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Sommario 
 
L’ottimizzazione di processi complessi, come quelli industriali, spesso risulta 
essere un obiettivo difficilmente perseguibile senza specifiche competenze ed 
esperienze acquisite sul campo. La difficoltà di tali sistemi deriva 
principalmente dalla complessa forma che essi possono avere, dalle diverse 
interazioni che legano proprietà, operatività e performance unite all’incertezza 
che ne deriva. Il mondo dell’Oil&Gas e quello del Nucleare sono due tra le 
branche dell’industria dove più si sente il bisogno di strumenti in grado di 
ottimizzare, simulare e dare risposte a quesiti di difficile risoluzione tramite una 
semplice analisi del sistema. Gli algoritmi evolutivi, come gli Algoritmi 
Genetici o il Differential Evolution, possono dare notevoli miglioramenti nella 
definizione di gestione di asset produttivi o di impianti nucleari. 
Tale tesi espone in maniera completa le varie tecniche del Differential Evolution 
sviluppate in questi anni, analizzando la bontà di tali tecniche, le situazioni in 
cui possono essere utilizzati e la sensitività dei loro parametri. Inoltre, due casi 
studio su problemi reali del mondo dell’industria sono presentati e risolti grazie 
all’applicazione di questo potente strumento di ottimizzazione. 
 

 
Abstract 
 
The optimization of complex processes, such as industrial systems, often turns 
out to be a goal difficult to pursue without specific expertise and experience in 
the field. The difficulties of such systems are derived primarily from the 
complex form they may have, the different interactions that bind ownership, 
operation and performance combined with the uncertainty it brings. The Oil & 
Gas world and the Nuclear industry are two of the branches where tools to 
optimize, simulate and provide answers to questions difficult to resolve by a 
simple analysis are necessary. Evolutionary algorithms, such as Genetic 
Algorithms or Differential Evolution, can make significant improvements in the 
definition of asset management or production of nuclear plants. 
The thesis sets out comprehensively the various techniques of Differential 
Evolution developed in recent years, analyzing the goodness of such techniques, 
the situations in which they can be used and the sensitivity of their parameters. 
In addition, two case studies on real problems of industry are presented and 
resolved through the application of this powerful optimization tool. 
 
Keywords: Evolutionary Algorithms, Genetic Algorithms, Differential 
Evolution, Single-objective optimization, Multi-objective optimization 



 

 
 



 

 

Chapter 1 
 
Optimization 
 

Optimization is the process of adjusting the variables or parameters of a 
system or process to achieve the minimum or maximum of some given 
objectives. Several ways could be taken to find the optimum; anyway its 
definition is unique. For simplicity, from here on we will speak in terms of 
minimization. 
 

Say the system of interest has P properties 
 
 { }; 1,2, ,kp k P∈ …  (1.1) 

 
and C constraints 
 
 { }; 1,2, ,mh m C∈ …  (1.2) 

 
which are dependent on n real variables 
 
 { }; 1,2, ,jx j n∈ …  (1.3) 

 
Usually the variables have a domain defined by the upper and lower bounds 

 

 ,L U
j j jx x x ∈    (1.4) 

 
and the whole of these variables form a solution inside the domain D 
 
 ( )1 2, , , : n

nx x x x x D= ∈ ⊆… ℝ  (1.5) 

 
They affect the pk properties and hm constraints, so  
 

 
( )
( )

k k

m m

p f x

h f x

=

=
 (1.6) 
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The constraints can be equality constraint, like 
 
 0mh =  (1.7) 

 
or inequality constraint, like 
 
 0mh ≤  (1.8) 

 
They define the feasible region DΩ ⊆  within finding the optimized set of 

variables 
 

 ( )* * * *
1 2, , , nx x x x= …  (1.9) 

 
that satisfies the optimization problem. 

When the optimization goal is to minimize a single property, the task is to find  
 

 ( ) ( )* *
k kx f x f x x< ∀ ∈Ω  (1.10) 

  
where fk is referred to the property pk to minimize.  

The problem must be reformulated in the case of multi-objective optimization: 
the aim is to generate a list of non-dominated solutions, called Pareto list, within 
which each solution cannot be said to be better of another one considering all 
the objective functions. The solution of this kind of problems generates a so 
called Pareto frontier which represents the whole of non-inferior (or equally 
good) sets of variables that satisfy optimization and constraints. 

In that case the optimization target is a vector of objective functions 
 
 ( ) ( ) ( ) ( )( )1 2, , , PF x f x f x f x= …  (1.11) 

 
The problem can be formulated defining these two operators, ≅/  and ≺ , 

related to the concept of non-dominance [1]. 
 

Assuming two candidate vector solutions, x and y, we say that they are 
different 
 
 , |j j j jx y if x x y y x y≅ ∃ ∈ ∈ ≠/  (1.12) 
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And that y is dominated by x 
 

 , |j j j jx y if x x y y x y and x y∀ ∈ ∈ ≤ ≅/≺  (1.13) 

 
An efficient, non-inferior/Pareto-optimal solution is a vector  

 

 ( ) ( )* *|x if x F x F x∈Ω ∃ ∈Ω/ ≺  (1.14) 

 
The difference between single and multi-objective optimization is relevant: in 

the first case the finding of the global optimum for a single property leads to 
obtain just one solution, one set of variables that satisfies the condition of 
dominance in the domain D for the required objective. On the contrary, when 
optimization means finding a vector of equally good solutions, the optimization 
task becomes hard and some degree of complexity is introduced. 

The multi-objective optimization problem requires the finding of many 
configurations that satisfy the concept of arrays’ superiority. This situation is 
quite frequent in real optimization, especially for complex industrial systems: 
many conflicting targets to optimize, constraints to satisfy and the difficulty to 
homogenize their different quantities, such as reliability, costs, pollution impacts 
and health consequences, impose a multi-objective optimization. 

The finding of only one solution does not satisfy the target of the problem, 
since other non-dominated configurations exist. In practice, after the definition 
of the Pareto frontier by multi-objective optimization, only one solution could 
be applied to the real case. The final choice of the solution to realize is left to the 
human decision, affected by other considerations (e.g. economic, politic, side 
effects or environmental considerations not included into the optimization). 
Nevertheless, the definition of the Pareto front must be as clear as possible, to 
give to the user all the information available for the decision.  
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Chapter 2 
 
Introduction on Evolutionary Algorithms for 
optimization 
 

Chapter 1 describes the optimization task for single-objective (SO) or multi-
objective (MO) optimization. An important aspect of the optimization is the 
number of variable involved into the definition of the problem and the number 
of constraints introduced. 

If the number of these variables is small and the objective functions are 
differentiable and linear, as for the constraints, a typical gradient method’s 
optimization works well and fast. If the objective functions depend from several 
parameters and non-linear constraints, or the objective functions are not 
differentiable, a direct search approach is really useful. The direct search 
methods belong to the class of optimization that do not compute derivatives. 
Algorithms like Nelder and Mead simplex method [2], parallel direct search 
algorithm (PDS) [3] or Simulated Annealing [4] are examples of powerful 
methods.  

Anyhow, classic optimization and direct search methods have the risk to be 
trapped by local minima, since they find only one solution every search. Local 
perturbation of the solutions is one interesting attempt made to escape from 
local minima, but for problems with high complexity and high multimodality 
this method fails (e.g.: functions 6, 15, 19, 22 and 23 of Appendix A). 

Evolutionary Algorithms (EAs) are an attractive alternative to traditional 
methods of optimization, especially for problems with high complexity, high 
number of constraints or high dimensionality. 

They are a class of stochastic algorithms for optimization inspired by the 
Darwin’s theory of evolution: a population of potential solutions is launched in 
the search and it is able to adapt to its surrounding environment; it evolves, ruled 
by heuristics, in a way that those solutions best satisfying the optimization 
objectives are more likely to contribute to the future generations of solutions 
(the survival of fittest); the fitness definition is made by a fitness or objective 
function that describes the features of any solution. EAs need only information 
about the environment and about the fitness function itself, without any further 
information about continuity or differentiability: in fact, they lay into the class 
of direct search method, but the revolutionary idea is their global searching from 
a population of solutions rather than one single solution.  

Thanks to their population-based approach, they have high capabilities to 
escape from inconvenient situations like local optima, since their simultaneous 



Chapter 3 

 6 

probabilistic manipulation of several solutions; farther, this approach is 
extremely suitable for MO, because of the need of several solutions as result. 
Furthermore, their evolution concept gives to the process flexibility respect to 
the different problem’s nature.  

These features are extremely hopeful for the optimization, both in SO and MO 
optimization. 

To overcome this difficulty of a MO optimization, a non-dominated 
comparison is usually adopted [1], but in these years several different strategies 
for MO in EA are been proposed [5-11]. 

 
For EAs, each individual is represented by a specific combination of 

independent variables, or, mathematically speaking, by a n-dimensional vector 
(called also chromosome) contained inside the domain D that is a hypothetical 
solution of the optimization problem: 

 
 ( )1 2, , , : n

i ii i nix x x x x D= ∈ ⊆… ℝ  (2.1) 

 
Each solution vector’s fitness needs to be evaluated and the corresponding 

values are used to probabilistically rule the constitution of the successive 
generation. 

Since their population approach, we need to define the population S with NP 
chromosomes of the G generation 
 
 { }, ; 1, 2, ,i Gx i NP∈ …  (2.2) 

 

 { }1, 2, ,, ,G G NP GGS x x x= …  (2.3) 

 
The generation is the reference of the population S in a specific evolution time. 

Obviously, the first generation has index G = 1.  
Heuristic rules, different for each family of EAs, are applied to this set of 

chromosome in order to find the global optimum. The population SG is altered 
by these rules, its solutions are discarded if fittest ones are found and a new 
population, SG+1, undergoes another time to the same procedure. In the long 
runs, this repetitive process allows the attainment of the optimal solution. 

Proved the reliability of EAs in many artificial or real cases [12-17], the 
progresses obtained by these optimization techniques have inspired a number of 
alternatives; the two most widespread evolutionary techniques are Genetic 
Algorithms (GAs) and Differential Evolution (DE). 

GA and DE generate offspring combining the chromosomes, generation by 
generation, and select by different rules solutionss to carry on the next 
generation. 

Chapter 2 



 

 

Chapter 3 
 
Genetic Algorithms: the ancestors of 
Differential Evolution 
 

Genetic Algoritms (GAs) were firstly defined as optimization methods by 
Holland [18]. GAs are a particular class of EAs, and their functioning is inspired 
by the rules of the natural selection; furthermore, the procedures for 
recombination and generation of solutions resemble the principles of genetic, so, 
many terms in their definitions are borrowed by biology, coherently redefined to 
fit the algorithm contest. 

 
 
3.1 Generalities 
 
As the other EAs, GAs are characterized by a global searching based on a 

population approach. 
The chromosome’s variables are usually represented in binary coding, but, 

theoretically, any alphabet could be used [1].  
To each variable is assigned a gene (see Figure 2.1). The length of each gene 

depends on the accuracy of the encoded variable. The combination of the n-
genes is called chromosome, and its representation in any code is called 
genotype; in binary coding, the individual is characterized by a unique string of 
0s and 1s. 

Processing the information contained in the binary string, the fitness of any 
individual could be evaluated by the objective function: the genotype is 
decodified into real numbers, the control factors, one for each gene, defining the 
phenotype. The objective function (or fitness function) takes as input the 
phenotype and it renders the fitness. This value is then used as comparison for 
selection between individual in the population.  

Defined a range [xj
L, xj

U ] for any j th variable and assigned the number of bits 
nbj for any gene, the relation between the control factor and its binary 
representation β is: 

 

 
2 j

U L
j jL

j j nb

x x
x x β

−
= +  (3.1) 

 
The values xj

L, xj
U and nbj are called phenotyping parameters of the gene. 
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Figure 3.1 represents this concept on a problem with three variables involved: 
the number of genes is three, and, thanks to the coding/encoding procedure, the 
control factors x1, x2 and x3 are obtained from the bit string. The resulting fitness 
is assigned to the chromosome.  

This process is repeated for the entire population. 
 

 
Figure 3.1 The binary encoding of the variable for GA [19] 

 
 
GAs use specific operations in order to evolve the population: the main 

purposes of this evolution are the exploration of the search domain space and the 
consequent attainment of the global optimum of the system. 

The GA search is performed by constructing a sequence of populations of 
chromosomes, the individuals of each population being the children of those of 
the previous population and the parents of those of the successive population. 
The initial population is generated by randomly sampling the bits of all the 
strings. At each step, the new population is then obtained by manipulating the 
strings of the old population in order to arrive at a new population hopefully 
characterized by increased mean fitness. This sequence continues until a 
termination criterion is reached. As for the natural selection, the string 
manipulation consists in selecting and mating pairs of chromosomes in order to 
groom chromosomes of the next population. This is done by repeatedly 
performing on the strings the four fundamental operations of selection, 
crossover, replacement and mutation, all based on random sampling: the 
parents’ selection step determines the individuals which participate in the 
reproduction phase; reproduction itself allows the exchange of already existing 
genes whereas mutation introduces new genetic material; the substitution 
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defines the individuals for the next population. This way of proceeding enables 
to efficiently arrive at optimal or near-optimal solutions. 

 
The classical GA steps are: 

1. creation of a initial population of NP potential solutions to the problem 
and evaluation of their fitnesses; 

2. selection of pairs of individuals as parents for reproduction; 
3. crossover of the parents, with generation of two children; 
4. evaluation of the children fitnesses; 
5. replacement in the population with some rule, so as to maintain NP 

constant; 
6. genetic mutation. 
7. control for the stopping criteria, if some criterion is met stop, else go to 

step 2 
 

When the children’s fitnesses are evaluated, a replacement is made inside the 
population between parents and children and the population is dynamically 
updated. The new population is ranked by fitness criterion: in the long runs the 
best individuals will have a greater probability to be selected for mating, 
transmitting their genes to the children; these children have high chances to have 
good fitnesses, since they inherit good properties by their parents.  

An important feature of the population is its genetic diversity: if the population 
is small, the scarcity of genetic information may provoke premature stagnation 
of the evolution, since the low possibility to exchange genetic material. 
However, if the population is too large, the overabundance of genetic material 
can lead a clustering of the population around local optima, decreasing the 
abilities of the reproduction process; then, the offspring fitness could be poor, 
because of lacking of good properties of either of the parents. Furthermore, the 
management of large population may be expensive in terms of computation 
time, with a high percentage of useless genetic material’s processing. So, the 
population size, usually a used defined parameter, should not be too large or too 
small. 

To avoid the premature stagnation or clustering, fresh genetic material is 
inserted by genetic mutation inside the population. 

 
 

3.2 Genetic Algorithm operations 
 
As deduced from this brief description, GA uses four operations to allow 

evolution: selection, crossover, replacement and mutation. 
The first procedure performed by GA is the selection of parents for 

reproduction: the choice of the parents is one of the most important aspects, 
since it affects the goodness of the offspring. 
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Several variants exist, everyone with strengths and weaknesses: the choice 
from these variants is often affected by the problem nature and by the other 
choices made for the algorithm behaviour. They usually use fitness information 
that influence the selection; this device derives from the concept of the natural 
selection: individuals with high fitnesses has more probability to survive in the 
environment and to transmit their good properties to the progeny. The same 
approach is applied in GA. 

The most used selection rules for mating are [19]: 
� Standard Roulette Selection: the cumulative sum of the fitnesses of the 

individuals in the population is computed and normalized to sum to unity. 
A temporary population is generated by random sampling individuals, one 
at a time with replacement, from this cumulative sum. Then, the parents 
for mating are taken from this population. This procedure allows to the 
fittest individual in the population to be selected for this temporary 
population; by so doing, the mean fitness for the next population has good 
probabilities to be larger. 

� Hybrid Roulette Selection: one disadvantage of the previous selection 
procedure is the fast lost on diversity for the next populations, since their 
mean fitnesses are fairly dispersed around the mean. In this procedure, 
after the normalization of the sum of the fitnesses, this cumulative term is 
multiplied by the population size: the integer part of this product is the 
number of individuals in the temporary population taken as they are from 
the current population. The remainder is selected with the Standard 
Roulette Selection. The permanence of good individuals is favoured, but 
the diversity could decline. 

� Random Selection and Mating: the two parents are randomly selected over 
the entire population. This selection does not give any advantage to good 
individuals respect to the worse, with the possibility to destroy any 
achieved improvement. 

� Fit-fit selection and Mating: after a ranking based on fitnesses, two parents 
are selected consequently from their rank. On the average, this procedure 
is highly conservative and the weakest individuals are soon eliminated. 
This method could provoke premature stagnation to local optima if the 
population size is not sufficiently high. 

� Fit-weak Selection and Mating: the population is ranked as for the 
previous procedure, but each individual is paired with its symmetrical in 
the ranking. This practice improves the diversity but the improvements are 
small during the evolution. 

 
Crossover is the main operator for GA: its main purpose is to mix the 

properties of different individuals, opportunely chosen.  
During the generation of the offspring, the crossover concept is used to reduce 

the search space to promising regions and at the same time to allow the 
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proceeding of the genome (the input variables) of a specific parent combined 
with the genome of a second parent using different strategies, like single or 
multi-site crossing.  

In each pair of individual, chosen for mating, the corresponding genes are 
divided into two portions (one-site crossover) by a separation in the same 
position in both genes. Then, the first portions of the genes are exchanged. Two 
new chromosomes, the children, are produced, thanks to the combination of 
genetic material. 

Figure 3.2 shows a single-site crossover.  
A variation of this procedure consists on performing crossover only with an 

assigned probability pc: a random number is generated by uniform distribution, 
R~U(0,1), and the crossover is performed if R<pc. otherwise, the two children 
are copies of the parents. 

 

 
Figure 3.2, The single-site crossover operation for GA [19] 

 
 
After the children generation and evaluation of their fitnesses, the replacement 

process mimics the survival of the fittest, allowing directly or indirectly the best 
solutions to continue the evolution: from the four chromosomes (two parents 
plus two children) two of them are selected to continue the evolution. The 
simplest recipe consists in the children replace the parents. Anyway, in GA 
many types of selection are proposed; this choice influences the entirely 
evolution process in terms of convergence speed and robustness, often 
connected with the diversity. The alternative procedures apply the replacement 
to selecting the chromosomes for substitution from the entire population; the 
most common are [19]: 
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� Fittest Individuals: the fittest two individuals from the group of four 
involved in and generated by crossover (two parents and the consecutive 
two children) replace the parents in the next generation; this procedure 
should not be used when the parent selection is too greedy and it does not 
select weak individuals (e.g. the Standard Roulette Selection). 

� Weakest Individuals: the children just created replace the two weakest 
individuals in the population: this procedure could provoke premature 
stagnation, so it is recommended only if the population size is sufficiently 
high. 

� Random Replacement: the children replace two randomly selected 
individual from the population; no fitness criterion is adopted in this 
procedure, so the attainment of the best is a task leaved to an efficient 
reproduction phase. This procedure works well in small population, and it 
allows deep search on the domain space. 

The choice of one of the previous two operators (crossover and replacement) 
is affected by the other one: a correct interaction between these two is essential 
for the success of the search. 

At the end, to increase the outcome of a GA, also random perturbations, 
mutations, can be introduced to avoid the possibility to be trapped in a local 
minimum: a defined percentage of the population is randomly mutated in order 
to insert new genetic material inside the population. The mutation is typically a 
flipping between two random bits or a random change from actual value to the 
opposite one. The mutation is performed on the basis of assigned mutation 
probability for any single bit (usually this value is quite small, like 10-3). 

When these operations are terminated, a control for stop is executed; the 
stopping criteria could be based on mean fitness of the solutions in the 
population, on best chromosome fitness, on weakest chromosome fitness or 
when a maximum number of generations is reached. 

The option for GA that deserves attention is its encoding: GA in its basic 
version works manipulating a string containing 0s and 1s and altering or mixing 
the binary coding of different individuals with the purpose to generate fittest 
children. With the binary version of GA, the mating concept between parents is 
easily deducible. 

Anyway, GA works also with real-coded variables, loosing in mating concept. 
The need of this encoding change arises from the quantization limitations of the 
binary one: when the variables are quantized, the binary GA fits nicely, but 
when the problem becomes continuous or the required precision becomes high, 
the floating-point representation is more appropriate. Then the chromosome 
does not have the semblances of a long string of 0s and 1s, as the chromosome, 
but becomes a mathematic entity of a vector. Also the evolutionary operations 
need some modification: the crossover concept is maintained, even in single or 
multi-cutting version, but a blending method remedy [20] is introduced. This 
method is simply a linear combination between two parents in order to enhance 
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the perturbations into the population, since the classic crossover applied to a 
vector is a merely interchanging of variables: when the dimensionality of the 
problem is small, this reproduction operation alone fails completely. The 
blending method is applied to each variable of the chromosome array: 
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   (3.2) 

 

{ }1,2, ,j n∀ ∈ …  

 
Where the subscript c1-2 stays for child and p1-2 stays for parent. The blending 
parameter α is taken from the range [0,1]. The other features, like parents 
selection, replacement and mutation are the same as for binary encoding. 
 
 

3.3 Multi-objective optimization with Genetic Algorithms 
 

When the optimization is SO optimization, the previous evolutionary operators 
use a simple comparison between the fitnesses (only one property of the system 
is the optimization target) of the individuals to select the parents or the 
individuals to be discarded.  

When tackling a multi-objective problem by GAs, the various approaches to 
fitness definition may be distinguished into three categories [5] [18]: 
• Aggregation methods combine the multiple objectives of the optimization 

into a scalar fitness function that is used to evaluate the goodness of a 
solution; an example is represented by the weighted-sum approach [1] [11], 
in which the fitness of solution is computed by the following weighted sum 
of the individual optimization objectives: 

  ( ) ( )
1

P

weight k k
k

f x w f x
=

= ⋅∑  (3.3) 

where the arbitrary constant weights wk, k=1,2,…,P satisfy the following 
relation: 

  [ ]
1

0,1 1
P

k k
k

w and w
=

∈ =∑  (3.4) 

The optimization of a single fitness function, combination of the objectives 
has the advantage of producing a single compromise solution, requiring no 
further selection by the decision maker. However, if the solution were found 
a posteriori not acceptable as a good compromise of the decision maker 
preferences, tuning of the aggregating weights may be required, followed by 
new runs of the optimizer, until a suitable solution is found. 
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• Population-based non-Pareto approaches are able to evolve multiple non-
dominated solutions concurrently in a single simulation run: for instance, 
sub-populations of the next generation are reproduced from the current 
population separately for each of the objectives; then, the overall population 
at each generation is formed by merging and shuffling the sub-populations. 
The downside of this method is that it achieves a population of individuals 
that perform well for each objective separately, with no consideration given 
to trade-offs among them. 

• In typical implementations of Pareto-based methods [1], the chromosomes 
of a population are ranked according to the Pareto dominance criterion 
applied to the fitnesses. With reference to the non-domination ranking, 
firstly, all non-dominated individuals are identified and rank 1 is assigned to 
them. Then, these solutions are virtually removed from the population and 
the next set of non-dominated individuals are identified and assigned rank 2; 
this process continues until every solution in the population has been ranked. 
Every solution belonging to the same rank class is Pareto-equivalent to any 
other of the same class and has the same probability of the others to be 
selected as a parent for the mating. Figure 3.3 shows an example of ranking 
for a set of solutions. 
During the optimization search, an archive of solution vectors, each one 
constituted by a non-dominated chromosome and by the corresponding 
fitnesses, representing the dynamic Pareto optimality set can be recorded and 
updated. This procedure also allows implementation of elitism in the genetic 
algorithm: in this work, every individual in the archive (or a pre-established 
number of individuals) is chosen once as a parent in each generation to 
guarantee a better propagation of the genetic code of non-dominated 
solutions and a more efficient evolution of the population towards Pareto 
optimality. 
At the end of the search procedure the result of the optimization is 
constituted by the archive itself which hopefully gives the Pareto-optimal 
set.  
The performance of a Pareto-based MOGA depends largely on its ability to 
maintain genetic diversity through the generations so as to arrive at a 
population of individuals which uniformly represent the real non-dominated 
solutions of the Pareto set, [11]. This can be achieved by resorting to niching 
techniques such as sharing [11]. 
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Figure 3.2, Example of population ranking for a maximization problem. 
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Chapter 4 
 

Differential Evolution 
 
DE arose from the Price’s attempts to solve the Chebychev polynomial fitting 

problem posed to him by Storn [21]. It works similarly as GA, since both are 
EAs: it applies evolution operations on the individuals of the population in order 
to perturb them by transmission of good properties and find the global optimum 
of the system. One difference with respect to GA is that DE is specifically built 
for optimization over continuous spaces and does so based on a floating-point 
representation. The evolutionary operations are suited for such representation of 
the chromosome, and constitute the main improvement of DE with respect to 
GA, even in case of real-coded variables. The analogies between DE and real-
coded GA are several, but the shrewdnesses adopted by these new operations are 
the strengths of the DE technique. 

 
 

4.1 Basics 
 

DE uses three heuristic operators as evolution strategies: they are called 
mutation, crossover and selection.  

The revolutionary idea of DE is the perturbation to the current population. GA 
uses crossover between two parents for the generation of new solutions; these 
children inherit portion of genetic material from the parents. This mixing of 
properties is the main alteration in GA that perturbs the population. For DE, 
thanks to its real-coding, the representation of each individual is made by a 
vector instead a string of bits as in binary-encoding for GA. Then, the heuristics 
thought for DE are chosen with a view of vector operators. 

The alteration for reproduction in DE, called mutation, is obtained adding to 
an individual the weighted difference between other two individuals randomly 
selected from the population.  

This scheme is the original one proposed in [21]: for each vector xi,G in the 
population, called target vector, a noisy vector vi is generated randomly 

choosing three mutually different vector indices { }1 2 3, , 1,2, ,r r r NP∈ …
 with 

{ }1 2 3, ,i r r r∉
: 

 

 ( )
1 2 3, , , ,i G r G r G r Gv x F x x= + ⋅ −  (4.1) 



Chapter 4 

 18 

where the weighting (or scaling) factor F ∈(0,2] is a user-defined parameter, 
maintained constant during the optimization. 

Figure 4.1 reports graphically the vectorial operation: to the vector xr1 the 
weighted difference between the vector xr2 and xr3 is added, to create the noisy 
vector vi. The difference between the vectors xr2 and xr3 is scaled by the factor F. 

This linear combination between three solutions of the population is one of the 
revolutionary features of DE: using the weighted difference to perturb the 
population, the entire generation process becomes self-organized, because the 
step-length for the perturbation is mainly affected by the progress state of the 
evolution. 

Through the evolution, the search space contracts or expands if the direction 
taken by the algorithm is correct or wrong, so the random step-length is self-
adapted in every dimension accordingly with the dependence of the variable. 
 

 
Figure 4.3, Noisy vector generation by mutation [22] 

 
 
After mutation, the noisy vector is not directly compared with the target 

vector, but it is further modified by the crossover process, in which the noisy 
and target vector are mixed with some rule to create the trial vector ui, which 
inherits from them different pieces of chromosome. The crossover operator 
contributes to maintain the diversity inside the potential perturbed population, 
shuffling old and new information. This increases the probability to maintain 
some good property from the target vector, and avoids drastic changes during 
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generation of new solutions. The role of the crossover in DE has a secondary 
relevance compared to GA. 

Due to the chromosome vectorial representation, the crossover operator for 
DE is applied to each element of the array: each variable of the noisy vector and 
the target vector has the possibility to be part of the trial vector, entering the 
final fight for the survival. 

The most common crossover type adopted is the binomial approach: the trial 
vector is built by a modified Bernoulli trial rule (4.2), gauged by the control 
parameter CR∈(0,1], which influences the probability for a noisy vector’s 
chromosomes to be selected for the mutation process. 
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{ }1, 2, ,j n∀ ∈ …  

 
where U(0,1] denotes the uniform continuous random value ∈(0,1], whereas 
irand(NP) is a uniform discrete random number from the set{1,2,…,NP}.  

This ruling applied to the Bernoulli trials guarantees the inheriting of at least 
one component from the noisy vector in the trial vector even if the crossover 
rate CR is set to zero. 

The binomial crossover operator acts on every “gene”, represented by a 
variable, without any dependence between two neighbours, as for classic GA 
crossover. This one could be compared with a multi-site GA crossover affects 
by probability.  

A relevant difference with GA is that in the DE crossover procedure a 
chromosome of the current population and one just generated, the noisy vector, 
are mixed, rather than two individuals of the population. 

The resulting trial vector  
 

 ( ), 1 , 2 , ,, , ,i G i G i G ni Gu u u u= …  (4.3) 

 
inherits portions of noisy vector and from the target vector, as regulated by the 
parameter CR.  

Figure 4.3 shows the principle underlying the binomial crossover process: the 
condition of the Bernoulli trial is met only for the variables’ index 3, 4 and 6; 
the trial vector is then inherits the variables 1, 2, 5 and 7 from the target vector 
and the variables 3, 4 and 6 from the noisy one. 

An alternative crossover scheme, the exponential crossover (see Section 4.2.2 
of this chapter), was proposed by Storn and Price, [21]. This second crossover 
type works as a double-site crossover, allowing the interchanging of consequent 
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genes. This procedure shows less success and a more difficult setting. For this 
reason, binomial crossover is the most used crossover type. 
 

 
Figure 4, Binomial crossover for DE [22] 

 
The trial vector obtained then enters the selection process where it is compared 

with the target vector xi,G that is partially its parent, according with the crossover 
rule. During the selection process, the population SG is modified by substitution. 

Referring to a SO minimization, if the trial vector’s fitness is less than the 
target vector’s fitness, the latter will be a member of the next generation, 
replacing the target vector in the set SG+1 and the trial vector is discarded: 
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{ }1,2, ,i NP∀ ∈ …  

 
The selection criterion in DE is greedy and quite different from the classical 

replacement criterion of GA: for sure the next generation will be better or at 
least equal of the previous generation. 
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The evolution for DE follows these steps: 
1. creation of a initial population of NP potential solutions to the problem 

and evaluation of their fitnesses; 
2. for each solution of the population (target vector) selection of three 

chromosomes for reproduction; 
3. for each target vector, creation of a noisy vector using the mutation 

process; 
4. creation of a trial vector mixing target and noisy vector; 
5. comparison between each target vector  and its related trial and eventual 

replacement; 
6. control for the stopping criteria: if some criterion is met, then stop, else 

go to step 2. 
 
The stopping criteria adoptable are the same as for GA (see Chapter 3). 
This resulting EA, DE, shows robustness, higher convergence speed than GA 

and even better accuracy thanks to its greedy and well-chosen operators. 
Like in GA the three operators must be balanced to allow the evolution and at 

the same time the exploration in the search space, but the convergence for DE is 
usually higher because the setting is less critical, thanks to the self-organization 
of the step-length, granting robustness to the strategy. 
 

The key parameters of control for the basic DE presented are: 
• NP population size 
• F scaling factor 
• CR crossover rate 

 
Even if DE is more robust and suitable than GA, it has high possibility for 

improvement, especially for the convergence rate: since its basic structure 
enables sophistications, many strategies, concerning its operators, had been 
proposed with considerable successes, opening at the same time, in a parallel 
way, the problem of the control parameters setting that, as we shall see, it can be 
solved by a time-consuming and problem-dependant tuning or by adaptive/self-
adaptive approach. 

The initial population of the evolution process usually is composed by values 
distributed with random uniformity between the pre-specified lower xj

L and 
upper xj

U initial parameter bounds if they are specified, defining the domain D; 
so each variable of each individual is initialized as follow: 
 

 ( ) ( ), 0,1L U L
ji G j j jx x U x x= + ⋅ −  (4.5) 

 

{ } { }1,2, , , 1,2, , , 1j n i NP G∀ ∈ ∀ ∈ =… …  
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This practice is beneficial because the exploration in the early phase, when the 
algorithm doesn’t have particular preferential direction, is not unbalanced 
toward some region. Moreover, it is useful in the case the feasible region is 
coincident with the domain DΩ = . In the case some solution is generated 
outside D, some repair rule is utilized (Section 4.3). 

If the domain is not pre-defined, it is necessary define an initial region from 
which the algorithm can start. 

Another possibility is starting from a previous solution, defining a range or 
giving the variance and mean around which generate initial individual if a Gauss 
distribution is desired. Of course, this initialization is used only in a forced 
optimization around a particular region or after a previous estimation. 

 
An example of DE implementation is reported for Matlab. 

   
%    Evolutionary Algorithm : Differential Evolutio n (DE) 
%    Type of optimization: single-objective minimiz ation 
% 
%-------------------------------------------------- ------------------ 
%                               parameters 
%-------------------------------------------------- ------------------ 
NP=30;  % population number 
CR=0.5;  % crossover frequency 
F=0.5;  % scaling factor 
MAXGEN=500;       % maximum number of generation 
eps_alg=1e-4; % difference limit between fmax and f min  
%-------------------------------------------------- ------------------ 

   function options 
%-------------------------------------------------- ------------------ 
low=-5.12;  % lower and upper bounds arrays 
up=5.12; 
dim=10;  % dimensionality 
%-------------------------------------------------- ------------------ 
%                           initializations 
%-------------------------------------------------- ------------------ 
k=1;  % generation index 
matrix=zeros(NP,dim);  % matrix for the individuals   
trial=zeros(NP,dim);  % trial vector 
fitness=zeros(NP,1);  % fitness function 
fitness_trial=zeros(NP,1); % fitness of the trial v ectors  
 
% initial population uniformly distributed inside t he domain 
matrix=rand(NP,dim)*(up-low)+low; 
%-------------------------------------------------- ------------------ 
%                             first evaluation 
%-------------------------------------------------- ------------------ 
for i=1:NP 

fitness(i)=objectivefunction(matrix(i,:));  
  end 

f_max=max(fitness); 
f_min=min(fitness); 
delta=abs(f_max-f_min); 
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%-------------------------------------------------- ------------------ 
%                                   code 
%-------------------------------------------------- ------------------ 
while (k<MAXGEN)&&(delta>=eps_alg) 
    
    % ---------------------- % 
    %        mutation 
    %           & 
    %      crossovering 
    % ---------------------- % 
    for i=1:NP 
        r1=i; 

   r2=i; 
   r3=i; 
   while (r1==i) 

r1=randi(NP); 
   end 
   while (r2==i)||(r2==r1) 

  r2=randi(NP); 
   end 
   while (r3==i)||(r3==r1)||(r3==r2) 

  r3=randi(NP); 
   end 

 
   p_add=randi(dim); 

 
   for n=1:dim 
      p=rand; 
      if (p<=CR)||(p_add==n)   

            trial(n)=matrix(r1,n)+F*(matrix(r2,n)-m atrix(r3,n)); 
      else 

           trial(n)=matrix(i,n); 
         end 
        end 
    end 
    % ---------------------- % 
    %       evaluation 
    % ---------------------- % 
     
    for i=1:NP 
      fitness_trial(i)=objectivefunction(trial(i,:) ); 
    end 
     
    % ---------------------- % 
    %       selection 
    % ---------------------- %  
    for i=1:NP  

   if (fitness_trial(i)<fitness(i)) matrix(i,:)=tri al(i,:); 
            fitness(i)=fitness_trial(i); 
        end 
    end 
     
    % ---------------------- % 
    %     best individual 
    % ---------------------- %     
    f_max=max(fitness); 
    [f_min, i_best]=min(fitness); 
    delta=abs(f_max-f_min); 
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    k=k+1; 
end 
 
bestindividual=matrix(i_best,:); 
bestfitness=fmin; 
 
 
 

4.2 Variants and sophistications 
 
In the previous section we discussed about the main idea under DE, based on 

the easy rules of mutation, crossover and selection. How they were 
implemented gives as result greater robustness and convergence speed in with 
respect to GA, but several modifications, sophistications and shrewdnesses 
could be introduced to this basic DE scheme, since it leaves substantial rooms 
of improvements in the operators, especially in mutation and crossover 
procedures. 

 
The first modified strategies were proposed by the creators Storn & Price [22]: 

they introduced ten different variants combining different operator’s types, 
allowing the essential flexibility to the promising algorithm. 

The general notation they proposed is DE/x/y/z, where 
• x indicates the methods for selecting parents that will be used in the 

mutation process 
• y indicates the number of vector differences used to perturb the base 

chromosome during the mutation process 
• z indicates the crossover mechanism 

The most widely used strategy is the one previously described, called 
DE/rand/1/bin, which uses random selection, one vector difference and binomial 
crossover. 

Their attempt was the first in a series of modifications and improvements that 
lost the initial notation, treated in this section by operator. 
 
 
4.2.1 Mutation options 
 

Starting from the Storn & Price variants, in this section are described all the 
known mutation options presented in literature, with their strengths and 
weaknesses. 
 
Storn & Price variants 

The number of perturbations, pointed by the number of weighted differences 
y, is usually one or two, but in fact many more linear combinations of weighted 
differences could be introduced. The selection of 2·y vectors inside the 
population is generally made by a random sampling; the limitation is that the 
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vectors must be mutually different as well as for the base vector. This condition 
implies the minimum number for the population: it must be greater or equal to 
2·y+1 (anyway NP is usually greater than this value). Each vector difference is 
scaled by a Fy scaling factor, but in the classical formulation they are fixed and 
at the same value. Increasing the amount of vector differences is not a pursued 
practice because the random selection of the indices nullifies the expected 
amount of perturbation induced. An example of 2 vector differences 
perturbation with the same scaling factor is: 
 

 ( )
1 2 3 4, , , , , ,i G basis G r G r G r G r Gv x F x x x x= + ⋅ − + −  (4.6) 

 
The basis vector depends on the selecting method used. 
 
There are three selecting methods x. The following formulas show the case with 
one vector difference. 

1. rand, proposed in the original DE version [21], plans to choose 
mutually different vectors from the current population, each with a 
uniform probability 1/NP (often the chosen indices must be different 
from the target vector index, in order to keep the crossover role, 
assigning probability 1/(NP-1) to each one), according with the number 
vector differences y: the number of vector’s indices must be 2·y+1. 
The first one is used as a base for the noisy vector, and the subsequent 
vectors for the differences. This technique avoids premature stagnation 
because of the random selection to the detriment of the convergence 
speed in some case. 

 

 ( )
1 2 3, , , ,i G r G r G r Gv x F x x= + ⋅ −  (4.7) 

 
2. best uses as base vector in the mutation process the best solution in the 

current population. The other vectors for the differences are randomly 
chosen. This technique could enhance the speed of convergence but at 
the same time could destroy the necessary diversity to avoid 
stagnation; in the case the number of local optima is high, the 
algorithm fails with high probability because all the noisy vectors are 
direct toward a specific optimum. Only a lucky scaling factor setting, 
depending by the objective function’s nature, could enable success. 
Otherwise for a non-critical and low-constrained objective function 
this method is interesting and appropriate. 

 

 ( )
1 2, , , ,i G best G r G r Gv x F x x= + ⋅ −  (4.8) 
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3. current-to-best uses as base vector the target vector, for this reason the 
selecting method contains the wording “current”. The perturbation is 
carefully driven toward the best of the actual generation and not 
around the best solution, since the basis vector is the target. Still a 
perturbation performed by a random vector difference exists: handling 
the two scaling factors involved the approach results less critical than 
the best configuration. 

 

 ( ) ( )
1 2, , , , , ,1 2i G i G best G i G r G r Gv x F x x F x x= + ⋅ − + ⋅ −  (4.9) 

 
Figure 4.3 shows perfectly the non-critical approach: reducing F1, the noisy 

vector could be generated not so close to the best of the generation. If F1=1, the 
approach degenerates into the best configuration; otherwise, if F1=0, the best 
solution is not taken into account and the basis vector is the current vector. This 
last situation is not advisable, because the crossover process becomes quite 
useless if not coupled with a high F2: the crossover mixes the target vector with 
the noisy vector; then, if the basis for the latter is the target vector and the 
amount of perturbation doesn’t allow high exploration, far from the current 
population, the convergence speed could be very slow. 

 
Figure 4.5, DE current-to-best representation for a two-dimensional problem [22] 

 
MDE scheme 

This method – Modified Differential Evolution [23], – works on the selection 
process of the vectors for the mutation. Using as basis vector a solution with 
good fitness, the child will inherit with high probability some of its good 
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properties. The modified version MDE is a kind of generalization for the rand 
and best method proposed by Storn and Price. 

Introducing a selection pressure control variable, PR, the user can control the 
selecting process for the basis vector in accordance with the ranking of the 
current population made by fitness. Performing a series of independent 
Bernoulli trials that start from the top of the ranking, where there are the fittest 
solutions, the basis vector is selected according to the pressure control variable: 
if U(0,1]<PR the current ranked individual is selected, otherwise the Bernoulli 
trial is repeated for the next solution in the list. The higher PR, the higher in the 
ranking is the basis vector. 

The rand and best variants become a special case of MDE, respectively if 
PR<1/NP and PR=1. Using this method, the user can choose between the two 
classic variants only changing the pressure control value. High PR values 
facilitate the convergence speed, creating more fit mutated individuals, while 
low values, coupled with the number of weighted differences, facilitate the 
population diversity. 

The other properties of the algorithm, like the number of weighted differences 
y and the crossover type z must be decided as usual. 

This approach gives more flexibility to the setting of DE, but, like the others 
variants, it needs firstly the adjustment of PR and subsequently of CR and NP to 
achieve faster convergence speed. Moreover this tuning is, like often appear in 
EAs, dependant by the objective function to optimize. 
 
DERL scheme 

This technique – Differential Evolution with Random Localization [13] – is 
inspired by the random selection of the vectors for the mutation process, but, 
despite the classical formulation, it uses as basis vector the fittest solution 
(called tournament best solution) between the chromosomes selected for 
mutation. If the number of weighted difference chosen is for example one, the 
selection process chooses three mutually different vectors (different also from 
the target vector) and from them it selects the fittest one xtb,G as basis vector.  
 

 ( )
1 2, , , ,i G tb G d G d Giv x F x x= + ⋅ −  (4.10) 

 
The other two vectors, xd1,G and xd2,G, are chosen randomly and 

[ ] [ ]1, 0.4 0.4,1iF ∈ − − ∪ . The resultant noisy vector is then passed to the 

crossover operator. 
Using the scaling factor, even negative, with a uniform selection increases the 

exploration and the robustness of the algorithm but not significantly the 
convergence speed; moreover the choice of a working range instead a fixed 
value makes the setting less critical. On the other hand the employment of the 
tournament best as basis vector makes the algorithm faster with little 
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improvement in the robustness. These two effects are studied [13] before 
separately to proof their goodness. The resultant combination has remarkable 
improvement. 

This random localization feature gradually transforms itself like DE, 
enhancing the convergence speed after a clustering around the global optimum: 
at the beginning the noisy vector is not necessarily local to the tournament best, 
because the weighted differences are large; only in the later stages, when the 
differences become smaller, the speed-up is significant. 

Another version, greedier than the previous one, uses Fi uniformly distributed 
only in a positive range and the selection of the two vectors for the difference is 
made with the same fittest criterion: the better of the remaining two vectors will 
be the first chosen for the difference. In that way also the difference is directed 
toward a better region. This scheme could create some stagnation if a soon 
clustering appears: to avoid it, the exploration must be enough widespread, 
handling the population number NP or the scaling factor’s interval. 

These techniques seem good and non-critical: in the early stages they work 
like a classic DE with the necessary diversity but in the late they intensify the 
search. 
 
TDE scheme 
This scheme – Trigonometric Differential Evolution [24] – modifies the 
mutation operator in its formulation: the classic method perturbs a basis vector 
with a weighted difference; this one defines a search space delimited by a 
hypergeometric triangle formed with three vectors that represent the vertices. 
Using objective function information, it adjusts the perturbation toward the 
fittest one. The other processes in the algorithm, crossover and selection, are 
performed as usual. 

Choosing randomly three mutually different solutions from the current 
population { }1 2 3, , 1,2, ,r r r NP∈ … , different from the target vector as in the 

classic formulation, it uses as basis vector the centre point of the hypergeometric 
triangle formed instead only one of them. The amount of perturbation is driven 
by fitness information of each vector: precisely, there are three weighted 
differences scaled with the difference of the goodness of the vectors involved 
into the perturbation. The following formulation explains the process for a 
minimization task:  
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where the best solutions has the lowest index pk. 
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that could be re-write in a general form as follows: 
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If the scope of the optimization is the maximization, the formulation needs 

only the sign inversion for the scaling factors. 
Thanks to the weighted terms, the noisy vector is direct toward the fittest 

vertex of the triangle with a greedy perturbation grade: the higher the difference 
in the fitnesses, the larger the amount of perturbation in a good direction. This 
greediness could be seen as a problem for the population diversity, since this 
mutation is a kind of local searching technique; for this reason the TDE operator 
is used only with a probability according with a new control parameter Mt. 
Certainly this modification helps the accuracy of the algorithm significantly, but 
if it is used without care it could destroy the robustness of the evolution process 
giving a premature stagnation. In fact, when Mt=1, the stagnation is almost 
unavoidable: the operator can explore only inside a predefined region, whose 
extension depends on the population diversity. The recommended value for this 
control parameter is around 0.05, rather low, but as other strategies, the tuning 
depends on the problem’s nature. It seems that TDE introduces another control 
parameter Mt besides the three parameters scheduled in the original DE, F, CR 
and NP, but a look into the sensitivities between each other shows a remarkable 
behaviour of TDE, which appears with a considerably lower sensitivity to the 
variations in the control parameters. The Figure 4.4 shows the sensitivity of the 
two algorithms with the Rastrigin’s function (see Appendix A, f22). 

For this reason, after the trigonometric control parameter tuning, the algorithm 
setting becomes easier. The application of the trigonometric operator could be 
probably appropriate only in the later stages, since in the early exploration its 
contribution is rather low; after a clustering around the better regions of the 
feasible area, this operator increases the convergence speed significantly. 
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Figure 6.4, Sensitivities of the three DE parameters F, CR and NP on the Rastrigin’s function 
for the final minimum obtained [24]. 

 
 
DEPCX scheme 

This technique – Differential Evolution with Parent Centric crossover (X) [25-
26-27] – uses a similar concept of TDE: it enhances the chance of exploring the 
neighbourhood more efficiently by a different noisy vector formulation; 
nevertheless, it does not involve fitness’s information. Although the name goes 
back over the crossover concept, this approach works only on the mutation 
process; the misunderstanding arises from the first formulation of this operator, 
used in a particular version of GA. DEPCX differs from DE only in the mutation 
process. Crossover and selection are performed as usual. 

The operator, unlike TDE, uses as basis vector one of the µ mutually different 
vectors { }1, , 1,2, ,r r NPµ ∈… …  selected for the mutation 

process, { }, , 1,2, ,p Gx p µ∈ … . 

The mean vector is computed as 
 

 ,
1

1
kr G

k

g x
µ

µ =
= ∑  (4.14) 

 
and the direction vector as 
 
 , ,p G p Gd x g= −  (4.15) 

 
From the remaining µ-1 chromosomes, the perpendicular distances Di to the 

line of the direction vector are computed and their averageD  is obtained. 
Then the noisy vector is found as 
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1,

i G p G p G k
k k p

v x w d w De
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ς η
= ≠

= + + ∑  (4.16) 

 
where ek are the orthonormal bases perpendicular to dp,G, wς= N(0,σς

2) and 
wη=N(0,ση

2). The two variances are usually taken as 0.01. 
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Like TDE, DEPCX is a greedy operator, but with a less forced approach. For 
this reason it could be applied every mutation for each target vector; the 
stochastic application of DEPCX, pursued also in TDE with another control 
parameter, could be implemented with similar probability (0.01) but with 
comparable results. Like classic DE, this technique is self-organized, because 
the amount of perturbation is function of the population diversity that affects the 
direction vector and the average perpendicular distance, but in the later stages it 
works as a local-search operator. Furthermore, when the parents selected for the 
mutation are located far from each other, the noisy vectors generated are well 
sparsely located, so at the beginning DEPCX works, unlike TDE, maintaining 
the necessary diversity to explore the entire domain efficiently.  

In terms of solution accuracy, this algorithm is not better than other DE 
strategies, however, it shows faster convergence since it takes less function 
evaluations. A debatable problem is the necessary computational time, 
comparable if not greater than DE and TDE, because of the complexity of the 
DEPCX mutation process. To avoid this situation the stochastic application is 
preferable, maintaining at the same time the robustness and the convergence.  

 
NSDE scheme 

This approach – Neighbourhood Search for Differential Evolution [28] – is 
inspired by the exploration methods used in the Evolutionary Programming 
(EP). As seen before with DERL, TDE and DEPCX, the ability of an 
evolutionary algorithm to explore the neighbourhood space is a remarkable 
advantage. In this approach, the mutation operator is modified to allow a similar 
exploration performed in EP, where a kind of self-adapting perturbation is used. 
In DE this role is played by the vector differences employed in the mutation 
process that automatically adapt themselves. 

An example of perturbation in EP is: 
 
 , ,i G i G i

v x η ψ= + ⋅  (4.16) 

 
where ψ is the specific EP-operator and ηi is the auto-adaptive perturbation that 
follows some defined rule. 
ψ could be: 

• N(0,1) for classical evolutionary programming CEP, 
where ( ) ( ) ( )( )10,1 0,1 , , 0,1nN N N= … , that is an array of Gauss 

random variable with mean = 0 and variance = 1. 
• δ(0,1) for fast evolutionary programming FEP, 

where ( ) ( ) ( )( )10,1 0,1 , , 0,1nδ δ δ= … , that is an array of Cauchy 

random variables with location = 0 and scale = 1. 
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• L(c) for Lévy evolutionary programming LEP, where 

( ) ( ) ( )( )1 , , nL c L c L c= … , that is an array of Lévy random variables 

with scale 0 < c < 2. 
 

These are the most used operators for EP in which the neighbourhood concept 
dominates the perturbation. 

In classical DE the operator is the fixed F value. 
In the NSDE approach, after a probability evaluation of a jump-length 

expected [28], dependant on the operator, a flexible setting of operators is 
performed. 
 

 
Figure 4.7, Probabilities for the lenght of jumps for three scaling factor definitions: fixed, Gauss 
random variable and Cauchy random variable. [28] 
 

Since using a fixed scaling factor reduces the probability that the step length is 
right for the optimization problem without any tuning, to increase the ability of 
the algorithm two operators, N and δ, are applied with some deterministic rule; 
the Gaussian operator is more likely to produce small jumps, beneficial for the 
local search near the global optimum, whereas the Cauchy operator is more 
expandable and it has greater probability to produce long jumps, useful for the 
early exploring phase and to escape from local optima. 

 
The following rule is proposed: 
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Where as usual { }1 2 3, , 1,2, ,r r r NP∈ … are chosen randomly with { }1 2 3, ,i r r r∉ , 

NS=0.5 and the Gaussian operator is adjusted as the common range for F.  
Of course the weights of the Gaussian and Cauchy operators in the perturbation 
could be changed modifying the NS value, changing the behaviour of the 
algorithm; in fact this value becomes another parameter to set, like the 
parameters for the operators. 

The tests performed in [28] show the goodness of this approach versus the 
classical DE and FEP, with some doubt for multimodal functions with smaller 
number of local optima: in such cases DE outperforms NSDE, demonstrating 
the unhelpfulness of the NS operator, which increases only the computational 
time without any advantage. In all the other cases NSDE results better than 
classic DE, more powerful when searching in an environment without any 
previous knowledge. 
 
DELN scheme 

This technique – Differential Evolution with Local Neighbourhood [29] – is a 
variant for the mutation process that is inspired by the Particle Swarm 
Optimization, another evolutionary algorithm that simulates the social behaviour 
of the imitation of the fittest. The connection between these two types of 
optimization algorithms is the simplicity of the perturbation introduced in the 
population. Like NSDE, it increases the DE neighbourhood searching properties 
combining them with global exploration. 

This approach mixes local and global search technique as follows: 
 
 ( ), ,,

1i G i GG Gi G
v w g w l= ⋅ + − ⋅  (4.18) 

 
where [ ]0,1Gw ∈ is a scaling factor applied to the global and local mutated 

vectors. 
These two mutated vectors are generated using the current-to-best approach 

presented in the Storn and Price variants, with the following shrewdness for the 
local one: after the definition of a nearness variable for each target 
vector { }1,2, ,ik NP∈ … , a new sub-set could be defined from the main 

population for each target vector: 
 

{ } { }1 1 1 1 1, , 1,2, ,
i i iNP NP NP

i k i k i kLiS x x x i NP− − + − + + − += ∀… …  (4.19) 

 
From the sub-set associated with the target vector, two vectors are selected 

randomly for the vector difference and the fittest one in the set is chosen as the 
best vector for the current-to-best approach. 
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 ( ) ( )
1 2, , , , ,1 2, i G best G i G r G r Gi G

g x F x x F x x= + ⋅ − + ⋅ −  (4.20) 

 

 ( ) ( )
3 4, , , , , ,3 4i G i G nbest G i G r G r Gl x F x x F x x= + ⋅ − + ⋅ −  (4.21) 

 
where best indicates the best vector in the entire population, 

{ }1 2, 1,2, ,r r NP∈ … , nbest is the neighbourhood best solution inside the set SLi 

and r3, r4 are chosen randomly from the sub-set interval. The fourth scaling 
factors are usually mutually different. 

The weight factor varies linearly (increasing) with time, following eq. (4.22): 
 

 ( ) { }min max min max
max

1
1,2, ,

1G

G
w w w w G G

G

 −= + − ⋅ ∀ ∈ − 
…  (4.22) 

After a necessary definition of the minimum and maximum value (advised 
values are respectively 0.4 and 0.8) to achieve the balance between local and 
global exploration, this time-varying approach gives emphasis at the local search 
in the early stages and only with time it moves toward the global search. This 
neighbourhood concept does not lie in a space conceptualization but only in a 
population point view, since a neighbour is given only by the solution’s index: 
for this reason, the “local” wording assumes a different meaning, with less 
implication about the searching area: so, emphasizing at the beginning the local 
search doesn’t mean reverse the exploration scheme in the domain. 

This DELN scheme should improve the performance compared with classic 
DE, but it seems just a sophistication in the choice of the vectors. 
 
4.2.2 Crossover options 
 

The most common crossover operator for DE is the binomial crossover, 
explained in Section 4.1. In this section the other crossover option proposed in 
literature is presented. 
 
Exponential crossover 

This crossover scheme was the first proposed in [21] by Storn and Price; it 
takes idea form the GA crossover process in which the mixing of the genes is 
made defining one or multiple cutting points. As explained before, the crossover 
role is to maintain diversity inside the population, mixing the properties of the 
created noisy vector with the target vector. This process mixes the chromosomes 
cutting in the target vector in two points, inserting the noisy vector’s genome, 
like the two-point crossover for GA. 

The trial vector is composed by the following rule: 
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{ }1,2, ,j n∀ ∈ …  

 
where [ ]1,a n∈ and [ ]1,L n∈ are randomly chosen integers and 

n
 is the n-

modulo; it permits the circularity of the process. The first index a defines the 
first cut point, whereas L defines the length of the replacement. In this process, 
the probability that L variables in the trial vector come from the noisy vector is 
 
 ( ) hP L h CR= =  (4.24) 

 
This is not a probability distribution but just a relationship where the operator 

can modifies the result changing CR or h, according with the power law: the 
probability of mutating h components increases with the parameter CR and 
decreases with the value of h. Anyway, to have a good effect with the 
exponential crossover, the CR value must be high, 0.8÷0.9. 

In the case CR = 1 then all the parameters of the trial vector come from the 
noisy vector. 

The weakness of this crossover method is the circularity of this approach, in 
fact, the exponential crossover modifies only consecutive genes. Figure 4.6 
shows the process. 
 

 
Figure 4.8, Scheme of the exponential crossover for DE [21] 
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4.2.3 Further sophistications 
 

This section is dedicate to the different processes planning adopted in the 
algorithm’s implementation; since the modifications on the operators’ nature is 
not the only way to increase the ability of DE to explore the search space and to 
increase the convergence speed, this further modifications in the algorithm 
behaviour play an important role in the predominance of DE in comparison with 
other optimization algorithms.  
 
 
DELB scheme 

This scheme – Differential Evolution with random Localization around the 
Best vector [13] – adopts the further exploration by localization after the 
definition of the trial vector. Respect to DERL, sometimes it is preferable 
adopting the localization concept after the calculation of the trial point, to 
explore the region between it and the best current solution. This scheme is not a 
modification of the mutation process, rather a subsequent mutation around the 
trial vector and the best solution. It starts like the classic DE [21]: defined the 
trial vector ui,G, if its fitness is better than the target vector’s fitness but worse 
than the best current vector’s fitness, two new points are found with some 
probability (U(0,1]<w), using the following general rules for reflection and 
contraction: 
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 (4.25)  

{ }1,2, ,j n∀ ∈ …  

 
where ( )1,1j Uα = − , one for each jth variable. 

A first attempt is made by the reflected vector generated: if its fitness is worse 
than the original trial’s one, a second attempt is made with the contracted vector; 
if the second attempt fails again, the trial vector replace the target vector instead 
one of the previous twos. The user-defined w parameter controls the frequency 
of the local exploration around the trial and the best vectors. This scheme 
increases the number of function computation per generation, but evolutionary 
speaking it reduces the number of generation necessary to achieve the global 
optimum; furthermore, this scheme increases the robustness in view of the 
correct choosing of the control number w: the recommended value is 0.1. 

In this practice the convergence speed and the robustness are increased in 
comparison with a classic DE, but the introduction of another variable to be 
adjusted attentively makes this technique really sensitive to the control 
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parameters. Without a correct tuning, the convergence and the robustness could 
be call into question. 
 
DEPC scheme 

This approach – Differential Evolution with Preferential Crossover – is 
proposed in [26] and it works managing the crossover operator and the selection 
process. It uses two populations, both driven toward the global optima. The idea 
of a second population comes from the strict rule of the selection process: in DE 
the trial vector is discarded if the target vector shows better fitness, but this does 
not mean that the trial vector is completely inefficient: it could be better than 
other individuals inside the population and it may even lie in a promising region 
of the search space. 

In DEPC, the first crossover procedure is applied using two populations, S1 
and S2 with the classic method. The set S1 is the main population, from which 
the target vectors come, and the second set S2 is a parallel population within the 
discarded trial vectors are stored. Both the sets are initialized uniformly inside 
the domain. The first trial vector is defined from a crossover between a uniform 
random point 2ia S∈ and the target vector, for example using binomial crossover: 
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 (4.26) 

 

{ }1, 2, ,j n∀ ∈ …  

 
After the definition of the first trial vector, the classic selection rule takes 

place; otherwise another attempt is made with a second trial vector ui,G’ : the 
second trial is produced by the crossover between a noisy vector, deriving from 
a mutation rule that involves solutions from S1, and the target vector. Then, 
another selection process between the target and the second trial vector is made. 
If also this time the trial results worse, it is not abandoned altogether and it 
competes with the corresponding target vector in S2.  

This approach enhances the probability to generate feasible points inside the 
domain, decreasing the function evaluations, the cputime and slightly increasing 
the success rate in comparison with classic DE. 

For this reason is recommended in the high-constrained problems where the 
feasible area is quite difficult to individuate by the algorithm. 
 
ODE algorithm 

This approach – Opposition-based Differential Evolution [30], [31], [32] – 
employs the opposition-based optimization OBO [19] concept for the population 
initialization and generation jumping. 
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DE, like other evolutionary algorithms, starts with a set of candidate solutions 
and it tries to improve them toward the optimum. Without any previous 
information, the initialization is made random. Since the speed of an algorithm 
is given by the distances between the initial candidate solutions and the true 
optimum, the ODE approach permits to enhance the probability to start from 
better solutions checking also the opposite of the initial population. According 
to the probability theory, 50% of the time a guess is farther from a solution than 
its opposite: for this reason, after the initial guesses also the opposite solutions 
in the search space are checked and used as initial solution. This veracity is 
proved in [32] and applied to DE, not only for the initial population of the 
algorithm. 

To define the opposite let x be a real number inside a defined interval (without 
the interval the opposite concept cannot be take into account) [ ],x a b∈ , then its 

opposite is 
 
 x a b x= + −⌣

 (4.27) 
 

This definition can be extended to higher dimension: 
 
 ( )1 2, , , nx x x x= …  (4.28) 

 
is a point, defined by a vector composed by n-real numbers, each of them 
contained in a specific interval, defining the domain D: 
 

 { }, 1,2, ,L U
j j jx x x j n ∈ ∀ ∈  …  (4.29) 

 
Then the opposite point is defined by a vector composed by the opposite real-

numbers: 
 
 ( )1 2, , , nx x x x=⌣ ⌣ ⌣ ⌣

…  (4.30) 

 
 { }1,2, ,L U

j j j jx x x x j n= + − ∀ ∈⌣
…  (4.31) 

 
In ODE, after a random initialization (G=1) of the population S, the opposite 

population set OS is calculated. Then the evaluation of the two population sets is 
computed and the fittest individuals are selected as initial population for the 
algorithm (the so called elitist selection for GA). This process increases the 
probability to start close to the solution, decreasing the total computational time, 
even if for the first population are necessary 2·NP fitness evaluations. Another 
strategy introduced in ODE is the opposition-based generation jumping: 
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according with a jumping probability value Jr, after the classic operations’ flow 
– mutation, crossover and selection – if U(0,1)<Jr the opposite of the current 
population is computed and, as in the initial population selection, the fittest 
solutions are selected from the union of the two sets. A little shrewdness is 
introduced, making the process dynamic: the opposite is not computed using the 
initial upper and lower values for each variable, but rather using the maximum 
and minimum values of each variable at the current population’s state: 
 
 , , , ,min maxij G j G j G ij Gx x= + −⌣

 (4.32) 

{ } { }1,2, , , 1,2, ,i NP j n∀ ∈ ∀ ∈… …  

 
then without losing the knowledge acquired by the algorithm till this moment; 
this approach permits to decrease the searching space during the opposition-
based generation jumping. A similar device will be treated in Section 4.4. 

The jumping rate Jr could be fixed (defined by the user) or time-varying. In 
[30] the better algorithm’s behaviour is given by a jumping rate decreasing by 
function calls; in particular Jr follows the rule 
 

 ( )
max min

1r r r
nfc

nfc
J J J

MAX

 
= − ⋅ −  

 
 (4.33) 

 
where nfc is the number of function calls and MAXnfc is the maximum value 
allowed for nfc.  
The jumping rate parameter range recommended is 0.1÷0.4; higher values could 
destroy the evolution, provoking early stagnation due to the shrinkage of the 
search space; also the time-varying approach will be explained further in Section 
4.4. 

ODE with fixed or time-varying jumping rate outperforms the classic DE in 
many situations [30], demonstrating the strength of the OBO technique [32] 
successful combined with the DE evolutionary properties. The improvement is 
reflected principally toward a less number of function calls, to the detriment of 
the success rate: this means the robustness is a little penalized, but the reduction 
in nfc is remarkable. 
 
MDE algorithm 

This approach – Modified Differential Evolution [33], different from MDE of 
Section 4.2.1 – arises from the necessity to reduce the computational time of 
DE. Although DE is efficient, effective and robust, it has a lack in the 
convergence speed for high dimensional problems. This weakness is made less 
heavy by MDE algorithm: it uses a slight strategy on the selection ruling for the 
next generation: instead performing the selection and the possible substitution 
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after mutation and crossover for the whole current population, thus creating a 
temporary population of trial vectors, the target vector is immediately 
substituted if the trial vector appears fitter than it. Using this device, the current 
population evolves dynamically and not with discrete generation step, because 
the benefitting is dynamically updated. This algorithm does not upset the DE 
classic method, rather it modifies the moment of the updating process, making 
the algorithm faster and at the same time robust as the classical formulation. 
This approach can be advantageous in real-world problems, where the 
evaluation of a candidate solution is a computationally expensive operation. A 
further sophistication of this method is proposed in [34], where the dynamic-
substitution is combined with ODE and the mutation operator is taken from the 
DERL scheme. Of course mixing correctly strategies with different effects 
increases the ability of the algorithm, especially in high dimensional cases. 
 
NSDE algorithm 
This algorithm – Non-linear Simplex Differential Evolution [35], different from 
the previous described in Section 4.2.1 – uses an approach similar to the OBO 
applied at the initial population: the aim is to decrease the distance between the 
initial population and the true optimum of the problem in order to diminishing 
the optimization time. It uses a non-linear simplex mutation to the initial random 
population so as to create another set of candidate solutions: the fittest 
individuals form the random and the modified sets belong to the initial 
population. NSDE, in comparison with ODE, acts only on the initial population 
setting, without any further modification in the classic algorithm: its role is just 
to increase the probability of obtaining the optimum in fewer function calls 
affecting the starting point.  

This method is simple, it uses the simplex formulas [2] of reflection, 
contraction, expansion and reduction and it does not touch the algorithm 
behaviour, leaving the robustness and the efficiency of DE intact. In the 
definition of the initial population it takes more computational time but it 
provides a better initial condition, allowing a successive efficient function call 
saving; the algorithm shows slightly better behaviour than ODE in terms of nfc 
and cpu in most cases, even if the sophistication adopted seems insubstantial in 
comparison with ODE. Extra-information about the search space to the initial 
population are beneficial, enhancing the convergence speed without 
compromising the robustness. 
 

The main structure of DE could be mixed or hybridized with other methods: 
for example, applying to a population based search algorithm a further classic 
optimization method based on gradient evaluation as speed up, the efficiency of 
the search method could be increased significantly without loosing the 
robustness of the evolutionary procedure. Some successful examples are 
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presented in [35], where DE is hybridized with a quasi-Newton method, and 
[36], where Particle Swarm Optimization is integrated with DE. 
 

 
4.3 Constrained optimization 
 

The handling constraints problem is typical for real-optimization problems: 
usually the difficult in the real world is to find the solution that satisfies all the 
constraints accordingly with a high performance.  

If the handling constraints has direct or easy reference to the domain of the 
variables, it is sufficient repair the solutions created outside the domain. In that 
way, if during the evolution process some trial vector is created by the mutation 
outside the domain, some repair rule is adopted.  

The rules most used are: 
• repairing to the bounds 
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 (4.34) 

where δ is a small number, around 0÷0.1. This feature is used when it’s 
easy going outside the domain because the optimum is collocated close 
to the boundary; of course this rule doesn’t allow diversity in the 
regeneration and the amount of δ could influence the searching 
technique; if δ = 0, the trial vector is placed exactly on the border;  

• repairing randomly inside the domain, that uses the same rule of the 
random initialization. This feature doesn’t allow to the algorithm to 
remember about the direction of the evolution, restoring the initial 
condition. If the optimum is close to the boundary the algorithm could 
have fewer chances to find it. 

• repairing bouncing back the excess outside the domain produced by 
the mutation process: this approach is recommended especially for the 
situation in which the optimum could be very close to the border of the 
domain or even on the border. 
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 (4.35) 

 
If the handling constraints cannot bring back to the domain definition, as in 

many real-problems, but it depends on some resultant property of the system, 
several other methods were proposed, especially for GA but applicable to DE. 
 

Michalewicz [37] grouped these methods in four categories: 
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1. methods based on preserving feasibility of solution 
2. methods based on penalty functions 
3. methods which make a clear distinction between feasible and infeasible 
4. hybrid methods 

 
Methods based on preserving feasibility of solution 

The first category is based on specialized operators which transform infeasible 
solutions into feasible ones; this method unfortunately accepts linear constraints 
only and needs to start form a feasible initial population. Into this category lie 
also the repair rules, since these operators work in a similar manner, determining 
the current domain l DΩ ⊂ Ω ⊂  that is a function of the linear constraints and 

repairing the solution. Some different approach could be applied for nonlinear 
constraints or optimum close to the boundary, but in this case is necessary 
implement specific operation strategies related to the problem’s nature.  
 
Methods based on penalty functions 

The second category is based on a penalization imposed to any infeasible 
solution, reflecting the infeasibility directly into the fitness function, the only 
one submitted to selection in the algorithm; this practice is similar to the multi-
objective optimization, described in section 4.6, in which all the properties to 
optimize are collected in a unique overall function. As for MO problems, the 
main difference in this method depends on how the penalty (or overall function) 
is designed.  
The common rule is: 
 

 ( ) ( )
( ) ( )

, ,

,

, ,

i G i Gk

i Gk

i G i Gk

f x if x
f x

f x penalty x otherwise

 ∈Ω= 
+

 (4.36) 

 
Usually the penalty is a function based on the distance of the solution from the 

feasible region, so it is the result of the combination of all the constraints. For 

this reason there are C function ( ) { }, 1,2, ,i Gmf x m C∀ ∈ …  used to build the 

penalty function. 
There are several ways to design the penalty function and of course the 

difficulty is to define the appropriate feature of this additional function. The 
strategies proposed in literature are:  

- Static penalty, where usually the penalty is the sum, the averaged sum or 
the weighted sum of all the constraints. For this method the design is high 
dependant on the nature of the constraint: if it is just related to some input 
variable this approach could be efficient if correctly calibrated, otherwise, 



Differential Evolution 

 43 

if the constraint is a property of the system the value must be normalized if 
possible and attentively weighted. The number of additional parameters 
could be too high.  

- Dynamic penalty, where the number of parameters involved is low and the 
penalty amount is time dependant; this approach could return at the end an 
infeasible solution. 

- Annealing penalty, that is based on dynamic penalty method with 
annealing behaviour. 

- Adaptive penalty, where the amount of the penalty depends on the 
population condition referred to the feasible region: if many points lie out 
of the feasible region the penalty is high, otherwise the penalty is relaxed. 

- Death penalty, that simply rejects the infeasible solutions; this method 
could be impracticable in high-constrained problem. This approach could 
be seen in the third category. 

- Segregated penalty, that implements two different penalized fitness 
function with different weights and picking up alternatively from the two 
resulting sets.  

 
Methods which make a clear distinction between feasible and infeasible 

The third category includes few methods, since these practices are not often 
applied. An approach is called behavioural memory method and it considers 
only one constraint at the time. This method seems poor in satisfaction, since a 
correct sequence of non-interconnected constraints must be defined: if the 
satisfaction of one constraint works again another previous one, the solution is 
rejected and the algorithm could converge slowly.  

A most interesting method is the method of superiority of feasible points, 
which is based on a classical penalty approach (in fact it could be seen in the 
previous category) with an additional function that influences the infeasible 
solutions using a heuristic rule. Thereby any feasible solution is better than any 
infeasible, since sometimes in penalty methods an infeasible could be better than 
a feasible one if the penalty is low. This method seems convenient but for some 
problems it may have some difficulties in locating a feasible solution. 

The last commonly method used of this category repairs the infeasible 
solutions: it works at the beginning with specialized operators that create 
feasible solutions only for the linear constraints. This set of solutions l lS ∈Ω . 

The successive step is to modifying the nonlinear equality constraints into 
nonlinear inequality constraints simply subtracting the precision of the system ε. 
Then another set S of fully feasible solutions is created and used as reference to 
which the set Sl is directed: taking a solution from Sl, if it is fully feasible it 
could be moved to the set S or left in Sl, otherwise a fully feasible solution from 
S is taken as reference and some points between them are evaluated till the 
finding of another fully feasible point. For this purpose the bisection method is 
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recommended. After that, the new feasible point could replace the individual in 
Sl or S according with some probability. This feature depends on the dimension 
of the fully feasible region and how the algorithm is implemented. 
 
Hybrid methods 

Into the fourth category many types and evolutions of constraints handling 
methods lie: it is easy hybridizing evolutionary computation with deterministic, 
procedures or gradient approaches. Also combining the previously mentioned 
methods is equivalent to implement a hybrid method. 

An important example [26] of hybrid method is the approach in which 
violation and objective function are evaluated separately: this is a special case of 
the method of superiority of feasible solutions that doesn’t involve a 
penalization in the objective function: it just optimizes constraints and objective 
in lexicographic order in which constraint violations precede the objective 
function. In this approach the constraint handling could be strictly constant or 
relaxed during evolution like other strategies. 
 

A practicable way to handling the constraints is to adopt the multi-objective 
optimization in which the constraints are treated as objective function. Of course 
this method could be more difficult since the nature of MO problems. 
 

Concluding, is difficult finding the correct constraint-handling method a priori 
since the efficiency and convergence speed of the constrained evolutionary 
algorithm is heavily dependant on the problem’s nature. Without any previous 
information about the extension of the feasible area referred to the domain, the 
choice of the method is difficult. The complexity of the constrained problem 
depends on the complexity of the objective function combined with the 
sparseness or shape of the feasible region like: the objective function has many 
local optima, the global optima is located close to the boundary, the slope of the 
constraints is high close to the border and the global optima. In these situations 
classical constraint-handling with penalty function (the easiest method to 
implement) could fail, making the choice really hard; for this reason the 
previous estimation of a constraint-handling method is still now an open 
question. 
 
 
4.4 Control parameters’ setting 
 

The control parameters’ setting of classic DE, proposed by Storn and Price, 
seems easy because of the small number of controls on the algorithm: NP, F and 
CR.  
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Despite the first recommendations given by creators, finding a correct setting 
is one of the most difficult tasks for the user. The robustness of D is proved in a 
wide range of control settings, but the convergence speed in some problems is 
an open question. The ability in floating-point encoding of DE over continuous 
space is a matter of fact, but like all the EAs, this algorithm is sensitive to the 
control setting. Besides, even the robustness of the algorithm could be 
diminished if the parameters’ setting is not taken into account, causing a 
premature convergence due to stagnation [38]. 

The correct setting is strongly dependant on the problem nature, since the 
perturbation introduced in the population is function of the control parameters. 

Just for example, Figures 4.8, 4.9 and 4.10 show the effect of the three 
parameters, evaluated separately, on the function evaluations (fe), the success 
rate (sr) and the cputime (cpu) used by DE on the four dimensional Cosine 
Mixture Problem, Breiman and Cutler, 1993 (Figure 4.7 shows the two 
dimensional problem): 
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Figure 4.9, Cosine mixture problem for a two dimensional problem. 
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Figure 4.10, Population size effects on the three measures: fucntion evaluations, success rate 
and cputime. 

 

 
Figure 4.11, Scaling factor effects on the three measures: fucntion evaluations, success rate and 
cputime. 

 
 

 
Figure 4.12, Crossover rate effects on the three measures: fucntion evaluations, success rate and 
cputime. 
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The results are related to the four dimensional problem of the Cosine Mixture 
Problem (see also Appendix A, f15), and DE is implemented in classical 
configuration [21] with F=0.5, CR=0.5, NP=30. The effects are averaged over 
50 runs for each setting, in order to obtain significant statistical values respect to 
the randomness, and they are showed modifying just one parameter by time, 
holding the other two. A run is considered terminated with success if difference 
between the true optimum and the optimum find by DE is less than 10-4 in 500 
generations; the algorithm halts when the fitness-difference between the best 
and the worst individual in the population is less than 10-4. 

It is clear the setting, even for the classical formulation, could improve the 
convergence speed, but to know the correct combination between these three 
factors a previous tuning of the algorithm is necessary; this practice is of course 
time-consuming. 
 
NP effect 

The rule of thumbs about this parameter says the recommended value is 
NP=10·n. This value is related to the nature of the perturbation process, in 
which the vectors selected must be randomly chosen and mutually different. To 
allow sufficient diversity to the next generation is necessary a selecting pool 
enough wide. This parameter affects the number of function evaluations of DE: 
if the population dimension is too high, the algorithm could waste time without 
any benefit. In the case previously presented, with n=4, using NP=40 is the 
wrong choice because the fastest convergence is found in correspondence with 
NP=15, significantly far from the recommended value (see figure 4.8). In this 
situation, after the value NP=15, the success rate becomes 100% and the higher 
NP, the higher fe and consequently cpu. 
 
F effect 

There is not a unique recommendation about the setting of the scaling factor; 
this value is heavily dependant on the problem’s nature, more than the 
population size, since it drives the weight of the vector differences used in the 
perturbation process. Farther, the setting depends on the perturbation operator 
implemented. In our situation all the values tested over F=0.15 of the scaling 
factor allow a success rate of 100%; for F=0.05 the success rate is slightly more 
than 20%. This behaviour, caused by a small perturbation, doesn’t allow the 
necessary exploration abilities to the algorithm, slowing down the convergence 
speed (the maximum number of generation allowed in this test is 
MAXGEN=500). 

The first operating interval recommended for F was (0,2], but after some 
studies this interval was reduced to (0,1].  

The role of F is heavily significant in the convergence speed and the success 
rate, for this reason, this parameter is modified in some DE variant:  
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• [ ] [ ]1, 0.4 0.4,1iF ∈ − − ∪ , proposed in DERL [13], within the uniformly 

distributed choice is made for each i th solution. 
• ( ] ( )_ / 0,1dither i G l h lF F U F F= + ⋅ − , called Dither approach, mentioned in 

[39], in which the scaling factor could be generated for each i th 
chromosome or Gth generation; in this configurations the user has to 
define upper and lower allowable values for F. This is quite similar to 
the previous approach. 

• [ )( )( )_ , 1 0,1 0.5jitter i jF F Uδ= ⋅ + ⋅ − , called Jitter approach, mentioned 

in [39], in which the scaling factor is generated for each dimension of 
the problem. It seems very important using a small value of δ=0.001, 
in order to explore the squared neighbour around the noisy vector 
generated with fixed F. 

• ( )0.5,0.25F N∼  or ( )0,1F δ∼  according with some probabilistic 

rule, proposed in NSDE [28]. This shrewdness could be pejorative 
because of the presence of other control parameters. 

 
Randomize the scaling factor according with some distribution seems 

sometimes useless or with less advantages, but it appears particularly practical 
with noisy functions, despite the necessity to define other control parameters 
and values for the randomization. 
 
CR effect 

The effect of this parameter, like the others, depends on the problem nature. 
For the Cosine Mixture Problem, CR does not have effect on the success rate but 
only in fe and cpu. After the threshold of 0.5, the number of function evaluations 
does not increase but shows an assessment between 1650 and 1700 fe; only the 
cputime increases, since the computation of the noisy vector’s dimensional 
element in the implemented program is made only if the crossover process is 
successful. The value of 0.5 is a right compromise for the two properties. 

In this problem the function shape is sufficiently easy even if the cosine 
component modifies the parabolic trend adding local minima. Low values of CR 
decrease the convergence speed, because the mutation process induced by the 
perturbation of the weighted difference is highly beneficial: reducing the 
crossover rate means slowing the evolution process. Anyway this behaviour 
could not be found in other problems, especially for noisy functions with a high 
number of local optima. 

About the setting of CR, Zaharie [40] handles the problem after some 
theoretical evaluations for the two type of crossover: binomial and exponential. 
These results are quite important in the user choice of crossover type and rate, 
because of the different rules adopted in the two variants. 
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The probabilities that a component is mutated are respectively: 
 

• Binomial ( )1 1 1mp CR n n= − +  (4.38) 

• Exponential ( )
1

1

n

m

CR
p

n CR

−=
−

 (4.39) 

 
where n is the dimension of the problem. 

Since the user wants to control the number of the mutated components, it 
could use as indicator the expected value E(L) of mutated L components, simply 

( ) mE L n p= ⋅ : 

 
• Binomial ( ) ( )1 1E L CR n= − +  (4.40) 

• Exponential ( ) 1

1

nCR
E L

CR

−=
−

 (4.41) 

 
As said before, binomial crossover is a discontinuous operator while 

exponential is continuous; so, for the first variant, L is not the length of the 
chromosome replaced but the number of chromosomes inherited from the noisy 
vector. 
The trend of the two pm is presented in figure 4.11 for three dimensionalities, 
respectively n=5, n=10, n=30. 

 
Figure 4.13, Mutation probabilities for binomial (dashed line) and exponential (solid line) 
crossover for three dimensionality. [40] 
 

For low dimensionalities, the difference between binomial (dashed line) and 
exponential (solid line) is not remarkable, but for high dimensionalities, like 
n=30, the probability of mutation is significantly sensitive to the crossover rate 
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imposed for the exponential one. In fact, binomial crossover follows a linear 
trend, whereas exponential has the typical shape of the power law. It is 
deducible from the figure 4.11 that both exponential and binomial start from 
pm=1/n if CR=0 and finish with pm=1 for CR=1: at least one component of the 
trial vector will be taken from the noisy in the first CR setting and the trial 
vector is in fact the noisy one for the second CR value. 

Concluding about the crossover variants, it could be said that the exponential 
crossover, to have any significant effect with high dimensionality, needs an 
accurate tuning, whereas the binomial one is less sensitive to small changes and 
allows an easy setting. In particular, the exponential crossover for problems with 
high dimensions becomes significant only with values ( ]0.9,1CR∈ , otherwise 

its effects are negligible, slowing the convergence speed. For this reasons the 
binomial crossover is the most used variant in DE. 
 
Coupled effects 

From the previous examples, the effects of a bad setting in terms of premature 
stagnation are not clear, because of the simple shape of the function; in fact, the 
local minima are not difficult to avoid (the weight of the cosine sum is only 0.1; 
increasing this value the paraboloid becomes more distorted). Only a really 
small value of the scaling factor causes a premature stagnation. The stagnation 
arises when the population lost completely its diversity and it remains 
unchanged by the perturbation. For this reason, to avoid premature convergence, 
it seems reasonable keeping a sufficient level of diversity in the population.  

Zaharie in [41] proposes an important theoretical result about the coupled 
effect of the three parameters accounted together in a unique formulation. 
Unfortunately this result is related only at the classical formulation [21], with 
some simplification in the crossover and it cannot be applied with others DE 
strategies without any further theoretical evaluation. 

Zaharie uses as measure of the diversity the statistical variances computed for 
each component over the entire population and find an interesting relationship 
between the control parameters and the population variance evolution: 
 

 ( )( ) ( )
2

2 2
2 1

CR CR
E Var u F CR Var x

NP NP

 ⋅= ⋅ ⋅ − + + ⋅ 
 

 (4.42) 

 
where E(Var(u)) is the expected variance of the trial vectors related to the 
variance of the current population. When the factor inside the brackets is greater 
than 1, the variance of the trial vectors should be greater than the current 
population variance, enhancing the exploration. Otherwise, the algorithm 
reduces its exploration abilities in order to find solutions close to the current 
population. 
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This result does not take in consideration the selection process, because it 
depends on the objective function’s values; since selection usually decreases the 
variance, to prevent a premature diminishing of the diversity inside the 
population and a consequent premature stagnation, the value inside the brackets 
should be slightly greater than one. Nevertheless, these considerations are valid 
for a really wide range of objective functions, but the exclusion of the selection 
process leaves a significant lack of knowledge for a complete understanding. 

The premature stagnation, found in the Cosine Mixture Problem, due to a 
small value of the scaling factor, with NP=30 and CR=0.5, could be measured 
by a unique control parameter, called k: 
 
Table 4.1, k-parameter [41] and success rates for three scaling factor’s setting 
on the optimization of the Cosine Mixture Problem (Appendix A) 

F k Sr 
0.05 0.9775 24 
0.10 0.9850 88 
0.15 0.9975 100 

 
We find a success rate of 100% with a theoretical value of k smaller than 1; 

probably this discrepancy is due to the quite simple shape of the function and to 
the simplifications made in the theoretical description of the crossover operator 
(in the theoretical evaluation with CR=0 the pm is 0 instead 1/n for our 
implementation.). 

In Figures 4.12 and 4.13 are showed the contour plot for the k-parameter and 
the success rate of out test for ( ] [ ]0,0.5 , 0,0.5F CR∈ ∈ and NP=30. 
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Figure 4.14, Contour plot for the k-parameter [41]. k>1 over F=0.2. 

 

 
Figure 4.15, Success rate for the minimum seeking on the Cosine Mixture Problem with respect 
to F and CR. Sr=100% over F=0.2. 
 
 

 
 
4.5 Adaptive and Self-Adaptive approaches for control setting 
 

Despite the previous section describes the influence of the control parameters 
in the evolutionary process performed by DE, even with some interesting 
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theoretical results that help significantly the setting, it is clear that all the 
recommendation made before are limited to the DE scheme implemented and to 
the problem nature. Of course the basic concepts explained are valid in a general 
manner, but any problem needs the experience of the user to find the correct 
way to set the algorithm, even with all the considerations previously presented. 
Further, in the case the objective function is implicit rather than explicit, the 
tuning becomes quite difficult.  

To avoid all these inconveniences and to achieve optimal convergence, these 
parameters need to be alterable during the evolutionary process: the tuning in 
that way is made directly inside the evolution. 
Unfortunately all the methods proposed adjust only F and CR, since the 
population size NP is quite difficult to adapt: a fixed value, defined by the user, 
is always used. 

The change of these control parameters can be categorized as follow: 
 

1. deterministic parameter control 
2. adaptive parameter control 
3. self-adaptive parameter control 

 
 
4.5.1 Deterministic parameters’ control 
 

In this setting approach one or more parameters are altered by some 
deterministic rule. This rule is defied by the user, giving more flexibility to the 
evolutionary process; an example, referred to the scaling factor, is: 
 

 ( )max min 1
nfc

nfc
F F F

MAX

 
= − ⋅ −  

 
 (4.43) 

 
In this case maximum and minimum values for F must be chosen and the 

maximum number of function calls must be known. This deterministic rule 
could be implemented in a discrete manner, using the generation number and the 
number of maximum generation allowable. This approach enhances the 
exploration in the early stages and moves toward the local search in the latter. 

It could be applied with all the parameters and with all the variants of DE 
proposed: in fact it is the recommended practice to handle the jumping rate in 
the ODE algorithm [30].  

Nevertheless, the definition of a deterministic rule needs some user 
knowledge, and an efficient definition for one optimization problem might be 
totally inefficient for another one; for this reason also this way doesn’t resolve 
completely the problem. 
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4.5.2 Adaptive parameters’ control 
 

This approach uses heuristic rules, which take into account information about 
the progress achieved by the evolution process to adjust in a reasonable way the 
control parameters. This technique differs from the previous one because it is 
based on the feedback gained by the evolution, increasing the flexibility and the 
ability of the algorithm; in fact the magnitude and the direction of the 
parameter’s change is the result of the evolution itself. 

One approach, already presented for the ODE algorithm [30], modifies the 
domain of the parameters according with the current state of the evolution or of 
them (for ODE the domain changing was related to the variables, in order to find 
the current opposite); for example, the scaling factor could follow the Ali and 
Törn [42] rule: 
 

 

max max
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min min
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f f
F if

f f
F
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F otherwise

f

  
− <   

  = 
  −   
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 (4.44) 

 
where fmax and fmin are the maximum and minimum values of the objective 
function in the current population.  

This formulation reflects the demand to make the search more diversified at 
early stage and more intensified at latter stages: in fact, when the diversity inside 
the population is high, the difference between maximum and minimum function 
values is high and consequently the scaling factor assumes values close to 1, 
enhancing the exploration. The resulting scaling factor lies in a defined 
interval, [ ]min ,1F F∈ , according with the state of the evolution. 

A more complex approach is presented by Zaharie [43], after previous 
theoretical results [41], to adapt the control parameters according with the 
diversity induced in the next population, controlling the ratio between variances 
of the current and previous generation; taking the previous formulation about the 
coupled effects of the three control parameters, an adaptive scheme could be 
drawn: 
 

 
( )
( )

2
12 2

2 1 G

G

Var xCR CR
F CR

NP NP Var x
γ −⋅⋅ ⋅ − + + =  (4.45) 

 
In this formulation, the right hand side is known, since the ratio between 

variances could be computed, and the variable γ is a user-defined parameter. In 
this way the algorithm undergoes a repairing effect, adapting alternatively the 
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scaling factor and the crossover rate (since there is an equation with two 
unknowns) to use in the current population G, according with the magnitude of 
the variation in diversity. The added parameter γ permits a more efficient control 
in the case of high increasing or decreasing; the recommended value is slightly 
greater than 1. Still, the Zaharie approach could be applied only on the DE 
strategies with some theoretical result about the evolution. 

Another interesting work made in the adaptive direction is the fuzzy logic 
implemented to train the algorithm. This version, called FADE – Fuzzy 
Adaptive Differential Evolution [44] – dynamically controls F and CR using 
fuzzy rules based on human knowledge, giving better convergence speed to the 
algorithm, especially in high dimension problems. 

A slightly different approach from the previous one presented is the 
application of competition between different DE schemes inside the same 
algorithm proposed by Tvrdík [45]: this idea permits the selection of the most 
adequate scheme; this selection is driven by the success of the scheme adopted. 
The competition could mix with an adaptive (or quasi-self-adaptive) approach 
the scheme with the most appropriate search ability according with the 
evolutionary stage. 

Defined H settings (combination of F and CR or different DE schemes), the 
algorithm time by time adopts one of them according with the associated 
probability, computed as follow: 
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 (4.46) 

 

{ }1,2, ,h H∀ ∈ …  

 
where nh is the current number of the hth setting successes and n0 must be 
greater than one to prevent dramatic change in the probability. In order to avoid 
degeneration of some strategy, when one probability decrease below a defined 
value, all the probability qh are reset to the initial value 1/H. 

The mutation process induced by a scheme is considered successful if the 
generated trial point shows better fitness than the target vector, that is the trial 
point takes place in the next generation. 

The last remarkable approach presented is called SACPMDE – Self-Adapting 
Control Parameters Modified Differential Evolution [46] – and it combines in a 
greedy manner the DERL [13] approach in order to evaluate the magnitude of 
the perturbation induced in the scaling factor. According with the previous 
classification, this technique must be categorized in the adaptive control 
parameters. F is dynamically adjusted according to the relative position of the 
two randomly selected solutions used in the difference vector: the three 
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randomly chosen vectors are sorted in order to give a precise direction to the F 
perturbation. The scaling factor is then computed as follow, according with the 
syntax used for DERL in Section 4.2: 
 

 ( ) 1

2

d tb
i l u l

d tb

f f
F F F F

f f

−
= + −

−
 (4.47) 

 
This technique uses fitness information in order to weight the scaling factor: if 

the fitness function difference to the numerator is small, it indicates the 
proximity of the two solutions; otherwise, a larger scaling factor is generated, in 
order to explore other regions of the search space. 

While the scaling factor is generated according with the tournament best 
approach, the crossover rate CR needs population information to be adapted.  
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f f
CR CR CR if f f

f fCR
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
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 (4.48) 

 
In that way CR reflects the amount of the diversity to induce in the next 

generation for each individual, according to the fitness function of the i th 
solution related to the averaged state of the population: if the target vector has 
high fitness value, that means poor performance, the crossover rate is large, 
allowing the entrance of new information. 
 
4.5.3 Self-Adaptive parameters’ control 
 

This approach represents the evolution of the evolution: the parameters to 
adapt are encoded into the chromosome and undergo the algorithm’s operators 
in order to permits the survival and the propagation of the better parameters, 
which are more likely to produce good offspring: thereby the parameters need 
only an interval of existence. 

The self-adaptive approach, like the adaptive, adapts only the scaling factor F 
and the crossover rate CR, but it takes these two parameters as variables that 
affect the solution. 

Some self-adaptive strategies are presented below. 
 
SACPDE and its variant 

One version and its variant, called SACPDE and SACPDE2 (called also jDE 
and jDE2) proposed in [47] and [48] respectively, uses the following 
formulations for the control parameters’ evolution: 
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This procedure seems substituting the setting of F and CR with the setting of 
τ1 and τ2, but these two values don’t show high sensitivities on the behaviour of 
the algorithm. They could be chosen from the interval [0.05, 0.3]. Defined these 
two values and the upper and lower values for the scaling factor Fu and Fl, the 
self-adaptive algorithm allows the propagation of the fittest individuals that 
bring the parameters used to generate them. This approach gives more flexibility 
to the algorithm, without any restriction during the evolution about the control 
setting. In order to make the algorithm totally flexible, SACPDE2 uses the same 
formulation regarding the parameters’ evolution, but it implements different DE 
strategies (like in the adaptive DE proposed by Tvrdík [45]), which need 
different parameters’ setting. For this reason the individual’s chromosome is 
composed by the variables of the system and parameters assigned to each 
strategy used. 
 
SaDE algorithm 

SaDE [49] uses different DE strategies coupled with a different approach for 
the self-adaption of the parameters: it takes information from learning periods, 
in which the success of strategies are collected together with the CR that allow 
the generation of good children. The scaling factor is not adapted but just 
generated randomly with normal distribution within a wide range F~N(0.5,0.09), 
while CR~N(CRm ,0.01). 

After the learning periods, new strategy probabilities and crossover rate 
average are computed, in order to direct the evolution toward the necessary 
strategy with the correct crossover rate. 
 
SDE algorithm 

A possible approach is to use the mutation rule also for the control parameters: 
instead the variables of the individuals, the parameters that now belong to the 
chromosome are generated applying the mutation process, as the following 
formulation for the scaling factor: 
 

 ( ) ( )
1 2 3, 1 , , ,0,0.25i G r G r G r GF F N F F+ = + ⋅ −  (4.50) 

 
The magnitude of the perturbation (in this case it is used a normal distributed 

scaling factor for F) slightly depends on the problem nature. This technique is 
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proposed in SDE [50] and SPDE [51] with some advantages, especially for 
noisy functions. 
  
 

4.6 Multi-objective optimization 
 

As stated in Chapter 1, the correct way to handle a multi-objective 
optimization process is to find a set of non-dominated solutions that form a 
Pareto-frontier from which take one equally good solution. However, some 
alternatives are used in practice for GAs and EAs in general (Section 3.3). 

EAs, like DE and all its variants, have recently wide success in this practice 
especially for their population based-approach that allows multiple function 
evaluations in a single run. 

The concept of non-dominated solution is quite different from a single-
objective optimization: anyway the first attempt used for solving MO problem 
was collecting all the properties fk(x) in a unique overall function, as for the 
penalty method used in handling constraints. In fact the penalty method’s 
feature is to incorporate the constraints into the objective function, penalizing it. 

For their similar nature, MO problems could be solved as single-objective 
optimization constrained problems, choosing an objective function penalized by 
the others. The weakness of this method is the uniqueness of the solution, 
dependant on the design of the penalty function. Nevertheless, the most pursued 
practice is providing multiple solutions and passing the final solution to a 
decision maker, maybe helped by a clustering method of the Pareto-front. 

In these cases the multi-objective optimization problem becomes a single-
objective problem, treated by the algorithm as usual; it’s important adopting a 
correct definition of the integrating function; the easiest way is using the 
weighted sum of the normalized objective functions: 
 

 _ min
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where q is the number of the properties to optimize or the sum of the number of 
properties and constraints blended in the overall function, wk are the functions’ 

weighting factors, 0 < wk < 1 and usually 
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Then the optimization task (in terms of minimization) becomes: 
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 ( ) ( )* *x z x z x x< ∀ ∈Ω  (4.53) 

 
Another example of overall function could be: 
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The normalization is a good practice because the objective functions could 

have different orders of magnitude, especially in real-world optimization 
process. If minimum and maximum values are not known, as in many cases of 
industrial processes, these values are estimated from the current population. 

The choice of the weighting factors, or in general the design of the overall 
function, unbalances the result of the optimization, giving different importance 
to the objective functions. The setting of these weights move the optimization 
toward a specific objective function: if the weight is high respect to the others, 
the algorithm tends to explore the region of minimization of that target. 
Changing then the weights, each run returns a point that should lie on the Pareto 
frontier. In order to obtain a dense Pareto front, the number of weights’ settings 
and runs must be high. 

Clear examples of MO problem solved with an overall function are all the 
economic problems (plain aggregating approach): all the weighted factors are 
replaced by the costs of the properties of the system, shifting really all the 
objective functions under an economic point of view. 

Another approach that could be implemented in EAs is a non-Pareto approach 
in which the total population is divided in sub-population, each of which has to 
optimize only one objective function: this approach, used in VEGA [7], is poor 
in Pareto terms, since the non-dominance of the solutions generated is limited to 
the reference population of the objective function. 

However, better results are given by a non-dominated sorting algorithm, based 
on a Pareto approach, in which the sorting procedure is called after each 
generation to remove dominated solutions, refining the population, and ranking 
the remaining solutions; the idea was proposed in [1] and successively applied. 
The most famous GAs developed for MO optimization are: NSGA-II [52-53], 
SPEA [10] and PAES [11].  

DE could tackle the multi-objective optimization in different ways: the 
classic archive approach, briefly resumed in Section 3.3 for GA, fits nicely 
thanks to the goodness of the mutation and crossover procedures of DE, but the 
improvements respect to GA for this problem are not significant. It works 
similarly creating a population of trial vectors, and it ranks this temporary 
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population, as for the progeny in GA. The trial solutions with rank 1 are then 
sent for comparison in the main archive. 

In fact, in recent years a slightly different approach is used for DE in multi-
objective optimization: the archive of non-dominated solutions is removed, and 
only the population is the archive present. 

Common features of the Pareto-based approaches are that the Pareto-optimal 
solutions in each generation are assigned either the same fitness (or rank) and 
that some sharing or niche technique is adopted in the selection procedure.  

Some way to solve multi-objective optimization with DE are then presented 
and briefly described, since the main feature of DE are the same for single and 
multi-objective problems. 
 
PDE Approach 

This method – Pareto-frontier Differential Evolution Approach [54] – uses the 
classical DE random (see Section 4.1) approach with some modification and 
adaption for MOP: 

• The initial population is initialized according with a Gaussian 
distribution 

• The scaling factor is normally distributed F~N(0,1) 
• The individuals used for reproduction must be a non-dominated 

solutions 
• Some repair rule referred to the domain is applied  
• Trials replace their basis vectors if they dominates them, otherwise the 

reproduction is repeated 
• All the dominated solutions are removed 
• If the number of non-dominated solutions exceeds some threshold, a 

distance metric relation is used to remove solutions close to each 
others. 

This method is very sensitive to the CR, and it works better with low crossover 
rates, evident sign of low convergence speed of this method. Nevertheless the 
resultant Pareto-frontier has good diversity. A Self-adapting approach on CR 
and mutation rate, inherited from the parents, is combined with this method: the 
new algorithm, SPDE [55], presents improved behaviour, convergence speed 
and superiority compared with other algorithms. 
 
MODE algorithm and its variants 

The first proposed MODE – Multi-Objective Differential Evolution [56] – is 
practically similar to PDE, with some little difference about the initialization, 
the handling constraints and the removal of crowdedness, since its first 
application was the optimization of an industrial process.  

Based on real-optimization problem, the initialization is performed uniformly, 
a penalty method is applied for handling constraints and the number of 
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population decreases in every generation because if a child doesn’t dominate its 
target vector, the reproduction is not repeated as in PDE. In fact the first version 
of MODE represents just the application of non-dominating sorting in DE to 
skim the population, removing dominated solutions and achieving only the non-
dominated ones to continue the reproduction. The comparison with other 
algorithm was based on economic evaluation and the results were interesting. 
One of the main weaknesses of this implementation is the fast diminishing of the 
individuals in the population: applying a removing of dominated solutions each 
generation, the population size quickly diminishes, loosing in diversity. The 
reproduction procedure has poor genetic material to mix and the stagnation is 
achieved soon. For this reason, this multi-objective scheme is considered 
unsatisfactory. 

Other modifications [50] are then introduced to overcome the clear lacks of 
the previous version of MODE: a second version, MODE-II, maintains the 
number of individuals in the population constant, generating random solutions, 
even if dominated, after the removing of dominated solutions for each 
generation. In that way the algorithm has more probability to continue the 
evolution without any premature stagnation due to the diminishing of the 
population size, since the constant insertion of new genetic material. This 
approach works better respect to MODE-I, achieving the Pareto front, but the 
time to obtain a solution is comparable or even higher respect to the other 
algorithms. 

A third version, MODE-III, uses a revolutionary idea for the multi-objective 
optimization: it exalts the recombination of DE and its selection procedure, 
applying the removing of dominated solutions only at the end of the evolution.  

In this scheme, each trial vector, generated by mutation and crossover 
operations, is compared only with its target from which it inherits some 
variable, and, if the trial dominates the target vector, it takes its place in the 
population for the next generation, otherwise the target vector survives. The 
selection is therefore applied with its original purpose but in multi-objective 
concept of dominance. Unexpectedly, this procedure works well, saving 
considerable time because no ranking of the population is adopted during the 
evolution and a dominated comparison is made only NP times each generation 
(comparison in the selection process between trial and target). Of course, 
without any ranking, the selection of the individuals for reproduction can be 
only random, since no fitness information could be used for the selection of 
parents without a ranking of the population. Thanks to the goodness of the 
reproduction ability and exploration of DE, the Pareto frontier is achieved by a 
high fraction of the population.  

As for the previous MODE versions, MODE-III does not use archive for the 
storage of non-dominated solutions. The only archive present is the population: 
it starts at the beginning with few non-dominated solutions, but the greediness 
of the selection procedure for the next generation is its strength. In that way, 
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the archive of the non-dominated solutions and the population are the same 
thing. 

Some comparison is made in [57] and it is clear, MODE-II and MODE-III 
outperform MODE in terms of Pareto-frontier’s shape at the cost of extra 
computational time. MODE-III, anyway, is considered the most reliable and 
promising DE variants for multi-objective optimization. 

 
 
Successive improvements, hybridizations and sophistications are proposed in 

literature; the goodness of these attempts is clear since DE gains a lot from the 
blending of techniques and methods. 

Some interesting examples are the H-MODE proposed in [14], [15], where 
each non-dominated solution is then locally optimized by s sequential simplex 
method, and the application of trigonometric mutant operator to MODE-III 
proposed in [58]. 



 

 

Chapter 5 
 
Case studies 
 

This chapter has the purpose to show the improvement of DE respect GA, both 
in single-objective and in multi-objective optimization. Farther, DE is tested on 
real optimization cases of complex industrial systems for the Oil&Gas industry 
and the nuclear industry. 

The comparison is made first with benchmark problems, characterized by 
different dimensionalities and complexity, in order to evaluate the behaviours of 
the algorithms and the sensitivities of DE on its parameters. 

DE is then applied to a real case of the Oil&Gas industry: thanks to the 
apprenticeship made inside the PROD department of Eni E&P division, an 
integrated optimization tool, equipped with DE, has been built. This tool is 
flexible and adaptable to many situations. Its general task is to optimize 
whatever property of the system defined by the user. A particular highly-
constrained case is taken as case study for the goodness of the tool. 

At the end, DE is tested on a reference case for the nuclear industry: the 
inspection intervals optimization is a difficult task for a safety system, since the 
presence of conflicting objective functions. Then, the problem is tackled with a 
multi-objective optimization. Starting from results previously obtained on this 
problem, the DE abilities and results are compared with GAs suited for multi-
objective optimization. 

All the results present in this chapter are obtained on a machine with these 
characteristic: 

HP, Genuine Intel® CPU T2050 @ 1.60 GHz, 0.99GB of RAM. 
 
 

5.1 Comparison in single-objective and multi-objective 
optimization on benchmark problems 

 
The comparison is made with the purpose to demonstrate the robustness and 

the high reliability of DE and many of its variants; the improvements respect to 
GAs are measured in different ways, since the different optimization’s natures. 
The tests reported in this section are conduit on benchmark problems taken from 
literature, even for single-objective and multi-objective optimization. A final 
conclusion is made at the end of the tests. 
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The evolutionary algorithms treated in this chapter are: 
1. Genetic Algorithm Toolbox developed by Mathworks; this a commercial 

version for GA, suitable for several problems without any re-
programming phase, offered by Mathworks; the setting is not banal, good 
solutions in complex problems could be achieved only with a correct 
setting of the whole sophistications after a previous tuning; 

2. Multi-Objective Genetic Algorithm MOGA, a tool developed in 
FORTRAN by LASAR (LAboratory of Signal and Risk Analysis 
http://lasar.cesnef.polimi.it/) of the Energy Depratment of Politecnico di 
Milano; it has several variants adoptable, both in single-objective and 
multi-objective optimization, and the number of information necessary to 
its running is high. Furthermore, a wrong strategy selection could 
provoke failure of the optimization. Also for this tool the setting is not 
easy. 

3. Multi-Objective Differential Evolution MODE, developed by LASAR, 
provided with the single-objective and multi-objective optimization 
options. Several variants are implemented in the tool, in order to increase 
its flexibility and ability to tackle different problems. For multi-objective 
optimization option MODE-III, described in Chapter 4.6, is implemented; 

4. Simple real-coded GA: it has an easy implementation of GA written in 
Matlab; the structure is practically the basic version of GA, without any 
further specific alteration. The setting is easy but the reliability is poor in 
complex situations. 

 
5.1.1 Single-objective optimization 

 
This section is organized as follows: the problem is first briefly described, 

then, the setting for any algorithm is explained. Then, the results and some 
sensitivities are reported and commented, taking into account the characteristics 
of the algorithms and the setting adopted. 

 
The problem 

This case study is conduit on 23 benchmark functions taken from [59] and 
reported in Appendix A. The functions have different properties, 
dimensionalities and complexities. The true global optimum of the objectives 
functions are known and usually clearly defined or defined with a good accuracy 
(maximum error = 1·10-4).  

For this case study the optimization is unconstrained; then, no methods for the 
satisfaction of constraints are reported; only repair rules for the satisfaction of 
the solution’s existence on the domain are applied. 

The selection of these benchmark functions has the aim to understand the 
behaviour of different variants of algorithm, since it is clear the reproduction 
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method, the parameter setting and the stopping criteria influence the issues of 
the optimization. 

The dimensionalities are between 2 and 10, the domain could be wider, in 
order to evaluate the speed of the algorithm to restrict the searching area, or the 
function shape could be multimodal, to evaluate the ability of avoiding local 
minima (several or close to the true optimum). 

In this case study the algorithms GA-toolbox, MODE and simple GA are 
tested. 

Each optimization is repeated 50 times in order to obtain significant statistical 
values with respect to the randomness. 

 
The algorithms’ setting 

Genetic Algorithm toolbox (GA-toolbox) has several sophistications and 
internal variants. A complete descriptive help is available on the program and 
online. When no particular settings are imposed to this tool, many of the 
sophistications implemented are used with default setting. Anyway, the correct 
usage for a specific problem needs substantial knowledge of the tool. 

The GA-toolbox setting is made by literature and owner recommendations; the 
options applicable to this tool are several, but for our test the setting is restricted 
to basic options like population size, selection rule, crossover rate and 
replacement procedure.  
The whole of these options are explained in the help of the function 
gaoptimset . When nothing is specified, the tool sets automatically the default 
value recommended by the owner. 

The setting used in our test is: 
 

'PopInitRange'  [low;up] 
'PopulationSize'  30 
'EliteCount'   dim 
'CrossoverFraction' 0.7 
'Generation'   500 
'TolFun'   1e-4/1e-8 
'StallGenLimit'   50 

 

The default setting for the parents’ selection is the so called, Stochastic 
uniform : it lays out a line in which each parent corresponds to a section of the 
line of length proportional to its scaled value. The algorithm moves along the 
line in steps of equal size. At each step, the algorithm allocates a parent from the 
section it lands on. The first step is a uniform random number less than the step 
size. 

The crossover is single-point and it is applied with probability 0.7, defined by 
Crossover-Fraction . 
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The replacement rule for the next generation is the simplest one already 
presented in Section 3.2: the two new children generated replaces the parents. 
Only this option is allowable in the tool. 

The values low , up and dim  are different for each benchmark function and 
loaded function by function. The population and the maximum number of 
generation are fixed for all the algorithms respectively to 30 and 500, in order to 
have a fixed maximum number of function evaluations as 15000. 

The option EliteCount  specifies the number of best solutions that survive to 
next generation without any change, and this value is set as the dimensionality 
of the problem. 

A default option for the mutation uses the classic uniform mutation with 
probability 0.01.  

The stopping criteria adopted are two:  
� StallGenLimit  generations over which cumulative change in fitness 

function value is less than TolFun  
� reached 500  generations 
In order to test the ability of this tool and reach similar behaviour with the 

other algorithms, the value of TolFun  is diminished till 1e-8 . 
 

For MODE in single-objective optimization, eleven variants are implemented 
and tested in order to evaluate the goodness of each strategy. These variants are 
seven promising mutation variants described in Section 4.1 and 4.2 and four 
adaptive or self-adaptive schemes explained in Section 4.6. They are considered, 
efficient, easy to use and reliable. 

Further sophistications, like ODE, DELB, DEPC, MDE and NSDE (Nonlinear 
Simplex DE), don’t belong to the class of basic modifications on solutions and 
they are not tested, because their improvements are independent and applicable 
regardless the mutation scheme adopted. They are considered hybridization of 
the optimization process between different strategies, like for NSDE or ODE: the 
skills of Nonlinear Simplex Method or of the Opposition Based Optimization are 
coupled with the robustness and reliability of DE. 

 
The proposed implementations have approximately the same parameters 

(except for the adaptive schemes) but different mutation approaches, taking 
sometimes information from the fitness. 
The following common setting is adopted: 
 

Population size NP  30 
MAXGEN    500 
eps    1e-4 
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and the diversified settings are: 
 

1. DE random  F=0.5, CR=0.5  

2. DE best  F=0.5, CR=0.5  

3. DE current-to-best F1=0.8, F2=0.5, CR=0.5  

4. TDE   F=0.5, CR=0.5, MT=0.1  

5. NSDE   CR=0.5, NS=0.5  

6. DERL    F=0.5, CR=0.5  

7. DERL 2  F=0.5, CR=0.5  

8. DE_adapt  Fmin=0.1, CR=0.5  

9. SACPDE  Fmin=0.1, Fmax=1, Fc=0.1, CRc=0.1  

10. SACPMDE  Fmin=0.1, Fmax=1,  
CRmin=0.05, CRmax=0.8  

11. SDE   OPmean=0, OPstd=0.7  
 
The crossover rate CR is set as 0.5 for all the variants. This choice is driven by 

the necessity to test the different strategies under similar algorithm’s conditions 
but over several problems. As for CR, also the scaling factor F is set as 
recommended by the literature. Since the correct working range of F is (0, 1], 
instead the initial definition of (0,2] made by Storn and Price [21], this 
parameter is set to 0.5 if the variant requires it. In the other cases, like for DE 
current-to-best, the second scaling factor F2 has the same role of the classic 
scaling factor; then it is set to 0.5, while the first scaling factor F1 is set to 0.8 in 
order restrict the searching area. For TDE, since it uses also the DE random 
reproduction technique, the set of CR and F is as the other, while the probability 
of trigonometric reproduction is set as 0.1; so, the 10% of the mutation phase is 
performed with TDE. This set should show the goodness of this practice over 
the 23 benchmark problems. NSDE has like the others 0.5 as crossover rate; the 
parameter NS∈[0,1] control the step-length of the search: if NS is high, the 
search is more concentrated in the neighbourhood, whereas if it is small the step 
length is high, useful for exploration on large domains. In order to keep balance 
between this two strategies, NS is set to 0.5. 

For the adaptive and self-adaptive variants the parameter setting is necessary 
but it’s less sensitive on the final result, since a domain for the parameters is 
required: for all of them, Fmin is equal to 0.1, while for SACPDE and SACPMDE 
also the maximum scaling factor is required: Fmax=1. SACPDE (see Section 
4.5.3) requires also the two added parameters, τ1 and τ2, here called Fc and CRc. 
They control the probability of the evolution of the parameters F and CR. They 
are set as 0.1, a value recommended in [47-48], since frequent parameters 
changes are not beneficial for the evolution. SACPMDE needs minimum and 
maximum values for crossover rate: 0.05 and 0.8 are considered the maximum 
and minimum value for good algorithm behaviour. The evolution of the 
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parameters in this case is driven by fitness feedback information. SDE has the 
two parameters OPmean and OPstd: its mutation procedure applied to the 
parameters F and CR uses a Gaussian random variable with mean equal to 
OPmean and standard deviation equal to OPstd. In order to obtain different 
scaling factor for this procedure, even negative, the mean is set as 0. 

The stopping criteria for MODE are: 
� ∆=|fmin-fmax| of the current population is less than eps: the whole 

population is converged at the same point if eps is sufficiently small 
respect to the fitness’s order of magnitude; 

� reached MAXGEN generation. 
 
When the first stopping criterion is met the algorithm alts because no more 
exploration could be performed. In case of multimodal function with local 
optima, the alt by the first criterion to a wrong solution means the inability of 
the algorithm to find true optimum. 
 

The simple real-coded GA, implemented with the purpose to show the feature 
of a basic GA, is written in one script in Matlab. Since DE random has an easy 
implementation as simple GA, a direct comparison could be done between these 
two EAs.  

DE random represents the basic idea of DE, while simple GA has the classical 
procedures of GA for real-coded variables. 

The encoding for simple GA is made in floating-point representation. The 
parents’ selection procedure is called Fit-Random Selection, and it is 
hybridization between the Fit-Weak Selection and the Random Selection 
explained in Chapter 3; after the ranking of the population by fitness 
comparison, the first parent is selected from a fittest fraction of the population 
defined by the user: the lower this fraction, the higher the fitness of the first 
parent. Nevertheless, if this fraction is too low, the number of solutions at 
selection disposal is too small and the evolution could be affected by premature 
stagnation. The second parent is then selected randomly from the entire 
population. On average, the fitness of the second parent is lower respect to the 
fitness of the first one, as for the Fit-Weak Selection, but the randomness 
introduced for the second parent selection leaves interesting opportunities to 
avoid the weaknesses of the two selection procedure hybridized.  The crossover 
method is single-site crossover, and it is coupled with the arithmetic blending 
rule (3.2). The replacement rule is a Fittest Replacement but applied to the pool 
formed by the parents and children populations. This replacement is coupled 
with a high random mutation probability to avoid stagnation. 

The parameters’ setting for simple GA is: 
 

Population size NP  30 
Fit selection fraction NP/2 
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Reproduction alfa  0.7 
MAXGEN    500 
eps    1e-4 
Mutation Mt   0.1 

 
As for GA-toolbox, the population size and maximum number of generation 

are 30 and 500 respectively. The hybrid selection procedure chose the first 
parent from the fit selection fraction . The alfa  parameter is the 
fraction inherited from the first child to the presumed fittest parent used in the 
blending method: the second child inherits the reciprocal genetic material from 
parents. 

The stopping criteria are the same as for MODE. 
 
Measures 

The measures utilized to evaluate and compare the goodness of the 
algorithms are taken from literature and allow a correct characterization of 
the solutions. These measures, proposed for SO, have statistical significance 
since are reported as average over the 50 runs: 

1. Function evaluation fe: this value represent the number of the objective 
function’s calling; higher the fe, slower the convergence of the 
algorithm. Anyway, since the stopping criteria are referred to a 
maximum value for generations (and consequently to fe) or the 
maximum fitness difference inside the population, fe equal to the 
maximum value (NP*MAXGEN) doesn’t indicate the absolute inability of 
the algorithm, because the true optimum could be reached by some 
solution in the algorithm and not by the whole population. 

2. Cpu: it indicates the cpu time (expressed in seconds) necessary to 
complete the optimization. Together with fe, it could represent the 
convergence of the algorithm but also the complexity of the 
implementation. 

3. Success rate sr: it expresses in % the fraction of success to find the 
optimum (it isn’t an average); it represent the ability to find the true 
optimum under a specified tolerance (eps=1e-4). If the optimum found 
by the algorithm is closer with a smaller tolerance than eps, the 
optimization is considered with success. It could be computed only if the 
true optimum is known. The success could be achieved even if the 
number of function evaluation reaches the maximum: that means not the 
whole population converge to the same point but at least the best 
solution is locate to the optimum. 

4. Relative error lambda: this value, already proposed in [45], is useful to 
compare the accuracy of a solution. The higher the lambda, the higher 
the accuracy of the solution. The value is referred to the fitness function 
value and the rule is: 
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Where m is the value found by the algorithm and c is the certified true 
optimum. 

For a complete evaluation on the 23 benchmark functions, the summed values 
of the previous measures are used as comparison between strategies. Of course 
the sum cannot explain deeply the behaviour but gives a meaningful overview. 

 
Results and sensitivities 

Table 1 reports the results obtained by the two type of GA tested: GA-toolbox 
and simple GA. For the first, two eps (1e-4 and 1e-8) as stopping criteria are 
used and reported. 

Figures 6, 7, 8 and 9 plot the summed values over the 23 problems of the 
fourth measures (fe, cpu, sr and lambda in sequence) for the three test on GA 
and for the results obtained with the basic DE variant DE random, reported in 
the first column of Table 4 together with other DE variants. 

 
Simple GA has the worse behaviour even in comparison with GA-toolbox. The 

number of fe is often high (Figure 6), close to the maximum for the more 
difficult problems that have dimensionality over two (f5, f6, f8, f15, f19-22, see 
Appendix A for further information). As said before, high fe does not mean 
failure of the run, since the true optimum could be achieved by some 
chromosome in the population. In fact, sr has values between 0 and 92 for these 
functions (Table 1): that results depend on the problem nature and the specific 
exploration ability of the algorithm, which could be effective for some 
function’s shape (e.g. f8, f15) and completely inefficient for another one. 
Anyway, from a general point of view, simple GA uses a significantly higher 
number of fe, with a scarce sr and the lowest lambda in the tests (Figure 8 and 
9), that means small accuracy of the solutions. 

Analysing the GA-toolbox results, a first oddity is the number of fe, really 
small, even with TolFun=1e-8; this behaviour is due to the different stopping 
criteria allowable: in fact, many of the runs stop at the value 1560 fe, that means 
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52 generations. Only after 2 generations the cumulative change in fitness 
function is less than Tolfun, sign of a scarce diversity in the population, even 
with a crossover fraction of 0.7. This premature stagnation however does not 
imply low sr, since this measure is often a good value, but it means high 
exploration in early stages and rapid loss of diversity, which could be symptom 
of ineffectiveness for some specific problems. The lambda values are acceptable 
but the cpu, especially for the smallest TolFun, is almost the double (Figure 7). 
This behaviour depends on the implementation: the GA-toolbox has many 
functions and scripts callings due to its complexity, while simple GA, written in 
a single script, has nearly four times fe and less cpu. 

Comparing the two GA-toolbox tests, a diminishing of TolFun increases as 
expected the performances: sr and lambda increases, together with fe and cpu, 
since no greedy alterations are introduced: only a more strict stopping criterion 
is adopted and the searching is obliged to continue. 

 
 

Table 5.2, GA-toolbox and simple GA results on the 23 benchmark functions for SO. GA-
toolbox is tested with two eps  values (1e-4 and 1e-8). 

  ga-toolbox eps=1e-4 ga-toolbox eps=1e-8 simple_ga 

f N fe Cpu sr lambda fe Cpu sr lambda fe cpu sr lambda 

1 2 1560 0.262188 48 3.337935 1560 0.260625 70 4.429559 9359.4 0.201563 14 3.666839 

2 2 1560 0.255938 2 1.782227 9119.4 1.466875 10 3.066425 9305.4 0.19875 74 4.937371 

3 2 1560 0.277813 100 5.294264 1560 0.289688 98 5.193207 8529 0.197188 34 3.910006 

4 2 1560 0.259688 100 5.732996 1560 0.260938 100 5.727077 6010.8 0.13375 36 3.95401 

5 4 1560 0.257188 14 3.272079 1571.4 0.26125 8 3.518582 14439 0.386875 40 6.476024 

6 10 1655.4 0.249375 0 0.464211 5467.8 0.79375 4 1.142977 14434.8 0.565 0 1.340839 

7 2 1560 0.258125 56 4.702975 3231 0.525938 42 4.042097 8140.8 0.171563 60 4.144548 

8 10 1560 0.231563 0 2.046865 3520.8 0.517188 26 3.597903 12152.4 0.454375 92 5.197668 

9 2 1560 0.260938 86 3.140897 1560 0.2625 92 3.342827 6666 0.143125 34 2.992255 

10 2 1560 0.255938 100 9.278239 1560 0.256875 100 9.188656 4248 0.089375 76 5.270968 

11 2 1560 0.256563 88 6.684636 1562.4 0.257813 90 7.00122 10475.4 0.221563 34 3.401784 

12 2 1560 0.258125 74 6.024265 1563 0.260938 90 7.20684 6503.4 0.137188 74 4.541488 

13 2 1560 0.259063 92 8.39535 1560 0.26375 96 8.756039 3133.2 0.067813 82 4.849783 

14 2 1560 0.259375 100 4.559536 1560 0.260313 98 4.470347 8883 0.19625 26 3.319797 

15 4 1560 0.257813 62 3.502271 1919.4 0.318438 88 4.617155 13677.6 0.350625 98 4.998141 

16 2 1565.4 0.259375 54 7.783416 1602 0.26625 56 8.368153 14670 0.314688 2 2.384518 

17 2 1560 0.257188 98 8.501827 1560 0.260625 84 7.150096 4440 0.094688 54 3.6255 

18 2 1560 0.257188 94 6.588132 1593.6 0.263125 84 6.058933 9528 0.203125 16 2.439503 

19 10 1587 0.24125 0 1.554397 4684.2 0.690313 36 3.681347 14808.6 0.578438 0 0.750079 

20 3 1599 0.264375 58 4.205901 2013.6 0.330313 98 6.025114 15000 0.3525 0 0.833544 

21 3 1560 0.260625 84 5.888504 1636.8 0.274375 94 6.052147 14191.8 0.343125 84 5.089597 

22 10 1832.4 0.271563 0 0 6420.6 0.926563 0 0.073786 14720.4 0.575313 4 1.346921 

23 2 1560 0.2625 18 1.657683 1560 0.264375 14 1.654446 7485.6 0.165938 36 3.665762 

                 

    sumsumsumsum    36319.236319.236319.236319.2    5.933755.933755.933755.93375    1328132813281328    104.3986104.3986104.3986104.3986    59946599465994659946    9.532819.532819.532819.53281    1478147814781478    114.3649114.3649114.3649114.3649    230802.6230802.6230802.6230802.6    6.142816.142816.142816.14281    970970970970    83.1369583.1369583.1369583.13695    
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Figure 5.16, Sum of the function evaluations for three GA tested and for DE random over 23 
SO problems. 
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Figure 5.17, Sum of the cputime used for three GA tested and for DE random over 23 SO 
problems 
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Figure 5.18, Sum of the success rates for three GA tested and for DE random over 23 SO 
problems. 
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Figure 5.19, Sum of the lambda obtained for three GA tested and for DE random over 23 SO 
problems. 

 
The basic DE version, DE random, (see Table 2), used as reference for DE in 

this test, outperforms the other algorithms in terms of cputime, sr and lambda, 
using however more fe than GA-toolbox (Figure 7, 8 and 9). The ability of DE is 
significantly better in almost all the problems, achieving 100% of sr, except for 
high dimensionality (f6, f10, f22), where the sr collapses close or to 0. This 
stagnation depends on the setting parameters; in fact, the three parameters could 
affect the optimization results. In order to find the most significant parameter for 
the success of DE, Figure 10, 11 and 12 show the dependencies of the results on 
NP, F and CR respectively, applied on f6, the Ackley’s problem (see Appendix 
A), one of the most difficult since its dimensionality (n=10) and high number of 
local optima. The basic setting is NP=30, CR=0.5 and F=0.5; when a 
parameter’s sensitivity is evaluate, the other parameters are kept as just defined. 

 
Figure 5.20, Population size’s (NP) effect on the four measures for the Ackley’s problem (f6) 
for DE random with F=0.5 and CR=0.5. 
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Figure 5.21, Scaling factor’s (F) effect on the four measures for the Ackley’s problem (f6) for 
DE random with NP=30 and CR=0.5. 
 

 
Figure 5.22, Crossover rate’s (CR) effect on the four measures on the Ackley’s problem (f6) for 
DE random with NP=30 and F=0.5. 
 

The amount of induced perturbation is essential to find the true optimum: for 
this reason, the population size NP does not have effect on the sr and the whole 
runs continue till the maximum number of generation allowable: the unique 
effect is to increase the fe since the increasing of NP.  

F and CR intervene on the perturbation generation by generation: F with the 
current setting has any effect only around 0.3 (see Figure 11), but not enough 
significant. Small F brings to premature stagnation since the low exploration 
ability and high F makes impossible to localize the restricted area of the true 
optimum. 

 High sensitivity is noticed with CR (see Figure 12): when it approaches 
values around 0.1÷0.2, the sr grows up till 100%, and the fe diminishes 
significantly. This behaviour is due to the high dimensionality and the 
multimodality of the function: inducing frequent modifications in the 
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population, premature stagnation has been found, avoiding any possibility to 
escape from local optima; the indicator of this situation is lambda, which settles 
around 0.4 for CR values greater than 0.5; the same lambda value is approached 
by settings with F greater than 0.5. 
The effect of F with a good CR=0.1 setting is showed by Figure 13. 
 

 
Figure 5.23, Scaling factor’s (F) effect on the four measures 
for the Ackley’s problem (f6) for DE random with CR=0.1. 

 

Interesting is the behaviour of fe  in this case: the F value of 0.5  demarks a 
trend’s change on fe , even if sr  remains high (over 70%) and lambda  
moves around 4 (that means success of the run, since the sr  criterion). 
It is clear, the issue of a run depends both from F and CR together, but in this 
case the CR effect is preponderant; in order to prove it in this particular case (f6, 
Ackley’s problem), the following test is performed on DE random with 
Fi~U(0,1), for each solution, eliminating the direct interaction between them, 
and three settings of CR, 0.1, 0.5 and ~U(0,1).  
 
Table 5.3, Function evaluations, cputime, success rate and lambda obtained on Ackley’s 
problem (f6) by different settings on DE random. In this case Fi~U(0,1). 

CR fe cpu sr lambda 
0.1 9958 0.734 98 4.375 
0.5 10892 0.825 46 2.873 

~U(0,1) 10488 0.800 66 3.293 
 

Making CR a uniform random variable doesn’t assure high success. The 
results obtained with low crossover rates show an increased success rate (really 
close to 100%) for this difficult problem. A side effect of this set is the increased 
computation time due to the increased number of function evaluation necessary. 
Low CR means less improvement due to the mutation process between two 
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consecutive generations: however, this set allows the attainment of the global 
optimum. In fact, the lambda  value is over 4 (the minimum eps allowable for 
stopping criterion is 1e-4). 

Proved the importance of CR on the success of DE random on high 
dimensional function, the effects on the whole 23 functions of this parameter is 
tested for DE random and DE best with four CR settings: 0.1, 0.3, 0.5, 0.7.  

Table 3 shows only the effects on the summed measures for the test on 23 
problems. 

With small CR, fe  increases (and quasi-proportionally as cpu ) in both 
variants, since the small perturbation induced in the population as proved with 
the sensitivities: the convergence speed is low but the success becomes close to 
the maximum; the lambda  is high, symptom of high accuracy. The success 
for the random version is higher than the best variant, but the latter uses less fe  
and at the same time it has better accuracy:  that means DE random is more 
reliable but with a lower convergence speed and a lower general accuracy. 

 
Table 5.4, Summed measures for different CR settings used in the test on 23 problems for two 
variants: DE random and DE best. 

Set Σfe Σcpu Σsr Σlambda 
DE random     

CR=0.1 84253 5.600 2222 140.9 

CR=0.3 78219 5.328 2104 131.9 

CR=0.5 76865 5.370 1938 119.8 

CR=0.7 75156 5.339 1938 117.5 

DE best     

CR=0.1 54168 3.698 2094 142.9 

CR=0.3 37164 2.540 1934 125.2 

CR=0.5 29894 2.049 1886 120.6 

CR=0.7 23770 1.631 1810 114.4 

 
This trend could be expected for all the variants proposed but surely with 

different sensitivities. For this reason the usage of a unique CR=0.5 in the 
evaluation of the other variants permits the understanding of the single abilities, 
without taking into account the most significant impact due to CR just proved.  

Tables 4-7 show the results in the 23 functions for the eleven variants 
proposed and Figures 5.9-5.12 plot the summarized results. 
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Table 5.5, Results on 23 benchmark problems with different dimensionality and complexities 
for DE random, DE best and De current to best variants. 

  DE random DE best DE ctb 

  NP=30, CR=0.5, F=0.5 NP=30, CR=0.5, F=0.5 NP=30, CR=0.5, F=0.5 

f n fe cpu sr lambda fe cpu sr lambda fe cpu Sr lambda 

1 2 1388.4 0.08625 100 5.955095 725.4 0.046563 100 5.949586 15000 0.909375 96 5.736093 

2 2 1861.8 0.110313 100 6.587912 870.6 0.05125 100 6.86819 11634.6 0.69875 100 10.0571 

3 2 1084.2 0.065625 100 5.301616 565.2 0.034063 94 4.995698 1242 0.07625 96 5.095229 

4 2 1009.8 0.06 100 5.791827 587.4 0.034688 100 5.754329 5221.8 0.323125 100 5.769498 

5 4 2529.6 0.162813 100 7.108407 1176.6 0.07625 62 5.233969 13935.6 0.912813 84 6.368791 

6 10 15000 1.13625 0 0.385665 5706.6 0.436875 0 0.500469 15000 1.161563 2 0.578558 

7 2 2214 0.130313 64 4.98297 915 0.054063 44 4.295962 13029.6 0.782813 52 6.378667 

8 10 2886.6 0.2125 100 4.668029 1229.4 0.091875 100 4.758256 1199.4 0.089375 100 4.71573 

9 2 1037.4 0.060938 100 3.614112 587.4 0.034375 98 3.546022 624 0.037188 100 3.613439 

10 2 1731.6 0.102188 100 6.817949 622.2 0.03625 100 7.029021 14712.6 0.885 100 10.91538 

11 2 1425.6 0.083438 100 6.695279 826.2 0.04875 100 6.94955 876 0.051875 100 6.902585 

12 2 1272.6 0.075 100 6.793135 694.8 0.04 100 6.822651 754.2 0.044688 100 6.779006 

13 2 1070.4 0.062813 100 6.656401 607.8 0.035938 100 6.895562 645 0.038438 100 6.804108 

14 2 1519.2 0.09125 100 4.567164 628.2 0.0375 100 4.564657 10987.8 0.670938 100 4.56006 

15 4 1704.6 0.1075 100 5.093219 880.8 0.05625 100 5.504226 907.8 0.05875 98 5.345643 

16 2 2092.2 0.122188 100 8.771529 970.2 0.056875 100 8.771251 3561 0.214688 100 8.770008 

17 2 858 0.050313 66 4.462375 612 0.035625 88 6.066943 1796.4 0.107813 84 6.24475 

18 2 1434 0.084688 100 7.070044 761.4 0.045 100 7.27668 817.8 0.048438 100 7.335954 

19 10 14871 1.13125 8 1.627681 3836.4 0.293438 0 1.203255 14273.4 1.093125 2 1.3186 

20 3 1775.4 0.108125 100 5.799182 949.8 0.058438 100 6.198577 1009.2 0.0625 100 6.203972 

21 3 1456.8 0.090625 100 5.848219 778.2 0.048125 100 6.248212 11034 0.715 100 9.699106 

22 10 15000 1.138438 0 0 4575 0.349375 2 0.089809 15000 1.149375 0 2.65E-05 

23 2 1642.2 0.0975 100 5.17316 787.8 0.047188 98 5.083882 15000 0.914688 100 5.164255 

                                                        

    sumsumsumsum    76865.476865.476865.476865.4    5.3703135.3703135.3703135.370313    1938193819381938    119.771119.771119.771119.771    29894.429894.429894.429894.4    2.048752.048752.048752.04875    1886188618861886    120.6068120.6068120.6068120.6068    168262.2168262.2168262.2168262.2    11.0465611.0465611.0465611.04656    1914191419141914    134.3566134.3566134.3566134.3566    
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Table 6.5, Results on 23 benchmark problems with different dimensionalities and complexities 
for DERL, DERL 2 and NSDE variants. 

  DERL DERL2 NSDE 

  NP=30, CR=0.5, F=0.5 NP=30, CR=0.5, F=0.5 NP=30, CR=0.5, NS=0.5 

f n fe cpu sr lambda fe cpu sr lambda fe cpu Sr lambda 

1 2 1047 0.100938 100 5.952466 1186.8 0.090625 92 5.639169 1524.6 0.10125 100 5.952198 

2 2 1420.8 0.135938 100 6.737801 1274.4 0.094063 100 6.764127 2128.2 0.141563 100 6.470531 

3 2 808.8 0.075938 100 5.297873 889.8 0.065625 100 5.304072 1254 0.082813 100 5.299325 

4 2 819.6 0.077188 100 5.777889 977.4 0.071875 100 5.805128 1171.8 0.075938 100 5.811614 

5 4 1983.6 0.198125 100 7.118401 2592 0.205313 78 6.017685 2719.2 0.190938 100 7.101337 

6 10 14958.6 1.68125 4 0.759905 12654.6 1.148438 0 0.399546 13736.4 1.120625 48 3.27163 

7 2 1516.2 0.142188 52 4.476547 1314.6 0.09875 50 4.323771 2504.4 0.16125 64 4.889994 

8 10 2125.2 0.23375 100 4.669995 5025 0.44625 64 3.75503 3580.2 0.284375 100 4.646072 

9 2 810 0.075313 100 3.614015 846 0.061875 98 3.547684 1216.2 0.077813 100 3.613859 

10 2 1227.6 0.115625 100 6.851423 935.4 0.067188 100 6.381081 1948.8 0.124375 100 6.946709 

11 2 1118.4 0.105313 100 6.633737 1083.6 0.079688 100 6.445334 1674.6 0.108125 100 6.746244 

12 2 957.6 0.09 100 6.635263 900.6 0.065625 100 6.335837 1486.2 0.09625 100 6.623999 

13 2 838.8 0.079375 100 6.702062 672.6 0.049063 100 6.485334 1258.2 0.085625 100 6.505122 

14 2 1052.4 0.099688 100 4.566871 1084.2 0.080313 100 4.571627 1675.2 0.109688 100 4.568161 

15 4 1320.6 0.131563 100 5.050855 1249.2 0.098125 98 4.758916 2045.4 0.143438 100 5.052771 

16 2 1502.4 0.1425 100 8.77177 1687.8 0.125625 100 8.777342 2415 0.156563 100 8.770768 

17 2 722.4 0.067188 74 4.969606 516 0.036875 62 3.905394 995.4 0.064063 70 4.578026 

18 2 1060.8 0.099375 100 7.170348 1126.8 0.082813 100 6.987148 1712.4 0.11 100 7.120484 

19 10 13775.4 1.539375 42 2.93594 13077.6 1.186875 14 1.004708 14733.6 1.198125 12 2.162133 

20 3 1347 0.13 100 6.040049 2092.2 0.158438 100 5.879193 2154.6 0.14375 100 5.826021 

21 3 1127.4 0.109688 100 6.136232 783.6 0.059688 98 5.958011 1748.4 0.117813 100 5.944329 

22 10 14781 1.67 20 1.070084 12759.6 1.1575 6 0.519414 12219.6 0.9925 68 3.183566 

23 2 1194 0.114063 100 5.169643 985.8 0.072813 88 4.667759 1893.6 0.123438 98 5.08816 

                                                        

    sumsumsumsum    67515.667515.667515.667515.6    7.2143757.2143757.2143757.214375    1992199219921992    123.1088123.1088123.1088123.1088    65715.665715.665715.665715.6    5.6034385.6034385.6034385.603438    1848184818481848    114.2333114.2333114.2333114.2333    77796777967779677796    5.8103135.8103135.8103135.810313    2060206020602060    126.173126.173126.173126.173    
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Table 5.7, Results on 23 benchmark problems with different dimensionality and complexities 
for TDE, DE adapt and SACMPDE variants. 

  TDE DE_adapt SACPMDE 

  NP=30, CR=0.5, F=0.5, MT=0.1 NP=30, CR=0.5, Fmin=0.1 
NP=30, Fmin=0.1, Fmax=1,  

CRmin=0.05 CRmax=0.8 

f n fe cpu sr Lambda fe cpu sr lambda fe cpu sr lambda 

1 2 1384.8 0.114375 98 5.848955 1226 0.0966 100 5.9509 1361 0.1844 100 5.9485 

2 2 1836 0.146875 98 6.498679 3089 0.2375 100 6.4184 2539 0.345 98 6.1783 

3 2 1035.6 0.085625 100 5.299111 1031 0.08 100 5.3002 1105 0.1531 100 5.2955 

4 2 938.4 0.075 100 5.773841 977 0.0744 100 5.8253 1068 0.1403 100 5.7495 

5 4 2256 0.193125 100 7.128992 1765 0.1447 74 6.512 2569 0.3572 100 7.1365 

6 10 14382 1.420625 26 2.050743 15000 1.4091 0 0.4123 13540 2.0612 88 4.1218 

7 2 2058.6 0.165313 62 4.954935 3614 0.2781 82 5.7085 2732 0.3713 72 5.5357 

8 10 2130.6 0.204688 100 4.746301 2190 0.2013 52 4.0725 3560 0.5403 100 4.7625 

9 2 972 0.078438 100 3.614447 1101 0.0844 100 3.6152 1047 0.1359 100 3.613 

10 2 1685.4 0.135625 100 6.871412 1744 0.1334 100 6.7151 1607 0.2091 100 7.5212 

11 2 1376.4 0.110938 100 6.703105 2152 0.1656 100 6.5832 1492 0.1959 100 7.1386 

12 2 1161.6 0.094688 100 6.473382 1874 0.1444 100 6.4855 1339 0.1756 100 7.2369 

13 2 1033.8 0.084063 100 6.613696 1640 0.1259 100 6.5271 1213 0.1588 100 6.9358 

14 2 1403.4 0.11375 100 4.567716 1396 0.1084 100 4.5719 1433 0.1888 100 4.5628 

15 4 1536.6 0.131563 100 5.231399 1691 0.1375 100 4.9851 1918 0.2641 100 5.3547 

16 2 1914 0.155313 100 8.771095 1903 0.1469 94 8.6791 1975 0.2587 100 8.769 

17 2 671.4 0.053125 54 3.574668 839 0.0641 60 3.9094 732 0.0997 58 4.089 

18 2 1344 0.1075 100 7.202152 1682 0.1291 98 7.0303 1450 0.1909 100 7.2894 

19 10 10224 1.008438 72 4.041113 14984 1.405 2 1.1657 14904 2.2556 4 1.9948 

20 3 1682.4 0.138438 100 5.883125 2911 0.2306 100 5.8251 1769 0.2375 100 6.2047 

21 3 1362 0.113438 100 5.885658 2362 0.19 100 5.8187 1434 0.1941 100 5.9677 

22 10 14151 1.397188 32 1.87396 15000 1.4194 0 0 10332 1.5478 100 4.7965 

23 2 1657.2 0.135313 98 5.086657 1711 0.1319 100 5.1782 1503 0.2013 100 5.1675 

               

    ssssumumumum    68197.268197.268197.268197.2    6.2634386.2634386.2634386.263438    2040204020402040    124.6951124.6951124.6951124.6951    81882818828188281882    7.13837.13837.13837.1383    1862186218621862    117.2897117.2897117.2897117.2897    72622726227262272622    10.466610.466610.466610.4666    2120212021202120    131.3699131.3699131.3699131.3699    
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Table 5.8, Results on 23 benchmark problems with different dimensionality and complexities 
for SACPDE and SDE variants. 

  SACPDE SDE 

  
NP=30, Fmin=0.1, Fmax=1,  

Fc=0.1, CRc=0.1 NP=30, OPmin=0, OPstd=0.7 

f n fe Cpu sr lambda fe cpu sr lambda 

1 2 1396 0.0925 100 5.9546 1258.2 0.0828 100 5.9561 

2 2 2188 0.1366 100 7.8582 1623.6 0.1009 100 6.4542 

3 2 1157 0.0734 100 5.299 999 0.0634 100 5.2985 

4 2 1026 0.0653 100 5.7786 939 0.0581 100 5.8118 

5 4 2477 0.1694 100 7.1293 2057.4 0.1397 100 7.1152 

6 10 11678 0.9178 100 4.2783 6154.8 0.4822 22 1.5407 

7 2 2641 0.1663 58 5.4513 1666.2 0.1069 54 4.563 

8 10 3022 0.2356 100 4.8433 2486.4 0.2003 100 4.6056 

9 2 1066 0.0669 100 3.6137 963.6 0.0591 100 3.615 

10 2 1740 0.1075 100 7.0864 1442.4 0.0909 100 6.9766 

11 2 1472 0.0916 100 6.6666 1357.2 0.0956 100 6.6157 

12 2 1397 0.0875 100 7.1548 1180.8 0.0747 100 6.8184 

13 2 1166 0.0737 100 6.7965 1025.4 0.0638 100 6.7162 

14 2 1607 0.1016 100 4.5645 1305 0.0831 100 4.5702 

15 4 1820 0.1222 100 5.457 1558.8 0.1053 100 5.1084 

16 2 2117 0.1344 100 8.7699 1905.6 0.1256 100 8.7707 

17 2 918 0.0575 70 4.836 813.6 0.0575 70 4.6386 

18 2 1601 0.1006 100 7.3061 1293.6 0.0869 100 7.078 

19 10 14464 1.1369 52 4.2095 7655.4 0.5975 16 2.0807 

20 3 1862 0.1203 100 6.0453 1674.6 0.1075 100 5.9487 

21 3 1528 0.1013 100 6.1109 1335.6 0.0912 100 5.9552 

22 10 10198 0.8153 100 4.8979 5664 0.4441 30 1.3969 

23 2 1829 0.1159 100 5.1681 1544.4 0.1009 98 5.0886 

          

    sumsumsumsum    70370703707037070370    5.09015.09015.09015.0901    2180218021802180    135.2758135.2758135.2758135.2758    47904.647904.647904.647904.6    3.4183.4183.4183.418    1990199019901990    122.723122.723122.723122.723    
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Figure 5.24, Sum of the function evaluations for the eleven DE variants over 23 SO problems. 
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Figure 5.25, Sum of the cputime for the eleven DE variants over 23 SO problems. 
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Figure 5.26, Sum of the success rates for the eleven DE variants over 23 SO problems. 
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Figure 5.27, Sum of the lambda achieved for the eleven DE variants over 23 SO problems. 
 

As clear from Figure 14, the number of Σfe moves approximately around the 
value 75000 for most of the variants; DE best, DE current-to-best and SDE are 
exceptions. This behaviour reflects indirectly the choice of unique CR=0.5 for 
the whole basic variants, which implies a common convergence speed till the 
loss of diversity inside the population, since this parameter seems to be the most 
significant. 

However, fe is not meaningful alone: the most important is the sr of the 
algorithms (Figure 16); analyzing the seven variants without adaptive schemes 
(from DE random till TDE), the best algorithms are NSDE and TDE: they show 
high sr, good accuracy and acceptable cpu (Figures 16, 17 and 15). Notice that 
NSDE has the same structure as DE random with a randomization of scaling 
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factor F that allows different step length on perturbation, while TDE uses on a 
small fraction of population the fitness feedback in order to direct the 
perturbation; even if TDE spends less fe than NSDE to converge, the fitness 
feedback evaluation takes some cpu time; this behaviour is verified when the 
mutation strategy adopts further sophistications. Third for feats in this seven is 
DERL, with a good sr and lambda, faster convergence speed in terms of fe but 
with more cpu time consumed: in fact it uses in every mutation fitness feedback, 
increasing the computation time. DERL 2 has poor performances compared with 
the others algorithms; it has low accuracy and the worst sr. DE best reflects its 
greediness in fe and cpu, the smallest in the test, compensated by less sr and 
lambda practically equal to DE random; as expected, this practice is faster but it 
should be used only in not complex problems: this condition is not often present; 
the risk is to lost the global optimum. The last basic variant of the seven is DE 
current-to-best: it has the lowest convergence speed, spending more than 
160000 fe for all the test, the double than the others. On the other hand the 
accuracy is the highest, but the sr is unsatisfactory compared with NSDE, TDE 
and DERL. The classic version, DE random, is collocated on the average for 
performances, with more success than DE best, DE current-to-best and DERL 2, 
with good value for cpu and acceptable lambda. Its lack is on the setting for 
complex problems; this lack could be overcome using the improved version like 
NSDE, TDE and DERL, or an adaptive/self-adaptive algorithm. 

In fact, the best variant on the whole test is SACPDE, with the highest success, 
high lambda and high convergence speed in terms of cpu and fe comparable 
with the others. Also SACPMDE, the modification of SACPDE, has good 
performances, with the second sr of the test, good accuracy (lambda ) but really 
high cpu  time, especially because the fe  is comparable with the other variants: 
this is due to the amount of fitness information necessary for its mutation 
procedures. Anyway it is a reliable version. SDE is an interesting self-adaptive 
possibility, since its high convergence speed both in fe  and cpu , with good sr  
and sufficient accuracy. DE adapt, that uses only scaling factor adaption rule, 
reflects the low sensitivity of F in this test: lambda and sr  are insufficient, no 
improvements respect DE random in terms of fe  and bad cpu  are achieved. It is 
important to notice the setting of these adaptive schemes has low sensitivity on 
sr  and lambda , as reported Table 8 for SACPDE: 

 
Table 5.9, Summed results of the measures of the optimization by SACPDE on 23 SO problems 
with two different settings. 

SACPDE Σfe Σcpu Σsr Σlambda 
Fc=0.1   CRc=0.1 70370 5.0901 2180 135.3 

Fc=0.25 CRc=0.25 68244 4.9027 2176 131.3 
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The new setting, which enhances the F and CR evolution during the evolution 
of the population, increases slightly the convergence speed and the sr , 
diminishing a little the accuracy; since the range for these two values is between 
0.05  and 0.3  and our test uses coherently the literature recommendation, the 
superiority of this technique is proved over its setting.  

 
As last comparison for SO,  DERL with appropriate CR=0.1 and a mixing 

between self-adaption of SACPDE and NSDE scaling factor selection are tested 
on the 23 benchmark problems, called SACPDE-NS. The results are reported in 
Table 9. 

 
Table 5.10, Summed results of the measures of the optimization performed by DERL and a 
mixed variant SACPDE-NS on 23 SO problems. 

DERL Σfe Σcpu Σsr Σlambda 
F=0.5 CR=0.1 71931 7.3756 2228 144.5 

SACPDE-NS     

Fc=0.1 CRc=0.1 NS=0.5 64410 4.5964 2160 135.3832 

 
The first is the most reliable result obtained by correct setting of the first seven 

variants (NSDE and TDE with low CR don’t reach these performances) in terms 
of sr  and lambda , with a little payment in convergence speed. This result is 
followed by DE random with CR=0.1 (see Table 3) and SACPDE (Tab 8). Of 
course this result is driven by tuning found by previous evaluations. 

The second in Tab 9, called SACPDE-NS (SACPDE with Neighbourhood 
Search) has the NS scaling factor randomization (Gauss and Cauchy random 
variables) instead the provisional uniform randomization, which assures more 
generality. The improvement is in the accuracy achieved but especially in the 
convergence speed compared with SACPDE (Fc=0.1, CRc=0.1, 
Fmin=0.1 ). 

 
 
5.1.2 Multi-objective optimization 

 
This case study uses three benchmark problems, ZTD1, ZTD2 and ZTD3 

proposed in [60] and reported in Appendix B, used often as comparison in 
literature between algorithms for multi-objective optimization. These three 
problems have high dimensionality (n=30) and a really restrict domain, defined 
between 0 and 1. Farther, the Pareto front is practically on the lower border of 
the domain, so, even the approach to the real solution is a difficult task for many 
EAs in multi-objective optimization. 
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The features of these problems are thought to demonstrate the exploring 
abilities and the accuracy achieved by the algorithms, even in an artificial 
complex scenario as these three benchmark problems. 

In this case study the algorithms tested are GA-toolbox, MOGA and MODE. 
 
 
The algorithms’ setting 

The GA-toolbox setting is similar to the setting already proposed in Section 
5.1.1 for the single-objective optimization, with some difference in stopping 
criteria and some shrewdness necessary since the multi-objective nature of the 
problem: 

The setting used is: 
 

'PopInitRange'  [low;up] 
'PopulationSize'  200 
'EliteCount'   30 
'CrossoverFraction' 0.7 
'Generation'   500 
'ParetoFraction'  1 

 

The benchmark problems tested have 30 dimensions, so the initial ranges low  
and up are two arrays of 30 values each one. The lower bound is an array of 
zeros and the upper one is an array of ones. The population size is increased, 
since the difficulty of the problem, and the number EliteCount  is set as the 
dimensionality of the problem. The crossover, ever single-site, has probability 
0.7 and the maximum number of generations is 500. This is the only stopping 
criterion for the multi-objective optimization with this tool. The value 
ParetoFraction  represents the fraction of the final archive respect to the 
population size. This value is one, since the desired number of non-dominated 
solutions is the same as the population size. 

A default option for the multi-objective version of the tool is the distance 
measure applied to the solutions on the main archive: this option allows the 
removing of non-dominated solutions too close in terms of fitnesses if the 
archive is full. This practice should increase the diversity and the density of the 
Pareto front obtained, moving the exploration toward regions less dense of 
solutions. 

 
The MOGA setting is similar to the previous one for GA-toolbox: 
 

PopInitRange   [low;up] 
PopulationSize  200 
CrossoverFraction  0.7 
Generation   500 
ArchiveDim   200 
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EliteFraction   1/4 
w1     0.3 
w2     0.7 
 

 
The elite fraction is the fraction of solutions from the archive used for the 

elitism concept. The archive dimension is set equal to the population size, in 
order to compare the results with the same number of non-dominated points. 

Further, the algorithm has a weighting option for the multi-objective 
optimization: the objective function with higher weight has more attention on 
the optimization rather then the others. In our case the two weights are set 
toward the second objective function, more difficult to optimize for the three 
benchmark problems. 

 
In multi-objective options, MODE uses three of the eleven variants 

allowable for the single-objective optimization. These three variants work 
also for multi-objective options, since they do not require fitness feedback 
information. The MODE-III version implemented into this tool does not use 
ranking during the evolution, so the superiority concept cannot be used for 
this situation. The selection of chromosomes for reproduction could be made 
only choosing randomly from the population, feature present only in three 
variants: 

� DE random 
� NSDE 
� SACPDE 

 
The population size and the number of maximum generations allowable are 

the same as for GA-toolbox and MOGA. The stopping criterion involves only 
the maximum generations, as for the others. 

 
Population size NP  30 
MAXGEN    500 

 
The basic setting for the parameters of any variant is the same as for single-

objective optimization presented in Section 5.1.1: 
 

1. DE random  F=0.5, CR=0.5  

2. NSDE   CR=0.5, NS=0.5  
3. SACPDE  Fmin=0.1, Fmax=1, Fc=0.1, CRc=0.1  

 
Some sensitivity, as for the single-objective optimization test, are tried on 

DE random and NSDE. Also for the multi-objective optimization the 
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parameters play an important role in the convergence speed and accuracy, 
especially for these complex multi-objective problems. 

SACPDE does not need sensitivities, since in the single-objective 
optimization its behaviour is practically independent on the parameters (see 
Table 5.8). 

 
Measures 

Two intuitive measures for the Pareto front are the computation time and the 
number of non-dominated solutions in the last archive. For the GAs algorithms 
the number of solutions is a parameter of the optimization; for MODE this 
value becomes significant, since it represents the goodness of the mutation 
technique used. The higher this value (the maximum is the population size), the 
higher is the ability of the variant to attain the Pareto front. 

In order to compare the Pareto fronts obtained by the algorithms, a direct 
comparison between solutions is performed as in [54].  

Figure 5.11 shows schematically the concept of the comparison: two Pareto 
fronts are obtained (red-circle and blue-square) by two algorithms; the black-
solid line is the overlap of the fronts and in this case no front dominates the 
other. Anyway, a fraction of the frontier marked with circles dominates the 
square one on the left side of the plot, while a fraction of the latter dominates 
the first one (right side of the plot). So, for anyone frontiers, one can determine 
the fraction of the dominated solutions and the fraction of the dominant 
solutions with respect to the other frontier. 

 

 
Figure 5.28, An example of two Pareto front achieved. The black-solid line is the 
overlap of the two frontiers. The solutions marked with circle dominate the square one 
only on the left side of the graph, whereas the latter dominates the first on the right. 
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Results and sensitivities 
As first comparison we report the multi-objective optimization results on the 

benchmark problem ZTD1 (see Appendix B) for GA-toolbox, MOGA and 
MODE with the implementation of DE random. Figure 18 plots the Pareto front 
obtained with the three algorithms. 

 

 
Figure 5.29, MO performed on ZTD1 benchmark problem with MODE, GA-toolbox 
and MOGA. 
 

The inability of the two GAs are clear. No solutions from their final archive 
reach the true Pareto front. The complexity of the problem does not allow to the 
two GAs neither a significant approach to the true Pareto front. The algorithm 
MODE with the DE random implementation not tuned is very close to the front. 

The direct comparison is not applied in this case, since there is no need to 
evaluate numerically the goodness of DE.  

The optimization is then performed on ZTD2 problem (Appendix B). Figure 
19 plots the solutions found by the three algorithms. MODE is another time run 
with DE random variant. 
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Figure 5.30, MO performed on ZTD1 benchmark problem with MODE, GA-toolbox 
and MOGA. 

 
Also this time the two GAs fail completely in the search of the Pareto front. 

Also for this test the attainment of MODE is much better, but the Pareto front is 
not reached. 

Neither here the direct comparison is used. 
These two problems, in fact, are really complex, since the high dimensionality, 

and the Pareto front lays on the boundary. After that, the nature of the problem 
forces the usage of real-encoding: DE is properly thought for these situations, 
while GAs work much better on quantized problems. The superiority of DE, at 
least in these situations, is undoubted. Some significant help is given by the 
specific repair rule adopted. The bouncing-back approach for satisfaction of the 
boundaries is particularly well-chosen for these problems. 

ZTD3 is more complex than the previous two ZTD1 and ZTD2, and then the 
two GAs, GA-toolbox and MOGA, are not used in the comparison for this 
benchmark problem.  

MODE in this complex situation is highly helped by the shrewdness of the 
bouncing repair rule, since the Pareto fronts for ZTD1, ZTD2 and ZTD3 are on 
the boundary. Anyway, the two GAs fail completely the search also for the two 
simplest problems ZTD1 and ZTD2 respect to ZTD3. 

 
A comparison is made between the three MODE variants: DE random, NSDE 

and SACPDE. Table 5.10 reports the searching times and the number of non-
dominated solutions found in the last population for these three variants on the 
three problems tested: ZTD1, ZTD2 and ZTD3. Remember that MODE does not 
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use an archive for non-dominated solutions, but it carries on the entire 
population to the Pareto front: at the end, the dominated solutions are removed, 
skimming the population. For this reason only with high number of generations 
the entire population should achieves the front. 

 
Table 5.11, Cputimes and number of non-dominated solutions found by the three 
algorithms in the three tests ZTD1, ZTD2 and ZTD3 at the end of the searchs. The 
initial population number of MODE is NP=200. 

  DE random NSDE SACPDE 

Cpu 6.72 s 7.28 s  6.76 s  
ZTD1 

N 175 124 194 

Cpu 6.59 s 7.25 s  6.85 s  
ZTD2 

N 178 118 195 

Cpu 6.61 s 7.54 s  6.78 s  
ZTD3 

N 147 96 167 
 
Figures 20, 21 and 22 plot the solutions of the three MODE variants for the three test 

problems. 
 

 
Figure 5.31, DE random, NSDE and SACPDE Pareto fronts obtained in MO for ZTD1. 
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Figure 5.32, DE random, NSDE and SACPDE Pareto fronts obtained in MO for ZTD1. 
 

 
Figure 5.33, DE random, NSDE and SACPDE Pareto fronts obtained in MO for ZTD1. 

 
All the three variants have a good approaching to the Pareto fronts respect to 

GAs, but SACPDE outperforms the other two variants, reaching the Pareto front 
with more accuracy; a direct comparison is made between the three fronts 
obtained. So, a 3x3 table is reported: the variant present at the beginning of the 
row is compared with the variant on the first cell of the column. Then, for each 
intersection between rows and columns, two cells are present: the first contains 
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the percentage of solutions of the row-variant that dominates the column-
variant’s ones, the second contains the percentage of solutions dominated by the 
column-variant. 

From Table 5.11 the superiority of SACPDE respect to the other two variants 
on the ZTD1 is deducible: SACPDE outperforms DE random and NSDE with 
the 61.78% and the 96.34% respectively of its front respect the two variants. 
Furthermore, no points of SACPDE are dominated. Between the other two 
variants, DE random results to be better than NSDE, since no points of the latter 
dominate some solution of the first. 

 
Table 5.12, Direct comparison between the three variant tested of MODE for ZTD1. The variant 
on the line is compared against the variant on the column. The first value in the intersection is 
the fraction dominant solutions of the row against the column, the second is the fraction of 
dominated solutions. 

 DE random NSDE SACPDE 

- 94.05%  0% 
DE random 

- 0% 62.16%  

0% - 0% 
NSDE 

90.08% - 92.56%  

61.78% 96.34%  - 
SACPDE 

0% 0% - 
 
 
Farther, the number of final non-dominated solutions of SACPDE is sensibly 

greater compared with the other twos, and the cputimes are slightly greater than 
the DE random’s ones.  

Apparently, the problem for DE random and NSDE is the parameters’ setting. 
Sensitivities are then reported: as experienced in single-objective optimization, 

the CR is the most significant parameter, especially for complex problems as 
these ones. Furthermore, NSDE has an interesting ability to explore the 
neighbourhood: manipulating the NS parameter, the search could be redirected 
on the neighbour, diminishing the probability to have high length for the jumps. 

Then, DE random and NSDE are tested with CR=0.3. Table 12 reports the 
number of non-dominated points found in the last population for the two 
variants on the three problems and the percentages of dominant and dominated 
fraction of solutions over the other variant. The diminishing of CR increases the 
number of solutions in the last population, both for DE random and NSDE. As 
for single-objective optimization, the diminishing of this parameter is beneficent 
for complex problems.  

 
 
 
 
 



Case studies 

 93 

Table 5.13, Number of final solutions in the last population and direct comparison between the 
two parameters’ dependant variants of MODE: DE random and NSDE. The values are reported 
for the three benchmark problems. 

 ZTD1 ZTD2 ZTD3 

 N Comp. N Comp. N Comp. 

65.66%  74.87%  64.5% 
DE random 199  

0% 
199  

0% 
169  

0% 

0% 0% 0% 
NSDE 178  

60.11%  
174  

73.56%  
120  

64.17%  
 
 
Now, with low CR, DE random becomes better than SACPDE, as reported in 

Table 5.13 for ZTD1. The percentage is small, but no solutions of SACPDE 
dominate solution achieved by DE random. 

 
Table 5.14, Direct comparison between DE random with a tuned setting (CR=0.3) and the 
SACPDE variant. The values reported are referred to ZTD1. 

 DE random SACPDE 

- 21.72%  
DE random 

- 0% 

0% - 
SACPDE 

19.90% - 
 
 
Nonetheless, the results with NSDE are still unsatisfactory respect to the other 

two variants: a tuning on NS is made, leaving CR=0.3 and imposing NS=0.8, so 
increasing the neighbour search ability of the algorithm in these problems with 
tight domain. A new direct comparison is then made with the results previously 
obtained for DE random with F=0.5 and CR=0.3. 

 
Table 5.15, Number of final solutions in the last population and direct comparison between the 
two parameters’ dependant variants of MODE with an opportune setting: DE random (F=0.5, 
CR=0.3) and NSDE (CR=0.3, NS=0.8). The values are reported for the three benchmark 
problems. 

 ZTD1 ZTD2 ZTD3 

 N Comp. N Comp. N Comp. 

27.14%  29.30%  49.7% 
DE random 199  

0% 
199  

0% 
169  

0% 

0% 0% 0% 
NSDE 191  

26.65%  
194  

26.80%  
162  

43.83%  
 
Neither this time NSDE outperforms DE random, but the numbers of final 

solutions on the three tests are now comparable and the percentages of 
dominated solutions are sensibly decreased. Only for ZTD3 these percentages 
remain high. 
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5.1.3 Conclusions 
 
Concluding, the usage of adaptive/self-adaptive algorithms is recommended 

for untrained users, both in single-objective and multi-objective optimization, 
since the easy setting and their good abilities in most cases, due to the intrinsic 
flexibility. They use the basic recombination of DE random, reaching anyway 
high performances, symptom of the sensitivity of this powerful recombination 
on the setting parameter: mixing reproduction greediness with adaptive scheme 
doesn’t give the expected improvements, since the greediness is introduces just 
to overcome the lack leaved by the specific setting. 

SACPDE is the most attractive variants proposed in the tool MODE, since its 
intrinsic flexibility and ease on the setting. Anyway, the performances of this 
variant could be outperformed by other variant opportunely tuned. 

However, the usage of modifications in reproduction phase is reserved to 
expert users, especially for high dimensionality, where their performances could 
reach the adaptive ones, since the difficulty of the setting. Greedy 
sophistications improve the performances but needs unavoidable further 
information and knowledge on the strategy characteristics and behaviours. The 
CR parameter is the most influent, especially for complex functions, and low 
values (CR<0.3) assure reliability of the optimization, while high values 
improve the convergence speed, impoverishing the accuracy and the success. 
The population size doesn’t play any meaningful role and F has low impact on 
the results in most cases. The common value is 0.5, but a uniform randomization 
F~U(0,1) could be done without any strong implication.  

 
 

 
 
5.2 A real case study. Giant oil field integrated production asset: 
a highly constrained optimization for productivity 
 

This section presents the optimization on a real case of an integrated asset for 
production of hydrocarbons from a giant oil field composed by a gathering 
system coupled with a process plant.  

The optimization, performed by a tool, equipped with Differential Evolution, 
specifically developed inside the ENI E&P Prod division, takes into account a 
production line of the entire system with a difficult management, since the 
presence of constraints both in the gathering system and the process plant. The 
integration between the two environments of the same asset represents one of 
the most common difficult tasks inside the oil companies’ production 
management. 
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5.2.1 Introduction 
 

The optimization is a difficult task for real cases, especially when the number 
of variables and constraints is high and the interaction between them is not 
completely clear. The uncertainties in real cases are often significant, 
compromising the analytical search of the optimum. Several instruments are 
offered to the industries, like simulation programs as more reliable, which 
increase the understanding of the models built to represent the reality. Anyway, 
the correct variable’s setting for a model is often far from the mind’s ability to 
obtain the optimum. Evolutionary algorithms represent a good choice, 
especially when classic optimization methods fail, because of the high 
complexity of the model or the presence of severe conditions. 

Differential Evolution, a particular type of evolutionary algorithm, has been 
used to build an optimization tool for oil industry management. This algorithm 
is chosen since its reliability and rapidity to find the global optimum.  

The Section 5.2.2 explains the general description of the real cases within this 
tool could be utilized, whereas Section 5.2.3 depicts the real case under 
investigation. Section 5.2.4 gives an overview of the tool properties while 
section 5.2.5 goes deep into the algorithm’s strategies and shrewdness. Section 
5.2.6 collects and explains the results. 
 
5.2.2 Problem’s Generalities 
 

The task of this optimization is to find the correct setting of a specific 
integrated asset of a giant oil field in order to enhance the oil production. The 
production system under the Prod division administration and within it could 
work is composed by two different environments: 

1. the gathering system, that starts from the wellhead till the separators’ 
collectors; 

2. the process plant, that takes the product fluids and processes them in 
order to reach the required specifications. 

These two environments represent the typical production chain managed by 
the production division of an oil company. Figure 5.19 shows the entire 
production system for an oil field.  

 
Gathering system 

The gathering system is a complex scenario within the number of valves, 
pipelines, pumps, compressors, separators, test separators and collectors are 
joined in order to create a sufficiently flexible and operational network to carry 
the reservoir fluids to a storage or processing area. Actually a complete 
production system consists also of a reservoir and a well (see Figure 5.19), 
connected with equipment at the top of the producing wellhead, called 
“Christmas tree”, used to control the flow. The gathering system starts from 
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here till the final separators or collectors and comprises all the other wells 
connected to the network. 

As known, the driving force for an oil or gas production system is usually the 
pressure present in the reservoir: the pressure difference (in Figure 5.19 the 
pressure losses have an arrow from lower to higher pressure, while the flow has 
inversed direction) drives the reservoir fluids into the wellbore, and from here 
through the tubing till the wellhead. The Christmas Tree is equipped with 
safety and control valves; after it usually a surface choke valve is present: this 
equipment is used to control the flow rate. The inlet choke is the first valve 
before the network: form here till the final collector pipelines are installed in 
order to transport the fluid. Inside this portion of gathering system, pumps or 
compressors could be installed, if driving force is necessary. 

 

 
Figure 5.34, The production chain for a hydrocarbon field. 

 
The inlet choke valve is the control equipment of the production system: 

adjusting the choke size it’s possible controlling the flow. For example, a 
closing of the choke valve causes a back-pressure in the network, increasing 
the flowing bottom-hole pressure FBHP (the pressure at the beginning of the 
riser tubing), diminishing the driving force for the reservoir fluid; since the 
reservoir pressure is constant, the higher the FBHP, the lower the pressure drop 
between reservoir and wellbore and the lower the flow rate. The inlet choke 
doesn’t have a completely direct control on the flow rate, since it is connected 
to a network: a choke opening on another valve could change the network 
pressure in some nodes, reflecting this pressure change upstream on the other 
lines or nodes. That means the pressure drop on a choke valve is not the unique 
variable that affects the flow rate from the reservoir, but the entire network 
layout and the other flow streams influence the productivity. This complex 
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scenario makes difficult a complete understanding of a production asset and its 
management. 

A second control item in the gathering system is the end pressure of the 
network (usually the separator pressure). The higher this pressure, the lower is 
the potential driving force available and lower is the production. Anyway also 
in this case the behaviour is not directly proportional to the end pressure: a 
diminishing of it increases the production but at the same time also the pipeline 
pressure losses increase. 

Nevertheless, the choice of this end pressure is not a banal task: even if it 
seems counter-productive, this pressure value is usually high. The reasons are 
several: the main one is the multi-phase nature of the reservoir fluids. These 
fluids commonly are a mixture of hydrocarbon fluids and dissolved gases, 
water, and non-hydrocarbon gases like H2S, CO2 and N2. The amount of 
dissolved gas is a pressure dependant variable; hence, with the diminishing of 
the pressure the amount of free gas increases, altering the flow rate in the 
pipelines. Moreover, the gas is usually a secondary product in oil field 
production assets, since its lower economic value. Other relevant reasons 
depend on the process plant layout. 
 
Process plant 

When the main product is oil, as in our case study, at the end of the gathering 
system a process plant is installed. The main purpose of a process plant is to 
treat the reservoir fluids in order to reach the technical specifications for the 
sale or storage. Since the multi-phase nature of the fluids, several products 
could be produced and processed. Anyway, also the gas fields need a process 
plant in order to treat, clean and sweeten the gas from sour gases like CO2 and 
H2S. The end product specifications may be defined by a customer, by 
transport requirements, or by storage considerations. Table 5.15 shows typical 
specifications and conditions for sale. 

 
Table 5.16, Typical specifications for a process plant released fluids. 
 True Vapour Pressure TVP <83 kPa @15°C 
 Base Sediment and Water BS&W <0.5% vol 
 Temperature >Pour point 
 Salinity (NaCl) <70 g/m3 
 Hydrogen Sulphide (H2S) <70 g/m3 
Gas Liquid content <100 mg/m3 
 Water dew point at -5°C <7 Pa 
 Lower Heating Value LHV > 25 MJ/m3 

 Composition CO2, N2 and H2S National spec. 
 Delivery pressure and temperature Transport spec. 
 Wobbe index <52 MJ/m3 
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A basic process plant has one, two or three separators as conjunction between 
gathering system and plant operation units. The separators could be two or 
three-phase: the first type splits gas from the mixture oil-water, the second 
typology divides the three phases into three distinct lines: gas, oil and water. 
The number of separation stages is a design variable of a process plant. A two 
stage-separation is the common disposition. The reason is economic: one stage 
has low installation costs but low efficiency in oil-recovery; increasing the 
stage number, the oil production increases but also the initial costs increase. 
Three stages usually are not justified, so the two-stage is the typical layout.  

After the separation unit the gases released are compressed (the second 
separation is performed at lower pressure than the first) and sent to the gas 
treating section. The units of the gas treating section are the acid gas removal 
unit, the dehydration unit and the condensate recovery unit. The first has to 
remove CO2 and H2S, using usually solvents, the second one has to remove the 
water present in the gases in order to prevent the formation of a free water 
phase and to inhibiting the hydrate formation, and the third has to recover the 
heavy components from the gas that could condensate in the transportation 
phase. This last unit adjusts the Wobbe index of the sale gas. 

On the other hand the separated oil is sent to the stabilizer (together with the 
removed gasoline) in order to remove completely the light gases like methane 
and ethane dissolved in the liquid phase: the reason is that they have high 
tendency to flash in the storage tank, decreasing quickly the partial pressure of 
the other gases dissolved. This rapid change in partial pressures increases also 
their tendency to flash to vapours, decreasing the quality of produced oil. The 
aim of the stabilization process is to increase the amount of intermediate (C3 to 
C5) and heavy (C6+) components in the liquid phase by a quasi-complete 
methane and ethane removing. The oil stabilized is then cooled and sent to the 
storage area. The TVP specification is reached managing the stabilizer 
operation conditions. 

Figure 2 shows a classic scheme for an oil process plant. 
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Figure 5.35, Simplified scheme for an oil process plant. 

 
Several considerations could be done in a process plant. The design and 

operation of it is not easy, even if the plant has typically the same classic layout 
as previously described. The main difference may come from the fluid 
composition, the amount of gases dissolved, the sourness of them, the water 
and sulphur content and so on, that influence the plant management. 
 
5.2.3 The case study 
 

The asset under investigation has the previously described properties and 
layout. It is a specific line of a great giant oil field. The objective of this 
optimization is to enhance the oil production for this line, since the amount of 
released gas does not affect the economics of the field as the oil. 

The line has 8 productive wells, divided in different clusters: the network has 
two high pressure branches connected to three and four well for each cluster 
(see Figure 5.21). The last one is separated and connected to the low pressure 
network. This scenario is complicated by the zone’s orography, because the 
wells are drilled on a higher level respect to the process plant, and the pipelines 
have latch and consequently complex multi-phase flow behaviour; the resulting 
pressure losses are functions of the liquid content on the pipelines. 

The process plant has two separation stages; the high and low pressure 
networks are connected to these two item, so the high pressure separator takes 
the highest fraction of oil from the network; the low pressure separator takes 
the oil coming from the first separator and the oil coming from the low 
collector (Figures 5.20 and 5.21). In fact, in the plant there are three separators: 
one is a two-phase type and two are three-phase separators; the two-phase 
separator is used as slug catcher and it is posed at the beginning of the plant, 
connected to the high pressure collector. Between the two-phase and the first 
three-phase separator there are only 1-2 bar of pressure difference: practically 
they represent together the first separation stage. Each well has its Inlet choke 
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valve. The process plant has one stabilizer, divided into two sections coupled in 
the same column, one acid gas removal column, feed by MDEA regenerated in 
another column, a dehydration unit with glycol and a condensate recovery. The 
gases are compressed two times: the first from the separation and stabilizer 
pressure till 30 bar approximately and then sent to the treating section; the 
second after the condensate removal till the transport line pressure required, 70 
bar. 

 

 
Figure 5.36, The gathering system for the real case study. 

 
Each well has a different fluid composition and consequently different 

behaviour. The amount of gas present in the fluid is represented by the GOR 
[Sm3/Sm3] (Gas-Oil-Ratio), defined as the free gas flow over the oil flow at 
standard conditions. This number is significant in the production management, 
because a high amount of gas released in the network could cause unstable 
flows.  

Another significant characteristic is the amount of acid gases present in the 
fluid: CO2 and H2S could provoke corrosion in the pipelines, even 
ungovernable, and make necessary an efficient acid removal unit in the process 
plant in order to obtain the sale and safety specifications. 

The problem of this asset is the coupling of the fluid characterizations with 
the process plant. The initial design was made using different GORs and 
compositions from the actual ones, since work-over, acid cleaning and 
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recompletions are made in some well. Table 5.16 shows the critical properties 
of the wells’ fluids. 

 
 

Table 5.17, GOR and sour gas content of the reservoir fluids. 
 GOR H2S CO2 

 [Sm3/Sm3] %vol %vol 

W1 516 2 24.3 

W2 428 2.77 9.65 

W3 638 1.21 38.9 

W4 250 0.2 3.6 

W5 155 0.15 3 

W6 150 0.16 3 

W7 117 0.15 2.66 

W8 160 0.1 3.1 

 
The most significant problem of the plant is the acid gas sent to the acid 

removal unit: since the wells from reservoir 1 (W1, W2 and W3) have high 
fractions of sour gases and high GOR values, their productions limit the 
capability of the plant. Producing from reservoir 1, the amount of gas incoming 
in the plant increases; besides, this gas is really acid and exceeds the maximum 
design of the treating section: the amount of CO2 in particular could degrades 
the solvent action in the unit. For this reason, the cluster of reservoir 1 has 
reduced production compared with its potential production, and the cluster of 
reservoir 2, with lower GOR and sour gases content, covers a high fraction of 
available production. 

Anyway, the almost closing of the reservoir 1 cluster is not the optimal 
solution, since some profit margin exists: a slightly different plant parameters 
setting and a controlled network management could give some advantage. 
Besides economic considerations, a decreasing of the well’s production on the 
cluster of reservoir 2 elongates its production life. In fact, some constraints are 
present also for the well production: the bottom-hole-pressure FBHP must to 
stay over a specified value related to the reservoir. This value is usually the 70% 
of the static reservoir pressure. This constraint reduces the possibility of a 
premature well-dead and reduces the sand production into the wellbore, 
reducing the fouling in the separators. 

Speaking about the reservoir 3, the oil production is relatively small, 
approximately less than 10% of the total oil production; furthermore, the GOR is 
smaller with respect to the wells of cluster 1, making its regulation irrelevant in 
the optimization. 

Concluding, in this situation the plant seems to be the constraint of the asset, 
because of its limitations. The controls of this asset are the inlet choke valves, 
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the separator pressures, and some degree of freedom in the process plant, like 
the pressure difference between the slug-catcher and the first 3-phase separator, 
the conditions of the stabilizer column (head pressure and reboiler temperature) 
and some outlet temperature of heat exchangers. The treating section, since its 
complexity, is leaved untouched by this integrated optimization and managed in 
a second time. 

 
5.2.4 Integrated optimization 
 

The two environments are modelled by two different programs, which 
calculate with high accuracy the results of a specific setting in each 
environment.  

The necessity of a tool which integrates the two environments is driven by the 
difficulty to have a complete view of the entire asset. In fact, it is simulate by 
two programs. Each simulation program has an internal optimization tool, but 
separated with the constraints of the other environment; in particular, the 
optimization of the production from a network point of view cannot include 
problems of the treating section of the process plant but it could be influenced 
only by general considerations (e.g.: maximum gas rate, maximum H2S). On the 
other hand, the constraints’ satisfaction in the process plant is highly dependant 
on the input hydrocarbon mass flow rate, given by the network environment. It 
is clear the tight interaction between these two systems: the Differential 
Evolution gives some advantage in this optimization, since it’s an external 
optimization tool that finds the variables setting using the evolution strategy of 
the survival of the fittest, allowing at the same time a flexible constraints setting. 

Anyway, this tool could also work only on the process plant environment. This 
option does not take the gathering system as part of the system. The algorithm 
then works only on the HYSYS variables. 

 
Gathering system simulation 

The gathering system is modelled by a Petroleum Expert product called GAP, 
from the IPM suite, commonly used in the Eni divisions. In this program each 
well needs complex specifications for the reservoir fluid extracted, the 
performance, layout and length of the perforated well and the length of the 
tubing: the combination of these characteristics defines the well production 
performance to the surface controlled by the choke valve regulation. In order to 
solve the network an end pressure point, the separator pressure, must be set. 
Running the simulation, the programs returns the oil, water and gas produced by 
each well, the pressures in each node and the pressure losses in the pipelines. 

 
Process plant simulation 

The process plant environment is modelled by an AspenTech product, 
HYSYS, equipped with several thermodynamic packages and several operation 
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units like separators, column, absorber, reboilers and heat-exchangers. The 
accuracy of this program is high, but the program management is not banal. This 
tool is one of the most spread simulation programs used in the oil and chemical 
industries. It has also logical controls and adjusting operators that give some 
automation to the simulation. 
 
The integrated optimization tool 

Since the necessity of accurate solutions, these two simulation programs are 
used in our evolutionary algorithm: the tool proposed uses Differential 
Evolution as basis for the optimization, and the two programs simulate each 
solution explored by the algorithm; practically they take as input the 
chromosome’s variables, they simulate the solution proposed and returns the 
fitness value to the main algorithm: the implementation of this tool is only for 
single-objective optimization, since usually in oil industry the objective function 
to maximize is the profit of the asset. If many products are the output of the 
processing phase, the aggregate planning method is adopted in order to define a 
unique fitness function. The main algorithm is written in MATLAB, a 
Mathworks product. The choice of MATLAB is driven by the possibility of it to 
create a connection and an information crosstalk with the other simulation 
programs, which are equipped with coherent external interfaces. 

 
The tool is then composed by the interaction of three programs:  

1. MATLAB 
2. GAP 
3. HYSYS 

The first plays a manager role of the variables, solutions and operations for the 
search of the optimum. It works as an automated operator, following the 
population based search of the evolutionary algorithms: it computes each 
population, it combines the solutions in order to obtain new perturbed solutions, 
it compares the children with the parents and then it selects the best in order to 
allow the evolution of the population. This process permits the attainment of the 
optimum of the integrated asset, since the two simulation programs are used as 
fitness evaluation: the manager MATLAB find, combining chromosomes, a set 
of variables, and it follows the production chain imposing in GAP its specific set 
of variables, running the simulation and taking the results of the gathering 
system as input for the process plant simulation. Then MATLAB sets the 
required variables in HYSYS and it runs the process simulation; the final result, 
in that case the oil production, together with the constraints of the two 
environments, are read and processed by MATLAB. This operation is repeated 
till a stopping criterion is met. Figure 4 depicts this cycle. 

The structure of the tool is flexible, adaptable to many cases of the oil 
productivity management. An classic interface through spreadsheets of the 
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simulation programs allows an easy setting for variables and constraints with 
their boundaries.  

Since the automation of this tool, any further human interaction with the 
simulations must be removed; the correct convergence of each solution is 
controlled by MATLAB, but the simulation files needs shrewdness like internal 
logical settings.  

 

 
Figure 5.37, The interactions between the three programs: MATLAB, GAP and 
HYSYS. 
 
Variables, constraints, results and interactions 

This optimization comprises 14 variables together: 
� 8 inlet choke imposed pressure losses 
� 2 separator pressures 
� Pressure difference between slug-catcher and first separator 
� Stabilizer head pressure 
� Stabilizer reboiler temperature 
� Inlet temperature of the bottom stabilizer section 

 
The two separator pressures are shared variables, since the separators are 

included in both environment and represent the conjunction. In this integrated 
optimization the separator pressures become variables, since in the separated 
one these values are a user defined conditions. 

Some of these variables have defined boundaries: 
 

Table 5.18, Variables’ boundaries 
 Lower Upper Unit 

HP separator 20 40 [bar]  

LP separator 12 18 [bar]  

∆P slug-sep 0.5 2 [bar]  

Stab head P 7.5 9.5 [bar]  

Stab reboiler T 160 190 [°C] 

Stab bottom inlet T  65 120 [°C] 
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The other variables, the pressure losses through the choke valves, have only 
the lower boundary of 0, which means no control on the well, leaved completely 
opened. The upper boundary for this type of variable is not unique, since the 
pressure loss across the valve is not a direct control on the flow rate but it’s 
influenced by the current network’s pressure profile. 

 
The constraints of the system, as previously anticipated, are both in the 

gathering system and in the process plant.  
In the gathering system a required minimum value for each FBHP is related to 

the sand production and the life of the well: working over these values is 
recommended and not imposed. Anyway, for this optimization all the 
constraints should be satisfied. Table 5.18 reports these values, which are the 
70% of the reservoir pressure layer from where they are producing. 

 
Table 5.19, The minimum FBHP allowable 

 FBHP min [bar] 

W1 226.5 

W2 226.5 

W3 227.0 

W4 217.6 

W5 211.8 

W6 221.0 

W7 214.9 

W8 209.4 
 

The rest of the constraints are referred to the process plant. As specification 
design, the plant has maximum oil, gas and water capabilities defined as inlet 
values. After them, a significant constraint is the gas flow sent to the treating 
section, in particular the acid gas removal, expressed in actual volume flow, a 
pressure dependant property: since in the plant the low pressure compression 
unit carries the gases released from the low pressure separator and the stabilizer 
till the pressure of the high pressure separator, the setting of the latter influences 
deeply this constraint. The higher this pressure, the higher is the mass flow that 
passes through the treating section for a defined volume flow. Another 
constraint affected by the acid removal section is ratio between the CO2 and H2S 
fraction of these gases: over the specified value the unit doesn’t work as 
required, since the high amount of CO2 degrades the solvent action in the H2S 
removal. Other two additional constraints could be the specifications of the 
Wobbe index and TVP: these depend respectively on the composition of the 
inlet fluids and the stabilized reboiler temperature.  

Table 5.19 resumes the plant constraints. 
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Table 5.20, Constraints and specifications for the plant 
 Value Unit 

Inlet oil [max] 37750  [bbl/day] 

Inlet gas [max] 1450 [kSm 3/day] 

Inlet water [max] 2200 [Sm3/day] 

Gas flow rate to the 
treating section [max]  

42 [km 3/day] 

CO2/H 2S to the  
treating section[max] 

21.4 [-] 

Wobbe index [max] 52 [MJ/m 3] 

TVP [max] 86 [kPa @100°F]  
 

The fitness function of each solution is represented only by the oil produced 
by the plant and sent to the storage area, reported in standard conditions. No 
intermediate properties affect directly the objective function, the interaction is 
only indirect and internal to the system. The evolution should be able to altering 
the variables’ setting in order to find the maximum oil production achievable 
that satisfies the whole constraints. 

 
 

5.2.5 The algorithm strategies and properties 
 

The Differential Evolution has many strategies adoptable and several 
constraint handling methods. The choice of implemented strategies is driven by 
the problem nature and the simulation times necessary to evaluate each solution. 

The problem nature indicates that the optimization is mainly concentrated on 
the gathering system variables, since the oil production is high sensitive to the 
inlet choke opening; the process plant variables have marginal sensitivity on the 
fitness function; only in the constraints handling they have some weight, 
especially for the maximum Wobbe index and TVP. After that, the objective 
function with high probability does not have a complex shape but it could have 
some local optimum; this sentence is driven by the know-how in this type of 
optimization problems inside the Prod division. The main problem on the fitness 
function is the gas flow rate constraint, which excludes some portion of the 
domain: in fact, increasing the production, also the gas rate increases. This 
constraint affects sensibly the feasible area, especially in the domain of the 
well’s cluster of reservoir 1, characterized by high GOR values (516, 428 and 
638 Sm3/Sm3 for the three wells) and high CO2 content. 

The simulation times depends on the stability of a solution: if the solution is 
unstable both in GAP and HYSYS, the estimation-time for a solution could be 
10 and 30 seconds respectively, with the possibility to waste approximately 40 
seconds for a bad solution, discarded by the algorithm controlling the maximum 
error. These times are unacceptable, but continuing in the search, the number of 
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bad solutions diminishes drastically since they lie in an unstable region leaved 
soon unexplored by the evolution strategy. 

Anyway, in order to obtain accurate solutions, 5 seconds for GAP and 7 
seconds for HYSYS are considered necessary, so approximately 12 seconds for 
each chromosome is the expected time for each solution’s evaluation. This 
feature influences the strategies adopted in the algorithm and the parameters’ 
setting, especially for the population size and the stopping criteria. 

Since very high optimization times are expected, the algorithm must be 
sufficiently faster and the same time reliable as possible.  

 
DE strategies implemented 

Given the previous features for the simulation of each solution and the 
presumed objective function’s shape, the evolutionary algorithm implemented 
adopts three fast and reliable strategies already presented in Sections 4.1 and 4.2 
and tested in Section 5.1: 

1. DE random 
2. DE best 
3. DERL 

 
These three reproduction methods are chosen chromosome by chromosome 

using some heuristic rule implemented in the program.  
DE random is the basic mutation strategy originally proposed by Storn & 

Price (see Chapter 4).  
DE best is the fastest algorithm since its greediness: this strategy speeds up the 

convergence when a clear direction is taken by the evolution. The 
implementation of a coherent heuristic rule allows avoiding misuse of its feature 
that could provoke premature stagnation to a local optimum.  

DERL is a half-way strategy between DE random and DE best: it represents 
the correct mediation between greediness and randomness, their strengths. 

 
The crossover procedure adopted is the binomial type, recommended in high 

dimensionality and highly constrained situations. 
 

Parameters’ setting 
These three strategies need only three parameters: 

� Population size  NP = 20  
� Crossover rate  CR = 0.5  
� Scaling factor  F = 0.5  

The population size affects the optimization time: since the simulation time for 
each solution is significant, a high NP implies an unacceptable wasting time. 
This value must be as lower as possible: the dimensionality of the problem is 
high, 14 variables, but only 10 of them could be really significant. NP=20 is 
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considered a correct setting: the low sensitivity of this parameter in the final 
solution has been proved in Section 5.1. 

The crossover rate influences the convergence speed: this tool must be reliable 
and at the same time as faster as possible. As proved in section 5.1, the lower the 
CR the higher the success rate, especially for complex problems: this high 
reliability is then counter-balanced by a slow convergence speed. Since the 
probable simple objective function shape, low values are not necessary and 
0.5  is considered satisfactory for this situation. 

The scaling factor selection is not critical, thanks to the heuristic rules 
implemented: a randomization around the user-defined value is performed by 
them.  
 
The heuristic rules adopted 

The heuristic rules adopted in this optimization uses fitness information 
processing in order to give flexibility to the evolution. Since adaptive rules need 
information about the population diversity, the standard deviation of the fitness 
functions of the previous population is used as measure of this diversity: at the 
end of each generation, after the selection of chromosomes to carry in the 
evolution, average and standard deviation are computed on the fitnesses of the 
population, in order to pass these information to the successive population and 
manage the exploration.  

Since the standard deviation alone cannot be representative for different 

situations, the reference measure ρ used by the heuristic rules is the ratio 
between standard deviation and average of the fitness: 
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Where ρlim is a user defined value used also in other heuristic rules and 
stopping criteria. This value is set as 0.005 and the recommended values are in 
the range [0.002; 0.01]. The two uniform random values selected for this rule 
are chosen for each ith chromosome, where { }1, ,i NP∈ … .  

Also the scaling factor F for the three strategies is selected following heuristic 
rules, in order to randomize the step length of the strategy adopted for each ith 
solution; this randomization is inspired by the NSDE approach. The 
randomization of F is performed transforming it into a Gaussian random 

variable with standard deviation σ and mean µ.  
The standard deviation is set as 0.1, while the mean is defined by the 

following heuristic rule: 
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Then the final scaling factor is: 
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This rules previously described allow a sufficient diversification in the 

strategies: when the diversity in the population decreases, the greediness of DE 
best and DERL are used in order to speed up the exploration. Besides, the 
randomization of the scaling factor and its increasing or decreasing of 30% 
together, modify the step length, permitting at the same time exploration of 
unknown regions. 

 
The stopping criteria 

The stopping criteria adopted for this tool are three: 
1. reaching of MAXGEN = 80 generations 
2. the best solution in the population is the same for EQSOL = 10  

generations consequently 
3. the population diversity is under a specified value 1 limGρ ρ− ≤  

 
The first and second stopping criteria affect the total optimization time: the 

first is difficult to reach, but the second is common for this classical situations. 
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Of course, this second one doesn’t assure the attainment of the global optimum 
but, since the exploration abilities of the algorithm, 10 generations without any 
improvement seem a reasonable index of unexpected further evolution. The last 
criterion is directly referred to the population diversity: if it is too low, no more 
improvement could be done. 

Since 20 seconds are approximately expected for each evaluation, the 
maximum time foregone is approximately 10 hours, considering a 20% of 
simulation failure for instability and unfeasibility of solutions: 
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This value is considered acceptable since the complex scenario under 

optimization. 
 

The constraint’s handling 
Since the strict constraints, especially referred to the treating section, the 

elevated simulation time necessary for each solution and the high possibility to 
wasting time for unfeasible solutions, a particular shrewdness is adopted in 
order to resolve this highly constrained situation: a parallel population is 
introduced in order to store feasible solutions discarded by the selection process. 
The particularity introduced exploits the extreme greediness of the selection 
process for the next generation adopted by DE: the i th evaluated child, called 
trial vactor, if feasible is compared one time only with the ith vactor of the 
current population; if the trial one is infeasible it is automatically discarded. This 
selection feature excludes any feasible solution that unfortunately is compared 
with a fittest solution than it. Anyway, there is some possibility that this child is 
better than at least one of the current population; for this reason a parallel 
population is created, in order to store feasible solutions discarded by the main 
selection process. Of course this population has reduced dimension, comparable 
with the main population, and when a feasible solution is not accepted by the 
main population, it is compared with the worse of this parallel population: if the 
first is better than the latter, it takes its place. This procedure is inspired by the 
Preferential Crossover found in DEPC, Section 4.2.3. 

This parallel population is than called to offer a feasible solution for the main 
selection process when the trial vector just evaluated results infeasible; in that 
case a second selection process is made between the ith vector of the current 
population and a random selected solution from the parallel set. In that way the 
previously spent simulation time to evaluate a feasible solution is not completely 
wasted, giving to this initially discarded chromosome a second chance. This 
feature gives a good convergence speed to the evolution strategy since it keeps 
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relatively high the fitness level of the population, allowing high transmission of 
good properties to the next generations. This shrewdness shows its good 
properties after a latent period within also this population has to evolve: after 
this period the mean fitness values of the two populations are comparable and 
the second selection process keeps high the substitution in the main population. 

The choice of this method for the constraint’s satisfaction instead the penalty 
method or any repairing method is driven by the problem nature: since the oil 
produced grows together with the gas sent to the treating section, with high 
probability the optimum lies close to the infeasible area. The penalty method 
needs many generations to satisfy the constraint completely and a repair rule is 
not recommended, since the variables of the gathering system are not directly 
proportional to the oil production: a simple linear combination seems inapt. 

 
 

5.2.6 Results 
 

The optimization of the integrated asset is performed using three approaches: 
1. a separated optimization of the two environments using the GAP 

internal optimization with the imposition of maximum gas rate. A 
successive optimization for HYSYS by DE is performed. 

2. a separated optimization of the two environments using the GAP 
internal optimization with the imposition of maximum gas rate and 
FBHP limits. A successive optimization for HYSYS by DE is 
performed. 

3. an integrated optimization of the entire asset (GAP + HYSYS) by DE, 
starting far from the optimized network solution. 

 
The first optimization uses the optimization of the gathering system performed 

by the internal optimization tool of GAP. This optimization has as task the oil 
production increase and only one constraint: the maximum gas rate incoming to 
the process plant, since it is the well known problem of the asset. The maximum 
value allowable is 1450 kSm3/day (Table 5.19). However, the GAP optimization 
manages only the choke opening, since the separators pressures are taken as end 
point pressures of the network, considered boundary conditions. This 
optimization removes two degrees of freedom to the entire system. The GAP 
results become then HYSYS inputs, from which starting the optimization of the 
process plant by the tool. 

The second optimization uses another time the separated optimization, 
imposing the maximum gas rate of 1450 kSm3/day and the minimum FBHPs, 
reported in Table (5.18). After this optimization by GAP, HYSYS is then 
optimized by the tool. 

The third way exploits the integration concept, transforming the two 
environments into a unique system: in that case the superimposition of the 
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separators becomes unlocked and all the constraints, described in section 3 and 
resumed in Tab 5.18 and 5.19, could be satisfied contemporaneously. The 
gathering system variables are uniformly generated around the previous 
optimized values, while HYSYS is uniformly randomly generated inside ranges. 

 
Tables 5.20 and 5.21 show the results for the three optimizations, the variables 

found in GAP for each well and in HYSYS and the constrained properties. It’s 
important to notice the FWHP is not a variable but a simulation result, since it 
depends on the choke opening coupled with the downstream pressure (see Tab 4 
and 5 for the constraints). This value indicates the production state of any well, 
the lower the FWHP, the higher the flow rate. Anyway, this pressure value is 
connected with the FBHP, a constrained property for the system. 

 
 
 
 
 

Table 5.21, Variables and results for the gathering system for the three optimization: 
GAP optimization with gas rate constraint, GAP optimization with gas rate and FBHP 
constraints and optimization by the integrated tool with all the constraints. 

GAP variables and results 

 gas rate constraint gas rate + FBHP DE integrated tool 

 
∆P 

choke 
FWHP FBHP Qoil 

∆P 
choke 

FWHP FBHP Qoil 
∆P 

choke 
FWHP FBHP Qoil 

 bar bar bar Sm3/day bar bar bar Sm3/day bar bar bar Sm3/day 

W1 9.8 58.4 215 647 0.0 53.2 243.4 487 20.6 75.8 237.3 523 

W2 14.0 44.0 199 1028 3.0 68.5 233.6 787 33.3 88.6 245.3 697 

W3 
no 

flow 
no 

flow 
324 0 6.8 92.4 274.7 1162 42.0 97.2 270.4 1253 

W4 0.1 42.6 169 968 2.0 70.0 220.9 663 37.3 76.7 235.9 562 

W5 1.0 55.0 237.5 386 0.0 44.2 252.7 296 0.4 48.5 256.7 272 

W6 0.3 45.5 280.4 1434 1.1 56.9 279.6 1468 0.3 56.9 281.5 1392 

W7 3.4 38.2 284 291 0.7 45.9 273.9 419 0.6 51.0 292.1 188 

W8 0.1 35.0 231 347 0.0 50.8 257.9 210 0.1 36.2 235.1 327 
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Table 5.22, Variables, constraints and results in the HYSYS environment for the 
optimization 1,2,3. The separated optimization with the tool in HYSYS environment 
conceive the process constraints. 

Separators  1 2 3 

HP sep [bar] 34 34 38.7 

LP sep [bar] 12.1 12 14.75 

     

HYSYS parameters    

∆P S1-S2 [bar] 1.7 1.1 1.0 

P stab [bar] 9.5 9.5 9.5 

T bottom [°C] 186 188 188 

T heat-exch [°C] 115 100 80 

     

HYSYS constraints    

Inlet oil [bbl/day] 35336 35184.91 36910 

Inlet gas [kSm3/day] 1044 1206 1408 

Inlet water [Sm3/day] 384 504 257 

Gas treated [km3/day] 38.4 42.288 41.9 

CO2/H2S [-] 7.6 15 18.1 

Wobbe [MJ/m3] 52 50.5 51.7 

TVP [kPa @100F] 85 84.3 85.6 

     

HYSYS results    

Qoil out [bbl/day] 35019 34249.06 35940 

Qgas out [kSm3/day] 1007 1008.24 1145 

 
 
The optimization times are reported in Table 5.22. 

 
Table 5.23, Optimization times for the three optimizations. 

 GAP time HYSYS time 

GAP gas rate 45 min 20 min 

GAP gas rate + FBHP  1 h 20 min 

Integrated tool ~4.5 h 
 
 

Figures 5.23 and 5.24 show the resulting FWHP of the solutions of the three 
optimizations and the oil production achieved. The FWHP is one of the most 
important properties of the system from a production point of view, since is 
easily measurable. 
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Figure 5.38, FWHPs resultant from the three optimizations. The values are similar except for 
W3, completely closed by the first optimization. This well has the highest GOR in the field’s 
line. 
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Figure 39, Oil production achieved by the three optimizations. The last one is approximately 3% 
higher than the first. 
 

As expected the first optimization, performed separately for the two 
environments, is not able to satisfy all the constraints: three FBHP are under the 
minimum values allowable, in particular for the wells W1, W2 and W4. The W3 
is completely close, since its high GOR and sourness. This situation is 
completely unsatisfactory, since W3 has high GOR but unfortunately also a 
good well performance. The optimization of the HYSYS environment does not 
give considerable improvements on the oil production but it works mainly on 
the satisfaction of its constraints. At the end the tool applied only to the process 
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environment, at least for this particular case, is not significant for the global 
optimization. 

The second optimization, that should be more reliable in terms of constraints’ 
satisfaction, finds a worse solution: the oil production in this case is 
approximately 2% less than the previous optimization. As clear from Figure 
5.23, the FWHP setting is quite different respect to the previous one, but the 
final oil production is diminished. W2 and W4, in the first optimization do not 
satisfy the FBHP constraint. With the second optimization these two wells are 
induced to produce less in order to obtain the satisfaction of their bottom-hole 
constraint. For this reason their missed production reduces the final oil 
production, even if W3, in this configuration, starts to produce. Farther, one 
constraint is not satisfied in the process plant: the gas sent to the treating section 
goes slightly beyond the limit of 42 m3/day imposed. 

The last optimization, even if it takes 4.5 hours, satisfies the constraints of the 
entire system and at the same time it enhances the final oil production. This 
value is approximately the 2.7% higher than the result obtained with the first 
optimization. This result is achieved manipulating the separators’ pressure, 
variables considered fixed for the separated optimization. Increasing the first 
separator pressure, the amount of gases released from the separators’ stages has 
a lower flow rate. In fact, the most important constraint in the plant is the gas 
flow rate to the treating section; its limitation is referred to the actual gas flow: 
the higher the pressure, the lower is the volume flow keeping the mass rate 
constant. For this reason, the first separator pressure is increased, approaching 
the upper boundary for this variable. Also the limit of this constraint is 
approached: in fact, this property of the system is the bottle-neck of the entire 
production chain for this line. 

The ability of this tool to explore regions close to the boundaries of the 
feasible region is higher respect to a separated optimization. Combining the two 
environment into a single one assures the attainment, at least with the heuristic 
implementation described in Section 5.2.5, of the global optimum of the system. 
Other runs are performed and the solutions obtained are the same as reported in 
this section, proving the reliability and robustness of this tool. 
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5.3 A real case study. A nuclear safety system: multi-objective 
optimization of inspection intervals. 
 

In this case study we consider the problem of the optimization of the 
inspection intervals of a nuclear safety system. For its solution, we investigate 
the use of DE and compare it respect to other evolutionary algorithms, already 
presented in Section 5.1. In the comparison, we look in particular at the 
computation time and at the characteristics of the Pareto frontier. The problem is 
first treated as a SO optimization and then as a MO optimization. 

 It refers to the choice of the time intervals for the periodic testing of the components 
of the High Pressure Injection System (HPIS) of a Pressurized Water Reactor (PWR).  

Reliability/availability design and inspection/maintenance strategies are the target to 
optimize for these safety systems. Because of their difficult complete understanding on 
a global view, the complexity of the interactions between different objectives and the 
difficulty to evaluate their impact under a unique measure, the problem represent one of 
the most interesting cases for the multi-objective optimization in nuclear industry. 
Typically, this kind of systems is subject to physical and normative constraints which 
come into play imposing restrictions that the candidate solutions have to satisfy. For 
simplicity, in our case studies we do not impose any a priori constraint to be satisfied by 
the candidate solutions. 

 
 

5.3.1 The problem 
We tackle the issue of finding the inspection intervals for the components of the 

HPIS (High Pressure Injection System), a safety system for nuclear power plant for a 
Pressurized Water Reactor, which intervenes in case of a small LOCA (Loss of 
Coolant Accident). The optimization is sought with respect to different conflicting 
objective functions: (i) the mean availability, (ii) the cost of the inspections (and the 
eventual cost of repair in case of accident) and (iii) the  exposure time of the 
maintenance operators.  

 
For this study the following assumptions are made: 

1. At least one of the flow paths must be open at all times. 
2. If the component is found failed during surveillance and testing, it is returned to 

an as-good-as-new condition through corrective maintenance or replacement. 
3. If the component is found to be operable during surveillance and testing it is 

returned to an as-good-as new condition through restorative maintenance. 
4. The process of inspection and testing requires a finite time; while the corrective 

maintenance (or replacement) requires an additional finite time, the restorative 
maintenance is supposed to be instantaneous. 

 
The simplified scheme of the system is shown in Figure 4, as already presented and 

explained in [17].  
The three objective functions are computed on the basis of a classical fault tree and 

event tree analysis. 
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Figure 5.40, HPIS simplified scheme [17] 

 
The system components are divided in three groups; all the items belonging 

to a same group undergo testing with the same periodicity. The three inspection 
intervals are identified by Ti, i = 1, 2, 3. The maintenance item groups are: 

 
T1 � {V 1, V2} 
T2 � {V 3, V5, PA, PB, PC} 
T3 � {V 4, V6, V7} 

 
The groups contain respectively the inlet valves, the pumps together with the 

outlet valves and the crossover valves. 
T = [T1 T2 T3] is the decision variable array composed by the three inspection 

times referred to each maintenance item group. The reference time is one year, 
and the time inspection variable is expressed in hours, so the domain is 1 < Ti < 
8760 hours, i = 1, 2, 3. 

The test interval specified by the technical specifications (TS) both for pumps 
and valves is 2184 h. So, for the previous case, the variable array recommended 
by TS is T = [2184 2184 2184] h. 

 
Since we prefer speak in terms of minimization, the maximization of the 

availability is replaced by minimization of the mean unavailability.  
The three objective functions are defined by models present in literature. 
The mean unavailability is computed after the determination of the fault tree 

for the top event “no flow out of both injection paths A and B”. The resulting 
minimal cut sets then are reported in Table 5.23. 

 
The mean unavailability can be expressed as follows: 
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= =

≈∑∏  (5.7) 

 
where N is the number of minimal cut sets, nj is the number of basic events 

relevant to the j th minimal cut set and i
ju  represents the mean unavailability 

associated with the i th component of the j th minimal cut set. 
 

Table 5.24, Minimal cut sets for the safety system reported in Figure 5.25. 

MCS # Components order 

1 V1, V 2 2 

2 V5, P A, P B 3 

3 PA, P B, P C 3 

4 V3, V 4, V 5, P B 4 

5 V3, V 4, P B, P C 4 

6 V3, V 5, V 6, V 7 4 

7 V3, V 6, V 7, P C 4 

8 V4, V 5, V 6, V 7, P A 5 

9 V4, V 6, V 7, P A, P C 5 

 
For mean unavailability of a generic component I, several models have been 

proposed in literature. In this study the model used is: 
 

 ( ) 0

1

2
i i i
j i i i i i i

i i

d t
u T T

T T
ρ λ ρ λ γ= + + + + +   (5.8) 

where ρi is the probability of failure on demand, λi the failure rate of the i th 
component, Ti the test interval, ti the mean downtime due to testing, di the mean 
downtime due to maintenance and γ0 the probability of human herror. Eq. (5.8) 
is valid when ρ<0.1 and λT<0.1, which are reasonable assumptions. 

 
 
The cost function is composed by two contributions: 

1. CS&M : cost for surveillance and maintenance 
2. Caccident : cost associated with consequences related to accidents 

Then the cost is: 
 
 &S M accidentC C C= +  (5.9) 

The cost S&M is so defined: 
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where Chc,I is the yearly inspection cost, Cht,I is the corrective maintenance 

cost and TM is the mission time, 8760 hours in our case. 
The accident cost is intended as a measure of the cost associated to damages 

of accident which are not mitigated by HPIS intervention. Using a small LOCA 
event tree found in literature [61] and reported in Figure 5.26, the following 
formulation describes the accident cost: 

 

 ( ) ( ) ( )
( ) ( ) ( ) ( )

1 3

1 1

3 3

1 1

1 1 1

accident

RT LPIS LPIS SDC MSHR PDS

RT SDC MSHR LPIS PDS

C C C

C P EI U u U U U U C

C P EI U u U U U C

= +

= − + −  

= − − + −  

 (5.11) 

 
 

 
Figure 5.41, Event tree for the initiating event small LOCA [61]  

These costs depend on the initiating event frequency and on the unavailability values of the 
safety systems which ought to intervene along the various sequences: these values are taken 
from the literature [61]. 

 
During testing operations, the technicians may be subjected to radiation 

exposure: based on the well-known ALARA (As Low As Reasonably 
Achievable) and limit-dose principles, the dose received by workers should be 
minimized. Assuming a constant exposure rate, the minimization of the dose is 
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equivalent to that of the exposure time, so that the third objective function could 
be formulated as: 

 

 ( )exp
1

cN
M M

i i i i i
i i i

T T
T t d T

T T
ρ λ

=

    
= + +    

    
∑  (5.12) 

 
The first objective function is in conflict with the other two, since frequent 

inspection times tend to small mean unavailabilities but increase the costs and 
the exposure times. For this reason, the multi-objective optimization is treated in 
terms of the concept of dominance of solutions, seeking for Pareto frontier. 
 
5.3.2 The optimization schemes 

Three optimization schemes are adopted in this paper: 
1. single-objective constrained optimization 
2. weighted sum scheme 
3. MO with dominance concept. 
They are used in this paper to investigate the strengths and the weaknesses of 

MODE (Multi-Objective Differential Evolution), a tool developed in MATLAB 
by LASAR (LAboratory of Signal and Risk Analysis 
http://lasar.cesnef.polimi.it/) of the Energy Depratment of Politecnico di 
Milano, provided with the SO and MO options. Several variants are 
implemented in the tool, in order to increase its flexibility and ability to tackle 
different problems. For MO option MODE-III is implemented. 

 
Two algorithms are used for comparison: 
1. Genetic Algorithm toolbox 
2. Multi-Objective Genetic Algorithm MOGA,  
 
Genetic Algorithm toolbox (GA-toolbox) has several sophistications and 

internal variants. A complete descriptive help is available on the program and 
online. When no particular settings are imposed to this tool, many of the 
sophistications implemented are used with default setting. Anyway, the correct 
usage for specific problem needs deep consciousness of the tool. 

Also MOGA has several variants adoptable, and the number of information 
necessary to its running is high. Further, a wrong strategy selection could 
provoke failure of the optimization. Also for this tool the setting is not easy. 

 
Single-objective constrained optimization 

The optimization of the inspection intervals T1, T2 and T3, is first tackled as a 
SO constrained optimization, where the mean unavailability is optimized with 
cost as constraint, and vice versa. Since the third objective function, the 
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exposure time, has the same proportional dependence from the inspection times 
as the cost, it is ignored in this preliminary single-objective optimization.  

The constraint values are taken from the technical specifications that 
recommend T = [2184  2184  2184] hours. This gives mean unavailability and 
cost constraints: 

� Uconstr = 3.5427 · 10-4 
� Cconstr = 1440.2 $ 

 
For this optimization, MODE and MOGA are compared in their SO version. 
The SO mutation variants adopted for this optimization with MODE are: 

• DE random 
• DE best 
• DERL (DE with Random Localization) 
• NSDE (Neighbourhood Search DE) 
• TDE (Trigonometric DE) 

 
These variants are considered the most reliable and fast modifications of the 

original DE. Their strengths and weaknesses have been shown in Section 5.1. 
Since the optimization is constrained, DE is coupled with a repair technique for 
infeasible solutions. In fact, if a solution is infeasible, it must be discarded. 
This moving is obtained with a bisection method applied between feasible and 
infeasible solutions. 

This practice assures less total function evaluations. 

 
Weighted sum scheme 

A second optimization is performed by adopting the weighted sum scheme of 
the three objectives to reduce the multi-objective optimization to a single-
objective one: this leads to the identification of only one solution, highly 
depended on the weights. 

As for the first test, the five DE variants above are tested. 
The overall function that integrates the three targets into one is so defined: 
 

 ( ) ( ) ( ) ( )
exp exp,U n C n T nf T w U T w C T w T T= ⋅ + ⋅ + ⋅  (5.13) 

 
where the n subscript is referred to a normalized value. 

Each objective function is normalized with the following rule: 
 

 min

max min
n

f f
f

f f

−=
−

 (5.14) 
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where exp,, ,n n n nf U C T=  and 0 1nf≤ ≤ . 
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The normalization is necessary because the objective functions have different 
orders of magnitude. 

In this optimization 10 weights’ settings are tried and the results are 
compared to the Pareto frontier obtained by MOGA. 

 
Multi-objective optimization with dominance concept 

The third optimization is performed with a multi-objective Pareto approach. 
The objective functions are maintained separate and the Pareto dominance 
concept is used to define the Pareto front of equally good solutions. 

The multi-objective optimization of the safety system inspection is tested 
with MODE. The resulting Pareto frontier and the times to reach it are 
compared with the results of the other two algorithms: 

1. GA-toolbox for MO optimization  
2. MOGA, already used as reference in the previous approach 

 
MODE has three variants allowable in MO options: 

a. DE random 
b. NSDE 
c. SACPDE (Self-Adaptive Control Parameters for DE) 

 
The choice of these variants for the implementation of MODE is principally 

driven by the absence of fitness feedback in their reproduction phase, for the 
sake of the speed of the algorithm. In MO optimization, the superiority of a 
solution could be defined only after a dominate comparison ranking of all 
solutions in the population, and this slows down the algorithm. 

Thanks to the powerful recombination process of MODE-III and its greedy 
selection between parents and trial solutions for the successive generation, 
dominate comparison and ranking of all solutions are not necessary, saving 
computation time.  
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5.3.3 Results 
 
5.1 Single-constrained optimization 

The optimization results obtained by MOGA are showed in Table 5.1 [17]. 
 
Table 5.25, MOGA results on single-objective optimization of inspection intervals [17] 

    UUUU optimization optimization optimization optimization    
C<Cconstr 

CCCC optimization optimization optimization optimization    
U<Uconstr 

    

T1 549 1672 [h] 
T2 2852 8742 [h] 
T3 5492 8246 [h] 
U 2.3208 2.3208 2.3208 2.3208 · 10· 10· 10· 10----4444    3.5187 · 10-4 [-] 
C 1436.2 529.3529.3529.3529.3    [$] 

 
The stopping criteria adopted in the DE search are 

• ∆=|fmin-fmax| of the current population is less than eps, practically the 
whole population is converged at the same point if eps is sufficiently 
small compared to the fitness’ order of magnitude 

• reached MAXGEN generations 
 
 
The optimization performed with DE has the following general parameters: 
 
Population Size NP  30 
Maximum Generation MAXGEN 500 
eps U/C   1e-8/1e-4 
 
Because of the different orders of magnitude of the mean unavailability and the 
cost, to make the first stopping criterion efficient the eps  values must be 
different. 
 
The settings for the DE variants are: 

• DE random CR=0.7, F=0.5  
• DE best CR=0.7, F=0.5  
• DERL  CR=0.7, F=0.5  
• NSDE  CR=0.7, NS=0.5  
• TDE CR=0.7, F=0.5, MT=0.05  

 
The choice of the previous parameters’ settings is mainly driven by the 

author experience. 
The crossover rate CR affects the amount of perturbation introduced in the 

trial vector from the noisy one: if this value is high, or close to 1, the trial 
vector is practically the noisy vector, if it is small, the trial vector inherits high 
fraction of its variables from the target vector instead from the noisy. So, if CR 
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is small, the trial vector has small differences respect to the target and the 
convergence speed is small. Otherwise, if CR is high the convergence speed is 
high but the possibility to be trapped in a local optimum increases. Since the 
two objective functions, mean unavailability and cost, are expected with low 
local optima and the dimensionality is low (only three variables), the value 0.7 
for CR is considered suitable. Nevertheless, if the objective function to 
optimize is complex and with several local optima or the dimensionality 
increases, small CR values are recommended (CR<0.3) (see Section 5.1.1). 

The scaling factor setting is significantly less critic than the crossover rate 
setting. The value F = 0.5 for DE random, DE best and DERL is taken, because 
in the middle of the recommended range (0, 1]. 

NS controls the NSDE approach: if NS is high the search is more 
concentrated in the neighbourhood, whereas if NS is small the Cauchy 
operator, characterized by high values, enhances the search space exploration. 
A correct mediation between these two searching methods is achieved by 
NS=0.5. 

TDE approach, which uses the DE random scheme as basis reproduction 
phase, has the same F and CR of the first variant; the mutation probability with 
the trigonometric mutation Mt is set as 0.05: this value permits a demonstration 
of TDE ability in this problem. If Mt is too low the behaviour of this scheme 
approaches the DE random behaviour. 

 
Tables 2 and 3 report the results for the first two optimization schemes, 

repeated 50 times in order to obtain significant statistical values with respect to 
the randomness. To demonstrate the accuracy when required, the standard 
deviation is also reported. Figures 6 and 7 report the convergence speed in 
terms of mean function evaluations (fe) and mean cpu time (cpu) used to 
complete each single run for the five tested variants. The number of function 
evaluations is the product between the population size and the number of 
generations performed, plus the value of additional evaluations for the repair 
rule. 

 
 

Table 5.26, Mean unavailability results by DE optimization. Cost is the constraint 
 DE rand DE best DERL NSDE TDE 

 mean Std mean std Mean Std mean std Mean std 

fe 1597 210 1215 343 1288 197 1973 327 1617 314 

cpu 0.1847  0.1406  0.1734  0.2284  0.2078  

UUUU    2.3203E2.3203E2.3203E2.3203E----04040404    2.3205E2.3205E2.3205E2.3205E----04040404    2.3204E2.3204E2.3204E2.3204E----04040404    2.3203E2.3203E2.3203E2.3203E----04040404    2.3203E2.3203E2.3203E2.3203E----04040404    

T1 543.8 1.8 544.3 2.7 544 1.9 544.2 1.6 543.8 2.6 

T2 2862.3 11.1 2863.9 27.7 2864 17.9 2859 11.7 2863.3 15.2 

T3 5325.6 189 5311.9 570.9 5285.8 283 5366.9 213.5 5309.1 257.3 

C 1440.2  1440.2  1440.2  1440.2  1440.2  
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Figure 5.42, Function evaluations and cpu-time used for U optimization by DE variants. 

 
 
Table 5.27, Cost results by DE optimization. Mean unavailability is the constraint. 
 DE rand DE best DERL NSDE TDE 

 mean std mean std Mean std mean std Mean std 

fe 2489.6 290.6 1230 137 1840 217 2899 344 2557 332 

cpu 0.2884  0.1453  0.2513  0.34  0.3316  

U 3.5427E-04 3.5427E-04 3.5427E-04 3.5427E-04 3.5427E-04 

T1 1691.9  1691.9  1691.9  1691.9  1691.9  

T2 8760  8760  8760  8760  8760  

T3 8760  8760  8760  8760  8760  

CCCC    524.1524.1524.1524.1        524.1524.1524.1524.1        524.1524.1524.1524.1        524.1524.1524.1524.1        524.1524.1524.1524.1        
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Figure 5.43, Function evaluations and cpu-time used for C optimization by DE variants. 

 
 
In the SO constrained optimization, MODE outperforms MOGA in both cases 

of cost and variables constraints.  
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MOGA finds U = 2.3208 · 10-4
 and C = 529.3 $ while DE random, NSDE and 

TDE find U = 2.3203 · 10-4 and all the variants find C = 524.1 $, just at the 
unavailability constraint limit of 3.5427· 10-4. 

Achieving the same minimum value at the constraint limit shows the high 
reliability of the 5 DE variants. 

NSDE is accurate but the number of function evaluations is high, due to its 
Cauchy scaling factor: using high F, the probability to find an infeasible 
solution is high and repair is required.  

DE best and DERL are the fastest but less accurate variants: their behaviours 
are reflected by the standard deviations for the inspection intervals results: T3 is 
the less significant variable (its standard deviations are large), while T1 and T2 
have more impact on the unavailability; DE best and DERL show the two 
largest standard deviations for T2, sign of their inferior accuracy. For T1, these 
values are generally small. DE random and TDE are the most accurate variants, 
but TDE has higher computation time than DE random, even if the number of 
function evaluations is the same: this because TDE needs a high information 
processing, not justified in this case. 

As for the unavailability minimization, all the variants approach the same 
solution in terms of variables’ values and consequently of objective function 
and constrained limit (see Table 3). Also for the cost minimization, the DE is 
shown to be reliable in all variants. 

The difference is again in the convergence speed (Figure 7): DE best is the 
fastest with the smallest standard deviation. This means that the cost function 
has a simple shape that exalts the search abilities of DE best. DERL has the 
second fastest convergence speed, while DE random and TDE have the same 
behaviour as in unavailability optimization: same function evaluations but 
highest cputime for the second. NSDE, as in the previous case, has the highest 
number of function evaluations and consequently of cputime because the 
optimization is constrained and unfeasibility arise. 

 
Weighted sum approach 

This approach transforms a MO optimization into a SO one by the weighted 
combination of the multiple objective functions. The setting of these weights 
moves the optimization toward a specific objective function. Changing the 
weights, each run returns a point that lies on the Pareto frontier. To obtain a 
dense Pareto front, number of weights’ settings must be used. In our test, ten 
weight settings are tried, returning only ten solutions. 

The three weights must be chosen coherently: since the second objective 
function has the same proportionality with respect to time as the third one, the 
second and third weights are set equal; the first weight is set at 10 different 
values in a range between 0.05  and 0.95 . Figure 8 shows, in two 
dimensions (U and C), the MOGA Pareto frontier and the ten points obtained 
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from the weighted-sum method optimized by DE. The five variants approach to 
the same solutions in all the weights’ settings since the high reliability of DE 
on finding the true global optimum; only the computation times are different. 

The stopping criteria adopted are the same as for SO optimization. 
The total number of function evaluations (fe) and cputime spent for the ten 

runs are presented in Table 4. 
The algorithm parameters are: 
 

NP  100 
 MAXGEN 500 
 eps  1e-6 
 CR  0.5 
 F  0.5 
 NS  0.5 (only for NSDE) 
 MT  0.05 (only for TDE) 

 
The Pareto front used as comparison is obtained by a MOGA run with 

parameters NP=100 and MAXGEN=500. 
The adoption of a lower value of CR, with respect to the previous SO 

optimization, is justified by the diversity of the objective functions: the 
contemporary search in the minimization of three objective functions with high 
CR could unbalance the results, inspite of the difference in the weights. 

The ten points obtained by the weighted-sum scheme lay on the Pareto 
frontier, but the definition of minimum and maximum values for normalization 
of the objective functions limits the searching area. In fact, the result obtained 
with wU = 0.05, wC = 0.475, wT = 0.475 (biasing the target on the cost and 
exposure time minimization) is close to the maximum value of U equal to 
7.5·10-4 (highest U, lower C). Nonetheless, this behaviour is not found for an 
opposite weights’ setting biasing toward an optimization of unavailability (wU 
= 0.95, wC = 0.025, wT = 0.025): the cost does not reach its maximum value of 
2000 $ but it finds a solution near 1300 $. 

The weighted-sum scheme makes it difficult to obtain a good convergence of 
the Pareto frontier since it is too sensitive to the weights’ setting. 

 
Table 5.28, Function evaluations and cputimes for the five variants tested in weighted 
sum-scheme 

 fe Cpu [s] 

DE random 37109 2.92 

DE best 20757 1.78 

DERL 27923 2.95 

NSDE 43252 3.36 

TDE 36369 3.58 
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DE best is the fastest algorithm, both in fe and cpu time; DERL follows in fe 

but the cputime is comparable with DE random; this reflects the absence of 
fitness feedback information processing, proper of DERL and TDE.  

TDE is the variant with the highest cputime because of its high information 
processing. NSDE also in this situation fails: its high capability to explore wide 
searching area brings it out of boundaries. DE best outperforms all the other 
variants. 

 
Figure 5.44, Ten solutions obtained with ten different settings on weighted-sum scheme applied 
to DE, compared with MOGA Pareto frontier 
 
Multi-objective approach 

The population size for the three algorithms (MOGA, GA-toolbox and 
MODE) is fixed as NP=200 and the stopping criterion is set as the attainment 
of MAXGEN=500 generations. Then the number of total function evaluations 
is the same for the three algorithms (10000). 

GA-toolbox and MOGA distinguish in two parameters the number of non-
dominated solutions set in the final archive and the population size: for them 
both are set equal to 200. 

Of course, MODE has some disadvantages in terms of the density of the 
dominant set, since it carries on only NP individuals in a unique archive that is 
skimmed only at the end of the run: only if the whole population reaches the 
Pareto frontier the number of non-dominated points will be equal to 200, 
otherwise the population is skimmed. 
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Figures 9 and 10 show the Pareto front achieved by the three algorithms: for 
MODE the version DE random is plotted on the left, while on the right the non-
dominated solutions found by the three MODE variants are shown. 

The three algorithms approach to the same Pareto frontier, but with different 
densities and boundaries; MOGA and MODE seem to be more reliable in the 
Pareto frontier search for low costs and exposure times than GA-toolbox. In 
fact, the latter concentrates its search in the low mean unavailability region, but 
it does not explore the space beyond 2000 $ of cost (see Figure 10). 

Table 5 reports the time for completing the search and the number of 
solutions in the Pareto set found by the algorithms. The three MODE variants 
take approximately the same time, since they compute the same amount of 
function evaluations (10000 ) in the same programming environment. 

 
Table 5.29, Cputime and number of Pareto solutions present in the final archive for the 
MOGA, GA-toolbox and the three MODE variants 

VariantVariantVariantVariant    cpucpucpucpu    NPNPNPNP    
MOGA ~10 min 200 
GA-toolbox ~2 min 200 
MODE, DE random 5.672 s 148 
MODE, NSDE 6.328 s 145 
MODE, SACPDE 6.109 s 153 

 
 
The number of the non-dominated solutions found by MODE is not the same 

as for MOGA and GA-toolbox: this is because only a fraction of the population 
reaches the Pareto frontier. However, the computation times are significantly 
smaller than those of the other two algorithms.  

The cputime comparison between GA-toolbox and MODE is particularly 
interesting as both are implemented in Matlab: the latter algorithm is about 20 
times faster than the first. 



 

 

 

 
Figure 5.45, The Pareto fronts obtained by MOGA, MODE-random and GA-toolbox in the inspection intervals optimization
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Figure 5.46, The Pareto frontiers of Figure 9 in two dimension: U and C for GA-toolbox, MOGA 
and MODE-random on the top and the Pareto frontiers for the three MODE variants on the 
bottom 

 
These differences in computation time depend on the complexity of the 

algorithm: in this case the simplicity of DE is rewarded: the Pareto front is 
satisfactory and the percentage of non-dominated solutions is remarkable. 

MOGA seems to be reliable but really slow. 
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Table 5.30, Direct comparison between the three algorithms and the three MODE variants for 
inspection intervals optimization 

 MODE-rand MODE-NS MODE-SACPDE GA-toolbox MOGA 

- 21.85 27.73 25.45 10.92 
MODE-rand 

- 27.69 13.43 10.91 15.13 

22.58 - 28.23 27.73 5.65 
MODE-NS 

18.55 - 26.61 12.61 15.32 

19.3 26.32 - 55.26 5.26 
MODE-SACPDE 

23.68 25.44 - 11.4 15.79 

24.5 11.5 20.5 - 27.5 
GA-toolbox 

9 9.5 18 - 8 

21 26 30 25 - 
MOGA 

12 10 7 29 - 

 
 
Table 6 shows the percentage of superiority and inferiority of one variant 

against another one referred to its solutions: the variants of the rows are 
compared with the variants of the columns and the first number in each cell 
represents the percentage of dominant points of the row that dominate over the 
column’s algorithm solutions, while the second one represent the fraction of the 
dominated points (e.g.: MODE-random has 21,85% of its Pareto set that 
dominates MODE-NSDE front, while the 27.69% of MODE-random points are 
dominated by some MODE-NSDE points – first row, second column). 

Except for MODE-SACPDE that has 55% of its frontier that dominates that 
of GA, the other percentages of dominant and dominated solutions are 
relatively small, around 20-30%. Moreover, the values of dominant and 
dominated fractions of an algorithm are similar, making it difficult to declare 
superiority of one over the other. 

Also the three MODE variants do not show clear superiority: no 
improvements are carried by self-adaption of parameters (SACPDE) or by the 
neighbourhood search (NSDE). 

On the other hand, relevant differences remain in terms of computation time, 
driven principally by the differences in parameter setting: DE random keeps 
constant during the optimization the two parameters F and CR, while SACPDE 
and NSDE need new parameters’ generations. SACPDE applies the evolution 
of parameters only sometimes, when the heuristic rule is satisfied, while NSDE 
generates new scaling factor for each individual for any generation; this is the 
reason of the different cpu times. 
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5.3.4 Conclusions 
 
The results obtained in this paper represent an improvement in the 

optimization of complex nuclear system as the safety system studied. The novel 
evolution algorithm tested, DE, works well and fast with respect to the MO 
optimization version of GA, even with different strategies. 

In the single-objective optimization, MODE outperforms MOGA in terms of 
accuracy of the solutions, reaching lower values for mean unavailability and 
cost respectively. In that case DE best variant is considered the fastest 
algorithm but it should be used carefully because it could be less accurate. DE 
random remains the most robust and reliable variant if no information about the 
problem are available. 

The weighted sum scheme applied to MODE permits the achieving of the 
same Pareto frontier obtained by MOGA in MO option, but this approach is 
extremely dependant on the weights used for the integration of the three targets 
into one. For this reason this approach is considered not satisfactory, since a 
previous knowledge of the problem nature is necessary for the weights’ setting. 
No particular conclusion could be done respect the accuracy; only the time is 
comparable and also this time DE best is the fastest since its greediness. 

For the MO non-dominance approach, MODE outperforms MOGA and GA-
toolbox only in terms of convergence speed, which is significantly high: 
MODE is 100 times faster than MOGA and 20 times than GA-toolbox. 

The convergence speed of this tool is its main advantage, thanks to its 
simplicity. The other evolutionary algorithms need sophistications and difficult 
parameter settings, while MODE has very few parameters. Of course the 
number of solutions on the Pareto frontier is not the same as the population 
size, while the other algorithms may achieve the desired number of points of 
the Pareto front by storing the dominant solution in an archive uploaded 
generation by generation. 

Anyway, the number of non-dominated points carried to the Pareto front 
(75%) is satisfactory. 
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Appendix A: 
 

Benchmark problems for single-objective 
optimization 
 
The appendix presents 23 benchmark functions, with their domain, minimum’s 
value and location in the search space. 

 
 

f1. Example function taken from: 
Practical Genetic Algorithms, second 
edition, John Wiley & Sons 
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f2. Second De Jong function, 

Rosenbrock’s saddle 
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f3. Peaks function from Matlab 
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f4. Michalewicz function 
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f5. Schwefel’s problem 
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f6. Ackley’s problem, Storn and 

Price, 1997 
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f7. Modified Rosenbrock problem, 
Price, 1977 
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f8. Exponential problem, Breiman 

and Cutler, 1993 
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f9. Aluffi-Pentini’s problem, 1985 
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f10.  Becker and Lago problem, 
Price 1977 

( ) ( ) ( )
( ) ( )

2 2

1 2

* *

min 5 5 10 10

0 5, 5

ix
f x x x x

f x x

= − + − − ≤ ≤

= = ± ±

 
f11.  Bohachevsky problem 1, 1986 

( ) ( ) ( )

( ) ( )

2
1 2 1 2

* *

min 2 0.3cos 3 0.4cos 4 0.7 50 50

0 0,0

i
x

f x x x x x x

f x x

π π= + − − + − ≤ ≤

= =

 
 

f12.  Bohachevsky problem 1, 1986 
( ) ( ) ( )

( ) ( )

2
1 2 1 2

* *

min 2 0.3cos 3 0.4cos 4 0.7 50 50

0 0,0

i
x

f x x x x x x

f x x

π π= + − ⋅ + − ≤ ≤

= =

 

f13.  Camel back – 3, Three hump 
problem, Dixon and Szegö, 1975 

( )

( ) ( )

2 4 6 2
1 1 1 1 2 2

* *

1
min 2 1.05 5 5

6

0 0,0

i
x

f x x x x x x x x

f x x

= − + + ⋅ + − ≤ ≤

= =

 
f14.  Camel back – 6, Six hump 

problem, Dixon and Szegö, 1978 

( )

( ) ( ) ( )

2 4 6 2 4
1 1 1 1 2 2 2

* * *

1
min 4 2.1 4 4 5 5

3

1.0316 0.089842, 0.712656 0.089842,0.712656

i
x

f x x x x x x x x x

f x x and x

= − + + ⋅ − + − ≤ ≤

≈− ≈ − ≈ −

 
f15.  Cosine mixture problem, 

Breiman and Cutler, 1993 
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( ) ( )

( ) ( )

2

1 1

* *

min 0.1 cos 5 1 1

0.1 0,0, ,0

n n

i i ix
i i

f x x x x

f x n x

π
= =

= − − ≤ ≤

= − =

∑ ∑

…

 
 
 
 
 
 
 
 
 
 
 
 
 
 

f16.  Dekkers and Aarts problem, 
1991 

( ) ( ) ( )
( ) ( ) ( )

2 45 2 2 2 2 5 2 2
1 2 1 2 1 2

* * *

min 10 10 20 20

24777.4817 0,15 0, 15

i
x

f x x x x x x x x

f x x andx

−= + − + + + − ≤ ≤

=− = = −

 
 
 
 
 
 

 
f17.  Eason problem, Michalewicz, 

1996 

( ) ( ) ( ) ( ) ( )( )

( ) ( )

2 2
1 2

1 2

* *

min cos cos

1 , 10 10

x x

x

i

f x x x e

f x x x

π π

π π

− − − −
=− ⋅ ⋅

=− = − ≤ ≤

 
 
 
 
 
 
 
 
 
 

f18.  Goldstein and Price, Dixon 
and Szegö, 1978 

( ) ( ) ( )
( ) ( )

( ) ( )

2 2 2
1 2 1 1 2 1 2 2

2 2 2
1 2 1 1 2 1 2 2

* *

min 1 1 19 14 3 14 6 3

30 2 3 18 32 12 48 36 27 2 2

3 0, 1

x

i

f x x x x x x x x x

x x x x x x x x x

f x x

 = + + + ⋅ − + − + ⋅ + ⋅
 

 ⋅ + − ⋅ − + + − ⋅ + − ≤ ≤
 

= = −
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f19.  Griewank problem, 1981 

 

( )

( ) ( )

2

1 1

* *

1
min 1 cos

4000

0 0,0, ,0 600 600

nn
i

i
x

i i

i

x
f x x

i

f x x x

= =

 = + −  
 

= = − ≤ ≤

∑ ∏
…

 
 
 
 
 
 
 
 
 

f20.  Helical valley problem, Wolfe, 
1978 

( ) ( ) ( )( )

( ) ( )

2
2 2 2 2

2 1 2 3

2
1

1

2
1

1

* *

min 100 10 1

1
arctan 0

2
10 10

1 1
arctan 0

2 2

0 1,0,0

x

i

f x x x x x

x
if x

x
x

x
if x

x

f x x

θ

π
θ

π

 = − ⋅ + + − + 
 

  
≥  

  = − ≤ ≤
  + < 
 

= =

 
f21.  Levy and Montalvo problem 1, 

1985 

( ) ( ) ( ) ( ) ( )

( )

( ) ( )

1
2 22 2

1 1 1
1

* *

min 10sin 1 1 10sin 1

1
1 1 10 10

4

0 1, 1, , 1

n

i i n
x

i

i i i

f x y y y y
n

y x x

f x x

π π π
−

+ −
=

    = ⋅ + − ⋅ + + −       

= + + − ≤ ≤

= = − − −

∑

…

 
 
 
 
 
 
 
 
 
 
 
 
 

f22.  Rastrigin problem, Storn and 
Price, 1997 

( ) ( )

( ) ( )

2

1

* *

min 10 10cos 2 5.12 5.12

0 0,0, ,0

n

i i ix
i

f x n x x x

f x x

π
=

 = + − − ≤ ≤ 

= =

∑

…
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f23.  Function taken from E. Zio 
lectures 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1 2 2

* *

sin 2 sin 2

0
min 0 5

0

4.7513 4.7527,4.7527

i
x

y x x x x x

y x if y x
f x x

otherwise

f x x

π π= −

<= ≤ ≤


≈ − ≈
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Appendix B 
 
Benchmark problems for multi-objective 
optimization 
 

The appendix presents 3 benchmark problems with high dimensionality for multi-objective 
optimization, with domains and location of the Pareto optimal frontiers. 
 

General task: ( ) ( ) ( )( )1 1 2min ,
x

F x f x f x=  (B.1) 

 
 

F1. This test is known also as ZTD1; The Pareto optimal front is formed with g(x)=1 
 

( )

( )

( )

1 1 1

2
2

1
2 1

, , 1 9

, 1

30, 0 1

n

n i
i

i

f x x

g x x x

f
f f g

g

n x

=

=

= + ⋅

= −

= ≤ ≤

∑…

 

 
 

F2. This test is known also as ZTD2; The Pareto optimal frontier is formed when 
g(x)=1 

 

( )

( )

( )

1 1 1

2
2

2

1
2 1

, , 1 9

, 1

30, 0 1

n

n i
i

i

f x x

g x x x

f
f f g

g

n x

=

=

= + ⋅

 = −  
 

= ≤ ≤

∑…
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F3. This test is known also as ZTD3, the red line is the objectives’ search space for the 

best Pareto frontier showed by the green markers; The Pareto optimal front is formed 

with g(x)=1 
 

( )

( )

( ) ( )

1 1 1

2
2

1
2 1 1

, , 1 9

, 1 sin 10

30, 0 1

n

n i
i

i

f x x

g x x x

f
f f g f

g

n x

π

=

=

= + ⋅

= − −

= ≤ ≤

∑…

 

 


