.2, Example of population ranking for a maximization problem.

Chapter 3

 16

Chapter 4

Differential Evolution

DE arose from the Price’s attempts to solve the Chebychev polynomial fitting

problem posed to him by Storn [21]. It works similarly as GA, since both are
EAs: it applies evolution operations on the individuals of the population in order
to perturb them by transmission of good properties and find the global optimum
of the system. One difference with respect to GA is that DE is specifically built
for optimization over continuous spaces and does so based on a floating-point
representation. The evolutionary operations are suited for such representation of
the chromosome, and constitute the main improvement of DE with respect to
GA, even in case of real-coded variables. The analogies between DE and real-
coded GA are several, but the shrewdnesses adopted by these new operations are
the strengths of the DE technique.

4.1 Basics

DE uses three heuristic operators as evolution strategies: they are called
mutation, crossover and selection.

The revolutionary idea of DE is the perturbation to the current population. GA
uses crossover between two parents for the generation of new solutions; these
children inherit portion of genetic material from the parents. This mixing of
properties is the main alteration in GA that perturbs the population. For DE,
thanks to its real-coding, the representation of each individual is made by a
vector instead a string of bits as in binary-encoding for GA. Then, the heuristics
thought for DE are chosen with a view of vector operators.

The alteration for reproduction in DE, called mutation, is obtained adding to
an individual the weighted difference between other two individuals randomly
selected from the population.

This scheme is the original one proposed in [21]: for each vector xi,G in the
population, called target vector, a noisy vector vi is generated randomly

choosing three mutually different vector indices { }1 2 3, , 1,2, ,r r r NP∈ …
 with

{ }1 2 3, ,i r r r∉
:

 ()
1 2 3, , , ,i G r G r G r Gv x F x x= + ⋅ − (4.1)

Chapter 4

 18

where the weighting (or scaling) factor F ∈(0,2] is a user-defined parameter,
maintained constant during the optimization.

Figure 4.1 reports graphically the vectorial operation: to the vector xr1 the
weighted difference between the vector xr2 and xr3 is added, to create the noisy
vector vi. The difference between the vectors xr2 and xr3 is scaled by the factor F.

This linear combination between three solutions of the population is one of the
revolutionary features of DE: using the weighted difference to perturb the
population, the entire generation process becomes self-organized, because the
step-length for the perturbation is mainly affected by the progress state of the
evolution.

Through the evolution, the search space contracts or expands if the direction
taken by the algorithm is correct or wrong, so the random step-length is self-
adapted in every dimension accordingly with the dependence of the variable.

Figure 4.3, Noisy vector generation by mutation [22]

After mutation, the noisy vector is not directly compared with the target

vector, but it is further modified by the crossover process, in which the noisy
and target vector are mixed with some rule to create the trial vector ui, which
inherits from them different pieces of chromosome. The crossover operator
contributes to maintain the diversity inside the potential perturbed population,
shuffling old and new information. This increases the probability to maintain
some good property from the target vector, and avoids drastic changes during

Differential Evolution

 19

generation of new solutions. The role of the crossover in DE has a secondary
relevance compared to GA.

Due to the chromosome vectorial representation, the crossover operator for
DE is applied to each element of the array: each variable of the noisy vector and
the target vector has the possibility to be part of the trial vector, entering the
final fight for the survival.

The most common crossover type adopted is the binomial approach: the trial
vector is built by a modified Bernoulli trial rule (4.2), gauged by the control
parameter CR∈(0,1], which influences the probability for a noisy vector’s
chromosomes to be selected for the mutation process.

(] ()
(] ()

,

,

,

0,1

0,1

ji G

ji G

ji G

v if U CR or j irand NP
u

x if U CR and j irand NP

 ≤ == 
> ≠

 (4.2)

{ }1, 2, ,j n∀ ∈ …

where U(0,1] denotes the uniform continuous random value ∈(0,1], whereas
irand(NP) is a uniform discrete random number from the set{1,2,…,NP}.

This ruling applied to the Bernoulli trials guarantees the inheriting of at least
one component from the noisy vector in the trial vector even if the crossover
rate CR is set to zero.

The binomial crossover operator acts on every “gene”, represented by a
variable, without any dependence between two neighbours, as for classic GA
crossover. This one could be compared with a multi-site GA crossover affects
by probability.

A relevant difference with GA is that in the DE crossover procedure a
chromosome of the current population and one just generated, the noisy vector,
are mixed, rather than two individuals of the population.

The resulting trial vector

 (), 1 , 2 , ,, , ,i G i G i G ni Gu u u u= … (4.3)

inherits portions of noisy vector and from the target vector, as regulated by the
parameter CR.

Figure 4.3 shows the principle underlying the binomial crossover process: the
condition of the Bernoulli trial is met only for the variables’ index 3, 4 and 6;
the trial vector is then inherits the variables 1, 2, 5 and 7 from the target vector
and the variables 3, 4 and 6 from the noisy one.

An alternative crossover scheme, the exponential crossover (see Section 4.2.2
of this chapter), was proposed by Storn and Price, [21]. This second crossover
type works as a double-site crossover, allowing the interchanging of consequent

Chapter 4

 20

genes. This procedure shows less success and a more difficult setting. For this
reason, binomial crossover is the most used crossover type.

Figure 4, Binomial crossover for DE [22]

The trial vector obtained then enters the selection process where it is compared

with the target vector xi,G that is partially its parent, according with the crossover
rule. During the selection process, the population SG is modified by substitution.

Referring to a SO minimization, if the trial vector’s fitness is less than the
target vector’s fitness, the latter will be a member of the next generation,
replacing the target vector in the set SG+1 and the trial vector is discarded:

() (), , ,

, 1

,

i G i G i Gk k

i G

i G

u if f u f x
x

x otherwise
+

 <= 


 (4.4)

{ }1,2, ,i NP∀ ∈ …

The selection criterion in DE is greedy and quite different from the classical

replacement criterion of GA: for sure the next generation will be better or at
least equal of the previous generation.

Differential Evolution

 21

The evolution for DE follows these steps:
1. creation of a initial population of NP potential solutions to the problem

and evaluation of their fitnesses;
2. for each solution of the population (target vector) selection of three

chromosomes for reproduction;
3. for each target vector, creation of a noisy vector using the mutation

process;
4. creation of a trial vector mixing target and noisy vector;
5. comparison between each target vector and its related trial and eventual

replacement;
6. control for the stopping criteria: if some criterion is met, then stop, else

go to step 2.

The stopping criteria adoptable are the same as for GA (see Chapter 3).
This resulting EA, DE, shows robustness, higher convergence speed than GA

and even better accuracy thanks to its greedy and well-chosen operators.
Like in GA the three operators must be balanced to allow the evolution and at

the same time the exploration in the search space, but the convergence for DE is
usually higher because the setting is less critical, thanks to the self-organization
of the step-length, granting robustness to the strategy.

The key parameters of control for the basic DE presented are:
• NP population size
• F scaling factor
• CR crossover rate

Even if DE is more robust and suitable than GA, it has high possibility for

improvement, especially for the convergence rate: since its basic structure
enables sophistications, many strategies, concerning its operators, had been
proposed with considerable successes, opening at the same time, in a parallel
way, the problem of the control parameters setting that, as we shall see, it can be
solved by a time-consuming and problem-dependant tuning or by adaptive/self-
adaptive approach.

The initial population of the evolution process usually is composed by values
distributed with random uniformity between the pre-specified lower xj

L and
upper xj

U initial parameter bounds if they are specified, defining the domain D;
so each variable of each individual is initialized as follow:

 () (), 0,1L U L
ji G j j jx x U x x= + ⋅ − (4.5)

{ } { }1,2, , , 1,2, , , 1j n i NP G∀ ∈ ∀ ∈ =… …

Chapter 4

 22

This practice is beneficial because the exploration in the early phase, when the
algorithm doesn’t have particular preferential direction, is not unbalanced
toward some region. Moreover, it is useful in the case the feasible region is
coincident with the domain DΩ = . In the case some solution is generated
outside D, some repair rule is utilized (Section 4.3).

If the domain is not pre-defined, it is necessary define an initial region from
which the algorithm can start.

Another possibility is starting from a previous solution, defining a range or
giving the variance and mean around which generate initial individual if a Gauss
distribution is desired. Of course, this initialization is used only in a forced
optimization around a particular region or after a previous estimation.

An example of DE implementation is reported for Matlab.

% Evolutionary Algorithm : Differential Evolutio n (DE)
% Type of optimization: single-objective minimiz ation
%
%-- ------------------
% parameters
%-- ------------------
NP=30; % population number
CR=0.5; % crossover frequency
F=0.5; % scaling factor
MAXGEN=500; % maximum number of generation
eps_alg=1e-4; % difference limit between fmax and f min
%-- ------------------

 function options
%-- ------------------
low=-5.12; % lower and upper bounds arrays
up=5.12;
dim=10; % dimensionality
%-- ------------------
% initializations
%-- ------------------
k=1; % generation index
matrix=zeros(NP,dim); % matrix for the individuals
trial=zeros(NP,dim); % trial vector
fitness=zeros(NP,1); % fitness function
fitness_trial=zeros(NP,1); % fitness of the trial v ectors

% initial population uniformly distributed inside t he domain
matrix=rand(NP,dim)*(up-low)+low;
%-- ------------------
% first evaluation
%-- ------------------
for i=1:NP

fitness(i)=objectivefunction(matrix(i,:));
 end

f_max=max(fitness);
f_min=min(fitness);
delta=abs(f_max-f_min);

Differential Evolution

 23

%-- ------------------
% code
%-- ------------------
while (k<MAXGEN)&&(delta>=eps_alg)

 % ---------------------- %
 % mutation
 % &
 % crossovering
 % ---------------------- %
 for i=1:NP
 r1=i;

 r2=i;
 r3=i;
 while (r1==i)

r1=randi(NP);
 end
 while (r2==i)||(r2==r1)

 r2=randi(NP);
 end
 while (r3==i)||(r3==r1)||(r3==r2)

 r3=randi(NP);
 end

 p_add=randi(dim);

 for n=1:dim
 p=rand;
 if (p<=CR)||(p_add==n)

 trial(n)=matrix(r1,n)+F*(matrix(r2,n)-m atrix(r3,n));
 else

 trial(n)=matrix(i,n);
 end
 end
 end
 % ---------------------- %
 % evaluation
 % ---------------------- %

 for i=1:NP
 fitness_trial(i)=objectivefunction(trial(i,:));
 end

 % ---------------------- %
 % selection
 % ---------------------- %
 for i=1:NP

 if (fitness_trial(i)<fitness(i)) matrix(i,:)=tri al(i,:);
 fitness(i)=fitness_trial(i);
 end
 end

 % ---------------------- %
 % best individual
 % ---------------------- %
 f_max=max(fitness);
 [f_min, i_best]=min(fitness);
 delta=abs(f_max-f_min);

Chapter 4

 24

 k=k+1;
end

bestindividual=matrix(i_best,:);
bestfitness=fmin;

4.2 Variants and sophistications

In the previous section we discussed about the main idea under DE, based on

the easy rules of mutation, crossover and selection. How they were
implemented gives as result greater robustness and convergence speed in with
respect to GA, but several modifications, sophistications and shrewdnesses
could be introduced to this basic DE scheme, since it leaves substantial rooms
of improvements in the operators, especially in mutation and crossover
procedures.

The first modified strategies were proposed by the creators Storn & Price [22]:

they introduced ten different variants combining different operator’s types,
allowing the essential flexibility to the promising algorithm.

The general notation they proposed is DE/x/y/z, where
• x indicates the methods for selecting parents that will be used in the

mutation process
• y indicates the number of vector differences used to perturb the base

chromosome during the mutation process
• z indicates the crossover mechanism

The most widely used strategy is the one previously described, called
DE/rand/1/bin, which uses random selection, one vector difference and binomial
crossover.

Their attempt was the first in a series of modifications and improvements that
lost the initial notation, treated in this section by operator.

4.2.1 Mutation options

Starting from the Storn & Price variants, in this section are described all the
known mutation options presented in literature, with their strengths and
weaknesses.

Storn & Price variants

The number of perturbations, pointed by the number of weighted differences
y, is usually one or two, but in fact many more linear combinations of weighted
differences could be introduced. The selection of 2·y vectors inside the
population is generally made by a random sampling; the limitation is that the

Differential Evolution

 25

vectors must be mutually different as well as for the base vector. This condition
implies the minimum number for the population: it must be greater or equal to
2·y+1 (anyway NP is usually greater than this value). Each vector difference is
scaled by a Fy scaling factor, but in the classical formulation they are fixed and
at the same value. Increasing the amount of vector differences is not a pursued
practice because the random selection of the indices nullifies the expected
amount of perturbation induced. An example of 2 vector differences
perturbation with the same scaling factor is:

 ()
1 2 3 4, , , , , ,i G basis G r G r G r G r Gv x F x x x x= + ⋅ − + − (4.6)

The basis vector depends on the selecting method used.

There are three selecting methods x. The following formulas show the case with
one vector difference.

1. rand, proposed in the original DE version [21], plans to choose
mutually different vectors from the current population, each with a
uniform probability 1/NP (often the chosen indices must be different
from the target vector index, in order to keep the crossover role,
assigning probability 1/(NP-1) to each one), according with the number
vector differences y: the number of vector’s indices must be 2·y+1.
The first one is used as a base for the noisy vector, and the subsequent
vectors for the differences. This technique avoids premature stagnation
because of the random selection to the detriment of the convergence
speed in some case.

 ()
1 2 3, , , ,i G r G r G r Gv x F x x= + ⋅ − (4.7)

2. best uses as base vector in the mutation process the best solution in the

current population. The other vectors for the differences are randomly
chosen. This technique could enhance the speed of convergence but at
the same time could destroy the necessary diversity to avoid
stagnation; in the case the number of local optima is high, the
algorithm fails with high probability because all the noisy vectors are
direct toward a specific optimum. Only a lucky scaling factor setting,
depending by the objective function’s nature, could enable success.
Otherwise for a non-critical and low-constrained objective function
this method is interesting and appropriate.

 ()
1 2, , , ,i G best G r G r Gv x F x x= + ⋅ − (4.8)

Chapter 4

 26

3. current-to-best uses as base vector the target vector, for this reason the
selecting method contains the wording “current”. The perturbation is
carefully driven toward the best of the actual generation and not
around the best solution, since the basis vector is the target. Still a
perturbation performed by a random vector difference exists: handling
the two scaling factors involved the approach results less critical than
the best configuration.

 () ()
1 2, , , , , ,1 2i G i G best G i G r G r Gv x F x x F x x= + ⋅ − + ⋅ − (4.9)

Figure 4.3 shows perfectly the non-critical approach: reducing F1, the noisy

vector could be generated not so close to the best of the generation. If F1=1, the
approach degenerates into the best configuration; otherwise, if F1=0, the best
solution is not taken into account and the basis vector is the current vector. This
last situation is not advisable, because the crossover process becomes quite
useless if not coupled with a high F2: the crossover mixes the target vector with
the noisy vector; then, if the basis for the latter is the target vector and the
amount of perturbation doesn’t allow high exploration, far from the current
population, the convergence speed could be very slow.

Figure 4.5, DE current-to-best representation for a two-dimensional problem [22]

MDE scheme

This method – Modified Differential Evolution [23], – works on the selection
process of the vectors for the mutation. Using as basis vector a solution with
good fitness, the child will inherit with high probability some of its good

Differential Evolution

 27

properties. The modified version MDE is a kind of generalization for the rand
and best method proposed by Storn and Price.

Introducing a selection pressure control variable, PR, the user can control the
selecting process for the basis vector in accordance with the ranking of the
current population made by fitness. Performing a series of independent
Bernoulli trials that start from the top of the ranking, where there are the fittest
solutions, the basis vector is selected according to the pressure control variable:
if U(0,1]<PR the current ranked individual is selected, otherwise the Bernoulli
trial is repeated for the next solution in the list. The higher PR, the higher in the
ranking is the basis vector.

The rand and best variants become a special case of MDE, respectively if
PR<1/NP and PR=1. Using this method, the user can choose between the two
classic variants only changing the pressure control value. High PR values
facilitate the convergence speed, creating more fit mutated individuals, while
low values, coupled with the number of weighted differences, facilitate the
population diversity.

The other properties of the algorithm, like the number of weighted differences
y and the crossover type z must be decided as usual.

This approach gives more flexibility to the setting of DE, but, like the others
variants, it needs firstly the adjustment of PR and subsequently of CR and NP to
achieve faster convergence speed. Moreover this tuning is, like often appear in
EAs, dependant by the objective function to optimize.

DERL scheme

This technique – Differential Evolution with Random Localization [13] – is
inspired by the random selection of the vectors for the mutation process, but,
despite the classical formulation, it uses as basis vector the fittest solution
(called tournament best solution) between the chromosomes selected for
mutation. If the number of weighted difference chosen is for example one, the
selection process chooses three mutually different vectors (different also from
the target vector) and from them it selects the fittest one xtb,G as basis vector.

 ()
1 2, , , ,i G tb G d G d Giv x F x x= + ⋅ − (4.10)

The other two vectors, xd1,G and xd2,G, are chosen randomly and

[] []1, 0.4 0.4,1iF ∈ − − ∪ . The resultant noisy vector is then passed to the

crossover operator.
Using the scaling factor, even negative, with a uniform selection increases the

exploration and the robustness of the algorithm but not significantly the
convergence speed; moreover the choice of a working range instead a fixed
value makes the setting less critical. On the other hand the employment of the
tournament best as basis vector makes the algorithm faster with little

Chapter 4

 28

improvement in the robustness. These two effects are studied [13] before
separately to proof their goodness. The resultant combination has remarkable
improvement.

This random localization feature gradually transforms itself like DE,
enhancing the convergence speed after a clustering around the global optimum:
at the beginning the noisy vector is not necessarily local to the tournament best,
because the weighted differences are large; only in the later stages, when the
differences become smaller, the speed-up is significant.

Another version, greedier than the previous one, uses Fi uniformly distributed
only in a positive range and the selection of the two vectors for the difference is
made with the same fittest criterion: the better of the remaining two vectors will
be the first chosen for the difference. In that way also the difference is directed
toward a better region. This scheme could create some stagnation if a soon
clustering appears: to avoid it, the exploration must be enough widespread,
handling the population number NP or the scaling factor’s interval.

These techniques seem good and non-critical: in the early stages they work
like a classic DE with the necessary diversity but in the late they intensify the
search.

TDE scheme
This scheme – Trigonometric Differential Evolution [24] – modifies the
mutation operator in its formulation: the classic method perturbs a basis vector
with a weighted difference; this one defines a search space delimited by a
hypergeometric triangle formed with three vectors that represent the vertices.
Using objective function information, it adjusts the perturbation toward the
fittest one. The other processes in the algorithm, crossover and selection, are
performed as usual.

Choosing randomly three mutually different solutions from the current
population { }1 2 3, , 1,2, ,r r r NP∈ … , different from the target vector as in the

classic formulation, it uses as basis vector the centre point of the hypergeometric
triangle formed instead only one of them. The amount of perturbation is driven
by fitness information of each vector: precisely, there are three weighted
differences scaled with the difference of the goodness of the vectors involved
into the perturbation. The following formulation explains the process for a
minimization task:

()

()
,

3

,
1

k

k

r G

k

r G
k

f x
p

f x
=

=
∑

 (4.11)

Differential Evolution

 29

where the best solutions has the lowest index pk.

() () ()
() () () ()

1 2 3

1 2

2 3 3 1

, , ,

, , ,2 1

, , , ,3 2 1 3

3
r G r G r G

i G r G r G

r G r G r G r G

x x x
v p p x x

p p x x p p x x

+ +
= + − ⋅ − +

+ − ⋅ − + − ⋅ −
 (4.12)

that could be re-write in a general form as follows:

 ()
3 3

,
, ,

1 13
k

k

r G
i G r G w k

k w

x
v x p p

= =

  = + ⋅ −  
  

∑ ∑ (4.13)

If the scope of the optimization is the maximization, the formulation needs

only the sign inversion for the scaling factors.
Thanks to the weighted terms, the noisy vector is direct toward the fittest

vertex of the triangle with a greedy perturbation grade: the higher the difference
in the fitnesses, the larger the amount of perturbation in a good direction. This
greediness could be seen as a problem for the population diversity, since this
mutation is a kind of local searching technique; for this reason the TDE operator
is used only with a probability according with a new control parameter Mt.
Certainly this modification helps the accuracy of the algorithm significantly, but
if it is used without care it could destroy the robustness of the evolution process
giving a premature stagnation. In fact, when Mt=1, the stagnation is almost
unavoidable: the operator can explore only inside a predefined region, whose
extension depends on the population diversity. The recommended value for this
control parameter is around 0.05, rather low, but as other strategies, the tuning
depends on the problem’s nature. It seems that TDE introduces another control
parameter Mt besides the three parameters scheduled in the original DE, F, CR
and NP, but a look into the sensitivities between each other shows a remarkable
behaviour of TDE, which appears with a considerably lower sensitivity to the
variations in the control parameters. The Figure 4.4 shows the sensitivity of the
two algorithms with the Rastrigin’s function (see Appendix A, f22).

For this reason, after the trigonometric control parameter tuning, the algorithm
setting becomes easier. The application of the trigonometric operator could be
probably appropriate only in the later stages, since in the early exploration its
contribution is rather low; after a clustering around the better regions of the
feasible area, this operator increases the convergence speed significantly.

Chapter 4

 30

Figure 6.4, Sensitivities of the three DE parameters F, CR and NP on the Rastrigin’s function
for the final minimum obtained [24].

DEPCX scheme

This technique – Differential Evolution with Parent Centric crossover (X) [25-
26-27] – uses a similar concept of TDE: it enhances the chance of exploring the
neighbourhood more efficiently by a different noisy vector formulation;
nevertheless, it does not involve fitness’s information. Although the name goes
back over the crossover concept, this approach works only on the mutation
process; the misunderstanding arises from the first formulation of this operator,
used in a particular version of GA. DEPCX differs from DE only in the mutation
process. Crossover and selection are performed as usual.

The operator, unlike TDE, uses as basis vector one of the µ mutually different
vectors { }1, , 1,2, ,r r NPµ ∈… … selected for the mutation

process, { }, , 1,2, ,p Gx p µ∈ … .

The mean vector is computed as

 ,
1

1
kr G

k

g x
µ

µ =
= ∑ (4.14)

and the direction vector as

 , ,p G p Gd x g= − (4.15)

From the remaining µ-1 chromosomes, the perpendicular distances Di to the

line of the direction vector are computed and their averageD is obtained.
Then the noisy vector is found as

 , , ,
1,

i G p G p G k
k k p

v x w d w De
µ

ς η
= ≠

= + + ∑ (4.16)

where ek are the orthonormal bases perpendicular to dp,G, wς= N(0,σς

2) and
wη=N(0,ση

2). The two variances are usually taken as 0.01.

Differential Evolution

 31

Like TDE, DEPCX is a greedy operator, but with a less forced approach. For
this reason it could be applied every mutation for each target vector; the
stochastic application of DEPCX, pursued also in TDE with another control
parameter, could be implemented with similar probability (0.01) but with
comparable results. Like classic DE, this technique is self-organized, because
the amount of perturbation is function of the population diversity that affects the
direction vector and the average perpendicular distance, but in the later stages it
works as a local-search operator. Furthermore, when the parents selected for the
mutation are located far from each other, the noisy vectors generated are well
sparsely located, so at the beginning DEPCX works, unlike TDE, maintaining
the necessary diversity to explore the entire domain efficiently.

In terms of solution accuracy, this algorithm is not better than other DE
strategies, however, it shows faster convergence since it takes less function
evaluations. A debatable problem is the necessary computational time,
comparable if not greater than DE and TDE, because of the complexity of the
DEPCX mutation process. To avoid this situation the stochastic application is
preferable, maintaining at the same time the robustness and the convergence.

NSDE scheme

This approach – Neighbourhood Search for Differential Evolution [28] – is
inspired by the exploration methods used in the Evolutionary Programming
(EP). As seen before with DERL, TDE and DEPCX, the ability of an
evolutionary algorithm to explore the neighbourhood space is a remarkable
advantage. In this approach, the mutation operator is modified to allow a similar
exploration performed in EP, where a kind of self-adapting perturbation is used.
In DE this role is played by the vector differences employed in the mutation
process that automatically adapt themselves.

An example of perturbation in EP is:

 , ,i G i G i

v x η ψ= + ⋅ (4.16)

where ψ is the specific EP-operator and ηi is the auto-adaptive perturbation that
follows some defined rule.
ψ could be:

• N(0,1) for classical evolutionary programming CEP,
where () () ()()10,1 0,1 , , 0,1nN N N= … , that is an array of Gauss

random variable with mean = 0 and variance = 1.
• δ(0,1) for fast evolutionary programming FEP,

where () () ()()10,1 0,1 , , 0,1nδ δ δ= … , that is an array of Cauchy

random variables with location = 0 and scale = 1.

Chapter 4

 32

• L(c) for Lévy evolutionary programming LEP, where

() () ()()1 , , nL c L c L c= … , that is an array of Lévy random variables

with scale 0 < c < 2.

These are the most used operators for EP in which the neighbourhood concept
dominates the perturbation.

In classical DE the operator is the fixed F value.
In the NSDE approach, after a probability evaluation of a jump-length

expected [28], dependant on the operator, a flexible setting of operators is
performed.

Figure 4.7, Probabilities for the lenght of jumps for three scaling factor definitions: fixed, Gauss
random variable and Cauchy random variable. [28]

Since using a fixed scaling factor reduces the probability that the step length is
right for the optimization problem without any tuning, to increase the ability of
the algorithm two operators, N and δ, are applied with some deterministic rule;
the Gaussian operator is more likely to produce small jumps, beneficial for the
local search near the global optimum, whereas the Cauchy operator is more
expandable and it has greater probability to produce long jumps, useful for the
early exploring phase and to escape from local optima.

The following rule is proposed:

() () (]
() ()

2 3

1

2 3

,

0.5,0.25 0,1

0,1

r r

i G r

r r

x x N if U NS
v x

x x otherwiseδ

 − ⋅ <= + 
− ⋅

 (4.17)

Differential Evolution

 33

Where as usual { }1 2 3, , 1,2, ,r r r NP∈ … are chosen randomly with { }1 2 3, ,i r r r∉ ,

NS=0.5 and the Gaussian operator is adjusted as the common range for F.
Of course the weights of the Gaussian and Cauchy operators in the perturbation
could be changed modifying the NS value, changing the behaviour of the
algorithm; in fact this value becomes another parameter to set, like the
parameters for the operators.

The tests performed in [28] show the goodness of this approach versus the
classical DE and FEP, with some doubt for multimodal functions with smaller
number of local optima: in such cases DE outperforms NSDE, demonstrating
the unhelpfulness of the NS operator, which increases only the computational
time without any advantage. In all the other cases NSDE results better than
classic DE, more powerful when searching in an environment without any
previous knowledge.

DELN scheme

This technique – Differential Evolution with Local Neighbourhood [29] – is a
variant for the mutation process that is inspired by the Particle Swarm
Optimization, another evolutionary algorithm that simulates the social behaviour
of the imitation of the fittest. The connection between these two types of
optimization algorithms is the simplicity of the perturbation introduced in the
population. Like NSDE, it increases the DE neighbourhood searching properties
combining them with global exploration.

This approach mixes local and global search technique as follows:

 (), ,,

1i G i GG Gi G
v w g w l= ⋅ + − ⋅ (4.18)

where []0,1Gw ∈ is a scaling factor applied to the global and local mutated

vectors.
These two mutated vectors are generated using the current-to-best approach

presented in the Storn and Price variants, with the following shrewdness for the
local one: after the definition of a nearness variable for each target
vector { }1,2, ,ik NP∈ … , a new sub-set could be defined from the main

population for each target vector:

{ } { }1 1 1 1 1, , 1,2, ,
i i iNP NP NP

i k i k i kLiS x x x i NP− − + − + + − += ∀… … (4.19)

From the sub-set associated with the target vector, two vectors are selected

randomly for the vector difference and the fittest one in the set is chosen as the
best vector for the current-to-best approach.

Chapter 4

 34

 () ()
1 2, , , , ,1 2, i G best G i G r G r Gi G

g x F x x F x x= + ⋅ − + ⋅ − (4.20)

 () ()
3 4, , , , , ,3 4i G i G nbest G i G r G r Gl x F x x F x x= + ⋅ − + ⋅ − (4.21)

where best indicates the best vector in the entire population,

{ }1 2, 1,2, ,r r NP∈ … , nbest is the neighbourhood best solution inside the set SLi

and r3, r4 are chosen randomly from the sub-set interval. The fourth scaling
factors are usually mutually different.

The weight factor varies linearly (increasing) with time, following eq. (4.22):

 () { }min max min max
max

1
1,2, ,

1G

G
w w w w G G

G

 −= + − ⋅ ∀ ∈ − 
… (4.22)

After a necessary definition of the minimum and maximum value (advised
values are respectively 0.4 and 0.8) to achieve the balance between local and
global exploration, this time-varying approach gives emphasis at the local search
in the early stages and only with time it moves toward the global search. This
neighbourhood concept does not lie in a space conceptualization but only in a
population point view, since a neighbour is given only by the solution’s index:
for this reason, the “local” wording assumes a different meaning, with less
implication about the searching area: so, emphasizing at the beginning the local
search doesn’t mean reverse the exploration scheme in the domain.

This DELN scheme should improve the performance compared with classic
DE, but it seems just a sophistication in the choice of the vectors.

4.2.2 Crossover options

The most common crossover operator for DE is the binomial crossover,
explained in Section 4.1. In this section the other crossover option proposed in
literature is presented.

Exponential crossover

This crossover scheme was the first proposed in [21] by Storn and Price; it
takes idea form the GA crossover process in which the mixing of the genes is
made defining one or multiple cutting points. As explained before, the crossover
role is to maintain diversity inside the population, mixing the properties of the
created noisy vector with the target vector. This process mixes the chromosomes
cutting in the target vector in two points, inserting the noisy vector’s genome,
like the two-point crossover for GA.

The trial vector is composed by the following rule:

Differential Evolution

 35

,

,

,

1 1, 1, , 2 1ji G n n n
ji G

ji G

v for j a a a L
u

x otherwise

 = − + + + − += 


…
 (4.23)

{ }1,2, ,j n∀ ∈ …

where []1,a n∈ and []1,L n∈ are randomly chosen integers and

n
 is the n-

modulo; it permits the circularity of the process. The first index a defines the
first cut point, whereas L defines the length of the replacement. In this process,
the probability that L variables in the trial vector come from the noisy vector is

 () hP L h CR= = (4.24)

This is not a probability distribution but just a relationship where the operator

can modifies the result changing CR or h, according with the power law: the
probability of mutating h components increases with the parameter CR and
decreases with the value of h. Anyway, to have a good effect with the
exponential crossover, the CR value must be high, 0.8÷0.9.

In the case CR = 1 then all the parameters of the trial vector come from the
noisy vector.

The weakness of this crossover method is the circularity of this approach, in
fact, the exponential crossover modifies only consecutive genes. Figure 4.6
shows the process.

Figure 4.8, Scheme of the exponential crossover for DE [21]

Chapter 4

 36

4.2.3 Further sophistications

This section is dedicate to the different processes planning adopted in the
algorithm’s implementation; since the modifications on the operators’ nature is
not the only way to increase the ability of DE to explore the search space and to
increase the convergence speed, this further modifications in the algorithm
behaviour play an important role in the predominance of DE in comparison with
other optimization algorithms.

DELB scheme

This scheme – Differential Evolution with random Localization around the
Best vector [13] – adopts the further exploration by localization after the
definition of the trial vector. Respect to DERL, sometimes it is preferable
adopting the localization concept after the calculation of the trial point, to
explore the region between it and the best current solution. This scheme is not a
modification of the mutation process, rather a subsequent mutation around the
trial vector and the best solution. It starts like the classic DE [21]: defined the
trial vector ui,G, if its fitness is better than the target vector’s fitness but worse
than the best current vector’s fitness, two new points are found with some
probability (U(0,1]<w), using the following general rules for reflection and
contraction:

()

()
, , ,

, , ,

1

1

ji G j ji G j jbest G

ji G j jbest G j ji G

r u x

c x u

α α

α α

= + − ⋅

= + − ⋅
 (4.25)

{ }1,2, ,j n∀ ∈ …

where ()1,1j Uα = − , one for each jth variable.

A first attempt is made by the reflected vector generated: if its fitness is worse
than the original trial’s one, a second attempt is made with the contracted vector;
if the second attempt fails again, the trial vector replace the target vector instead
one of the previous twos. The user-defined w parameter controls the frequency
of the local exploration around the trial and the best vectors. This scheme
increases the number of function computation per generation, but evolutionary
speaking it reduces the number of generation necessary to achieve the global
optimum; furthermore, this scheme increases the robustness in view of the
correct choosing of the control number w: the recommended value is 0.1.

In this practice the convergence speed and the robustness are increased in
comparison with a classic DE, but the introduction of another variable to be
adjusted attentively makes this technique really sensitive to the control

Differential Evolution

 37

parameters. Without a correct tuning, the convergence and the robustness could
be call into question.

DEPC scheme

This approach – Differential Evolution with Preferential Crossover – is
proposed in [26] and it works managing the crossover operator and the selection
process. It uses two populations, both driven toward the global optima. The idea
of a second population comes from the strict rule of the selection process: in DE
the trial vector is discarded if the target vector shows better fitness, but this does
not mean that the trial vector is completely inefficient: it could be better than
other individuals inside the population and it may even lie in a promising region
of the search space.

In DEPC, the first crossover procedure is applied using two populations, S1
and S2 with the classic method. The set S1 is the main population, from which
the target vectors come, and the second set S2 is a parallel population within the
discarded trial vectors are stored. Both the sets are initialized uniformly inside
the domain. The first trial vector is defined from a crossover between a uniform
random point 2ia S∈ and the target vector, for example using binomial crossover:

(] ()
(] ()

,

,

,

0,1

0,1

ji G

ji G

ji G

a if U CR or j irand NP
u

x if U CR and j irand NP

 ≤ == 
> ≠

 (4.26)

{ }1, 2, ,j n∀ ∈ …

After the definition of the first trial vector, the classic selection rule takes

place; otherwise another attempt is made with a second trial vector ui,G’ : the
second trial is produced by the crossover between a noisy vector, deriving from
a mutation rule that involves solutions from S1, and the target vector. Then,
another selection process between the target and the second trial vector is made.
If also this time the trial results worse, it is not abandoned altogether and it
competes with the corresponding target vector in S2.

This approach enhances the probability to generate feasible points inside the
domain, decreasing the function evaluations, the cputime and slightly increasing
the success rate in comparison with classic DE.

For this reason is recommended in the high-constrained problems where the
feasible area is quite difficult to individuate by the algorithm.

ODE algorithm

This approach – Opposition-based Differential Evolution [30], [31], [32] –
employs the opposition-based optimization OBO [19] concept for the population
initialization and generation jumping.

Chapter 4

 38

DE, like other evolutionary algorithms, starts with a set of candidate solutions
and it tries to improve them toward the optimum. Without any previous
information, the initialization is made random. Since the speed of an algorithm
is given by the distances between the initial candidate solutions and the true
optimum, the ODE approach permits to enhance the probability to start from
better solutions checking also the opposite of the initial population. According
to the probability theory, 50% of the time a guess is farther from a solution than
its opposite: for this reason, after the initial guesses also the opposite solutions
in the search space are checked and used as initial solution. This veracity is
proved in [32] and applied to DE, not only for the initial population of the
algorithm.

To define the opposite let x be a real number inside a defined interval (without
the interval the opposite concept cannot be take into account) [],x a b∈ , then its

opposite is

 x a b x= + −⌣

 (4.27)

This definition can be extended to higher dimension:

 ()1 2, , , nx x x x= … (4.28)

is a point, defined by a vector composed by n-real numbers, each of them
contained in a specific interval, defining the domain D:

 { }, 1,2, ,L U
j j jx x x j n ∈ ∀ ∈  … (4.29)

Then the opposite point is defined by a vector composed by the opposite real-

numbers:

 ()1 2, , , nx x x x=⌣ ⌣ ⌣ ⌣

… (4.30)

 { }1,2, ,L U

j j j jx x x x j n= + − ∀ ∈⌣
… (4.31)

In ODE, after a random initialization (G=1) of the population S, the opposite

population set OS is calculated. Then the evaluation of the two population sets is
computed and the fittest individuals are selected as initial population for the
algorithm (the so called elitist selection for GA). This process increases the
probability to start close to the solution, decreasing the total computational time,
even if for the first population are necessary 2·NP fitness evaluations. Another
strategy introduced in ODE is the opposition-based generation jumping:

Differential Evolution

 39

according with a jumping probability value Jr, after the classic operations’ flow
– mutation, crossover and selection – if U(0,1)<Jr the opposite of the current
population is computed and, as in the initial population selection, the fittest
solutions are selected from the union of the two sets. A little shrewdness is
introduced, making the process dynamic: the opposite is not computed using the
initial upper and lower values for each variable, but rather using the maximum
and minimum values of each variable at the current population’s state:

 , , , ,min maxij G j G j G ij Gx x= + −⌣

 (4.32)

{ } { }1,2, , , 1,2, ,i NP j n∀ ∈ ∀ ∈… …

then without losing the knowledge acquired by the algorithm till this moment;
this approach permits to decrease the searching space during the opposition-
based generation jumping. A similar device will be treated in Section 4.4.

The jumping rate Jr could be fixed (defined by the user) or time-varying. In
[30] the better algorithm’s behaviour is given by a jumping rate decreasing by
function calls; in particular Jr follows the rule

 ()
max min

1r r r
nfc

nfc
J J J

MAX

 
= − ⋅ −  

 
 (4.33)

where nfc is the number of function calls and MAXnfc is the maximum value
allowed for nfc.
The jumping rate parameter range recommended is 0.1÷0.4; higher values could
destroy the evolution, provoking early stagnation due to the shrinkage of the
search space; also the time-varying approach will be explained further in Section
4.4.

ODE with fixed or time-varying jumping rate outperforms the classic DE in
many situations [30], demonstrating the strength of the OBO technique [32]
successful combined with the DE evolutionary properties. The improvement is
reflected principally toward a less number of function calls, to the detriment of
the success rate: this means the robustness is a little penalized, but the reduction
in nfc is remarkable.

MDE algorithm

This approach – Modified Differential Evolution [33], different from MDE of
Section 4.2.1 – arises from the necessity to reduce the computational time of
DE. Although DE is efficient, effective and robust, it has a lack in the
convergence speed for high dimensional problems. This weakness is made less
heavy by MDE algorithm: it uses a slight strategy on the selection ruling for the
next generation: instead performing the selection and the possible substitution

Chapter 4

 40

after mutation and crossover for the whole current population, thus creating a
temporary population of trial vectors, the target vector is immediately
substituted if the trial vector appears fitter than it. Using this device, the current
population evolves dynamically and not with discrete generation step, because
the benefitting is dynamically updated. This algorithm does not upset the DE
classic method, rather it modifies the moment of the updating process, making
the algorithm faster and at the same time robust as the classical formulation.
This approach can be advantageous in real-world problems, where the
evaluation of a candidate solution is a computationally expensive operation. A
further sophistication of this method is proposed in [34], where the dynamic-
substitution is combined with ODE and the mutation operator is taken from the
DERL scheme. Of course mixing correctly strategies with different effects
increases the ability of the algorithm, especially in high dimensional cases.

NSDE algorithm
This algorithm – Non-linear Simplex Differential Evolution [35], different from
the previous described in Section 4.2.1 – uses an approach similar to the OBO
applied at the initial population: the aim is to decrease the distance between the
initial population and the true optimum of the problem in order to diminishing
the optimization time. It uses a non-linear simplex mutation to the initial random
population so as to create another set of candidate solutions: the fittest
individuals form the random and the modified sets belong to the initial
population. NSDE, in comparison with ODE, acts only on the initial population
setting, without any further modification in the classic algorithm: its role is just
to increase the probability of obtaining the optimum in fewer function calls
affecting the starting point.

This method is simple, it uses the simplex formulas [2] of reflection,
contraction, expansion and reduction and it does not touch the algorithm
behaviour, leaving the robustness and the efficiency of DE intact. In the
definition of the initial population it takes more computational time but it
provides a better initial condition, allowing a successive efficient function call
saving; the algorithm shows slightly better behaviour than ODE in terms of nfc
and cpu in most cases, even if the sophistication adopted seems insubstantial in
comparison with ODE. Extra-information about the search space to the initial
population are beneficial, enhancing the convergence speed without
compromising the robustness.

The main structure of DE could be mixed or hybridized with other methods:
for example, applying to a population based search algorithm a further classic
optimization method based on gradient evaluation as speed up, the efficiency of
the search method could be increased significantly without loosing the
robustness of the evolutionary procedure. Some successful examples are

Differential Evolution

 41

presented in [35], where DE is hybridized with a quasi-Newton method, and
[36], where Particle Swarm Optimization is integrated with DE.

4.3 Constrained optimization

The handling constraints problem is typical for real-optimization problems:
usually the difficult in the real world is to find the solution that satisfies all the
constraints accordingly with a high performance.

If the handling constraints has direct or easy reference to the domain of the
variables, it is sufficient repair the solutions created outside the domain. In that
way, if during the evolution process some trial vector is created by the mutation
outside the domain, some repair rule is adopted.

The rules most used are:
• repairing to the bounds

()
()

,

,

,

0,1

0,1

L L
j ij G j

ij G U U
j ij G j

x U if v x
v

x U if v x

δ

δ

 + ⋅ <= 
− ⋅ >

 (4.34)

where δ is a small number, around 0÷0.1. This feature is used when it’s
easy going outside the domain because the optimum is collocated close
to the boundary; of course this rule doesn’t allow diversity in the
regeneration and the amount of δ could influence the searching
technique; if δ = 0, the trial vector is placed exactly on the border;

• repairing randomly inside the domain, that uses the same rule of the
random initialization. This feature doesn’t allow to the algorithm to
remember about the direction of the evolution, restoring the initial
condition. If the optimum is close to the boundary the algorithm could
have fewer chances to find it.

• repairing bouncing back the excess outside the domain produced by
the mutation process: this approach is recommended especially for the
situation in which the optimum could be very close to the border of the
domain or even on the border.

, ,

,

, ,

L L L
j ij G j ij G j

ij G U U U
j ij G j ij G j

x v x if v x
v

x v x if v x

 + − <= 
− − >

 (4.35)

If the handling constraints cannot bring back to the domain definition, as in

many real-problems, but it depends on some resultant property of the system,
several other methods were proposed, especially for GA but applicable to DE.

Michalewicz [37] grouped these methods in four categories:

Chapter 4

 42

1. methods based on preserving feasibility of solution
2. methods based on penalty functions
3. methods which make a clear distinction between feasible and infeasible
4. hybrid methods

Methods based on preserving feasibility of solution

The first category is based on specialized operators which transform infeasible
solutions into feasible ones; this method unfortunately accepts linear constraints
only and needs to start form a feasible initial population. Into this category lie
also the repair rules, since these operators work in a similar manner, determining
the current domain l DΩ ⊂ Ω ⊂ that is a function of the linear constraints and

repairing the solution. Some different approach could be applied for nonlinear
constraints or optimum close to the boundary, but in this case is necessary
implement specific operation strategies related to the problem’s nature.

Methods based on penalty functions

The second category is based on a penalization imposed to any infeasible
solution, reflecting the infeasibility directly into the fitness function, the only
one submitted to selection in the algorithm; this practice is similar to the multi-
objective optimization, described in section 4.6, in which all the properties to
optimize are collected in a unique overall function. As for MO problems, the
main difference in this method depends on how the penalty (or overall function)
is designed.
The common rule is:

 () ()
() ()

, ,

,

, ,

i G i Gk

i Gk

i G i Gk

f x if x
f x

f x penalty x otherwise

 ∈Ω= 
+

 (4.36)

Usually the penalty is a function based on the distance of the solution from the

feasible region, so it is the result of the combination of all the constraints. For

this reason there are C function () { }, 1,2, ,i Gmf x m C∀ ∈ … used to build the

penalty function.
There are several ways to design the penalty function and of course the

difficulty is to define the appropriate feature of this additional function. The
strategies proposed in literature are:

- Static penalty, where usually the penalty is the sum, the averaged sum or
the weighted sum of all the constraints. For this method the design is high
dependant on the nature of the constraint: if it is just related to some input
variable this approach could be efficient if correctly calibrated, otherwise,

Differential Evolution

 43

if the constraint is a property of the system the value must be normalized if
possible and attentively weighted. The number of additional parameters
could be too high.

- Dynamic penalty, where the number of parameters involved is low and the
penalty amount is time dependant; this approach could return at the end an
infeasible solution.

- Annealing penalty, that is based on dynamic penalty method with
annealing behaviour.

- Adaptive penalty, where the amount of the penalty depends on the
population condition referred to the feasible region: if many points lie out
of the feasible region the penalty is high, otherwise the penalty is relaxed.

- Death penalty, that simply rejects the infeasible solutions; this method
could be impracticable in high-constrained problem. This approach could
be seen in the third category.

- Segregated penalty, that implements two different penalized fitness
function with different weights and picking up alternatively from the two
resulting sets.

Methods which make a clear distinction between feasible and infeasible

The third category includes few methods, since these practices are not often
applied. An approach is called behavioural memory method and it considers
only one constraint at the time. This method seems poor in satisfaction, since a
correct sequence of non-interconnected constraints must be defined: if the
satisfaction of one constraint works again another previous one, the solution is
rejected and the algorithm could converge slowly.

A most interesting method is the method of superiority of feasible points,
which is based on a classical penalty approach (in fact it could be seen in the
previous category) with an additional function that influences the infeasible
solutions using a heuristic rule. Thereby any feasible solution is better than any
infeasible, since sometimes in penalty methods an infeasible could be better than
a feasible one if the penalty is low. This method seems convenient but for some
problems it may have some difficulties in locating a feasible solution.

The last commonly method used of this category repairs the infeasible
solutions: it works at the beginning with specialized operators that create
feasible solutions only for the linear constraints. This set of solutions l lS ∈Ω .

The successive step is to modifying the nonlinear equality constraints into
nonlinear inequality constraints simply subtracting the precision of the system ε.
Then another set S of fully feasible solutions is created and used as reference to
which the set Sl is directed: taking a solution from Sl, if it is fully feasible it
could be moved to the set S or left in Sl, otherwise a fully feasible solution from
S is taken as reference and some points between them are evaluated till the
finding of another fully feasible point. For this purpose the bisection method is

Chapter 4

 44

recommended. After that, the new feasible point could replace the individual in
Sl or S according with some probability. This feature depends on the dimension
of the fully feasible region and how the algorithm is implemented.

Hybrid methods

Into the fourth category many types and evolutions of constraints handling
methods lie: it is easy hybridizing evolutionary computation with deterministic,
procedures or gradient approaches. Also combining the previously mentioned
methods is equivalent to implement a hybrid method.

An important example [26] of hybrid method is the approach in which
violation and objective function are evaluated separately: this is a special case of
the method of superiority of feasible solutions that doesn’t involve a
penalization in the objective function: it just optimizes constraints and objective
in lexicographic order in which constraint violations precede the objective
function. In this approach the constraint handling could be strictly constant or
relaxed during evolution like other strategies.

A practicable way to handling the constraints is to adopt the multi-objective
optimization in which the constraints are treated as objective function. Of course
this method could be more difficult since the nature of MO problems.

Concluding, is difficult finding the correct constraint-handling method a priori
since the efficiency and convergence speed of the constrained evolutionary
algorithm is heavily dependant on the problem’s nature. Without any previous
information about the extension of the feasible area referred to the domain, the
choice of the method is difficult. The complexity of the constrained problem
depends on the complexity of the objective function combined with the
sparseness or shape of the feasible region like: the objective function has many
local optima, the global optima is located close to the boundary, the slope of the
constraints is high close to the border and the global optima. In these situations
classical constraint-handling with penalty function (the easiest method to
implement) could fail, making the choice really hard; for this reason the
previous estimation of a constraint-handling method is still now an open
question.

4.4 Control parameters’ setting

The control parameters’ setting of classic DE, proposed by Storn and Price,
seems easy because of the small number of controls on the algorithm: NP, F and
CR.

Differential Evolution

 45

Despite the first recommendations given by creators, finding a correct setting
is one of the most difficult tasks for the user. The robustness of D is proved in a
wide range of control settings, but the convergence speed in some problems is
an open question. The ability in floating-point encoding of DE over continuous
space is a matter of fact, but like all the EAs, this algorithm is sensitive to the
control setting. Besides, even the robustness of the algorithm could be
diminished if the parameters’ setting is not taken into account, causing a
premature convergence due to stagnation [38].

The correct setting is strongly dependant on the problem nature, since the
perturbation introduced in the population is function of the control parameters.

Just for example, Figures 4.8, 4.9 and 4.10 show the effect of the three
parameters, evaluated separately, on the function evaluations (fe), the success
rate (sr) and the cputime (cpu) used by DE on the four dimensional Cosine
Mixture Problem, Breiman and Cutler, 1993 (Figure 4.7 shows the two
dimensional problem):

() ()

{ }
()

2

1 1

*

min 0.1 cos 5

1 1, 1,2, ,

4 0.4

n n

i i
x

i i

i

f x x x

x i n

for n f x at origin

π
= =

= −

− ≤ ≤ ∈

= = −

∑ ∑

… (4.37)

Figure 4.9, Cosine mixture problem for a two dimensional problem.

Chapter 4

 46

Figure 4.10, Population size effects on the three measures: fucntion evaluations, success rate
and cputime.

Figure 4.11, Scaling factor effects on the three measures: fucntion evaluations, success rate and
cputime.

Figure 4.12, Crossover rate effects on the three measures: fucntion evaluations, success rate and
cputime.

Differential Evolution

 47

The results are related to the four dimensional problem of the Cosine Mixture
Problem (see also Appendix A, f15), and DE is implemented in classical
configuration [21] with F=0.5, CR=0.5, NP=30. The effects are averaged over
50 runs for each setting, in order to obtain significant statistical values respect to
the randomness, and they are showed modifying just one parameter by time,
holding the other two. A run is considered terminated with success if difference
between the true optimum and the optimum find by DE is less than 10-4 in 500
generations; the algorithm halts when the fitness-difference between the best
and the worst individual in the population is less than 10-4.

It is clear the setting, even for the classical formulation, could improve the
convergence speed, but to know the correct combination between these three
factors a previous tuning of the algorithm is necessary; this practice is of course
time-consuming.

NP effect

The rule of thumbs about this parameter says the recommended value is
NP=10·n. This value is related to the nature of the perturbation process, in
which the vectors selected must be randomly chosen and mutually different. To
allow sufficient diversity to the next generation is necessary a selecting pool
enough wide. This parameter affects the number of function evaluations of DE:
if the population dimension is too high, the algorithm could waste time without
any benefit. In the case previously presented, with n=4, using NP=40 is the
wrong choice because the fastest convergence is found in correspondence with
NP=15, significantly far from the recommended value (see figure 4.8). In this
situation, after the value NP=15, the success rate becomes 100% and the higher
NP, the higher fe and consequently cpu.

F effect

There is not a unique recommendation about the setting of the scaling factor;
this value is heavily dependant on the problem’s nature, more than the
population size, since it drives the weight of the vector differences used in the
perturbation process. Farther, the setting depends on the perturbation operator
implemented. In our situation all the values tested over F=0.15 of the scaling
factor allow a success rate of 100%; for F=0.05 the success rate is slightly more
than 20%. This behaviour, caused by a small perturbation, doesn’t allow the
necessary exploration abilities to the algorithm, slowing down the convergence
speed (the maximum number of generation allowed in this test is
MAXGEN=500).

The first operating interval recommended for F was (0,2], but after some
studies this interval was reduced to (0,1].

The role of F is heavily significant in the convergence speed and the success
rate, for this reason, this parameter is modified in some DE variant:

Chapter 4

 48

• [] []1, 0.4 0.4,1iF ∈ − − ∪ , proposed in DERL [13], within the uniformly

distributed choice is made for each i th solution.
• (] ()_ / 0,1dither i G l h lF F U F F= + ⋅ − , called Dither approach, mentioned in

[39], in which the scaling factor could be generated for each i th
chromosome or Gth generation; in this configurations the user has to
define upper and lower allowable values for F. This is quite similar to
the previous approach.

• [)()()_ , 1 0,1 0.5jitter i jF F Uδ= ⋅ + ⋅ − , called Jitter approach, mentioned

in [39], in which the scaling factor is generated for each dimension of
the problem. It seems very important using a small value of δ=0.001,
in order to explore the squared neighbour around the noisy vector
generated with fixed F.

• ()0.5,0.25F N∼ or ()0,1F δ∼ according with some probabilistic

rule, proposed in NSDE [28]. This shrewdness could be pejorative
because of the presence of other control parameters.

Randomize the scaling factor according with some distribution seems

sometimes useless or with less advantages, but it appears particularly practical
with noisy functions, despite the necessity to define other control parameters
and values for the randomization.

CR effect

The effect of this parameter, like the others, depends on the problem nature.
For the Cosine Mixture Problem, CR does not have effect on the success rate but
only in fe and cpu. After the threshold of 0.5, the number of function evaluations
does not increase but shows an assessment between 1650 and 1700 fe; only the
cputime increases, since the computation of the noisy vector’s dimensional
element in the implemented program is made only if the crossover process is
successful. The value of 0.5 is a right compromise for the two properties.

In this problem the function shape is sufficiently easy even if the cosine
component modifies the parabolic trend adding local minima. Low values of CR
decrease the convergence speed, because the mutation process induced by the
perturbation of the weighted difference is highly beneficial: reducing the
crossover rate means slowing the evolution process. Anyway this behaviour
could not be found in other problems, especially for noisy functions with a high
number of local optima.

About the setting of CR, Zaharie [40] handles the problem after some
theoretical evaluations for the two type of crossover: binomial and exponential.
These results are quite important in the user choice of crossover type and rate,
because of the different rules adopted in the two variants.

Differential Evolution

 49

The probabilities that a component is mutated are respectively:

• Binomial ()1 1 1mp CR n n= − + (4.38)

• Exponential ()
1

1

n

m

CR
p

n CR

−=
−

 (4.39)

where n is the dimension of the problem.

Since the user wants to control the number of the mutated components, it
could use as indicator the expected value E(L) of mutated L components, simply

() mE L n p= ⋅ :

• Binomial () ()1 1E L CR n= − + (4.40)

• Exponential () 1

1

nCR
E L

CR

−=
−

 (4.41)

As said before, binomial crossover is a discontinuous operator while

exponential is continuous; so, for the first variant, L is not the length of the
chromosome replaced but the number of chromosomes inherited from the noisy
vector.
The trend of the two pm is presented in figure 4.11 for three dimensionalities,
respectively n=5, n=10, n=30.

Figure 4.13, Mutation probabilities for binomial (dashed line) and exponential (solid line)
crossover for three dimensionality. [40]

For low dimensionalities, the difference between binomial (dashed line) and
exponential (solid line) is not remarkable, but for high dimensionalities, like
n=30, the probability of mutation is significantly sensitive to the crossover rate

Chapter 4

 50

imposed for the exponential one. In fact, binomial crossover follows a linear
trend, whereas exponential has the typical shape of the power law. It is
deducible from the figure 4.11 that both exponential and binomial start from
pm=1/n if CR=0 and finish with pm=1 for CR=1: at least one component of the
trial vector will be taken from the noisy in the first CR setting and the trial
vector is in fact the noisy one for the second CR value.

Concluding about the crossover variants, it could be said that the exponential
crossover, to have any significant effect with high dimensionality, needs an
accurate tuning, whereas the binomial one is less sensitive to small changes and
allows an easy setting. In particular, the exponential crossover for problems with
high dimensions becomes significant only with values (]0.9,1CR∈ , otherwise

its effects are negligible, slowing the convergence speed. For this reasons the
binomial crossover is the most used variant in DE.

Coupled effects

From the previous examples, the effects of a bad setting in terms of premature
stagnation are not clear, because of the simple shape of the function; in fact, the
local minima are not difficult to avoid (the weight of the cosine sum is only 0.1;
increasing this value the paraboloid becomes more distorted). Only a really
small value of the scaling factor causes a premature stagnation. The stagnation
arises when the population lost completely its diversity and it remains
unchanged by the perturbation. For this reason, to avoid premature convergence,
it seems reasonable keeping a sufficient level of diversity in the population.

Zaharie in [41] proposes an important theoretical result about the coupled
effect of the three parameters accounted together in a unique formulation.
Unfortunately this result is related only at the classical formulation [21], with
some simplification in the crossover and it cannot be applied with others DE
strategies without any further theoretical evaluation.

Zaharie uses as measure of the diversity the statistical variances computed for
each component over the entire population and find an interesting relationship
between the control parameters and the population variance evolution:

 ()() ()
2

2 2
2 1

CR CR
E Var u F CR Var x

NP NP

 ⋅= ⋅ ⋅ − + + ⋅ 
 

 (4.42)

where E(Var(u)) is the expected variance of the trial vectors related to the
variance of the current population. When the factor inside the brackets is greater
than 1, the variance of the trial vectors should be greater than the current
population variance, enhancing the exploration. Otherwise, the algorithm
reduces its exploration abilities in order to find solutions close to the current
population.

Differential Evolution

 51

This result does not take in consideration the selection process, because it
depends on the objective function’s values; since selection usually decreases the
variance, to prevent a premature diminishing of the diversity inside the
population and a consequent premature stagnation, the value inside the brackets
should be slightly greater than one. Nevertheless, these considerations are valid
for a really wide range of objective functions, but the exclusion of the selection
process leaves a significant lack of knowledge for a complete understanding.

The premature stagnation, found in the Cosine Mixture Problem, due to a
small value of the scaling factor, with NP=30 and CR=0.5, could be measured
by a unique control parameter, called k:

Table 4.1, k-parameter [41] and success rates for three scaling factor’s setting
on the optimization of the Cosine Mixture Problem (Appendix A)

F k Sr
0.05 0.9775 24
0.10 0.9850 88
0.15 0.9975 100

We find a success rate of 100% with a theoretical value of k smaller than 1;

probably this discrepancy is due to the quite simple shape of the function and to
the simplifications made in the theoretical description of the crossover operator
(in the theoretical evaluation with CR=0 the pm is 0 instead 1/n for our
implementation.).

In Figures 4.12 and 4.13 are showed the contour plot for the k-parameter and
the success rate of out test for (] []0,0.5 , 0,0.5F CR∈ ∈ and NP=30.

Chapter 4

 52

Figure 4.14, Contour plot for the k-parameter [41]. k>1 over F=0.2.

Figure 4.15, Success rate for the minimum seeking on the Cosine Mixture Problem with respect
to F and CR. Sr=100% over F=0.2.

4.5 Adaptive and Self-Adaptive approaches for control setting

Despite the previous section describes the influence of the control parameters
in the evolutionary process performed by DE, even with some interesting

Differential Evolution

 53

theoretical results that help significantly the setting, it is clear that all the
recommendation made before are limited to the DE scheme implemented and to
the problem nature. Of course the basic concepts explained are valid in a general
manner, but any problem needs the experience of the user to find the correct
way to set the algorithm, even with all the considerations previously presented.
Further, in the case the objective function is implicit rather than explicit, the
tuning becomes quite difficult.

To avoid all these inconveniences and to achieve optimal convergence, these
parameters need to be alterable during the evolutionary process: the tuning in
that way is made directly inside the evolution.
Unfortunately all the methods proposed adjust only F and CR, since the
population size NP is quite difficult to adapt: a fixed value, defined by the user,
is always used.

The change of these control parameters can be categorized as follow:

1. deterministic parameter control
2. adaptive parameter control
3. self-adaptive parameter control

4.5.1 Deterministic parameters’ control

In this setting approach one or more parameters are altered by some
deterministic rule. This rule is defied by the user, giving more flexibility to the
evolutionary process; an example, referred to the scaling factor, is:

 ()max min 1
nfc

nfc
F F F

MAX

 
= − ⋅ −  

 
 (4.43)

In this case maximum and minimum values for F must be chosen and the

maximum number of function calls must be known. This deterministic rule
could be implemented in a discrete manner, using the generation number and the
number of maximum generation allowable. This approach enhances the
exploration in the early stages and moves toward the local search in the latter.

It could be applied with all the parameters and with all the variants of DE
proposed: in fact it is the recommended practice to handle the jumping rate in
the ODE algorithm [30].

Nevertheless, the definition of a deterministic rule needs some user
knowledge, and an efficient definition for one optimization problem might be
totally inefficient for another one; for this reason also this way doesn’t resolve
completely the problem.

Chapter 4

 54

4.5.2 Adaptive parameters’ control

This approach uses heuristic rules, which take into account information about
the progress achieved by the evolution process to adjust in a reasonable way the
control parameters. This technique differs from the previous one because it is
based on the feedback gained by the evolution, increasing the flexibility and the
ability of the algorithm; in fact the magnitude and the direction of the
parameter’s change is the result of the evolution itself.

One approach, already presented for the ODE algorithm [30], modifies the
domain of the parameters according with the current state of the evolution or of
them (for ODE the domain changing was related to the variables, in order to find
the current opposite); for example, the scaling factor could follow the Ali and
Törn [42] rule:

max max
min

min min

min
min

max

max ,1 1

max ,1

f f
F if

f f
F

f
F otherwise

f

  
− <   

  = 
  −   
 

 (4.44)

where fmax and fmin are the maximum and minimum values of the objective
function in the current population.

This formulation reflects the demand to make the search more diversified at
early stage and more intensified at latter stages: in fact, when the diversity inside
the population is high, the difference between maximum and minimum function
values is high and consequently the scaling factor assumes values close to 1,
enhancing the exploration. The resulting scaling factor lies in a defined
interval, []min ,1F F∈ , according with the state of the evolution.

A more complex approach is presented by Zaharie [43], after previous
theoretical results [41], to adapt the control parameters according with the
diversity induced in the next population, controlling the ratio between variances
of the current and previous generation; taking the previous formulation about the
coupled effects of the three control parameters, an adaptive scheme could be
drawn:

()
()

2
12 2

2 1 G

G

Var xCR CR
F CR

NP NP Var x
γ −⋅⋅ ⋅ − + + = (4.45)

In this formulation, the right hand side is known, since the ratio between

variances could be computed, and the variable γ is a user-defined parameter. In
this way the algorithm undergoes a repairing effect, adapting alternatively the

Differential Evolution

 55

scaling factor and the crossover rate (since there is an equation with two
unknowns) to use in the current population G, according with the magnitude of
the variation in diversity. The added parameter γ permits a more efficient control
in the case of high increasing or decreasing; the recommended value is slightly
greater than 1. Still, the Zaharie approach could be applied only on the DE
strategies with some theoretical result about the evolution.

Another interesting work made in the adaptive direction is the fuzzy logic
implemented to train the algorithm. This version, called FADE – Fuzzy
Adaptive Differential Evolution [44] – dynamically controls F and CR using
fuzzy rules based on human knowledge, giving better convergence speed to the
algorithm, especially in high dimension problems.

A slightly different approach from the previous one presented is the
application of competition between different DE schemes inside the same
algorithm proposed by Tvrdík [45]: this idea permits the selection of the most
adequate scheme; this selection is driven by the success of the scheme adopted.
The competition could mix with an adaptive (or quasi-self-adaptive) approach
the scheme with the most appropriate search ability according with the
evolutionary stage.

Defined H settings (combination of F and CR or different DE schemes), the
algorithm time by time adopts one of them according with the associated
probability, computed as follow:

()
0

0
1

h
h H

b
b

n n
q

n n
=

+=
+∑

 (4.46)

{ }1,2, ,h H∀ ∈ …

where nh is the current number of the hth setting successes and n0 must be
greater than one to prevent dramatic change in the probability. In order to avoid
degeneration of some strategy, when one probability decrease below a defined
value, all the probability qh are reset to the initial value 1/H.

The mutation process induced by a scheme is considered successful if the
generated trial point shows better fitness than the target vector, that is the trial
point takes place in the next generation.

The last remarkable approach presented is called SACPMDE – Self-Adapting
Control Parameters Modified Differential Evolution [46] – and it combines in a
greedy manner the DERL [13] approach in order to evaluate the magnitude of
the perturbation induced in the scaling factor. According with the previous
classification, this technique must be categorized in the adaptive control
parameters. F is dynamically adjusted according to the relative position of the
two randomly selected solutions used in the difference vector: the three

Chapter 4

 56

randomly chosen vectors are sorted in order to give a precise direction to the F
perturbation. The scaling factor is then computed as follow, according with the
syntax used for DERL in Section 4.2:

 () 1

2

d tb
i l u l

d tb

f f
F F F F

f f

−
= + −

−
 (4.47)

This technique uses fitness information in order to weight the scaling factor: if

the fitness function difference to the numerator is small, it indicates the
proximity of the two solutions; otherwise, a larger scaling factor is generated, in
order to explore other regions of the search space.

While the scaling factor is generated according with the tournament best
approach, the crossover rate CR needs population information to be adapted.

() min

max min

i
l u l i

i

l

f f
CR CR CR if f f

f fCR

CR otherwise

− + − ≥ −= 



 (4.48)

In that way CR reflects the amount of the diversity to induce in the next

generation for each individual, according to the fitness function of the i th
solution related to the averaged state of the population: if the target vector has
high fitness value, that means poor performance, the crossover rate is large,
allowing the entrance of new information.

4.5.3 Self-Adaptive parameters’ control

This approach represents the evolution of the evolution: the parameters to
adapt are encoded into the chromosome and undergo the algorithm’s operators
in order to permits the survival and the propagation of the better parameters,
which are more likely to produce good offspring: thereby the parameters need
only an interval of existence.

The self-adaptive approach, like the adaptive, adapts only the scaling factor F
and the crossover rate CR, but it takes these two parameters as variables that
affect the solution.

Some self-adaptive strategies are presented below.

SACPDE and its variant

One version and its variant, called SACPDE and SACPDE2 (called also jDE
and jDE2) proposed in [47] and [48] respectively, uses the following
formulations for the control parameters’ evolution:

Differential Evolution

 57

() ()

() ()

1 2 1

, 1
,

3 4 2

, 1
,

0,1 0,1

0,1 0,1

l u

i G

i G

i G

i G

F U F if U
F

F otherwise

U if U
CR

CR otherwise

τ

τ

+

+

 + ⋅ <= 


 <= 


 (4.49)

This procedure seems substituting the setting of F and CR with the setting of
τ1 and τ2, but these two values don’t show high sensitivities on the behaviour of
the algorithm. They could be chosen from the interval [0.05, 0.3]. Defined these
two values and the upper and lower values for the scaling factor Fu and Fl, the
self-adaptive algorithm allows the propagation of the fittest individuals that
bring the parameters used to generate them. This approach gives more flexibility
to the algorithm, without any restriction during the evolution about the control
setting. In order to make the algorithm totally flexible, SACPDE2 uses the same
formulation regarding the parameters’ evolution, but it implements different DE
strategies (like in the adaptive DE proposed by Tvrdík [45]), which need
different parameters’ setting. For this reason the individual’s chromosome is
composed by the variables of the system and parameters assigned to each
strategy used.

SaDE algorithm

SaDE [49] uses different DE strategies coupled with a different approach for
the self-adaption of the parameters: it takes information from learning periods,
in which the success of strategies are collected together with the CR that allow
the generation of good children. The scaling factor is not adapted but just
generated randomly with normal distribution within a wide range F~N(0.5,0.09),
while CR~N(CRm ,0.01).

After the learning periods, new strategy probabilities and crossover rate
average are computed, in order to direct the evolution toward the necessary
strategy with the correct crossover rate.

SDE algorithm

A possible approach is to use the mutation rule also for the control parameters:
instead the variables of the individuals, the parameters that now belong to the
chromosome are generated applying the mutation process, as the following
formulation for the scaling factor:

 () ()
1 2 3, 1 , , ,0,0.25i G r G r G r GF F N F F+ = + ⋅ − (4.50)

The magnitude of the perturbation (in this case it is used a normal distributed

scaling factor for F) slightly depends on the problem nature. This technique is

Chapter 4

 58

proposed in SDE [50] and SPDE [51] with some advantages, especially for
noisy functions.

4.6 Multi-objective optimization

As stated in Chapter 1, the correct way to handle a multi-objective
optimization process is to find a set of non-dominated solutions that form a
Pareto-frontier from which take one equally good solution. However, some
alternatives are used in practice for GAs and EAs in general (Section 3.3).

EAs, like DE and all its variants, have recently wide success in this practice
especially for their population based-approach that allows multiple function
evaluations in a single run.

The concept of non-dominated solution is quite different from a single-
objective optimization: anyway the first attempt used for solving MO problem
was collecting all the properties fk(x) in a unique overall function, as for the
penalty method used in handling constraints. In fact the penalty method’s
feature is to incorporate the constraints into the objective function, penalizing it.

For their similar nature, MO problems could be solved as single-objective
optimization constrained problems, choosing an objective function penalized by
the others. The weakness of this method is the uniqueness of the solution,
dependant on the design of the penalty function. Nevertheless, the most pursued
practice is providing multiple solutions and passing the final solution to a
decision maker, maybe helped by a clustering method of the Pareto-front.

In these cases the multi-objective optimization problem becomes a single-
objective problem, treated by the algorithm as usual; it’s important adopting a
correct definition of the integrating function; the easiest way is using the
weighted sum of the normalized objective functions:

 _ min
_

_ max _ min

k k
k norm

k k

f f
f

f f

−
=

−
 (4.51)

 () ()_
1

q

k k norm
k

z x w f x
=

= ⋅∑ (4.52)

where q is the number of the properties to optimize or the sum of the number of
properties and constraints blended in the overall function, wk are the functions’

weighting factors, 0 < wk < 1 and usually
1

1
q

k
k

w
=

=∑ .

Then the optimization task (in terms of minimization) becomes:

Differential Evolution

 59

 () ()* *x z x z x x< ∀ ∈Ω (4.53)

Another example of overall function could be:

 ()
()

1

_
1

1

q

q

k k norm
k

z x
w f x

=

=
⋅∑

 (4.54)

The normalization is a good practice because the objective functions could

have different orders of magnitude, especially in real-world optimization
process. If minimum and maximum values are not known, as in many cases of
industrial processes, these values are estimated from the current population.

The choice of the weighting factors, or in general the design of the overall
function, unbalances the result of the optimization, giving different importance
to the objective functions. The setting of these weights move the optimization
toward a specific objective function: if the weight is high respect to the others,
the algorithm tends to explore the region of minimization of that target.
Changing then the weights, each run returns a point that should lie on the Pareto
frontier. In order to obtain a dense Pareto front, the number of weights’ settings
and runs must be high.

Clear examples of MO problem solved with an overall function are all the
economic problems (plain aggregating approach): all the weighted factors are
replaced by the costs of the properties of the system, shifting really all the
objective functions under an economic point of view.

Another approach that could be implemented in EAs is a non-Pareto approach
in which the total population is divided in sub-population, each of which has to
optimize only one objective function: this approach, used in VEGA [7], is poor
in Pareto terms, since the non-dominance of the solutions generated is limited to
the reference population of the objective function.

However, better results are given by a non-dominated sorting algorithm, based
on a Pareto approach, in which the sorting procedure is called after each
generation to remove dominated solutions, refining the population, and ranking
the remaining solutions; the idea was proposed in [1] and successively applied.
The most famous GAs developed for MO optimization are: NSGA-II [52-53],
SPEA [10] and PAES [11].

DE could tackle the multi-objective optimization in different ways: the
classic archive approach, briefly resumed in Section 3.3 for GA, fits nicely
thanks to the goodness of the mutation and crossover procedures of DE, but the
improvements respect to GA for this problem are not significant. It works
similarly creating a population of trial vectors, and it ranks this temporary

Chapter 4

 60

population, as for the progeny in GA. The trial solutions with rank 1 are then
sent for comparison in the main archive.

In fact, in recent years a slightly different approach is used for DE in multi-
objective optimization: the archive of non-dominated solutions is removed, and
only the population is the archive present.

Common features of the Pareto-based approaches are that the Pareto-optimal
solutions in each generation are assigned either the same fitness (or rank) and
that some sharing or niche technique is adopted in the selection procedure.

Some way to solve multi-objective optimization with DE are then presented
and briefly described, since the main feature of DE are the same for single and
multi-objective problems.

PDE Approach

This method – Pareto-frontier Differential Evolution Approach [54] – uses the
classical DE random (see Section 4.1) approach with some modification and
adaption for MOP:

• The initial population is initialized according with a Gaussian
distribution

• The scaling factor is normally distributed F~N(0,1)
• The individuals used for reproduction must be a non-dominated

solutions
• Some repair rule referred to the domain is applied
• Trials replace their basis vectors if they dominates them, otherwise the

reproduction is repeated
• All the dominated solutions are removed
• If the number of non-dominated solutions exceeds some threshold, a

distance metric relation is used to remove solutions close to each
others.

This method is very sensitive to the CR, and it works better with low crossover
rates, evident sign of low convergence speed of this method. Nevertheless the
resultant Pareto-frontier has good diversity. A Self-adapting approach on CR
and mutation rate, inherited from the parents, is combined with this method: the
new algorithm, SPDE [55], presents improved behaviour, convergence speed
and superiority compared with other algorithms.

MODE algorithm and its variants

The first proposed MODE – Multi-Objective Differential Evolution [56] – is
practically similar to PDE, with some little difference about the initialization,
the handling constraints and the removal of crowdedness, since its first
application was the optimization of an industrial process.

Based on real-optimization problem, the initialization is performed uniformly,
a penalty method is applied for handling constraints and the number of

Differential Evolution

 61

population decreases in every generation because if a child doesn’t dominate its
target vector, the reproduction is not repeated as in PDE. In fact the first version
of MODE represents just the application of non-dominating sorting in DE to
skim the population, removing dominated solutions and achieving only the non-
dominated ones to continue the reproduction. The comparison with other
algorithm was based on economic evaluation and the results were interesting.
One of the main weaknesses of this implementation is the fast diminishing of the
individuals in the population: applying a removing of dominated solutions each
generation, the population size quickly diminishes, loosing in diversity. The
reproduction procedure has poor genetic material to mix and the stagnation is
achieved soon. For this reason, this multi-objective scheme is considered
unsatisfactory.

Other modifications [50] are then introduced to overcome the clear lacks of
the previous version of MODE: a second version, MODE-II, maintains the
number of individuals in the population constant, generating random solutions,
even if dominated, after the removing of dominated solutions for each
generation. In that way the algorithm has more probability to continue the
evolution without any premature stagnation due to the diminishing of the
population size, since the constant insertion of new genetic material. This
approach works better respect to MODE-I, achieving the Pareto front, but the
time to obtain a solution is comparable or even higher respect to the other
algorithms.

A third version, MODE-III, uses a revolutionary idea for the multi-objective
optimization: it exalts the recombination of DE and its selection procedure,
applying the removing of dominated solutions only at the end of the evolution.

In this scheme, each trial vector, generated by mutation and crossover
operations, is compared only with its target from which it inherits some
variable, and, if the trial dominates the target vector, it takes its place in the
population for the next generation, otherwise the target vector survives. The
selection is therefore applied with its original purpose but in multi-objective
concept of dominance. Unexpectedly, this procedure works well, saving
considerable time because no ranking of the population is adopted during the
evolution and a dominated comparison is made only NP times each generation
(comparison in the selection process between trial and target). Of course,
without any ranking, the selection of the individuals for reproduction can be
only random, since no fitness information could be used for the selection of
parents without a ranking of the population. Thanks to the goodness of the
reproduction ability and exploration of DE, the Pareto frontier is achieved by a
high fraction of the population.

As for the previous MODE versions, MODE-III does not use archive for the
storage of non-dominated solutions. The only archive present is the population:
it starts at the beginning with few non-dominated solutions, but the greediness
of the selection procedure for the next generation is its strength. In that way,

Chapter 4

 62

the archive of the non-dominated solutions and the population are the same
thing.

Some comparison is made in [57] and it is clear, MODE-II and MODE-III
outperform MODE in terms of Pareto-frontier’s shape at the cost of extra
computational time. MODE-III, anyway, is considered the most reliable and
promising DE variants for multi-objective optimization.

Successive improvements, hybridizations and sophistications are proposed in

literature; the goodness of these attempts is clear since DE gains a lot from the
blending of techniques and methods.

Some interesting examples are the H-MODE proposed in [14], [15], where
each non-dominated solution is then locally optimized by s sequential simplex
method, and the application of trigonometric mutant operator to MODE-III
proposed in [58].

Chapter 5

Case studies

This chapter has the purpose to show the improvement of DE respect GA, both
in single-objective and in multi-objective optimization. Farther, DE is tested on
real optimization cases of complex industrial systems for the Oil&Gas industry
and the nuclear industry.

The comparison is made first with benchmark problems, characterized by
different dimensionalities and complexity, in order to evaluate the behaviours of
the algorithms and the sensitivities of DE on its parameters.

DE is then applied to a real case of the Oil&Gas industry: thanks to the
apprenticeship made inside the PROD department of Eni E&P division, an
integrated optimization tool, equipped with DE, has been built. This tool is
flexible and adaptable to many situations. Its general task is to optimize
whatever property of the system defined by the user. A particular highly-
constrained case is taken as case study for the goodness of the tool.

At the end, DE is tested on a reference case for the nuclear industry: the
inspection intervals optimization is a difficult task for a safety system, since the
presence of conflicting objective functions. Then, the problem is tackled with a
multi-objective optimization. Starting from results previously obtained on this
problem, the DE abilities and results are compared with GAs suited for multi-
objective optimization.

All the results present in this chapter are obtained on a machine with these
characteristic:

HP, Genuine Intel® CPU T2050 @ 1.60 GHz, 0.99GB of RAM.

5.1 Comparison in single-objective and multi-objective
optimization on benchmark problems

The comparison is made with the purpose to demonstrate the robustness and

the high reliability of DE and many of its variants; the improvements respect to
GAs are measured in different ways, since the different optimization’s natures.
The tests reported in this section are conduit on benchmark problems taken from
literature, even for single-objective and multi-objective optimization. A final
conclusion is made at the end of the tests.

Chapter 5

 64

The evolutionary algorithms treated in this chapter are:
1. Genetic Algorithm Toolbox developed by Mathworks; this a commercial

version for GA, suitable for several problems without any re-
programming phase, offered by Mathworks; the setting is not banal, good
solutions in complex problems could be achieved only with a correct
setting of the whole sophistications after a previous tuning;

2. Multi-Objective Genetic Algorithm MOGA, a tool developed in
FORTRAN by LASAR (LAboratory of Signal and Risk Analysis
http://lasar.cesnef.polimi.it/) of the Energy Depratment of Politecnico di
Milano; it has several variants adoptable, both in single-objective and
multi-objective optimization, and the number of information necessary to
its running is high. Furthermore, a wrong strategy selection could
provoke failure of the optimization. Also for this tool the setting is not
easy.

3. Multi-Objective Differential Evolution MODE, developed by LASAR,
provided with the single-objective and multi-objective optimization
options. Several variants are implemented in the tool, in order to increase
its flexibility and ability to tackle different problems. For multi-objective
optimization option MODE-III, described in Chapter 4.6, is implemented;

4. Simple real-coded GA: it has an easy implementation of GA written in
Matlab; the structure is practically the basic version of GA, without any
further specific alteration. The setting is easy but the reliability is poor in
complex situations.

5.1.1 Single-objective optimization

This section is organized as follows: the problem is first briefly described,

then, the setting for any algorithm is explained. Then, the results and some
sensitivities are reported and commented, taking into account the characteristics
of the algorithms and the setting adopted.

The problem

This case study is conduit on 23 benchmark functions taken from [59] and
reported in Appendix A. The functions have different properties,
dimensionalities and complexities. The true global optimum of the objectives
functions are known and usually clearly defined or defined with a good accuracy
(maximum error = 1·10-4).

For this case study the optimization is unconstrained; then, no methods for the
satisfaction of constraints are reported; only repair rules for the satisfaction of
the solution’s existence on the domain are applied.

The selection of these benchmark functions has the aim to understand the
behaviour of different variants of algorithm, since it is clear the reproduction

Case studies

 65

method, the parameter setting and the stopping criteria influence the issues of
the optimization.

The dimensionalities are between 2 and 10, the domain could be wider, in
order to evaluate the speed of the algorithm to restrict the searching area, or the
function shape could be multimodal, to evaluate the ability of avoiding local
minima (several or close to the true optimum).

In this case study the algorithms GA-toolbox, MODE and simple GA are
tested.

Each optimization is repeated 50 times in order to obtain significant statistical
values with respect to the randomness.

The algorithms’ setting

Genetic Algorithm toolbox (GA-toolbox) has several sophistications and
internal variants. A complete descriptive help is available on the program and
online. When no particular settings are imposed to this tool, many of the
sophistications implemented are used with default setting. Anyway, the correct
usage for a specific problem needs substantial knowledge of the tool.

The GA-toolbox setting is made by literature and owner recommendations; the
options applicable to this tool are several, but for our test the setting is restricted
to basic options like population size, selection rule, crossover rate and
replacement procedure.
The whole of these options are explained in the help of the function
gaoptimset . When nothing is specified, the tool sets automatically the default
value recommended by the owner.

The setting used in our test is:

'PopInitRange' [low;up]
'PopulationSize' 30
'EliteCount' dim
'CrossoverFraction' 0.7
'Generation' 500
'TolFun' 1e-4/1e-8
'StallGenLimit' 50

The default setting for the parents’ selection is the so called, Stochastic
uniform : it lays out a line in which each parent corresponds to a section of the
line of length proportional to its scaled value. The algorithm moves along the
line in steps of equal size. At each step, the algorithm allocates a parent from the
section it lands on. The first step is a uniform random number less than the step
size.

The crossover is single-point and it is applied with probability 0.7, defined by
Crossover-Fraction .

Chapter 5

 66

The replacement rule for the next generation is the simplest one already
presented in Section 3.2: the two new children generated replaces the parents.
Only this option is allowable in the tool.

The values low , up and dim are different for each benchmark function and
loaded function by function. The population and the maximum number of
generation are fixed for all the algorithms respectively to 30 and 500, in order to
have a fixed maximum number of function evaluations as 15000.

The option EliteCount specifies the number of best solutions that survive to
next generation without any change, and this value is set as the dimensionality
of the problem.

A default option for the mutation uses the classic uniform mutation with
probability 0.01.

The stopping criteria adopted are two:
� StallGenLimit generations over which cumulative change in fitness

function value is less than TolFun
� reached 500 generations
In order to test the ability of this tool and reach similar behaviour with the

other algorithms, the value of TolFun is diminished till 1e-8 .

For MODE in single-objective optimization, eleven variants are implemented
and tested in order to evaluate the goodness of each strategy. These variants are
seven promising mutation variants described in Section 4.1 and 4.2 and four
adaptive or self-adaptive schemes explained in Section 4.6. They are considered,
efficient, easy to use and reliable.

Further sophistications, like ODE, DELB, DEPC, MDE and NSDE (Nonlinear
Simplex DE), don’t belong to the class of basic modifications on solutions and
they are not tested, because their improvements are independent and applicable
regardless the mutation scheme adopted. They are considered hybridization of
the optimization process between different strategies, like for NSDE or ODE: the
skills of Nonlinear Simplex Method or of the Opposition Based Optimization are
coupled with the robustness and reliability of DE.

The proposed implementations have approximately the same parameters

(except for the adaptive schemes) but different mutation approaches, taking
sometimes information from the fitness.
The following common setting is adopted:

Population size NP 30
MAXGEN 500
eps 1e-4

Case studies

 67

and the diversified settings are:

1. DE random F=0.5, CR=0.5

2. DE best F=0.5, CR=0.5

3. DE current-to-best F1=0.8, F2=0.5, CR=0.5

4. TDE F=0.5, CR=0.5, MT=0.1

5. NSDE CR=0.5, NS=0.5

6. DERL F=0.5, CR=0.5

7. DERL 2 F=0.5, CR=0.5

8. DE_adapt Fmin=0.1, CR=0.5

9. SACPDE Fmin=0.1, Fmax=1, Fc=0.1, CRc=0.1

10. SACPMDE Fmin=0.1, Fmax=1,
CRmin=0.05, CRmax=0.8

11. SDE OPmean=0, OPstd=0.7

The crossover rate CR is set as 0.5 for all the variants. This choice is driven by

the necessity to test the different strategies under similar algorithm’s conditions
but over several problems. As for CR, also the scaling factor F is set as
recommended by the literature. Since the correct working range of F is (0, 1],
instead the initial definition of (0,2] made by Storn and Price [21], this
parameter is set to 0.5 if the variant requires it. In the other cases, like for DE
current-to-best, the second scaling factor F2 has the same role of the classic
scaling factor; then it is set to 0.5, while the first scaling factor F1 is set to 0.8 in
order restrict the searching area. For TDE, since it uses also the DE random
reproduction technique, the set of CR and F is as the other, while the probability
of trigonometric reproduction is set as 0.1; so, the 10% of the mutation phase is
performed with TDE. This set should show the goodness of this practice over
the 23 benchmark problems. NSDE has like the others 0.5 as crossover rate; the
parameter NS∈[0,1] control the step-length of the search: if NS is high, the
search is more concentrated in the neighbourhood, whereas if it is small the step
length is high, useful for exploration on large domains. In order to keep balance
between this two strategies, NS is set to 0.5.

For the adaptive and self-adaptive variants the parameter setting is necessary
but it’s less sensitive on the final result, since a domain for the parameters is
required: for all of them, Fmin is equal to 0.1, while for SACPDE and SACPMDE
also the maximum scaling factor is required: Fmax=1. SACPDE (see Section
4.5.3) requires also the two added parameters, τ1 and τ2, here called Fc and CRc.
They control the probability of the evolution of the parameters F and CR. They
are set as 0.1, a value recommended in [47-48], since frequent parameters
changes are not beneficial for the evolution. SACPMDE needs minimum and
maximum values for crossover rate: 0.05 and 0.8 are considered the maximum
and minimum value for good algorithm behaviour. The evolution of the

Chapter 5

 68

parameters in this case is driven by fitness feedback information. SDE has the
two parameters OPmean and OPstd: its mutation procedure applied to the
parameters F and CR uses a Gaussian random variable with mean equal to
OPmean and standard deviation equal to OPstd. In order to obtain different
scaling factor for this procedure, even negative, the mean is set as 0.

The stopping criteria for MODE are:
� ∆=|fmin-fmax| of the current population is less than eps: the whole

population is converged at the same point if eps is sufficiently small
respect to the fitness’s order of magnitude;

� reached MAXGEN generation.

When the first stopping criterion is met the algorithm alts because no more
exploration could be performed. In case of multimodal function with local
optima, the alt by the first criterion to a wrong solution means the inability of
the algorithm to find true optimum.

The simple real-coded GA, implemented with the purpose to show the feature
of a basic GA, is written in one script in Matlab. Since DE random has an easy
implementation as simple GA, a direct comparison could be done between these
two EAs.

DE random represents the basic idea of DE, while simple GA has the classical
procedures of GA for real-coded variables.

The encoding for simple GA is made in floating-point representation. The
parents’ selection procedure is called Fit-Random Selection, and it is
hybridization between the Fit-Weak Selection and the Random Selection
explained in Chapter 3; after the ranking of the population by fitness
comparison, the first parent is selected from a fittest fraction of the population
defined by the user: the lower this fraction, the higher the fitness of the first
parent. Nevertheless, if this fraction is too low, the number of solutions at
selection disposal is too small and the evolution could be affected by premature
stagnation. The second parent is then selected randomly from the entire
population. On average, the fitness of the second parent is lower respect to the
fitness of the first one, as for the Fit-Weak Selection, but the randomness
introduced for the second parent selection leaves interesting opportunities to
avoid the weaknesses of the two selection procedure hybridized. The crossover
method is single-site crossover, and it is coupled with the arithmetic blending
rule (3.2). The replacement rule is a Fittest Replacement but applied to the pool
formed by the parents and children populations. This replacement is coupled
with a high random mutation probability to avoid stagnation.

The parameters’ setting for simple GA is:

Population size NP 30
Fit selection fraction NP/2

Case studies

 69

Reproduction alfa 0.7
MAXGEN 500
eps 1e-4
Mutation Mt 0.1

As for GA-toolbox, the population size and maximum number of generation

are 30 and 500 respectively. The hybrid selection procedure chose the first
parent from the fit selection fraction . The alfa parameter is the
fraction inherited from the first child to the presumed fittest parent used in the
blending method: the second child inherits the reciprocal genetic material from
parents.

The stopping criteria are the same as for MODE.

Measures

The measures utilized to evaluate and compare the goodness of the
algorithms are taken from literature and allow a correct characterization of
the solutions. These measures, proposed for SO, have statistical significance
since are reported as average over the 50 runs:

1. Function evaluation fe: this value represent the number of the objective
function’s calling; higher the fe, slower the convergence of the
algorithm. Anyway, since the stopping criteria are referred to a
maximum value for generations (and consequently to fe) or the
maximum fitness difference inside the population, fe equal to the
maximum value (NP*MAXGEN) doesn’t indicate the absolute inability of
the algorithm, because the true optimum could be reached by some
solution in the algorithm and not by the whole population.

2. Cpu: it indicates the cpu time (expressed in seconds) necessary to
complete the optimization. Together with fe, it could represent the
convergence of the algorithm but also the complexity of the
implementation.

3. Success rate sr: it expresses in % the fraction of success to find the
optimum (it isn’t an average); it represent the ability to find the true
optimum under a specified tolerance (eps=1e-4). If the optimum found
by the algorithm is closer with a smaller tolerance than eps, the
optimization is considered with success. It could be computed only if the
true optimum is known. The success could be achieved even if the
number of function evaluation reaches the maximum: that means not the
whole population converge to the same point but at least the best
solution is locate to the optimum.

4. Relative error lambda: this value, already proposed in [45], is useful to
compare the accuracy of a solution. The higher the lambda, the higher
the accuracy of the solution. The value is referred to the fitness function
value and the rule is:

Chapter 5

 70

()

11

10

11

10

0 1

0 11 1 10

log

0 1

0 11 1 10

log

m c
if

c

m c
if c if

c

m c
otherwise

c

if m

if c if m

m otherwise

λ

λ

−

−

 −
 ≥

 −≠ = < ⋅

  −−     

 ≥
= = < ⋅
−

 (5.1)

Where m is the value found by the algorithm and c is the certified true
optimum.

For a complete evaluation on the 23 benchmark functions, the summed values
of the previous measures are used as comparison between strategies. Of course
the sum cannot explain deeply the behaviour but gives a meaningful overview.

Results and sensitivities

Table 1 reports the results obtained by the two type of GA tested: GA-toolbox
and simple GA. For the first, two eps (1e-4 and 1e-8) as stopping criteria are
used and reported.

Figures 6, 7, 8 and 9 plot the summed values over the 23 problems of the
fourth measures (fe, cpu, sr and lambda in sequence) for the three test on GA
and for the results obtained with the basic DE variant DE random, reported in
the first column of Table 4 together with other DE variants.

Simple GA has the worse behaviour even in comparison with GA-toolbox. The

number of fe is often high (Figure 6), close to the maximum for the more
difficult problems that have dimensionality over two (f5, f6, f8, f15, f19-22, see
Appendix A for further information). As said before, high fe does not mean
failure of the run, since the true optimum could be achieved by some
chromosome in the population. In fact, sr has values between 0 and 92 for these
functions (Table 1): that results depend on the problem nature and the specific
exploration ability of the algorithm, which could be effective for some
function’s shape (e.g. f8, f15) and completely inefficient for another one.
Anyway, from a general point of view, simple GA uses a significantly higher
number of fe, with a scarce sr and the lowest lambda in the tests (Figure 8 and
9), that means small accuracy of the solutions.

Analysing the GA-toolbox results, a first oddity is the number of fe, really
small, even with TolFun=1e-8; this behaviour is due to the different stopping
criteria allowable: in fact, many of the runs stop at the value 1560 fe, that means

Case studies

 71

52 generations. Only after 2 generations the cumulative change in fitness
function is less than Tolfun, sign of a scarce diversity in the population, even
with a crossover fraction of 0.7. This premature stagnation however does not
imply low sr, since this measure is often a good value, but it means high
exploration in early stages and rapid loss of diversity, which could be symptom
of ineffectiveness for some specific problems. The lambda values are acceptable
but the cpu, especially for the smallest TolFun, is almost the double (Figure 7).
This behaviour depends on the implementation: the GA-toolbox has many
functions and scripts callings due to its complexity, while simple GA, written in
a single script, has nearly four times fe and less cpu.

Comparing the two GA-toolbox tests, a diminishing of TolFun increases as
expected the performances: sr and lambda increases, together with fe and cpu,
since no greedy alterations are introduced: only a more strict stopping criterion
is adopted and the searching is obliged to continue.

Table 5.2, GA-toolbox and simple GA results on the 23 benchmark functions for SO. GA-
toolbox is tested with two eps values (1e-4 and 1e-8).

 ga-toolbox eps=1e-4 ga-toolbox eps=1e-8 simple_ga

f N fe Cpu sr lambda fe Cpu sr lambda fe cpu sr lambda

1 2 1560 0.262188 48 3.337935 1560 0.260625 70 4.429559 9359.4 0.201563 14 3.666839

2 2 1560 0.255938 2 1.782227 9119.4 1.466875 10 3.066425 9305.4 0.19875 74 4.937371

3 2 1560 0.277813 100 5.294264 1560 0.289688 98 5.193207 8529 0.197188 34 3.910006

4 2 1560 0.259688 100 5.732996 1560 0.260938 100 5.727077 6010.8 0.13375 36 3.95401

5 4 1560 0.257188 14 3.272079 1571.4 0.26125 8 3.518582 14439 0.386875 40 6.476024

6 10 1655.4 0.249375 0 0.464211 5467.8 0.79375 4 1.142977 14434.8 0.565 0 1.340839

7 2 1560 0.258125 56 4.702975 3231 0.525938 42 4.042097 8140.8 0.171563 60 4.144548

8 10 1560 0.231563 0 2.046865 3520.8 0.517188 26 3.597903 12152.4 0.454375 92 5.197668

9 2 1560 0.260938 86 3.140897 1560 0.2625 92 3.342827 6666 0.143125 34 2.992255

10 2 1560 0.255938 100 9.278239 1560 0.256875 100 9.188656 4248 0.089375 76 5.270968

11 2 1560 0.256563 88 6.684636 1562.4 0.257813 90 7.00122 10475.4 0.221563 34 3.401784

12 2 1560 0.258125 74 6.024265 1563 0.260938 90 7.20684 6503.4 0.137188 74 4.541488

13 2 1560 0.259063 92 8.39535 1560 0.26375 96 8.756039 3133.2 0.067813 82 4.849783

14 2 1560 0.259375 100 4.559536 1560 0.260313 98 4.470347 8883 0.19625 26 3.319797

15 4 1560 0.257813 62 3.502271 1919.4 0.318438 88 4.617155 13677.6 0.350625 98 4.998141

16 2 1565.4 0.259375 54 7.783416 1602 0.26625 56 8.368153 14670 0.314688 2 2.384518

17 2 1560 0.257188 98 8.501827 1560 0.260625 84 7.150096 4440 0.094688 54 3.6255

18 2 1560 0.257188 94 6.588132 1593.6 0.263125 84 6.058933 9528 0.203125 16 2.439503

19 10 1587 0.24125 0 1.554397 4684.2 0.690313 36 3.681347 14808.6 0.578438 0 0.750079

20 3 1599 0.264375 58 4.205901 2013.6 0.330313 98 6.025114 15000 0.3525 0 0.833544

21 3 1560 0.260625 84 5.888504 1636.8 0.274375 94 6.052147 14191.8 0.343125 84 5.089597

22 10 1832.4 0.271563 0 0 6420.6 0.926563 0 0.073786 14720.4 0.575313 4 1.346921

23 2 1560 0.2625 18 1.657683 1560 0.264375 14 1.654446 7485.6 0.165938 36 3.665762

 sumsumsumsum 36319.236319.236319.236319.2 5.933755.933755.933755.93375 1328132813281328 104.3986104.3986104.3986104.3986 59946599465994659946 9.532819.532819.532819.53281 1478147814781478 114.3649114.3649114.3649114.3649 230802.6230802.6230802.6230802.6 6.142816.142816.142816.14281 970970970970 83.1369583.1369583.1369583.13695

Chapter 5

 72

fe sumfe sumfe sumfe sum

0

50000

100000

150000

200000

250000

DE_rand ga-toolbox eps=1e-4 ga-toolbox eps=1e-8 simple_ga

Figure 5.16, Sum of the function evaluations for three GA tested and for DE random over 23
SO problems.

cpu sumcpu sumcpu sumcpu sum

0

2

4

6

8

10

12

DE_rand ga-toolbox eps=1e-4 ga-toolbox eps=1e-8 simple_ga

Figure 5.17, Sum of the cputime used for three GA tested and for DE random over 23 SO
problems

sr sumsr sumsr sumsr sum

0

500

1000

1500

2000

2500

DE_rand ga-toolbox eps=1e-4 ga-toolbox eps=1e-8 simple_ga

Figure 5.18, Sum of the success rates for three GA tested and for DE random over 23 SO
problems.

Case studies

 73

lambda sumlambda sumlambda sumlambda sum

0

20

40

60

80

100

120

140

DE_rand ga-toolbox eps=1e-4 ga-toolbox eps=1e-8 simple_ga

Figure 5.19, Sum of the lambda obtained for three GA tested and for DE random over 23 SO
problems.

The basic DE version, DE random, (see Table 2), used as reference for DE in

this test, outperforms the other algorithms in terms of cputime, sr and lambda,
using however more fe than GA-toolbox (Figure 7, 8 and 9). The ability of DE is
significantly better in almost all the problems, achieving 100% of sr, except for
high dimensionality (f6, f10, f22), where the sr collapses close or to 0. This
stagnation depends on the setting parameters; in fact, the three parameters could
affect the optimization results. In order to find the most significant parameter for
the success of DE, Figure 10, 11 and 12 show the dependencies of the results on
NP, F and CR respectively, applied on f6, the Ackley’s problem (see Appendix
A), one of the most difficult since its dimensionality (n=10) and high number of
local optima. The basic setting is NP=30, CR=0.5 and F=0.5; when a
parameter’s sensitivity is evaluate, the other parameters are kept as just defined.

Figure 5.20, Population size’s (NP) effect on the four measures for the Ackley’s problem (f6)
for DE random with F=0.5 and CR=0.5.

Chapter 5

 74

Figure 5.21, Scaling factor’s (F) effect on the four measures for the Ackley’s problem (f6) for
DE random with NP=30 and CR=0.5.

Figure 5.22, Crossover rate’s (CR) effect on the four measures on the Ackley’s problem (f6) for
DE random with NP=30 and F=0.5.

The amount of induced perturbation is essential to find the true optimum: for
this reason, the population size NP does not have effect on the sr and the whole
runs continue till the maximum number of generation allowable: the unique
effect is to increase the fe since the increasing of NP.

F and CR intervene on the perturbation generation by generation: F with the
current setting has any effect only around 0.3 (see Figure 11), but not enough
significant. Small F brings to premature stagnation since the low exploration
ability and high F makes impossible to localize the restricted area of the true
optimum.

 High sensitivity is noticed with CR (see Figure 12): when it approaches
values around 0.1÷0.2, the sr grows up till 100%, and the fe diminishes
significantly. This behaviour is due to the high dimensionality and the
multimodality of the function: inducing frequent modifications in the

Case studies

 75

population, premature stagnation has been found, avoiding any possibility to
escape from local optima; the indicator of this situation is lambda, which settles
around 0.4 for CR values greater than 0.5; the same lambda value is approached
by settings with F greater than 0.5.
The effect of F with a good CR=0.1 setting is showed by Figure 13.

Figure 5.23, Scaling factor’s (F) effect on the four measures
for the Ackley’s problem (f6) for DE random with CR=0.1.

Interesting is the behaviour of fe in this case: the F value of 0.5 demarks a
trend’s change on fe , even if sr remains high (over 70%) and lambda
moves around 4 (that means success of the run, since the sr criterion).
It is clear, the issue of a run depends both from F and CR together, but in this
case the CR effect is preponderant; in order to prove it in this particular case (f6,
Ackley’s problem), the following test is performed on DE random with
Fi~U(0,1), for each solution, eliminating the direct interaction between them,
and three settings of CR, 0.1, 0.5 and ~U(0,1).

Table 5.3, Function evaluations, cputime, success rate and lambda obtained on Ackley’s
problem (f6) by different settings on DE random. In this case Fi~U(0,1).

CR fe cpu sr lambda
0.1 9958 0.734 98 4.375
0.5 10892 0.825 46 2.873

~U(0,1) 10488 0.800 66 3.293

Making CR a uniform random variable doesn’t assure high success. The
results obtained with low crossover rates show an increased success rate (really
close to 100%) for this difficult problem. A side effect of this set is the increased
computation time due to the increased number of function evaluation necessary.
Low CR means less improvement due to the mutation process between two

Chapter 5

 76

consecutive generations: however, this set allows the attainment of the global
optimum. In fact, the lambda value is over 4 (the minimum eps allowable for
stopping criterion is 1e-4).

Proved the importance of CR on the success of DE random on high
dimensional function, the effects on the whole 23 functions of this parameter is
tested for DE random and DE best with four CR settings: 0.1, 0.3, 0.5, 0.7.

Table 3 shows only the effects on the summed measures for the test on 23
problems.

With small CR, fe increases (and quasi-proportionally as cpu) in both
variants, since the small perturbation induced in the population as proved with
the sensitivities: the convergence speed is low but the success becomes close to
the maximum; the lambda is high, symptom of high accuracy. The success
for the random version is higher than the best variant, but the latter uses less fe
and at the same time it has better accuracy: that means DE random is more
reliable but with a lower convergence speed and a lower general accuracy.

Table 5.4, Summed measures for different CR settings used in the test on 23 problems for two
variants: DE random and DE best.

Set Σfe Σcpu Σsr Σlambda
DE random

CR=0.1 84253 5.600 2222 140.9

CR=0.3 78219 5.328 2104 131.9

CR=0.5 76865 5.370 1938 119.8

CR=0.7 75156 5.339 1938 117.5

DE best

CR=0.1 54168 3.698 2094 142.9

CR=0.3 37164 2.540 1934 125.2

CR=0.5 29894 2.049 1886 120.6

CR=0.7 23770 1.631 1810 114.4

This trend could be expected for all the variants proposed but surely with

different sensitivities. For this reason the usage of a unique CR=0.5 in the
evaluation of the other variants permits the understanding of the single abilities,
without taking into account the most significant impact due to CR just proved.

Tables 4-7 show the results in the 23 functions for the eleven variants
proposed and Figures 5.9-5.12 plot the summarized results.

Case studies

 77

Table 5.5, Results on 23 benchmark problems with different dimensionality and complexities
for DE random, DE best and De current to best variants.

 DE random DE best DE ctb

 NP=30, CR=0.5, F=0.5 NP=30, CR=0.5, F=0.5 NP=30, CR=0.5, F=0.5

f n fe cpu sr lambda fe cpu sr lambda fe cpu Sr lambda

1 2 1388.4 0.08625 100 5.955095 725.4 0.046563 100 5.949586 15000 0.909375 96 5.736093

2 2 1861.8 0.110313 100 6.587912 870.6 0.05125 100 6.86819 11634.6 0.69875 100 10.0571

3 2 1084.2 0.065625 100 5.301616 565.2 0.034063 94 4.995698 1242 0.07625 96 5.095229

4 2 1009.8 0.06 100 5.791827 587.4 0.034688 100 5.754329 5221.8 0.323125 100 5.769498

5 4 2529.6 0.162813 100 7.108407 1176.6 0.07625 62 5.233969 13935.6 0.912813 84 6.368791

6 10 15000 1.13625 0 0.385665 5706.6 0.436875 0 0.500469 15000 1.161563 2 0.578558

7 2 2214 0.130313 64 4.98297 915 0.054063 44 4.295962 13029.6 0.782813 52 6.378667

8 10 2886.6 0.2125 100 4.668029 1229.4 0.091875 100 4.758256 1199.4 0.089375 100 4.71573

9 2 1037.4 0.060938 100 3.614112 587.4 0.034375 98 3.546022 624 0.037188 100 3.613439

10 2 1731.6 0.102188 100 6.817949 622.2 0.03625 100 7.029021 14712.6 0.885 100 10.91538

11 2 1425.6 0.083438 100 6.695279 826.2 0.04875 100 6.94955 876 0.051875 100 6.902585

12 2 1272.6 0.075 100 6.793135 694.8 0.04 100 6.822651 754.2 0.044688 100 6.779006

13 2 1070.4 0.062813 100 6.656401 607.8 0.035938 100 6.895562 645 0.038438 100 6.804108

14 2 1519.2 0.09125 100 4.567164 628.2 0.0375 100 4.564657 10987.8 0.670938 100 4.56006

15 4 1704.6 0.1075 100 5.093219 880.8 0.05625 100 5.504226 907.8 0.05875 98 5.345643

16 2 2092.2 0.122188 100 8.771529 970.2 0.056875 100 8.771251 3561 0.214688 100 8.770008

17 2 858 0.050313 66 4.462375 612 0.035625 88 6.066943 1796.4 0.107813 84 6.24475

18 2 1434 0.084688 100 7.070044 761.4 0.045 100 7.27668 817.8 0.048438 100 7.335954

19 10 14871 1.13125 8 1.627681 3836.4 0.293438 0 1.203255 14273.4 1.093125 2 1.3186

20 3 1775.4 0.108125 100 5.799182 949.8 0.058438 100 6.198577 1009.2 0.0625 100 6.203972

21 3 1456.8 0.090625 100 5.848219 778.2 0.048125 100 6.248212 11034 0.715 100 9.699106

22 10 15000 1.138438 0 0 4575 0.349375 2 0.089809 15000 1.149375 0 2.65E-05

23 2 1642.2 0.0975 100 5.17316 787.8 0.047188 98 5.083882 15000 0.914688 100 5.164255

 sumsumsumsum 76865.476865.476865.476865.4 5.3703135.3703135.3703135.370313 1938193819381938 119.771119.771119.771119.771 29894.429894.429894.429894.4 2.048752.048752.048752.04875 1886188618861886 120.6068120.6068120.6068120.6068 168262.2168262.2168262.2168262.2 11.0465611.0465611.0465611.04656 1914191419141914 134.3566134.3566134.3566134.3566

Chapter 5

 78

Table 6.5, Results on 23 benchmark problems with different dimensionalities and complexities
for DERL, DERL 2 and NSDE variants.

 DERL DERL2 NSDE

 NP=30, CR=0.5, F=0.5 NP=30, CR=0.5, F=0.5 NP=30, CR=0.5, NS=0.5

f n fe cpu sr lambda fe cpu sr lambda fe cpu Sr lambda

1 2 1047 0.100938 100 5.952466 1186.8 0.090625 92 5.639169 1524.6 0.10125 100 5.952198

2 2 1420.8 0.135938 100 6.737801 1274.4 0.094063 100 6.764127 2128.2 0.141563 100 6.470531

3 2 808.8 0.075938 100 5.297873 889.8 0.065625 100 5.304072 1254 0.082813 100 5.299325

4 2 819.6 0.077188 100 5.777889 977.4 0.071875 100 5.805128 1171.8 0.075938 100 5.811614

5 4 1983.6 0.198125 100 7.118401 2592 0.205313 78 6.017685 2719.2 0.190938 100 7.101337

6 10 14958.6 1.68125 4 0.759905 12654.6 1.148438 0 0.399546 13736.4 1.120625 48 3.27163

7 2 1516.2 0.142188 52 4.476547 1314.6 0.09875 50 4.323771 2504.4 0.16125 64 4.889994

8 10 2125.2 0.23375 100 4.669995 5025 0.44625 64 3.75503 3580.2 0.284375 100 4.646072

9 2 810 0.075313 100 3.614015 846 0.061875 98 3.547684 1216.2 0.077813 100 3.613859

10 2 1227.6 0.115625 100 6.851423 935.4 0.067188 100 6.381081 1948.8 0.124375 100 6.946709

11 2 1118.4 0.105313 100 6.633737 1083.6 0.079688 100 6.445334 1674.6 0.108125 100 6.746244

12 2 957.6 0.09 100 6.635263 900.6 0.065625 100 6.335837 1486.2 0.09625 100 6.623999

13 2 838.8 0.079375 100 6.702062 672.6 0.049063 100 6.485334 1258.2 0.085625 100 6.505122

14 2 1052.4 0.099688 100 4.566871 1084.2 0.080313 100 4.571627 1675.2 0.109688 100 4.568161

15 4 1320.6 0.131563 100 5.050855 1249.2 0.098125 98 4.758916 2045.4 0.143438 100 5.052771

16 2 1502.4 0.1425 100 8.77177 1687.8 0.125625 100 8.777342 2415 0.156563 100 8.770768

17 2 722.4 0.067188 74 4.969606 516 0.036875 62 3.905394 995.4 0.064063 70 4.578026

18 2 1060.8 0.099375 100 7.170348 1126.8 0.082813 100 6.987148 1712.4 0.11 100 7.120484

19 10 13775.4 1.539375 42 2.93594 13077.6 1.186875 14 1.004708 14733.6 1.198125 12 2.162133

20 3 1347 0.13 100 6.040049 2092.2 0.158438 100 5.879193 2154.6 0.14375 100 5.826021

21 3 1127.4 0.109688 100 6.136232 783.6 0.059688 98 5.958011 1748.4 0.117813 100 5.944329

22 10 14781 1.67 20 1.070084 12759.6 1.1575 6 0.519414 12219.6 0.9925 68 3.183566

23 2 1194 0.114063 100 5.169643 985.8 0.072813 88 4.667759 1893.6 0.123438 98 5.08816

 sumsumsumsum 67515.667515.667515.667515.6 7.2143757.2143757.2143757.214375 1992199219921992 123.1088123.1088123.1088123.1088 65715.665715.665715.665715.6 5.6034385.6034385.6034385.603438 1848184818481848 114.2333114.2333114.2333114.2333 77796777967779677796 5.8103135.8103135.8103135.810313 2060206020602060 126.173126.173126.173126.173

Case studies

 79

Table 5.7, Results on 23 benchmark problems with different dimensionality and complexities
for TDE, DE adapt and SACMPDE variants.

 TDE DE_adapt SACPMDE

 NP=30, CR=0.5, F=0.5, MT=0.1 NP=30, CR=0.5, Fmin=0.1
NP=30, Fmin=0.1, Fmax=1,

CRmin=0.05 CRmax=0.8

f n fe cpu sr Lambda fe cpu sr lambda fe cpu sr lambda

1 2 1384.8 0.114375 98 5.848955 1226 0.0966 100 5.9509 1361 0.1844 100 5.9485

2 2 1836 0.146875 98 6.498679 3089 0.2375 100 6.4184 2539 0.345 98 6.1783

3 2 1035.6 0.085625 100 5.299111 1031 0.08 100 5.3002 1105 0.1531 100 5.2955

4 2 938.4 0.075 100 5.773841 977 0.0744 100 5.8253 1068 0.1403 100 5.7495

5 4 2256 0.193125 100 7.128992 1765 0.1447 74 6.512 2569 0.3572 100 7.1365

6 10 14382 1.420625 26 2.050743 15000 1.4091 0 0.4123 13540 2.0612 88 4.1218

7 2 2058.6 0.165313 62 4.954935 3614 0.2781 82 5.7085 2732 0.3713 72 5.5357

8 10 2130.6 0.204688 100 4.746301 2190 0.2013 52 4.0725 3560 0.5403 100 4.7625

9 2 972 0.078438 100 3.614447 1101 0.0844 100 3.6152 1047 0.1359 100 3.613

10 2 1685.4 0.135625 100 6.871412 1744 0.1334 100 6.7151 1607 0.2091 100 7.5212

11 2 1376.4 0.110938 100 6.703105 2152 0.1656 100 6.5832 1492 0.1959 100 7.1386

12 2 1161.6 0.094688 100 6.473382 1874 0.1444 100 6.4855 1339 0.1756 100 7.2369

13 2 1033.8 0.084063 100 6.613696 1640 0.1259 100 6.5271 1213 0.1588 100 6.9358

14 2 1403.4 0.11375 100 4.567716 1396 0.1084 100 4.5719 1433 0.1888 100 4.5628

15 4 1536.6 0.131563 100 5.231399 1691 0.1375 100 4.9851 1918 0.2641 100 5.3547

16 2 1914 0.155313 100 8.771095 1903 0.1469 94 8.6791 1975 0.2587 100 8.769

17 2 671.4 0.053125 54 3.574668 839 0.0641 60 3.9094 732 0.0997 58 4.089

18 2 1344 0.1075 100 7.202152 1682 0.1291 98 7.0303 1450 0.1909 100 7.2894

19 10 10224 1.008438 72 4.041113 14984 1.405 2 1.1657 14904 2.2556 4 1.9948

20 3 1682.4 0.138438 100 5.883125 2911 0.2306 100 5.8251 1769 0.2375 100 6.2047

21 3 1362 0.113438 100 5.885658 2362 0.19 100 5.8187 1434 0.1941 100 5.9677

22 10 14151 1.397188 32 1.87396 15000 1.4194 0 0 10332 1.5478 100 4.7965

23 2 1657.2 0.135313 98 5.086657 1711 0.1319 100 5.1782 1503 0.2013 100 5.1675

 ssssumumumum 68197.268197.268197.268197.2 6.2634386.2634386.2634386.263438 2040204020402040 124.6951124.6951124.6951124.6951 81882818828188281882 7.13837.13837.13837.1383 1862186218621862 117.2897117.2897117.2897117.2897 72622726227262272622 10.466610.466610.466610.4666 2120212021202120 131.3699131.3699131.3699131.3699

Chapter 5

 80

Table 5.8, Results on 23 benchmark problems with different dimensionality and complexities
for SACPDE and SDE variants.

 SACPDE SDE

NP=30, Fmin=0.1, Fmax=1,

Fc=0.1, CRc=0.1 NP=30, OPmin=0, OPstd=0.7

f n fe Cpu sr lambda fe cpu sr lambda

1 2 1396 0.0925 100 5.9546 1258.2 0.0828 100 5.9561

2 2 2188 0.1366 100 7.8582 1623.6 0.1009 100 6.4542

3 2 1157 0.0734 100 5.299 999 0.0634 100 5.2985

4 2 1026 0.0653 100 5.7786 939 0.0581 100 5.8118

5 4 2477 0.1694 100 7.1293 2057.4 0.1397 100 7.1152

6 10 11678 0.9178 100 4.2783 6154.8 0.4822 22 1.5407

7 2 2641 0.1663 58 5.4513 1666.2 0.1069 54 4.563

8 10 3022 0.2356 100 4.8433 2486.4 0.2003 100 4.6056

9 2 1066 0.0669 100 3.6137 963.6 0.0591 100 3.615

10 2 1740 0.1075 100 7.0864 1442.4 0.0909 100 6.9766

11 2 1472 0.0916 100 6.6666 1357.2 0.0956 100 6.6157

12 2 1397 0.0875 100 7.1548 1180.8 0.0747 100 6.8184

13 2 1166 0.0737 100 6.7965 1025.4 0.0638 100 6.7162

14 2 1607 0.1016 100 4.5645 1305 0.0831 100 4.5702

15 4 1820 0.1222 100 5.457 1558.8 0.1053 100 5.1084

16 2 2117 0.1344 100 8.7699 1905.6 0.1256 100 8.7707

17 2 918 0.0575 70 4.836 813.6 0.0575 70 4.6386

18 2 1601 0.1006 100 7.3061 1293.6 0.0869 100 7.078

19 10 14464 1.1369 52 4.2095 7655.4 0.5975 16 2.0807

20 3 1862 0.1203 100 6.0453 1674.6 0.1075 100 5.9487

21 3 1528 0.1013 100 6.1109 1335.6 0.0912 100 5.9552

22 10 10198 0.8153 100 4.8979 5664 0.4441 30 1.3969

23 2 1829 0.1159 100 5.1681 1544.4 0.1009 98 5.0886

 sumsumsumsum 70370703707037070370 5.09015.09015.09015.0901 2180218021802180 135.2758135.2758135.2758135.2758 47904.647904.647904.647904.6 3.4183.4183.4183.418 1990199019901990 122.723122.723122.723122.723

Case studies

 81

fe sumfe sumfe sumfe sum

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

D
E
_
r
a
n
d

D
E
_
b
e
s
t

D
E
_
c
t
b

D
E
R
L

D
E
R
L
2

N
S
D
E

T
D
E

S
A
C
P
M
D
E

D
E
_
a
d
a
p
t

S
A
C
P
D
E

S
D
E

Figure 5.24, Sum of the function evaluations for the eleven DE variants over 23 SO problems.

cpu sumcpu sumcpu sumcpu sum

0

2

4

6

8

10

12

D
E
_
r
a
n
d

D
E
_
b
e
s
t

D
E
_
c
t
b

D
E
R
L

D
E
R
L
2

N
S
D
E

T
D
E

S
A
C
P
M
D
E

D
E
_
a
d
a
p
t

S
A
C
P
D
E

S
D
E

Figure 5.25, Sum of the cputime for the eleven DE variants over 23 SO problems.

Chapter 5

 82

sr sumsr sumsr sumsr sum

1600

1700

1800

1900

2000

2100

2200

2300
D
E
_
r
a
n
d

D
E
_
b
e
s
t

D
E
_
c
t
b

D
E
R
L

D
E
R
L
2

N
S
D
E

T
D
E

S
A
C
P
M
D
E

D
E
_
a
d
a
p
t

S
A
C
P
D
E

S
D
E

Figure 5.26, Sum of the success rates for the eleven DE variants over 23 SO problems.

lambda sumlambda sumlambda sumlambda sum

100

105

110

115

120

125

130

135

140

D
E
_
r
a
n
d

D
E
_
b
e
s
t

D
E
_
c
t
b

D
E
R
L

D
E
R
L
2

N
S
D
E

T
D
E

S
A
C
P
M
D
E

D
E
_
a
d
a
p
t

S
A
C
P
D
E

S
D
E

Figure 5.27, Sum of the lambda achieved for the eleven DE variants over 23 SO problems.

As clear from Figure 14, the number of Σfe moves approximately around the
value 75000 for most of the variants; DE best, DE current-to-best and SDE are
exceptions. This behaviour reflects indirectly the choice of unique CR=0.5 for
the whole basic variants, which implies a common convergence speed till the
loss of diversity inside the population, since this parameter seems to be the most
significant.

However, fe is not meaningful alone: the most important is the sr of the
algorithms (Figure 16); analyzing the seven variants without adaptive schemes
(from DE random till TDE), the best algorithms are NSDE and TDE: they show
high sr, good accuracy and acceptable cpu (Figures 16, 17 and 15). Notice that
NSDE has the same structure as DE random with a randomization of scaling

Case studies

 83

factor F that allows different step length on perturbation, while TDE uses on a
small fraction of population the fitness feedback in order to direct the
perturbation; even if TDE spends less fe than NSDE to converge, the fitness
feedback evaluation takes some cpu time; this behaviour is verified when the
mutation strategy adopts further sophistications. Third for feats in this seven is
DERL, with a good sr and lambda, faster convergence speed in terms of fe but
with more cpu time consumed: in fact it uses in every mutation fitness feedback,
increasing the computation time. DERL 2 has poor performances compared with
the others algorithms; it has low accuracy and the worst sr. DE best reflects its
greediness in fe and cpu, the smallest in the test, compensated by less sr and
lambda practically equal to DE random; as expected, this practice is faster but it
should be used only in not complex problems: this condition is not often present;
the risk is to lost the global optimum. The last basic variant of the seven is DE
current-to-best: it has the lowest convergence speed, spending more than
160000 fe for all the test, the double than the others. On the other hand the
accuracy is the highest, but the sr is unsatisfactory compared with NSDE, TDE
and DERL. The classic version, DE random, is collocated on the average for
performances, with more success than DE best, DE current-to-best and DERL 2,
with good value for cpu and acceptable lambda. Its lack is on the setting for
complex problems; this lack could be overcome using the improved version like
NSDE, TDE and DERL, or an adaptive/self-adaptive algorithm.

In fact, the best variant on the whole test is SACPDE, with the highest success,
high lambda and high convergence speed in terms of cpu and fe comparable
with the others. Also SACPMDE, the modification of SACPDE, has good
performances, with the second sr of the test, good accuracy (lambda) but really
high cpu time, especially because the fe is comparable with the other variants:
this is due to the amount of fitness information necessary for its mutation
procedures. Anyway it is a reliable version. SDE is an interesting self-adaptive
possibility, since its high convergence speed both in fe and cpu , with good sr
and sufficient accuracy. DE adapt, that uses only scaling factor adaption rule,
reflects the low sensitivity of F in this test: lambda and sr are insufficient, no
improvements respect DE random in terms of fe and bad cpu are achieved. It is
important to notice the setting of these adaptive schemes has low sensitivity on
sr and lambda , as reported Table 8 for SACPDE:

Table 5.9, Summed results of the measures of the optimization by SACPDE on 23 SO problems
with two different settings.

SACPDE Σfe Σcpu Σsr Σlambda
Fc=0.1 CRc=0.1 70370 5.0901 2180 135.3

Fc=0.25 CRc=0.25 68244 4.9027 2176 131.3

Chapter 5

 84

The new setting, which enhances the F and CR evolution during the evolution
of the population, increases slightly the convergence speed and the sr ,
diminishing a little the accuracy; since the range for these two values is between
0.05 and 0.3 and our test uses coherently the literature recommendation, the
superiority of this technique is proved over its setting.

As last comparison for SO, DERL with appropriate CR=0.1 and a mixing

between self-adaption of SACPDE and NSDE scaling factor selection are tested
on the 23 benchmark problems, called SACPDE-NS. The results are reported in
Table 9.

Table 5.10, Summed results of the measures of the optimization performed by DERL and a
mixed variant SACPDE-NS on 23 SO problems.

DERL Σfe Σcpu Σsr Σlambda
F=0.5 CR=0.1 71931 7.3756 2228 144.5

SACPDE-NS

Fc=0.1 CRc=0.1 NS=0.5 64410 4.5964 2160 135.3832

The first is the most reliable result obtained by correct setting of the first seven

variants (NSDE and TDE with low CR don’t reach these performances) in terms
of sr and lambda , with a little payment in convergence speed. This result is
followed by DE random with CR=0.1 (see Table 3) and SACPDE (Tab 8). Of
course this result is driven by tuning found by previous evaluations.

The second in Tab 9, called SACPDE-NS (SACPDE with Neighbourhood
Search) has the NS scaling factor randomization (Gauss and Cauchy random
variables) instead the provisional uniform randomization, which assures more
generality. The improvement is in the accuracy achieved but especially in the
convergence speed compared with SACPDE (Fc=0.1, CRc=0.1,
Fmin=0.1).

5.1.2 Multi-objective optimization

This case study uses three benchmark problems, ZTD1, ZTD2 and ZTD3

proposed in [60] and reported in Appendix B, used often as comparison in
literature between algorithms for multi-objective optimization. These three
problems have high dimensionality (n=30) and a really restrict domain, defined
between 0 and 1. Farther, the Pareto front is practically on the lower border of
the domain, so, even the approach to the real solution is a difficult task for many
EAs in multi-objective optimization.

Case studies

 85

The features of these problems are thought to demonstrate the exploring
abilities and the accuracy achieved by the algorithms, even in an artificial
complex scenario as these three benchmark problems.

In this case study the algorithms tested are GA-toolbox, MOGA and MODE.

The algorithms’ setting

The GA-toolbox setting is similar to the setting already proposed in Section
5.1.1 for the single-objective optimization, with some difference in stopping
criteria and some shrewdness necessary since the multi-objective nature of the
problem:

The setting used is:

'PopInitRange' [low;up]
'PopulationSize' 200
'EliteCount' 30
'CrossoverFraction' 0.7
'Generation' 500
'ParetoFraction' 1

The benchmark problems tested have 30 dimensions, so the initial ranges low
and up are two arrays of 30 values each one. The lower bound is an array of
zeros and the upper one is an array of ones. The population size is increased,
since the difficulty of the problem, and the number EliteCount is set as the
dimensionality of the problem. The crossover, ever single-site, has probability
0.7 and the maximum number of generations is 500. This is the only stopping
criterion for the multi-objective optimization with this tool. The value
ParetoFraction represents the fraction of the final archive respect to the
population size. This value is one, since the desired number of non-dominated
solutions is the same as the population size.

A default option for the multi-objective version of the tool is the distance
measure applied to the solutions on the main archive: this option allows the
removing of non-dominated solutions too close in terms of fitnesses if the
archive is full. This practice should increase the diversity and the density of the
Pareto front obtained, moving the exploration toward regions less dense of
solutions.

The MOGA setting is similar to the previous one for GA-toolbox:

PopInitRange [low;up]
PopulationSize 200
CrossoverFraction 0.7
Generation 500
ArchiveDim 200

Chapter 5

 86

EliteFraction 1/4
w1 0.3
w2 0.7

The elite fraction is the fraction of solutions from the archive used for the

elitism concept. The archive dimension is set equal to the population size, in
order to compare the results with the same number of non-dominated points.

Further, the algorithm has a weighting option for the multi-objective
optimization: the objective function with higher weight has more attention on
the optimization rather then the others. In our case the two weights are set
toward the second objective function, more difficult to optimize for the three
benchmark problems.

In multi-objective options, MODE uses three of the eleven variants

allowable for the single-objective optimization. These three variants work
also for multi-objective options, since they do not require fitness feedback
information. The MODE-III version implemented into this tool does not use
ranking during the evolution, so the superiority concept cannot be used for
this situation. The selection of chromosomes for reproduction could be made
only choosing randomly from the population, feature present only in three
variants:

� DE random
� NSDE
� SACPDE

The population size and the number of maximum generations allowable are

the same as for GA-toolbox and MOGA. The stopping criterion involves only
the maximum generations, as for the others.

Population size NP 30
MAXGEN 500

The basic setting for the parameters of any variant is the same as for single-

objective optimization presented in Section 5.1.1:

1. DE random F=0.5, CR=0.5

2. NSDE CR=0.5, NS=0.5
3. SACPDE Fmin=0.1, Fmax=1, Fc=0.1, CRc=0.1

Some sensitivity, as for the single-objective optimization test, are tried on

DE random and NSDE. Also for the multi-objective optimization the

Case studies

 87

parameters play an important role in the convergence speed and accuracy,
especially for these complex multi-objective problems.

SACPDE does not need sensitivities, since in the single-objective
optimization its behaviour is practically independent on the parameters (see
Table 5.8).

Measures

Two intuitive measures for the Pareto front are the computation time and the
number of non-dominated solutions in the last archive. For the GAs algorithms
the number of solutions is a parameter of the optimization; for MODE this
value becomes significant, since it represents the goodness of the mutation
technique used. The higher this value (the maximum is the population size), the
higher is the ability of the variant to attain the Pareto front.

In order to compare the Pareto fronts obtained by the algorithms, a direct
comparison between solutions is performed as in [54].

Figure 5.11 shows schematically the concept of the comparison: two Pareto
fronts are obtained (red-circle and blue-square) by two algorithms; the black-
solid line is the overlap of the fronts and in this case no front dominates the
other. Anyway, a fraction of the frontier marked with circles dominates the
square one on the left side of the plot, while a fraction of the latter dominates
the first one (right side of the plot). So, for anyone frontiers, one can determine
the fraction of the dominated solutions and the fraction of the dominant
solutions with respect to the other frontier.

Figure 5.28, An example of two Pareto front achieved. The black-solid line is the
overlap of the two frontiers. The solutions marked with circle dominate the square one
only on the left side of the graph, whereas the latter dominates the first on the right.

Chapter 5

 88

Results and sensitivities
As first comparison we report the multi-objective optimization results on the

benchmark problem ZTD1 (see Appendix B) for GA-toolbox, MOGA and
MODE with the implementation of DE random. Figure 18 plots the Pareto front
obtained with the three algorithms.

Figure 5.29, MO performed on ZTD1 benchmark problem with MODE, GA-toolbox
and MOGA.

The inability of the two GAs are clear. No solutions from their final archive
reach the true Pareto front. The complexity of the problem does not allow to the
two GAs neither a significant approach to the true Pareto front. The algorithm
MODE with the DE random implementation not tuned is very close to the front.

The direct comparison is not applied in this case, since there is no need to
evaluate numerically the goodness of DE.

The optimization is then performed on ZTD2 problem (Appendix B). Figure
19 plots the solutions found by the three algorithms. MODE is another time run
with DE random variant.

Case studies

 89

Figure 5.30, MO performed on ZTD1 benchmark problem with MODE, GA-toolbox
and MOGA.

Also this time the two GAs fail completely in the search of the Pareto front.

Also for this test the attainment of MODE is much better, but the Pareto front is
not reached.

Neither here the direct comparison is used.
These two problems, in fact, are really complex, since the high dimensionality,

and the Pareto front lays on the boundary. After that, the nature of the problem
forces the usage of real-encoding: DE is properly thought for these situations,
while GAs work much better on quantized problems. The superiority of DE, at
least in these situations, is undoubted. Some significant help is given by the
specific repair rule adopted. The bouncing-back approach for satisfaction of the
boundaries is particularly well-chosen for these problems.

ZTD3 is more complex than the previous two ZTD1 and ZTD2, and then the
two GAs, GA-toolbox and MOGA, are not used in the comparison for this
benchmark problem.

MODE in this complex situation is highly helped by the shrewdness of the
bouncing repair rule, since the Pareto fronts for ZTD1, ZTD2 and ZTD3 are on
the boundary. Anyway, the two GAs fail completely the search also for the two
simplest problems ZTD1 and ZTD2 respect to ZTD3.

A comparison is made between the three MODE variants: DE random, NSDE

and SACPDE. Table 5.10 reports the searching times and the number of non-
dominated solutions found in the last population for these three variants on the
three problems tested: ZTD1, ZTD2 and ZTD3. Remember that MODE does not

Chapter 5

 90

use an archive for non-dominated solutions, but it carries on the entire
population to the Pareto front: at the end, the dominated solutions are removed,
skimming the population. For this reason only with high number of generations
the entire population should achieves the front.

Table 5.11, Cputimes and number of non-dominated solutions found by the three
algorithms in the three tests ZTD1, ZTD2 and ZTD3 at the end of the searchs. The
initial population number of MODE is NP=200.

 DE random NSDE SACPDE

Cpu 6.72 s 7.28 s 6.76 s
ZTD1

N 175 124 194

Cpu 6.59 s 7.25 s 6.85 s
ZTD2

N 178 118 195

Cpu 6.61 s 7.54 s 6.78 s
ZTD3

N 147 96 167

Figures 20, 21 and 22 plot the solutions of the three MODE variants for the three test

problems.

Figure 5.31, DE random, NSDE and SACPDE Pareto fronts obtained in MO for ZTD1.

Case studies

 91

Figure 5.32, DE random, NSDE and SACPDE Pareto fronts obtained in MO for ZTD1.

Figure 5.33, DE random, NSDE and SACPDE Pareto fronts obtained in MO for ZTD1.

All the three variants have a good approaching to the Pareto fronts respect to

GAs, but SACPDE outperforms the other two variants, reaching the Pareto front
with more accuracy; a direct comparison is made between the three fronts
obtained. So, a 3x3 table is reported: the variant present at the beginning of the
row is compared with the variant on the first cell of the column. Then, for each
intersection between rows and columns, two cells are present: the first contains

Chapter 5

 92

the percentage of solutions of the row-variant that dominates the column-
variant’s ones, the second contains the percentage of solutions dominated by the
column-variant.

From Table 5.11 the superiority of SACPDE respect to the other two variants
on the ZTD1 is deducible: SACPDE outperforms DE random and NSDE with
the 61.78% and the 96.34% respectively of its front respect the two variants.
Furthermore, no points of SACPDE are dominated. Between the other two
variants, DE random results to be better than NSDE, since no points of the latter
dominate some solution of the first.

Table 5.12, Direct comparison between the three variant tested of MODE for ZTD1. The variant
on the line is compared against the variant on the column. The first value in the intersection is
the fraction dominant solutions of the row against the column, the second is the fraction of
dominated solutions.

 DE random NSDE SACPDE

- 94.05% 0%
DE random

- 0% 62.16%

0% - 0%
NSDE

90.08% - 92.56%

61.78% 96.34% -
SACPDE

0% 0% -

Farther, the number of final non-dominated solutions of SACPDE is sensibly

greater compared with the other twos, and the cputimes are slightly greater than
the DE random’s ones.

Apparently, the problem for DE random and NSDE is the parameters’ setting.
Sensitivities are then reported: as experienced in single-objective optimization,

the CR is the most significant parameter, especially for complex problems as
these ones. Furthermore, NSDE has an interesting ability to explore the
neighbourhood: manipulating the NS parameter, the search could be redirected
on the neighbour, diminishing the probability to have high length for the jumps.

Then, DE random and NSDE are tested with CR=0.3. Table 12 reports the
number of non-dominated points found in the last population for the two
variants on the three problems and the percentages of dominant and dominated
fraction of solutions over the other variant. The diminishing of CR increases the
number of solutions in the last population, both for DE random and NSDE. As
for single-objective optimization, the diminishing of this parameter is beneficent
for complex problems.

Case studies

 93

Table 5.13, Number of final solutions in the last population and direct comparison between the
two parameters’ dependant variants of MODE: DE random and NSDE. The values are reported
for the three benchmark problems.

 ZTD1 ZTD2 ZTD3

 N Comp. N Comp. N Comp.

65.66% 74.87% 64.5%
DE random 199

0%
199

0%
169

0%

0% 0% 0%
NSDE 178

60.11%
174

73.56%
120

64.17%

Now, with low CR, DE random becomes better than SACPDE, as reported in

Table 5.13 for ZTD1. The percentage is small, but no solutions of SACPDE
dominate solution achieved by DE random.

Table 5.14, Direct comparison between DE random with a tuned setting (CR=0.3) and the
SACPDE variant. The values reported are referred to ZTD1.

 DE random SACPDE

- 21.72%
DE random

- 0%

0% -
SACPDE

19.90% -

Nonetheless, the results with NSDE are still unsatisfactory respect to the other

two variants: a tuning on NS is made, leaving CR=0.3 and imposing NS=0.8, so
increasing the neighbour search ability of the algorithm in these problems with
tight domain. A new direct comparison is then made with the results previously
obtained for DE random with F=0.5 and CR=0.3.

Table 5.15, Number of final solutions in the last population and direct comparison between the
two parameters’ dependant variants of MODE with an opportune setting: DE random (F=0.5,
CR=0.3) and NSDE (CR=0.3, NS=0.8). The values are reported for the three benchmark
problems.

 ZTD1 ZTD2 ZTD3

 N Comp. N Comp. N Comp.

27.14% 29.30% 49.7%
DE random 199

0%
199

0%
169

0%

0% 0% 0%
NSDE 191

26.65%
194

26.80%
162

43.83%

Neither this time NSDE outperforms DE random, but the numbers of final

solutions on the three tests are now comparable and the percentages of
dominated solutions are sensibly decreased. Only for ZTD3 these percentages
remain high.

Chapter 5

 94

5.1.3 Conclusions

Concluding, the usage of adaptive/self-adaptive algorithms is recommended

for untrained users, both in single-objective and multi-objective optimization,
since the easy setting and their good abilities in most cases, due to the intrinsic
flexibility. They use the basic recombination of DE random, reaching anyway
high performances, symptom of the sensitivity of this powerful recombination
on the setting parameter: mixing reproduction greediness with adaptive scheme
doesn’t give the expected improvements, since the greediness is introduces just
to overcome the lack leaved by the specific setting.

SACPDE is the most attractive variants proposed in the tool MODE, since its
intrinsic flexibility and ease on the setting. Anyway, the performances of this
variant could be outperformed by other variant opportunely tuned.

However, the usage of modifications in reproduction phase is reserved to
expert users, especially for high dimensionality, where their performances could
reach the adaptive ones, since the difficulty of the setting. Greedy
sophistications improve the performances but needs unavoidable further
information and knowledge on the strategy characteristics and behaviours. The
CR parameter is the most influent, especially for complex functions, and low
values (CR<0.3) assure reliability of the optimization, while high values
improve the convergence speed, impoverishing the accuracy and the success.
The population size doesn’t play any meaningful role and F has low impact on
the results in most cases. The common value is 0.5, but a uniform randomization
F~U(0,1) could be done without any strong implication.

5.2 A real case study. Giant oil field integrated production asset:
a highly constrained optimization for productivity

This section presents the optimization on a real case of an integrated asset for
production of hydrocarbons from a giant oil field composed by a gathering
system coupled with a process plant.

The optimization, performed by a tool, equipped with Differential Evolution,
specifically developed inside the ENI E&P Prod division, takes into account a
production line of the entire system with a difficult management, since the
presence of constraints both in the gathering system and the process plant. The
integration between the two environments of the same asset represents one of
the most common difficult tasks inside the oil companies’ production
management.

Case studies

 95

5.2.1 Introduction

The optimization is a difficult task for real cases, especially when the number
of variables and constraints is high and the interaction between them is not
completely clear. The uncertainties in real cases are often significant,
compromising the analytical search of the optimum. Several instruments are
offered to the industries, like simulation programs as more reliable, which
increase the understanding of the models built to represent the reality. Anyway,
the correct variable’s setting for a model is often far from the mind’s ability to
obtain the optimum. Evolutionary algorithms represent a good choice,
especially when classic optimization methods fail, because of the high
complexity of the model or the presence of severe conditions.

Differential Evolution, a particular type of evolutionary algorithm, has been
used to build an optimization tool for oil industry management. This algorithm
is chosen since its reliability and rapidity to find the global optimum.

The Section 5.2.2 explains the general description of the real cases within this
tool could be utilized, whereas Section 5.2.3 depicts the real case under
investigation. Section 5.2.4 gives an overview of the tool properties while
section 5.2.5 goes deep into the algorithm’s strategies and shrewdness. Section
5.2.6 collects and explains the results.

5.2.2 Problem’s Generalities

The task of this optimization is to find the correct setting of a specific
integrated asset of a giant oil field in order to enhance the oil production. The
production system under the Prod division administration and within it could
work is composed by two different environments:

1. the gathering system, that starts from the wellhead till the separators’
collectors;

2. the process plant, that takes the product fluids and processes them in
order to reach the required specifications.

These two environments represent the typical production chain managed by
the production division of an oil company. Figure 5.19 shows the entire
production system for an oil field.

Gathering system

The gathering system is a complex scenario within the number of valves,
pipelines, pumps, compressors, separators, test separators and collectors are
joined in order to create a sufficiently flexible and operational network to carry
the reservoir fluids to a storage or processing area. Actually a complete
production system consists also of a reservoir and a well (see Figure 5.19),
connected with equipment at the top of the producing wellhead, called
“Christmas tree”, used to control the flow. The gathering system starts from

Chapter 5

 96

here till the final separators or collectors and comprises all the other wells
connected to the network.

As known, the driving force for an oil or gas production system is usually the
pressure present in the reservoir: the pressure difference (in Figure 5.19 the
pressure losses have an arrow from lower to higher pressure, while the flow has
inversed direction) drives the reservoir fluids into the wellbore, and from here
through the tubing till the wellhead. The Christmas Tree is equipped with
safety and control valves; after it usually a surface choke valve is present: this
equipment is used to control the flow rate. The inlet choke is the first valve
before the network: form here till the final collector pipelines are installed in
order to transport the fluid. Inside this portion of gathering system, pumps or
compressors could be installed, if driving force is necessary.

Figure 5.34, The production chain for a hydrocarbon field.

The inlet choke valve is the control equipment of the production system:

adjusting the choke size it’s possible controlling the flow. For example, a
closing of the choke valve causes a back-pressure in the network, increasing
the flowing bottom-hole pressure FBHP (the pressure at the beginning of the
riser tubing), diminishing the driving force for the reservoir fluid; since the
reservoir pressure is constant, the higher the FBHP, the lower the pressure drop
between reservoir and wellbore and the lower the flow rate. The inlet choke
doesn’t have a completely direct control on the flow rate, since it is connected
to a network: a choke opening on another valve could change the network
pressure in some nodes, reflecting this pressure change upstream on the other
lines or nodes. That means the pressure drop on a choke valve is not the unique
variable that affects the flow rate from the reservoir, but the entire network
layout and the other flow streams influence the productivity. This complex

Case studies

 97

scenario makes difficult a complete understanding of a production asset and its
management.

A second control item in the gathering system is the end pressure of the
network (usually the separator pressure). The higher this pressure, the lower is
the potential driving force available and lower is the production. Anyway also
in this case the behaviour is not directly proportional to the end pressure: a
diminishing of it increases the production but at the same time also the pipeline
pressure losses increase.

Nevertheless, the choice of this end pressure is not a banal task: even if it
seems counter-productive, this pressure value is usually high. The reasons are
several: the main one is the multi-phase nature of the reservoir fluids. These
fluids commonly are a mixture of hydrocarbon fluids and dissolved gases,
water, and non-hydrocarbon gases like H2S, CO2 and N2. The amount of
dissolved gas is a pressure dependant variable; hence, with the diminishing of
the pressure the amount of free gas increases, altering the flow rate in the
pipelines. Moreover, the gas is usually a secondary product in oil field
production assets, since its lower economic value. Other relevant reasons
depend on the process plant layout.

Process plant

When the main product is oil, as in our case study, at the end of the gathering
system a process plant is installed. The main purpose of a process plant is to
treat the reservoir fluids in order to reach the technical specifications for the
sale or storage. Since the multi-phase nature of the fluids, several products
could be produced and processed. Anyway, also the gas fields need a process
plant in order to treat, clean and sweeten the gas from sour gases like CO2 and
H2S. The end product specifications may be defined by a customer, by
transport requirements, or by storage considerations. Table 5.15 shows typical
specifications and conditions for sale.

Table 5.16, Typical specifications for a process plant released fluids.
 True Vapour Pressure TVP <83 kPa @15°C
 Base Sediment and Water BS&W <0.5% vol
 Temperature >Pour point
 Salinity (NaCl) <70 g/m3
 Hydrogen Sulphide (H2S) <70 g/m3
Gas Liquid content <100 mg/m3
 Water dew point at -5°C <7 Pa
 Lower Heating Value LHV > 25 MJ/m3

 Composition CO2, N2 and H2S National spec.
 Delivery pressure and temperature Transport spec.
 Wobbe index <52 MJ/m3

Chapter 5

 98

A basic process plant has one, two or three separators as conjunction between
gathering system and plant operation units. The separators could be two or
three-phase: the first type splits gas from the mixture oil-water, the second
typology divides the three phases into three distinct lines: gas, oil and water.
The number of separation stages is a design variable of a process plant. A two
stage-separation is the common disposition. The reason is economic: one stage
has low installation costs but low efficiency in oil-recovery; increasing the
stage number, the oil production increases but also the initial costs increase.
Three stages usually are not justified, so the two-stage is the typical layout.

After the separation unit the gases released are compressed (the second
separation is performed at lower pressure than the first) and sent to the gas
treating section. The units of the gas treating section are the acid gas removal
unit, the dehydration unit and the condensate recovery unit. The first has to
remove CO2 and H2S, using usually solvents, the second one has to remove the
water present in the gases in order to prevent the formation of a free water
phase and to inhibiting the hydrate formation, and the third has to recover the
heavy components from the gas that could condensate in the transportation
phase. This last unit adjusts the Wobbe index of the sale gas.

On the other hand the separated oil is sent to the stabilizer (together with the
removed gasoline) in order to remove completely the light gases like methane
and ethane dissolved in the liquid phase: the reason is that they have high
tendency to flash in the storage tank, decreasing quickly the partial pressure of
the other gases dissolved. This rapid change in partial pressures increases also
their tendency to flash to vapours, decreasing the quality of produced oil. The
aim of the stabilization process is to increase the amount of intermediate (C3 to
C5) and heavy (C6+) components in the liquid phase by a quasi-complete
methane and ethane removing. The oil stabilized is then cooled and sent to the
storage area. The TVP specification is reached managing the stabilizer
operation conditions.

Figure 2 shows a classic scheme for an oil process plant.

Case studies

 99

Figure 5.35, Simplified scheme for an oil process plant.

Several considerations could be done in a process plant. The design and

operation of it is not easy, even if the plant has typically the same classic layout
as previously described. The main difference may come from the fluid
composition, the amount of gases dissolved, the sourness of them, the water
and sulphur content and so on, that influence the plant management.

5.2.3 The case study

The asset under investigation has the previously described properties and
layout. It is a specific line of a great giant oil field. The objective of this
optimization is to enhance the oil production for this line, since the amount of
released gas does not affect the economics of the field as the oil.

The line has 8 productive wells, divided in different clusters: the network has
two high pressure branches connected to three and four well for each cluster
(see Figure 5.21). The last one is separated and connected to the low pressure
network. This scenario is complicated by the zone’s orography, because the
wells are drilled on a higher level respect to the process plant, and the pipelines
have latch and consequently complex multi-phase flow behaviour; the resulting
pressure losses are functions of the liquid content on the pipelines.

The process plant has two separation stages; the high and low pressure
networks are connected to these two item, so the high pressure separator takes
the highest fraction of oil from the network; the low pressure separator takes
the oil coming from the first separator and the oil coming from the low
collector (Figures 5.20 and 5.21). In fact, in the plant there are three separators:
one is a two-phase type and two are three-phase separators; the two-phase
separator is used as slug catcher and it is posed at the beginning of the plant,
connected to the high pressure collector. Between the two-phase and the first
three-phase separator there are only 1-2 bar of pressure difference: practically
they represent together the first separation stage. Each well has its Inlet choke

Chapter 5

 100

valve. The process plant has one stabilizer, divided into two sections coupled in
the same column, one acid gas removal column, feed by MDEA regenerated in
another column, a dehydration unit with glycol and a condensate recovery. The
gases are compressed two times: the first from the separation and stabilizer
pressure till 30 bar approximately and then sent to the treating section; the
second after the condensate removal till the transport line pressure required, 70
bar.

Figure 5.36, The gathering system for the real case study.

Each well has a different fluid composition and consequently different

behaviour. The amount of gas present in the fluid is represented by the GOR
[Sm3/Sm3] (Gas-Oil-Ratio), defined as the free gas flow over the oil flow at
standard conditions. This number is significant in the production management,
because a high amount of gas released in the network could cause unstable
flows.

Another significant characteristic is the amount of acid gases present in the
fluid: CO2 and H2S could provoke corrosion in the pipelines, even
ungovernable, and make necessary an efficient acid removal unit in the process
plant in order to obtain the sale and safety specifications.

The problem of this asset is the coupling of the fluid characterizations with
the process plant. The initial design was made using different GORs and
compositions from the actual ones, since work-over, acid cleaning and

Case studies

 101

recompletions are made in some well. Table 5.16 shows the critical properties
of the wells’ fluids.

Table 5.17, GOR and sour gas content of the reservoir fluids.
 GOR H2S CO2

 [Sm3/Sm3] %vol %vol

W1 516 2 24.3

W2 428 2.77 9.65

W3 638 1.21 38.9

W4 250 0.2 3.6

W5 155 0.15 3

W6 150 0.16 3

W7 117 0.15 2.66

W8 160 0.1 3.1

The most significant problem of the plant is the acid gas sent to the acid

removal unit: since the wells from reservoir 1 (W1, W2 and W3) have high
fractions of sour gases and high GOR values, their productions limit the
capability of the plant. Producing from reservoir 1, the amount of gas incoming
in the plant increases; besides, this gas is really acid and exceeds the maximum
design of the treating section: the amount of CO2 in particular could degrades
the solvent action in the unit. For this reason, the cluster of reservoir 1 has
reduced production compared with its potential production, and the cluster of
reservoir 2, with lower GOR and sour gases content, covers a high fraction of
available production.

Anyway, the almost closing of the reservoir 1 cluster is not the optimal
solution, since some profit margin exists: a slightly different plant parameters
setting and a controlled network management could give some advantage.
Besides economic considerations, a decreasing of the well’s production on the
cluster of reservoir 2 elongates its production life. In fact, some constraints are
present also for the well production: the bottom-hole-pressure FBHP must to
stay over a specified value related to the reservoir. This value is usually the 70%
of the static reservoir pressure. This constraint reduces the possibility of a
premature well-dead and reduces the sand production into the wellbore,
reducing the fouling in the separators.

Speaking about the reservoir 3, the oil production is relatively small,
approximately less than 10% of the total oil production; furthermore, the GOR is
smaller with respect to the wells of cluster 1, making its regulation irrelevant in
the optimization.

Concluding, in this situation the plant seems to be the constraint of the asset,
because of its limitations. The controls of this asset are the inlet choke valves,

Chapter 5

 102

the separator pressures, and some degree of freedom in the process plant, like
the pressure difference between the slug-catcher and the first 3-phase separator,
the conditions of the stabilizer column (head pressure and reboiler temperature)
and some outlet temperature of heat exchangers. The treating section, since its
complexity, is leaved untouched by this integrated optimization and managed in
a second time.

5.2.4 Integrated optimization

The two environments are modelled by two different programs, which
calculate with high accuracy the results of a specific setting in each
environment.

The necessity of a tool which integrates the two environments is driven by the
difficulty to have a complete view of the entire asset. In fact, it is simulate by
two programs. Each simulation program has an internal optimization tool, but
separated with the constraints of the other environment; in particular, the
optimization of the production from a network point of view cannot include
problems of the treating section of the process plant but it could be influenced
only by general considerations (e.g.: maximum gas rate, maximum H2S). On the
other hand, the constraints’ satisfaction in the process plant is highly dependant
on the input hydrocarbon mass flow rate, given by the network environment. It
is clear the tight interaction between these two systems: the Differential
Evolution gives some advantage in this optimization, since it’s an external
optimization tool that finds the variables setting using the evolution strategy of
the survival of the fittest, allowing at the same time a flexible constraints setting.

Anyway, this tool could also work only on the process plant environment. This
option does not take the gathering system as part of the system. The algorithm
then works only on the HYSYS variables.

Gathering system simulation

The gathering system is modelled by a Petroleum Expert product called GAP,
from the IPM suite, commonly used in the Eni divisions. In this program each
well needs complex specifications for the reservoir fluid extracted, the
performance, layout and length of the perforated well and the length of the
tubing: the combination of these characteristics defines the well production
performance to the surface controlled by the choke valve regulation. In order to
solve the network an end pressure point, the separator pressure, must be set.
Running the simulation, the programs returns the oil, water and gas produced by
each well, the pressures in each node and the pressure losses in the pipelines.

Process plant simulation

The process plant environment is modelled by an AspenTech product,
HYSYS, equipped with several thermodynamic packages and several operation

Case studies

 103

units like separators, column, absorber, reboilers and heat-exchangers. The
accuracy of this program is high, but the program management is not banal. This
tool is one of the most spread simulation programs used in the oil and chemical
industries. It has also logical controls and adjusting operators that give some
automation to the simulation.

The integrated optimization tool

Since the necessity of accurate solutions, these two simulation programs are
used in our evolutionary algorithm: the tool proposed uses Differential
Evolution as basis for the optimization, and the two programs simulate each
solution explored by the algorithm; practically they take as input the
chromosome’s variables, they simulate the solution proposed and returns the
fitness value to the main algorithm: the implementation of this tool is only for
single-objective optimization, since usually in oil industry the objective function
to maximize is the profit of the asset. If many products are the output of the
processing phase, the aggregate planning method is adopted in order to define a
unique fitness function. The main algorithm is written in MATLAB, a
Mathworks product. The choice of MATLAB is driven by the possibility of it to
create a connection and an information crosstalk with the other simulation
programs, which are equipped with coherent external interfaces.

The tool is then composed by the interaction of three programs:

1. MATLAB
2. GAP
3. HYSYS

The first plays a manager role of the variables, solutions and operations for the
search of the optimum. It works as an automated operator, following the
population based search of the evolutionary algorithms: it computes each
population, it combines the solutions in order to obtain new perturbed solutions,
it compares the children with the parents and then it selects the best in order to
allow the evolution of the population. This process permits the attainment of the
optimum of the integrated asset, since the two simulation programs are used as
fitness evaluation: the manager MATLAB find, combining chromosomes, a set
of variables, and it follows the production chain imposing in GAP its specific set
of variables, running the simulation and taking the results of the gathering
system as input for the process plant simulation. Then MATLAB sets the
required variables in HYSYS and it runs the process simulation; the final result,
in that case the oil production, together with the constraints of the two
environments, are read and processed by MATLAB. This operation is repeated
till a stopping criterion is met. Figure 4 depicts this cycle.

The structure of the tool is flexible, adaptable to many cases of the oil
productivity management. An classic interface through spreadsheets of the

Chapter 5

 104

simulation programs allows an easy setting for variables and constraints with
their boundaries.

Since the automation of this tool, any further human interaction with the
simulations must be removed; the correct convergence of each solution is
controlled by MATLAB, but the simulation files needs shrewdness like internal
logical settings.

Figure 5.37, The interactions between the three programs: MATLAB, GAP and
HYSYS.

Variables, constraints, results and interactions

This optimization comprises 14 variables together:
� 8 inlet choke imposed pressure losses
� 2 separator pressures
� Pressure difference between slug-catcher and first separator
� Stabilizer head pressure
� Stabilizer reboiler temperature
� Inlet temperature of the bottom stabilizer section

The two separator pressures are shared variables, since the separators are

included in both environment and represent the conjunction. In this integrated
optimization the separator pressures become variables, since in the separated
one these values are a user defined conditions.

Some of these variables have defined boundaries:

Table 5.18, Variables’ boundaries
 Lower Upper Unit

HP separator 20 40 [bar]

LP separator 12 18 [bar]

∆P slug-sep 0.5 2 [bar]

Stab head P 7.5 9.5 [bar]

Stab reboiler T 160 190 [°C]

Stab bottom inlet T 65 120 [°C]

Case studies

 105

The other variables, the pressure losses through the choke valves, have only
the lower boundary of 0, which means no control on the well, leaved completely
opened. The upper boundary for this type of variable is not unique, since the
pressure loss across the valve is not a direct control on the flow rate but it’s
influenced by the current network’s pressure profile.

The constraints of the system, as previously anticipated, are both in the

gathering system and in the process plant.
In the gathering system a required minimum value for each FBHP is related to

the sand production and the life of the well: working over these values is
recommended and not imposed. Anyway, for this optimization all the
constraints should be satisfied. Table 5.18 reports these values, which are the
70% of the reservoir pressure layer from where they are producing.

Table 5.19, The minimum FBHP allowable

 FBHP min [bar]

W1 226.5

W2 226.5

W3 227.0

W4 217.6

W5 211.8

W6 221.0

W7 214.9

W8 209.4

The rest of the constraints are referred to the process plant. As specification
design, the plant has maximum oil, gas and water capabilities defined as inlet
values. After them, a significant constraint is the gas flow sent to the treating
section, in particular the acid gas removal, expressed in actual volume flow, a
pressure dependant property: since in the plant the low pressure compression
unit carries the gases released from the low pressure separator and the stabilizer
till the pressure of the high pressure separator, the setting of the latter influences
deeply this constraint. The higher this pressure, the higher is the mass flow that
passes through the treating section for a defined volume flow. Another
constraint affected by the acid removal section is ratio between the CO2 and H2S
fraction of these gases: over the specified value the unit doesn’t work as
required, since the high amount of CO2 degrades the solvent action in the H2S
removal. Other two additional constraints could be the specifications of the
Wobbe index and TVP: these depend respectively on the composition of the
inlet fluids and the stabilized reboiler temperature.

Table 5.19 resumes the plant constraints.

Chapter 5

 106

Table 5.20, Constraints and specifications for the plant
 Value Unit

Inlet oil [max] 37750 [bbl/day]

Inlet gas [max] 1450 [kSm 3/day]

Inlet water [max] 2200 [Sm3/day]

Gas flow rate to the
treating section [max]

42 [km 3/day]

CO2/H 2S to the
treating section[max]

21.4 [-]

Wobbe index [max] 52 [MJ/m 3]

TVP [max] 86 [kPa @100°F]

The fitness function of each solution is represented only by the oil produced
by the plant and sent to the storage area, reported in standard conditions. No
intermediate properties affect directly the objective function, the interaction is
only indirect and internal to the system. The evolution should be able to altering
the variables’ setting in order to find the maximum oil production achievable
that satisfies the whole constraints.

5.2.5 The algorithm strategies and properties

The Differential Evolution has many strategies adoptable and several
constraint handling methods. The choice of implemented strategies is driven by
the problem nature and the simulation times necessary to evaluate each solution.

The problem nature indicates that the optimization is mainly concentrated on
the gathering system variables, since the oil production is high sensitive to the
inlet choke opening; the process plant variables have marginal sensitivity on the
fitness function; only in the constraints handling they have some weight,
especially for the maximum Wobbe index and TVP. After that, the objective
function with high probability does not have a complex shape but it could have
some local optimum; this sentence is driven by the know-how in this type of
optimization problems inside the Prod division. The main problem on the fitness
function is the gas flow rate constraint, which excludes some portion of the
domain: in fact, increasing the production, also the gas rate increases. This
constraint affects sensibly the feasible area, especially in the domain of the
well’s cluster of reservoir 1, characterized by high GOR values (516, 428 and
638 Sm3/Sm3 for the three wells) and high CO2 content.

The simulation times depends on the stability of a solution: if the solution is
unstable both in GAP and HYSYS, the estimation-time for a solution could be
10 and 30 seconds respectively, with the possibility to waste approximately 40
seconds for a bad solution, discarded by the algorithm controlling the maximum
error. These times are unacceptable, but continuing in the search, the number of

Case studies

 107

bad solutions diminishes drastically since they lie in an unstable region leaved
soon unexplored by the evolution strategy.

Anyway, in order to obtain accurate solutions, 5 seconds for GAP and 7
seconds for HYSYS are considered necessary, so approximately 12 seconds for
each chromosome is the expected time for each solution’s evaluation. This
feature influences the strategies adopted in the algorithm and the parameters’
setting, especially for the population size and the stopping criteria.

Since very high optimization times are expected, the algorithm must be
sufficiently faster and the same time reliable as possible.

DE strategies implemented

Given the previous features for the simulation of each solution and the
presumed objective function’s shape, the evolutionary algorithm implemented
adopts three fast and reliable strategies already presented in Sections 4.1 and 4.2
and tested in Section 5.1:

1. DE random
2. DE best
3. DERL

These three reproduction methods are chosen chromosome by chromosome

using some heuristic rule implemented in the program.
DE random is the basic mutation strategy originally proposed by Storn &

Price (see Chapter 4).
DE best is the fastest algorithm since its greediness: this strategy speeds up the

convergence when a clear direction is taken by the evolution. The
implementation of a coherent heuristic rule allows avoiding misuse of its feature
that could provoke premature stagnation to a local optimum.

DERL is a half-way strategy between DE random and DE best: it represents
the correct mediation between greediness and randomness, their strengths.

The crossover procedure adopted is the binomial type, recommended in high

dimensionality and highly constrained situations.

Parameters’ setting
These three strategies need only three parameters:

� Population size NP = 20
� Crossover rate CR = 0.5
� Scaling factor F = 0.5

The population size affects the optimization time: since the simulation time for
each solution is significant, a high NP implies an unacceptable wasting time.
This value must be as lower as possible: the dimensionality of the problem is
high, 14 variables, but only 10 of them could be really significant. NP=20 is

Chapter 5

 108

considered a correct setting: the low sensitivity of this parameter in the final
solution has been proved in Section 5.1.

The crossover rate influences the convergence speed: this tool must be reliable
and at the same time as faster as possible. As proved in section 5.1, the lower the
CR the higher the success rate, especially for complex problems: this high
reliability is then counter-balanced by a slow convergence speed. Since the
probable simple objective function shape, low values are not necessary and
0.5 is considered satisfactory for this situation.

The scaling factor selection is not critical, thanks to the heuristic rules
implemented: a randomization around the user-defined value is performed by
them.

The heuristic rules adopted

The heuristic rules adopted in this optimization uses fitness information
processing in order to give flexibility to the evolution. Since adaptive rules need
information about the population diversity, the standard deviation of the fitness
functions of the previous population is used as measure of this diversity: at the
end of each generation, after the selection of chromosomes to carry in the
evolution, average and standard deviation are computed on the fitnesses of the
population, in order to pass these information to the successive population and
manage the exploration.

Since the standard deviation alone cannot be representative for different

situations, the reference measure ρ used by the heuristic rules is the ratio
between standard deviation and average of the fitness:

 ,

,

fit G
G

fit G

σ
ρ

µ
= (5.2)

Where { }1, ,G MAXGEN∈ … .

The heuristic rule for the strategy selection is:

() ()
() ()

1 lim 1 2

, 1 lim 1 2

5 0,1 0.7 0,1 0.5

5 0,1 0.7 0,1 0.5

G

i G G

DE best if and U and U

strategy DERL if and U and U

DE random otherwise

ρ ρ
ρ ρ

−

−

≤ ⋅ ≤ <


= ≤ ⋅ ≤ ≥



(5.3)

Case studies

 109

Where ρlim is a user defined value used also in other heuristic rules and
stopping criteria. This value is set as 0.005 and the recommended values are in
the range [0.002; 0.01]. The two uniform random values selected for this rule
are chosen for each ith chromosome, where { }1, ,i NP∈ … .

Also the scaling factor F for the three strategies is selected following heuristic
rules, in order to randomize the step length of the strategy adopted for each ith
solution; this randomization is inspired by the NSDE approach. The
randomization of F is performed transforming it into a Gaussian random

variable with standard deviation σ and mean µ.
The standard deviation is set as 0.1, while the mean is defined by the

following heuristic rule:

(]
(]

1 lim 1

, , 1 lim 1

1.3 4 0,1 0.5

0.7 4 0,1 0.5

G

F i G G

F if and U

F if and U

F otherwise

ρ ρ
µ ρ ρ

−

−

 ⋅ ≤ ⋅ <


= ⋅ ≤ ⋅ ≥



 (5.4)

Then the final scaling factor is:

() (]
() (]

2
, , 2

, 2
, , 2

, 0,1 0.5

, 0,1 0.5

F i G

i G

F i G

N if U
F

N if U

µ σ

µ σ

 <= 
− ≥

∼

∼

 (5.5)

This rules previously described allow a sufficient diversification in the

strategies: when the diversity in the population decreases, the greediness of DE
best and DERL are used in order to speed up the exploration. Besides, the
randomization of the scaling factor and its increasing or decreasing of 30%
together, modify the step length, permitting at the same time exploration of
unknown regions.

The stopping criteria

The stopping criteria adopted for this tool are three:
1. reaching of MAXGEN = 80 generations
2. the best solution in the population is the same for EQSOL = 10

generations consequently
3. the population diversity is under a specified value 1 limGρ ρ− ≤

The first and second stopping criteria affect the total optimization time: the

first is difficult to reach, but the second is common for this classical situations.

Chapter 5

 110

Of course, this second one doesn’t assure the attainment of the global optimum
but, since the exploration abilities of the algorithm, 10 generations without any
improvement seem a reasonable index of unexpected further evolution. The last
criterion is directly referred to the population diversity: if it is too low, no more
improvement could be done.

Since 20 seconds are approximately expected for each evaluation, the
maximum time foregone is approximately 10 hours, considering a 20% of
simulation failure for instability and unfeasibility of solutions:

 []
max

1
12 20 80 1.2 6.5

3600

individualt t NP MAXGEN

s ind h
gen h

ind gen s

η= ⋅ ⋅ ⋅ =

    = ⋅ ⋅ ⋅ ⋅        
≃

 (5.6)

This value is considered acceptable since the complex scenario under

optimization.

The constraint’s handling
Since the strict constraints, especially referred to the treating section, the

elevated simulation time necessary for each solution and the high possibility to
wasting time for unfeasible solutions, a particular shrewdness is adopted in
order to resolve this highly constrained situation: a parallel population is
introduced in order to store feasible solutions discarded by the selection process.
The particularity introduced exploits the extreme greediness of the selection
process for the next generation adopted by DE: the i th evaluated child, called
trial vactor, if feasible is compared one time only with the ith vactor of the
current population; if the trial one is infeasible it is automatically discarded. This
selection feature excludes any feasible solution that unfortunately is compared
with a fittest solution than it. Anyway, there is some possibility that this child is
better than at least one of the current population; for this reason a parallel
population is created, in order to store feasible solutions discarded by the main
selection process. Of course this population has reduced dimension, comparable
with the main population, and when a feasible solution is not accepted by the
main population, it is compared with the worse of this parallel population: if the
first is better than the latter, it takes its place. This procedure is inspired by the
Preferential Crossover found in DEPC, Section 4.2.3.

This parallel population is than called to offer a feasible solution for the main
selection process when the trial vector just evaluated results infeasible; in that
case a second selection process is made between the ith vector of the current
population and a random selected solution from the parallel set. In that way the
previously spent simulation time to evaluate a feasible solution is not completely
wasted, giving to this initially discarded chromosome a second chance. This
feature gives a good convergence speed to the evolution strategy since it keeps

Case studies

 111

relatively high the fitness level of the population, allowing high transmission of
good properties to the next generations. This shrewdness shows its good
properties after a latent period within also this population has to evolve: after
this period the mean fitness values of the two populations are comparable and
the second selection process keeps high the substitution in the main population.

The choice of this method for the constraint’s satisfaction instead the penalty
method or any repairing method is driven by the problem nature: since the oil
produced grows together with the gas sent to the treating section, with high
probability the optimum lies close to the infeasible area. The penalty method
needs many generations to satisfy the constraint completely and a repair rule is
not recommended, since the variables of the gathering system are not directly
proportional to the oil production: a simple linear combination seems inapt.

5.2.6 Results

The optimization of the integrated asset is performed using three approaches:
1. a separated optimization of the two environments using the GAP

internal optimization with the imposition of maximum gas rate. A
successive optimization for HYSYS by DE is performed.

2. a separated optimization of the two environments using the GAP
internal optimization with the imposition of maximum gas rate and
FBHP limits. A successive optimization for HYSYS by DE is
performed.

3. an integrated optimization of the entire asset (GAP + HYSYS) by DE,
starting far from the optimized network solution.

The first optimization uses the optimization of the gathering system performed

by the internal optimization tool of GAP. This optimization has as task the oil
production increase and only one constraint: the maximum gas rate incoming to
the process plant, since it is the well known problem of the asset. The maximum
value allowable is 1450 kSm3/day (Table 5.19). However, the GAP optimization
manages only the choke opening, since the separators pressures are taken as end
point pressures of the network, considered boundary conditions. This
optimization removes two degrees of freedom to the entire system. The GAP
results become then HYSYS inputs, from which starting the optimization of the
process plant by the tool.

The second optimization uses another time the separated optimization,
imposing the maximum gas rate of 1450 kSm3/day and the minimum FBHPs,
reported in Table (5.18). After this optimization by GAP, HYSYS is then
optimized by the tool.

The third way exploits the integration concept, transforming the two
environments into a unique system: in that case the superimposition of the

Chapter 5

 112

separators becomes unlocked and all the constraints, described in section 3 and
resumed in Tab 5.18 and 5.19, could be satisfied contemporaneously. The
gathering system variables are uniformly generated around the previous
optimized values, while HYSYS is uniformly randomly generated inside ranges.

Tables 5.20 and 5.21 show the results for the three optimizations, the variables

found in GAP for each well and in HYSYS and the constrained properties. It’s
important to notice the FWHP is not a variable but a simulation result, since it
depends on the choke opening coupled with the downstream pressure (see Tab 4
and 5 for the constraints). This value indicates the production state of any well,
the lower the FWHP, the higher the flow rate. Anyway, this pressure value is
connected with the FBHP, a constrained property for the system.

Table 5.21, Variables and results for the gathering system for the three optimization:
GAP optimization with gas rate constraint, GAP optimization with gas rate and FBHP
constraints and optimization by the integrated tool with all the constraints.

GAP variables and results

 gas rate constraint gas rate + FBHP DE integrated tool

∆P

choke
FWHP FBHP Qoil

∆P
choke

FWHP FBHP Qoil
∆P

choke
FWHP FBHP Qoil

 bar bar bar Sm3/day bar bar bar Sm3/day bar bar bar Sm3/day

W1 9.8 58.4 215 647 0.0 53.2 243.4 487 20.6 75.8 237.3 523

W2 14.0 44.0 199 1028 3.0 68.5 233.6 787 33.3 88.6 245.3 697

W3
no

flow
no

flow
324 0 6.8 92.4 274.7 1162 42.0 97.2 270.4 1253

W4 0.1 42.6 169 968 2.0 70.0 220.9 663 37.3 76.7 235.9 562

W5 1.0 55.0 237.5 386 0.0 44.2 252.7 296 0.4 48.5 256.7 272

W6 0.3 45.5 280.4 1434 1.1 56.9 279.6 1468 0.3 56.9 281.5 1392

W7 3.4 38.2 284 291 0.7 45.9 273.9 419 0.6 51.0 292.1 188

W8 0.1 35.0 231 347 0.0 50.8 257.9 210 0.1 36.2 235.1 327

Case studies

 113

Table 5.22, Variables, constraints and results in the HYSYS environment for the
optimization 1,2,3. The separated optimization with the tool in HYSYS environment
conceive the process constraints.

Separators 1 2 3

HP sep [bar] 34 34 38.7

LP sep [bar] 12.1 12 14.75

HYSYS parameters

∆P S1-S2 [bar] 1.7 1.1 1.0

P stab [bar] 9.5 9.5 9.5

T bottom [°C] 186 188 188

T heat-exch [°C] 115 100 80

HYSYS constraints

Inlet oil [bbl/day] 35336 35184.91 36910

Inlet gas [kSm3/day] 1044 1206 1408

Inlet water [Sm3/day] 384 504 257

Gas treated [km3/day] 38.4 42.288 41.9

CO2/H2S [-] 7.6 15 18.1

Wobbe [MJ/m3] 52 50.5 51.7

TVP [kPa @100F] 85 84.3 85.6

HYSYS results

Qoil out [bbl/day] 35019 34249.06 35940

Qgas out [kSm3/day] 1007 1008.24 1145

The optimization times are reported in Table 5.22.

Table 5.23, Optimization times for the three optimizations.

 GAP time HYSYS time

GAP gas rate 45 min 20 min

GAP gas rate + FBHP 1 h 20 min

Integrated tool ~4.5 h

Figures 5.23 and 5.24 show the resulting FWHP of the solutions of the three
optimizations and the oil production achieved. The FWHP is one of the most
important properties of the system from a production point of view, since is
easily measurable.

Chapter 5

 114

0.0

20.0

40.0

60.0

80.0

100.0

120.0

W1 W2 W3 W4 W5 W6 W7 W8

F
W
H
P

[
b
a
r
]

gas rate constraint gas rate + FBHP integrated tool

Figure 5.38, FWHPs resultant from the three optimizations. The values are similar except for
W3, completely closed by the first optimization. This well has the highest GOR in the field’s
line.

Oil storage tank

33000

33500

34000

34500

35000

35500

36000

36500

gas rate constraint gas rate + FBHP integrated tool

[
b
b
l
/
d
a
y
]

Figure 39, Oil production achieved by the three optimizations. The last one is approximately 3%
higher than the first.

As expected the first optimization, performed separately for the two
environments, is not able to satisfy all the constraints: three FBHP are under the
minimum values allowable, in particular for the wells W1, W2 and W4. The W3
is completely close, since its high GOR and sourness. This situation is
completely unsatisfactory, since W3 has high GOR but unfortunately also a
good well performance. The optimization of the HYSYS environment does not
give considerable improvements on the oil production but it works mainly on
the satisfaction of its constraints. At the end the tool applied only to the process

Case studies

 115

environment, at least for this particular case, is not significant for the global
optimization.

The second optimization, that should be more reliable in terms of constraints’
satisfaction, finds a worse solution: the oil production in this case is
approximately 2% less than the previous optimization. As clear from Figure
5.23, the FWHP setting is quite different respect to the previous one, but the
final oil production is diminished. W2 and W4, in the first optimization do not
satisfy the FBHP constraint. With the second optimization these two wells are
induced to produce less in order to obtain the satisfaction of their bottom-hole
constraint. For this reason their missed production reduces the final oil
production, even if W3, in this configuration, starts to produce. Farther, one
constraint is not satisfied in the process plant: the gas sent to the treating section
goes slightly beyond the limit of 42 m3/day imposed.

The last optimization, even if it takes 4.5 hours, satisfies the constraints of the
entire system and at the same time it enhances the final oil production. This
value is approximately the 2.7% higher than the result obtained with the first
optimization. This result is achieved manipulating the separators’ pressure,
variables considered fixed for the separated optimization. Increasing the first
separator pressure, the amount of gases released from the separators’ stages has
a lower flow rate. In fact, the most important constraint in the plant is the gas
flow rate to the treating section; its limitation is referred to the actual gas flow:
the higher the pressure, the lower is the volume flow keeping the mass rate
constant. For this reason, the first separator pressure is increased, approaching
the upper boundary for this variable. Also the limit of this constraint is
approached: in fact, this property of the system is the bottle-neck of the entire
production chain for this line.

The ability of this tool to explore regions close to the boundaries of the
feasible region is higher respect to a separated optimization. Combining the two
environment into a single one assures the attainment, at least with the heuristic
implementation described in Section 5.2.5, of the global optimum of the system.
Other runs are performed and the solutions obtained are the same as reported in
this section, proving the reliability and robustness of this tool.

Chapter 5

 116

5.3 A real case study. A nuclear safety system: multi-objective
optimization of inspection intervals.

In this case study we consider the problem of the optimization of the
inspection intervals of a nuclear safety system. For its solution, we investigate
the use of DE and compare it respect to other evolutionary algorithms, already
presented in Section 5.1. In the comparison, we look in particular at the
computation time and at the characteristics of the Pareto frontier. The problem is
first treated as a SO optimization and then as a MO optimization.

 It refers to the choice of the time intervals for the periodic testing of the components
of the High Pressure Injection System (HPIS) of a Pressurized Water Reactor (PWR).

Reliability/availability design and inspection/maintenance strategies are the target to
optimize for these safety systems. Because of their difficult complete understanding on
a global view, the complexity of the interactions between different objectives and the
difficulty to evaluate their impact under a unique measure, the problem represent one of
the most interesting cases for the multi-objective optimization in nuclear industry.
Typically, this kind of systems is subject to physical and normative constraints which
come into play imposing restrictions that the candidate solutions have to satisfy. For
simplicity, in our case studies we do not impose any a priori constraint to be satisfied by
the candidate solutions.

5.3.1 The problem
We tackle the issue of finding the inspection intervals for the components of the

HPIS (High Pressure Injection System), a safety system for nuclear power plant for a
Pressurized Water Reactor, which intervenes in case of a small LOCA (Loss of
Coolant Accident). The optimization is sought with respect to different conflicting
objective functions: (i) the mean availability, (ii) the cost of the inspections (and the
eventual cost of repair in case of accident) and (iii) the exposure time of the
maintenance operators.

For this study the following assumptions are made:

1. At least one of the flow paths must be open at all times.
2. If the component is found failed during surveillance and testing, it is returned to

an as-good-as-new condition through corrective maintenance or replacement.
3. If the component is found to be operable during surveillance and testing it is

returned to an as-good-as new condition through restorative maintenance.
4. The process of inspection and testing requires a finite time; while the corrective

maintenance (or replacement) requires an additional finite time, the restorative
maintenance is supposed to be instantaneous.

The simplified scheme of the system is shown in Figure 4, as already presented and

explained in [17].
The three objective functions are computed on the basis of a classical fault tree and

event tree analysis.

Case studies

 117

Figure 5.40, HPIS simplified scheme [17]

The system components are divided in three groups; all the items belonging

to a same group undergo testing with the same periodicity. The three inspection
intervals are identified by Ti, i = 1, 2, 3. The maintenance item groups are:

T1 � {V 1, V2}
T2 � {V 3, V5, PA, PB, PC}
T3 � {V 4, V6, V7}

The groups contain respectively the inlet valves, the pumps together with the

outlet valves and the crossover valves.
T = [T1 T2 T3] is the decision variable array composed by the three inspection

times referred to each maintenance item group. The reference time is one year,
and the time inspection variable is expressed in hours, so the domain is 1 < Ti <
8760 hours, i = 1, 2, 3.

The test interval specified by the technical specifications (TS) both for pumps
and valves is 2184 h. So, for the previous case, the variable array recommended
by TS is T = [2184 2184 2184] h.

Since we prefer speak in terms of minimization, the maximization of the

availability is replaced by minimization of the mean unavailability.
The three objective functions are defined by models present in literature.
The mean unavailability is computed after the determination of the fault tree

for the top event “no flow out of both injection paths A and B”. The resulting
minimal cut sets then are reported in Table 5.23.

The mean unavailability can be expressed as follows:

Chapter 5

 118

1 1

jnN
j

i
j i

U u
= =

≈∑∏ (5.7)

where N is the number of minimal cut sets, nj is the number of basic events

relevant to the j th minimal cut set and i
ju represents the mean unavailability

associated with the i th component of the j th minimal cut set.

Table 5.24, Minimal cut sets for the safety system reported in Figure 5.25.

MCS # Components order

1 V1, V 2 2

2 V5, P A, P B 3

3 PA, P B, P C 3

4 V3, V 4, V 5, P B 4

5 V3, V 4, P B, P C 4

6 V3, V 5, V 6, V 7 4

7 V3, V 6, V 7, P C 4

8 V4, V 5, V 6, V 7, P A 5

9 V4, V 6, V 7, P A, P C 5

For mean unavailability of a generic component I, several models have been

proposed in literature. In this study the model used is:

 () 0

1

2
i i i
j i i i i i i

i i

d t
u T T

T T
ρ λ ρ λ γ= + + + + + (5.8)

where ρi is the probability of failure on demand, λi the failure rate of the i th
component, Ti the test interval, ti the mean downtime due to testing, di the mean
downtime due to maintenance and γ0 the probability of human herror. Eq. (5.8)
is valid when ρ<0.1 and λT<0.1, which are reasonable assumptions.

The cost function is composed by two contributions:

1. CS&M : cost for surveillance and maintenance
2. Caccident : cost associated with consequences related to accidents

Then the cost is:

 &S M accidentC C C= + (5.9)

The cost S&M is so defined:

Case studies

 119

 ()& , ,
1

CN
M M

S M ht i i hc i i i i i
i i i

T T
C C t C d T

T T
ρ λ

=

    
= + +    

    
∑ (5.10)

where Chc,I is the yearly inspection cost, Cht,I is the corrective maintenance

cost and TM is the mission time, 8760 hours in our case.
The accident cost is intended as a measure of the cost associated to damages

of accident which are not mitigated by HPIS intervention. Using a small LOCA
event tree found in literature [61] and reported in Figure 5.26, the following
formulation describes the accident cost:

 () () ()
() () () ()

1 3

1 1

3 3

1 1

1 1 1

accident

RT LPIS LPIS SDC MSHR PDS

RT SDC MSHR LPIS PDS

C C C

C P EI U u U U U U C

C P EI U u U U U C

= +

= − + −  

= − − + −  

 (5.11)

Figure 5.41, Event tree for the initiating event small LOCA [61]

These costs depend on the initiating event frequency and on the unavailability values of the
safety systems which ought to intervene along the various sequences: these values are taken
from the literature [61].

During testing operations, the technicians may be subjected to radiation

exposure: based on the well-known ALARA (As Low As Reasonably
Achievable) and limit-dose principles, the dose received by workers should be
minimized. Assuming a constant exposure rate, the minimization of the dose is

Chapter 5

 120

equivalent to that of the exposure time, so that the third objective function could
be formulated as:

 ()exp
1

cN
M M

i i i i i
i i i

T T
T t d T

T T
ρ λ

=

    
= + +    

    
∑ (5.12)

The first objective function is in conflict with the other two, since frequent

inspection times tend to small mean unavailabilities but increase the costs and
the exposure times. For this reason, the multi-objective optimization is treated in
terms of the concept of dominance of solutions, seeking for Pareto frontier.

5.3.2 The optimization schemes

Three optimization schemes are adopted in this paper:
1. single-objective constrained optimization
2. weighted sum scheme
3. MO with dominance concept.
They are used in this paper to investigate the strengths and the weaknesses of

MODE (Multi-Objective Differential Evolution), a tool developed in MATLAB
by LASAR (LAboratory of Signal and Risk Analysis
http://lasar.cesnef.polimi.it/) of the Energy Depratment of Politecnico di
Milano, provided with the SO and MO options. Several variants are
implemented in the tool, in order to increase its flexibility and ability to tackle
different problems. For MO option MODE-III is implemented.

Two algorithms are used for comparison:
1. Genetic Algorithm toolbox
2. Multi-Objective Genetic Algorithm MOGA,

Genetic Algorithm toolbox (GA-toolbox) has several sophistications and

internal variants. A complete descriptive help is available on the program and
online. When no particular settings are imposed to this tool, many of the
sophistications implemented are used with default setting. Anyway, the correct
usage for specific problem needs deep consciousness of the tool.

Also MOGA has several variants adoptable, and the number of information
necessary to its running is high. Further, a wrong strategy selection could
provoke failure of the optimization. Also for this tool the setting is not easy.

Single-objective constrained optimization

The optimization of the inspection intervals T1, T2 and T3, is first tackled as a
SO constrained optimization, where the mean unavailability is optimized with
cost as constraint, and vice versa. Since the third objective function, the

Case studies

 121

exposure time, has the same proportional dependence from the inspection times
as the cost, it is ignored in this preliminary single-objective optimization.

The constraint values are taken from the technical specifications that
recommend T = [2184 2184 2184] hours. This gives mean unavailability and
cost constraints:

� Uconstr = 3.5427 · 10-4
� Cconstr = 1440.2 $

For this optimization, MODE and MOGA are compared in their SO version.
The SO mutation variants adopted for this optimization with MODE are:

• DE random
• DE best
• DERL (DE with Random Localization)
• NSDE (Neighbourhood Search DE)
• TDE (Trigonometric DE)

These variants are considered the most reliable and fast modifications of the

original DE. Their strengths and weaknesses have been shown in Section 5.1.
Since the optimization is constrained, DE is coupled with a repair technique for
infeasible solutions. In fact, if a solution is infeasible, it must be discarded.
This moving is obtained with a bisection method applied between feasible and
infeasible solutions.

This practice assures less total function evaluations.

Weighted sum scheme

A second optimization is performed by adopting the weighted sum scheme of
the three objectives to reduce the multi-objective optimization to a single-
objective one: this leads to the identification of only one solution, highly
depended on the weights.

As for the first test, the five DE variants above are tested.
The overall function that integrates the three targets into one is so defined:

 () () () ()
exp exp,U n C n T nf T w U T w C T w T T= ⋅ + ⋅ + ⋅ (5.13)

where the n subscript is referred to a normalized value.

Each objective function is normalized with the following rule:

 min

max min
n

f f
f

f f

−=
−

 (5.14)

Chapter 5

 122

where exp,, ,n n n nf U C T= and 0 1nf≤ ≤ .

The sum of the three weights wf , f = U, C, Texp, must be 1, then also

()0 1f T≤ ≤ .

The maximum and minimum values taken are:

[]
[]

4

exp

0 7.5 10

0 2000 $

0 200

U

C

T h

−≤ ≤ ⋅
≤ ≤

≤ ≤

The normalization is necessary because the objective functions have different
orders of magnitude.

In this optimization 10 weights’ settings are tried and the results are
compared to the Pareto frontier obtained by MOGA.

Multi-objective optimization with dominance concept

The third optimization is performed with a multi-objective Pareto approach.
The objective functions are maintained separate and the Pareto dominance
concept is used to define the Pareto front of equally good solutions.

The multi-objective optimization of the safety system inspection is tested
with MODE. The resulting Pareto frontier and the times to reach it are
compared with the results of the other two algorithms:

1. GA-toolbox for MO optimization
2. MOGA, already used as reference in the previous approach

MODE has three variants allowable in MO options:

a. DE random
b. NSDE
c. SACPDE (Self-Adaptive Control Parameters for DE)

The choice of these variants for the implementation of MODE is principally

driven by the absence of fitness feedback in their reproduction phase, for the
sake of the speed of the algorithm. In MO optimization, the superiority of a
solution could be defined only after a dominate comparison ranking of all
solutions in the population, and this slows down the algorithm.

Thanks to the powerful recombination process of MODE-III and its greedy
selection between parents and trial solutions for the successive generation,
dominate comparison and ranking of all solutions are not necessary, saving
computation time.

Case studies

 123

5.3.3 Results

5.1 Single-constrained optimization

The optimization results obtained by MOGA are showed in Table 5.1 [17].

Table 5.25, MOGA results on single-objective optimization of inspection intervals [17]

 UUUU optimization optimization optimization optimization
C<Cconstr

CCCC optimization optimization optimization optimization
U<Uconstr

T1 549 1672 [h]
T2 2852 8742 [h]
T3 5492 8246 [h]
U 2.3208 2.3208 2.3208 2.3208 · 10· 10· 10· 10----4444 3.5187 · 10-4 [-]
C 1436.2 529.3529.3529.3529.3 [$]

The stopping criteria adopted in the DE search are

• ∆=|fmin-fmax| of the current population is less than eps, practically the
whole population is converged at the same point if eps is sufficiently
small compared to the fitness’ order of magnitude

• reached MAXGEN generations

The optimization performed with DE has the following general parameters:

Population Size NP 30
Maximum Generation MAXGEN 500
eps U/C 1e-8/1e-4

Because of the different orders of magnitude of the mean unavailability and the
cost, to make the first stopping criterion efficient the eps values must be
different.

The settings for the DE variants are:

• DE random CR=0.7, F=0.5
• DE best CR=0.7, F=0.5
• DERL CR=0.7, F=0.5
• NSDE CR=0.7, NS=0.5
• TDE CR=0.7, F=0.5, MT=0.05

The choice of the previous parameters’ settings is mainly driven by the

author experience.
The crossover rate CR affects the amount of perturbation introduced in the

trial vector from the noisy one: if this value is high, or close to 1, the trial
vector is practically the noisy vector, if it is small, the trial vector inherits high
fraction of its variables from the target vector instead from the noisy. So, if CR

Chapter 5

 124

is small, the trial vector has small differences respect to the target and the
convergence speed is small. Otherwise, if CR is high the convergence speed is
high but the possibility to be trapped in a local optimum increases. Since the
two objective functions, mean unavailability and cost, are expected with low
local optima and the dimensionality is low (only three variables), the value 0.7
for CR is considered suitable. Nevertheless, if the objective function to
optimize is complex and with several local optima or the dimensionality
increases, small CR values are recommended (CR<0.3) (see Section 5.1.1).

The scaling factor setting is significantly less critic than the crossover rate
setting. The value F = 0.5 for DE random, DE best and DERL is taken, because
in the middle of the recommended range (0, 1].

NS controls the NSDE approach: if NS is high the search is more
concentrated in the neighbourhood, whereas if NS is small the Cauchy
operator, characterized by high values, enhances the search space exploration.
A correct mediation between these two searching methods is achieved by
NS=0.5.

TDE approach, which uses the DE random scheme as basis reproduction
phase, has the same F and CR of the first variant; the mutation probability with
the trigonometric mutation Mt is set as 0.05: this value permits a demonstration
of TDE ability in this problem. If Mt is too low the behaviour of this scheme
approaches the DE random behaviour.

Tables 2 and 3 report the results for the first two optimization schemes,

repeated 50 times in order to obtain significant statistical values with respect to
the randomness. To demonstrate the accuracy when required, the standard
deviation is also reported. Figures 6 and 7 report the convergence speed in
terms of mean function evaluations (fe) and mean cpu time (cpu) used to
complete each single run for the five tested variants. The number of function
evaluations is the product between the population size and the number of
generations performed, plus the value of additional evaluations for the repair
rule.

Table 5.26, Mean unavailability results by DE optimization. Cost is the constraint
 DE rand DE best DERL NSDE TDE

 mean Std mean std Mean Std mean std Mean std

fe 1597 210 1215 343 1288 197 1973 327 1617 314

cpu 0.1847 0.1406 0.1734 0.2284 0.2078

UUUU 2.3203E2.3203E2.3203E2.3203E----04040404 2.3205E2.3205E2.3205E2.3205E----04040404 2.3204E2.3204E2.3204E2.3204E----04040404 2.3203E2.3203E2.3203E2.3203E----04040404 2.3203E2.3203E2.3203E2.3203E----04040404

T1 543.8 1.8 544.3 2.7 544 1.9 544.2 1.6 543.8 2.6

T2 2862.3 11.1 2863.9 27.7 2864 17.9 2859 11.7 2863.3 15.2

T3 5325.6 189 5311.9 570.9 5285.8 283 5366.9 213.5 5309.1 257.3

C 1440.2 1440.2 1440.2 1440.2 1440.2

Case studies

 125

0

500

1000

1500

2000

2500

DE rand DE best DERL NSDE TDE

f
e

f
e

f
e

f
e

0

0.05

0.1

0.15

0.2

0.25

c
p
u

[
s
]

c
p
u

[
s
]

c
p
u

[
s
]

c
p
u

[
s
]

fe cpu

Figure 5.42, Function evaluations and cpu-time used for U optimization by DE variants.

Table 5.27, Cost results by DE optimization. Mean unavailability is the constraint.
 DE rand DE best DERL NSDE TDE

 mean std mean std Mean std mean std Mean std

fe 2489.6 290.6 1230 137 1840 217 2899 344 2557 332

cpu 0.2884 0.1453 0.2513 0.34 0.3316

U 3.5427E-04 3.5427E-04 3.5427E-04 3.5427E-04 3.5427E-04

T1 1691.9 1691.9 1691.9 1691.9 1691.9

T2 8760 8760 8760 8760 8760

T3 8760 8760 8760 8760 8760

CCCC 524.1524.1524.1524.1 524.1524.1524.1524.1 524.1524.1524.1524.1 524.1524.1524.1524.1 524.1524.1524.1524.1

0

500

1000

1500

2000

2500

3000

3500

4000

DE rand DE best DERL NSDE TDE

f
e

f
e

f
e

f
e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

c
p
u

[
s
]

c
p
u

[
s
]

c
p
u

[
s
]

c
p
u

[
s
]

fe cpu

Figure 5.43, Function evaluations and cpu-time used for C optimization by DE variants.

In the SO constrained optimization, MODE outperforms MOGA in both cases

of cost and variables constraints.

Chapter 5

 126

MOGA finds U = 2.3208 · 10-4
 and C = 529.3 $ while DE random, NSDE and

TDE find U = 2.3203 · 10-4 and all the variants find C = 524.1 $, just at the
unavailability constraint limit of 3.5427· 10-4.

Achieving the same minimum value at the constraint limit shows the high
reliability of the 5 DE variants.

NSDE is accurate but the number of function evaluations is high, due to its
Cauchy scaling factor: using high F, the probability to find an infeasible
solution is high and repair is required.

DE best and DERL are the fastest but less accurate variants: their behaviours
are reflected by the standard deviations for the inspection intervals results: T3 is
the less significant variable (its standard deviations are large), while T1 and T2
have more impact on the unavailability; DE best and DERL show the two
largest standard deviations for T2, sign of their inferior accuracy. For T1, these
values are generally small. DE random and TDE are the most accurate variants,
but TDE has higher computation time than DE random, even if the number of
function evaluations is the same: this because TDE needs a high information
processing, not justified in this case.

As for the unavailability minimization, all the variants approach the same
solution in terms of variables’ values and consequently of objective function
and constrained limit (see Table 3). Also for the cost minimization, the DE is
shown to be reliable in all variants.

The difference is again in the convergence speed (Figure 7): DE best is the
fastest with the smallest standard deviation. This means that the cost function
has a simple shape that exalts the search abilities of DE best. DERL has the
second fastest convergence speed, while DE random and TDE have the same
behaviour as in unavailability optimization: same function evaluations but
highest cputime for the second. NSDE, as in the previous case, has the highest
number of function evaluations and consequently of cputime because the
optimization is constrained and unfeasibility arise.

Weighted sum approach

This approach transforms a MO optimization into a SO one by the weighted
combination of the multiple objective functions. The setting of these weights
moves the optimization toward a specific objective function. Changing the
weights, each run returns a point that lies on the Pareto frontier. To obtain a
dense Pareto front, number of weights’ settings must be used. In our test, ten
weight settings are tried, returning only ten solutions.

The three weights must be chosen coherently: since the second objective
function has the same proportionality with respect to time as the third one, the
second and third weights are set equal; the first weight is set at 10 different
values in a range between 0.05 and 0.95 . Figure 8 shows, in two
dimensions (U and C), the MOGA Pareto frontier and the ten points obtained

Case studies

 127

from the weighted-sum method optimized by DE. The five variants approach to
the same solutions in all the weights’ settings since the high reliability of DE
on finding the true global optimum; only the computation times are different.

The stopping criteria adopted are the same as for SO optimization.
The total number of function evaluations (fe) and cputime spent for the ten

runs are presented in Table 4.
The algorithm parameters are:

NP 100
 MAXGEN 500
 eps 1e-6
 CR 0.5
 F 0.5
 NS 0.5 (only for NSDE)
 MT 0.05 (only for TDE)

The Pareto front used as comparison is obtained by a MOGA run with

parameters NP=100 and MAXGEN=500.
The adoption of a lower value of CR, with respect to the previous SO

optimization, is justified by the diversity of the objective functions: the
contemporary search in the minimization of three objective functions with high
CR could unbalance the results, inspite of the difference in the weights.

The ten points obtained by the weighted-sum scheme lay on the Pareto
frontier, but the definition of minimum and maximum values for normalization
of the objective functions limits the searching area. In fact, the result obtained
with wU = 0.05, wC = 0.475, wT = 0.475 (biasing the target on the cost and
exposure time minimization) is close to the maximum value of U equal to
7.5·10-4 (highest U, lower C). Nonetheless, this behaviour is not found for an
opposite weights’ setting biasing toward an optimization of unavailability (wU
= 0.95, wC = 0.025, wT = 0.025): the cost does not reach its maximum value of
2000 $ but it finds a solution near 1300 $.

The weighted-sum scheme makes it difficult to obtain a good convergence of
the Pareto frontier since it is too sensitive to the weights’ setting.

Table 5.28, Function evaluations and cputimes for the five variants tested in weighted
sum-scheme

 fe Cpu [s]

DE random 37109 2.92

DE best 20757 1.78

DERL 27923 2.95

NSDE 43252 3.36

TDE 36369 3.58

Chapter 5

 128

DE best is the fastest algorithm, both in fe and cpu time; DERL follows in fe

but the cputime is comparable with DE random; this reflects the absence of
fitness feedback information processing, proper of DERL and TDE.

TDE is the variant with the highest cputime because of its high information
processing. NSDE also in this situation fails: its high capability to explore wide
searching area brings it out of boundaries. DE best outperforms all the other
variants.

Figure 5.44, Ten solutions obtained with ten different settings on weighted-sum scheme applied
to DE, compared with MOGA Pareto frontier

Multi-objective approach

The population size for the three algorithms (MOGA, GA-toolbox and
MODE) is fixed as NP=200 and the stopping criterion is set as the attainment
of MAXGEN=500 generations. Then the number of total function evaluations
is the same for the three algorithms (10000).

GA-toolbox and MOGA distinguish in two parameters the number of non-
dominated solutions set in the final archive and the population size: for them
both are set equal to 200.

Of course, MODE has some disadvantages in terms of the density of the
dominant set, since it carries on only NP individuals in a unique archive that is
skimmed only at the end of the run: only if the whole population reaches the
Pareto frontier the number of non-dominated points will be equal to 200,
otherwise the population is skimmed.

Case studies

 129

Figures 9 and 10 show the Pareto front achieved by the three algorithms: for
MODE the version DE random is plotted on the left, while on the right the non-
dominated solutions found by the three MODE variants are shown.

The three algorithms approach to the same Pareto frontier, but with different
densities and boundaries; MOGA and MODE seem to be more reliable in the
Pareto frontier search for low costs and exposure times than GA-toolbox. In
fact, the latter concentrates its search in the low mean unavailability region, but
it does not explore the space beyond 2000 $ of cost (see Figure 10).

Table 5 reports the time for completing the search and the number of
solutions in the Pareto set found by the algorithms. The three MODE variants
take approximately the same time, since they compute the same amount of
function evaluations (10000) in the same programming environment.

Table 5.29, Cputime and number of Pareto solutions present in the final archive for the
MOGA, GA-toolbox and the three MODE variants

VariantVariantVariantVariant cpucpucpucpu NPNPNPNP
MOGA ~10 min 200
GA-toolbox ~2 min 200
MODE, DE random 5.672 s 148
MODE, NSDE 6.328 s 145
MODE, SACPDE 6.109 s 153

The number of the non-dominated solutions found by MODE is not the same

as for MOGA and GA-toolbox: this is because only a fraction of the population
reaches the Pareto frontier. However, the computation times are significantly
smaller than those of the other two algorithms.

The cputime comparison between GA-toolbox and MODE is particularly
interesting as both are implemented in Matlab: the latter algorithm is about 20
times faster than the first.

Figure 5.45, The Pareto fronts obtained by MOGA, MODE-random and GA-toolbox in the inspection intervals optimization

Case studies

 131

Figure 5.46, The Pareto frontiers of Figure 9 in two dimension: U and C for GA-toolbox, MOGA
and MODE-random on the top and the Pareto frontiers for the three MODE variants on the
bottom

These differences in computation time depend on the complexity of the

algorithm: in this case the simplicity of DE is rewarded: the Pareto front is
satisfactory and the percentage of non-dominated solutions is remarkable.

MOGA seems to be reliable but really slow.

Chapter 5

 132

Table 5.30, Direct comparison between the three algorithms and the three MODE variants for
inspection intervals optimization

 MODE-rand MODE-NS MODE-SACPDE GA-toolbox MOGA

- 21.85 27.73 25.45 10.92
MODE-rand

- 27.69 13.43 10.91 15.13

22.58 - 28.23 27.73 5.65
MODE-NS

18.55 - 26.61 12.61 15.32

19.3 26.32 - 55.26 5.26
MODE-SACPDE

23.68 25.44 - 11.4 15.79

24.5 11.5 20.5 - 27.5
GA-toolbox

9 9.5 18 - 8

21 26 30 25 -
MOGA

12 10 7 29 -

Table 6 shows the percentage of superiority and inferiority of one variant

against another one referred to its solutions: the variants of the rows are
compared with the variants of the columns and the first number in each cell
represents the percentage of dominant points of the row that dominate over the
column’s algorithm solutions, while the second one represent the fraction of the
dominated points (e.g.: MODE-random has 21,85% of its Pareto set that
dominates MODE-NSDE front, while the 27.69% of MODE-random points are
dominated by some MODE-NSDE points – first row, second column).

Except for MODE-SACPDE that has 55% of its frontier that dominates that
of GA, the other percentages of dominant and dominated solutions are
relatively small, around 20-30%. Moreover, the values of dominant and
dominated fractions of an algorithm are similar, making it difficult to declare
superiority of one over the other.

Also the three MODE variants do not show clear superiority: no
improvements are carried by self-adaption of parameters (SACPDE) or by the
neighbourhood search (NSDE).

On the other hand, relevant differences remain in terms of computation time,
driven principally by the differences in parameter setting: DE random keeps
constant during the optimization the two parameters F and CR, while SACPDE
and NSDE need new parameters’ generations. SACPDE applies the evolution
of parameters only sometimes, when the heuristic rule is satisfied, while NSDE
generates new scaling factor for each individual for any generation; this is the
reason of the different cpu times.

Case studies

 133

5.3.4 Conclusions

The results obtained in this paper represent an improvement in the

optimization of complex nuclear system as the safety system studied. The novel
evolution algorithm tested, DE, works well and fast with respect to the MO
optimization version of GA, even with different strategies.

In the single-objective optimization, MODE outperforms MOGA in terms of
accuracy of the solutions, reaching lower values for mean unavailability and
cost respectively. In that case DE best variant is considered the fastest
algorithm but it should be used carefully because it could be less accurate. DE
random remains the most robust and reliable variant if no information about the
problem are available.

The weighted sum scheme applied to MODE permits the achieving of the
same Pareto frontier obtained by MOGA in MO option, but this approach is
extremely dependant on the weights used for the integration of the three targets
into one. For this reason this approach is considered not satisfactory, since a
previous knowledge of the problem nature is necessary for the weights’ setting.
No particular conclusion could be done respect the accuracy; only the time is
comparable and also this time DE best is the fastest since its greediness.

For the MO non-dominance approach, MODE outperforms MOGA and GA-
toolbox only in terms of convergence speed, which is significantly high:
MODE is 100 times faster than MOGA and 20 times than GA-toolbox.

The convergence speed of this tool is its main advantage, thanks to its
simplicity. The other evolutionary algorithms need sophistications and difficult
parameter settings, while MODE has very few parameters. Of course the
number of solutions on the Pareto frontier is not the same as the population
size, while the other algorithms may achieve the desired number of points of
the Pareto front by storing the dominant solution in an archive uploaded
generation by generation.

Anyway, the number of non-dominated points carried to the Pareto front
(75%) is satisfactory.

 134

References

[1] D.E. Goldberg, “Genetic algorithms in search, optimization, and

machine learning”, Addison-Wesley Publ. Co., 1989.
[2] Nelder, J. A., and R. Mead. 1965. “A simplex method for function

minimization”. Comput. J. 7:308–313.
[3] J.E. Dennis and V.J. Torczon. SIAM J “Optimization” 1(4): 448-

474,1991
[4] Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecchi. 1983. “Optimization

by simulated annealing.” Science 220:671–680.
[5] Carlos M. Fonseca and Peter J. Fleming. “An overview of evolutionary

algorithms in multi-objective optimization.” Evolutionary Computation,
3(1):1-16, 1995

[6] D. E. Goldberg and J. Richardson. “Genetic algorithms with sharing for
multimodal function optimization.” In Genetic Algorithms and their
Applications: Proceedings of the Second International Conference on
Genetic Algorithms, pages 41-49, Hillsdale, N J, 1987. Lawrence
Erlbaum

[7] J. David Schaffer. “Multiple objective optimization with vector
evaluated genetic algorithms.” In John J. Grefenstette, editor,
Proceedings of an International Conference on Genetic Algorithms and
Their Applications, pages 93-100, 1985

[8] N. Srinivas and Kalyanmoy Deb. “Multiobjective optimization using
nondominated sorting in genetic algorithms.” Evolutionary
Computation, 2(3):221-248, 1994

[9] Zitzler E, Thiele L. “Multiobjective evolutionary algorithms: a
comparative case study and the strength Pareto approach.” IEEE Trans
Evol Comput 1999;3(4):257-71.

[10] Zitzler, E.; Laumanns, M.; Thiele, L. “SPEA2: Improving the Strength
Pareto Evolutionary Algorithm”; Technical Report 103; Computer
Engineering and Networks Laboratory (TIK), Swiss Federal Institute of
Technology (ETH): Zurich, Switzerland, 2001. Available online at
http://www.tik.ee.ethz.ch/sop/publicationListFiles/zlt2001a.pdf.

[11] Knowles, J. D.; Corne, D. W. “The Pareto Archived Evolution Strategy:
A New Baseline Algorithm for Pareto Multiobjective Optimisation.” In
Proceedings of the 1999 Congress on EVolutionary Computation
(CEC1999); IEEE Press: Piscataway, NJ, 1999; pp 98-105.

[12] Martorell S, Carlos S, Sanchez A, Serradell V. “Constrained
optimization of test intervals using a steady-state genetic algorithm.”
Reliab, Engng Syst Safety 2000;67:215-32

 135

[13] Kaelo P., Ali M.M., “A numerical study of some modified differential
evolution algorithm,” European Journal of Operations Research 169,
2006, 1176–1184.

[14] Gujarathi A.M., Babu B.V., “Optimization of Adiabatic Styrene
Reactor: A Hybrid Multiobjective Differential Evolution (H-MODE)
Approach”, American Chemical Society, 2009

[15] Gujarathi A.M., Sharma D., Babu B.V., “Multi-Objective Optimization
of Polyethylene Terephthalate (PET) Reactor using Hybrid Multi-
Objective Differential Evolution,” 2007

[16] Parks GT. “Multiobjective pressurized water reactor reload core
designusing genetic algorithm search.” Nucl Sci Engng 1997;124:178-
87

[17] P. Giuggioli Busacca, M. Marseguerra, E.Zio: “Multiobjective
optimization by genetic algorithms: application to safety systems”,
Reliability Engineering and System Safety 72, 2001, 59-74

[18] Holland, J. H. (1975). “Adaptation in natural and artificial systems.”
Ann Arbor, Michigan: The University of Michigan Press.

[19] Zio E.: “Basics on genetic algorithms with application to system
reliability and availability optimization”, Computational Methods For
Reliability and Risk Analysis, 2009, 180-186

[20] Radcliff, N. J. 1991. “Forma analysis and random respectful
recombination.” In Proc. 4th Int. Conf. on Genetic Algorithms, San
Mateo, CA: Morgan Kauffman.

[21] Storn, R., Price, K., “Differential evolution – A simple and efficient
adaptive scheme for global optimization over continuous spaces.”
Technical Report TR-95-012, International Computer Science Institute,
Berkeley, CA. 1995

[22] Storn R., Price K., “Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces”, Journal of
Global Optimization 11, 1997, 341–359

[23] Bergey P.K., Ragsdale C. “Modified differential evolution: a greedy
random strategy for genetic recombination.” The International Journal of
Management Science, 2004

[24] Hui-Yuan Fan, Jouni Lampinen, “A Trigonometric Mutation Operation
to Differential Evolution”, Journal of Global optimization 2003, 105-
129.

[25] Pant M., Ali M.M., Singh V.P., “Differential evolution with Parent
Centric Crossover”, Second UKSIM European Symposium on
Computer Modeling and Simulation, 2008

[26] Ali M.M.: “Differential evolution with preferential crossover.” European
Journal of Operations Research 181, 2007, 1088–1113

 136

[27] Pant M., Ali M.M., Singh V.P., “Two modified differential evolution
algorithms and their applications to engineering design problems”,
World Journal of Modelling and Simulation, 2010, 72-80

[28] Yang Z., He J., Yao X., “Making a difference to Difference Evolution”,
Advances in Metaheuristics for Hard Optimization, 2007, 397-413

[29] Das S. et al.: “Particle Swarm Optimization and Differential Evolution
Algorithms: Technical Analysis, Applications and Hybridization
Perspectives”, Studies in Computational Intelligence (SCI) 116, 1–38
(2008)

[30] Rahnamayan S., Tizhoosh H.R., Salama M.M.A.: Opposition-Based
Differential Evolution Algorithms, Advances in Differential Evolution,
2008, 155-171

[31] Rahnamayan S., Tizhoosh H.R., Salama M.M.A: Opposition versus
randomness in soft computing techniques, Applied Soft computing 8,
2008, 906-918

[32] Ventresca M., Rahnamayan S., Tizhoosh H.R.: A note on “Opposition
versus randomness in soft computing techniques, Applied Soft
computing 8”, Applied Soft Computing 10, 2010, 956-957

[33] Babu, B. V. and Angira, R., “Modified Differential Evolution (MDE)
for Optimization of Non-Linear Chemical Processes”, Computers &
Chemical Engineering 30, 2006, 989–1002.

[34] Ali M.M., Pant M., Abraham A., “A Modified Differential Evolution
Algorithm and Its Application to Engineering Problems”, International
Conference of Soft Computing and Pattern Recognition, 2009

[35] Babu B. V and Angira R, “Optimization Using Hybrid Differential
Evolution Algorithms”, ChemCon 2004, Mumbai

[36] Pant M., Ali M.M., Abraham A, “Hybrid Differential Evolution –
Particle Swarm Optimization Algorithm for Solving Global
Optimization Problems”, 2008

[37] Michalewicz, Z., Schoenauer, M.: “Evolutionary Algorithms for
Constrained Parameter Optimization Problems.” Evolutionary
Computation 4, 1996, 1–32

[38] J. Lampinen, I.Zelinka, “On stagnation of the differential evolution
algorithm”

[39] R. Storn, “Differential Evolution Research – Trends and Open
Questions”, Advances in Differential Evolution, 2008, 1-31

[40] D. Zaharie, “A Comparative Analysis of Crossover Variants in
Differential Evolution”, Proceeding of IMCSIT 2007, U. Markowaska-
Kaczmar and H. Kwasnicka, Eds. Wisla: PTI 2007, 171-181

[41] D. Zaharie, “Critical values for the control parameters of differential
evolution algorithms.” 2002a In: Matousek, R., Osmera, P. (Eds.), In:
Proceedings of the 8th International Conference on Soft Computing,
Brno, pp. 62–67.

 137

[42] M. M. Ali and A. Törn, “Population set-based global optimization
algorithms: Some modifications and numerical studies,” Comput. Oper.
Res., vol. 31, no. 10, pp. 1703–1725, 2004.

[43] Zaharie, D., 2003. “Control of population diversity and adaptation in
differential evolution algorithms.” In: Matousek, R., Osmera, P. (Eds.),
In: Proceedings of the 9th International Conference on Soft Computing,
Brno, pp. 41–46.

[44] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution
algorithm”, Soft Computing—A Fusion of Foundations, Methodologies
and Applications, vol. 9, no. 6, pp. 448–462, 2005 [Online].

[45] J. Tvrdík, “Competitive differential evolution,” in MENDEL 2006, 12th
International Conference on Soft Computing, R. Matoušek and P.
Ošmera, Eds. Brno: University of Technology, 2006, pp. 7–12.

[46] L. Wu, Y. Wang, S. Zhou, “Self-Adapting Control Parameters Modified
Differential Evolution for Trajectory Planning of Manipulators”, Journal
of Control Theory and Applications, 2007, 365-373.

[47] J. Brest, S. Greiner, B. Boškovič, M. Mernik, and V. Žumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Transactions on
Evolutionary Computation, vol. 10, pp. 646–657, 2006.

[48] J. Brestm, V. Žumer, M.S. Maučec, “Self-Adaptive Differential
Evolution Algorithm in Constrained Real-Parameter Optimization”,
IEEE Congress on Evolutionary Computation, 2006.

[49] A. K. Qin and P. N. Suganthan. “Self-adaptive Differential Evolution
Algorithm for Numerical Optimization”. In The 2005 IEEE Congress on
Evolutionary Computation CEC2005, volume 2, pages 1785–1791.

[50] A. Salman, A.P. Engelbrecht, M.G.H. Omran, “Empitical Analysis of
Self-Adaptive Differential Evolution”, European Journal of Operational
Research, 2007, 785-804.

[51] Abbass H.A., “The Self-Adaptive Pareto Differential Evolution
Algorithm”

[52] Gao, X.; Chen, B.; He, B.; Qiu, T.; Li, J.; Wang, C.; Zhang, L. “Multi-
objective optimization for the periodic operation of the naphtha
pyrolysis process using a new parallel hybrid algorithm combining
NSGA-II with SQP.” Comput. Chem. Eng. 2008, 32, 2801.

[53] Agarwal, A.; Gupta, S. K. “Jumping gene adaptations of NSGA-II and
their use in the multi-objective optimal design of shell and tube heat
exchangers.” Chem. Eng. Res. Des. 2007, 86, 123.

[54] Abbass H.A., Sarker R., Newton C., PDE: “A Pareto-frontier
Differential Evolution Approach for Multi-objective Optimization
Problems”, 2001

[55] Abbass H.A., “The Self-Adaptive Pareto Differential Evolution
Algorithm”

 138

[56] Babu, B. V.; Chakole, P. G.; Mubeen, J. H. S. 2Multi-objective
Differential Evolution (MODE) for Optimization of Adiabatic Styrene
Reactor.” Chem. Eng. Sci. 2005, 60, 4822.

[57] Babu, B. V.; Gujarathi, A. M.; Katla, P.; Laxmi, V. B. Strategies of
Multi-Objective Differential Evolution (MODE) for Optimization of
Adiabatic Styrene Reactor. In Proceedings of the International
Conference on Emerging Mechanical Technology: Macro to Nano
(EMTMN-2007); p 243.

[58] Gujarathi A.M., Lohumi A., Mishra M., Sharma D., Babu B.V., “Multi-
Objective Optimization using Trigonometric Mutation Multi-Objective
Differential Evolution Algorithm”, 2009

[59] M. Montaz Ali, Charoenchai Khompatraporn, Zelda B. Zabinsky, “A
Numerical Evaluation of Several Stochastic Algorithms on Selected
Continuous Global Optimization Test Problems”, Journal of Global
Optimization 31, 2005, 635-672

[60] E. Zitzler, K. Deb, L. Thiele, “Comparison of Multi-objective
Evolutionary Algorithms: Empirical Results”, 1999

[61] Yang J-E, Hwang M-J, Sung T-Y, Jin Y. “Application of genetic
algorithm for reliability allocation in nuclear power plants”. Reliab
Engng Syst Safety 1999;65:229

Benchmark problems for single-objective optimization

 139

Appendix A:

Benchmark problems for single-objective
optimization

The appendix presents 23 benchmark functions, with their domain, minimum’s
value and location in the search space.

f1. Example function taken from:
Practical Genetic Algorithms, second
edition, John Wiley & Sons

() () ()

() ()
1 1 2 2

* *

min sin 4 1.1 sin 2 0 10

18.5547 9.039,8.668

i
x

f x x x x x x

f x x

= + ⋅ ≤ ≤

= − =

f2. Second De Jong function,

Rosenbrock’s saddle

() () ()

() ()

1 2 22
1

1

* *

min 100 1 2.048 2.048

0 1,1, ,1

n

i i i i
x

i

f x x x x x

f x x

−

+
=

 = ⋅ − + − − ≤ ≤  

= =

∑

…

f3. Peaks function from Matlab
()

() ()* *

min 2 2

6.5511 0.2283, 1.6255

i
x

peaks x x

f x x

− ≤ ≤

= − = −

f4. Michalewicz function

Appendix A

 140

() ()

() ()

22

1

* *

min sin sin 0 10

2 1.8013 2.2029,1.5708

m
n

i
i i

x
i

x
f x x i x m

for n f x x

π
π=

 
= − ⋅ ≤ ≤ = 

 

= = − =

∑

f5. Schwefel’s problem

() ()
() ()

*

1

* *

min 100 sin 100 0 10

4 428.6030 7.1706,7.1706,7.1706,7.1706

n

i i ix
i

f x n x x x

for n f x x

=

= − ⋅ − ⋅ ≤ ≤

= = − =

∑

f6. Ackley’s problem, Storn and

Price, 1997

()
()

() ()

1 2 1

1 1

0.02 cos 2

* *

min 20 20 30 30

0 0,0, ,0

n n

i i
i i

n x n x

i
x

f x e e e x

f x x

π− −

= =

    −     
   

∑ ∑
=− ⋅ − + + − ≤ ≤

= = …

f7. Modified Rosenbrock problem,
Price, 1977

() () ()

() () ()

22 22
2 1 2 1

* * *

min 100 6.4 0.5 0.6 5 5

0 0.3412,0.1164 1,1

i
x

f x x x x x x

f x x andx

 = − + − − − − ≤ ≤
 

= ≈ ≈

f8. Exponential problem, Breiman

and Cutler, 1993

()

() ()

2

1

0.5

* *

min 1 1

1 0,0, ,0

n

i
i

x

i
x

f x e x

f x x

=

 
 −
 
 

∑
= − − ≤ ≤

= − = …

f9. Aluffi-Pentini’s problem, 1985

()

() ()

4 2 2
1 1 1 2

* *

min 0.25 0.5 0.1 0.5 10 10

0.3523 1.0465,0

i
x

f x x x x x x

f x x

= − + + − ≤ ≤

≈ − = −

Benchmark problems for single-objective optimization

 141

f10. Becker and Lago problem,
Price 1977

() () ()
() ()

2 2

1 2

* *

min 5 5 10 10

0 5, 5

ix
f x x x x

f x x

= − + − − ≤ ≤

= = ± ±

f11. Bohachevsky problem 1, 1986

() () ()

() ()

2
1 2 1 2

* *

min 2 0.3cos 3 0.4cos 4 0.7 50 50

0 0,0

i
x

f x x x x x x

f x x

π π= + − − + − ≤ ≤

= =

f12. Bohachevsky problem 1, 1986
() () ()

() ()

2
1 2 1 2

* *

min 2 0.3cos 3 0.4cos 4 0.7 50 50

0 0,0

i
x

f x x x x x x

f x x

π π= + − ⋅ + − ≤ ≤

= =

f13. Camel back – 3, Three hump
problem, Dixon and Szegö, 1975

()

() ()

2 4 6 2
1 1 1 1 2 2

* *

1
min 2 1.05 5 5

6

0 0,0

i
x

f x x x x x x x x

f x x

= − + + ⋅ + − ≤ ≤

= =

f14. Camel back – 6, Six hump

problem, Dixon and Szegö, 1978

()

() () ()

2 4 6 2 4
1 1 1 1 2 2 2

* * *

1
min 4 2.1 4 4 5 5

3

1.0316 0.089842, 0.712656 0.089842,0.712656

i
x

f x x x x x x x x x

f x x and x

= − + + ⋅ − + − ≤ ≤

≈− ≈ − ≈ −

f15. Cosine mixture problem,

Breiman and Cutler, 1993

Appendix A

 142

() ()

() ()

2

1 1

* *

min 0.1 cos 5 1 1

0.1 0,0, ,0

n n

i i ix
i i

f x x x x

f x n x

π
= =

= − − ≤ ≤

= − =

∑ ∑

…

f16. Dekkers and Aarts problem,
1991

() () ()
() () ()

2 45 2 2 2 2 5 2 2
1 2 1 2 1 2

* * *

min 10 10 20 20

24777.4817 0,15 0, 15

i
x

f x x x x x x x x

f x x andx

−= + − + + + − ≤ ≤

=− = = −

f17. Eason problem, Michalewicz,

1996

() () () () ()()

() ()

2 2
1 2

1 2

* *

min cos cos

1 , 10 10

x x

x

i

f x x x e

f x x x

π π

π π

− − − −
=− ⋅ ⋅

=− = − ≤ ≤

f18. Goldstein and Price, Dixon
and Szegö, 1978

() () ()
() ()

() ()

2 2 2
1 2 1 1 2 1 2 2

2 2 2
1 2 1 1 2 1 2 2

* *

min 1 1 19 14 3 14 6 3

30 2 3 18 32 12 48 36 27 2 2

3 0, 1

x

i

f x x x x x x x x x

x x x x x x x x x

f x x

 = + + + ⋅ − + − + ⋅ + ⋅
 

 ⋅ + − ⋅ − + + − ⋅ + − ≤ ≤
 

= = −

Benchmark problems for single-objective optimization

 143

f19. Griewank problem, 1981

()

() ()

2

1 1

* *

1
min 1 cos

4000

0 0,0, ,0 600 600

nn
i

i
x

i i

i

x
f x x

i

f x x x

= =

 = + −  
 

= = − ≤ ≤

∑ ∏
…

f20. Helical valley problem, Wolfe,
1978

() () ()()

() ()

2
2 2 2 2

2 1 2 3

2
1

1

2
1

1

* *

min 100 10 1

1
arctan 0

2
10 10

1 1
arctan 0

2 2

0 1,0,0

x

i

f x x x x x

x
if x

x
x

x
if x

x

f x x

θ

π
θ

π

 = − ⋅ + + − + 
 

  
≥  

  = − ≤ ≤
  + < 
 

= =

f21. Levy and Montalvo problem 1,

1985

() () () () ()

()

() ()

1
2 22 2

1 1 1
1

* *

min 10sin 1 1 10sin 1

1
1 1 10 10

4

0 1, 1, , 1

n

i i n
x

i

i i i

f x y y y y
n

y x x

f x x

π π π
−

+ −
=

    = ⋅ + − ⋅ + + −       

= + + − ≤ ≤

= = − − −

∑

…

f22. Rastrigin problem, Storn and
Price, 1997

() ()

() ()

2

1

* *

min 10 10cos 2 5.12 5.12

0 0,0, ,0

n

i i ix
i

f x n x x x

f x x

π
=

 = + − − ≤ ≤ 

= =

∑

…

Appendix A

 144

f23. Function taken from E. Zio
lectures

() () ()

() () ()

() ()

1 1 2 2

* *

sin 2 sin 2

0
min 0 5

0

4.7513 4.7527,4.7527

i
x

y x x x x x

y x if y x
f x x

otherwise

f x x

π π= −

<= ≤ ≤


≈ − ≈

Benchmark problems for single-objective optimization

 145

Appendix B

Benchmark problems for multi-objective
optimization

The appendix presents 3 benchmark problems with high dimensionality for multi-objective
optimization, with domains and location of the Pareto optimal frontiers.

General task: () () ()()1 1 2min ,
x

F x f x f x= (B.1)

F1. This test is known also as ZTD1; The Pareto optimal front is formed with g(x)=1

()

()

()

1 1 1

2
2

1
2 1

, , 1 9

, 1

30, 0 1

n

n i
i

i

f x x

g x x x

f
f f g

g

n x

=

=

= + ⋅

= −

= ≤ ≤

∑…

F2. This test is known also as ZTD2; The Pareto optimal frontier is formed when
g(x)=1

()

()

()

1 1 1

2
2

2

1
2 1

, , 1 9

, 1

30, 0 1

n

n i
i

i

f x x

g x x x

f
f f g

g

n x

=

=

= + ⋅

 = −  
 

= ≤ ≤

∑…

Appendix B

 146

F3. This test is known also as ZTD3, the red line is the objectives’ search space for the

best Pareto frontier showed by the green markers; The Pareto optimal front is formed

with g(x)=1

()

()

() ()

1 1 1

2
2

1
2 1 1

, , 1 9

, 1 sin 10

30, 0 1

n

n i
i

i

f x x

g x x x

f
f f g f

g

n x

π

=

=

= + ⋅

= − −

= ≤ ≤

∑…

