POLITECNICO DI MILANO

Facolta di Ingegneria Industriale

Corso di Laurea in
Ingegneria Energetica

Differential Evolution for the optimization of congx technological systems:
application to the oil&gas and nuclear industries.

Relatore: Prof. Enrico Zio
Co-relatorel: Ing. Francesco VERRE

Co-relatore2: Ing. Alberto CASAROTTI

Tesi di Laurea di:

Giorgio VIADANA Matr. 734550

Anno Accademico 2009 - 2010.

Index

WwnN e

(@ 0] 110 014 1o] o 1 1
Introduction on Evolutionary Algorithms for opti mization.................. 5
Genetic Algorithms: the ancestors of Differengél Evolution 7
3.1 GENEraAltIES. . ..o i aeeeee 7
3.2 Genetic Algorithm operations............cccuuvviiiiiiiiii e 9
3.3 Multi-objective optimization with Genetic Algthms................... 13
Differential EVOIULIONvviiiiiiiiiiiiiee e 17
A1 BASICS cevvrvuuiniiiiiie ettt 17
4.2 Variants and sOphistiCations...........ccceeeeueiiiiieiieeeeeeeeeeeeeeevieiiinnns 24
4.2.1 MUtation OPLIONS.cooiieeieeeiei e et 24
4.2.2 CroSSOVEr OPLIONSciieeeeeeeee e s eee e e e e e eeeeeaeeeeeeannnnns 34
4.2.3 Further sOphisStiCatioNsS e e e e eeeeeeeeiiieiis 36
4.3 Constrained optimizationuuuuuuiiiiiiineeeeee e ee e e 41
4.4 Control parameters’ SEttNG cuummmseeneereeeeeeeeeeeeeeeeeeeeeennenns 44
4.5 Adaptive and self-adaptive approaches forrobparameters’
1] 1 1] o [P TUURPPPTTTPRTRRPI H2.
4.5.1 Deterministic parameters’ control.......ccccccccovvvvvvviiiinnnnns 53
4.5.2 Adaptive parameters’ controlccceeeeiiiiiiiiinnnneeeinnnn. 54
4.5.3 Self-adaptive parameters’ controlccccc........oovvvvviinnnnees 56
4.6 Multi-objective optimization with Differentidvolution 58
CASE STUTIES ...ttt e e e e e e e e e e e e e e e e e e e aaans 63
5.1 Comparison in single and multi-objective optiation on
benchmark problemScooiiiiii i e e e 63
5.1.1 Single-objective optimization........ ... ceeeeeeeeeeeeeeeeeeeee. 64
5.1.2 Multi-objective optimization...........ccceecceeeiiiiiiiieeeeeeeeeeee, 84
5.1.3 CONCIUSIONS ...euiiiiiieiieeeeeeeeeeeeeeeee e 94
5.2 Arreal case study. Giant oil field integrapedduction asset: a
highly constrained optimization for productivity............cccc....... 94
5.2.1 INtrodUCHION ...ccviiiiiiiiiiiiieeieeecceeee e 95
5.2.2 Problem’s generalitiesceemmmeiiiieeeieei i 95
5.2.3 The case Studyuuuuuiiiiiiiiieieeeeeieeee e 99
5.2.4 Integrated optimization............cccccccceeieieeeeee e i 102
5.2.5 The algorithm’s strategies and properties.................. 106
5.2.6 RESUIS ...cooiiiiiiiieeer e 111
5.3 Arreal case study. A nuclear safety systenitifobjective
optimization of inspection intervals.........ccceeeiiiiiiiiiiiee e, 116
5.3.1 Theproblem ... 116

5.3.2 The optimization SChemes.........cccceeeeeeiiiiiieeeeiieeeeieeinns 120

5.3.3 RESUIS e 123

5.3.4 CONCIUSIONSoviiiiiiiiiiiiieiieet e e e e e 133
RETEIENCES. ... e e e e e e e e e e e e e e e nas 134
Appendix A Benchmark problems for single-objective optimiaati.....139

Appendix B Benchmark problems for multi-objective optimizatio.....145

Listo of figures

3.1
3.2
3.3
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9

The binary encoding of the variable for GA.........cccoooii s 8
The single-site crossover operation for GA..........ccoovvvvvvvvvviiiiciineenn. 11
Example of population ranking for a maximizatgroblem.................... 15
Noisy vector generation by mutation..... .. .ooeeeeerieeeeeeeeiiiiceieeeennn 18
Binomial CrosSoVver for DEvmeeeeeininnaaee e eeeeeeeeeieeeinnnes 0.2
DE current-to-best representation for a twoetisional problem........... 26
Sensitivities of the three DE parameters Fa@G& NP on the

Rastrigin’s function for the final minimum obtathe................ccccceenn. 30
Probabilities for the lenght of jumps for themaling factor

definitions: fixed, Gauss random variable and @guandom variable .32
Scheme of the exponential crossover for DE..............cccoeieeiiiiiiinn. 35
Cosine mixture problem for a two dimensionalgpem.......................... 45
Population size effects on the three meastuestion

evaluations, success rate and cputime.... cereennnn 46
Scaling factor effects on the three measummtlbn evaluatlons

SUCCESS rate and CPULIMEuuueeeeiie i ceeeeeemcis e e e e e e e e e e 46
Crossover rate effects on the three meadu@gion evaluations,

SUCCESS rate and CPULIMEuuueeeeiee e eeeeeeeeiis e e e e e e e e e e e 46
Mutation probabilities for binomial (dashewdk) and exponential

(solid line) crossover for three dimensionality..............cccceeevvvvvveenennns 49
Contour plot for the K-parameter........ . eeeeeeeeeiinee e eeeeeeeeeeiienns 52
Success rate for the minimum seeking on tlen@dMixture Problem ..52
Sum of the function evaluations for three G#ted and foDE

randomover 23 SO ProbIEmMSooovvviiiiii s e e e 72
Sum of the cputime used for three GA testedfanBE random

over 23 SO ProbIemMS........e i e 2.7
Sum of the success rates for three GA testédaa®E random

0OVEr 23 SO ProbIEMS........vveiiiee e e 72
Sum of the lambda obtained for three GA teatetiforDE random

over 23 SO ProbIemMS........eii e 3.7
Population size’d\P) effect on the four measures for the

Ackley’s problem (f6) foDE randomwith F=0.5 andCR=0.5............... 73
Scaling factor’'sK) effect on the four measures for the Ackley’s

problem (f6) forDE randomwith NP=30 andCR=0.5............ccccceeeerennnn. 74
Crossover rate’€R) effect on the four measures on the

Ackley’s problem (f6) foDE randomwith NP=30 andF=0.5................ 74
Scaling factor’'sK) effect on the four measures for the Ackley’s

problem (f6) forDE randomwith CR=0.1............ceeeeeviiiiiiieeiiii, 75
Sum of the function evaluations for the elel&nvariants

5.10
5.11

5.12

5.13
5.14

5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30

5.31

over 23 SO ProbIems ... 1.8

Sum of the cputime for the eleven DE variawer 23 SO problems......81
Sum of the success rates for the eleven Digntarover 23 SO

10 0] 1= 0 0 U 82
Sum of the lambda achieved for the eleven &tants

over 23 SO ProbIemMS........eii e e 2.8
An example of two Pareto front achieved..............ccccvviiiiiiiiiiciinnnn. 87
MO performed on ZTD1 benchmark problem Wit©DE,

GA-to0lboxand MOGA ... s 88
MO performed on ZTD1 benchmark problem Wit®DE,
GA-t00IDOXaNAMOGA.......coeeieeiiie e 89
DE random NSDEandSACPDEPareto fronts obtained in MO for

T D L o ————— 90
DE random NSDEandSACPDEPareto fronts obtained in MO for

T D L o 91
DE random NSDEandSACPDEPareto fronts obtained in MO for

A I PPN 91
The production chain for a hydrocarbon field............cccceeiiiieiinnnnn. 96
Simplified scheme for an oil process plant..............ccccvieiennnns 929
The gathering system for the real case study..............cccevvvvvvverrnnnns 100
The interactions between the three programsst DB,

GAP @nNd HYSYS ..ottt 104
FWHPs resultant from the three optimizations.............ccccccceieennnn. 114
Oil production achieved by the three optim@accceeeee 114
HPIS simplified SCheme...........ooo e 17
Event tree for the initiating event small LOCA.........cccoooeviiiieiinnnnn. 119
Function evaluations and cpu-time usedJaptimization

DY DE VANTANTSouiiiiiiiiieee e eeeeeee s e e e e e e e e e eeeeaannnnnnnnna s e e e e eaeaaaas 125
Function evaluations and cpu-time used-foptimization by DE

VAITANTS .ot bttt et e e e e e e e e e e e e e e s s 125
Ten solutions obtained with ten differentiagt on weighted-

sum scheme applied BE, compared wittMOGA Pareto frontier 128
The Pareto fronts obtainedMPGA MODE-randomand

GA-toolboxin the inspection intervals optimization......w............... 130
The Pareto frontiers of Figure 9 in two dimensidrandC

for GA-toolbox, MOGAandMODE-randomand for the three

IMODE VAANTS ...ttt s ettt a e e e e e e e e e e s s e e nanebeeneees 131

Listo of tables

4.1

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15
5.16
5.17
5.18
5.19
5.20

k-parameter and success rates for three sdalihgy’s

setting on the optimization of the Cosine Mixtem@blem...................... 51
GA-toolboxandsimple GAresults on the 23 benchmark functions

FOF SO i ———— 71
Function evaluations, cputime, success ratdandda

obtained on Ackley’s problem (f6) by differenttsggs onDE random.75
Summed measures for different CR settings ustte test

on 23 problems for two variants: DE random andteEt....................... 76
Results on 23 benchmark problems with differdmensionality and
complexities foDE random DE bestandDe current to bestariants77
Results on 23 benchmark problems with diffedémensionalities

and complexities fODERL, DERL 2andNSDEvariants.............cccccee...... 78
Results on 23 benchmark problems with diffedemiensionality

and complexities fof DE, DE adaptandSACMPDEvariants................. 79
Results on 23 benchmark problems with diffedemiensionality

and complexities foOBACPDEandSDEvariants..........ccccccvvvvvvvvciiieeeeenn. 80
Summed results of the measures of the optiraizdyy SACPDE

on 23 SO problems with two different SettingS ceeeevvveeevveeeeeeiiieeieeee, 83
Summed results of the measures of the optimizgerformed by
DERLand a mixed variarfBACPDE-N®n 23 SO problems................... 84
Cputimes and number of non-dominated solutionsddunthe

three algorithms in the three tests ZTD1, ZTD2 amn®3 at the

end Of the SEArCNS..........coo i 90
Direct comparison between the three variant test&dODE for

Number of final solutions in the last populatiordatirect

comparison between the two parameters’ dependauatnis of

MODE: DE randomandNSDE..............ciiiiiiiiiieeeeeeeeeeeeeeevveeeeeeeeeeeees 93
Direct comparison betweddE randomwith a tuned settingdR=0.3)

and theSACPDEvariant. The values reported are referred to ZTD.193

Number of final solutions in the last populatiordatirect

comparison between the two parameters’ dependatiants of

MODE with an opportune Settingiiieeeeeeieeiaeee e e e e eeeeeeeeiiieens 93
Typical specifications for a process plargasked fluids 97
GOR and sour gas content of the reservoulSlui...............ccccceeeeeeee 101
Variables’ DOUNTAIESc.uuuiiiiiieeeeeeiiiiieieeeeeee e 104
The minimum FBHP allowableccoeeiiiiiiiiii e 105
Constraints and specifications for the plant................cccccovvvvviiiinnnns 106
Variables and results for the gathering systarthe three

(o] 0111 91F2=1 1 o] o [PR UUURPPP PRSP 112
5.21 Variables, constraints and results in the H8®Yivironment

for the optimization 1,2,3. ... 31
5.22 Optimization times for the three optimizations.............cccccevvvvvvnnnnn. 113
5.23 Minimal cut sets for the safety system rembmeFigure 5.25............... 118

5.24 MOGAr results on single-objective optimization of insjp&e intervals.123
5.25 Mean unavailability results by DE optimizati@ost is the constraint..124
5.26 Cost results by DE optimization. Mean unawdiky is the constraint..125
5.27 Function evaluations and cputimes for the Viaeants tested in

weighted SUM-SCREME..........coiiiiiei e 127
5.28 Cputime and number of Pareto solutions prasdhe final archive for the
MOGA GA-toolboxand the threMIODE variantsccccccevvvvvvvnnnnnnn. 129

5.29 Direct comparison between the three algorittand the threeMlODE
variants for inspection intervals optimiZatioNmcevvvvevvvvveeeeninnnnnn. 132

Sommario

L’ottimizzazione di processi complessi, come queltiustriali, spesso risulta
essere un obiettivo difficilmente perseguibile sespecifiche competenze ed
esperienze acquisite sul campo. La difficolta dii taistemi deriva
principalmente dalla complessa forma che essi posswvere, dalle diverse
interazioni che legano proprieta, operativita efqgrarance unite all'incertezza
che ne deriva. Il mondo dell'Oil&Gas e quello delidieare sono due tra le
branche dell'industria dove piu si sente il bisogiiostrumenti in grado di
ottimizzare, simulare e dare risposte a questiifficile risoluzione tramite una
semplice analisi del sistema. Gli algoritmi evolyticome gli Algoritmi
Genetici o il Differential Evolution, possono daretevoli miglioramenti nella
definizione di gestione di asset produttivi o dpiamti nucleari.

Tale tesi espone in maniera completa le varie ¢bendel Differential Evolution
sviluppate in questi anni, analizzando la bont@atiitecniche, le situazioni in
cui possono essere utilizzati e la sensitivitalde parametri. Inoltre, due casi
studio su problemi reali del mondo dell’'industr@ne presentati e risolti grazie
all'applicazione di questo potente strumento dino#tzazione.

Abstract

The optimization of complex processes, such assimidl systems, often turns
out to be a goal difficult to pursue without spacéxpertise and experience in
the field. The difficulties of such systems are it primarily from the
complex form they may have, the different inte@asi that bind ownership,
operation and performance combined with the uniceytat brings. The Oil &
Gas world and the Nuclear industry are two of th@nbhes where tools to
optimize, simulate and provide answers to questdiffscult to resolve by a
simple analysis are necessary. Evolutionary algmst such as Genetic
Algorithms or Differential Evolution, can make sificant improvements in the
definition of asset management or production of learc plants.
The thesis sets out comprehensively the varioubntques of Differential
Evolution developed in recent years, analyzinggbedness of such techniques,
the situations in which they can be used and thsitpéty of their parameters.
In addition, two case studies on real problemsnaiustry are presented and
resolved through the application of this powerfptimization tool.

Keywords: Evolutionary Algorithms, Genetic Algorithms, Difntial
Evolution, Single-objective optimization, Multi-aajtive optimization

Chapter 1

Optimization

Optimization is the process of adjusting the vdesbor parameters of a
system or process to achieve the minimum or maxinafmsome given
objectives. Several ways could be taken to find dpéimum; anyway its
definition is unique. For simplicity, from here ame will speak in terms of
minimization.

Say the system of interest HRAproperties

pe kO{12,....B (1.1)
andC constraints

hy, mo{12...,¢ (1.2)

which are dependent arreal variables

x; j0{12....n (1.3)

J

Usually the variables have a domain defined byugyger and lower bounds
X D[XJL')#J] (1.4)
and the whole of these variables form a soluticd® the domaib

x=(x, %,..., %): X3 DOR" (1.5)

P = f (l()

1.6
h, = f,(X (1.6)

Chapter 1

The constraints can be equality constraint, like
h,=0 (1.7)
or inequality constraint, like
h,<0 (1.8)

They define the feasible regiof [0 D within finding the optimized set of
variables

X =(%, %o, %) (1.9)

that satisfies the optimization problem.
When the optimization goal is to minimize a singteperty, the task is to find

X*

fk(j)<fk(g<) Ox0Q (1.10)

wherefy is referred to the properfx to minimize.

The problem must be reformulated in the case ofirobjective optimization:
the aim is to generate a list of non-dominatedtgmis, called Pareto list, within
which each solution cannot be said to be betteanoither one considering all
the objective functions. The solution of this kinfl problems generates a so
called Pareto frontier which represents the whdlenxan-inferior (or equally
good) sets of variables that satisfy optimizatiod aonstraints.

In that case the optimization target is a vectaslgéctive functions

E(x)=(f(%), (X & () (1.11)

The problem can be formulated defining these twerators, [1 and <,
related to the concept of non-dominance [1].

Assuming two candidate vector solutions,andy, we say that they are
different

xPy it Ox0Ox yOylx#y (1.12)

Optimization

And thaty is dominated by
x<xy if Ox0x yOyl x<yandi (2.13)
An efficient, non-inferior/Pareto-optimal solutiagsma vector
X 0Q if E}DQ|E(})5E(X) (1.14)

The difference between single and multi-objectipéiroization is relevant: in
the first case the finding of the global optimunm &osingle property leads to
obtain just one solution, one set of variables thatisfies the condition of
dominance in the domaib for the required objective. On the contrary, when
optimization means finding a vector of equally gewdutions, the optimization
task becomes hard and some degree of complexityragluced.

The multi-objective optimization problem requireket finding of many
configurations that satisfy the concept of arrasgigperiority. This situation is
quite frequent in real optimization, especially fmmplex industrial systems:
many conflicting targets to optimize, constrairdssatisfy and the difficulty to
homogenize their different quantities, such asbdlity, costs, pollution impacts
and health consequences, impose a multi-objecptienzation.

The finding of only one solution does not satidfg target of the problem,
since other non-dominated configurations existpractice, after the definition
of the Pareto frontier by multi-objective optimizat, only one solution could
be applied to the real case. The final choice efsbiution to realize is left to the
human decision, affected by other considerationg. @conomic, politic, side
effects or environmental considerations not inctudieto the optimization).
Nevertheless, the definition of the Pareto frontstrioe as clear as possible, to
give to the user all the information available tiog decision.

Chapter 1

Chapter 2

Introduction on Evolutionary Algorithms for
optimization

Chapter 1 describes the optimization task for swudljective (SO) or multi-
objective (MO) optimization. An important aspect thie optimization is the
number of variable involved into the definition thie problem and the number
of constraints introduced.

If the number of these variables is small and tbgaiive functions are
differentiable and linear, as for the constrairdstypical gradient method’s
optimization works well and fast. If the objectiftenctions depend from several
parameters and non-linear constraints, or the tbgedunctions are not
differentiable, a direct search approach is reaibeful. The direct search
methods belong to the class of optimization thatndb compute derivatives.
Algorithms like Nelder and Mead simplex method [Rhrallel direct search
algorithm (PDS) [3] or Simulated Annealing [4] aexamples of powerful
methods.

Anyhow, classic optimization and direct search radthhave the risk to be
trapped by local minima, since they find only oméuon every search. Local
perturbation of the solutions is one interestinggrapt made to escape from
local minima, but for problems with high complexiynd high multimodality
this method fails (e.g.: functions 6, 15, 19, 2@ a8 of Appendix A).

Evolutionary Algorithms (EAs) are an attractive eaftative to traditional
methods of optimization, especially for problemdhwhigh complexity, high
number of constraints or high dimensionality.

They are a class of stochastic algorithms for ogttion inspired by the
Darwin’s theory of evolution: a population of potieh solutions is launched in
the search and it is able to adapt to its surrougndnvironment; it evolves, ruled
by heuristics, in a way that those solutions bedisfying the optimization
objectives are more likely to contribute to theufet generations of solutions
(the survival of fittest); the fitness definitios made by a fitness or objective
function that describes the features of any salutibAs need only information
about the environment and about the fitness funateelf, without any further
information about continuity or differentiabilityn fact, they lay into the class
of direct search method, but the revolutionary idethaeir global searching from
a population of solutions rather than one singlatsm.

Thanks to their population-based approach, theye Hagh capabilities to
escape from inconvenient situations like local rogti since their simultaneous

Chapter .

probabilistic manipulation of several solutions;rtii@r, this approach is
extremely suitable for MO, because of the needevkmal solutions as result.
Furthermore, their evolution concept gives to thecpss flexibility respect to
the different problem’s nature.

These features are extremely hopeful for the ogation, both in SO and MO
optimization.

To overcome this difficulty of a MO optimization, aon-dominated
comparison is usually adopted [1], but in thesey/saveral different strategies
for MO in EA are been proposed [5-11].

For EAs, each individual is represented by a smeafombination of
independent variables, or, mathematically speakldygan-dimensional vector
(called also chromosome) contained inside the domathat is a hypothetical
solution of the optimization problem:

X =(%, X,..., %) x0 DOR" (2.1)

Each solution vector's fithess needs to be evaluated the corresponding
values are used to probabilistically rule the cimsdon of the successive
generation.

Since their population approach, we need to defieepopulationS with NP
chromosomes of thé generation

X 10{1,2...,NP} (2.2)

S ={ KXo Ko K (2.3)

The generation is the reference of the populaiona specific evolution time.
Obviously, the first generation has indéx 1.

Heuristic rules, different for each family of EAste applied to this set of
chromosome in order to find the global optimum. PopulationSs is altered
by these rules, its solutions are discarded iédittones are found and a new
population, Ss+1, undergoes another time to the same proceduréheliong
runs, this repetitive process allows the attainno¢tite optimal solution.

Proved the reliability of EAs in many artificial oreal cases [12-17], the
progresses obtained by these optimization techaiage inspired a number of
alternatives; the two most widespread evolutionseghniques are Genetic
Algorithms (GAs) and Differential Evolution (DE).

GA and DE generate offspring combining the chromus®y generation by
generation, and select by different rules solusots carry on the next
generation.

Chapter 3

Genetic Algorithms: the ancestors of
Differential Evolution

Genetic Algoritms (GAs) were firstly defined as iopkzation methods by
Holland [18]. GAs are a particular class of EAs) @imeir functioning is inspired
by the rules of the natural selection; furthermotee procedures for
recombination and generation of solutions reserti@deprinciples of genetic, so,
many terms in their definitions are borrowed byldigy, coherently redefined to
fit the algorithm contest.

3.1 Generalities

As the other EAs, GAs are characterized by a glslearching based on a
population approach.

The chromosome’s variables are usually represeimtdainary coding, but,
theoretically, any alphabet could be used [1].

To each variable is assigned a gene (see FiguyeThé length of each gene
depends on the accuracy of the encoded variable.cbmbination of then-
genes is called chromosome, and its representatioany code is called
genotype; in binary coding, the individual is claesized by a unique string of
Os and 1s.

Processing the information contained in the bingtring, the fitness of any
individual could be evaluated by the objective fimt the genotype is
decodified into real numbers, the control factorss for each gene, defining the
phenotype. The objective function (or fitness fiumtt takes as input the
phenotype and it renders the fitness. This valubes used as comparison for
selection between individual in the population.

Defined a rangex", x"] for anyj™ variable and assigned the number of bits
n for any gene, the relation between the controltofaand its binary
representatiof is:

L

U
X =%

X, =x+f (3.1)

2nbj

The vaIuesqL, x,-U andnb are called phenotyping parameters of the gene.

Chapter 3

Figure 3.1 represents this concept on a problern thiee variables involved:
the number of genes is three, and, thanks to tdmg@ncoding procedure, the
control factorsq, X, andxs are obtained from the bit string. The resultinigdss
is assigned to the chromosome.

This process is repeated for the entire population.

1
Chromosome 1| Gene # 11 1Gene # 2 | Genc #3 1 Bit-string
b | !

!
Genoype 01100011] [1]of1]o

Bit-strings
1 1|U|U 10 (of assigned lengths)
Fhenotyping coding /
parameters J decoding
Phenotype 5, X, X Factors
{ome for each pene)

Fitness {x, X, X} objective function

Figure 3.1 The binary encoding of the variable for GA [19]

GAs use specific operations in order to evolve flopulation: the main
purposes of this evolution are the exploratiorhef$earch domain space and the
consequent attainment of the global optimum ofstystem.

The GA search is performed by constructing a sexpiexi populations of
chromosomes, the individuals of each populatiomdpée children of those of
the previous population and the parents of thosth@fsuccessive population.
The initial population is generated by randomly phng the bits of all the
strings. At each step, the new population is thietainoed by manipulating the
strings of the old population in order to arriveaahew population hopefully
characterized by increased mean fitness. This sequeontinues until a
termination criterion is reached. As for the natusalection, the string
manipulation consists in selecting and mating pairshromosomes in order to
groom chromosomes of the next population. This @ed by repeatedly
performing on the strings the four fundamental apens of selection
crossover replacementand mutation all based on random sampling: the
parents’ selection step determines the individualsch participate in the
reproduction phase; reproduction itself allows ¢ixehange of already existing
genes whereas mutation introduces new genetic m@ateéhe substitution

Genetic Algorithms: the ancestors of DifferentiabRition

defines the individuals for the next populationisTway of proceeding enables
to efficiently arrive at optimal or near-optimallstions.

The classical GA steps are:
1. creation of a initial population dfIP potential solutions to the problem
and evaluation of their fitnesses;

2. selection of pairs of individuals as parents fq@roeluction;

3. crossover of the parents, with generation of twitdoén;

4. evaluation of the children fitnesses;

5. replacement in the population with some rule, saaasnaintainNP
constant;

6. genetic mutation.

7. control for the stopping criteria, if some criterice met stop, else go to

step 2

When the children’s fitnesses are evaluated, acephent is made inside the
population between parents and children and theulpbpn is dynamically
updated. The new population is ranked by fitnegerasn: in the long runs the
best individuals will have a greater probability be selected for mating,
transmitting their genes to the children; thesédebin have high chances to have
good fitnesses, since they inherit good propeltietheir parents.

An important feature of the population is its géndiversity: if the population
is small, the scarcity of genetic information magpyoke premature stagnation
of the evolution, since the low possibility to eadge genetic material.
However, if the population is too large, the overatance of genetic material
can lead a clustering of the population around llagima, decreasing the
abilities of the reproduction process; then, thisming fithess could be poor,
because of lacking of good properties of eithethef parents. Furthermore, the
management of large population may be expensiveenms of computation
time, with a high percentage of useless genetienadis processing. So, the
population size, usually a used defined paramshtenild not be too large or too
small.

To avoid the premature stagnation or clusteringsHr genetic material is
inserted by genetic mutation inside the population.

3.2 Genetic Algorithm operations

As deduced from this brief description, GA usesrfoperations to allow
evolution:selection crossovey replacemenandmutation

The first procedure performed by GA is thselection of parents for
reproduction: the choice of the parents is onehef most important aspects,
since it affects the goodness of the offspring.

Chapter 3

Several variants exist, everyone with strengths wedknesses: the choice
from these variants is often affected by the pnobleature and by the other
choices made for the algorithm behaviour. They Iguse fitness information
that influence the selection; this device derivesnfthe concept of the natural
selection: individuals with high fithesses has mprebability to survive in the
environment and to transmit their good propertieghe progeny. The same
approach is applied in GA.

The most used selection rules for mating are [19]:

Standard Roulette Selectiothe cumulative sum of the fitnesses of the
individuals in the population is computed and ndipea to sum to unity.

A temporary population is generated by random sengphdividuals, one

at a time with replacement, from this cumulativensi'hen, the parents
for mating are taken from this population. This gadure allows to the
fittest individual in the population to be selecténr this temporary
population; by so doing, the mean fitness for thetpopulation has good
probabilities to be larger.

Hybrid Roulette Selectionone disadvantage of the previous selection
procedure is the fast lost on diversity for the tngopulations, since their
mean fitnesses are fairly dispersed around the mleathis procedure,
after the normalization of the sum of the fitnessbis cumulative term is
multiplied by the population size: the integer paftthis product is the
number of individuals in the temporary populatiaken as they are from
the current population. The remainder is selecteth ihe Standard
Roulette Selection. The permanence of good indalglis favoured, but
the diversity could decline.

Random Selection and Matindpe two parents are randomly selected over
the entire population. This selection does not @gimg advantage to good
individuals respect to the worse, with the possibito destroy any
achieved improvement.

Fit-fit selection and Matingafter a ranking based on fitnesses, two parents
are selected consequently from their rank. On tlezage, this procedure
is highly conservative and the weakest individuaie soon eliminated.
This method could provoke premature stagnationotall optima if the
population size is not sufficiently high.

Fit-weak Selection and Matingthe population is ranked as for the
previous procedure, but each individual is pairethws symmetrical in
the ranking. This practice improves the diversity the improvements are
small during the evolution.

Crossoveris the main operator for GA: its main purpose as nix the
properties of different individuals, opportunelyosien.

During the generation of the offspring, thr@gsoverconcept is used to reduce
the search space to promising regions and at thee dame to allow the

10

Genetic Algorithms: the ancestors of DifferentiabRition

proceeding of the genome (the input variables) specific parent combined
with the genome of a second parent using diffestrategies, like single or
multi-site crossing.

In each pair of individual, chosen for mating, tt&responding genes are
divided into two portions (one-site crossover) byseparation in the same
position in both genes. Then, the first portionshef genes are exchanged. Two
new chromosomes, the children, are produced, themkbke combination of
genetic material.

Figure 3.2 shows a single-site crossover.

A variation of this procedure consists on perforgnarossover only with an
assigned probabilitp.: a random number is generated by uniform distidiout
R~U(0,1), and the crossover is performedRip.. otherwise, the two children
are copies of the parents.

gplice EspJ:ce eplice

|] |
parent #1004 10

Parent ﬂ..z.....ﬁhi_l_lljiﬁqéx;_11¢1ﬂ!ﬂ11J.1JJJ..

\ CTOS50VET

Child # 1 |'1§11ﬂ|d1§b21'|£¥15(310|0|0|0|1|0']

Child # 2 {E}[l}i]i]i}ii]bglllgli i[1]1]

Figure 3.2 The single-site crossover operation for GA [19]

After the children generation and evaluation ofrthtnesses, theeplacement
process mimics the survival of the fittest, allogviirectly or indirectly the best
solutions to continue the evolution: from the falnromosomes (two parents
plus two children) two of them are selected to twd the evolution. The
simplest recipe consists in the children replace phrents. Anyway, in GA
many types of selection are proposed; this chordkiances the entirely
evolution process in terms of convergence speed mfmistness, often
connected with the diversity. The alternative pchoes apply theeplacement
to selecting the chromosomes for substitution fithke entire population; the
most common are [19]:

11

Chapter 3

= Fittest Individuals: the fittest two individualsofn the group of four
involved in and generated by crossover (two parants the consecutive
two children) replace the parents in the next gair; this procedure
should not be used when the parent selection igiteedy and it does not
select weak individuals (e.g. the Standard Rouetiection).

= Weakest Individuals: the children just created aeel the two weakest

individuals in the population: this procedure couydtbvoke premature
stagnation, so it is recommended only if the poportasize is sufficiently
high.

= Random Replacement: the children replace two rahdoselected

individual from the population; no fitness critarias adopted in this
procedure, so the attainment of the best is a lesked to an efficient
reproduction phase. This procedure works well imlspopulation, and it
allows deep search on the domain space.

The choice of one of the previous two operatorsgsoverandreplacement
is affected by the other one: a correct interachietween these two is essential
for the success of the search.

At the end, to increase the outcome of a GA, almwlom perturbations,
mutations can be introduced to avoid the possibility totkagpped in a local
minimum: a defined percentage of the populatiorarslomly mutated in order
to insert new genetic material inside the poputatibhe mutation is typically a
flipping between two random bits or a random chaingen actual value to the
opposite one. The mutation is performed on thesbaiassigned mutation
probability for any single bit (usually this valisequite small, like 16).

When these operations are terminated, a controlstop is executed; the
stopping criteria could be based on mean fitnesshef solutions in the
population, on best chromosome fitness, on weagesimosome fithess or
when a maximum number of generations is reached.

The option for GA that deserves attention is itscgling: GA in its basic
version works manipulating a string containing Ad as and altering or mixing
the binary coding of different individuals with tipurpose to generate fittest
children. With the binary version of GA, the matiogncept between parents is
easily deducible.

Anyway, GA works also with real-coded variablegydimg in mating concept.
The need of this encoding change arises from tlh@atmqation limitations of the
binary one: when the variables are quantized, tharyp GA fits nicely, but
when the problem becomes continuous or the requpirecsion becomes high,
the floating-point representation is more apprdprialhen the chromosome
does not have the semblances of a long string ah@sls, as the chromosome,
but becomes a mathematic entity of a vector. Ateodvolutionary operations
need some modification: the crossover concept istaiaed, even in single or
multi-cutting version, but a blending method rem¢a@] is introduced. This
method is simply a linear combination between tweepts in order to enhance

12

Genetic Algorithms: the ancestors of DifferentiabRition

the perturbations into the population, since thessik crossover applied to a
vector is a merely interchanging of variables: wiilea dimensionality of the
problem is small, this reproduction operation aldiads completely. The
blending method is applied to each variable ofdfw®mosome array:

X, = a0, +(1-a) O, |
X, =(1-a) B, +alx,

0jo{s2... n}

(3.2)

Where the subscript; -, stays forchild andp;., stays forparent The blending
parametera is taken from the range [0,1]. The other featutd® parents
selection, replacement and mutation are the sarfee sary encoding.

3.3 Multi-objective optimization with Genetic Algorithms

When the optimization is SO optimization, the poena evolutionary operators
use a simple comparison between the fithesses (o@yproperty of the system
is the optimization target) of the individuals telext the parents or the
individuals to be discarded.

When tackling a multi-objective problem by GAs, tharious approaches to

fitness definition may be distinguished into thoa¢egories [5] [18]:

* Aggregation methods combine the multiple objectiséshe optimization
into a scalar fitness function that is used to est the goodness of a
solution; an example is represented by the weightead approach [1] [11],
in which the fitness of solution is computed by tbkowing weighted sum
of the individual optimization objectives:

fweight (l() = ZP: W, ka(_)() (3.3)

where the arbitrary constant weightg, k=1,2,...P satisfy the following
relation:

w, 0[0,]] andzpl w=1 (3.4)

The optimization of a single fitness function, canation of the objectives
has the advantage of producing a single comprosolsion, requiring no
further selection by the decision maker. Howevethe solution were found
a posteriori not acceptable as a good compromisthefdecision maker
preferences, tuning of the aggregating weights beayequired, followed by
new runs of the optimizer, until a suitable solatis found.

13

Chapter 3

14

Population-based non-Pareto approaches are aldgolwe multiple non-
dominated solutions concurrently in a single simafarun: for instance,
sub-populations of the next generation are repreducom the current
population separately for each of the objectiveent the overall population
at each generation is formed by merging and singfflhe sub-populations.
The downside of this method is that it achievepupation of individuals
that perform well for each objective separatelythwio consideration given
to trade-offs among them.

In typical implementations of Pareto-based methddlsthe chromosomes
of a population are ranked according to the Padstminance criterion
applied to the fithesses. With reference to the-damination ranking,
firstly, all non-dominated individuals are idengdi and rank 1 is assigned to
them. Then, these solutions are virtually removednfthe population and
the next set of non-dominated individuals are idieot and assigned rank 2;
this process continues until every solution ingbgulation has been ranked.
Every solution belonging to the same rank clafiaeto-equivalent to any
other of the same class and has the same propatilithe others to be
selected as a parent for the mating. Figure 3.8/stam example of ranking
for a set of solutions.

During the optimization search, an archive of solutvectors, each one
constituted by a non-dominated chromosome and by cibrresponding
fitnesses, representing the dynamic Pareto optiyregit can be recorded and
updated. This procedure also allows implementatifoglitism in the genetic
algorithm: in this work, every individual in thechiive (or a pre-established
number of individuals) is chosen once as a panendach generation to
guarantee a better propagation of the genetic cafdenon-dominated
solutions and a more efficient evolution of the plagion towards Pareto
optimality.

At the end of the search procedure the result ef dptimization is
constituted by the archive itself which hopefullives the Pareto-optimal
set.

The performance of a Pareto-based MOGA dependslfaan its ability to
maintain genetic diversity through the generatigos as to arrive at a
population of individuals which uniformly represehe real non-dominated
solutions of the Pareto set, [11]. This can beeaad by resorting to niching
techniques such as sharing [11].

Genetic Algorithms: the ancestors of DifferentiabRition

S !

-
-

r!

LY

Figure 3.2, Example of population ranking for a maxmization problem.

15

Chapter 3

16

Chapter 4

Differential Evolution

DE arose from the Price’s attempts to solve theb@tigev polynomial fitting
problem posed to him by Storn [21]. It works simlifaas GA, since both are
EAs: it applies evolution operations on the induats of the population in order
to perturb them by transmission of good propeidies find the global optimum
of the system. One difference with respect to G#héa DE is specifically built
for optimization over continuous spaces and doebased on a floating-point
representation. The evolutionary operations areddor such representation of
the chromosome, and constitute the main improveroE@E with respect to
GA, even in case of real-coded variables. The gmdobetween DE and real-
coded GA are several, but the shrewdnesses adoptib@se new operations are
the strengths of the DE technique.

4.1 Basics

DE uses three heuristic operators as evolutiontegfies: they are called
mutation, crossover and selection.

The revolutionary idea of DE is the perturbatioriite current population. GA
uses crossover between two parents for the geoerafinew solutions; these
children inherit portion of genetic material froret parents. This mixing of
properties is the main alteration in GA that pdytuthe population. For DE,
thanks to its real-coding, the representation aheadividual is made by a
vector instead a string of bits as in binary-enogdor GA. Then, the heuristics
thought for DE are chosen with a view of vectorrapa's.

The alteration for reproduction in DE, called migat is obtained adding to
an individual the weighted difference between otfwes individuals randomly
selected from the population.

This scheme is the original one proposed in [24]:each vector xi,G in the
population, called target vector, a noisy vector ivi generated randomly

r,,r;0{1,2,.. NP}

choosing three mutually different vector indicds with

i O{r, 1,03

Vie =X + F[Qlﬂz,e __)§3,G) (4.1)

Chapter 4

where the weighting (or scaling) factbr [1(0,2] is a user-defined parameter,
maintained constant during the optimization.

Figure 4.1 reports graphically the vectorial operatto the vectorx; the
weighted difference between the vectgrandx; is added, to create the noisy
vectory;. The difference between the vectggsandx: is scaled by the factér.

This linear combination between three solutionthefpopulation is one of the
revolutionary features of DE: using the weightedfedence to perturb the
population, the entire generation process becorakiganized, because the
step-length for the perturbation is mainly affectsdthe progress state of the
evolution.

Through the evolution, the search space contracexpands if the direction
taken by the algorithm is correct or wrong, so thedom step-length is self-
adapted in every dimension accordingly with theeshejence of the variable.

X3
X MNP Parametsr vectors from generation G
© Newly generated parameter vector ¥

MINIMUM

> X

Figure 4.3,Noisy vector generation by mutation [22]

After mutation the noisy vector is not directly compared witte ttarget
vector, but it is further modified by th&ossoverprocess, in which the noisy
and target vector are mixed with some rule to er¢haé trial vectou;, which
inherits from them different pieces of chromosoriibe crossoveroperator
contributes to maintain the diversity inside thaegmtial perturbed population,
shuffling old and new information. This increasbs probability to maintain
some good property from the target vector, andds/drastic changes during

18

Differential Evolution

generation of new solutions. The role of tressoverin DE has a secondary
relevance compared to GA.

Due to the chromosome vectorial representation,ctbesoveroperator for
DE is applied to each element of the array: eaclable of the noisy vector and
the target vector has the possibility to be parthef trial vector, entering the
final fight for the survival.

The most common crossover type adopted is the balapproach: the trial
vector is built by a modified Bernoulli trial rul@.2), gauged by the control
parameterCRL(0,1], which influences the probability for a noissgctor’s
chromosomes to be selected for the mutation process

- ifU(0,1<CR j=irand(N
jiG:{vml (0, or j=irand(NP 4.2

X, if U(0,1]>CR and j# irand NP
0j0{1, 2,... ,n}

where U(0,1] denotes the uniform continuous random vali@,1], whereas
irand(NP) is a uniform discrete random number from the 5et{.. NP}.

This ruling applied to the Bernoulli trials guaraes the inheriting of at least
one component from the noisy vector in the triattge even if the crossover
rateCRis set to zero.

The binomial crossover operator acts on every “gergpresented by a
variable, without any dependence between two neigld) as for classic GA
crossover. This one could be compared with a nsitki-GA crossover affects
by probability.

A relevant difference with GA is that in the D&ossoverprocedure a
chromosome of the current population and one jaserated, the noisy vector,
are mixed, rather than two individuals of the papioh.

The resulting trial vector

Hi,G:(qu,G’uzs“"’UniQ) (4.3)

inherits portions of noisy vector and from the &rgector, as regulated by the
parameteCR

Figure 4.3 shows the principle underlying the bimmrossover process: the
condition of the Bernoulli trial is met only forehvariables’ index 3, 4 and 6;
the trial vector is then inherits the variable215 and 7 from the target vector
and the variables 3, 4 and 6 from the noisy one.

An alternative crossover scheme, the exponentedsaver (see Section 4.2.2
of this chapter), was proposed by Storn and P[H, This second crossover
type works as a double-site crossover, allowingnkerchanging of consequent

19

Chapter 4

genes. This procedure shows less success and adiffaralt setting. For this
reason, binomial crossover is the most used cressgpe.

Lia Vi g

1
2 s
\-"Ir -‘tqd: R
3 —e=C
4 q V(0. 7);<=cn
5 :
8 4 U0, 1), <=cR
? x
S~
Target vector containing Moisy vector Trial vector
the parameters X g,
j=1.2, ..., n=7

Figure 4, Binomial crossover for DE [22]

The trial vector obtained then enters siedectionprocess where it is compared
with the target vectax; s that is partially its parent, according with thressover
rule. During the selection process, the populaBers modified by substitution.

Referring to a SO minimization, if the trial vecwofitness is less than the
target vector’s fitness, the latter will be a memloé the next generation,
replacing the target vector in the Sgt; and the trial vector is discarded:

Cug i f(us) < fi(x0)
Xi'Gﬂ_{z(iYG otherwise (4-4)

0i 0{1,2.... NP}

The selectioncriterion in DE is greedy and quite different frahe classical
replacement criterion of GA: for sure the next gatien will be better or at
least equal of the previous generation.

20

Differential Evolution

The evolution for DE follows these steps:

1. creation of a initial population dfIP potential solutions to the problem
and evaluation of their fithesses;

2. for each solution of the population (target vectselection of three
chromosomes for reproduction;

3. for each target vector, creation of a noisy veatsing the mutation
process;

4. creation of a trial vector mixing target and noiggtor;

5. comparison between each target vector and ittecktaal and eventual
replacement;

6. control for the stopping criteria: if some critarics met, then stop, else
go to step 2.

The stopping criteria adoptable are the same aSAofsee Chapter 3).

This resulting EA, DE, shows robustness, higheweogence speed than GA
and even better accuracy thanks to its greedy aflecivosen operators.

Like in GA the three operators must be balancealltaw the evolution and at
the same time the exploration in the search sgadehe convergence for DE is
usually higher because the setting is less crjtibanks to the self-organization
of the step-length, granting robustness to théegjya

The key parameters of control for the basic DE gmeed are:
* NP population size
* F scaling factor
* CRcrossover rate

Even if DE is more robust and suitable than GAhas high possibility for
improvement, especially for the convergence ratecesits basic structure
enables sophistications, many strategies, conagritéh operators, had been
proposed with considerable successes, openingeagdime time, in a parallel
way, the problem of the control parameters settiad, as we shall see, it can be
solved by a time-consuming and problem-dependammhduor by adaptive/self-
adaptive approach.

The initial population of the evolution process aibuis composed by values
distributed with random uniformity between the ppecified Iowerx,-L and
upperx,-U initial parameter bounds if they are specifiedjrdeg the domairD;
so each variable of each individual is initializeifollow:

Xio =X +U(0,2) % - f) (4.5)

0j0{1,2,.. n} 0iD{1,2,.. NP} G= "

21

Chapter 4

This practice is beneficial because the exploratae early phase, when the
algorithm doesn’t have particular preferential dil@n, is not unbalanced
toward some region. Moreover, it is useful in tlese the feasible region is
coincident with the domaimQ=D. In the case some solution is generated
outsideD, some repair rule is utilized (Section 4.3).

If the domain is not pre-defined, it is necessagfirgt an initial region from
which the algorithm can start.

Another possibility is starting from a previous wan, defining a range or
giving the variance and mean around which genenmdtal individual if a Gauss
distribution is desired. Of course, this initialioa is used only in a forced
optimization around a particular region or aftgravious estimation.

An example of DE implementation is reported for Mt

% Evolutionary Algorithm : Differential Evolutio n (DE)

% Type of optimization: single-objective minimiz ation

%

S

% parameters

L

NP=30; % population number

CR=0.5; % crossover frequency

F=0.5; % scaling factor

MAXGEN=500; % maximum number of generation

eps_alg=1e-4; % difference limit between fmax and f min

L
function options

L

low=-5.12; % lower and upper bounds arrays

up=5.12;

dim=10; % dimensionality

L

% initializations

L

k=1; % generation index

matrix=zeros(NP,dim); % matrix for the individuals

trial=zeros(NP,dim); % trial vector

fitness=zeros(NP,1); % fitness function

fithess_trial=zeros(NP,1); % fitness of the trial v ectors

% initial population uniformly distributed inside t he domain

matrix=rand(NP,dim)*(up-low)+low;
%
% first evaluation
%
for i=1:NP
fitness(i)=objectivefunction(matrix(i,:));

end
f_max=max(fitness);
f_min=min(fithess);
delta=abs(f_max-f_min);

22

Differential Evolution

%
% code
%
while (k<MAXGEN)&&(delta>=eps_alg)
I %
% mutation
% &
% crossovering
I %
for i=1:NP
ri=i;
r2=i;
r3=i;
while (r1==i)

rl=randi(NP);

end

while (r2==i)||(r2==r1)
r2=randi(NP);

end

while (r3==i)||(r3==r1)||(r3==r2)
r3=randi(NP);

end

p_add=randi(dim);

for n=1:dim
p=rand;
if (0<=CR)||(p_add==n)
trial(n)=matrix(rl,n)+F*(matrix(r2,n)-m

else
trial(n)=matrix(i,n);
end
end

end

L %

% evaluation

L %

for i=1:NP
fitness_trial(i)=objectivefunction(trial(i,:)

end

0 =-mmmmmmmmmm oo %

% selection

0 =-mmmmmmmmmm oo %

for i=1:NP

if (fithess_trial(i)<fitness(i)) matrix(i,:)=tri
fitness(i)=fitness_trial(i);

end
end
0 —-mmmmmmmmmmmm e %
% best individual
0 —-m-mmmmmmmmmm - %

f_max=max(fitness);
[f_min, i_best]=min(fitness);
delta=abs(f_max-f_min);

atrix(r3,n));

al(i,?);

23

Chapter 4

k=k+1;
end

bestindividual=matrix(i_best,:);
bestfithess=fmin;

4.2 Variants and sophistications

In the previous section we discussed about the rdasunder DE, based on
the easy rules ofmutation crossover and selection How they were
implemented gives as result greater robustnesameergence speed in with
respect to GA, but several modifications, sophasiims and shrewdnesses
could be introduced to this basic DE scheme, sin@aves substantial rooms
of improvements in the operators, especially nnutation and crossover
procedures.

The first modified strategies were proposed bydfeators Storn & Price [22]:
they introduced ten different variants combinindfedent operator’'s types,
allowing the essential flexibility to the promisiaggorithm.

The general notation they propose®s/x/y/z where

* X indicates the methods for selecting parents thétbe used in the
mutation process

* yindicates the number of vector differences usegdewurb the base
chromosome during the mutation process

» zindicates the crossover mechanism

The most widely used strategy is the one previoudgcribed, called
DE/rand/1/bin which uses random selection, one vector diffezeared binomial
crossover.

Their attempt was the first in a series of modifmas and improvements that
lost the initial notation, treated in this sectlmnoperator.

4.2.1 Mutation options

Starting from the Storn & Price variants, in thexigon are described all the
known mutation options presented in literature, hwiheir strengths and
weaknesses.

Storn & Price variants

The number of perturbations, pointed by the nundfereighted differences
y, is usually one or two, but in fact many more éineombinations of weighted
differences could be introduced. The selection of 2ectors inside the
population is generally made by a random samplihg;limitation is that the

24

Differential Evolution

vectors must be mutually different as well as fa base vector. This condition
implies the minimum number for the population: itish be greater or equal to
2:y+1 (anywayNP is usually greater than this value). Each veciffer@nce is
scaled by & scaling factor, but in the classical formulatitvey are fixed and
at the same value. Increasing the amount of vebtfarences is not a pursued
practice because the random selection of the indiudlifies the expected
amount of perturbation induced. An example of 2 teecdifferences
perturbation with the same scaling factor is:

Vic = Xasisct F[q_)(I,G__)(E,G+_X§,G__)§4,G) (4.6)

The basis vector depends on the selecting methexti us

There are three selecting methadd he following formulas show the case with
one vector difference.

1. rand, proposed in the original DE version [21], plarms ¢hoose
mutually different vectors from the current popidat each with a
uniform probability INP (often the chosen indices must be different
from the target vector index, in order to keep thiessover role,
assigning probability/{NP-1) to each onepccording with the number
vector differencey: the number of vector’s indices must beg-21.
The first one is used as a base for the noisy veatal the subsequent
vectors for the differences. This technique av@idsnature stagnation
because of the random selection to the detrimerhefconvergence
speed in some case.

Vie =Xt F[Qlﬂz,e __)§3,G) (4.7)

2. bestuses as base vector in the mutation process gtesbtk@tion in the
current population. The other vectors for the dédfees are randomly
chosen. This technique could enhance the speednetogence but at
the same time could destroy the necessary diverityavoid
stagnation; in the case the number of local optisiahigh, the
algorithm fails with high probability because dietnoisy vectors are
direct toward a specific optimum. Only a lucky soglfactor setting,
depending by the objective function’s nature, coeithble success.
Otherwise for a non-critical and low-constrainedecbve function
this method is interesting and appropriate.

Vie = Xestc F[Q_X{,G__XE,G) (4.8)

25

Chapter 4

3. current-to-besuses as base vector the target vector, for thsorethe
selecting method contains the wording “current”eTerturbation is
carefully driven toward the best of the actual gahen and not
around the best solution, since the basis vectdhastarget. Still a
perturbation performed by a random vector diffeeeggists: handling
the two scaling factors involved the approach tedelss critical than
thebestconfiguration.

Vie =X%stH [ql%estG__Xi,G)-i_ E [Q_X{,G__Xg,G) (4.9)

Figure 4.3 shows perfectly the non-critical apploaeducingF;, the noisy
vector could be generated not so close to thedidgbe generation. IF;=1, the
approach degenerates into thest configuration; otherwise, iF1=0, the best
solution is not taken into account and the basttoras the current vector. This
last situation is not advisable, because the cu@ssprocess becomes quite
useless if not coupled with a higl: the crossover mixes the target vector with
the noisy vector; then, if the basis for the laiterthe target vector and the
amount of perturbation doesn’t allow high explavati far from the current
population, the convergence speed could be vew. slo
X
A2

X NP Parameter vectors from generation G
© Newly generated parameter vectorv

MINIMUM

Figure 4.5,DE current-to-best representation for a two-dimemai problem [22]

MDE scheme

This method — Modified Differential Evolution [23}, works on the selection
process of the vectors for the mutation. Using asisovector a solution with
good fitness, the child will inherit with high prability some of its good

26

Differential Evolution

properties. The modified version MDE is a kind eihgralization for theand
andbestmethod proposed by Storn and Price.

Introducing a selection pressure control variaBIR, the user can control the
selecting process for the basis vector in accoelamith the ranking of the
current population made by fithess. Performing aieseof independent
Bernoulli trials that start from the top of the karg, where there are the fittest
solutions, the basis vector is selected accordinpe pressure control variable:
if U(0,1<PR the current ranked individual is selected, othsenthe Bernoulli
trial is repeated for the next solution in the.liBhe highelPR the higher in the
ranking is the basis vector.

The rand and best variants become a special case of MDE, respeytivel
PR<1/NP andPR=1. Using this method, the user can choose betwezimo
classic variants only changing the pressure contedlie. High PR values
facilitate the convergence speed, creating morentitated individuals, while
low values, coupled with the number of weightedfedénces, facilitate the
population diversity.

The other properties of the algorithm, like the tw@mof weighted differences
y and the crossover tyganust be decided as usual.

This approach gives more flexibility to the settioigDE, but, like the others
variants, it needs firstly the adjustmentRiR and subsequently &dRandNP to
achieve faster convergence speed. Moreover thiagus, like often appear in
EAs, dependant by the objective function to optamiz

DERL scheme
This technique — Differential Evolution with Randdmcalization [13] — is

inspired by the random selection of the vectorstf@ mutation process, but,
despite the classical formulation, it uses as basior the fittest solution
(called tournament best solution) between the cbsmmes selected for
mutation. If the number of weighted difference a@moss for example one, the
selection process chooses three mutually diffeventors (different also from
the target vector) and from them it selects thedttonex, ¢ as basis vector.

Vie =X%ctFk [Ql(dl,G__Xdz,G) (4.10)

The other two vectors,xg1c and Xg2c are chosen randomly and
F O[-1-0.40[0.4]. The resultant noisy vector is then passed to the

crossover operator.

Using the scaling factor, even negative, with garm selection increases the
exploration and the robustness of the algorithm bat significantly the
convergence speed; moreover the choice of a workange instead a fixed
value makes the setting less critical. On the otfzard the employment of the
tournament best as basis vector makes the algorithster with little

27

Chapter 4

improvement in the robustness. These two effeces sdndied [13] before
separately to proof their goodness. The resultantbination has remarkable
improvement.

This random localization feature gradually transfer itself like DE,
enhancing the convergence speed after a clustarognd the global optimum:
at the beginning the noisy vector is not necesshrdal to the tournament best,
because the weighted differences are large; onlyenlater stages, when the
differences become smaller, the speed-up is sogmifi

Another version, greedier than the previous onesEsuniformly distributed
only in a positive range and the selection of the vectors for the difference is
made with the same fittest criterion: the bettethef remaining two vectors will
be the first chosen for the difference. In that vadgo the difference is directed
toward a better region. This scheme could createesstagnation if a soon
clustering appears: to avoid it, the explorationsmmbe enough widespread,
handling the population numbBIP or the scaling factor’s interval.

These techniques seem good and non-critical: inetrey stages they work
like a classic DE with the necessary diversity inuthe late they intensify the
search.

TDE scheme
This scheme — Trigonometric Differential Evolutiq@4] — modifies the
mutation operator in its formulation: the classiethod perturbs a basis vector
with a weighted difference; this one defines a deapace delimited by a
hypergeometric triangle formed with three vectdrat trepresent the vertices.
Using objective function information, it adjustsetiperturbation toward the
fittest one. The other processes in the algoritbrossover and selection, are
performed as usual.

Choosing randomly three mutually different solusofrom the current

populatiorrl,r2,r3D{1,2,.. NP}, different from the target vector as in the

classic formulation, it uses as basis vector timregoint of the hypergeometric
triangle formed instead only one of them. The amadrperturbation is driven
by fitness information of each vector: preciselgere are three weighted
differences scaled with the difference of the gasdnof the vectors involved
into the perturbation. The following formulation pains the process for a
minimization task:

M (4.11)
f

28

Differential Evolution

where the best solutions has the lowest irlex

(l(rl,G +l(f§G +2(r3'G) +(R, — pl) EQ—)&G __XZ,G) +

+(p3_ pz)[@ﬂz,e __)§3,G)+(R- Q) [q_)é,e __?g,e)

Yie = 4.12)

that could be re-write in a general form as follows

Vie =D,

k=1

i {XZG "X [Ei(R~ R)}} (4.13)

w=1

If the scope of the optimization is the maximizatishe formulation needs
only the sign inversion for the scaling factors.

Thanks to the weighted terms, the noisy vectoriiect toward the fittest
vertex of the triangle with a greedy perturbatioadg: the higher the difference
in the fitnesses, the larger the amount of pertisban a good direction. This
greediness could be seen as a problem for the gqruldiversity, since this
mutation is a kind of local searching technique;tfos reason the TDE operator
is used only with a probability according with awneontrol parameteM:.
Certainly this modification helps the accuracylod algorithm significantly, but
if it is used without care it could destroy the ustmess of the evolution process
giving a premature stagnation. In fact, whdg=1, the stagnation is almost
unavoidable: the operator can explore only insideealefined region, whose
extension depends on the population diversity. lBtemmended value for this
control parameter is around 0.05, rather low, lsubther strategies, the tuning
depends on the problem’s nature. It seems that ihDP&duces another control
parameteM; besides the three parameters scheduled in thearigg, F, CR
andNP, but a look into the sensitivities between eadleoshows a remarkable
behaviour of TDE, which appears with a considerdblyer sensitivity to the
variations in the control parameters. The Figudeshows the sensitivity of the
two algorithms with the Rastrigin’s function (seppfendix A, f22).

For this reason, after the trigopnometric contralpaeter tuning, the algorithm
setting becomes easier. The application of th@egetric operator could be
probably appropriate only in the later stages, esimcthe early exploration its
contribution is rather low; after a clustering anduthe better regions of the
feasible area, this operator increases the conweeggpeed significantly.

29

Chapter 4

160 o 5 100

- ;
+- a0 b - 4
F . % s
g - - - Original-DE 0 S)/.
-0~ TDE P 35 - ¢~ - Original-DE S * ol 3
Lo ; < -TDE ’ \ nb
100 i W ’
w /
- ¥ 25 | ¥ =
® & 2 gt —4— Original-DE
T ek Z - -TDE
60 . ; 4 \
\ ; 4
s b . W g o
40 F ¢ 10 e N &
b T .4 i W &yt T ! 20 | i\ 4
¥ Lo : © B
s, "

. 7 S g e ¥ &

. ¥ &
B, i A et -l iy g e fn
! -

ot L . L P

L I ol
o 0.5 1 15 2 0 02 0.4 08 0.8 1 0 10 320 30 40 B A0 YO B0 00 100
r o M

Figure 6.4, Sensitivities of the three DE parameters F, CR [dRdon the Rastrigin’s function
for the final minimum obtained [24].

DEPCX scheme

This technique — Differential Evolution with Par&déntric crossover (X) [25-
26-27] — uses a similar concept of TDE: it enhartheschance of exploring the
neighbourhood more efficiently by a different noisyector formulation;
nevertheless, it does not involve fitness’s infatiora Although the name goes
back over the crossover concept, this approach svorky on the mutation
process; the misunderstanding arises from thefbrstulation of this operator,
used in a particular version of GA. DEPCX differsrh DE only in the mutation
process. Crossover and selection are performeduss. u

The operator, unlike TDE, uses as basis vectorobtige « mutually different

vectors 1,...,r,0{1,2... NP} selected for the mutation
processx, ¢, PO{L,2,... 44} .
The mean vector is computed as

1 M
9==2 Xo (4.14)
Hia
and the direction vector as
gp,G =l(p,G__g (415)

From the remaining-1 chromosomes, the perpendicular distarige® the

line of the direction vector are computed and the'erageﬁ is obtained.
Then the noisy vector is found as

u _
Vie = X6 tWd s+ D W De (4.16)

k=1,k# p

where g are the orthonormal bases perpendiculaddg, w.= N(O,agz) and
W,7=N(O,O',72). The two variances are usually taken as 0.01.

30

Differential Evolution

Like TDE, DEPCX is a greedy operator, but with ssléorced approach. For
this reason it could be applied every mutation éach target vector; the
stochastic application of DEPCX, pursued also inETWith another control
parameter, could be implemented with similar praiigb(0.01) but with
comparable results. Like classic DE, this techniguself-organized, because
the amount of perturbation is function of the peagioin diversity that affects the
direction vector and the average perpendiculaadecs, but in the later stages it
works as a local-search operator. Furthermore, wihnemparents selected for the
mutation are located far from each other, the neistors generated are well
sparsely located, so at the beginning DEPCX wankéike TDE, maintaining
the necessary diversity to explore the entire dareéiciently.

In terms of solution accuracy, this algorithm ist f@tter than other DE
strategies, however, it shows faster convergenceesit takes less function
evaluations. A debatable problem is the necessampatational time,
comparable if not greater than DE and TDE, becafishe complexity of the
DEPCX mutation process. To avoid this situation shechastic application is
preferable, maintaining at the same time the ralasst and the convergence.

NSDE scheme

This approach — Neighbourhood Search for Diffesrivolution [28] — is
inspired by the exploration methods used in thellwmary Programming
(EP). As seen before with DERL, TDE and DEPCX, thality of an
evolutionary algorithm to explore the neighbourhosmhce is a remarkable
advantage. In this approach, the mutation operatmodified to allow a similar
exploration performed in EP, where a kind of sel&ating perturbation is used.
In DE this role is played by the vector differenaaployed in the mutation
process that automatically adapt themselves.

An example of perturbation in EP is:

Vie =Xt W (4.16)

wherey is the specific EP-operator andis the auto-adaptive perturbation that
follows some defined rule.
w could be:

e N(,1) for classical evolutionary programming CEP,
whereN (0,1) =(N,(0,9 ,.. N,(0)), that is an array of Gauss
random variable with mean = 0 and variance = 1.

« 4(0,1) for fast evolutionary programming FEP,
whered(0,)=(4,(0.9 ... 4,(0,)), that is an array of Cauchy

random variables with location = 0 and scale = 1.

31

Chapter 4

* L

L0

Lévy

evolutionary

programming
(L(c).....,(¢), that is an array of Lévy random variables
with scale 0 < < 2.

LEP,

where

These are the most used operators for EP in whieméighbourhood concept

dominates the perturbation.

In classical DE the operator is the fixedialue.
In the NSDE approach, after a probability evaluatiof a jump-length
expected [28], dependant on the operator, a flexg#tting of operators is

performed.
11 ——— L - F05 |
. T -- N[
09 S LY TR — Gt
¢ i
0.8 ‘ naf it
"y f) N
Yort / Ao7t Y
T ; T s
> 06} =081) \
£ £ \
Bos Bos L,
0) i X
o4t £ o4t P \
o o P
0.3 03t b \
B
02 {1 oz} : 5
—- F=0.5 g X
0.1 - - N@,1) 0.1 \ ~q
o — C(t=1) -
0 b= 0

Length of Jumps (L}

10'

10%

107

Length of Jumps (L)

Figure 4.7,Probabilities for the lenght of jumps for threelsafactor definitions: fixed, Gauss
random variable and Cauchy random variable. [28]

Since using a fixed scaling factor reduces the ghdity that the step length is
right for the optimization problem without any togi to increase the ability of
the algorithm two operatordl andg, are applied with some deterministic rule;
the Gaussian operator is more likely to producellsjimaps, beneficial for the
local search near the global optimum, whereas thecRy operator is more
expandable and it has greater probability to predoag jumps, useful for the
early exploring phase and to escape from locahogti

The following rule is proposed:

(x,-x,)IN(05,0.29 ifu(0]<Ns

Vie =X, t ((4.17)

X, —g(rg) [5(0,1) otherwise

32

Differential Evolution

Where as usualr,,r,0{1,2,.. NP}are chosen randomly witbl{r,,r,r.},

NS=0.5 and the Gaussian operator is adjusted as thmoa range foF.

Of course the weights of the Gaussian and Cauchyatqrs in the perturbation
could be changed modifying thdS value, changing the behaviour of the
algorithm; in fact this value becomes another patamto set, like the
parameters for the operators.

The tests performed in [28] show the goodness igf dbproach versus the
classical DE and FEP, with some doubt for multiniddactions with smaller
number of local optima: in such cases DE outperfoM$DE, demonstrating
the unhelpfulness of the NS operator, which in@eamly the computational
time without any advantage. In all the other caN&DE results better than
classic DE, more powerful when searching in an remment without any
previous knowledge.

DELN scheme

This technique — Differential Evolution with Locskighbourhood [29] — is a
variant for the mutation process that is inspireg the Particle Swarm
Optimization, another evolutionary algorithm themglates the social behaviour
of the imitation of the fittest. The connection weén these two types of
optimization algorithms is the simplicity of therpebation introduced in the
population. Like NSDE, it increases the DE neighbood searching properties
combining them with global exploration.

This approach mixes local and global search tectenas follows:

Vie =% EQLG +(1_ W;) E_Ii,G (4-18)

wherew, 0[0,1]is a scaling factor applied to the global and lonaitated

vectors.

These two mutated vectors are generated usinguirent-to-bestapproach
presented in the Storn and Price variants, withfalewing shrewdness for the
local one: after the definition of a nearness \@eafor each target

vectork D{1,2,...,NF}, a new sub-set could be defined from the main
population for each target vector:

SLi :{_)%i—ki—1>NP+1’_)$i—ki>NP+1--~1_)6+k1. ‘%p”} tl {1,2,.. ,NI? (4_19)

From the sub-set associated with the target vetiar,vectors are selected
randomly for the vector difference and the fittese in the set is chosen as the
best vector for theurrent-to-bestpproach.

33

Chapter 4

96 = %o * Rl Xewo=Xo)* BEX o= %0 (4.20)

l_i,G =Xiet F EQl(nbestG_l(ie) +F, E@l(i,G__)(E,G) (4.21)

where best indicates the best vector in the entire population
r.r,0{1,2,.. NP}, nbestis the neighbourhood best solution inside theSset
andrs, ry are chosen randomly from the sub-set interval. ftheth scaling

factors are usually mutually different.
The weight factor varies linearly (increasing) witime, following eq. (4.22):

Gmax

After a necessary definition of the minimum and maxn value (advised
values are respectively 0.4 and 0.8) to achieveb#lance between local and
global exploration, this time-varying approach giemphasis at the local search
in the early stages and only with time it movesaoivthe global search. This
neighbourhood concept does not lie in a space pbmakzation but only in a
population point view, since a neighbour is giverydy the solution’s index:
for this reason, the “local” wording assumes aedéht meaning, with less
implication about the searching area: so, emphasiat the beginning the local
search doesn’t mean reverse the exploration scirethe domain.

This DELN scheme should improve the performance payed with classic
DE, but it seems just a sophistication in the chaitthe vectors.

We = W+ (Wog = Wmin)[E G _:_L:J 0GO{12,..,G.} (4.22)

4.2.2 Crossover options

The most common crossover operator for DE is theorhial crossover,
explained in Section 4.1. In this section the otressover option proposed in
literature is presented.

Exponential crossover

This crossover scheme was the first proposed ih p21Storn and Price; it
takes idea form the GA crossover process in whiehmixing of the genes is
made defining one or multiple cutting points. Apkaned before, the crossover
role is to maintain diversity inside the populationixing the properties of the
created noisy vector with the target vector. Th@cpss mixes the chromosomes
cutting in the target vector in two points, insegtithe noisy vector's genome,
like the two-point crossover for GA.

The trial vector is composed by the following rule:

34

Differential Evolution

. :{Vji,e for j=(a-1) +1(a) +1...{a+L-3 +1 (4.2

X;c Otherwise
0j 0{1,2... n}

wherea0[1, n|andL O[1,n] are randomly chosen integers afd is the n-

modulo; it permits the circularity of the proce3$e first indexa defines the
first cut point, whereak defines the length of the replacement. In thicess,
the probability that. variables in the trial vector come from the naigsgtor is

P(L=h)=CR (4.24)

This is not a probability distribution but just @ationship where the operator
can modifies the result changi@R or h, according with the power law: the
probability of mutatingh components increases with the param@&e& and
decreases with the value &f Anyway, to have a good effect with the
exponential crossover, tl@&R value must be high, 0.8+0.9.

In the caseCR =1 then all the parameters of the trial vector cdroen the
noisy vector.

The weakness of this crossover method is the antylof this approach, in

fact, the exponential crossover modifies only cootee genes. Figure 4.6
shows the process.

%6
i=1 B =1
1 B 2
4 i 4
i
S s
6| i
7 B 7
hv_l'
Parameter vector containing =2
the parameters x,. j=1,n L=2

Figure 4.8,Schen'1e of the exponential crossover for DE [21]

35

Chapter 4

4.2.3 Further sophistications

This section is dedicate to the different procegdasning adopted in the
algorithm’s implementation; since the modificaticms the operators’ nature is
not the only way to increase the ability of DE uplere the search space and to
increase the convergence speed, this further neatidns in the algorithm
behaviour play an important role in the predomimaofcDE in comparison with
other optimization algorithms.

DELB scheme

This scheme — Differential Evolution with randomdatization around the
Best vector [13] — adopts the further exploration Ibcalization after the
definition of the trial vector. Respect to DERL,nsetimes it is preferable
adopting the localization concept after the caliota of the trial point, to
explore the region between it and the best cugehittion. This scheme is not a
modification of the mutation process, rather a sghent mutation around the
trial vector and the best solution. It starts ltke classic DE [21]: defined the
trial vectoru; g, if its fitness is better than the target vectditsess but worse
than the best current vector’s fitness, two newngsoiare found with some
probability U(0,1}<w), using the following general rules for reflecti@amd
contraction:

lieg =ajUjig +(1_aj)Dﬁbest,e
Cic :aj)ﬁbest,e'l'(l_aj)mji,e
0j {1, 2.... n}

(4.25)

wherea; =U (-1,1), one for eaclith variable.

A first attempt is made by the reflected vectoregated: if its fitness is worse
than the original trial’s one, a second attemph&sie with the contracted vector;
if the second attempt fails again, the trial vecaplace the target vector instead
one of the previous twos. The user-definegarameter controls the frequency
of the local exploration around the trial and thestbvectors. This scheme
increases the number of function computation peegsion, but evolutionary
speaking it reduces the number of generation napess achieve the global
optimum; furthermore, this scheme increases theistoless in view of the
correct choosing of the control numlverthe recommended value is 0.1.

In this practice the convergence speed and thestobss are increased in
comparison with a classic DE, but the introductafnanother variable to be
adjusted attentively makes this technique reallysgiwe to the control

36

Differential Evolution

parameters. Without a correct tuning, the convergeand the robustness could
be call into question.

DEPC scheme

This approach — Differential Evolution with Prefetial Crossover — is
proposed in [26] and it works managing the crossoperator and the selection
process. It uses two populations, both driven taviae global optima. The idea
of a second population comes from the strict rdifdhe selection process: in DE
the trial vector is discarded if the target vecbows better fitness, but this does
not mean that the trial vector is completely ingét: it could be better than
other individuals inside the population and it neagn lie in a promising region
of the search space.

In DEPC, the first crossover procedure is applisthgi two populationss,
and S with the classic method. The s@tis the main population, from which
the target vectors come, and the secon&sista parallel population within the
discarded trial vectors are stored. Both the setsratialized uniformly inside
the domain. The first trial vector is defined frantrossover between a uniform
random poing, [J S,and the target vector, for example using binonassover:

a.. ifU(0,11<CR or j=irand(N
jiG:{ ' (]] J (NP (4.26)

X;c if U(0,]>CR and j# irand NP
0j0{1, 2,... ,n}

After the definition of the first trial vector, thelassic selection rule takes
place; otherwise another attempt is made with @rgkdrial vectoru;s': the
second trial is produced by the crossover betweenisy vector, deriving from
a mutation rule that involves solutions frd&y and the target vector. Then,
another selection process between the target anskettond trial vector is made.
If also this time the trial results worse, it istrabandoned altogether and it
competes with the corresponding target vect@&in

This approach enhances the probability to gendeatgible points inside the
domain, decreasing the function evaluations, theie and slightly increasing
the success rate in comparison with classic DE.

For this reason is recommended in the high-com&daproblems where the
feasible area is quite difficult to individuate thye algorithm.

ODE algorithm

This approach — Opposition-based Differential Etiolu [30], [31], [32] —
employs the opposition-based optimization OBO [d&jcept for the population
initialization and generation jumping.

37

Chapter 4

DE, like other evolutionary algorithms, starts walset of candidate solutions
and it tries to improve them toward the optimum.thut any previous
information, the initialization is made random. &nthe speed of an algorithm
is given by the distances between the initial cdaig solutions and the true
optimum, the ODE approach permits to enhance tbbatility to start from
better solutions checking also the opposite ofititeal population. According
to the probability theory, 50% of the time a gusskrther from a solution than
its opposite: for this reason, after the initiakgses also the opposite solutions
in the search space are checked and used as soti#ion. This veracity is
proved in [32] and applied to DE, not only for thetial population of the
algorithm.

To define the opposite lgtbe a real number inside a defined interval (withou

the interval the opposite concept cannot be tateancountxd[a, b , then its
opposite is

X=a+b- x (4.27)

This definition can be extended to higher dimension

X= (%) %500 %) (4.28)

is a point, defined by a vector composed rbyeal numbers, each of them
contained in a specific interval, defining the damia:

x 0%, %] 0j0{1,2,...14 (4.29)

Then the opposite point is defined by a vector cosed by the opposite real-
numbers:

x=(%, %,..., %) (4.30)

x,=x+X-x 0j0{12....14 (4.31)

In ODE, after a random initializatio'E1) of the populatiorg, the opposite
population seOSis calculated. Then the evaluation of the two pajan sets is
computed and the fittest individuals are selectednéial population for the
algorithm (the so calleelitist selectionfor GA). This process increases the
probability to start close to the solution, deciegghe total computational time,
even if for the first population are necessaR fitness evaluations. Another
strategy introduced in ODE is the opposition-basgzheration jumping:

38

Differential Evolution

according with a jumping probability value after the classic operations’ flow
— mutation, crossover and selection -U{00,1)<J; the opposite of the current
population is computed and, as in the initial papgoh selection, the fittest
solutions are selected from the union of the twts.sA little shrewdness is
introduced, making the process dynamic: the oppasihot computed using the
initial upper and lower values for each variablet tather using the maximum
and minimum values of each variable at the cunpepulation’s state:

X c =Mmin, o+ max . — X o (4.32)
0i0{1,2... NP} Oj0{12,.. n}

then without losing the knowledge acquired by tigo@thm till this moment;
this approach permits to decrease the searchince sparing the opposition-
based generation jumping. A similar device willtkesated in Section 4.4.

The jumping rate); could be fixed (defined by the user) or time-vagyiln
[30] the better algorithm’s behaviour is given byuaping rate decreasing by
function calls; in particulad; follows the rule

_ B _nfc
3.=(3_ eri")tﬁl MAXnJ (4.33)

wherenfc is the number of function calls amMAXy. is the maximum value
allowed fornfc.

The jumping rate parameter range recommended i®@1kigher values could
destroy the evolution, provoking early stagnatiare do the shrinkage of the
search space; also the time-varying approach wittplained further in Section
4.4,

ODE with fixed or time-varying jumping rate outparits the classic DE in
many situations [30], demonstrating the strengtithef OBO technique [32]
successful combined with the DE evolutionary prapsrtThe improvement is
reflected principally toward a less number of fumctcalls, to the detriment of
the success rate: this means the robustnesstie génalized, but the reduction
in nfcis remarkable.

MDE algorithm

This approach — Modified Differential Evolution [33lifferent from MDE of
Section 4.2.1 — arises from the necessity to redlneecomputational time of
DE. Although DE is efficient, effective and robust, has a lack in the
convergence speed for high dimensional problems Weakness is made less
heavy by MDE algorithm: it uses a slight strategyttom selection ruling for the
next generation: instead performing the selectioth the possible substitution

39

Chapter 4

after mutation and crossover for the whole curggopulation, thus creating a
temporary population of trial vectors, the targetctor is immediately
substituted if the trial vector appears fitter thtarsing this device, the current
population evolves dynamically and not with disergeneration step, because
the benefitting is dynamically updated. This alon does not upset the DE
classic method, rather it modifies the moment ef tipdating process, making
the algorithm faster and at the same time robugshasclassical formulation.
This approach can be advantageous in real-worldblgmes, where the
evaluation of a candidate solution is a computafigrexpensive operation. A
further sophistication of this method is proposed34], where the dynamic-
substitution is combined with ODE and the mutatperator is taken from the
DERL scheme. Of course mixing correctly strategigth different effects
increases the ability of the algorithm, especiadlfiigh dimensional cases.

NSDE algorithm

This algorithm — Non-linear Simplex Differential &ution [35], different from
the previous described in Section 4.2.1 — usespprmach similar to the OBO
applied at the initial population: the aim is tccoEase the distance between the
initial population and the true optimum of the desh in order to diminishing
the optimization time. It uses a non-linear simpiextation to the initial random
population so as to create another set of candidatations: the fittest
individuals form the random and the modified setdobg to the initial
population. NSDE, in comparison with ODE, acts omtythe initial population
setting, without any further modification in theassic algorithm: its role is just
to increase the probability of obtaining the optimun fewer function calls
affecting the starting point.

This method is simple, it uses the simplex formu[@% of reflection,
contraction, expansion and reduction and it does toach the algorithm
behaviour, leaving the robustness and the effigieat DE intact. In the
definition of the initial population it takes momomputational time but it
provides a better initial condition, allowing a sassive efficient function call
saving; the algorithm shows slightly better behavithan ODE in terms affc
and cpu in most cases, even if the sophisticatilmptd seems insubstantial in
comparison with ODE. Extra-information about tharsé space to the initial
population are beneficial, enhancing the convergerspeed without
compromising the robustness.

The main structure of DE could be mixed or hybmdizavith other methods:
for example, applying to a population based seatghrithm a further classic
optimization method based on gradient evaluatiospaed up, the efficiency of
the search method could be increased significamiithout loosing the
robustness of the evolutionary procedure. Some essfal examples are

40

Differential Evolution

presented in [35], where DE is hybridized with aasjeNewton method, and
[36], where Particle Swarm Optimization is integchtvith DE.

4.3 Constrained optimization

The handling constraints problem is typical forlsgatimization problems:
usually the difficult in the real world is to finithe solution that satisfies all the
constraints accordingly with a high performance.

If the handling constraints has direct or easyregfee to the domain of the
variables, it is sufficient repair the solutiongated outside the domain. In that
way, if during the evolution process some trialteeds created by the mutation
outside the domain, some repair rule is adopted.

The rules most used are:

* repairing to the bounds

[} +oW(0,) ifvig <x
CTI —em(0,]) iy, > ¥

whered is a small number, around 0+0.1. This featuresesduvhen it's
easy going outside the domain because the optirmumlliocated close
to the boundary; of course this rule doesn’t alldiversity in the
regeneration and the amount 6f could influence the searching
technique; i = 0, the trial vector is placed exactly on the leord

* repairing randomly inside the domaithat uses the same rule of the
random initialization. This feature doesn’t allow the algorithm to
remember about the direction of the evolution, aesgy the initial
condition. If the optimum is close to the boundtrg algorithm could
have fewer chances to find it.

* repairing bouncing backhe excess outside the domain produced by
the mutation process: this approach is recommendpdcially for the
situation in which the optimum could be very closehe border of the
domain or even on the border.

X +‘ ij G)é_‘ IfVG<)¢

N NTEY

(4.34)

(4.35)

ic —

If the handling constraints cannot bring back te ttomain definition, as in
many real-problems, but it depends on some redutia@perty of the system,
several other methods were proposed, especiall@Aobut applicable to DE.

Michalewicz [37] grouped these methods in four gatees:

41

Chapter 4

methods based on preserving feasibility of solution

methods based on penalty functions

methods which make a clear distinction betweenlf&aand infeasible
hybrid methods

hPwpPE

Methods based on preserving feasibility of solution

The first category is based on specialized opesattiich transform infeasible
solutions into feasible ones; this method unfortelyaaccepts linear constraints
only and needs to start form a feasible initial ydapon. Into this category lie
also the repair rules, since these operators woaksimilar manner, determining
the current domairQ, 0 Q O D that is a function of the linear constraints and

repairing the solution. Some different approachlatdae applied for nonlinear
constraints or optimum close to the boundary, louthis case is necessary
implement specific operation strategies relateithéoproblem’s nature.

Methods based on penalty functions

The second category is based on a penalization setpoo any infeasible
solution, reflecting the infeasibility directly mtthe fitness function, the only
one submitted to selection in the algorithm; thigctice is similar to the multi-
objective optimization, described in section 4r6which all the properties to
optimize are collected in a unique overall functiés for MO problems, the
main difference in this method depends on how #malty (or overall function)
is designed.
The common rule is:

f (x if x
f, (zi,e)z{ (%) 61O (4.36)

f(x o)+ penalty x;) otherwis

Usually the penalty is a function based on theadist of the solution from the
feasible region, so it is the result of the comboraof all the constraints. For

this reason there a@ function f,(xs) OmO{1.2,..,G used to build the

penalty function.

There are several ways to design the penalty fomcéind of course the
difficulty is to define the appropriate feature this additional function. The
strategies proposed in literature are:

- Static penalty, where usually the penalty is the,sthe averaged sum or
the weighted sum of all the constraints. For thethrad the design is high
dependant on the nature of the constraint: if jus$ related to some input
variable this approach could be efficient if cothgcalibrated, otherwise,

42

Differential Evolution

if the constraint is a property of the system thkig must be normalized if
possible and attentively weighted. The number dfitawhal parameters
could be too high.

- Dynamic penalty, where the number of parametersived is low and the
penalty amount is time dependant; this approackdaeturn at the end an
infeasible solution.

- Annealing penalty, that is based on dynamic penalftgthod with
annealing behaviour.

- Adaptive penalty, where the amount of the penalgpethds on the
population condition referred to the feasible regi many points lie out
of the feasible region the penalty is high, otheeathe penalty is relaxed.

- Death penalty, that simply rejects the infeasiutsons; this method
could be impracticable in high-constrained probldinis approach could
be seen in the third category.

- Segregated penalty, that implements two differeehafized fitness
function with different weights and picking up ahatively from the two
resulting sets.

Methods which make a clear distinction betweenilidasnd infeasible

The third category includes few methods, sinceehmsctices are not often
applied. An approach is called behavioural memosthod and it considers
only one constraint at the time. This method sepaws in satisfaction, since a
correct sequence of non-interconnected constramist be defined: if the
satisfaction of one constraint works again anofirevious one, the solution is
rejected and the algorithm could converge slowly.

A most interesting method is the method of supgyicsf feasible points,
which is based on a classical penalty approacha@hit could be seen in the
previous category) with an additional function thiafluences the infeasible
solutions using a heuristic rule. Thereby any taassolution is better than any
infeasible, since sometimes in penalty methodsigeasible could be better than
a feasible one if the penalty is low. This methedms convenient but for some
problems it may have some difficulties in locatafgasible solution.

The last commonly method used of this category irepthe infeasible
solutions: it works at the beginning with speciatizoperators that create

feasible solutions only for the linear constrairfthis set of solutions§ 0 Q, .

The successive step is to modifying the nonlineguabty constraints into
nonlinear inequality constraints simply subtracting precision of the systetn
Then another s& of fully feasible solutions is created and usededsrence to
which the setS is directed: taking a solution froi, if it is fully feasible it
could be moved to the sBtor left in§, otherwise a fully feasible solution from
S is taken as reference and some points between #nenevaluated till the
finding of another fully feasible point. For thisippose the bisection method is

43

Chapter 4

recommended. After that, the new feasible poinictcoeplace the individual in
S or S according with some probability. This feature deggeon the dimension
of the fully feasible region and how the algoritismmplemented.

Hybrid methods

Into the fourth category many types and evolutiohgonstraints handling
methods lie: it is easy hybridizing evolutionaryngautation with deterministic,
procedures or gradient approaches. Also combiregpreviously mentioned
methods is equivalent to implement a hybrid method.

An important example [26] of hybrid method is thppeoach in which
violation and objective function are evaluated sefgdy: this is a special case of
the method of superiority of feasible solutions tthdoesn’'t involve a
penalization in the objective function: it just mpizes constraints and objective
in lexicographic order in which constraint violai® precede the objective
function. In this approach the constraint handioogild be strictly constant or
relaxed during evolution like other strategies.

A practicable way to handling the constraints isattopt the multi-objective
optimization in which the constraints are treateahjective function. Of course
this method could be more difficult since the nataf MO problems.

Concluding, is difficult finding the correct consimt-handling method a priori
since the efficiency and convergence speed of thvestrained evolutionary
algorithm is heavily dependant on the problem’sureat Without any previous
information about the extension of the feasibleaaedferred to the domain, the
choice of the method is difficult. The complexity the constrained problem
depends on the complexity of the objective functiocombined with the
sparseness or shape of the feasible region likeoltfective function has many
local optima, the global optima is located closéh® boundary, the slope of the
constraints is high close to the border and théajloptima. In these situations
classical constraint-handling with penalty functi¢the easiest method to
implement) could fail, making the choice really dafor this reason the
previous estimation of a constraint-handling methsdstill now an open
question.

4.4 Control parameters’ setting
The control parameters’ setting of classic DE, pega by Storn and Price,

seems easy because of the small number of cowindlse algorithmNP, F and
CR

44

Differential Evolution

Despite the first recommendations given by creatiording a correct setting
is one of the most difficult tasks for the usereTbbustness of D is proved in a
wide range of control settings, but the convergesmeed in some problems is
an open question. The ability in floating-point edimg of DE over continuous
space is a matter of fact, but like all the EAss tlgorithm is sensitive to the
control setting. Besides, even the robustness ef dlgorithm could be
diminished if the parameters’ setting is not takato account, causing a
premature convergence due to stagnation [38].

The correct setting is strongly dependant on theblpm nature, since the
perturbation introduced in the population is fuontof the control parameters.

Just for example, Figures 4.8, 4.9 and 4.10 shoavdffect of the three
parameters, evaluated separately, on the functrafuations (fe), the success
rate (sr) and the cputime (cpu) used by DE on the flimensional Cosine
Mixture Problem, Breiman and Cutler, 1993 (Figur& &hows the two
dimensional problem):

min f (x) :Zn“)qz—o.lzn: cog %rx)

X i=1 i=1
-1sx <1,i0{1,2,.. n} (4.37)
for n=4 f(X):—OA at origin

Cosine Mixture Problem

0
AR
(00
ST
B0 1 4
7

"0‘0:0:“:‘“\‘\\\‘\“\"0'0"/'/’

Figure 4.9,Cosine mixture problem for a two dimensional praotle

45

Chapter 4

3500 100 2 2 G 0.4
00 0.3
99.5 03
2500
025
2 2000 5 9 A
0z
1500 015
985
1000 01
500 - - s 9 - - s 0o - - s
10 20 Kl 40 50 10 20 Kl 40 50 10 20 Kl 40 50
NP NP NP
Figure 4.10,Population size effects on the three measurestifut®evaluations, success rate
and cputime.
3000 100 04
2800]
0.35
2600 @o
2400
70 03
2200
2 5 B0 F
2000 -
50 0.25
1800
A0
1600 02
1400 0
1200 20
0 0.2 0.4 0E 0.8 1 1] 0.2 0.4 06 08 1 1] 0.2 04 06 ik} 1
F F F

Figure 4.11,Scaling factor effects on the three measures: imcrgvaluations, success rate and

cputime.

2100

2060

2000

1950

1900

fe

1860

1800

1750

1700

1650
0

0a

1

101 032
03

1005
028
5100 2025
024

95
0.22
99 02

0 02 04 06 08 1 0 02 04 0B 08 1
CR CR

Figure 4.12,Crossover rate effects on the three measures:idncavaluations, success rate and

cputime.

46

Differential Evolution

The results are related to the four dimensionablera of the Cosine Mixture
Problem (see also Appendix A, f15), and DE is immated in classical
configuration [21] withF=0.5, CR=0.5, NP=30. The effects are averaged over
50 runs for each setting, in order to obtain sigaiit statistical values respect to
the randomness, and they are showed modifyinggnet parameter by time,
holding the other two. A run is considered termaadaidvith success if difference
between the true optimum and the optimum find byi®Ess than IHin 500
generations; the algorithm halts when the fithefsreénce between the best
and the worst individual in the population is lésan 10",

It is clear the setting, even for the classicahfolation, could improve the
convergence speed, but to know the correct combmdtetween these three
factors a previous tuning of the algorithm is neeeg, this practice is of course
time-consuming.

NP effect

The rule of thumbs about this parameter says thememended value is
NP=10-n. This value is related to the nature of the pédtion process, in
which the vectors selected must be randomly chasenmutually different. To
allow sufficient diversity to the next generatias necessary a selecting pool
enough wide. This parameter affects the numbeumdétfon evaluations of DE:
if the population dimension is too high, the algfom could waste time without
any benefit. In the case previously presented, witd, usingNP=40 is the
wrong choice because the fastest convergence gl fomucorrespondence with
NP=15, significantly far from the recommended valuee(digure 4.8). In this
situation, after the valulP=15, the success rate becomes 100% and the higher
NP, the higher fe and consequently cpu.

F effect

There is not a unique recommendation about thengetf the scaling factor;
this value is heavily dependant on the problem’surgg more than the
population size, since it drives the weight of tteetor differences used in the
perturbation process. Farther, the setting dependthe perturbation operator
implemented. In our situation all the values testedr F=0.15 of the scaling
factor allow a success rate of 100%; Fer0.05 the success rate is slightly more
than 20%. This behaviour, caused by a small peatimb, doesn’'t allow the
necessary exploration abilities to the algorithfoyweng down the convergence
speed (the maximum number of generation allowed this test is
MAXGEN=500).

The first operating interval recommended ferwas (0,2], but after some
studies this interval was reduced to (0,1].

The role of F is heavily significant in the convenge speed and the success
rate, for this reason, this parameter is modifredame DE variant:

47

Chapter 4

F O[-1,-0.40[0.4,1, proposed in DERL [13], within the uniformly
distributed choice is made for eathsolution.
* Fipe o =F+U(0,40F, - F), called Dither approach, mentioned in

[39], in which the scaling factor could be genedafer eachi®
chromosome o65" generation; in this configurations the user has to
define upper and lower allowable values ForThis is quite similar to
the previous approach.

* Fie; =F [ﬂ1+ 5[QU [0,])— OE)) called Jitter approach, mentioned

in [39], in which the scaling factor is generated éach dimension of
the problem. It seems very important using a swellie of9=0.001,
in order to explore the squared neighbour aroure rnbisy vector
generated with fixedF.

« F~N(05,0.29 or F~¢(0,) according with some probabilistic

rule, proposed in NSDE [28]. This shrewdness cduwgdpejorative
because of the presence of other control parameters

Randomize the scaling factor according with somstribution seems
sometimes useless or with less advantages, bppéaas particularly practical
with noisy functions, despite the necessity to mefother control parameters
and values for the randomization.

CR effect

The effect of this parameter, like the others, délseon the problem nature.
For the Cosine Mixture Probler@R does not have effect on the success rate but
only in fe and cpu. After the threshold of 0.5, thember of function evaluations
does not increase but shows an assessment bet@®@radd 1700 fe; only the
cputime increases, since the computation of thesyneector's dimensional
element in the implemented program is made onlyéf crossover process is
successful. The value of 0.5 is a right comprorfosehe two properties.

In this problem the function shape is sufficiendgsy even if the cosine
component modifies the parabolic trend adding loaima. Low values o€CR
decrease the convergence speed, because the myiedimess induced by the
perturbation of the weighted difference is highlgnbficial: reducing the
crossover rate means slowing the evolution procdsgway this behaviour
could not be found in other problems, especiallynoisy functions with a high
number of local optima.

About the setting ofCR Zaharie [40] handles the problem after some
theoretical evaluations for the two type of crogsobinomial and exponential.
These results are quite important in the user ehofccrossover type and rate,
because of the different rules adopted in the tarants.

48

Differential Evolution

The probabilities that a component is mutated espectively:

« Binomial P, =CR(1-¥YnN+¥r (4.38)
_ 1-CR’

* Exponential P, _n(l——CR)

(4.39)

wheren is the dimension of the problem.

Since the user wants to control the number of theated components, it
could use as indicator the expected va&t(ie) of mutated. components, simply
E(L)=n0p,:

- Binomial E(L)=CR(n-1)+1 (4.40)
. 1-CR’

. E tial E(L)= 4.41

xponentia (L) 1CR (4.41)

As said before, binomial crossover is a discontirsucoperator while
exponential is continuous; so, for the first vatjanis not the length of the
chromosome replaced but the number of chromosoninesiied from the noisy
vector.

The trend of the twn, is presented in figure 4.11 for three dimensidiea)
respectivelyn=5, n=10,n=30.

1

08t
naf
07t
06|
£ 05F
04f
0af
0.2

0.1 =

1 1 1 1 1 1 1 1 1
1] 0.1 02 03 04 085 06 07 08 08 1

Figure 4.13, Mutation probabilities for binomial (dashed linelhdaexponential (solid line)
crossover for three dimensionality. [40]

For low dimensionalities, the difference betweenoniial (dashed line) and
exponential (solid line) is not remarkable, but fagh dimensionalities, like
n=30, the probability of mutation is significantlyrsgtive to the crossover rate

49

Chapter 4

imposed for the exponential one. In fact, binonuadssover follows a linear
trend, whereas exponential has the typical shapehefpower law. It is
deducible from the figure 4.11 that both exponérdiad binomial start from
pm=21/n if CR=0 and finish withp,=1 for CR=1: at least one component of the
trial vector will be taken from the noisy in thest CR setting and the trial
vector is in fact the noisy one for the sec@Rlvalue.

Concluding about the crossover variants, it cowddsaid that the exponential
crossover, to have any significant effect with higimensionality, needs an
accurate tuning, whereas the binomial one is lessive to small changes and
allows an easy setting. In particular, the expaaéntossover for problems with

high dimensions becomes significant only with vatDRD(O.Q,]], otherwise

its effects are negligible, slowing the convergespeed. For this reasons the
binomial crossover is the most used variant in DE.

Coupled effects

From the previous examples, the effects of a btthgen terms of premature
stagnation are not clear, because of the simplgesbathe function; in fact, the
local minima are not difficult to avoid (the weighit the cosine sum is only 0.1;
increasing this value the paraboloid becomes mdastorted). Only a really
small value of the scaling factor causes a premattagnation. The stagnation
arises when the population lost completely its ditg and it remains
unchanged by the perturbation. For this reasoaytid premature convergence,
it seems reasonable keeping a sufficient leveiwdrdity in the population.

Zaharie in [41] proposes an important theoretiegult about the coupled
effect of the three parameters accounted togettmea unique formulation.
Unfortunately this result is related only at thasdical formulation [21], with
some simplification in the crossover and it canbetapplied with others DE
strategies without any further theoretical evahumati

Zaharie uses as measure of the diversity the titativariances computed for
each component over the entire population and dimdnteresting relationship
between the control parameters and the populaadance evolution:

E(Var(u)) :(ZEFZ [CR- va(¥ (4.42)

where E(Var(u)) is the expected variance of the trial vectorstesl to the
variance of the current population. When the faoiside the brackets is greater
than 1, the variance of the trial vectors shouldgbeater than the current
population variance, enhancing the exploration. e@tise, the algorithm
reduces its exploration abilities in order to fisdlutions close to the current
population.

50

Differential Evolution

This result does not take in consideration thecsiele process, because it
depends on the objective function’s values; simtecsion usually decreases the
variance, to prevent a premature diminishing of theersity inside the
population and a consequent premature stagnatienjalue inside the brackets
should be slightly greater than one. Nevertheldgse considerations are valid
for a really wide range of objective functions, i exclusion of the selection
process leaves a significant lack of knowledgeafoomplete understanding.

The premature stagnation, found in the Cosine MetBroblem, due to a
small value of the scaling factor, withP=30 andCR=0.5, could be measured
by a unique control parameter, called k:

Table 4.1,k-parameter [41] and success rates for three gchnior’'s setting
on the optimization of the Cosine Mixture Problespgendix A)

F k Sr
0.05| 0.9775| 24
0.10| 0.9850| 88
0.15] 0.9975| 100

We find a success rate of 100% with a theoretiedlier of k smaller than 1;
probably this discrepancy is due to the quite sevgblape of the function and to
the simplifications made in the theoretical degaip of the crossover operator
(in the theoretical evaluation witCR=0 the p, is 0 instead I/ for our
implementation.).

In Figures 4.12 and 4.13 are showed the contourfpidhe k-parameter and

the success rate of out test #i1(0,0.§ CRO[0,0.5andNP=30.

51

Chapter 4

k-pararneter contours

05 . . . : : : ; .
Fd N
-l .
045} Loy w
T G2 7
-7
04F r Gy ;;;?%9 ;
r,g};ﬂﬁ
035} i a -
gs) 07
03t = 7-05332]
05—
w 0250 Urp -0345— 4
- \ 0225 _]
Oor_ 01—
R 99557 =Ty
01t A
nost -
D 1 1 1 1 1 1 1 1 1

CR 0

F

Figure 4.15,Success rate for the minimum seeking on the Cddirture Problem with respect
to F andCR Sr=100% oveF=0.2.

4.5 Adaptive and Self-Adaptive approaches for contl setting

Despite the previous section describes the inflaefahe control parameters
in the evolutionary process performed by DE, evdth vsome interesting

52

Differential Evolution

theoretical results that help significantly thetisgt it is clear that all the
recommendation made before are limited to the Dierse implemented and to
the problem nature. Of course the basic concegtisiered are valid in a general
manner, but any problem needs the experience oftigke to find the correct
way to set the algorithm, even with all the consatlens previously presented.
Further, in the case the objective function is igiplrather than explicit, the
tuning becomes quite difficult.

To avoid all these inconveniences and to achiexenap convergence, these
parameters need to be alterable during the evolatyoprocess: the tuning in
that way is made directly inside the evolution.

Unfortunately all the methods proposed adjust oRlyand CR, since the
population size\NP is quite difficult to adapt: a fixed value, defthby the user,
is always used.

The change of these control parameters can bearated as follow:

1. deterministic parameter control
2. adaptive parameter control
3. self-adaptive parameter control
4.5.1 Deterministic parameters’ control
In this setting approach one or more parameters adtiered by some

deterministic rule. This rule is defied by the ysggving more flexibility to the
evolutionary process; an example, referred to tlaérgy factor, is:

F= (Fmax - I:min) I:El nfe j (443)

T MAX

In this case maximum and minimum values Fomust be chosen and the
maximum number of function calls must be known. Tééterministic rule
could be implemented in a discrete manner, usiagyéneration number and the
number of maximum generation allowable. This appgroanhances the
exploration in the early stages and moves towaeddbtal search in the latter.

It could be applied with all the parameters andchvatl the variants of DE
proposed: in fact it is the recommended practichaindle the jumping rate in
the ODE algorithm [30].

Nevertheless, the definition of a deterministic eruheeds some user
knowledge, and an efficient definition for one opmtiation problem might be
totally inefficient for another one; for this reasalso this way doesn't resolve
completely the problem.

53

Chapter 4

4.5.2 Adaptive parameters’ control

This approach uses heuristic rules, which take agtmount information about
the progress achieved by the evolution processjissiin a reasonable way the
control parameters. This technique differs from pinevious one because it is
based on the feedback gained by the evolutioneasing the flexibility and the
ability of the algorithm; in fact the magnitude andde direction of the
parameter’s change is the result of the evolutieelfi

One approach, already presented for the ODE atgorit30], modifies the
domain of the parameters according with the curstatte of the evolution or of
them (for ODE the domain changing was related ¢ovériables, in order to find
the current opposite); for example, the scalingdiacould follow the Ali and
Torn [42] rule:

max

<]

max[Fmin 1= fma’(] if

F= (4.44)
max(F 1- hj otherwise

min ?
max

where fhax and fin are the maximum and minimum values of the objectiv
function in the current population.

This formulation reflects the demand to make thercde more diversified at
early stage and more intensified at latter staigefsict, when the diversity inside
the population is high, the difference between mmaxn and minimum function
values is high and consequently the scaling faatsumes values close to 1,
enhancing the exploration. The resulting scalingtdia lies in a defined

interval,F O[F,,,,4] , according with the state of the evolution.

A more complex approach is presented by Zaharig, [dBer previous
theoretical results [41], to adapt the control pseters according with the
diversity induced in the next population, contrudlithe ratio between variances
of the current and previous generation; takingpiteious formulation about the
coupled effects of the three control parametersadaptive scheme could be
drawn:

2CR, CR | Var(x..)

2[F?[CR- =
R e VVar(>(g)

(4.45)

In this formulation, the right hand side is knowsince the ratio between
variances could be computed, and the variah$ea user-defined parameter. In
this way the algorithm undergoes a repairing effadpting alternatively the

54

Differential Evolution

scaling factor and the crossover rate (since theran equation with two
unknowns) to use in the current populat®naccording with the magnitude of
the variation in diversity. The added parametpermits a more efficient control
in the case of high increasing or decreasing; é#eemmended value is slightly
greater than 1. Still, the Zaharie approach cowddapplied only on the DE
strategies with some theoretical result about ttodugion.

Another interesting work made in the adaptive diogcis the fuzzy logic
implemented to train the algorithm. This versiorglled FADE — Fuzzy
Adaptive Differential Evolution [44] — dynamicallgontrols F and CR using
fuzzy rules based on human knowledge, giving bet@vergence speed to the
algorithm, especially in high dimension problems.

A slightly different approach from the previous omeesented is the
application of competition between different DE egles inside the same
algorithm proposed by Tvrdik [45]: this idea pesnihe selection of the most
adequate scheme; this selection is driven by tbheess of the scheme adopted.
The competition could mix with an adaptive (or gesedf-adaptive) approach
the scheme with the most appropriate search abdigording with the
evolutionary stage.

DefinedH settings (combination df andCR or different DE schemes), the
algorithm time by time adopts one of them accordwigh the associated
probability, computed as follow:

g =— 0t (4.46)

bi:(nﬁno)

1
Ohi{1,2,.. ,H}

where n, is the current number of thah setting successes ang must be
greater than one to prevent dramatic change iprbigability. In order to avoid
degeneration of some strategy, when one probalgiétyrease below a defined
value, all the probabilitg, are reset to the initial valuéH.

The mutation process induced by a scheme is caesidguccessful if the
generated trial point shows better fitness thantdéinget vector, that is the trial
point takes place in the next generation.

The last remarkable approach presented is calledP3ADE — Self-Adapting
Control Parameters Modified Differential Evolutipf6] — and it combines in a
greedy manner the DERL [13] approach in order @alweate the magnitude of
the perturbation induced in the scaling factor. &ding with the previous
classification, this technique must be categorizedthe adaptive control
parameterskF is dynamically adjusted according to the relagpasition of the
two randomly selected solutions used in the diffeee vector: the three

55

Chapter 4

randomly chosen vectors are sorted in order to gipeecise direction to tHe
perturbation. The scaling factor is then computedotiow, according with the
syntax used for DERL in Section 4.2:

f, = f
F=F+(F-F)>—" (4.47)

fd2 Tl

This technique uses fitness information in ordewéight the scaling factor: if
the fitness function difference to the numeratorsigall, it indicates the
proximity of the two solutions; otherwise, a largealing factor is generated, in
order to explore other regions of the search space.

While the scaling factor is generated accordinghvilie tournament best
approach, the crossover r&& needs population information to be adapted.

f—f =
CR+(CR- CR——mn_ jf f> f
CR = R+(CR ')mw—nm ' (4.48)

CR otherwise

In that wayCR reflects the amount of the diversity to inducetle next
generation for each individual, according to thedss function of the™
solution related to the averaged state of the @tiom: if the target vector has
high fitness value, that means poor performance,ctiossover rate is large,
allowing the entrance of new information.

4.5.3 Self-Adaptive parameters’ control

This approach represents the evolution of the éwwoluthe parameters to
adapt are encoded into the chromosome and undeegalgorithm’s operators
in order to permits the survival and the propageatd the better parameters,
which are more likely to produce good offspringertby the parameters need
only an interval of existence.

The self-adaptive approach, like the adaptive, edaply the scaling factd¥
and the crossover rateéR, but it takes these two parameters as variabks th
affect the solution.

Some self-adaptive strategies are presented below.

SACPDE and its variant

One version and its variant, called SACPDE and SBEP (called also jDE
and JDE2) proposed in [47] and [48] respectivelysesi the following
formulations for the control parameters’ evolution:

56

Differential Evolution

— F+U,(0,)F, ifu,(0d<r,
'S E . otherwise

‘ (4.49)
_[us(0,9) ifu,(0d<r,
®17|CR, otherwise

This procedure seems substituting the setting ahd CR with the setting of
71 andrp, but these two values don’t show high sensitisitbe the behaviour of
the algorithm. They could be chosen from the irgk[0.05, 0.3]. Defined these
two values and the upper and lower values for tadirgy factorF, andF,, the
self-adaptive algorithm allows the propagation loé ffittest individuals that
bring the parameters used to generate them. Thi®agh gives more flexibility
to the algorithm, without any restriction duringetbvolution about the control
setting. In order to make the algorithm totallyxflde, SACPDE?2 uses the same
formulation regarding the parameters’ evolution, ibumplements different DE
strategies (like in the adaptive DE proposed bydikr[45]), which need
different parameters’ setting. For this reason itiddvidual’s chromosome is
composed by the variables of the system and paemsetssigned to each
strategy used.

SaDE algorithm

SaDE [49] uses different DE strategies coupled \aittifferent approach for
the self-adaption of the parameters: it takes médron from learning periods,
in which the success of strategies are collectgdther with theCR that allow
the generation of good children. The scaling facsomot adapted but just
generated randomly with normal distribution witlinvide rangé~N(0.5,0.09),
while CR~N(CR, ,0.01).

After the learning periods, new strategy probabdgitand crossover rate
average are computed, in order to direct the ewmolutoward the necessary
strategy with the correct crossover rate.

SDE algorithm

A possible approach is to use the mutation rule falsthe control parameters:
instead the variables of the individuals, the patams that now belong to the
chromosome are generated applying the mutationepspcas the following
formulation for the scaling factor:

Fon=F,+N(0,0290F -F) (4.50)

The magnitude of the perturbation (in this cage uised a normal distributed
scaling factor forF) slightly depends on the problem nature. This negplre is

57

Chapter 4

proposed in SDE [50] and SPDE [51] with some adwges, especially for
noisy functions.

4.6 Multi-objective optimization

As stated in Chapter 1, the correct way to handlanaiti-objective
optimization process is to find a set of non-dortedasolutions that form a
Pareto-frontier from which take one equally gooduson. However, some
alternatives are used in practice for GAs and EAgeneral (Section 3.3).

EAs, like DE and all its variants, have recentlyd&isuccess in this practice
especially for their population based-approach thlaws multiple function
evaluations in a single run.

The concept of non-dominated solution is quite edéht from a single-
objective optimization: anyway the first attempeddor solving MO problem
was collecting all the propertidgx) in a unique overall function, as for the
penalty method used in handling constraints. Int the penalty method’s
feature is to incorporate the constraints intoabgctive function, penalizing it.

For their similar nature, MO problems could be sdivas single-objective
optimization constrained problems, choosing andalye function penalized by
the others. The weakness of this method is theuenigss of the solution,
dependant on the design of the penalty functiovelbeless, the most pursued
practice is providing multiple solutions and pagsime final solution to a
decision maker, maybe helped by a clustering metiidide Pareto-front.

In these cases the multi-objective optimizationbpgm becomes a single-
objective problem, treated by the algorithm as Listia important adopting a
correct definition of the integrating function; theasiest way is using the
weighted sum of the normalized objective functions:

fo—f
fi nomm = ————=""— 4.51
k_norm f f ()

k _max - k _min

2(x) = g W Of (X (4.52)

whereq is the number of the properties to optimize orghm of the number of
properties and constraints blended in the oveualttion,wy are the functions’

q
weighting factors, 0 ¥ < 1 and usuaIIyZWk =1.

k=1
Then the optimization task (in terms of minimizalidoecomes:

58

Differential Evolution

% ‘z(x)<4y 0o (4.53)

Another example of overall function could be:

%

(4.54)

The normalization is a good practice because thecbbe functions could
have different orders of magnitude, especially eal+world optimization
process. If minimum and maximum values are not kmoag in many cases of
industrial processes, these values are estimaiedtfre current population.

The choice of the weighting factors, or in geneha design of the overall
function, unbalances the result of the optimizatigining different importance
to the objective functions. The setting of thesegivs move the optimization
toward a specific objective function: if the weighthigh respect to the others,
the algorithm tends to explore the region of miziation of that target.
Changing then the weights, each run returns a pleattshould lie on the Pareto
frontier. In order to obtain a dense Pareto fridmt, number of weights’ settings
and runs must be high.

Clear examples of MO problem solved with an ovefafiction are all the
economic problems (plain aggregating approach)thall weighted factors are
replaced by the costs of the properties of theesystshifting really all the
objective functions under an economic point of view

Another approach that could be implemented in E5A% mon-Pareto approach
in which the total population is divided in sub-pd¢adion, each of which has to
optimize only one objective function: this approaaked in VEGA [7], is poor
in Pareto terms, since the non-dominance of thatisok generated is limited to
the reference population of the objective function.

However, better results are given by a non-domehateting algorithm, based
on a Pareto approach, in which the sorting proaedsrcalled after each
generation to remove dominated solutions, refiriimgpopulation, and ranking
the remaining solutions; the idea was proposed jrafd successively applied.
The most famous GAs developed for MO optimizatiog: &NSGA-II [52-53],
SPEA [10] and PAES [11].

DE could tackle the multi-objective optimization olifferent ways: the
classic archive approach, briefly resumed in Sac88 for GA, fits nicely
thanks to the goodness of the mutation and crosgoeeedures of DE, but the
improvements respect to GA for this problem are sighificant. It works
similarly creating a population of trial vectorsydait ranks this temporary

59

Chapter 4

population, as for the progeny in GA. The trialudimns with rank 1 are then
sent for comparison in the main archive.

In fact, in recent years a slightly different apgeb is used for DE in multi-
objective optimization: the archive of non-domirths®olutions is removed, and
only the population is the archive present.

Common features of the Pareto-based approachdbarthe Pareto-optimal
solutions in each generation are assigned eitteesdme fitness (or rank) and
that some sharing or niche technique is adoptdderselection procedure.

Some way to solve multi-objective optimization willtE are then presented
and briefly described, since the main feature ofdd& the same for single and
multi-objective problems.

PDE Approach

This method — Pareto-frontier Differential Evolutidpproach [54] — uses the
classicalDE random(see Section 4.1) approach with some modificaiod
adaption for MOP:

 The initial population is initialized according Wwita Gaussian
distribution

* The scaling factor is normally distribut€erN(0,1)

* The individuals used for reproduction must be a-dominated
solutions

* Some repair rule referred to the domain is applied

» Trials replace their basis vectors if they domisdateem, otherwise the
reproduction is repeated

* All the dominated solutions are removed

* If the number of non-dominated solutions exceedsesthreshold, a
distance metric relation is used to remove solgtictose to each
others.

This method is very sensitive to tG&, and it works better with low crossover
rates, evident sign of low convergence speed af itiethod. Nevertheless the
resultant Pareto-frontier has good diversity. Af@dapting approach o€R
and mutation rate, inherited from the parentspmlained with this method: the
new algorithm, SPDE [55], presents improved behayiconvergence speed
and superiority compared with other algorithms.

MODE algorithm and its variants

The first proposed MODE — Multi-Objective Differeait Evolution [56] — is
practically similar to PDE, with some little difiemce about the initialization,
the handling constraints and the removal of crowded, since its first
application was the optimization of an industriedgess.

Based on real-optimization problem, the initialiaatis performed uniformly,
a penalty method is applied for handling constmiand the number of

60

Differential Evolution

population decreases in every generation becawsehild doesn’t dominate its
target vector, the reproduction is not repeateith &DE. In fact the first version
of MODE represents just the application of non-dwating sorting in DE to

skim the population, removing dominated solutiond achieving only the non-
dominated ones to continue the reproduction. Thepawison with other

algorithm was based on economic evaluation anddbelts were interesting.
One of the main weaknesses of this implementatiadhe fast diminishing of the
individuals in the population: applying a removiofgdominated solutions each
generation, the population size quickly diminishiegsing in diversity. The

reproduction procedure has poor genetic materiahito and the stagnation is
achieved soon. For this reason, this multi-objectscheme is considered
unsatisfactory.

Other modifications [50] are then introduced to roeene the clear lacks of
the previous version of MODE: a second version, MEIID maintains the
number of individuals in the population constar@nerating random solutions,
even if dominated, after the removing of dominatealutions for each
generation. In that way the algorithm has more @bdlly to continue the
evolution without any premature stagnation due He tliminishing of the
population size, since the constant insertion olv rgenetic material. This
approach works better respect to MODE-I, achieuhng Pareto front, but the
time to obtain a solution is comparable or everhéigrespect to the other
algorithms.

A third version, MODE-III, uses a revolutionary aé&r the multi-objective
optimization: it exalts the recombination of DE aitsl selection procedure,
applying the removing of dominated solutions orilyhe end of the evolution.

In this scheme, each trial vector, generated byatiunt and crossover
operations, is compared only with its target frorhichk it inherits some
variable, and, if the trial dominates the targettog it takes its place in the
population for the next generation, otherwise thgydt vector survives. The
selection is therefore applied with its originalrpose but in multi-objective
concept of dominance. Unexpectedly, this procedworks well, saving
considerable time because no ranking of the papualas adopted during the
evolution and a dominated comparison is made biftyimes each generation
(comparison in the selection process between &l target). Of course,
without any ranking, the selection of the individbuéor reproduction can be
only random, since no fitness information couldused for the selection of
parents without a ranking of the population. Thahkghe goodness of the
reproduction ability and exploration of DE, the &arfrontier is achieved by a
high fraction of the population.

As for the previous MODE versions, MODE-IIl does mige archive for the
storage of non-dominated solutions. The only arlpresent is the population:
it starts at the beginning with few non-dominatetugons, but the greediness
of the selection procedure for the next generaigoits strength. In that way,

61

Chapter 4

the archive of the non-dominated solutions andpbpulation are the same
thing.

Some comparison is made in [57] and it is clear,NEl and MODE-III
outperform MODE in terms of Pareto-frontier's shagkethe cost of extra
computational time. MODE-III, anyway, is considerdtt most reliable and
promising DE variants for multi-objective optimiat.

Successive improvements, hybridizations and saphtgins are proposed in
literature; the goodness of these attempts is ce@e DE gains a lot from the
blending of techniques and methods.

Some interesting examples are the H-MODE proposed 4], [15], where
each non-dominated solution is then locally optediby s sequential simplex
method, and the application of trigonometric mutaperator to MODE-III
proposed in [58].

62

Chapter 5

Case studies

This chapter has the purpose to show the improveofddE respect GA, both
in single-objective and in multi-objective optimiia. Farther, DE is tested on
real optimization cases of complex industrial systdor the Oil&Gas industry
and the nuclear industry.

The comparison is made first with benchmark proklesharacterized by
different dimensionalities and complexity, in orderevaluate the behaviours of
the algorithms and the sensitivities of DE on asgmeters.

DE is then applied to a real case of the Oil&Gadusiry: thanks to the
apprenticeship made inside the PROD departmentmofE&P division, an
integrated optimization tool, equipped with DE, Haesen built. This tool is
flexible and adaptable to many situations. Its ganéask is to optimize
whatever property of the system defined by the .usemparticular highly-
constrained case is taken as case study for théngse of the tool.

At the end, DE is tested on a reference case fernticlear industry: the
inspection intervals optimization is a difficulistafor a safety system, since the
presence of conflicting objective functions. Thdre problem is tackled with a
multi-objective optimization. Starting from resulpseviously obtained on this
problem, the DE abilities and results are compavild GAs suited for multi-
objective optimization.

All the results present in this chapter are obthioe a machine with these
characteristic:

HP, Genuine Intel® CPU T2050 @ 1.60 GHz, 0.99GRAM.

5.1 Comparison in single-objective and multi-objedte
optimization on benchmark problems

The comparison is made with the purpose to dematesthe robustness and
the high reliability of DE and many of its variantee improvements respect to
GAs are measured in different ways, since the wiffeoptimization’s natures.
The tests reported in this section are conduitemchmark problems taken from
literature, even for single-objective and multi-@tijve optimization. A final
conclusion is made at the end of the tests.

Chapter 5

The evolutionary algorithms treated in this chajpter.

1. Genetic Algorithm Toolbogeveloped by Mathworks; this a commercial
version for GA, suitable for several problems withoany re-
programming phase, offered by Mathworks; the sgismot banal, good
solutions in complex problems could be achievedy amith a correct
setting of the whole sophistications after a prasituning;

2. Multi-Objective Genetic Algorithm MOGAa tool developed in
FORTRAN by LASAR (LAboratory of Signal and Risk Amais
http://lasar.cesnef.polimi.it/) of the Energy Depmant of Politecnico di
Milano; it has several variants adoptable, bothsimmgle-objective and
multi-objective optimization, and the number ofdmhation necessary to
its running is high. Furthermore, a wrong strategglection could
provoke failure of the optimization. Also for thisol the setting is not
easy.

3. Multi-Objective Differential EvolutionMODE, developed by LASAR,
provided with the single-objective and multi-objeet optimization
options. Several variants are implemented in té to order to increase
its flexibility and ability to tackle different pldems. For multi-objective
optimization optiorMODE-III, described in Chapter 4.6, is implemented;

4. Simple real-coded GAt has an easy implementation of GA written in
Matlab; the structure is practically the basic w@mrsof GA, without any
further specific alteration. The setting is easy the reliability is poor in
complex situations.

5.1.1 Single-objective optimization

This section is organized as follows: the problenfiist briefly described,
then, the setting for any algorithm is explainedheft, the results and some
sensitivities are reported and commented, takit@ account the characteristics
of the algorithms and the setting adopted.

The problem

This case study is conduit on 23 benchmark funsti@mken from [59] and
reported in Appendix A. The functions have diffdrerproperties,
dimensionalities and complexities. The true globalimum of the objectives
functions are known and usually clearly definediefined with a good accuracy
(maximum error = 1.0

For this case study the optimization is unconsgéajrthen, no methods for the
satisfaction of constraints are reported; only irepdes for the satisfaction of
the solution’s existence on the domain are applied.

The selection of these benchmark functions hasathe to understand the
behaviour of different variants of algorithm, sinitas clear the reproduction

64

Case studies

method, the parameter setting and the stoppingrieritnfluence the issues of
the optimization.

The dimensionalities are between 2 and 10, the oowewauld be wider, in
order to evaluate the speed of the algorithm ttictshe searching area, or the
function shape could be multimodal, to evaluate dbéity of avoiding local
minima (several or close to the true optimum).

In this case study the algorithn@@A-toolbox MODE and simple GAare
tested.

Each optimization is repeated 50 times in ordesft@in significant statistical
values with respect to the randomness.

The algorithms’ setting

Genetic Algorithm toolboXGA-toolboy has several sophistications and
internal variants. A complete descriptive help vaikable on the program and
online. When no particular settings are imposedhie tool, many of the
sophistications implemented are used with defaittrgy. Anyway, the correct
usage for a specific problem needs substantial letye of the tool.

The GA-toolboxsetting is made by literature and owner recommigoits the
options applicable to this tool are several, butdior test the setting is restricted
to basic options like population size, selectiorlerucrossover rate and
replacement procedure.

The whole of these options are explained in thep het the function
gaoptimset . When nothing is specified, the tool sets autoradlti the default
value recommended by the owner.

The setting used in our test is:

'PoplnitRange’ [low;up]
'PopulationSize' 30
‘EliteCount' dim
‘CrossoverFraction' 0.7
'‘Generation' 500
"TolFun' le-4/1e-8
'StallGenLimit' 50

The default setting for the parents’ selectionhis 0 calledStochastic
uniform : it lays out a line in which each parent corregjsoto a section of the
line of length proportional to its scaled value.eTalgorithm moves along the
line in steps of equal size. At each step, therdlga allocates a parent from the
section it lands on. The first step is a uniformd@am number less than the step
size.

The crossover is single-point and it is appliechvatobability0.7, defined by
Crossover-Fraction

65

Chapter 5

The replacement rule for the next generation is gimeplest one already
presented in Section 3.2: the two new children geed replaces the parents.
Only this option is allowable in the tool.

The valuedow , up anddim are different for each benchmark function and
loaded function by function. The population and theximum number of
generation are fixed for all the algorithms resjpwety to 30 and500, in order to
have a fixed maximum number of function evaluatiag$5000Q

The optionEliteCount specifies the number of best solutions that sertaov
next generation without any change, and this vaduset as the dimensionality
of the problem.

A default option for the mutation uses the classigform mutation with
probability0.01.

The stopping criteria adopted are two:

= StallGenLimit generations over which cumulative change in fénes

function value is less tharolFun

»= reached00 generations

In order to test the ability of this tool and reailar behaviour with the
other algorithms, the value ©blFun is diminished tillle-8 .

For MODE in single-objective optimization, eleven variaate implemented
and tested in order to evaluate the goodness of gastegy. These variants are
seven promising mutation variants described iniGect.1 and 4.2 and four
adaptive or self-adaptive schemes explained in@edt6. They are considered,
efficient, easy to use and reliable.

Further sophistications, likeDE, DELB, DEPC, MDE andNSDE (Nonlinear
Simplex DE), don't belong to the class of basic rfications on solutions and
they are not tested, because their improvementsdependent and applicable
regardless the mutation scheme adopted. They argdeved hybridization of
the optimization process between different stra®dike forNSDEor ODE: the
skills of Nonlinear Simplex Method or of the Oppasi Based Optimization are
coupled with the robustness and reliability of DE.

The proposed implementations have approximately shme parameters
(except for the adaptive schemes) but differentatmn approaches, taking
sometimes information from the fitness.

The following common setting is adopted:

Population size NP 30
MAXGEN 500
eps le-4

66

Case studies

and the diversified settings are:

1. DE random F=0.5, CR=0.5

2. DE best F=0.5, CR=0.5

3. DE current-to-best F1=0.8, F2=0.5, CR=0.5

4, TDE F=0.5, CR=0.5, MT=0.1

5. NSDE CR=0.5, NS=0.5

6. DERL F=0.5, CR=0.5

7. DERL 2 F=0.5, CR=0.5

8. DE_adapt Fmin=0.1, CR=0.5

9. SACPDE Fmin=0.1, Fmax=1, Fc=0.1, CRc=0.1

10. SACPMDE Fmin=0.1, Fmax=1,
CRmin=0.05, CRmax=0.8

11. SDE OPmean=0, OPstd=0.7

The crossover rat€Ris set as 0.5 for all the variants. This choicerigen by
the necessity to test the different strategies usmhailar algorithm’s conditions
but over several problems. As f@R also the scaling factoF is set as
recommended by the literature. Since the correckiwg range ofF is (0, 1],
instead the initial definition of (0,2] made by Btoand Price [21], this
parameter is set to 0.5 if the variant requiresnitthe other cases, like f@E
current-to-best the second scaling factér, has the same role of the classic
scaling factor; then it is set to 0.5, while thastfiscaling factoF; is set to 0.8 in
order restrict the searching area. H®E, since it uses also theE random
reproduction technique, the set@Rr andF is as the other, while the probability
of trigonometric reproduction is set as 0.1; se, 10% of the mutation phase is
performed withTDE. This set should show the goodness of this pradicer
the 23 benchmark problemdSDEhas like the others 0.5 as crossover rate; the
parametemNS J[0,1] control the step-length of the searchNi§ is high, the
search is more concentrated in the neighbourhobdrems if it is small the step
length is high, useful for exploration on large dons. In order to keep balance
between this two strategid$Sis set to 0.5.

For the adaptive and self-adaptive variants tharpater setting is necessary
but it's less sensitive on the final result, sircelomain for the parameters is
required: for all of themk-in is equal to 0.1, while fa(BACPDEandSACPMDE
also the maximum scaling factor is requirégha=1. SACPDE (see Section
4.5.3) requires also the two added parameteesdr,, here called~c andCRc
They control the probability of the evolution oktparameters andCR They
are set as 0.1, a value recommended in [47-48¢esfrequent parameters
changes are not beneficial for the evoluti®CPMDEneeds minimum and
maximum values for crossover rate: 0.05 and 0.&ansidered the maximum
and minimum value for good algorithm behaviour. Téeolution of the

67

Chapter 5

parameters in this case is driven by fitness feedlogformation.SDE has the
two parameters OPmean and OPstd: its mutation guoeeapplied to the
parameterd= and CR uses a Gaussian random variable with mean equal to
OPmean and standard deviation equal to OPstd. dardo obtain different
scaling factor for this procedure, even negatikre,mhean is set as 0.
The stopping criteria foMIODE are:
A=|fmin-fmad Of the current population is less than eps: thHeolev
population is converged at the same point if epsuigiciently small
respect to the fitness’s order of magnitude;
= reached MAXGEN generation.

When the first stopping criterion is met the alom alts because no more
exploration could be performed. In case of multiadotlnction with local
optima, the alt by the first criterion to a wrongjigion means the inability of
the algorithm to find true optimum.

The simple real-coded GAmplemented with the purpose to show the feature
of a basic GA, is written in one script in Matl&inceDE randomhas an easy
implementation asimple GA a direct comparison could be done between these
two EAs.

DE randomrepresents the basic idea of DE, wisieple GAhas the classical
procedures of GA for real-coded variables.

The encoding forsimple GAis made in floating-point representation. The
parents’ selection procedure is callddt-Random Selectignand it is
hybridization between the Fit-Weak Selection an@ fRandom Selection
explained in Chapter 3; after the ranking of thepuyation by fithess
comparison, the first parent is selected from t@dttfraction of the population
defined by the user: the lower this fraction, thghkr the fithess of the first
parent. Nevertheless, if this fraction is too latwe number of solutions at
selection disposal is too small and the evolutionld be affected by premature
stagnation. The second parent is then selectedomagdfrom the entire
population. On average, the fitness of the secardnp is lower respect to the
fitness of the first one, as for the Fit-Weak Setec but the randomness
introduced for the second parent selection leamtsrdsting opportunities to
avoid the weaknesses of the two selection procduybadized. The crossover
method is single-site crossover, and it is coupléthi the arithmetic blending
rule (3.2). The replacement rule is a Fittest Regteent but applied to the pool
formed by the parents and children populationss Theplacement is coupled
with a high random mutation probability to avoidgnation.

The parameters’ setting fermple GAis:

Population size NP 30
Fit selection fraction NP/2

68

Case studies

Reproduction alfa 0.7
MAXGEN 500
eps le-4
Mutation Mt 0.1

As for GA-toolbox the population size and maximum number of germerat
are 30 and 500 respectively. The hybrid selecticocgdure chose the first
parent from thefit selection fraction . The alfa parameter is the
fraction inherited from the first child to the pugsed fittest parent used in the
blending method: the second child inherits thepradal genetic material from
parents.

The stopping criteria are the same asvMi@DE.

Measures

The measures utilized to evaluate and compare thedngss of the
algorithms are taken from literature and allow arect characterization of
the solutions. These measures, proposed for S@, $tatistical significance
since are reported as average over the 50 runs:

1. Function evaluation fe: this value represent thenloer of the objective
function’s calling; higher the fe, slower the comyence of the
algorithm. Anyway, since the stopping criteria areferred to a
maximum value for generations (and consequentlyfep or the
maximum fithess difference inside the populatioa, dqual to the
maximum value NP*MAXGENdoesn't indicate the absolute inability of
the algorithm, because the true optimum could leched by some
solution in the algorithm and not by the whole pagan.

2. Cpu: it indicates the cpu time (expressed in sespmgbcessary to
complete the optimization. Together with fe, it wbuepresent the
convergence of the algorithm but also the compjexdf the
implementation.

3. Success rate sr: it expresses in % the fractiosuotess to find the
optimum (it isn’t an average); it represent theligbto find the true
optimum under a specified tolerance (eps=1e-4thdfoptimum found
by the algorithm is closer with a smaller toleranten eps, the
optimization is considered with success. It cowdccbmputed only if the
true optimum is known. The success could be acHiessen if the
number of function evaluation reaches the maximinat means not the
whole population converge to the same point buleast the best
solution is locate to the optimum.

4. Relative error lambda: this value, already propasefd5], is useful to
compare the accuracy of a solution. The higherldh#da, the higher
the accuracy of the solution. The value is refetgethe fitness function
value and the rule is:

69

Chapter 5

o itImdy,
d

ifcz0 A=111 if%<m0”

—Iogm@m_ qJ otherwise
d

0 ifm=1

if c=0 =411 if jm<1m0"

—log,, (|m) otherwise

(5.1)

Wherem is the value found by the algorithm ands the certified true
optimum.
For a complete evaluation on the 23 benchmark fomst the summed values
of the previous measures are used as comparisaedretstrategies. Of course
the sum cannot explain deeply the behaviour bieggarmeaningful overview.

Results and sensitivities

Table 1 reports the results obtained by the twe typGA testedGA-toolbox
and simple GA For the first, two eps (1le-4 and le-8) as stappuiriteria are
used and reported.

Figures 6, 7, 8 and 9 plot the summed values dwer28 problems of the
fourth measures (fe, cpu, sr and lambda in seqlidacehe three test on GA
and for the results obtained with the basic DEarddiDE random reported in
the first column of Table 4 together with other Zd&fiants.

Simple GAhas the worse behaviour even in comparison @#htoolbox The
number of fe is often high (Figure 6), close to theximum for the more
difficult problems that have dimensionality overot{5, f6, f8, f15, f19-22, see
Appendix A for further information). As said beforkigh fe does not mean
failure of the run, since the true optimum could aehieved by some
chromosome in the population. In fact, sr has \ahestween 0 and 92 for these
functions (Table 1): that results depend on thélera nature and the specific
exploration ability of the algorithm, which coulde beffective for some
function’s shape (e.g. f8, f15) and completely ficegnt for another one.
Anyway, from a general point of viewgimple GAuses a significantly higher
number of fe, with a scarce sr and the lowest laanhdhe tests (Figure 8 and
9), that means small accuracy of the solutions.

Analysing theGA-toolboxresults, a first oddity is the number of fe, reall
small, even with TolFun=1e-8; this behaviour is daghe different stopping
criteria allowable: in fact, many of the runs stdphe value 1560 fe, that means

70

Case studies

52 generations. Only after 2 generations the cutmelachange in fitness
function is less than Tolfun, sign of a scarce diitg in the population, even
with a crossover fraction of 0.7. This prematuragseation however does not
imply low sr, since this measure is often a gootue/abut it means high
exploration in early stages and rapid loss of dilgr which could be symptom
of ineffectiveness for some specific problems. Tembda values are acceptable
but the cpu, especially for the smallest TolFuralimost the double (Figure 7).

This behaviour depends on the implementation: @#-toolbox has many
functions and scripts callings due to its complexithile simple GA written in
a single script, has nearly four times fe and tgss
Comparing the twdGA-toolboxtests, a diminishing of TolFun increases as
expected the performances: sr and lambda incretspher with fe and cpu,
since no greedy alterations are introduced: omyogae strict stopping criterion
is adopted and the searching is obliged to continue

Table 5.2,GA-toolboxandsimple GAresults on the 23 benchmark functions for &@-

toolboxis tested with tweps values (1e-4 and 1e-8).

ga-toolbox eps=le-4 ga-toolbox eps=1le-8 simple_ga

f N fe Cpu sr Tambda fe Cpu sr Tambda fe cpu sr Tambda

1 2 1560 0.262188 48 3.337935 1560 0.260625 70 4.429559 9359.4 0.201563 14 3.666839

2 2 1560 0.255938 2 1.782227 |9119.4 1.466875 10 3.066425 9305.4 0.19875 74 4.937371

3 2 1560 0.277813 100 5.294264 1560 0.289688 98 5.193207 8529 0.197188 34 3.910006

4 2 1560 0.259688 100 5.732996 1560 0.260938 100 5.727077 6010.8 0.13375 36 3.95401

5 4 1560 0.257188 14 3.272079|1571.4 0.26125 8 3.518582 14439 0.386875 40 6.476024

6 10| 1655.4 0.249375 0 0.464211|5467.8 0.79375 4 1.142977 | 14434.8 0.565 0 1.340839

7 2 1560 0.258125 56 4.702975 3231 0.525938 42 4.042097 8140.8 0.171563 60 4.144548

8 10 1560 0.231563 0 2.046865|3520.8 0.517188 26 3.597903 | 12152.4 0.454375 92 5.197668

9 2 1560 0.260938 86 3.140897 1560 0.2625 92 3.342827 6666 0.143125 34 2.992255

10 2 1560 0.255938 100 9.278239 1560 0.256875 100 9.188656 4248 0.089375 76 5.270968
11 2 1560 0.256563 88 6.684636 |1562.4 0.257813 90 7.00122 | 10475.4 0.221563 34 3.401784
12 2 1560 0.258125 74 6.024265 1563 0.260938 90 7.20684 6503.4 0.137188 74 4.541488
13 2 1560 0.259063 92 8.39535 1560 0.26375 96 8.756039 3133.2 0.067813 82 4.849783
14 2 1560 0.259375 100 4.559536 1560 0.260313 98 4.470347 8883 0.19625 26 3.319797
15 4 1560 0.257813 62 3.502271|1919.4 0.318438 88 4.617155| 13677.6 0.350625 98 4.998141
16 2| 1565.4 0.259375 54 7.783416 1602 0.26625 56 8.368153 14670 0.314688 2 2.384518
17 2 1560 0.257188 98 8.501827 1560 0.260625 84 7.150096 4440 0.094688 54 3.6255
18 2 1560 0.257188 94 6.5881321593.6 0.263125 84 6.058933 9528 0.203125 16 2.439503
19 10 1587 0.24125 0 1.554397|4684.2 0.690313 36 3.681347| 14808.6 0.578438 0.750079
20 3 1599 0.264375 58 4.205901|2013.6 0.330313 98 6.025114 15000 0.3525 0.833544
21 3 1560 0.260625 84 5.888504 | 1636.8 0.274375 94 6.052147 | 14191.8 0.343125 84 5.089597
22 10| 1832.4 0.271563 0 0|6420.6 0.926563 0 0.073786| 14720.4 0.575313 4 1.346921
23 2 1560 0.2625 18 1.657683 1560 0.264375 14 1.654446 7485.6 0.165938 36 3.665762
sum 36319.2 5.93375 1328 104.3986 59946 9.53281 1478 114.3649 230802.6 6.14281 970 83.13695

71

Chapter 5

fe sum

250000
200000 - = =" T T oS m s s s oo - - oo ---
150000 - =~ = C C C s s o s s s oo s oo oo ---
100000 — = = — = —— - —mm— e —— e ———— o — o -—-

- . 7777777777777777777 . 777777 B

0 . - ; .
DE_rand ga-toolbox eps=le-4 ga-toolbox eps=le-8 simple_ga

Figure 5.16,Sum of the function evaluations for three GA tested forDE randomover 23
SO problems.

cpu sum

DE_rand ga-toolbox eps=le-4 ga-toolbox eps=le-8 simple_ga

Figure 5.17, Sum of the cputime used for three GA tested amdDi6é randomover 23 SO
problems

sr sum

2500

2000 A

1500

1000 A

500 7

DE_rand ga-toolbox eps=le-4 ga-toolbox eps=le-8 simple_ga

Figure 5.18, Sum of the success rates for three GA tested an®Eorandomover 23 SO
problems.

72

Case studies

lambda sum

140

120 A

wot---| - e

80 7

60 7

wt--- e e -1

20 7

0

DE_rand ga-toolbox eps=le-4 ga-toolbox eps=le-8 simple_ga

Figure 5.19,Sum of the lambda obtained for three GA testedfandE randomover 23 SO
problems.

The basic DE versiorDE random (see Table 2), used as reference for DE in
this test, outperforms the other algorithms in temwh cputime, sr and lambda,
using however more fe th&A-toolbox(Figure 7, 8 and 9). The ability of DE is
significantly better in almost all the problemshi@ving 100% of sr, except for
high dimensionality (f6, f10, f22), where the shlapses close or to 0. This
stagnation depends on the setting parameterscintfee three parameters could
affect the optimization results. In order to fif tmost significant parameter for
the success of DE, Figure 10, 11 and 12 show therdkencies of the results on
NP, F andCR respectively, applied on 6, the Ackley’s probl¢see Appendix
A), one of the most difficult since its dimensiahal{n=10) and high number of
local optima. The basic setting is NP=30, CR=0.9 &0.5; when a
parameter’s sensitivity is evaluate, the other p@tars are kept as just defined.

x10°

1

02

bl
mor o x o @ & o @ 9 mon X o @ & o @ 9
P

A -
0 \\
| . 'y
e 01 Y //
- |

Wz x 0 @ X o @ 9 nmoo» % 0 @ & 0 @ %
P P

Figure 5.20,Population size’sNP) effect on the four measures for the Ackley’s peafb (f6)
for DE randomwith F=0.5 andCR=0.5.

73

Chapter 5

Lol

b2 o0 w15 w8 9
F

1 /’W i A

i 7 - 15

w S - it/
; /

\ .
I i/ i
7 / \7
b - LH \\w

1 P c L T
b2 w04 95 0 07 8 9 O 2 03 04 9F 6 07 0f 9
F F

Figure 5.21,Scaling factor’'s) effect on the four measures for the Ackley’s peob (f6) for
DE randomwith NP=30 andCR=0.5.

Figure 5.22 Crossover rate’ddR) effect on the four measures on the Ackley’s peab(f6) for
DE randomwith NP=30 andF=0.5.

The amount of induced perturbation is essentidina the true optimum: for
this reason, the population sik& does not have effect on the sr and the whole
runs continue till the maximum number of generatalowable: the unique
effect is to increase the fe since the increasfrigha

F andCR intervene on the perturbation generation by gdioeraF with the
current setting has any effect only around 0.3 (Sgare 11), but not enough
significant. SmallF brings to premature stagnation since the low eafilen
ability and highF makes impossible to localize the restricted afeth® true
optimum.

High sensitivity is noticed wittCR (see Figure 12): when it approaches
values around 0.1+0.2, the sr grows up till 100%d dahe fe diminishes
significantly. This behaviour is due to the highmeénsionality and the
multimodality of the function: inducing frequent difications in the

74

Case studies

population, premature stagnation has been foundidimg any possibility to
escape from local optima; the indicator of thisiaiion is lambda, which settles
around 0.4 foCRvalues greater than 0.5; the same lambda valygpi®ached

by settings with- greater than 0.5.
The effect ofF with a goodCR=0.1setting is showed by Figure 13.

10
0
6
1 Pl
08 2
61 02 03 04 05 06 07 08 09 91 02 03 04 05 06 07 08 09
F F
1
i
09
08 3
:g =
07 5
06
1

05

CR=0.1
NP=30

04 1
01 0z 03 04 05 06 07 08 09 01 0z 03 04 05 06 07 08 09
F F

Figure 5.23,Scaling factor's) effect on the four measures
for the Ackley’s problem (f6) foDE randomwith CR=0.1

Interesting is the behaviour t& in this case: th& value of0.5 demarks a
trend’s change ofie , even ifSr remains high (over 70%) arlambda
moves around (that means success of the run, sincestheeriterion).

It is clear, the issue of a run depends both ffoend CR together, but in this
case theCR effect is preponderant; in order to prove it irs gharticular case (6,
Ackley’s problem), the following test is performesh DE random with
Fi~U(0,1), for each solution, eliminating the directeiraction between them,
and three settings @R 0.1, 0.5 and-U(0,1).

Table 5.3, Function evaluations, cputime, success rate anddanmobtained on Ackley’s
problem (f6) by different settings @E random In this casé;~U(0,1).

CR fe cpu sr lambda
0.1 9958 0.734 98 4.375
0.5 10892 0.825 46 2.873
~U(0,1) 10488 0.800 66 3.293

Making CR a uniform random variable doesn’t assure high esgc The
results obtained with low crossover rates shownareased success rate (really
close to 100%) for this difficult problem. A sid#ext of this set is the increased
computation time due to the increased number aftfon evaluation necessary.
Low CR means less improvement due to the mutation probetseen two

75

Chapter 5

consecutive generations: however, this set alldvesattainment of the global
optimum. In fact, théambda value is over 4 (the minimum eps allowable for
stopping criterion is 1e-4).

Proved the importance o€R on the success oDE random on high
dimensional function, the effects on the whole @8ctions of this parameter is
tested foDE randomandDE bestwith four CR settings: 0.1, 0.3, 0.5, 0.7.

Table 3 shows only the effects on the summed meador the test on 23
problems.

With small CR fe increases (and quasi-proportionally @gu) in both
variants, since the small perturbation inducedhm population as proved with
the sensitivities: the convergence speed is lowthritsuccess becomes close to
the maximum; thdambda is high, symptom of high accuracy. The success
for the random version is higher than the bestavayibut the latter uses |efs
and at the same time it has better accuracy: ntesnsDE randomis more
reliable but with a lower convergence speed arahval general accuracy.

Table 5.4,Summed measures for differé@R settings used in the test on 23 problems for two
variants:DE randomandDE best

Set YXfe Xcpu ZXsr Xlambda
DE random

CR=0.1 84253 5.600 2222 140.9
CR=0.3 78219 5.328 2104 131.9
CR=05 76865 5.370 1938 119.8
CR=0.7 75156 5.339 1938 117.5
DE best

CR=0.1 54168 3.698 2094 142.9
CR=0.3 37164 2.540 1934 125.2
CR=05 29894 2.049 1886 120.6
CR=0.7 23770 1.631 1810 114.4

This trend could be expected for all the variantsppsed but surely with
different sensitivities. For this reason the usafea uniqueCR=0.5 in the
evaluation of the other variants permits the urtdeding of the single abilities,
without taking into account the most significanpiaet due taCR just proved.

Tables 4-7 show the results in the 23 functions tfeg eleven variants
proposed and Figures 5.9-5.12 plot the summariegsdlts.

76

Case studies

Table 5.5,Results on 23 benchmark problems with differentefigionality and complexities
for DE random DE bestandDe current to bestariants.

DE random DE best DE ctb
NP=30, CR=0.5, F=0.5 NP=30, CR=0.5, F=0.5 NP=30, CR=0.5, F=0.5

f n fe cpu sr Jambda fe cpu sr Tlambda fe cpu Sr Tambda
1 2| 1388.4 0.08625 100 5.955095 725.4 0.046563 100 5.949586 15000 0.909375 96 5.736093
2 2| 1861.8 0.110313 100 6.587912 870.6 0.05125 100 6.86819| 11634.6 0.69875 100 10.0571
3 2| 1084.2 0.065625 100 5.301616 565.2 0.034063 94 4.995698 1242 0.07625 96 5.095229
4 2| 1009.8 0.06 100 5.791827 587.4 0.034688 100 5.754329 5221.8 0.323125 100 5.769498
5 4| 2529.6 0.162813 100 7.108407 | 1176.6 0.07625 62 5.233969 | 13935.6 0.912813 84 6.368791
6 10 15000 1.13625 0 0.385665| 5706.6 0.436875 0 0.500469 15000 1.161563 2 0.578558
7 2 2214 0.130313 64 4.98297 915 0.054063 44 4.295962 | 13029.6 0.782813 52 6.378667
8 10| 2886.6 0.2125 100 4.668029 | 1229.4 0.091875 100 4.758256 1199.4 0.089375 100 4.71573
9 2| 1037.4 0.060938 100 3.614112 587.4 0.034375 98 3.546022 624 0.037188 100 3.613439
10 2| 1731.6 0.102188 100 6.817949 622.2 0.03625 100 7.029021| 14712.6 0.885 100 10.91538
11 2| 1425.6 0.083438 100 6.695279 826.2 0.04875 100 6.94955 876 0.051875 100 6.902585
12 2| 1272.6 0.075 100 6.793135 694.8 0.04 100 6.822651 754.2 0.044688 100 6.779006
13 2| 1070.4 0.062813 100 6.656401 607.8 0.035938 100 6.895562 645 0.038438 100 6.804108
14 2| 1519.2 0.09125 100 4.567164 628.2 0.0375 100 4.564657 | 10987.8 0.670938 100 4.56006
15 4| 1704.6 0.1075 100 5.093219 880.8 0.05625 100 5.504226 907.8 0.05875 98 5.345643
16 2| 2092.2 0.122188 100 8.771529 970.2 0.056875 100 8.771251 3561 0.214688 100 8.770008
17 2 858 0.050313 66 4.462375 612 0.035625 88 6.066943 1796.4 0.107813 84 6.24475
18 2 1434 0.084688 100 7.070044 761.4 0.045 100 7.27668 817.8 0.048438 100 7.335954
19 10 14871 1.13125 8 1.627681| 3836.4 0.293438 0 1.203255| 14273.4 1.093125 2 1.3186
20 3| 1775.4 0.108125 100 5.799182 949.8 0.058438 100 6.198577 1009.2 0.0625 100 6.203972
21 3| 1456.8 0.090625 100 5.848219 778.2 0.048125 100 6.248212 11034 0.715 100 9.699106
22 10 15000 1.138438 0 0 4575 0.349375 2 0.089809 15000 1.149375 0 2.65E-05
23 2| 1642.2 0.0975 100 5.17316 787.8 0.047188 98 5.083882 15000 0.914688 100 5.164255
sum | 76865.4 5.370313 1938 119.771 |29894.4 2.04875 1886 120.6068 | 168262.2 11.04656 1914 134.3566

77

Chapter 5

Table 6.5,Results on 23 benchmark problems with differentedisionalities and complexities
for DERL, DERL 2andNSDEvariants.

DERL DERL2 NSDE
NP=30, CR=0.5, F=0.5 NP=30, CR=0.5, F=0.5 NP=30, CR=0.5, NS=0.5

f n fe cpu sr lambda fe cpu sr lambda fe cpu Sr Tambda
1 2 1047 0.100938 100 5.952466 | 1186.8 0.090625 92 5.639169 | 1524.6 0.10125 100 5.952198
2 2| 1420.8 0.135938 100 6.737801| 1274.4 0.094063 100 6.764127 | 2128.2 0.141563 100 6.470531
3 2 808.8 0.075938 100 5.297873 889.8 0.065625 100 5.304072 1254 0.082813 100 5.299325
4 2 819.6 0.077188 100 5.777889 977.4 0.071875 100 5.805128 | 1171.8 0.075938 100 5.811614
5 41 1983.6 0.198125 100 7.118401 2592 0.205313 78 6.017685| 2719.2 0.190938 100 7.101337
6 10| 14958.6 1.68125 4 0.759905| 12654.6 1.148438 0 0.399546 | 13736.4 1.120625 48 3.27163
7 2| 1516.2 0.142188 52 4.476547 | 1314.6 0.09875 50 4.323771| 2504.4 0.16125 64 4.889994
8 10| 2125.2 0.23375 100 4.669995 5025 0.44625 64 3.75503| 3580.2 0.284375 100 4.646072
9 2 810 0.075313 100 3.614015 846 0.061875 98 3.547684 | 1216.2 0.077813 100 3.613859
10 2| 1227.6 0.115625 100 6.851423 935.4 0.067188 100 6.381081 | 1948.8 0.124375 100 6.946709
11 2| 1118.4 0.105313 100 6.633737| 1083.6 0.079688 100 6.445334| 1674.6 0.108125 100 6.746244
12 2 957.6 0.09 100 6.635263 900.6 0.065625 100 6.335837 | 1486.2 0.09625 100 6.623999
13 2 838.8 0.079375 100 6.702062 672.6 0.049063 100 6.485334 | 1258.2 0.085625 100 6.505122
14 2| 1052.4 0.099688 100 4.566871| 1084.2 0.080313 100 4.571627 | 1675.2 0.109688 100 4.568161
15 4| 1320.6 0.131563 100 5.050855| 1249.2 0.098125 98 4.758916 | 2045.4 0.143438 100 5.052771
16 2| 1502.4 0.1425 100 8.77177| 1687.8 0.125625 100 8.777342 2415 0.156563 100 8.770768
17 2 722.4 0.067188 74 4.969606 516 0.036875 62 3.905394 995.4 0.064063 70 4.578026
18 2| 1060.8 0.099375 100 7.170348| 1126.8 0.082813 100 6.987148 | 1712.4 0.11 100 7.120484
19 10|13775.4 1.539375 42 2.93594 | 13077.6 1.186875 14 1.004708 | 14733.6 1.198125 12 2.162133
20 3 1347 0.13 100 6.040049 | 2092.2 0.158438 100 5.879193| 2154.6 0.14375 100 5.826021
21 3| 1127.4 0.109688 100 6.136232 783.6 0.059688 98 5.958011| 1748.4 0.117813 100 5.944329
22 10 14781 1.67 20 1.070084 | 12759.6 1.1575 6 0.519414|12219.6 0.9925 68 3.183566
23 2 1194 0.114063 100 5.169643 985.8 0.072813 88 4.667759| 1893.6 0.123438 98 5.08816
sum | 67515.6 7.214375 1992 123.1088 | 65715.6 5.603438 1848 114.2333 77796 5.810313 2060 126.173

78

Case studies

Table 5.7,Results on 23 benchmark problems with differentedigionality and complexities

for TDE, DE adaptandSACMPDEvariants.

TDE DE_adapt SACPMDE
NP=30, Fmin=0.1, Fmax=1,
NP=30, CR=0.5, F=0.5, MT=0.1 NP=30, CR=0.5, Fmin=0.1 CRmin=0.05 CRmax=0.8

f n fe cpu sr Lambda fe cpu sr lambda fe cpu sr Tambda
1 2| 1384.8 0.114375 98 5.848955| 1226 0.0966 100 5.9509| 1361 0.1844 100 5.9485
2 2 1836 0.146875 98 6.498679| 3089 0.2375 100 6.4184 | 2539 0.345 98 6.1783
3 2| 1035.6 0.085625 100 5.299111| 1031 0.08 100 5.3002 | 1105 0.1531 100 5.2955
4 2 938.4 0.075 100 5.773841 977 0.0744 100 5.8253| 1068 0.1403 100 5.7495
5 4 2256 0.193125 100 7.128992| 1765 0.1447 74 6.512| 2569 0.3572 100 7.1365
6 10 14382 1.420625 26 2.050743| 15000 1.4091 0 0.4123 | 13540 2.0612 88 4.1218
7 2| 2058.6 0.165313 62 4.954935| 3614 0.2781 82 5.7085| 2732 0.3713 72 5.5357
8 10| 2130.6 0.204688 100 4.746301| 2190 0.2013 52 4.0725| 3560 0.5403 100 4.7625
9 2 972 0.078438 100 3.614447| 1101 0.0844 100 3.6152 | 1047 0.1359 100 3.613
10 2| 1685.4 0.135625 100 6.871412| 1744 0.1334 100 6.7151| 1607 0.2091 100 7.5212
11 2| 1376.4 0.110938 100 6.703105| 2152 0.1656 100 6.5832 | 1492 0.1959 100 7.1386
12 2| 1161.6 0.094688 100 6.473382| 1874 0.1444 100 6.4855| 1339 0.1756 100 7.2369
13 2| 1033.8 0.084063 100 6.613696| 1640 0.1259 100 6.5271| 1213 0.1588 100 6.9358
14 2| 1403.4 0.11375 100 4.567716| 1396 0.1084 100 4.5719 | 1433 0.1888 100 4.5628
15 4| 1536.6 0.131563 100 5.231399| 1691 0.1375 100 4.9851| 1918 0.2641 100 5.3547
16 2 1914 0.155313 100 8.771095| 1903 0.1469 94 8.6791| 1975 0.2587 100 8.769
17 2 671.4 0.053125 54 3.574668 839 0.0641 60 3.9094 732 0.0997 58 4.089
18 2 1344 0.1075 100 7.202152| 1682 0.1291 98 7.0303 | 1450 0.1909 100 7.2894
19 10 10224 1.008438 72 4.041113 | 14984 1.405 2 1.1657 | 14904 2.2556 4 1.9948
20 3| 1682.4 0.138438 100 5.883125| 2911 0.2306 100 5.8251| 1769 0.2375 100 6.2047
21 3 1362 0.113438 100 5.885658| 2362 0.19 100 5.8187 | 1434 0.1941 100 5.9677
22 10 14151 1.397188 32 1.87396 | 15000 1.4194 0 0]10332 1.5478 100 4.7965
23 2| 1657.2 0.135313 98 5.086657 | 1711 0.1319 100 5.1782 | 1503 0.2013 100 5.1675
sum | 68197.2 6.263438 2040 124.6951 | 81882 7.1383 1862 117.2897 | 72622 10.4666 2120 131.3699

79

Chapter 5

Table 5.8,Results on 23 benchmark problems with differentedigionality and complexities
for SACPDEandSDEvariants.

SACPDE SDE
NP=30, Fmin=0.1, Fmax=1,
Fc=0.1, CRc=0.1 NP=30, OPmin=0, OPstd=0.7

f n fe Cpu sr Jambda fe cpu sr Tlambda
1 2| 1396 0.0925 100 5.9546 | 1258.2 0.0828 100 5.9561
2 2| 2188 0.1366 100 7.8582 | 1623.6 0.1009 100 6.4542
3 2| 1157 0.0734 100 5.299 999 0.0634 100 5.2985
4 2| 1026 0.0653 100 5.7786 939 0.0581 100 5.8118
5 4| 2477 0.1694 100 7.1293 | 2057.4 0.1397 100 7.1152
6 10| 11678 0.9178 100 4.2783 | 6154.8 0.4822 22 1.5407
7 2| 2641 0.1663 58 5.4513 | 1666.2 0.1069 54 4.563
8 10| 3022 0.2356 100 4.8433 | 2486.4 0.2003 100 4.6056
9 2| 1066 0.0669 100 3.6137 963.6 0.0591 100 3.615
10 2| 1740 0.1075 100 7.0864 | 1442.4 0.0909 100 6.9766
11 2| 1472 0.0916 100 6.6666 | 1357.2 0.0956 100 6.6157
12 2| 1397 0.0875 100 7.1548 | 1180.8 0.0747 100 6.8184
13 2| 1166 0.0737 100 6.7965| 1025.4 0.0638 100 6.7162
14 2| 1607 0.1016 100 4.5645 1305 0.0831 100 4.5702
15 4| 1820 0.1222 100 5.457 | 1558.8 0.1053 100 5.1084
16 2| 2117 0.1344 100 8.7699 | 1905.6 0.1256 100 8.7707
17 2 918 0.0575 70 4.836 813.6 0.0575 70 4.6386
18 2| 1601 0.1006 100 7.3061 | 1293.6 0.0869 100 7.078
19 10| 14464 1.1369 52 4.2095| 7655.4 0.5975 16 2.0807
20 3| 1862 0.1203 100 6.0453 | 1674.6 0.1075 100 5.9487
21 3| 1528 0.1013 100 6.1109 | 1335.6 0.0912 100 5.9552
22 1010198 0.8153 100 4.8979 5664 0.4441 30 1.3969
23 2| 1829 0.1159 100 5.1681| 1544.4 0.1009 98 5.0886
sum | 70370 5.0901 2180 135.2758 |47904.6 3.418 1990 122.723

80

Case studies

180000

fe sum

160000 1
140000 T - -~ ———~——~
120000 -~ -~~~ -~-—~
100000 A
80000
60000 1 |-~~~
40000 T [~~~
20000 A

0

DE_rand
DE_best

DE_ctb
DERL
DERL2
NSDE

TDE
SACPMDE
DE_adapt
SACPDE
SDE

Figure 5.24,Sum of the function evaluations for the eleven REants over 23 SO problems.

CcCpu sum
‘III I“I “l ||| ; “| l||| T |‘| III__

kel I a | ~ w w w I w w

c 0 =} o - a =) =) Q o [=)

©] v w o 0 [=] o 0

2 o | a u z o bl @]

| | w o V] < <

w w [=) < | 2

a a n g

Figure 5.25,Sum of the cputime for the eleven DE variants @&60 problems.

81

Chapter 5

Sr sum

2300
274 B e -
2100 -]
P00 i e I r] = """ ="
1900 7 [~ =—=5 "~ Il e e r] - r-——"""""-- - -
1800 1 - - - - - - r] - Q- - - -
1700 +
1600 T T T T T T T T T

o] a | ~ w w w] w w

c 0 + o - [a] o (=) Q [a] o

©] §) wi [~ n = = © o 0

< o | =) w z o el (]

| | w o (@) (6} <

w w (=) < | %

a a) g

Figure 5.26,Sum of the success rates for the eleven DE vartargis23 SO problems.

lTambda sum

140
135 +------—-——-—--- it e

130 f | R R
125 —
120 1
115 |
110 1
105 1
100

DE_rand
DE_best
DE_ctb
DERL
DERL2
NSDE
TDE
SACPMDE
DE_adapt
SACPDE
SDE

Figure 5.27,Sum of the lambda achieved for the eleven DE vtgianer 23 SO problems.

As clear from Figure 14, the number Xfe moves approximately around the
value 75000 for most of the varianBE best DE current-to-besandSDE are
exceptions. This behaviour reflects indirectly tmice of uniqueCR=0.5 for
the whole basic variants, which implies a commonveogence speed till the
loss of diversity inside the population, since thésameter seems to be the most
significant.

However, fe is not meaningful alone: the most inguar is the sr of the
algorithms (Figure 16); analyzing the seven vasamithout adaptive schemes
(from DE randomtill TDE), the best algorithms aNSDEandTDE: they show
high sr, good accuracy and acceptable cpu (Figléed7 and 15). Notice that
NSDE has the same structure B& randomwith a randomization of scaling

82

Case studies

factor F that allows different step length on perturbatishjle TDE uses on a
small fraction of population the fithess feedback order to direct the
perturbation; even IiTDE spends less fe thadSDEto converge, the fitness
feedback evaluation takes some cpu time; this betiavs verified when the
mutation strategy adopts further sophisticatiortsrdrfor feats in this seven is
DERL, with a good sr and lambda, faster convergencedspeterms of fe but
with more cpu time consumed: in fact it uses inrngweutation fitness feedback,
increasing the computation timeERL 2has poor performances compared with
the others algorithms; it has low accuracy andwbest sr.DE bestreflects its
greediness in fe and cpu, the smallest in the teshpensated by less sr and
lambda practically equal IOE random as expected, this practice is faster but it
should be used only in not complex problems: thisdition is not often present;
the risk is to lost the global optimum. The lassibavariant of the seven BE
current-to-best it has the lowest convergence speed, spendinge niwan
160000 fefor all the test, the double than the others. fm dther hand the

accuracy is the highest, but tBeis unsatisfactory compared wiNSDE TDE
and DERL The classic versioDE random,is collocated on the average for
performances, with more success tbdhbest DE current-to-besandDERL 2
with good value foicpu and acceptabllambda Its lack is on the setting for
complex problems; this lack could be overcome ugivegimproved version like
NSDE TDE andDERL, or an adaptive/self-adaptive algorithm.

In fact, the best variant on the whole tesSACPDE with the highest success,
high lambdaand high convergence speed in termgtl andfe comparable
with the others. AlsosSACPMDE the modification ofSACPDE has good
performances, with the secostof the test, good accuradgrfibda) but really
high cpu time, especially because tfee is comparable with the other variants:
this is due to the amount of fithess informatiorcessary for its mutation
procedures. Anyway it is a reliable versi@DE is an interesting self-adaptive
possibility, since its high convergence speed lofie andcpu, with goodsr
and sufficient accuracyDE adapt that uses only scaling factor adaption rule,
reflects the low sensitivity of in this test: lambda anst are insufficient, no
improvements respeBlE randomin terms offe and bactpu are achieved. It is
important to notice the setting of these adaptolemes has low sensitivity on
sr andlambda , as reported Table 8 f&ACPDE

Table 5.9,Summed results of the measures of the optimizdtyoBACPDEoON 23 SO problems
with two different settings.
SACPDE YXfe Xcpu Xsr ZXlambda

Fc=0.1 CRc=0.1 70370 5.0901 2180 135.3
Fc=0.25 CRc=0.2! 68244 4.9027 2176 131.3

83

Chapter 5

The new setting, which enhances EhandCR evolution during the evolution
of the population, increases slightly the convecgerspeed and ther,
diminishing a little the accuracy; since the rafgethese two values is between
0.05 and0.3 and our test uses coherently the literature recamdateon, the
superiority of this technique is proved over itHisg.

As last comparison for SODERL with appropriateCR=0.1 and a mixing
between self-adaption &GACPDEandNSDEscaling factor selection are tested
on the 23 benchmark problems, cal@dCPDE-NSThe results are reported in
Table 9.

Table 5.10,Summed results of the measures of the optimizgtisformed byDERL and a
mixed variantSACPDE-N$®n 23 SO problems.

DERL Yfe Xcpu Xsr ZXlambda
F=0.5 CR=0.1 71931 7.3756 2228 144.5
SACPDE-NS

Fc=0.1 CRc=0.1 NS=0. 64410 4.5964 2160 135.3832

The first is the most reliable result obtained byrect setting of the first seven
variants NSDEandTDE with low CRdon’t reach these performances) in terms
of sr andlambda , with a little payment in convergence speed. Tamilt is
followed by DE randomwith CR=0.1 (see Table 3) an8ACPDE(Tab 8). Of
course this result is driven by tuning found byvioas evaluations.

The second in Tab 9, callecHACPDE-NS(SACPDE with Neighbourhood
Search) has th8lS scaling factor randomization (Gauss and Cauchyaan
variables) instead the provisional uniform randatian, which assures more
generality. The improvement is in the accuracy exdd but especially in the
convergence speed compared WwitBACPDE (Fc=0.1, CRc=0.1,
Fmin=0.1).

5.1.2 Multi-objective optimization

This case study uses three benchmark problems, Z¥DD2 and ZTD3
proposed in [60] and reported in Appendix B, usé#roas comparison in
literature between algorithms for multi-objectivetimization. These three
problems have high dimensionality=30) and a really restrict domain, defined
between 0 and 1. Farther, the Pareto front is joedlyt on the lower border of
the domain, so, even the approach to the realisolig a difficult task for many
EAs in multi-objective optimization.

84

Case studies

The features of these problems are thought to dstraia the exploring
abilities and the accuracy achieved by the algartheven in an artificial
complex scenario as these three benchmark problems.

In this case study the algorithms tested@fetoolbox MOGA andMODE.

The algorithms’ setting

The GA-toolboxsetting is similar to the setting already proposedection
5.1.1 for the single-objective optimization, witbnse difference in stopping
criteria and some shrewdness necessary since thieolnjective nature of the
problem:

The setting used is:

'PoplnitRange’ [low;up]
'PopulationSize' 200
‘EliteCount' 30
‘CrossoverFraction' 0.7
'‘Generation' 500
'ParetoFraction’ 1

The benchmark problems tested have 30 dimensionbesinitial rangesow
andup are two arrays of 30 values each one. The lowantbas an array of
zeros and the upper one is an array of ones. Thelgmn size is increased,
since the difficulty of the problem, and the numBéteCount is set as the
dimensionality of the problem. The crossover, esiagle-site, has probability
0.7 and the maximum number of generations is 50 iE the only stopping
criterion for the multi-objective optimization withthis tool. The value
ParetoFraction represents the fraction of the final archive resge the
population size. This value is one, since the ddsitumber of non-dominated
solutions is the same as the population size.

A default option for the multi-objective version die tool is the distance
measure applied to the solutions on the main agchivis option allows the
removing of non-dominated solutions too close iMmge of fitnesses if the
archive is full. This practice should increase dineersity and the density of the
Pareto front obtained, moving the exploration talvaegions less dense of
solutions.

The MOGA setting is similar to the previous one &A-toolbox

PoplnitRange [low;up]
PopulationSize 200
CrossoverFraction 0.7
Generation 500
ArchiveDim 200

85

Chapter 5

EliteFraction 1/4
Wy 0.3
W 0.7

The elite fraction is the fraction of solutions frothe archive used for the
elitism concept. The archive dimension is set eqoahe population size, in
order to compare the results with the same numibeorm-dominated points.

Further, the algorithm has a weighting option fdre tmulti-objective
optimization: the objective function with higher iyt has more attention on
the optimization rather then the others. In ourect® two weights are set
toward the second objective function, more difficdd optimize for the three
benchmark problems.

In multi-objective options,MODE uses three of the eleven variants
allowable for the single-objective optimization. €Be three variants work
also for multi-objective options, since they do meguire fitness feedback
information. TheMODE-III version implemented into this tool does not use
ranking during the evolution, so the superioritynogpt cannot be used for
this situation. The selection of chromosomes fpraduction could be made
only choosing randomly from the population, featpresent only in three
variants:

= DE random
= NSDE
= SACPDE

The population size and the number of maximum gsiuers allowable are
the same as faBA-toolboxandMOGA The stopping criterion involves only
the maximum generations, as for the others.

Population size NP 30
MAXGEN 500

The basic setting for the parameters of any vargtite same as for single-
objective optimization presented in Section 5.1.1:

1. DE random F=0.5, CR=0.5
2. NSDE CR=0.5, NS=0.5
3. SACPDE Fmin=0.1, Fmax=1, Fc=0.1, CRc=0.1

Some sensitivity, as for the single-objective ojmation test, are tried on
DE random and NSDE Also for the multi-objective optimization the

86

Case studies

parameters play an important role in the convergespeed and accuracy,
especially for these complex multi-objective probée

SACPDE does not need sensitivities, since in the singleative
optimization its behaviour is practically indepentien the parameters (see
Table 5.8).

Measures

Two intuitive measures for the Pareto front aredbmputation time and the
number of non-dominated solutions in the last aehiFor the GAs algorithms
the number of solutions is a parameter of the dpttion; for MODE this
value becomes significant, since it representsgbedness of the mutation
technique used. The higher this value (the maxinsutihhe population size), the
higher is the ability of the variant to attain fhareto front.

In order to compare the Pareto fronts obtainedhey algorithms, a direct
comparison between solutions is performed as ih [54

Figure 5.11 shows schematically the concept ofctiraparison: two Pareto
fronts are obtained (red-circle and blue-squarejway algorithms; the black-
solid line is the overlap of the fronts and in tb@se no front dominates the
other. Anyway, a fraction of the frontier markedtlwrcircles dominates the
square one on the left side of the plot, whileation of the latter dominates
the first one (right side of the plot). So, for ang frontiers, one can determine
the fraction of the dominated solutions and thectiom of the dominant
solutions with respect to the other frontier.

f2

r1

Figure 5.28, An example of two Pareto front achieved. The blsglkd line is the
overlap of the two frontiers. The solutions marketh circle dominate the square one
only on the left side of the graph, whereas thedatominates the first on the right.

87

Chapter 5

Results and sensitivities

As first comparison we report the multi-objectivgtimization results on the
benchmark problem ZTD1 (see Appendix B) fGA-toolbox MOGA and
MODE with the implementation dDE random Figure 18 plots the Pareto front
obtained with the three algorithms.

Pareto-front for ZTD-1

T T T T T T T T

T s i A S S S VRS

Dg\ ; 1 k . - .+

S 1S S RS VO SO SN L WOV A
s : : : : True front

MODE Il |-+
+ GAtoolbox
+ MOGA -

7] SO ________ i _________ ________]
1] S - - S]
Dbt S S
0l L - b -
N I S S S S S S
0 01 02 03 04 05 06 07 08 03 1
fl

Figure 5.29,MO performed on ZTD1 benchmark problem witODE, GA-toolbox
andMOGA

The inability of the two GAs are clear. No solusoftom their final archive
reach the true Pareto front. The complexity ofgh@blem does not allow to the
two GAs neither a significant approach to the tRaeto front. The algorithm
MODE with theDE randomimplementation not tuned is very close to the tiron

The direct comparison is not applied in this casece there is no need to
evaluate numerically the goodness of DE.

The optimization is then performed on ZTD2 probléhppendix B). Figure
19 plots the solutions found by the three algorghihODE is another time run
with DE randomvariant.

88

Case studies

Pareto-front for ZT0-2

1 T, ! i g o - o *
: Loy : - : : -
o9k R Ry B True front |-
MODE Il
OBp- """" """"" R """ T """" + GAdtoolbox |
: : : : : : + MOGA
07k o ERTETE SR SRR SNy ERRRR : . : |
OGL-- -
= A P A
) VRO Y O S s
o3k
o2k
LR] SRS S Y SN JIE S NS R -
I:I 1 | 1 | | 1 | 1 |
0 0.1 0z 03 0.4 05 06 0y 0a 0s 1
fl

Figure 5.30,MO performed on ZTD1 benchmark problem wiMODE, GA-toolbox
andMOGA

Also this time the two GAs fail completely in theasch of the Pareto front.
Also for this test the attainment BfODE is much better, but the Pareto front is
not reached.

Neither here the direct comparison is used.

These two problems, in fact, are really complex¢sithe high dimensionality,
and the Pareto front lays on the boundary. Aftat,tthe nature of the problem
forces the usage of real-encoding: DE is propdrbught for these situations,
while GAs work much better on quantized problemse Superiority of DE, at
least in these situations, is undoubted. Some faignt help is given by the
specific repair rule adopted. The bouncing-backeggh for satisfaction of the
boundaries is particularly well-chosen for thesabpems.

ZTD3 is more complex than the previous two ZTD1 &@id2, and then the
two GAs, GA-toolbox and MOGA are not used in the comparison for this
benchmark problem.

MODE in this complex situation is highly helped by thlerewdness of the
bouncing repair rule, since the Pareto fronts fobZ, ZTD2 and ZTD3 are on
the boundary. Anyway, the two GAs fail completdig tsearch also for the two
simplest problems ZTD1 and ZTD2 respect to ZTD3.

A comparison is made between the th@DE variants:DE random NSDE
and SACPDE Table 5.10 reports the searching times and tmebeu of non-
dominated solutions found in the last populationtfeese three variants on the
three problems tested: ZTD1, ZTD2 and ZTD3. RemertiieMODE does not

89

Chapter 5

use an archive for non-dominated solutions, buftcatries on the entire
population to the Pareto front: at the end, the idated solutions are removed,
skimming the population. For this reason only withh number of generations
the entire population should achieves the front.

Table 5.11, Cputimes and number of non-dominated solutions dobg the three
algorithms in the three tests ZTD1, ZTD2 and ZTD3he end of the searchs. The
initial population number dAODE is NP=200.

DE random NSDE SACPDE
Z7TD1 Cpu 6.72 s 7.28 s 6.76 s
175 124 194
7TD2 Cpu 6.59 s 7.25s 6.85s
178 118 195
ZTD3 Cpu 6.61s 7.54 s 6.78 s
N 147 96 167

Figures 20, 21 and 22 plot the solutions of thedHVIODE variants for the three test
problems.

Pareto-front for ZTD-1

1 —
b : : : : : : True Pareto front
=) AT L T T S U ORI O DE random i
: NSDE
D.B_ ... D SACPDE
07k BT USSR U
DE TP . 1 |
EE DE R R L. - i L R T L R RS T T I A
Od Feoeoeion e e
03k ..
02h i RPN T
01k o L PRTTRS B,]
i}] 1 | | |] 1 | i
0 0.1 0.2 0.3 0.4 0s 0B 0y na 0g 1
f1

Figure 5.31,DE random NSDEandSACPDEPareto fronts obtained in MO for ZTDL1.

90

Case studies

Pareto-front for ZTD-2

1 T T T T T T T T
: ' : True Pareto front
Dg oo \ s} DE randam -
: : : NSDE
0ak-. e S - O SACPDE
07k)

OBk ; ; éun_”% ; ; ui é ;

o sk N o

04k ; ; éun_né é }”“”@”“..5 g

03k R RPN P Lo

02k RN ERP R

Ok % ; é ; ; ?”_ué é ;
0 T N S NN S SR
u} 0.1 02 03 04 05 0 07 g 08 1
f1

Figure 5.32,DE random NSDEandSACPDEPareto fronts obtained in MO for ZTD1.

Pareto-front for ZTD-3

T T T T T T
: : True Pareto frant
2 DE randam]
MNSDE
O SACPDE
02t :
20 :
02t f ;
04t |
s :
“I 1 | 1 1 | 1 1 1 1
0 01 0.z 03 0.4 04 0.6 0.7 0.s 049 1

Figure 5.33,DE random NSDEandSACPDEPareto fronts obtained in MO for ZTD1.

All the three variants have a good approachindhéRareto fronts respect to
GAs, butSACPDEoutperforms the other two variants, reaching theet® front
with more accuracy; a direct comparison is madevéen the three fronts
obtained. So, a 3x3 table is reported: the vapaesent at the beginning of the
row is compared with the variant on the first adlthe column. Then, for each
intersection between rows and columns, two cebspgesent: the first contains

91

Chapter 5

the percentage of solutions of the row-variant tbatninates the column-
variant’s ones, the second contains the percemtgautions dominated by the
column-variant.

From Table 5.11 the superiority SACPDErespect to the other two variants
on the ZTD1 is deducibléSACPDEoutperformsDE randomand NSDE with
the 61.78% and the 96.34% respectively of its fr@spect the two variants.
Furthermore, no points cSACPDE are dominated. Between the other two
variants,DE randomresults to be better thaMSDE since no points of the latter
dominate some solution of the first.

Table 5.12,Direct comparison between the three variant testddODE for ZTD1. The variant
on the line is compared against the variant onctiiemn. The first value in the intersection is
the fraction dominant solutions of the row agaitis column, the second is the fraction of
dominated solutions.

DE random NSDE SACPDE

94.05% 0%

DE random
- 0% 62.16%
NSDE 0% - 0%
90.08% - 92.56%
SACPDE 61.78% 96.34% -
0% 0% -

Farther, the number of final non-dominated soldiohSACPDEIs sensibly
greater compared with the other twos, and the ocmsiare slightly greater than
the DE randonis ones.

Apparently, the problem fdbE randomandNSDEis the parameters’ setting.

Sensitivities are then reported: as experienceathigle-objective optimization,
the CR is the most significant parameter, especially domplex problems as
these ones. Furthermor®&SDE has an interesting ability to explore the
neighbourhood: manipulating th¢S parameter, the search could be redirected
on the neighbour, diminishing the probability tovednigh length for the jumps.

Then, DE randomand NSDE are tested wittCR=0.3. Table 12 reports the
number of non-dominated points found in the laspypation for the two
variants on the three problems and the percentaiggesminant and dominated
fraction of solutions over the other variant. Theidishing of CR increases the
number of solutions in the last population, bothd& randomandNSDE As
for single-objective optimization, the diminishin§this parameter is beneficent
for complex problems.

92

Case studies

Table 5.13,Number of final solutions in the last populatiordatirect comparison between the
two parameters’ dependant variantd®DE: DE randomandNSDE The values are reported
for the three benchmark problems.

ZTD1 ZTD2 ZTD3

N Comp. N Comp. N Comp.
DE random 199 ©9-66% " 1qq [74.87% | g4 | 64.5%

0% 0% 0%
0, 0, 0,
NSDE 178 0% q74 0% 45 0%
60.11% 73.56% 64.17%

Now, with low CR, DE randombecomes better th&®ACPDE as reported in
Table 5.13 for ZTD1. The percentage is small, butsolutions ofSACPDE
dominate solution achieved IBE random

Table 5.14,Direct comparison betweeRE randomwith a tuned settingQ@R=0.3) and the
SACPDEvariant. The values reported are referred to ZTD1.
DE random SACPDE

21.72%
= 0%
0% -
19.90% =

DE random

SACPDE

Nonetheless, the results wikEDEare still unsatisfactory respect to the other
two variants: a tuning oNSis made, leavin@€R=0.3 and imposingNS=0.8, so
increasing the neighbour search ability of the afgm in these problems with
tight domain. A new direct comparison is then madté the results previously
obtained foDE randomwith F=0.5 andCR=0.3.

Table 5.15,Number of final solutions in the last populatiordatirect comparison between the
two parameters’ dependant variantsM®DE with an opportune settindE random(F=0.5,
CR=0.3) andNSDE (CR=0.3, NS=0.8). The values are reported for the three beackm
problems.

ZTD1 ZTD2 ZTD3
N Comp. N Comp. N Comp.
0 0, 0
DE random 199 27-14% 199 29.30% .0 49.7%
0% 0% 0%
NSDE 0% 194 0% s 0%
26.65% 26.80% 43.83%

Neither this timeNSDE outperformsDE random but the numbers of final
solutions on the three tests are now comparable thed percentages of
dominated solutions are sensibly decreased. OmlyZT®3 these percentages
remain high.

93

Chapter 5

5.1.3 Conclusions

Concluding, the usage of adaptive/self-adaptivergélygns is recommended
for untrained users, both in single-objective andltrobjective optimization,
since the easy setting and their good abilitiesost cases, due to the intrinsic
flexibility. They use the basic recombination BE random reaching anyway
high performances, symptom of the sensitivity a$ thowerful recombination
on the setting parameter: mixing reproduction gireess with adaptive scheme
doesn’t give the expected improvements, since thediness is introduces just
to overcome the lack leaved by the specific setting

SACPDEis the most attractive variants proposed in tloé BODE, since its
intrinsic flexibility and ease on the setting. Argyy the performances of this
variant could be outperformed by other variant appeely tuned.

However, the usage of modifications in reproductmrase is reserved to
expert users, especially for high dimensionalitiieve their performances could
reach the adaptive ones, since the difficulty ofe tletting. Greedy
sophistications improve the performances but neadavoidable further
information and knowledge on the strategy charesties and behaviours. The
CR parameter is the most influent, especially for ptam functions, and low
values CR<0.3) assure reliability of the optimization, whilegh values
improve the convergence speed, impoverishing tloeiracy and the success.
The population size doesn’t play any meaningfué ramhdF has low impact on
the results in most cases. The common value i90t5 uniform randomization
F~U(0,1) could be done without any strong implication.

5.2 A real case study. Giant oil field integrated pduction asset:
a highly constrained optimization for productivity

This section presents the optimization on a res¢ ad an integrated asset for
production of hydrocarbons from a giant oil fieldngposed by a gathering
system coupled with a process plant.

The optimization, performed by a tool, equippedhwiltifferential Evolution,
specifically developed inside the ENI E&P Prod dion, takes into account a
production line of the entire system with a diffcmmanagement, since the
presence of constraints both in the gathering systed the process plant. The
integration between the two environments of theesasset represents one of
the most common difficult tasks inside the oil ca@nges production
management.

94

Case studies

5.2.1 Introduction

The optimization is a difficult task for real casespecially when the number
of variables and constraints is high and the ictéva between them is not
completely clear. The uncertainties in real cases aften significant,
compromising the analytical search of the optim@averal instruments are
offered to the industries, like simulation prograes more reliable, which
increase the understanding of the models builepoasent the reality. Anyway,
the correct variable’s setting for a model is oftenfrom the mind’s ability to
obtain the optimum. Evolutionary algorithms représea good choice,
especially when classic optimization methods fé&iecause of the high
complexity of the model or the presence of severalitions.

Differential Evolution, a particular type of evalomary algorithm, has been
used to build an optimization tool for oil indusimanagement. This algorithm
Is chosen since its reliability and rapidity todithe global optimum.

The Section 5.2.2 explains the general descrififdhe real cases within this
tool could be utilized, whereas Section 5.2.3 dspthe real case under
investigation. Section 5.2.4 gives an overview loé tool properties while
section 5.2.5 goes deep into the algorithm’s sgragseand shrewdness. Section
5.2.6 collects and explains the results.

5.2.2 Problem’s Generalities

The task of this optimization is to find the cotresetting of a specific
integrated asset of a giant oil field in order tdh@nce the oil production. The
production system under the Prod division admiaigin and within it could
work is composed by two different environments:

1. the gathering system, that starts from the wellhdkathe separators’
collectors;

2. the process plant, that takes the product fluids @ocesses them in
order to reach the required specifications.

These two environments represent the typical pricluchain managed by
the production division of an oil company. Figurel® shows the entire
production system for an oil field.

Gathering system
The gathering system is a complex scenario withan number of valves,

pipelines, pumps, compressors, separators, tesrateps and collectors are
joined in order to create a sufficiently flexibledaoperational network to carry
the reservoir fluids to a storage or processinga.avctually a complete

production system consists also of a reservoir andell (see Figure 5.19),
connected with equipment at the top of the prodyciellhead, called

“Christmas tree”, used to control the flow. Thehgaing system starts from

95

Chapter 5

here till the final separators or collectors ananpases all the other wells
connected to the network.

As known, the driving force for an oil or gas protlan system is usually the
pressure present in the reservoir. the pressufereiiice (in Figure 5.19 the
pressure losses have an arrow from lower to higressure, while the flow has
inversed direction) drives the reservoir fluidsoihe wellbore, and from here
through the tubing till the wellhead. The ChristmB®e is equipped with
safety and control valves; after it usually a stefahoke valve is present: this
equipment is used to control the flow rate. Thetidhoke is the first valve
before the network: form here till the final collec pipelines are installed in
order to transport the fluid. Inside this portiohgathering system, pumps or
compressors could be installed, if driving forcaésessary.

wellhead

Treating section | Processe d

L ________24

wellbore reservoir reservoir

Figure 5.34,The production chain for a hydrocarbon field.

The inlet choke valve is the control equipment loé {production system:
adjusting the choke size it's possible controllitng flow. For example, a
closing of the choke valve causes a back-pressutbe network, increasing
the flowing bottom-hole pressure FBHP (the pressurthe beginning of the
riser tubing), diminishing the driving force forethreservoir fluid; since the
reservoir pressure is constant, the higher the FBr#Plower the pressure drop
between reservoir and wellbore and the lower tber ftate. The inlet choke
doesn’t have a completely direct control on thevflate, since it is connected
to a network: a choke opening on another valve callange the network
pressure in some nodes, reflecting this pressumagehupstream on the other
lines or nodes. That means the pressure drop boleaoralve is not the unique
variable that affects the flow rate from the resa@rvbut the entire network
layout and the other flow streams influence thedpotivity. This complex

96

Case studies

scenario makes difficult a complete understanding production asset and its
management.

A second control item in the gathering system s émd pressure of the
network (usually the separator pressure). The hithe pressure, the lower is
the potential driving force available and lowetthe production. Anyway also
in this case the behaviour is not directly promordl to the end pressure: a
diminishing of it increases the production butheg same time also the pipeline
pressure losses increase.

Nevertheless, the choice of this end pressure tisanmanal task: even if it
seems counter-productive, this pressure valueuallyshigh. The reasons are
several: the main one is the multi-phase naturthefreservoir fluids. These
fluids commonly are a mixture of hydrocarbon fluided dissolved gases,
water, and non-hydrocarbon gases likeSHCQ and N. The amount of
dissolved gas is a pressure dependant variablegharnth the diminishing of
the pressure the amount of free gas increasesingltthe flow rate in the
pipelines. Moreover, the gas is usually a secondanduct in oil field
production assets, since its lower economic valDther relevant reasons
depend on the process plant layout.

Process plant

When the main product is oil, as in our case statlyhie end of the gathering
system a process plant is installed. The main p&@d a process plant is to
treat the reservoir fluids in order to reach thehtecal specifications for the
sale or storage. Since the multi-phase nature @fflthids, several products
could be produced and processed. Anyway, also dkdfiglds need a process
plant in order to treat, clean and sweeten thefrgas sour gases like Gand
H,S. The end product specifications may be definedabgustomer, by
transport requirements, or by storage consideratidbable 5.15 shows typical
specifications and conditions for sale.

Table 5.16 Typical specifications for a process plant reledbéds.

True Vapour Pressure TVP <83 kPa @15fC
Base Sediment and Water BS&W <0.5% vol
Temperature >Pour point
Salinity (NaCl) <70 g/m
Hydrogen Sulphide (48) <70 g/m

Gas Liquid content <100 mgfm
Water dew point at -5°C <7 Pa
Lower Heating Value LHV > 25 MJ/fin
Composition C@, N, and BHS National spec.
Delivery pressure and temperature Transport spec.
Wobbe index <52 MJ/th

97

Chapter 5

A basic process plant has one, two or three separas conjunction between
gathering system and plant operation units. Therséprs could be two or
three-phase: the first type splits gas from thetuone oil-water, the second
typology divides the three phases into three distiimes: gas, oil and water.
The number of separation stages is a design var@d process plant. A two
stage-separation is the common disposition. Theore& economic: one stage
has low installation costs but low efficiency inl-acovery; increasing the
stage number, the oil production increases but #@isoinitial costs increase.
Three stages usually are not justified, so thestage is the typical layout.

After the separation unit the gases released angp@ssed (the second
separation is performed at lower pressure thanfitkg and sent to the gas
treating section. The units of the gas treatindigeare the acid gas removal
unit, the dehydration unit and the condensate mgounit. The first has to
remove CQ and HS, using usually solvents, the second one hasowve the
water present in the gases in order to prevenfdimaation of a free water
phase and to inhibiting the hydrate formation, #melthird has to recover the
heavy components from the gas that could condensatiee transportation
phase. This last unit adjusts the Wobbe index ®&tile gas.

On the other hand the separated oil is sent tsttislizer (together with the
removed gasoline) in order to remove completelyligig gases like methane
and ethane dissolved in the liquid phase: the reasdhat they have high
tendency to flash in the storage tank, decreadingkly the partial pressure of
the other gases dissolved. This rapid change ithaparessures increases also
their tendency to flash to vapours, decreasingtredity of produced oil. The
aim of the stabilization process is to increaseatm®unt of intermediate ¢Go
Cs) and heavy (&) components in the liquid phase by a quasi-coraplet
methane and ethane removing. The oil stabilizatas cooled and sent to the
storage area. The TVP specification is reached giagathe stabilizer
operation conditions.

Figure 2 shows a classic scheme for an oil progkesd.

98

Case studies

€02, H2S

Condensate
removal

Figure 5.35,Simplified scheme for an oil process plant.

Several considerations could be done in a proctsd#.prhe design and
operation of it is not easy, even if the plant tygscally the same classic layout
as previously described. The main difference mayeorom the fluid
composition, the amount of gases dissolved, thensss of them, the water
and sulphur content and so on, that influence ket pnanagement.

5.2.3 The case study

The asset under investigation has the previousscrdeed properties and
layout. It is a specific line of a great giant @igld. The objective of this
optimization is to enhance the oil production foistline, since the amount of
released gas does not affect the economics ofetukeds the oil.

The line has 8 productive wells, divided in differelusters: the network has
two high pressure branches connected to three @mdwell for each cluster
(see Figure 5.21). The last one is separated amgected to the low pressure
network. This scenario is complicated by the zorw@graphy, because the
wells are drilled on a higher level respect tophacess plant, and the pipelines
have latch and consequently complex multi-phase Behaviour; the resulting
pressure losses are functions of the liquid corgarthe pipelines.

The process plant has two separation stages; tjie dmd low pressure
networks are connected to these two item, so thie piessure separator takes
the highest fraction of oil from the network; them pressure separator takes
the oil coming from the first separator and the @iming from the low
collector (Figures 5.20 and 5.21). In fact, in phent there are three separators:
one is a two-phase type and two are three-phasmraters; the two-phase
separator is used as slug catcher and it is pdstg: deginning of the plant,
connected to the high pressure collector. Betwbkentwo-phase and the first
three-phase separator there are only 1-2 bar skpre difference: practically
they represent together the first separation stageh well has its Inlet choke

99

Chapter 5

valve. The process plant has one stabilizer, divide two sections coupled in
the same column, one acid gas removal column, igedDEA regenerated in
another column, a dehydration unit with glycol andondensate recovery. The
gases are compressed two times: the first froms#paration and stabilizer
pressure till 30 bar approximately and then sentht treating section; the
second after the condensate removal till the tramsime pressure required, 70
bar.

reseprvoir 1 reservoir 2 reservoir 3

W8

>

LP
collector

collector

oil Gas LP
=<

He 011
separator
water LF
separator

water

Figure 5.36,The gathering system for the real case study.

Each well has a different fluid composition and seguently different
behaviour. The amount of gas present in the flsidepresented by the GOR
[Sm/SnT] (Gas-Oil-Ratio), defined as the free gas flow otie oil flow at
standard conditions. This number is significanthie production management,
because a high amount of gas released in the reteoaid cause unstable
flows.

Another significant characteristic is the amountaoid gases present in the
fluid: CO, and HS could provoke corrosion in the pipelines, even
ungovernable, and make necessary an efficientranidval unit in the process
plant in order to obtain the sale and safety spmations.

The problem of this asset is the coupling of thedflcharacterizations with
the process plant. The initial design was made gusiififerent GORs and
compositions from the actual ones, since work-oveid cleaning and

100

Case studies

recompletions are made in some well. Table 5.16vshbe critical properties
of the wells’ fluids.

Table 5.17 GOR and sour gas content of the reservoir fluids.

GOR H2S CO2
[sm3/sm3] %vol %vol
wl 516 2 24.3
w2 428 2.77 9.65
w3 638 1.21 38.9
w4 250 0.2 3.6
W5 155 0.15 3
w6 150 0.16 3
w7 117 0.15 2.66
w8 160 0.1 3.1

The most significant problem of the plant is thédagas sent to the acid
removal unit: since the wells from reservoir 1 (W¥2 and W3) have high
fractions of sour gases and high GOR values, tphenductions limit the
capability of the plant. Producing from reservagjtie amount of gas incoming
in the plant increases; besides, this gas is reaily and exceeds the maximum
design of the treating section: the amount of,@Oparticular could degrades
the solvent action in the unit. For this reasorg thuster of reservoir 1 has
reduced production compared with its potential padidn, and the cluster of
reservoir 2, with lower GOR and sour gases conmters a high fraction of
available production.

Anyway, the almost closing of the reservoir 1 ctusts not the optimal
solution, since some profit margin exists: a sliglifferent plant parameters
setting and a controlled network management coudg® gome advantage.
Besides economic considerations, a decreasingeoW#il’'s production on the
cluster of reservoir 2 elongates its productioa. lih fact, some constraints are
present also for the well production: the bottoneklressure FBHP must to
stay over a specified value related to the reserVais value is usually the 70%
of the static reservoir pressure. This constragduces the possibility of a
premature well-dead and reduces the sand producdtion the wellbore,
reducing the fouling in the separators.

Speaking about the reservoir 3, the oil productisnrelatively small,
approximately less than 10% of the total oil pradug furthermore, the GOR is
smaller with respect to the wells of cluster 1, mgkts regulation irrelevant in
the optimization.

Concluding, in this situation the plant seems tdHeeconstraint of the asset,
because of its limitations. The controls of thisedsare the inlet choke valves,

101

Chapter 5

the separator pressures, and some degree of fremdtina process plant, like
the pressure difference between the slug-catcheéthanfirst 3-phase separator,
the conditions of the stabilizer column (head pnes&nd reboiler temperature)
and some outlet temperature of heat exchangersiréagng section, since its
complexity, is leaved untouched by this integradpdmization and managed in
a second time.

5.2.4 Integrated optimization

The two environments are modelled by two differgmbgrams, which
calculate with high accuracy the results of a dJmecsetting in each
environment.

The necessity of a tool which integrates the twarenments is driven by the
difficulty to have a complete view of the entiresets In fact, it is simulate by
two programs. Each simulation program has an iatepptimization tool, but
separated with the constraints of the other enwiemt; in particular, the
optimization of the production from a network pomwit view cannot include
problems of the treating section of the processtpbat it could be influenced
only by general considerations (e.g.: maximum gées, maximum bS). On the
other hand, the constraints’ satisfaction in thacpss plant is highly dependant
on the input hydrocarbon mass flow rate, givenhey network environment. It
is clear the tight interaction between these twestesys: the Differential
Evolution gives some advantage in this optimizatieimce it's an external
optimization tool that finds the variables settugjng the evolution strategy of
the survival of the fittest, allowing at the sanmed a flexible constraints setting.

Anyway, this tool could also work only on the presglant environment. This
option does not take the gathering system as paheosystem. The algorithm
then works only on the HYSYS variables.

Gathering system simulation

The gathering system is modelled by a PetroleuneBExpoduct called GAP,
from the IPM suite, commonly used in the Eni dieiss. In this program each
well needs complex specifications for the reserviduid extracted, the
performance, layout and length of the perforated wed the length of the
tubing: the combination of these characteristicnde the well production
performance to the surface controlled by the chatee regulation. In order to
solve the network an end pressure point, the sepapaessure, must be set.
Running the simulation, the programs returns thea@ter and gas produced by
each well, the pressures in each node and theypedesses in the pipelines.

Process plant simulation

The process plant environment is modelled by aneA$pch product,
HYSYS, equipped with several thermodynamic packagesseveral operation

102

Case studies

units like separators, column, absorber, reboikmng heat-exchangers. The
accuracy of this program is high, but the prograamagement is not banal. This
tool is one of the most spread simulation progrased in the oil and chemical
industries. It has also logical controls and adljgsbperators that give some
automation to the simulation.

The integrated optimization tool

Since the necessity of accurate solutions, thesesimulation programs are
used in our evolutionary algorithm: the tool propdsuses Differential
Evolution as basis for the optimization, and the® frograms simulate each
solution explored by the algorithm; practically yheéake as input the
chromosome’s variables, they simulate the solupooposed and returns the
fitness value to the main algorithm: the implemeataof this tool is only for
single-objective optimization, since usually in iidustry the objective function
to maximize is the profit of the asset. If many quots are the output of the
processing phase, the aggregate planning methadbsted in order to define a
unique fitness function. The main algorithm is vemt in MATLAB, a
Mathworks product. The choice of MATLAB is drivel the possibility of it to
create a connection and an information crosstalth whe other simulation
programs, which are equipped with coherent extentatfaces.

The tool is then composed by the interaction af¢hprograms:

1. MATLAB

2. GAP

3. HYSYS
The first plays a manager role of the variablefytemms and operations for the
search of the optimum. It works as an automatedravpe following the
population based search of the evolutionary algort it computes each
population, it combines the solutions in order Ibain new perturbed solutions,
it compares the children with the parents and iheelects the best in order to
allow the evolution of the population. This processmits the attainment of the
optimum of the integrated asset, since the two kitimn programs are used as
fitness evaluation: the manager MATLAB find, comhbop chromosomes, a set
of variables, and it follows the production champiosing in GAP its specific set
of variables, running the simulation and taking tlesults of the gathering
system as input for the process plant simulationenT MATLAB sets the
required variables in HYSYS and it runs the proc@suilation; the final result,
in that case the oil production, together with tbenstraints of the two
environments, are read and processed by MATLABs Dperation is repeated
till a stopping criterion is met. Figure 4 depittiss cycle.

The structure of the tool is flexible, adaptable nany cases of the oil

productivity management. An classic interface tigtowspreadsheets of the

103

Chapter 5

simulation programs allows an easy setting foraldes and constraints with
their boundaries.

Since the automation of this tool, any further homateraction with the
simulations must be removed; the correct convemgeoic each solution is
controlled by MATLAB, but the simulation files needhrewdness like internal
logical settings.

Set the GAP input Read the
and run Tinal output

MATLAB

- Info processing
- Control the programs
- Algorithm operations

GAP Read the GAP S5&t the HYSYS HYSYS

ouTputT input and run

Figure 5.37, The interactions between the three programs: MATLABAP and
HYSYS.

Variables, constraints, results and interactions
This optimization comprises 14 variables together:

» 8inlet choke imposed pressure losses
= 2 separator pressures
» Pressure difference between slug-catcher andsiysarator
= Stabilizer head pressure
= Stabilizer reboiler temperature
= Inlet temperature of the bottom stabilizer section

The two separator pressures are shared variabfes the separators are
included in both environment and represent thewutjon. In this integrated
optimization the separator pressures become vasgalsince in the separated
one these values are a user defined conditions.

Some of these variables have defined boundaries:

Table 5.18,Variables’ boundaries
Lower Upper Unit

HP separator 20 40 [bar]
LP separator 12 18 [bar]
AP slug-sep 0.5 2 [bar]
Stab head P 7.5 9.5 [bar]
Stab reboiler T 160 190 [°C]
Stab bottom inlet T 65 120 [°C]

104

Case studies

The other variables, the pressure losses througithibke valves, have only
the lower boundary of 0, which means no controttenwell, leaved completely
opened. The upper boundary for this type of vaeiablnot unique, since the
pressure loss across the valve is not a directr@oan the flow rate but it's
influenced by the current network’s pressure peofil

The constraints of the system, as previously gdted, are both in the
gathering system and in the process plant.

In the gathering system a required minimum valueeéch FBHP is related to
the sand production and the life of the well: watkiover these values is
recommended and not imposed. Anyway, for this agtaton all the
constraints should be satisfied. Table 5.18 repimse values, which are the
70% of the reservoir pressure layer from where #reyproducing.

Table 5.19 The minimum FBHP allowable
FBHP nmin [bar]

w1 226.5
w2 226.5
W3 227.0
W4 217.6
W5 211.8
W6 221.0
w7 214.9
w8 209.4

The rest of the constraints are referred to thegs® plant. As specification
design, the plant has maximum oil, gas and watpaluéities defined as inlet
values. After them, a significant constraint is tfes flow sent to the treating
section, in particular the acid gas removal, exggdsn actual volume flow, a
pressure dependant property: since in the planiaepressure compression
unit carries the gases released from the low pressparator and the stabilizer
till the pressure of the high pressure separatersetting of the latter influences
deeply this constraint. The higher this pressure,higher is the mass flow that
passes through the treating section for a definetlinve flow. Another
constraint affected by the acid removal sectioi® between the CQand HS
fraction of these gases: over the specified vahe unit doesn’'t work as
required, since the high amount of £@egrades the solvent action in thgSH
removal. Other two additional constraints could the specifications of the
Wobbe index and TVP: these depend respectivelyhencomposition of the
inlet fluids and the stabilized reboiler temperatur

Table 5.19 resumes the plant constraints.

105

Chapter 5

Table 5.2Q Constraints and specifications for the plant

Val ue Uni t
Inlet oil [max] 37750 [bbl/day]
Inlet gas [max] 1450 [kSm?®/day]
Inlet water [max] 2200 [Sm3/day]
Gas flow rate to the 3
treating section [max] g2 G ek
CQ/H ;S to the
treating section[max] et [
Wobbe index [max] 52 [MJ/m 3]
TVP [max] 86 [kPa @100°F]

The fitness function of each solution is represeérmdely by the oil produced
by the plant and sent to the storage area, repamtestindard conditions. No
intermediate properties affect directly the objeetfunction, the interaction is
only indirect and internal to the system. The etiolushould be able to altering
the variables’ setting in order to find the maximwih production achievable
that satisfies the whole constraints.

5.2.5 The algorithm strategies and properties

The Differential Evolution has many strategies ddbje and several
constraint handling methods. The choice of impletegstrategies is driven by
the problem nature and the simulation times necgs$savaluate each solution.

The problem nature indicates that the optimizatsomainly concentrated on
the gathering system variables, since the oil proda is high sensitive to the
inlet choke opening; the process plant variable® maarginal sensitivity on the
fitness function; only in the constraints handlitttey have some weight,
especially for the maximum Wobbe index and TVP.eAfthat, the objective
function with high probability does not have a cdexpshape but it could have
some local optimum; this sentence is driven bykhew-how in this type of
optimization problems inside the Prod division. Thain problem on the fitness
function is the gas flow rate constraint, which lages some portion of the
domain: in fact, increasing the production, alse tfas rate increases. This
constraint affects sensibly the feasible area, aalbe in the domain of the
well’s cluster of reservoir 1, characterized bythi@OR values (516, 428 and
638 Sni/Snt for the three wells) and high G©@ontent.

The simulation times depends on the stability ebhution: if the solution is
unstable both in GAP and HYSYS, the estimation-tiorea solution could be
10 and 30 seconds respectively, with the possgididlitwaste approximately 40
seconds for a bad solution, discarded by the dlgarcontrolling the maximum
error. These times are unacceptable, but continuitige search, the number of

106

Case studies

bad solutions diminishes drastically since theyiriiean unstable region leaved
soon unexplored by the evolution strategy.

Anyway, in order to obtain accurate solutions, Sosels for GAP and 7
seconds for HYSYS are considered necessary, soxptely 12 seconds for
each chromosome is the expected time for eachimolsitevaluation. This
feature influences the strategies adopted in tgerithm and the parameters’
setting, especially for the population size andstogping criteria.

Since very high optimization times are expected #igorithm must be
sufficiently faster and the same time reliable assgble.

DE strategies implemented
Given the previous features for the simulation atle solution and the

presumed objective function’s shape, the evolutipregorithm implemented
adopts three fast and reliable strategies alreaelepted in Sections 4.1 and 4.2
and tested in Section 5.1:

1. DE random

2. DE best

3. DERL

These three reproduction methods are chosen choone®y chromosome
using some heuristic rule implemented in the pnogra

DE randomis the basic mutation strategy originally propo$sdStorn &
Price (see Chapter 4).

DE bestis the fastest algorithm since its greediness:strategy speeds up the
convergence when a clear direction is taken by #wwlution. The
implementation of a coherent heuristic rule all@vsiding misuse of its feature
that could provoke premature stagnation to a lopgmum.

DERL is a half-way strategy betwe®E randomand DE best it represents
the correct mediation between greediness and ranessntheir strengths.

The crossover procedure adopted is the binomia, tyggcommended in high
dimensionality and highly constrained situations.

Parameters’ setting
These three strategies need only three parameters:

* Population size NP =20
= Crossover rate CR =05
» Scaling factor F=0.5

The population size affects the optimization tisieace the simulation time for
each solution is significant, a higdP implies an unacceptable wasting time.
This value must be as lower as possible: the diroeakty of the problem is
high, 14 variables, but only 10 of them could ballyesignificant. NP=20 is

107

Chapter 5

considered a correct setting: the low sensitivitythas parameter in the final
solution has been proved in Section 5.1.

The crossover rate influences the convergence sg@edool must be reliable
and at the same time as faster as possible. Agg@rovsection 5.1, the lower the
CR the higher the success rate, especially for campl®blems: this high
reliability is then counter-balanced by a slow cemgence speed. Since the
probable simple objective function shape, low valaee not necessary and
0.5 is considered satisfactory for this situation.

The scaling factor selection is not critical, thanto the heuristic rules
implemented: a randomization around the user-défwedue is performed by
them.

The heuristic rules adopted

The heuristic rules adopted in this optimizatioresuditness information
processing in order to give flexibility to the emtbn. Since adaptive rules need
information about the population diversity, thenstard deviation of the fitness
functions of the previous population is used assuenof this diversity: at the
end of each generation, after the selection of mbsmmes to carry in the
evolution, average and standard deviation are ctedpon the fithesses of the
population, in order to pass these informationhi® successive population and
manage the exploration.

Since the standard deviation alone cannot be reptatsve for different

situations, the reference measyreused by the heuristic rules is the ratio
between standard deviation and average of thesfitne

- afit G

= (5.2)
HMii

Lo

WhereGO{L,...,MAXGEN .
The heuristic rule for the strategy selection is:

DE best if 5., <50p;,, and Y(0,9)< 0.7 and Y(0,}< 0.5
strategy, =1 DERL ifos, <500, and Y(0,)< 0.7 and L[0,]= 0.5
DE random otherwise
(5.3)

108

Case studies

Where pim is a user defined value used also in other héurisies and
stopping criteria. This value is set as 0.005 dmedrecommended values are Iin
the range [0.002; 0.01]. The two uniform randomueal selected for this rule

are chosen for eacli chromosome, whered{1....,NP} .

Also the scaling factol for the three strategies is selected followingristic
rules, in order to randomize the step length ofstfrategy adopted for each i
solution; this randomization is inspired by theSDE approach. The
randomization ofF is performed transforming it into a Gaussian rando

variable with standard deviati@h and meaiil.
The standard deviation is set as 0.1, while the nmisadefined by the
following heuristic rule:

1.3F if py, < 40p,, and U,(0,]< 0.!
Ue;c =10.70F if p,_, < 4p,,, and U, (0,]= 0. (5.4)
F otherwise

Then the final scaling factor is:

~N(,o,0?) ifU,(0,]<05
Fi’G — (luF,l,G)2 | 2(]] (55)
~N(~tp;6.0%) ifU,(0,]2 0.5

This rules previously described allow a sufficiediversification in the
strategies: when the diversity in the populationrdases, the greedinessOi
best and DERL are used in order to speed up the explorationidBss the
randomization of the scaling factor and its incnegsor decreasing of 30%
together, modify the step length, permitting at #zeme time exploration of
unknown regions.

The stopping criteria
The stopping criteria adopted for this tool areéhr
1. reaching odMAXGEN = 80 generations
2. the best solution in the population is the sameHQSOL = 10
generations consequently
3. the population diversity is under a specified vape, < o,

The first and second stopping criteria affect tb<optimization time: the
first is difficult to reach, but the second is coomfor this classical situations.

109

Chapter 5

Of course, this second one doesn’t assure thenaigat of the global optimum
but, since the exploration abilities of the aldamit 10 generations without any
improvement seem a reasonable index of unexpeuatéitef evolution. The last
criterion is directly referred to the populatiorvetisity: if it is too low, no more
improvement could be done.

Since 20 seconds are approximately expected foh ea@luation, the
maximum time foregone is approximately 10 hoursnpstdering a 20% of
simulation failure for instability and unfeasibylibf solutions:

trax = tingiiaua INPLMAXGENYZ =

.o] S ind 1 [h] (5.6)
42[@} ch{al[sc[ged 1. 3600[—5}_ 6.5h

This value is considered acceptable since the a@mpcenario under
optimization.

The constraint’s handling

Since the strict constraints, especially referredthte treating section, the
elevated simulation time necessary for each saluind the high possibility to
wasting time for unfeasible solutions, a particudéwrewdness is adopted in
order to resolve this highly constrained situati@n:parallel population is
introduced in order to store feasible solutionsatlded by the selection process.
The particularity introduced exploits the extremreegliness of the selection
process for the next generation adopted by DE:ithevaluated child, called
trial vactor, if feasible is compared one time omiith the I vactor of the
current population; if the trial one is infeasiltles automatically discarded. This
selection feature excludes any feasible soluti@t timfortunately is compared
with a fittest solution than it. Anyway, there @nse possibility that this child is
better than at least one of the current populatfon;this reason a parallel
population is created, in order to store feasibletsons discarded by the main
selection process. Of course this population hdsaed dimension, comparable
with the main population, and when a feasible smfuts not accepted by the
main population, it is compared with the worseto$ pparallel population: if the
first is better than the latter, it takes its pla€his procedure is inspired by the
Preferential Crossover found in DEPC, Section 4.2.3

This parallel population is than called to offefeasible solution for the main
selection process when the trial vector just evalliaesults infeasible; in that
case a second selection process is made betwedli treetor of the current
population and a random selected solution fromptmallel set. In that way the
previously spent simulation time to evaluate aifdasolution is not completely
wasted, giving to this initially discarded chromopso a second chance. This
feature gives a good convergence speed to the tewolsirategy since it keeps

110

Case studies

relatively high the fitness level of the populati@lowing high transmission of
good properties to the next generations. This stmews shows its good
properties after a latent period within also thegoplation has to evolve: after
this period the mean fitness values of the two [aimns are comparable and
the second selection process keeps high the sulstiin the main population.
The choice of this method for the constraint’'ssfattion instead the penalty
method or any repairing method is driven by thebfgm nature: since the oil
produced grows together with the gas sent to thatitrg section, with high
probability the optimum lies close to the infeasildrea. The penalty method
needs many generations to satisfy the constramptziely and a repair rule is
not recommended, since the variables of the gaifpesystem are not directly
proportional to the oil production: a simple lineambination seems inapt.

5.2.6 Results

The optimization of the integrated asset is peréamsing three approaches:

1. a separated optimization of the two environmentsigushe GAP
internal optimization with the imposition of maximugas rate. A
successive optimization for HYSYS by DE is perfodne

2. a separated optimization of the two environmentsmigushe GAP
internal optimization with the imposition of maximugas rate and
FBHP limits. A successive optimization for HYSYS WYE is
performed.

3. an integrated optimization of the entire asset (GARYSYS) by DE,
starting far from the optimized network solution.

The first optimization uses the optimization of tfehering system performed
by the internal optimization tool of GAP. This aptzation has as task the oil
production increase and only one constraint: theimam gas rate incoming to
the process plant, since it is the well known peabbf the asset. The maximum
value allowable is 1450 kSlday (Table 5.19). However, the GAP optimization
manages only the choke opening, since the sepanatessures are taken as end
point pressures of the network, considered boundeoyditions. This
optimization removes two degrees of freedom todhtre system. The GAP
results become then HYSYS inputs, from which stgrthe optimization of the
process plant by the tool.

The second optimization uses another time the atgghroptimization,
imposing the maximum gas rate of 1450 R&fay and the minimum FBHPs,
reported in Table (5.18). After this optimizatiory IGAP, HYSYS is then
optimized by the tool.

The third way exploits the integration concept, ngfarming the two
environments into a unique system: in that casestimerimposition of the

111

Chapter 5

separators becomes unlocked and all the constraiessribed in section 3 and
resumed in Tab 5.18 and 5.19, could be satisfiettecamporaneously. The
gathering system variables are uniformly generatedund the previous
optimized values, while HYSYS is uniformly randonggnerated inside ranges.

Tables 5.20 and 5.21 show the results for the tbptienizations, the variables
found in GAP for each well and in HYSYS and the stoained properties. It's
important to notice the FWHP is not a variable &gimulation result, since it
depends on the choke opening coupled with the divgars pressure (see Tab 4
and 5 for the constraints). This value indicatesghoduction state of any well,
the lower the FWHP, the higher the flow rate. Anywthis pressure value is
connected with the FBHP, a constrained propertyHfersystem.

Table 5.21 Variables and results for the gathering systemtlier three optimization:
GAP optimization with gas rate constraint, GAP mjitiation with gas rate and FBHP
constraints and optimization by the integrated twith all the constraints.

GAP variables and results

gas rate constraint gas rate + FBHP DE integrated tool

choke FWwHP FBHP Qoil | AR . FweP FBHP Qoil | . FwHP FBHP Qoil

bar bar bar sm3/day bar bar bar sm3/day bar bar bar sm3/day
wl 9.8 58.4 215 647 0.0 53.2 243.4 487 20.6 75.8 237.3 523
w2 14.0 44.0 199 1028 3.0 68.5 233.6 787 33.3 88.6 245.3 697
w3 | Aol ey 324 0 6.8 92.4 274.7 1162 42.0 97.2 270.4 1253
w4 0.1 42.6 169 968 2.0 70.0 220.9 663 37.3 76.7 235.9 562
w5 1.0 55.0 237.5 386 0.0 44.2 252.7 296 0.4 48.5 256.7 272
w6 0.3 45.5 280.4 1434 1.1 56.9 279.6 1468 0.3 56.9 281.5 1392
w7 3.4 38.2 284 291 0.7 45.9 273.9 419 0.6 51.0 292.1 188
w8 0.1 35.0 231 347 0.0 50.8 257.9 210 0.1 36.2 235.1 327

112

Case studies

Table 5.22, Variables, constraints and results in the HYSYSirenwment for the
optimization 1,2,3. The separated optimization wfie tool in HYSYS environment
conceive the process constraints.

Separators 1 2 3
HP sep [bar] 34 34 38.7
LP sep [bar] 12.1 12 14.75

HYSYS parameters

AP S1-S2 [bar] 1.7 1.1 1.0
P stab [bar] 9.5 9.5 9.5

T bottom [°c] 186 188 188
T heat-exch [°c] 115 100 80

HYSYS constraints

Inlet oil [bb1/day] |35336|35184.91| 36910
Inlet gas [ksm3/day] | 1044 1206 1408

Inlet water [Sm3/day] 384 504 257
Gas treated [km3/day] 38.4 | 42.288 | 41.9
C02/H2S [-1] 7.6 15 18.1
wobbe [M3/m3] 52 50.5 51.7
TVP [kpa @100F] 85 84.3 85.6

HYSYS results
Qoil out [bb1/day] |35019 |34249.06 | 35940
Qgas out [ksm3/day] | 1007 | 1008.24 | 1145

The optimization times are reported in Table 5.22.

Table 5.23,0ptimization times for the three optimizations.
GAP tinme HYSYS tine

GAP gas rate 45 min 20 min
GAP gas rate + FBHP 1h 20 min
Integrated tool ~4.5h

Figures 5.23 and 5.24 show the resulting FWHP efdablutions of the three
optimizations and the oil production achieved. HFWHP is one of the most
important properties of the system from a productmint of view, since is
easily measurable.

113

Chapter 5

Ogas rate constraint Bgas rate + FBHP Ointegrated tool

120.0

100.

80.

60.

FWHP [bar]

40.

20.

0.0 -

wl w2 w3 w4 w5 w6 w7 w8

Figure 5.38,FWHPs resultant from the three optimizations. Thtues are similar except for
W3, completely closed by the first optimization.i§ lwell has the highest GOR in the field’s
line.

0il storage tank

36500

36000 |~ =~
35500 |~

35000 -~ pmm
34500 T b e

[bb1/day]

34000 T4 b
33500 T f o
33000

gas rate constraint gas rate + FBHP integrated tool

Figure 39, Oil production achieved by the three optimizatiofise last one is approximately 3%
higher than the first.

As expected the first optimization, performed saepey for the two
environments, is not able to satisfy all the caists: three FBHP are under the
minimum values allowable, in particular for the i8alvl, W2 and W4. The W3
is completely close, since its high GOR and sownéshis situation is
completely unsatisfactory, since W3 has high GOR umfortunately also a
good well performance. The optimization of the HYS¥nvironment does not
give considerable improvements on the oil productat it works mainly on
the satisfaction of its constraints. At the endtiin@ applied only to the process

114

Case studies

environment, at least for this particular casenas significant for the global
optimization.

The second optimization, that should be more ridiabterms of constraints’
satisfaction, finds a worse solution: the oil protlon in this case is
approximately 2% less than the previous optimizatids clear from Figure
5.23, the FWHP setting is quite different respectite previous one, but the
final oil production is diminished. W2 and W4, inetfirst optimization do not
satisfy the FBHP constraint. With the second opation these two wells are
induced to produce less in order to obtain thesfgatiion of their bottom-hole
constraint. For this reason their missed productieduces the final oil
production, even if W3, in this configuration, $sato produce. Farther, one
constraint is not satisfied in the process pldrg:das sent to the treating section
goes slightly beyond the limit of 42%day imposed.

The last optimization, even if it takes 4.5 howatisfies the constraints of the
entire system and at the same time it enhanceéirtheoil production. This
value is approximately the 2.7% higher than theailtesbtained with the first
optimization. This result is achieved manipulatitice separators’ pressure,
variables considered fixed for the separated opttion. Increasing the first
separator pressure, the amount of gases releasadhe separators’ stages has
a lower flow rate. In fact, the most important doasit in the plant is the gas
flow rate to the treating section; its limitatiog referred to the actual gas flow:
the higher the pressure, the lower is the volurow fkeeping the mass rate
constant. For this reason, the first separatorspresis increased, approaching
the upper boundary for this variable. Also the tinof this constraint is
approached: in fact, this property of the systerthésbottle-neck of the entire
production chain for this line.

The ability of this tool to explore regions close the boundaries of the
feasible region is higher respect to a separatéchation. Combining the two
environment into a single one assures the attaitjnaémheast with the heuristic
implementation described in Section 5.2.5, of tlibag optimum of the system.
Other runs are performed and the solutions obtaamedhe same as reported in
this section, proving the reliability and robustes this tool.

115

Chapter 5

5.3 A real case study. A nuclear safety system: niubbjective
optimization of inspection intervals.

In this case study we consider the problem of tip#inozation of the
inspection intervals of a nuclear safety systenr.itSosolution, we investigate
the use of DE and compare it respect to other &oolary algorithms, already
presented in Section 5.1. In the comparison, wek lwo particular at the
computation time and at the characteristics oftaeeto frontier. The problein
first treated as a SO optimization and then as adgd@nization.

It refers to the choice of the time intervals floe periodic testing of the components
of the High Pressure Injection System (HPIS) ofesBurized Water Reactor (PWR).

Reliability/availability design and inspection/mgnance strategies are the target to
optimize for these safety systems. Because of tlifficult complete understanding on
a global view, the complexity of the interactioretveeen different objectives and the
difficulty to evaluate their impact under a uniqueasure, the problem represent one of
the most interesting cases for the multi-objectigémization in nuclear industry.
Typically, this kind of systems is subject to plogdiand normative constraints which
come into play imposing restrictions that the cdaté solutions have to satisfy. For
simplicity, in our case studies we do not imposg apriori constraint to be satisfied by
the candidate solutions.

5.3.1 The problem

We tackle the issue of finding the inspection s for the components of the
HPIS (High Pressure Injection System), a safetyesydor nuclear power plant for a
Pressurized Water Reactor, which intervenes in a@dsa small LOCA (Loss of
Coolant Accident). The optimization is sought witspect to different conflicting
objective functions: (i) the mean availability,) (ihe cost of the inspections (and the
eventual cost of repair in case of accident) amjl ffie exposure time of the
maintenance operators.

For this study the following assumptions are made:

1. Atleast one of the flow paths must be open diraks.

2. If the component is found failed during surveillarend testing, it is returned to
an as-good-as-new condition through corrective teaamce or replacement.

3. If the component is found to be operable during/sillance and testing it is
returned to an as-good-as new condition througion&sve maintenance.

4. The process of inspection and testing requiresigefiime; while the corrective
maintenance (or replacement) requires an additiomg time, the restorative
maintenance is supposed to be instantaneous.

The simplified scheme of the system is shown iruféigl, as already presented and
explained in [17].

The three objective functions are computed on #sesbof a classical fault tree and
event tree analysis.

116

Case studies

to injection path 4 Vi
+— AT I (Py g

th* b H
Ve i Pe)

Figure 5.40,HPIS simplified scheme [17]

to injection path

The system components are divided in three groalpshe items belonging
to a same group undergo testing with the same gieiip. The three inspection
intervals are identified by;, i = 1, 2, 3. The maintenance item groups are:

T12>{V1, V3}
To > {V3, V5, Py, Bs, P}
T3> {V4, Ve, V7}

The groups contain respectively the inlet valvas, jumps together with the
outlet valves and the crossover valves.

T = [T, T, T3] is the decision variable array composed by theetlinspection
times referred to each maintenance item group.réfezence time is one year,
and the time inspection variable is expressed urd)so the domain is 1K <
8760 hoursi =1, 2, 3.

The test interval specified by the technical spe&ifons (TS) both for pumps
and valves is 2184 h. So, for the previous caseydhniable array recommended
by TS isT =[2184 2184 2184] h.

Since we prefer speak in terms of minimization, thaximization of the
availability is replaced by minimization of the nmmeanavailability.

The three objective functions are defined by mogedsent in literature.

The mean unavailability is computed after the deieation of the fault tree
for the top event “no flow out of both injectiontha A and B”. The resulting
minimal cut sets then are reported in Table 5.23.

The mean unavailability can be expressed as follows

117

Chapter 5

U= i |‘J u’ (5.7)

whereN is the number of minimal cut sets,is the number of basic events
relevant to thg™ minimal cut set andj} represents the mean unavailability

associated with thd' component of thg" minimal cut set.

Table 5.24,Minimal cut sets for the safety system reporteBigure 5.25.
MCS # Conponent s or der

N

Vi,V

Vs,P o P s

PnP s P c

V3,V 4,V 5P g
V3,V 4, P g P ¢
V3,V 5, VeV o
V3, Ve, V7, P
Va,V 5,V g,V 7,P 4

© 00 N o o B~ W N P
g oo Ao b~ B b W W

V4:V G!V 71P A!P (03

For mean unavailability of a generic componkrdgeveral models have been
proposed in literature. In this study the modeluse

U =A+%4T+(n +4T)%‘+%+yo (5.8)

wherep; is the probability of failure on demand,the failure rate of thé"
componentT; the test intervalk; the mean downtime due to testidgthe mean
downtime due to maintenance andhe probability of human herror. Eq. (5.8)
is valid wherp<0.1 andiT<0.1, which are reasonable assumptions.

The cost function is composed by two contributions:
1. Csem : cost for surveillance and maintenance
2. Caccident: COSt associated with consequences related idesmts
Then the cost is:

C=Cyu*C
The cost S&M is so defined:

(5.9)

accident

118

Case studies

S&M-Z{ m.(jt+chq.(in(piMiT)} (5.10)

where Cy¢, is the yearly inspection costy:, is the corrective maintenance
cost andTly is the mission time, 8760 hours in our case.

The accident cost is intended as a measure ofa$teassociated to damages
of accident which are not mitigated by HPIS interti@n. Using a small LOCA
event tree found in literature [61] and reportedrigure 5.26, the following
formulation describes the accident cost:

acudem C.L + Q
Cl = P(EI)(l_ URT)U[ULPIS+(1_ U LPIS) U MSH; C POS (5.11)
C3 = P(EI)(l_ URT)UI:USDC(:L_ U MSHF) +(1_ U ng] C PDE

Small | Reactor Trip| HPIS Delivery Stcam LPIS Bleed | Establish | Maintain | Plant damage
LOCA Auxilary Removal Imjection RCS Shutdown | Secondary S
(ED) Injection | peedwaer Cooling Heat stato (PS)
Removal
El RT HPIS AFW SR LPIS BD SDC MSHR
em—— et PDS3
R — - PDS 3
o | rosi
e E————— VY
77 PDS1
PDS 2
- S —
PDS 3
] DS 3
U (from MOGA) v P
P(EL Jsi
Unigiiw
PDS 1
Yipss PDS1
Uy
= POS1

Figure 5.41,Event tree for the initiating event small LOCA [61]

These costs depend on the initiating event frequamd on the unavailability values of the
safety systems which ought to intervene along thgous sequences: these values are taken
from the literature [61].

During testing operations, the technicians may bbjested to radiation
exposure: based on the well-known ALARA (As Low AReasonably
Achievable) and limit-dose principles, the doseereed by workers should be
minimized. Assuming a constant exposure rate, timnmeation of the dose is

119

Chapter 5

equivalent to that of the exposure time, so thatthiird objective function could
be formulated as:

Ng

Texp=ZKTT—“i”]n +(T?MJd (2 +4 T)} (5.12)

i=1 i

The first objective function is in conflict with ¢hother two, since frequent
inspection times tend to small mean unavailabditieit increase the costs and
the exposure times. For this reason, the multigilve optimization is treated in
terms of the concept of dominance of solutionskisgefor Pareto frontier.

5.3.2 The optimization schemes

Three optimization schemes are adopted in thisrpape

1. single-objective constrained optimization

2. weighted sum scheme

3. MO with dominance concept.

They are used in this paper to investigate thexgths and the weaknesses of
MODE (Multi-Objective Differential Evolutiop a tool developed in MATLAB
by LASAR (LAboratory of Signal and Risk Analysis
http://lasar.cesnef.polimi.it/) of the Energy Dedpmant of Politecnico di
Milano, provided with the SO and MO options. Selevariants are
implemented in the tool, in order to increase lggibility and ability to tackle
different problems. For MO optiadODE-IIl is implemented.

Two algorithms are used for comparison:
1. Genetic Algorithm toolbox
2. Multi-Objective Genetic Algorithm MOGA

Genetic Algorithm toolboXGA-toolboy has several sophistications and
internal variants. A complete descriptive help vsaikable on the program and
online. When no particular settings are imposedhis tool, many of the
sophistications implemented are used with defaittrgy. Anyway, the correct
usage for specific problem needs deep consciousdiss tool.

Also MOGA has several variants adoptable, and the numbgrfaimation
necessary to its running is high. Further, a wret@gtegy selection could
provoke failure of the optimization. Also for thol the setting is not easy.

Single-objective constrained optimization

The optimization of the inspection intervalg T, andTs, is first tackled as a
SO constrained optimization, where the mean unalviditly is optimized with
cost as constraint, and vice versa. Since the tbbjctive function, the

120

Case studies

exposure time, has the same proportional dependeoroehe inspection times
as the cost, it is ignored in this preliminary $@agbjective optimization.

The constraint values are taken from the technggécifications that
recommendl = [2184 2184 2184] hours. This gives mean unaviiiialand
cost constraints:

= Uconse = 3.5427- 10*
" Ceonstr= 1440.2 $

For this optimizationMODE andMOGA are compared in their SO version.
The SO mutation variants adopted for this optinieatvith MODE are:

* DE random

* DE best

 DERL(DE with Random Localization)

* NSDE(Neighbourhood Search DE)

» TDE(Trigonometric DE)

These variants are considered the most reliabldastdnodifications of the
original DE. Their strengths and weaknesses haea Bhown in Section 5.1
Since the optimization is constrain€k: is coupled with a repair technique for
infeasible solutions. In fact, if a solution is eaSible, it must be discarded.
This moving is obtained with a bisection methodlppbetween feasible and
infeasible solutions.

This practice assures less total function evaluatio

Weighted sum scheme

A second optimization is performed by adoptingweeghted sum scheme of
the three objectives to reduce the multi-objectoygimization to a single-
objective one: this leads to the identification aily one solution, highly
depended on the weights.

As for the first test, the five DE variants above tested.

The overall function that integrates the threedtsgnto one is so defined:

£(T)=w W, (T)+w G+ w O, (F (5.13)

where then subscript is referred to a normalized value.
Each objective function is normalized with the doling rule:

f= 1" Tmn_ (5.14)

121

Chapter 5

wheref =U_,C, T, ,and0< f <1.

n’ “exp,n
The sum of the three weights; , f = U, C, Texp must be 1, then also
o< f(T)<1.
The maximum and minimum values taken are:
O<U < 7.5010*

0<C<2000[$
0<T,, < 200[h|

exp —
The normalization is necessary because the obgetitivctions have different
orders of magnitude.
In this optimization 10 weights’ settings are tri@hd the results are
compared to the Pareto frontier obtainedMGA

Multi-objective optimization with dominance concept

The third optimization is performed with a multijebtive Pareto approach.
The objective functions are maintained separate thedPareto dominance
concept is used to define the Pareto front of éggalod solutions.

The multi-objective optimization of the safety syst inspection is tested
with MODE. The resulting Pareto frontier and the times tacheit are
compared with the results of the other two algongh

1. GA-toolboxfor MO optimization
2. MOGA already used as reference in the previous approac

MODE has three variants allowable in MO options:
a. DE random
b. NSDE
c. SACPDE(Self-Adaptive Control Parameters for DE)

The choice of these variants for the implementaibMODE is principally
driven by the absence of fitness feedback in thegroduction phase, for the
sake of the speed of the algorithm. In MO optimaat the superiority of a
solution could be defined only after a dominate panson ranking of all
solutions in the population, and this slows dowa algorithm.

Thanks to the powerful recombination processV@DE-III and its greedy
selection between parents and trial solutions Fer $uccessive generation,
dominate comparison and ranking of all solutions aot necessary, saving
computation time.

122

Case studies

5.3.3 Results

5.1 Single-constrained optimization

The optimization results obtained MOGA are showed in Table 5.1 [17].

Table 5.25 MOGA- results on single-objective optimization of insgi@t intervals [17]

U optimization

C_<Cc0n5tr
71 549
72 2852
73 5492
U 2.3208 - 104
C 1436.2

The stopping criteria adopted in the DE search are

C optimization

U_<UCDI75 tr

1672
8742
8246
3.5187 -
529.3

10-¢

[h]
[h]
Lh]
[-]
[$]

* A=|fmin-fmay Of the current population is less than eps, malty the
whole population is converged at the same poimps is sufficiently
small compared to the fitness’ order of magnitude

* reached MAXGEN generations

The optimization performed withE has the following general parameters:

Population Size NP 30

Maximum Generation MAXGEN 500

eps U/C le-8/1e-4

Because of the different orders of magnitude ofnl@an unavailability and the
cost, to make the first stopping criterion effidighe €pS values must be

different.

The settings for thBE variants are:

e DErandom CR=0.7,F=0.5
e DE best CR=0.7, F=0.5
« DERL CR=0.7, F=0.5

« NSDE CR=0.7, NS=0.5
- TDE CR=0.7,F=0.5, MT=0.05

The choice of the previous parameters’ settingsnanly driven by the

author experience.

The crossover rat€R affects the amount of perturbation introducedha t
trial vector from the noisy one: if this value iglh, or close to 1, the trial
vector is practically the noisy vector, if it is alip the trial vector inherits high
fraction of its variables from the target vectostead from the noisy. So,@R

123

Chapter 5

is small, the trial vector has small differencespext to the target and the
convergence speed is small. Otherwis&Rfis high the convergence speed is
high but the possibility to be trapped in a locptimum increases. Since the
two objective functions, mean unavailability andtzare expected with low
local optima and the dimensionality is low (onlyeé variables), the value 0.7
for CR is considered suitable. Nevertheless, if the dhjecfunction to
optimize is complex and with several local optimatbe dimensionality
increases, smallRvalues are recommendd&dR<0.3) (see Section 5.1.1).

The scaling factor setting is significantly les&icrthan the crossover rate
setting. The valu€ = 0.5 forDE random DE bestandDERL is taken, because
in the middle of the recommended range (0, 1].

NS controls theNSDE approach: if NS is high the search is more
concentrated in the neighbourhood, whereas if NSsnmmll the Cauchy
operator, characterized by high values, enhanaesedhrch space exploration.
A correct mediation between these two searchinghoast is achieved by
NS=0.5.

TDE approach, which uses tH2E randomscheme as basis reproduction
phase, has the sarheandCR of the first variant; the mutation probability with
the trigonometric mutation Ms set as 0.05: this value permits a demonstration
of TDE ability in this problem. If Mis too low the behaviour of this scheme
approaches thBE randombehaviour.

Tables 2 and 3 report the results for the first teyiimization schemes,
repeated 50 times in order to obtain significaatistical values with respect to
the randomness. To demonstrate the accuracy whwnred, the standard
deviation is also reported. Figures 6 and 7 reffzet convergence speed in
terms of mean function evaluations (fe) and mean twme (cpu) used to
complete each single run for the five tested vasiamhe number of function
evaluations is the product between the populatiae and the number of
generations performed, plus the value of additi@walluations for the repair
rule.

Table 5.26,Mean unavailability results by DE optimization. €sthe constraint

DE rand DE best DERL NSDE TDE
mean Std mean std Mean Std mean std Mean std
fe 1597 210 1215 343 1288 197 1973 327 1617 314
cpu |0.1847 0.1406 0.1734 0.2284 0.2078
u 2.3203e-04 2.3205E-04 2.3204E-04 2.3203e-04 2.3203E-04
Tl 543.8 1.8 544.3 2.7 544 1.9 544.2 1.6 543.8 2.6
T2 [2862.3 11.1 |2863.9 27.7 2864 17.9 2859 11.7 |2863.3 15.2
T3 [5325.6 189 |[5311.9 570.9 |5285.8 283 |5366.9 213.5 [5309.1 257.3
C 1440.2 1440.2 1440.2 1440.2 1440.2

124

Case studies

fe

2500 0.25

2000 | <o —~ 1 T0.2

1001 |- = | - 10.15 W,
3

w00 || 4| 11| ~~T0.1 &
(9]

so0 (| |- f |t [1| [-1 0.05

0 0
DE rand DE best DERL NSDE TDE

Figure 5.42,Function evaluations and cpu-time usedUWooptimization by DE variants.

Table 5.27,Cost results by DE optimization. Mean unavailapiié the constraint.

DE rand DE best DERL NSDE TDE
mean std mean std Mean std mean std Mean std
fe 2489.6 290.6 1230 137 1840 217 2899 344 2557 332
cpu | 0.2884 0.1453 0.2513 0.34 0.3316
u 3.5427E-04 3.5427E-04 3.5427E-04 3.5427E-04 3.5427E-04
Tl 1691.9 1691.9 1691.9 1691.9 1691.9
T2 8760 8760 8760 8760 8760
T3 8760 8760 8760 8760 8760
C 524.1 524.1 524.1 524.1 524.1
4000 0.4
3500 A — _ r 0.35
3000 A I — r0.3
2500 +-pm| f---------------7-----;}| f---- F--10.25%
00t || -] F--to.2
1500 (| [~ r=-"1 | |- | - r--10.15 &
1000 1 0.1
500 1 - 0.05
0 0
DE rand DE best DERL NSDE TDE

Figure 5.43,Function evaluations and cpu-time usedGaoptimization by DE variants.

In the SO constrained optimizatiddODE outperformdMOGAIin both cases
of cost and variables constraints.

125

Chapter 5

MOGAfindsU = 2.3208 10*andC = 529.3 $ whileDE random NSDEand
TDE find U = 2.3203- 10* and all the variants fin€ = 524.1 $, just at the
unavailability constraint limit of 3.5422.0".

Achieving the same minimum value at the constrlmit shows the high
reliability of the 5 DE variants.

NSDEis accurate but the number of function evaluatisnkigh, due to its
Cauchy scaling factor: using high, the probability to find an infeasible
solution is high and repair is required.

DE bestandDERL are the fastest but less accurate variants: biediaviours
are reflected by the standard deviations for tepetion intervals result$; is
the less significant variable (its standard dewisiare large), whil@&; and T,
have more impact on the unavailabilitPE bestand DERL show the two
largest standard deviations 64, sign of their inferior accuracy. Fag, these
values are generally smdDE randomandTDE are the most accurate variants,
but TDE has higher computation time thBfi random even if the number of
function evaluations is the same: this becaliB& needs a high information
processing, not justified in this case.

As for the unavailability minimization, all the vants approach the same
solution in terms of variables’ values and consetlyeof objective function
and constrained limit (see Table 3). Also for tlestaminimization, the DE is
shown to be reliable in all variants.

The difference is again in the convergence speai@& 7): DE bestis the
fastest with the smallest standard deviation. Tie=ans that the cost function
has a simple shape that exalts the search abitifi€®&E best DERL has the
second fastest convergence speed, wbiHerandomand TDE have the same
behaviour as in unavailability optimization: samendtion evaluations but
highest cputime for the secondSDE as in the previous case, has the highest
number of function evaluations and consequentlycpditime because the
optimization is constrained and unfeasibility arise

Weighted sum approach

This approach transforms a MO optimization into@ @&e by the weighted
combination of the multiple objective functions. eTketting of these weights
moves the optimization toward a specific objectfuaction. Changing the
weights, each run returns a point that lies onRhesto frontier. To obtain a
dense Pareto front, number of weights’ settingstrbasused. In our test, ten
weight settings are tried, returning only ten Solus.

The three weights must be chosen coherently: siheesecond objective
function has the same proportionality with resgectime as the third one, the
second and third weights are set equal; the fiesght is set at 10 different
values in a range betweed.05 and 0.95 . Figure 8 shows, in two
dimensions Y andC), the MOGA Pareto frontier and the ten points obtained

126

Case studies

from the weighted-sum method optimized by DE. Tikie Yariants approach to
the same solutions in all the weights’ settingeaithe high reliability of DE
on finding the true global optimum; only the comadidn times are different.

The stopping criteria adopted are the same as@oo@imization.

The total number of function evaluations (fe) apditane spent for the ten
runs are presented in Table 4.

The algorithm parameters are:

NP 100
MAXGEN 500
eps le-6
CR 0.5
F 0.5
NS 0.5 (only for NSDB
MT 0.05 (only for TDE)

The Pareto front used as comparison is obtained BYOGA run with
parameters NP=100 and MAXGEN=500.

The adoption of a lower value d€R with respect to the previous SO
optimization, is justified by the diversity of thebjective functions: the
contemporary search in the minimization of thregecive functions with high
CRcould unbalance the results, inspite of the diffiee in the weights.

The ten points obtained by the weighted-sum schi&yeon the Pareto
frontier, but the definition of minimum and maximuralues for normalization
of the objective functions limits the searchingaarim fact, the result obtained
with wy = 0.05,wc = 0.475,wr = 0.475 (biasing the target on the cost and
exposure time minimization) is close to the maximuaiue of U equal to
7.510* (highestU, lower C). Nonetheless, this behaviour is not found for an
opposite weights’ setting biasing toward an optatian of unavailability i,
= 0.95,w¢c = 0.025,wr = 0.025): the cost does not reach its maximumevalu
2000 $ but it finds a solution near 1300 $.

The weighted-sum scheme makes it difficult to obtagood convergence of
the Pareto frontier since it is too sensitive t® Weights’ setting.

Table 5.28,Function evaluations and cputimes for the five asais tested in weighted
sum-scheme
fe Cpu [s]
DE random 37109 2.92
DE best 20757 1.78
DERL 27923 2.95
NSDE 43252 3.36
TDE 36369 3.58

127

Chapter 5

DE bestis the fastest algorithm, both in fe and cpu tiDERL follows in fe
but the cputime is comparable wiDE random this reflects the absence of
fitness feedback information processing, propddiERL andTDE.

TDE is the variant with the highest cputime becaus#soliigh information
processingNSDEalso in this situation fails: its high capabiltty explore wide
searching area brings it out of boundariB& bestoutperforms all the other
variants.

2000 T T T T T T T T T

1goabk Lo P |+ DEgm H

1500_..5.....,; R SRR A
n . : . . . - . : .
o : : : : : : : . .
1400-.%....{ PRI L R L
+ : : : : : : : : :

1200_.%

cost [§]

1000k e
ool & PP

EOD By

ol i i fime e 4 p 0 pg 0o
2 3 4] B 7 g g 10 1 12
-4

x 10

Figure 5.44,Ten solutions obtained with ten different settiogsweighted-sum scheme applied
to DE, compared wittMOGA Pareto frontier

Multi-objective approach

The population size for the three algorithmidQGA, GA-toolboxand
MODE) is fixed as NP=200 and the stopping criteriosas as the attainment
of MAXGEN=500 generations. Then the number of tdtaiction evaluations
is the same for the three algorithms (10000).

GA-toolboxand MOGA distinguish in two parameters the number of non-
dominated solutions set in the final archive anel plopulation size: for them
both are set equal to 200.

Of course,MODE has some disadvantages in terms of the densitheof
dominant set, since it carries on ol individuals in a unique archive that is
skimmed only at the end of the run: only if the Yehpopulation reaches the
Pareto frontier the number of non-dominated points be equal to 200,
otherwise the population is skimmed.

128

Case studies

Figures 9 and 10 show the Pareto front achievethéythree algorithms: for
MODE the versiorDE randomis plotted on the left, while on the right the non
dominated solutions found by the thid®DE variants are shown.

The three algorithms approach to the same Paretdidr, but with different
densities and boundarieBIOGA and MODE seem to be more reliable in the
Pareto frontier search for low costs and exposumes thanGA-toolbox In
fact, the latter concentrates its search in therfman unavailability region, but
it does not explore the space beyond 2000 $ of(sestFigure 10).

Table 5 reports the time for completing the seaacld the number of
solutions in the Pareto set found by the algorithite threeMODE variants
take approximately the same time, since they coenploeé same amount of
function evaluationsl(0000) in the same programming environment.

Table 5.29,Cputime and number of Pareto solutions presetttariinal archive for the
MOGA GA-toolboxand the thre®ODE variants

variant cpu NP
MOGA ~10 min 200
GA-tooTbox ~2 min 200
MODE, DE random 5.672 s 148
MODE, NSDE 6.328 s 145
MODE, SACPDE 6.109 s 153

The number of the non-dominated solutions foundVi®DE is not the same
as forMOGA andGA-toolbox this is because only a fraction of the population
reaches the Pareto frontier. However, the compmutaimes are significantly
smaller than those of the other two algorithms.

The cputime comparison betwe&A-toolbox and MODE is particularly
interesting as both are implemented in Matlab:|#ter algorithm is about 20
times faster than the first.

129

MOGA,
+ MODE
o GAtoolbox

exp M)

3000

u cost [§]

Figure 5.45,The Pareto fronts obtained MOGA MODE-randomandGA-toolboxin the inspection intervals optimization

Case studies

3000 ; : , ,

0 GAtoolbox

MOGA

2500

2000

1500

cost [§]

1000

500

D 1 | 1 I 1
u w10
3500 T T T T T T T T T
: : : : 1 ¢ DErandom
: : : : : : 1 + WNSDE
Ftoi N S T P PR ;
00083 : : : ; g : | © GSACPDE
2E00 k-
2000
=
ko]
= e
= 1500 +-¢
1000
o00 :
D I 1 1 1 1 I 1 1 1
2 3 4 a 5] 8 =] 10 11 12
u w10*

Figure 5.46,The Pareto frontiers of Figure 9 in two dimensidrandC for GA-toolbox, MOGA
and MODE-randomon the top and the Pareto frontiers for the tHv@DE variants on the
bottom

These differences in computation time depend on cibrmplexity of the
algorithm: in this case the simplicity of DE is r@wed: the Pareto front is
satisfactory and the percentage of non-dominatkdisos is remarkable.

MOGAseems to be reliable but really slow.

131

Chapter 5

Table 5.30,Direct comparison between the three algorithmstaadhreeMODE variants for
inspection intervals optimization
MODE-rand MODE-NS MODE-SACPDE GA-toolbox MOGA

= 21.85 27.73 25.45 10.92
MODE-rand
- 27 .69 13.43 10.91 15.13
22.58 = 28.23 27.73 5.65
MODE-NS
18.55 - 26.61 12.61 15.32
19.3 26.32 - 55.26 5.26
MODE-SACPDE
23.68 25.44 - 11.4 15.79
24.5 11.5 20.5 = 27.5
GA-toolbox
9 9.5 18 - 8
21 26 30 25 =
MOGA
12 10 7 29 -

Table 6 shows the percentage of superiority andrimrity of one variant
against another one referred to its solutions: whgants of the rows are
compared with the variants of the columns and tt& humber in each cell
represents the percentage of dominant points ofotvethat dominate over the
column’s algorithm solutions, while the second oeresent the fraction of the
dominated points (e.gMODE-randomhas 21,85% of its Pareto set that
dominatesMODE-NSDEfront, while the 27.69% d¥IODE-randompoints are
dominated by somBIODE-NSDEpoints — first row, second column).

Except forMODE-SACPDEthat has 55% of its frontier that dominates that
of GA, the other percentages of dominant and dotathasolutions are
relatively small, around 20-30%. Moreover, the esluof dominant and
dominated fractions of an algorithm are similar,king it difficult to declare
superiority of one over the other.

Also the three MODE variants do not show clear superiority: no
improvements are carried by self-adaption of pataree€SACPDE or by the
neighbourhood searchNEDB.

On the other hand, relevant differences remairims$ of computation time,
driven principally by the differences in paramesetting: DE randomkeeps
constant during the optimization the two parameteandCR while SACPDE
and NSDE need new parameters’ generatioBACPDEapplies the evolution
of parameters only sometimes, when the heuristecisusatisfied, whillNSDE
generates new scaling factor for each individualaioy generation; this is the
reason of the different cpu times.

132

Case studies

5.3.4 Conclusions

The results obtained in this paper represent anrowement in the
optimization of complex nuclear system as the gafgstem studied. The novel
evolution algorithm tested, DE, works well and fasth respect to the MO
optimization version of GA, even with differentagies.

In the single-objective optimizatioMODE outperformsMOGA in terms of
accuracy of the solutions, reaching lower valugsni@an unavailability and
cost respectively. In that cadeE best variant is considered the fastest
algorithm but it should be used carefully becatwsmuld be less accurateE
randomremains the most robust and reliable variant ifimfiormation about the
problem are available.

The weighted sum scheme appliedM®DE permits the achieving of the
same Pareto frontier obtained MOGA in MO option, but this approach is
extremely dependant on the weights used for tlegration of the three targets
into one. For this reason this approach is consdi@ot satisfactory, since a
previous knowledge of the problem nature is necgdsa the weights’ setting.
No particular conclusion could be done respectatt@iracy; only the time is
comparable and also this tif& bestis the fastest since its greediness.

For the MO non-dominance approadhQDE outperformsMOGA and GA-
toolbox only in terms of convergence speed, which is §icamtly high:
MODE is 100 times faster thatOGA and 20 times tha@A-toolbox

The convergence speed of this tool is its main e, thanks to its
simplicity. The other evolutionary algorithms nesaphistications and difficult
parameter settings, whil®MODE has very few parameters. Of course the
number of solutions on the Pareto frontier is r@ $ame as the population
size, while the other algorithms may achieve thgirdd number of points of
the Pareto front by storing the dominant solutionain archive uploaded
generation by generation.

Anyway, the number of non-dominated points carriedthe Pareto front
(75%) is satisfactory.

133

References

[1]
[2]
[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

134

D.E. Goldberg, “Genetic algorithms in search, opation, and
machine learning”, Addison-Wesley Publ. Co., 1989.

Nelder, J. A., and R. Mead. 1965. “A simplex methHod function
minimization”. Comput. J. 7:308-313.

J.E. Dennis and V.J. Torczon. SIAM J “Optimizatioh(4): 448-
474,1991

Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecch983. “Optimization
by simulated annealing.” Science 220:671-680.

Carlos M. Fonseca and Peter J. Fleming. “An overnwé evolutionary
algorithms in multi-objective optimization.” Evolohary Computation,
3(1):1-16, 1995

D. E. Goldberg and J. Richardson. “Genetic algargtwith sharing for
multimodal function optimization.” In Genetic Algtdims and their
Applications: Proceedings of the Second Internafid@onference on
Genetic Algorithms, pages 41-49, Hillsdale, N J87.9 Lawrence
Erlbaum

J. David Schaffer. “Multiple objective optimizationvith vector
evaluated genetic algorithms.” In John J. Grefdteste editor,
Proceedings of an International Conference on GeAdgorithms and
Their Applications, pages 93-100, 1985

N. Srinivas and Kalyanmoy Deb. “Multiobjective apization using
nondominated sorting in genetic algorithms.” Evanary
Computation, 2(3):221-248, 1994

Zitzler E, Thiele L. “Multiobjective evolutionary lgorithms: a
comparative case study and the strength Paretmagpi IEEE Trans
Evol Comput 1999;3(4):257-71.

Zitzler, E.; Laumanns, M.; Thiele, L. “"SPEA2: Imping the Strength
Pareto Evolutionary Algorithm”; Technical Report 310Computer
Engineering and Networks Laboratory (TIK), Swissl€éml Institute of
Technology (ETH): Zurich, Switzerland, 2001. Avaia online at
http://www.tik.ee.ethz.ch/sop/publicationListFiles2001a.pdf.
Knowles, J. D.; Corne, D. W. “The Pareto Archiveebiition Strategy:
A New Baseline Algorithm for Pareto Multiobjectiv@ptimisation.” In
Proceedings of the 1999 Congress on EVolutionaryn@dation
(CEC1999); IEEE Press: Piscataway, NJ, 1999; ppC#B-

Martorell S, Carlos S, Sanchez A, Serradell V. “Slomned
optimization of test intervals using a steady-stgémetic algorithm.”
Reliab, Engng Syst Safety 2000;67:215-32

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Kaelo P., Ali M.M., “A numerical study of some mdédd differential
evolution algorithm,” European Journal of OperatsioResearch 169,
2006, 1176-1184.

Gujarathi A.M., Babu B.V., “Optimization of Adiabat Styrene
Reactor: A Hybrid Multiobjective Differential Evaion (H-MODE)
Approach”, American Chemical Society, 2009

Gujarathi A.M., Sharma D., Babu B.V., “Multi-Objeat Optimization
of Polyethylene Terephthalate (PET) Reactor usingorid Multi-
Objective Differential Evolution,” 2007

Parks GT. “Multiobjective pressurized water react@load core
designusing genetic algorithm search.” Nucl Scignd997;124:178-
87

P. Giuggioli Busacca, M. Marseguerra, E.Zio: “Mohjective
optimization by genetic algorithms: application $afety systems”,
Reliability Engineering and System Safety 72, 28874

Holland, J. H. (1975). “Adaptation in natural andifeial systems.”
Ann Arbor, Michigan: The University of Michigan P®

Zio E.: “Basics on genetic algorithms with applioat to system
reliability and availability optimization”, Computanal Methods For
Reliability and Risk Analysis, 2009, 180-186

Radcliff, N. J. 1991. “Forma analysis and randospeetful
recombination.” In Proc. 4th Int. Conf. on Gengtigorithms, San
Mateo, CA: Morgan Kauffman.

Storn, R., Price, K., “Differential evolution — Aingple and efficient
adaptive scheme for global optimization over camtims spaces.”
Technical Report TR-95-012, International Comp8eience Institute,
Berkeley, CA. 1995

Storn R., Price K., “Differential evolution—A simpland efficient
heuristic for global optimization over continuougsases”, Journal of
Global Optimization 11, 1997, 341-359

Bergey P.K., Ragsdale C. “Modified differential &wmon: a greedy
random strategy for genetic recombination.” Thednational Journal of
Management Science, 2004

Hui-Yuan Fan, Jouni Lampinen, “A Trigonometric Miiten Operation
to Differential Evolution”, Journal of Global optigation 2003, 105-
129.

Pant M., Ali M.M., Singh V.P., “Differential evolign with Parent
Centric Crossover”, Second UKSIM European Symposiwn
Computer Modeling and Simulation, 2008

Ali M.M.: “Differential evolution with preferentiatrossover.” European
Journal of Operations Research 181, 2007, 1088-1113

135

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

136

Pant M., Ali M.M., Singh V.P., “Two modified diffential evolution
algorithms and their applications to engineeringigi® problems”,
World Journal of Modelling and Simulation, 2010;3@

Yang Z., He J., Yao X., “Making a difference to feiience Evolution”,
Advances in Metaheuristics for Hard Optimizatio@02, 397-413

Das S. et al.: “Particle Swarm Optimization andf@intial Evolution
Algorithms: Technical Analysis, Applications and itigdization

Perspectives”, Studies in Computational Intellige{8CI) 116, 1-38
(2008)

Rahnamayan S., Tizhoosh H.R., Salama M.M.A.: OpposBased
Differential Evolution Algorithms, Advances in Défential Evolution,
2008, 155-171

Rahnamayan S., Tizhoosh H.R., Salama M.M.A: Opjuwsitversus
randomness in soft computing techniques, Appliet Samputing 8,
2008, 906-918

Ventresca M., Rahnamayan S., Tizhoosh H.R.: A ootéOpposition
versus randomness in soft computing techniques, lidgppSoft

computing 8”, Applied Soft Computing 10, 2010, 9%5&7¢

Babu, B. V. and Angira, R., “Modified Differentidvolution (MDE)

for Optimization of Non-Linear Chemical Processe€pmputers &
Chemical Engineering 30, 2006, 989-1002.

Ali M.M., Pant M., Abraham A., “A Modified Differetial Evolution

Algorithm and Its Application to Engineering Proing’, International
Conference of Soft Computing and Pattern Recogni2609

Babu B. V and Angira R, “Optimization Using Hybridifferential

Evolution Algorithms”, ChemCon 2004, Mumbai

Pant M., Ali M.M., Abraham A, “Hybrid DifferentialEvolution —
Particle Swarm Optimization Algorithm for Solving ldbal

Optimization Problems”, 2008

Michalewicz, Z., Schoenauer, M.: “Evolutionary Algbms for

Constrained Parameter Optimization Problems.” Buahary

Computation 4, 1996, 1-32

J. Lampinen, l.Zelinka, “On stagnation of the diffetial evolution
algorithm”

R. Storn, “Differential Evolution Research — Trendsid Open
Questions”, Advances in Differential Evolution, 3)A-31

D. Zaharie, “A Comparative Analysis of Crossover rigats in

Differential Evolution”, Proceeding of IMCSIT 200W. Markowaska-
Kaczmar and H. Kwasnicka, Eds. Wisla: PTI1 2007,-181

D. Zaharie, “Critical values for the control parders of differential
evolution algorithms.” 2002a In: Matousek, R., Osmée. (Eds.), In:
Proceedings of the 8th International ConferenceSoft Computing,
Brno, pp. 62-67.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

M. M. Ali and A. Tdrn, “Population set-based globaptimization
algorithms: Some modifications and numerical stsili€omput. Oper.
Res., vol. 31, no. 10, pp. 1703-1725, 2004.

Zaharie, D., 2003. “Control of population diversiémd adaptation in
differential evolution algorithms.” In: Matousek,,FOsmera, P. (Eds.),
In: Proceedings of the 9th International ConfereoceSoft Computing,
Brno, pp. 41-46.

J. Liu and J. Lampinen, “A fuzzy adaptive differia@htevolution
algorithm”, Soft Computing—A Fusion of FoundatioMdethodologies
and Applications, vol. 9, no. 6, pp. 448-462, 2(DBline].

J. Tvrdik, “Competitive differential evolution,” IMENDEL 2006, 12th
International Conference on Soft Computing, R. Maek and P.
OSmera, Eds. Brno: University of Technology, 208&, 7-12.

L. Wu, Y. Wang, S. Zhou, “Self-Adapting Control Rareters Modified
Differential Evolution for Trajectory Planning of anipulators”, Journal
of Control Theory and Applications, 2007, 365-373.

J. Brest, S. Greiner, B. BoskdyiM. Mernik, and V. Zumer, “Self-
adapting control parameters in differential evalaoti A comparative
study on numerical benchmark problems,” IEEE Tratisas on
Evolutionary Computation, vol. 10, pp. 646—657, @00

J. Brestm, V. Zumer, M.S. Maec, “Self-Adaptive Differential
Evolution Algorithm in Constrained Real-Parametepti@ization”,
IEEE Congress on Evolutionary Computation, 2006.

A. K. Qin and P. N. Suganthan. “Self-adaptive Diiatial Evolution
Algorithm for Numerical Optimization”. In The 200&EEE Congress on
Evolutionary Computation CEC2005, volume 2, pagédbt1791.

A. Salman, A.P. Engelbrecht, M.G.H. Omran, “Emgiti&nalysis of
Self-Adaptive Differential Evolution”, European Joal of Operational
Research, 2007, 785-804.

Abbass H.A., “The Self-Adaptive Pareto Differentidtvolution
Algorithm”

Gao, X.; Chen, B.; He, B.; Qiu, T.; Li, J.; Wang, €hang, L. “Multi-
objective optimization for the periodic operatiorf the naphtha
pyrolysis process using a new parallel hybrid atbar combining
NSGA-II with SQP.” Comput. Chem. Eng. 2008, 32, 280

Agarwal, A.; Gupta, S. K. “Jumping gene adaptatiohdNSGA-II and
their use in the multi-objective optimal design gfell and tube heat
exchangers.” Chem. Eng. Res. Des. 2007, 86, 123.

Abbass H.A., Sarker R., Newton C., PDE: “A Paretmfier
Differential Evolution Approach for Multi-objectiveOptimization
Problems”, 2001

Abbass H.A., “The Self-Adaptive Pareto Differentidvolution
Algorithm”

137

[56]

[57]

[58]

[59]

[60]

[61]

138

Babu, B. V.; Chakole, P. G.; Mubeen, J. H. S. 2Muiijective

Differential Evolution (MODE) for Optimization of éiabatic Styrene
Reactor.” Chem. Eng. Sci. 2005, 60, 4822.

Babu, B. V.; Gujarathi, A. M.; Katla, P.; Laxmi, \B. Strategies of
Multi-Objective Differential Evolution (MODE) for @timization of
Adiabatic Styrene Reactor. In Proceedings of theerivational
Conference on Emerging Mechanical Technology: MatyoNano
(EMTMN-2007); p 243.

Gujarathi A.M., Lohumi A., Mishra M., Sharma D., i8aB.V., “Multi-

Objective Optimization using Trigonometric Mutatidtulti-Objective

Differential Evolution Algorithm”, 2009

M. Montaz Ali, Charoenchai Khompatraporn, Zelda Zbinsky, “A

Numerical Evaluation of Several Stochastic Alganth on Selected
Continuous Global Optimization Test Problems”, dalirof Global
Optimization 31, 2005, 635-672

E. Zitzler, K. Deb, L. Thiele, “Comparison of Mulbbjective

Evolutionary Algorithms: Empirical Results”, 1999

Yang J-E, Hwang M-J, Sung T-Y, Jin Y. “Applicatioof genetic
algorithm for reliability allocation in nuclear pew plants”. Reliab
Engng Syst Safet}©999;65:229

Benchmark problems for single-objective optimizatio

Appendix A:

Benchmark problems for single-objective
optimization

The appendix presents 23 benchmark functions, wigr domain, minimum’s
value and location in the search space.

f1. Example function taken from:
Practical Genetic Algorithms, second f3. Peaks function from Matlab
edition, John Wiley & Sons minpeak{ } -2< x<2
ngnf(g():xlsm(4xl)+ 1.1 sif) & x< 1 f(g’)=—6.5511 % =(02283 1623
f(x)=-18.5547 x =(9.039,8.698

function 1

i
i \\\\\“: :“
A

it
NS
) }\\&\e\%ﬂ'ﬂé"'

St

it
i
T
T

f2. Second De Jong function, f4. Michalewicz function
Rosenbrock’s saddle

min f (x) =nz_l[100[qxﬂ— f)2+(1— x)z] - 2.04& x< 2.04

fi(g)zo X =(11,...3

function 2

4000
3500
3000
2500 ~

N 2000
1500 -
1000

139

Appendix A

) sin() il i o o x < _l(f7. Modified Rosenbrock problem,
min f (x) = =2, sin(x) tsir 7 X=7 m=1C0 price 1977
forn=2 f(x)=-1.8013 X =(2.2029,1.5798 mnf(zg:m&_g)z{sﬂ_ 0p-x- oﬁ

f(x)=0 x=(03412,01184ndx=(}1

function 7

i

1

W N mumm/m, i

5

g

\“‘“«mwm/ «r%”//%u/ i g'n
l I//II

mmw \\\\\\“\ ‘~
&

f8. Exponential problem, Breiman
f5. Schwefel's problem and Cutler, 19?3
min f (x)=-100m-3 x sif{[100%) @ xs 10 i (x) = - -0,5;&1 e xen

forn=4 f(x)=-428.6030 x =(7.1706,7.1706,7.1706,7.1 e ,
f(x)=-1 x=(00,..9

function 5

function 8

"55 ,,aﬁ

5
o
o

f6. Ackley's problem, Storn and - o
Price. 1997 fo. Aluffi-Pentini’'s problem, 1985

min f (x)=0.25¢' - 0.5¢+ 0.5+ 0.8 - 18 x<
ﬂO%nlzf 3% B
minf ()= ai (L, §®M)]+zo+e -3k x< 3 f(x)=-0.3523 X =(-1.0465)
f(g(*)zo 2(* Z(O,O,,,,() function 9

function 6

/‘//I//
/u'l;;,,,,/g’ﬂ{l,{,"’}”,;/lll;”'flll /II/
i "’Z””"I{l/”"’lll'/'z”',; ,,,%,/,%

il

iy
i i
"”’!”"f"’"qff'fl” "’” ”’%M%fé’///ln
m/,//'" ’///;,,,/I// g
’ %’ g
v

)
m,,/,lrmé},’;;/r 7
i [,lr//,

fii

4\», w
4
it

W’:' i o“ o

140

Benchmark problems for single-objective optimizatio

f10. Becker and Lago problem,
Price 1977

minf (x)=(x -5 +(x-§" -10s xs 1

f(g):o X =(+5%

f11.

0
'*’0‘0'?"' l’l
' I

i

/ Wy
o il
«0 0'0'1"}"’”/

.y‘ it
it o‘ "b
\\\\\ wh 00
i \
L “\‘{Q\‘\\“‘ il \‘M&\’ ,%””,',
e {:‘\:«m. ~ :.'rmz‘/,‘ J
G

l
,';:..

Bohachevsky problem 1, 1986
it =x+2§~03k B~ O+ 07~ <G

f(x]=0 x={ag

f12.

n’;'nf(x)=>S+2>§—0.3c0(sM)DO.4C()sm5)+ 07 - 80k

f(x*)zo

function 11

o
et
.

s
\oo“ft“ ‘»“ "‘
i

}\N\\K\‘\l “\‘%‘\‘lx‘\\‘
L
- ‘*!&“a-.‘“% - ‘:‘%-
L e

TR \\-l\\\\-

Bohachevsky problem 1, 1986

(04

function 12

\“\‘ ‘.,
o ‘3‘:&3‘\“'3‘"
i m.mat«\r\\y).\&?‘ I ‘S
R
\m‘,‘\}x&\}}%\k\m\m L

B
\\\x\ R

‘a
-

f13.

min f (x) = 2 - 105{‘+ X+ xOx+ %

f14.

f15.

Camel back — 3, Three hump

problem, Dixon and Szego, 1975

=(0.9

function 13

W

hy
WIII
i
i
i . ”””"lf///////’{""fl/m
\\‘\\\\\\ ‘\

A i,
\i‘\\‘\ \“\\\\\\\

N\\
\

Camel back

- [/lllﬂ/}’” l

i If Jl/////
i iy Iy
/ngﬁ)””z%ﬂ/ﬂm%m %Il

I

i
Ww%,,

problem, Dixon and Szegd, 1978

n}nf () =4)f—2.]>{‘+% $+ xx—

f(x)=-10316 X ~(0.089842, 0.712658nd x=(-

function 14

4
%’5':,!:
“ 0
“‘:u
“-g'::“

o
\\\\
. \N\\\‘\{“\\\\\

i A

L T
\\\\\\\‘\\\\‘\‘
S

Cosine mixture
Breiman and Cutler, 1993

0
i
il
M i
i l,l, l"/ll ’
el 'f'l”'l‘

4%+ 4%

i
I i
iy

Uy
il

'l/

/m,,

problem,

141

-5 x< i

6, Six hump

-5 x5

0.089842,0.71}

Uy .
/,/Illj,l/ll
,,,,,w//,,,/////,,, l/lﬂ////m/

Appendix A

minf(x)=2, X0 cot W) ~EXS 417 Eagon problem, Michalewicz,
f(g):—o.ln x=(0,0,..,0 1996

BN min () =oog) oop) &

\% . f(z(*):—l 2(:(7T77) -10< x<10

i
R

4 ¥ 4«
%;. B o
ARG
“ ::\m}.“\\" WK S ” function 17

f16. Dekkers and Aarts problem f18. Goldstein and Price, Dixon
1991 ' and Szego, 1978

') 4 minf(z):[1+(xl+x2+])2E@19— 14+ 3 - 14+ Blx+ :g)]u
minf (X =10+ +% +101 o+ -2 2 :
X (¥ =10)H)f)Q E(g)g ' 30+ (2¢ - 3)" ({18~ 3%+ 1%+ 48~ 3§0x+ 2%)| - 2x<

f(x)=-24777.4817 x =(QJ@ndx=(6, 15 £(¥)=3 % =(0-9

function 16 function 16

i
i
v
o
7 %/mg:;,,,;,;,/,
Vi . //7’;"”’”42’5,'{,70,,, i

'h*""”zz,zzﬂ%” / 7/7';%{//

.
“.\t,:::\““‘:r:\

142

Benchmark problems for single-objective optimizatio

minf (3 =(€]E€105iﬁ(nx) fg y- ¥ % 108y,) J+(v)i]

y=1+:11(x+]) -10< x< 10

NP S R 3 R I
min () =1+ 25602 % 7] CO{\H j

f(x)=0 x=(00,...9 -60Gx< |

f19. Griewank problem, 1981

function 19

f20. Helical valley problem, Wolfe, f22. Rastrigin problem, Storn and
1978 Price, 1997

njnf(z):loﬁ{(>g—1w)2+(l(gﬂg)_ ﬂﬂg nynf(x):lm+g[>f—10co$ Zx)] - 512 x< 5.

{1) ((¢)-0 5 =(00...9

—arctan—= | ifx=0 uncton 22

_)?7 X '
e A

6= -10<% <10
iarctar{ﬁj+} if x,< 0 o
2 X)) 2 -
f(x)=0 %=(109 .
f21. Levy and Montalvo problem 1, . ‘,
1985 ol

143

Appendix A

f23. Function taken from E. Zio
lectures ,

y(x)=-)gsin(ng)\/—)g sin(27 %)

min f (l() :{y(l() if y(,X)<0 0<x<5
X 0 otherwise

f(x)=-47513 X =(4.7527,4.75)7

144

Benchmark problems for single-objective optimizatio

Appendix B

Benchmark problems for multi-objective
optimization

The appendix presents 3 benchmark problems with klignensionality for multi-objective
optimization, with domains and location of the Rarmgptimal frontiers.

General task: minF (x) = (f,(x), f, (_X)) (B.1)

F1. This testis known also as ZTD1; The Pareto optinuait is formed Wit}"g()_():l

Pareto-frant far ZT0-1
1 T T T

9(%,.... %) =1+ 90D x o7
i=2

0B -

fz(fl,g)=1— El >l

n=30, Osx<1

i 1 L i L i 1 L i
0 0.1 02 03 04 05 0B 07 08 09 1
f1

F2. This test is known also as ZTD2; The Pareto optifnahtier is formed when
9(¥=1
Pareto-front for ZTD-2

f,(%)=x o U]
g(%....,%) =1+ 90> x 1 O W A
i=2 : : : : :

f 2 D05 :
f,(f.,g :1—(—1j I IS AU AU O SO RO SOUE T -
2(') g k1" ; 1
n=30, O<x<1 Y U S O SO0 SV VR O SOOI O S

i i i i ; i i ; i
0 o1 02 03 04 05 06 o7 08 09 1
il

145

Appendix B

F3. This test is known also as ZTD3, the red line s dhjectives’ search space for the
best Pareto frontier showed by the green markérs;Pareto optimal front is formed

with g(X)=1
f(x)=x
9(%,....%) =1+ 90> x
i=2
f,(f.,9) =1—\/§ - sin(107t,)
n=30, Osx<1
; Ob‘jective Isearch space a:nd F‘an::‘m-frunl‘furZTDl-E
0B8R
TN
(1= ETPPURERURTOE. "o
04}
02f
o 0
021 : ! .
O S O U I
A I L

i i I L i i I
o 0.1 0z 03 04 05 0B 07 08 08 1
fl

146

