
POLITECNICO DI MILANO
Facoltà di Ingegneria dell’Informazione

Corso di Laurea Specialistica in Ingegneria
dell’Automazione

Model Predictive Control of a

Hydro Power Valley

Relatore: Prof. Riccardo Scattolini
Correlatore: Dott. Damien Faille

Tesi di Laurea di:
Francesco Petrone

Matr. 731605

Anno Accademico 2009-2010

Ai miei genitori

Abstract

This Thesis represents the first step of a larger work in the context of the Eu-
ropean project “7th Framework STREP project Hierarchical and Distributed
Model Predictive Control (HD-MPC)”, which involves the study and the de-
velopment of innovative methods for distributed control of large-scale systems
[17].
In particular, in this work the realistic example of a hydropower valley has
been considered and a control-oriented numerical model has been derived.
This model has allowed the design and implementation of a centralized Model
Predictive Control law (MPC), which represents the starting point for fur-
ther developments of hierarchical and distributed MPC control laws.
The project has been developed in partnership with the French company
Électricité de France (EDF), through both correspondence working and in-
ternship.

The first step of the project has focused on the analysis of the overall sys-
tem and on the study of the physical equations describing its behavior. In
particular, in view of the design specifications, the most relevant dynamics
and those which can be neglected have been identified and the manipulated
variables and the controlled ones have been defined.
Then, the whole system has been conceptually decomposed into several sub-
systems, according to the future design of a distributed control structure.
Subsequently, the physical equations describing the system have been ana-
lyzed, and an overall mathematical model has been obtained.
Particular attention has been paid to the de Saint Venant partial differential
equations which describe the open-channel hydraulic systems [18] [40] [33]
[34] [27] [48] [16] [38]. These equations have been elaborated with a finite
difference approach for their numerical solution.

After the derivation of the mathematical model, a simulator has been de-
veloped into the Matlab-Simulink software environment [2], maintaining the
division into the previously defined subsystems. The most important aspects

i

of this phase have been the implementation of the de Saint-Venant equations
into an efficient vectorial form, and the verification of their compliance with
the conditions required for their numerical simulation with explicit integra-
tion methods [18].
The simulator has been tested by comparing it with a similar, but more
complex and unsuitable for control purposes, simulator developed by EDF
into the Scicos-Mascaret environment [13] [1]. In this context, the unknown
parameters have been tuned by means of different automatic and manual
procedures.

The next step of the work has been the derivation of a tangent linear model
at an equilibrium point corresponding to a realistic working condition. The
linearization procedure has been undertaken with two different approaches,
the first one is numerical and based on an available software tool, the second
one is based on the symbolic derivation of the model equations. The two
different methods have been then compared and their correspondence with
the non linear model has been made around one point.

With the linear model it has been possible to perform some preliminary
analyses, such as the direct inspection of the system matrices, the compu-
tation of the Relative Gain Array (RGA) and the Singular Value analysis
[39] [28], which have led to some interesting conclusions and have allowed a
deeper knowledge of the system structure and of the couplings between its
variables.

The most complex part of the work consisted in the design and implementa-
tion of a centralized Model Predictive Control algorithm [28] [8] [9] [22] [31]
[35] for the system. In view of the requirements expressed by the general
guidelines of the project, namely to be able to act in several working condi-
tions, with very different control objectives and to produce a software easily
adaptable to a subsequent distributed control scheme, it has been necessary
to design from scratch a new MPC controller, which had to be flexible enough
to allow the use either of a linear or a nonlinear system as prediction model,
leaving also the end user the freedom to define the control objective function.
First, a software architecture implementing a classical MPC algorithm, op-
erating with the “receding horizon”logic, has been developed. Subsequently,
the software used to solve the optimization problem implied by the MPC al-
gorithm has been chosen, evaluating and comparing several available solvers
through an appropriate test. Finally, the controller has been provided by
an integral action. The problems due to the use of the classical solution for
MPC in the considered case have been analyzed and an alternative approach

ii

has been proposed.

The developed controller has been initially tested on the linearized system,
using the same model for prediction. Then, it has been possible to com-
pare the results obtained with and without the integral action, highlighting
its benefits on the control performances. Finally, the controller has been
applied to the nonlinear system, using the linear prediction model. The per-
formance loss due to the imperfect matching between the prediction model
used by the controller and that of the controlled system have been evaluated
and commented.

The last part of this Thesis presents some expected future developments of
the project, which consist in the design of a hierarchical and/or distributed
control system for the considered hydro power valley. The reasons that make
this approach suitable for large-scale systems, such as the ones previously
discussed, have been presented [17], [4]. Finally, some possible ways to orga-
nize the distributed structure of the controller are described, together with
the necessary assumptions for their implementation and their pros and cons.

iii

iv

Estratto

Il presente elaborato di Tesi vuole essere il primo passo di un lavoro più am-
pio che si colloca nell’ambito del progetto europeo “7th framework STREP
project Hierarchical and Distributed Model Predictive Control (HD-MPC)”,
il quale prevede lo studio e lo sviluppo di metodi di controllo distribuito in-
novativi per sistemi con grandi dimensioni [17].
In particolare, in questo lavoro di Tesi si è preso in considerazione l’esempio
realistico di una valle per la produzione di energia idroelettrica, della quale si
è sviluppato un modello numerico orientato al controllo. Tale modello ha suc-
cessivamente permesso l’implementazione di una legge di controllo predittivo
(Model Predictive Control) centralizzata, punto di partenza per la successiva
implementazione del controllo distribuito.
Il progetto è stato svolto in sintonia con la società francese EDF, collabo-
rando sia a distanza sia tramite stage aziendale.

Il primo passo del progetto (Capitoli 2, 3) verte sull’analisi del sistema com-
plessivo e sullo studio delle equazioni fisiche che lo governano.
In particolare, ci si è soffermati sulle specifiche di progetto, valutando quali
dinamiche trascurare e quali considerare ai fini delle richieste e ponendo par-
ticolare attenzione alla scelta delle variabili di controllo e delle variabili con-
trollate.
Il sistema complessivo è stato quindi scomposto concettualmente in diversi
sottosistemi, al fine di predisporne la struttura ad un successivo controllo
distribuito.
Successivamente, si sono analizzate le equazioni fisiche che descrivono il sis-
tema in esame, ricavandone quindi il modello matematico complessivo.
Di particolare rilevanza si sono mostrate le equazioni differenziali a derivate
parziali di de Saint Venant, che descrivono i sistemi idrici di tipo fluviale [18]
[40] [33] [34] [27] [48] [16] [38], le quali sono state trattate con un approccio
alle differenze finite al fine di poterle risolvere numericamente.

Una volta ottenuto il modello matematico, si è scelto di implementarlo nell’ambiente

v

software Matab-Simulink [2], mantenendo la suddivisione in sottosistemi definita
precedentemente (Capitoli 4, 5). Gli aspetti più rilevanti di questa fase si sono
dimostrati la scrittura delle equazioni di de Saint-Venant nella più efficiente
forma vettoriale, al posto della classica formulazione ricorsiva, e la verifica
del soddisfacimento della condizione necessaria alla loro simulazione numer-
ica con metodi di integrazione espliciti [18].
Il software sviluppato è poi stato testato mediante un confronto con un anal-
ogo simulatore più complesso, quindi inadatto ai fini del controllo, sviluppato
da EDF in ambiente Scicos-Mascaret [13] [1]. In questo contesto, i parametri
non noti sono stati tarati, analizzando e confrontando diversi metodi di
taratura automatica e manuale.

Dopo aver verificato l’attendibilità del modello non lineare sviluppato, si
è quindi proceduto alla derivazione di un modello lineare tangente un punto
di equilibrio corrispondente ad una verosimile condizione di lavoro (Capitolo
6).
La procedura di linearizzazione è stata intrapresa seguendo due diversi ap-
procci, il primo consiste nel calcolo numerico del modello linearizzato, ot-
tenuto automaticamente tramite un apposto software, il secondo prevede la
derivazione simbolica delle equazioni del modello. Le due diverse modalità
sono state quindi confrontate tra loro e l’attinenza al modello non lineare è
stata verificata.

Sul più semplice modello lineare cos̀ı ottenuto è stato possibile eseguire alcune
analisi di sistema classiche, come l’ispezione diretta delle matrici, l’analisi
della matrice dei guadagni relativi (RGA) e l’analisi dei valori singolari [39]
[28], le quali hanno condotto a conclusioni interessanti e hanno permesso una
più profonda conoscenza della struttura del sistema e degli accoppiamenti tra
le sue variabili.

La parte più articolata del presente lavoro di Tesi è consistita nel progetto e
nell’implementazione di una logica di controllo centralizzato di tipo predit-
tivo (MPC) [28] [8] [9] [22] [31] [35] per il sistema studiato (Capitolo 7). Viste
le necessità, espresse dalle consegne generali del progetto, di poter operare in
diverse condizioni di lavoro, con obiettivi di controllo anche molto differenti e
di poter adattare il software sviluppato ad un successivo controllo distribuito,
si è reso necessario progettare per intero un nuovo controllore MPC abbas-
tanza flessibile da permettere di utilizzare come modello di predizione tanto
un sistema lineare quanto uno non lineare, lasciando inoltre all’utente finale
la libera definizione della funzione obiettivo del controllo.
In primo luogo, si è sviluppata un’architettura software che implementa

vi

l’algoritmo MPC classico, operante con logica “receding horizon” e con in-
seguimento di traiettoria.
Successivamente si è scelto il software adibito alla soluzione del problema di
ottimizzazione implicito nella logica MPC, valutando e confrontando diversi
solutori disponibili mediante un apposito test.
Dopodiché, si è provveduto a fornire il controllore di un’azione integrale, val-
utando i problemi scaturiti dall’utilizzo della classica soluzione per MPC nel
caso trattato e proponendo un approccio alternativo.

Il controllore cos̀ı costituito è stato inizialmente testato sul sistema lineariz-
zato, utilizzando lo stesso come modello di predizione, in una situazione op-
erativa verosimile. É stato cos̀ı possibile confrontare i risultati ottenuti con
e senza azione integrale, evidenziando i vantaggi apportati da quest’ultima.
Infine, lo stesso controllore è stato messo in opera sul sistema non lineare, uti-
lizzando come modello di predizione quello lineare. La perdita di prestazioni
dovuta alla non perfetta corrispondenza tra il modello usato dal controllore
ed il sistema controllato è stata quindi valutata e commentata.

L’ultima parte di questo elaborato di Tesi presenta le prospettive future del
lavoro svolto, che consisteranno nello sviluppo di un sistema di controllo
gerarchico e distribuito per la valle per la produzione di energia elettrica
considerata.
Le motivazioni che rendono appetibile un tale approccio per sistemi su larga
scala, come quello trattato, vengono inizialmente presentate [17] [4].
Per concludere, vengono esposti alcuni possibili approcci per l’organizzazione
della struttura distribuita del controllore, specificandone le ipotesi necessarie
all’implementazione e discutendone i rispettivi vantaggi e svantaggi.

vii

viii

Contents

Abstract i

Estratto iv

List of Figures xiii

List of Symbols xv

1 Introduction 1

1.1 Motivation . 1

1.2 Overview . 2

2 System description 5

2.1 The Valley . 5

2.2 Hypothesis and variables definition 5

3 Model of the hydro power valley 9

3.1 Model of the lakes . 9

3.1.1 Auxiliary variables . 9

3.1.2 Model equations . 10

3.2 Model of the reaches . 11

3.2.1 The de Saint Venant equations 12

3.2.2 Spatial discretization 14

4 Simulink Implementation 17

4.1 Simulation of the lakes . 17

4.2 Simulation of the reaches . 21

4.2.1 Integration of the de Saint Venant equations 21

4.2.2 The Courant-Friedrichs-Lewy Stability Criterion 23

4.3 Full Simulink scheme . 24

4.4 Control of the fast dynamics 24

ix

5 Model Tuning 27
5.1 Tuning of the Strickler coefficient 28

5.1.1 Assumptions and problem definition 28
5.1.2 Minimization methods 29
5.1.3 Tuning algorithm . 30
5.1.4 Results . 32

5.2 Tuning based on river width 33

6 Linearization and Analysis 37
6.1 Model Linearization . 37

6.1.1 Linearization with the Simulink Tool 38
6.1.2 Analytical Linearization 39
6.1.3 Comparison of the two approaches 42

6.2 Analysis of the Linearized Model 44
6.2.1 Direct Inspection of the System Matrices 45
6.2.2 Relative Gain Array analysis 47
6.2.3 Singular Value Analysis 49

7 Model Predictive Control 55
7.1 The Model Predictive Control approach 55

7.1.1 Pros and cons of the MPC strategy 57
7.1.2 MPC for linear systems 58
7.1.3 MPC for nonlinear systems 61

7.2 Definition and implementation of the MPC controller 62
7.2.1 Choice of the objective functions 63
7.2.2 Controller Structure 65
7.2.3 Optimization Tool . 73
7.2.4 Integral action . 83

7.3 MPC Control of the Hydro Power Valley 93
7.3.1 MPC of the linear system 94
7.3.2 MPC of the nonlinear system 95

8 Conclusions and future developments 105
8.1 Conclusions . 105
8.2 Hierarchical Distributed MPC control 106

8.2.1 Expected hierarchical and distributed architecture . . . 107
8.2.2 Objective function decomposition 108

A De Saint Venant equations demonstration 113
A.1 Definitions . 113
A.2 First form of the momentum equation 115

x

A.3 Second form of the momentum equation 117

Ringraziamenti 122

xi

xii

List of Figures

2.1 Scheme of the valley. 6
2.2 Block scheme of the valley. 8

3.1 Variables definition in a section of the system. 10
3.2 Variables definition in a river cross section. 12
3.3 Spatial discretization. 14

4.1 Simulink implementation for Lake 2. 18
4.2 Simulink implementation of block P2. 19
4.3 Simulink implementation of block P45. 21
4.4 Simulink implementation of block P7. 22
4.5 Full Simulink scheme of the hydro power valley. 25
4.6 Simulink implementation of block P1 with PI control. 26

5.1 Parameter estimation scheme. 29
5.2 Simulink model which simulates the reach in P8 during the

tuning procedure. 31
5.3 Comparison between the Scicos and Simulink models after the

tuning procedure. 35

6.1 Linearization of block P6 with TBL. 39
6.2 Testing of the linearized models on a lake level. 43
6.3 Testing of the linearized models on a reach level. 44
6.4 Transfer matrix evaluated at 1

3600
Hz. 48

6.5 Result of the singular value analysis. 53

7.1 General scheme of MPC. 58
7.2 Conceptual scheme of the developed MPC controller. 65
7.3 Event generator. 68
7.4 Simulink control scheme. 72
7.5 Simulink MPC controller. 72
7.6 Open loop simulation. 77
7.7 Test with glcSolve. 78

xiii

7.8 Test with oqnlp. 79
7.9 Powers with glcSolve. 80
7.10 Levels with glcSolve. 81
7.11 Flow rates with glcSolve. 82
7.12 Powers with knitro. 83
7.13 Levels with knitro. 84
7.14 Flow rates with knitro. 85
7.15 Scheme of the classical integral action for MPC. 85
7.16 Control with state feedback. 88
7.17 Control with estimate state feedback. 88
7.18 Control scheme with integral action for MIMO systems. 89
7.19 Control system with integrators. 91
7.20 MPC controller with integral action. 92
7.21 Prediction model with integral action. 92
7.22 Powers with integral action. 98
7.23 Levels with integral action. 98
7.24 Flow rates with integral action. 99
7.25 Local powers of the linear model with global set point. 99
7.26 Sum of powers of the linear model with global set point. . . . 100
7.27 Levels of the linear model with global set point. 100
7.28 Powers of the nonlinear model with local set point. 101
7.29 Levels of the nonlinear model with local set point. 101
7.30 Sum of powers of the nonlinear model with global set point. . 102
7.31 Powers of the nonlinear model with global square-wave-shaped

set point. 102
7.32 Sum of powers of the nonlinear model with global square-wave-

shaped set point. 103
7.33 Powers of the nonlinear model with global sinusoidal set point. 103
7.34 Sum of powers of the nonlinear model with global sinusoidal

set point. 104
7.35 Levels of the nonlinear model with global sinusoidal set point. 104

8.1 HD-MPC architecture. 107

xiv

List of Symbols

Symbol Unit Description
of measurement

P1 subsystem including Lake 1 and Valve 1
P2 subsystem including Lake 2 and Plant 1
P3 subsystem including Lake 3 and Plant 2
P45 subsystem including Lake 4, Lake 5 and Plant 3
P6 subsystem including Reach 0 and Plant 4
P7 subsystem including Reach 1 and Plant 5
P8 subsystem including Reach 2 and Plant 6
P9 subsystem including Reach 3 and Plant 7

Pe2 [W] absorbed electrical power of Plant 1
Pe3 [W] generated electrical power of Plant 2
Pe5 [W] generated/absorbed electrical power of Plant 3
Pe6 [W] generated electrical power of Plant 4
Pe7 [W] generated electrical power of Plant 5
Pe8 [W] generated electrical power of Plant 6
Pe9 [W] generated electrical power of Plant 7

L1 [m o.s.l.] absolute water level of Lake 1
L2 [m o.s.l.] absolute water level of Lake 2
L3 [m o.s.l.] absolute water level of Lake 3
L4 [m o.s.l.] absolute water level of Lake 4
L5 [m o.s.l.] absolute water level of Lake 5
L6 [m o.s.l.] absolute water level of Reach 0
L7 [m o.s.l.] absolute water level of Reach 1
L8 [m o.s.l.] absolute water level of Reach 2
L9 [m o.s.l.] absolute water level of Reach 3

xv

Symbol Unit Description
of measurement

q12 [m3/s] flow rate from Lake 1 to Lake 2
q23 [m3/s] flow rate from Lake 2 to Lake 3
q34 [m3/s] flow rate from Lake 3 to Lake 4
q54 [m3/s] flow rate from Lake 5 to Lake 4
q57 [m3/s] flow rate from Lake 5 to Reach 1
q58 [m3/s] flow rate from Lake 5 to Reach 2
q67 [m3/s] flow rate from Reach 0 to Reach 1
q78 [m3/s] flow rate from Reach 1 to Reach 2
q89 [m3/s] flow rate from Reach 2 to Reach 3
qout [m3/s] outlet flow rate of Reach 3
d1 [m3/s] inlet flow rate disturb of Lake 1
d6 [m3/s] inlet flow rate disturb of Reach 0
d9 [m3/s] inlet flow rate disturb of Reach 3

u1 [m3/s] flow rate reference for q12

u2 [m3/s] flow rate reference for q23

u3 [m3/s] flow rate reference for q34

u57 [m3/s] flow rate reference for q57

u58 [m3/s] flow rate reference for q58

u6 [m3/s] flow rate reference for q67

u7 [m3/s] flow rate reference for q78

u8 [m3/s] flow rate reference for q89

u9 [m3/s] flow rate reference for qout

g [m/s2] gravitational acceleration
Ai [m2] surface area of Lake i
Zbi [m o.s.l.] absolute altitude of the bottom of Lake i
Zini [m o.s.l.] absolute altitude of the point of inflow in Lake i
Zouti [m o.s.l.] absolute altitude of the point of outflow from Lake i
dZij [m] height difference of the duct from Lake i to Lake j
Kti [J/m4] power coefficient of the turbine in subsystem Pi
Kpi [J/m4] power coefficient of the pump in subsystem Pi
Ad54 [m2] section of the duct between Lake 5 and Lake 4
Av1 [m2] nominal section of Valve 1
Cr1 recovery coefficient of Valve 1
η1 linear opening rate coefficient of Valve 1

xvi

Symbol Unit Description
of measurement

Ni discretization slots number for subsystem i Reach
dxi [m] discretization slots length for subsystem i Reach
Xi [m] total length of subsystem i Reach
Xini [m] point of lateral inlet flow rate in subsystem i Reach
Wi [m] width of subsystem i Reach
I0i bed slope of subsystem i Reach
Ifi friction slope of subsystem i Reach
kstri [m1/3/s] Strickler coefficient of subsystem i Reach
Ri [m] hydraulic radius of subsystem i Reach
Havi [m] average water depth of subsystem i Reach
Hi [m] water depth of subsystem i Reach
Si [m2] wetted section of subsystem i Reach
Qi [m3/s] flow rate of subsystem i Reach
qli [m2/s] lateral inlet flow rate per space unit in subsystem i
ci [m/s] celerity of subsystem i Reach

dT [s] sampling time of the MPC controller
H prediction receding horizon
Hc control horizon
nu number of the control inputs
ny total number of the system outputs
nU number of the control inputs in a prediction horizon
nY number of the system outputs in a prediction horizon
J cost function of the MPC control
SPloc [W] set of the local power set points
SPglob [W] global power set point
SPL [m o.s.l.] set of the local level set points
QP [1/W 2] powers weighting matrix for local set points
qP [1/W 2] total power weight for global set point
R [s2/m6] control inputs weighting matrix
QPi [1/W 2] integral action weighting matrix

Li [m o.s.l.] lower bound for the level Li
Li [m o.s.l.] upper bound for the level Li
ui [m3/s] lower bound for the control input ui
ui [m3/s] upper bound for the control input ui
vi [m3/s2] lower bound for the control input variation
vi [m3/s2] upper bound for the control input variation

xvii

xviii

Chapter 1

Introduction

1.1 Motivation

Hydro power is an essential renewable mean of power generation that in the
year 2006 represented the 16% of the world production [17]. In some coun-
tries, like in Norway and Brazil, the percentage of hydro can even exceed
the 80%; in these operating conditions, hydro power plants must be flexible
enough to adjust the electrical power production to the demand. Moreover,
in order to reduce the CO2 emission, the contribution of hydro power plants
will probably be larger in the future and, at the same time, climate changes
will impact the availability of water, so that an efficient management of this
resource will be mandatory.
The technology of hydro power plants is already well developed, but sig-
nificant improvements can still be achieved by using an optimal real-time
management of the resources in order to maximize their efficiency.
This management must be compatible with other uses of the hydro resources,
such as irrigation, navigation, tourism, with environmental, ecological and
safety requirements which impose constraints on levels and flow rates in reser-
voirs and rivers.
For these reasons, the coordination of the hydro power plants of a given basin,
or of a Hydro Power Valley (HPV), can produce a gain in efficiency and in-
crease the power production and the flexibility on the management of the
available resources while respecting the constraints. Basically the problem
of optimizing the management of a hydro power valley is to follow a given
set point for the overall power generated by the plants distributed over the
valley while respecting operating constraints. Objectives related to safety
and environmental requirements are generally formulated as domain limita-
tions on levels and flow rates. Therefore, the definition of the management

1

strategy can be formulated as a typical constrained optimal control problem
which can be solved with a Model Predictive Control (MPC) approach, see
e.g. [8], [22], [31] .

1.2 Overview

In view of the previous motivations, the first objective of this work is to de-
velop and tune a control-oriented model of a hydro power valley. This model
is then used to design a control strategy, based on MPC, for the optimal
management of all the HPV systems, namely ducts, penstocks, dams, pumps,
valves and turbines. The research has been developed in the framework of
the European 7th framework STREP project “Hierarchical and Distributed
Model Predictive Control (HD-MPC)”, where the modeling and control of
the HPV considered in this Thesis represents a significant benchmark for the
analysis of innovative control methods for large scale systems.

In Chapter 2, the hydro power valley is described, with particular em-
phasis on the hypotheses and the choices which have been made, such as the
parameters definition, the grouping of the subcomponents of the valley, the
choice of the control and controlled variables.

Chapter 3 describes the model of the system, which is mainly composed
by lakes and reaches, and shows how the electric power, which can be either
produced or absorbed by the components of the valley, is calculated. The
de Saint Venant equations, which are used to represent the behavior of the
reaches, are introduced together with their spatial discretization and the re-
quired conditions for their explicit simulation.
Then, the form employed for these equations, the way they are solved and
the Simulink model which implements them are described and explained in
Chapter 4.
Finally, the tuning procedure of the model so obtained is discussed in Chap-
ter 5.

The obtained nonlinear model is linearized at a given equilibrium point in
Chapter 6. The linearization procedure is performed according to two differ-
ent methods; the results achieved with the two procedures are compared and
some further analyses are reported.

2

In Chapter 7 it is shown how to design a MPC controller, which can rely
either on linear or nonlinear models for prediction of the system future be-
havior. The main problems due to the choice of the optimization solver and
the solutions adopted are presented.
Subsequently, the controller is tested in two different situations, representing
two real possible set points for the produced power. In the first case, only
one global set point, representing the sum of the powers produced by the
single units, is considered. In the second case, a list of set points, one for
each power plant of the HPV, is defined.

The last chapter (Chapter 8) draws some conclusions and proposes future
possible developments of this work, that is the development and the real-
ization of a distributed control structure, which can be designed by properly
modifying the centralized MPC controller presented in the previous Chapters.

3

4

Chapter 2

System description

2.1 The Valley

A hydro power valley is a system of lakes, reaches, ducts, penstocks, dams,
pumps, valves and turbines which are interconnected together and controlled
in order to generate electric power, while respecting several constraints, such
as the levels of lakes and reaches or the flow rates in pipes and rivers.

The hydro power valley considered in this work is composed by five lakes
and three reaches, see Fig.2.1, which describes the layout of the valley.
The lakes are connected together by ducts, where the flow rate is imposed by
a valve, a turbine or a pump. The fifth lake feeds two reaches by two ducts
and one of them can either turbine or pump the water. The three reaches are
separated by plants, each one consisting in a dam and in a power house where
a turbine generates the electric power proportionally to the height difference
between the upstream and downstream levels.

2.2 Hypothesis and variables definition

The model has to be developed for control purposes, therefore it is important
to correctly choose the variables to be controlled and the control inputs. It
is also important to define the disturbances which could affect the system.
Recalling that the objective is to generate the electric power according to a
slowly-varying set point, while respecting the constraints on the levels and
flow rates, the following choices are made:

Controlled variables:

• flow rates in ducts and reaches (qij);

5

Fig. 2.1: Scheme of the valley.

6

• levels of lakes and reaches (Li);

• generated/absorbed electric power (Pei).

Control inputs:

• rate opening for valves and turbines and imposed flow rate for pumps,
all uniformly expressed in the form of flow rate references (ui).

Disturbances:

• water inflow due to the upstream rivers, the rain and the thaws (di).

Hypothesis:

• the fast dynamics between the set points of the flow rates and the
effective value of the discharges of every lake and reach is neglected, so
every flow rate (qij) is always assumed to be equal to his own set point
(ui).

qij = ui (2.1)

This assumption is reasonable because there are local controllers that
regulate the flow rates and compensate the influence of the level vari-
ations.

In view of the previous choices, the block-representation of the system is
shown in Fig.2.2. In this figure as in the whole Thesis, the following notation
is adopted:
For each subsystem i, noted as Pi :

• qij is the algebraic flow rate from subsystem Pi to subsystem Pj ;

• Li is the level of the lake or of the reach;

• Pei is the algebraic electrical power (negative if the plant consumes,
positive if it produces);

• ui is the control input, that is the discharge reference;

• di is the water inflow perturbation.

As the duct between Lake 4 and Lake 5 has no devices able to impose
the flow rate, such as a pump, a turbine or a valve, the subsystem P4 has
no control input, so it is necessary to merge it with the subsystem P5, so
generating the block P45.

Once the previous choices have been made, it is possible to analyze and
draw a mathematical model for each subsystem of the valley.

7

Fig. 2.2: Block scheme of the valley.

8

Chapter 3

Model of the hydro power
valley

3.1 Model of the lakes

In this section the equations and the variables defined to describe the first
five blocks (P1 to P5) are presented.

3.1.1 Auxiliary variables

In order to easily write the several equations of the model, a standard nomen-
clature is defined:

• Li is the absolute altitude of the water level of Lake i ;

• Zini is the absolute altitude of the point of inflow in Lake i ;

• Zouti is the absolute altitude of the point of outflow from Lake i ;

• dZij is the height difference of the duct from Pi to Pj ;

• Zbi is the absolute altitude of the bottom of Lake i ;

• Ai is the surface area of Lake i ;

• Kti is the turbine coefficient of Pi (positive);

• Kpi is the pump coefficient of Pi (negative).

For example, these variables referred to P2 and P3 are described in Fig.3.1.

9

Fig. 3.1: Variables definition in a section of the system.

3.1.2 Model equations

Lakes

Since among the objectives of control there are the inlet and outlet flow rates
and the levels, the mass conservation is the only equation needed to describe
the behavior of the lakes:

ṁ = win − wout (3.1)

where m is the mass of the water in a lake, while win and wout are the (mass)
inlet and outlet flow rates. Dividing both terms of the previous equation by
the density of the water ρ, the corresponding volumetric equation is obtained,
where V is the volume of the water and qin and qout are the inlet and the
outlet volumetric flow rates:

V̇ = qin − qout (3.2)

Since the range of variation of the level of a lake is expected to be far lower
than the extension of the lake surface, the approximation of vertical banks
can be made and the area of the lake can be considered as constant along the

10

level variation. Under this hypothesis, the level L in the mass conservation
equation can be isolated from the area A, obtaining the final relation:

L̇ =
qin − qout

A
(3.3)

Electric Powers

The electric power generated by the turbines or absorbed by the pumps is
calculated in the same way, with the equation (3.4) which depends on the
flow rate and the height:

P = q ·K ·Hh (3.4)

where q is the flow rate (which flows through the turbine or which is imposed
by the pump), K is the turbine or pump coefficient (positive for turbines and
negative for pumps), Hh is the difference between the head heights upstream
and downstream the turbine or pump.
Under the hypothesis that every inflow always is placed above the lake
level, the power calculated in one block is not influenced by the level of
the lake/reach in the subsequent block.

Ducts

The pipe which links Lake 4 and Lake 5 is the only one whose discharge is
not imposed by a set point, but it is defined by the value of the levels L4
and L5. The equation which describes the flow rate q54 between Lake 5 and
Lake 4 is:

q54 = −sign(L4 − L5) · Ad54 ·
√

2 · g · |L4 − L5| (3.5)

where Ad54 is the duct section.

3.2 Model of the reaches

In this section, the equations adopted and the variables defined to describe
the last four blocks of the valley (P6 to P9) are presented. In particular, the
de Saint Venant equations for the reaches and their spatial discretization are
introduced.

11

Fig. 3.2: Variables definition in a river cross section.

3.2.1 The de Saint Venant equations

The general equations

De Saint Venant equations represent the state of the art for modeling one-
dimensional river hydraulics with constant fluid density, see [38] [16] [48] [27]
[40] [18] [33]. They are first order nonlinear equations describing mass and
momentum balances in terms of two variables, the water cross section S(x, t)
and the flow rate Q(x, t), both depending on the main spatial coordinate of
the river x, and on the time t.

Referring to Fig.3.2, which shows all the physical quantities involved in
the equations, the de Saint Venant system can be expressed in several ways,
but the most famous two are:

1. 
∂Q
∂x

+ ∂S
∂t

= 0

∂Q
∂t

+ ∂
∂x

(Q
2

S
) + gS · ∂H

∂x
+ gS · (If − I0) = 0

(3.6)

2. 
∂Q
∂x

+ ∂S
∂t

= 0

1
g
· ∂
∂t

(Q
S

) + 1
2g
· ∂
∂x

(Q
2

S2) + ∂H
∂x

+ If − I0 = 0
(3.7)

where S(x, t) is the wetted area [m2], Q(x, t) the discharge [m3/s] across the
section S, H(x, t) the water depth [m], If (x, t) the friction slope, I0 the bed

12

slope and g the gravitational acceleration [m/s2].
The friction slope If is defined by the Manning-Strickler formula:

If (x, t) =
(Q/S)2

k2
str ·R4/3

R =
S

P
(3.8)

where kstr(x) is the Strickler coefficient [m1/3/s], R(x, t) the hydraulic radius
[m] and P (x, t) the wetted perimeter [m].

In both forms (3.6) and (3.7), the first equation originates from the con-
servation of mass while the second equation results from the conservation of
momentum. It is possible to demonstrate the equivalence of the two forms
(see Appendix A), but the first one will be used in the sequel, because in
its momentum equation the time derivative of the discharge can easily be
isolated from the other variables.

Assumptions

In order to first produce and test an initial and quite simple model of the
reaches, the assumptions of constant river width W and rectangular cross
section S are made:

W (x, t) = W (3.9)

P (x, t) = 2H(x, t) +W (3.10)

Under these hypothesis, it is possible to isolate the river width W from
the time derivative of the cross section S(t, x), so that the water depth H(x, t)
becomes a state variable:

∂S(x, t)

∂t
= W · ∂H(x, t)

∂t
(3.11)

The substitution of all these equations in the first de Saint Venant form
allows one to obtain the full PDE system used for the reach model:


∂H
∂t

= − 1
W
· ∂Q
∂x

∂Q
∂t

= − 2Q
WH
· ∂Q
∂x

+ [1
W

(Q
H

)2 − gWH] · ∂H
∂x

+ gWI0H − gWH
k2str
· (W+2H

WH
)4/3 · (Q

WH
)2

(3.12)

13

3.2.2 Spatial discretization

A simple way to implement and simulate a PDE model is to discretize it
into several ODE systems, by substituting the space derivatives with their
corresponding finite differences. It is therefore advisable to discretize the
reach into N sections along the flow direction, each one with the length
of dx = X/N , where X is the total length of the reach. In order to avoid
stiffness in the simulation and to correctly describe the physics of the system,
the discretization steps of the two variables Q and H are overlapped, so that
each height depends on the previous and forward discharges, and viceversa,
see [38],[16],[48],[18]. Following this principle, the reach discretization scheme
adopted and the finite difference approximation equations are reported in
Fig.3.3 and in equation (3.13).

Fig. 3.3: Spatial discretization.

∂Hi

∂x
' (Hi+1 −Hi)

dx

∂Qi

∂x
' (Qi −Qi−1)

dx
(3.13)

The corresponding de Saint Venant system is therefore:

14



∂H1

∂t
= − 1

W
· Q1−Qin

dx/2

∂Q1

∂t
= − 2Q1

WH1
· Q1−Qin

dx
+ [1

W
(Q1

H1
)2 − gWH1] · H2−H1

dx
+

+gWI0H1 − gWH1

k2str
· (W+2H1

WH1
)4/3 · (Q1

WH1
)2



∂Hi

∂t
= − 1

W
· Qi−Qi−1

dx

∂Qi

∂t
= − 2Qi

WHi
· Qi−Qi−1

dx
+ [1

W
(Qi

Hi
)2 − gWHi] · Hi+1−Hi

dx
+

+gWI0Hi − gWHi

k2str
· (W+2Hi

WHi
)4/3 · (Qi

WHi
)2

i ∈ [2, N]

∂HN+1

∂t
= − 1

W
· Qout−QN

dx/2

(3.14)

The reaches of the considered hydro power valley are not isolated, but
they are also connected with the rest of the HPV by lateral inflow or outflow
channels. Therefore, in each section it is necessary to take into account also
the contribution of a possible additive lateral flow rate, which is supposed to
get into the reach perpendicularly to the main flow direction.
Hence, the lateral inflow affects only the mass conservation equation in (3.6)
and (3.7), which is modified as follows, [27],[40]:

∂Q

∂x
+
∂S

∂t
= ql (3.15)

where ql(x) is the lateral discharge per space unit [m2/s].

In conclusion, the full ODE system which has to be implemented to sim-
ulate the behavior of each reach is:

15



∂H1

∂t
= − 1

W
· Q1−Qin−Qlat1

dx/2

∂Q1

∂t
= − 2Q1

WH1
· Q1−Qin

dx
+ [1

W
(Q1

H1
)2 − gWH1] · H2−H1

dx
+

+gWI0H1 − gWH1

k2str
· (W+2H1

WH1
)4/3 · (Q1

WH1
)2



∂Hi

∂t
= − 1

W
· Qi−Qi−1−Qlati

dx

∂Qi

∂t
= − 2Qi

WHi
· Qi−Qi−1

dx
+ [1

W
(Qi

Hi
)2 − gWHi] · Hi+1−Hi

dx
+

+gWI0Hi − gWHi

k2str
· (W+2Hi

WHi
)4/3 · (Qi

WHi
)2

i ∈ [2, N]

∂HN+1

∂t
= − 1

W
· Qout−QN

dx/2

(3.16)

16

Chapter 4

Simulink Implementation

The model of the hydro power valley described in the previous chapters has
been implemented in the Matlab/Simulink environment. This is a fundamen-
tal step in the development of the work, since the availability of an accurate
model of the HPV is mandatory to design a reliable control scheme coping
with the goals of the project and fulfilling the physical constraints on the
system variables.

4.1 Simulation of the lakes

Levels

This section shows how to implement a Simulink scheme simulating the be-
havior of a lake level according to the modeling assumptions described in
Section 3.1.
As already noted, there is only one state equation for each lake and its form
which better fits our purposes is given by equation (3.3). In order to easily
implement this equation in the Simulink model, a simple Matlab function
which computes the level derivative is employed. Its exit value is then inte-
grated, so finally obtaining the level value.
For example, the Simulink scheme which computes the level of Lake 2 is
shown in Fig.4.1.

17

Fig. 4.1: Simulink implementation for Lake 2.

function out=lake2 (u,A2)

out(1)=(u(1)-u(2))/A2;

% u(1)=q12
% u(2)=q23
% out(1)=dL2

The Matlab function is the same for Lake 1, Lake 2, Lake 3 and Lake 4, while
the function of Lake 5 simply has one more input, corresponding to the second
outlet water flow.

Electric Powers

As for the lakes, it is possible to implement the equation (3.4) in Simulink
with a simple Matlab function. As an example, the function which computes
the power absorbed by the pump in block P2 is:

function out=power2(u, Zout2, dZ23, K2)

out(1)= u(2)*K2*(dZ23-(u(1)-Zout2));

% u(1)=L2
% u(2)=q23
% out(1)=Pe2

In the previous chapter, the hypothesis that every inflow always arrives above
the lake level has been introduced. This assumption is usually verified; how-
ever, in order to correctly describe all the possible situations, it is necessary
to modify the Matlab function for the power computation in the following
way:

18

function out=power2(u, Zout2, dZ23, K2)

if u(3)>Zin3
out(1)= u(2)*K2*(u(3)-u(1));

else
out(1)= u(2)*K2*(dZ23-(u(1)-Zout2));

end

% u(1)=L2
% u(2)=q23
% u(3)=L3
% out(1)=Pe2

Linking the functions described above, the whole Simulink structure of
block P2 is shown in Fig.4.2.

Fig. 4.2: Simulink implementation of block P2.

The same structure is used to implement block P3, which differs from P2
only for the sign of the power coefficient K.
The block P45 contains a reversible group that can either pump or turbine
the water, therefore the total algebraic power depends on the sign of the flow
rate in the penstock between the subsystems P5 and P7 and is so calculated:

19

function out=power5(u, Zout57, Zout58, dZ57, dZ58, K57t, K57p, K58)

if u(2)>0
out(1)= u(2)*K57t*(dZ57+u(1)-Zout57) + u(3)*K58*(dZ58+u(1)-Zout58);

else
out(1)= u(2)*K57p*(dZ57+u(1)-Zout57) + u(3)*K58*(dZ58+u(1)-Zout58);

end

% u(1)=L5
% u(2)=q57
% u(3)=q58
% out(1)=Pe5
% K57t generated power coefficient of the turbine between P5 and P7(positive)
% K57p absorbed power coefficient of the pump between P7 and P5 (negative)
% K58 generated power coefficient of the turbine between P5 and P8(positive)

Flow rates in ducts

The equation which computes the flow rate through the duct between Lake
5 and Lake 4, presented in (3.5), is implemented as follows:

function out=duct54(u,g,Ad54)

out(1)=-sign(u(1)-u(2))*Ad54*sqrt(g*2*abs(u(1)-u(2)));

% u(1)=L4
% u(2)=L5
% out(1)=q54
% Ad54 section of the duct

The complete Simulink diagram that describes the part of the valley con-
tained in the block P45 is therefore presented in Fig.4.3.

20

Fig. 4.3: Simulink implementation of block P45.

4.2 Simulation of the reaches

4.2.1 Integration of the de Saint Venant equations

There are two main approaches to implement in Simulink the 2N+1 dimen-
sional system of ordinary differential equations described by the equations
(3.16) in Section 3.2.2.
The first one is to create an iterative loop which, at each iteration, covers
half discretization section of the reach, calculating either the height or the
discharge and sequentially saving them in one vector. The second one is to
directly use the Matlab vector operations, which allow one to compute the
full vector of the heights and the full vector of the discharges in a one-shot
operation. This approach is computationally much more efficient than the
iterative one and for this reason it has been used in the Simulink implemen-
tation.

In any case, the computational burden is heavy and initially a S-functions
has been employed, because of its pre-compiled structure, which allows for
faster simulations. However, running the simulator several times and with
different values of the parameters, it was possible to notice that the simula-
tion used to break down with a numerical error when the values of the river
width (Wi) or the values of the number of discretization sections (Ni) were
too high.
This problem has been solved by using a Matlab function which computes

21

the derivatives of both levels Hi and flow rates Qi, coupled with a pair of in-
tegrators, which integrate separately the levels derivatives and the flow rates
derivatives. In this way, each integrator works on similar numerical values
and it is possible to define different -and more coherent- values of saturation
for the integrated variables. A proper setting of the saturation levels, suffi-
ciently far from the expected operating point in order to not influence the
simulation, is sufficient to avoid the numerical problems encountered with
the S-functions.

According to the previous considerations, the Simulink scheme which imple-
ments the behavior of one reach is shown in Fig.4.4 and its Matlab function,
which computes the derivatives of the state variables of the reach, is pre-
sented below.

Fig. 4.4: Simulink implementation of block P7.

22

function dy=der(t,y,u,X,N,W,g,kstr,I0,Xin)

dx=X/N;

n=ceil(N*Xin/X+0.01);

Qin=u(1);

Qout=u(2);

Qlat=linspace(0,0,N);

Qlat(n)=u(3);

dH(1)= -1/W*(Q(1)-Qin -Qlat(1))/(dx/2);

dQ(1)= -2*Q(1)/W/H(1)*(Q(1)-Qin)/dx +

+ ((Q(1)/H(1))ˆ2/W - g*W*H(1))*(H(2)-H(1))/dx +

+ g*W*I0*H(1) +

- g*W*H(1)/kstrˆ2*((W+2*H(1))/W/H(1))ˆ(4/3)*(Q(1)/W/H(1))ˆ2;

dH(2:N)= -1/W*(Q(2:N)-Q(1:N-1)-Qlat(2:N)’)/dx;

dQ(2:N)= -2*Q(2:N)./(W*H(2:N)).*(Q(2:N)-Q(1:N-1))/dx +

+ ((Q(2:N)./H(2:N)).ˆ2/W - g*W*H(2:N)).*(H(3:N+1)-H(2:N))/dx +

+ g*W*I0*H(2:N) +

- g*W*H(2:N)/kstrˆ2.*((W+2*H(2:N))/W./H(2:N)).ˆ(4/3).*(Q(2:N)/W./H(2:N)).ˆ2;

dH(N+1)= -1/W*(Qout-Q(N))/(dx/2);

dy=[dH dQ];

4.2.2 The Courant-Friedrichs-Lewy Stability Criterion

Simulink employs mainly explicit simulation methods, therefore it is neces-
sary to guarantee the stability of the simulation when the simulation step
increases. This problem is particularly critical in the integration of the de
Saint Venant equations, and many studies have been devoted to its solution.
A general criterion for the choice of the number N of discretization sec-
tions in order to guarantee the stability of the integration method has been
described in [18]. It is called the ”Courant Criterion”and is defined as follows:

∆t <
dx

c
(4.1)

23

where dx is the length of each discretization section, ∆t is the integration
step and c is the celerity defined as:

c =
√
g ·Hav (4.2)

where Hav is the average height of the water.
Therefore, before running the simulation, it is necessary to verify that the
adopted number of discretizations N for each reach is sufficiently small to
satisfy the Courant Criterion, using for Hav the average height of the equi-
librium regime:

∆t <
X/N

c
⇒ ∆t <

X/N√
g ·Hav

⇒ N <
X

∆t ·
√
g ·Hav

(4.3)

4.3 Full Simulink scheme

Following all the previous considerations, the hydro power valley considered
in this Thesis can be described by the Simulink scheme with nine subsystems
presented in Fig.4.5.

4.4 Control of the fast dynamics

It has been previously inferred that it is reasonable to neglect the fast dy-
namics between the discharge references (ui) and the outlet flow rates (qij).
In order to verify this hypothesis, a simple PI control on the Lake 1 discharge
(q12) has been implemented.
The opening rate (x) of the valve is chosen as control variable, while the
control error is the difference between q12 and the reference u1.

The valve is modeled by the following equations:

q12 = sign(L1 − L2) · kv1 · η1(x) ·
√
g · |L1 − L2| (4.4)

kv1 =
Av1

Cr1

·
√

2 (4.5)

24

Fig. 4.5: Full Simulink scheme of the hydro power valley.

where Av1 is the valve nominal section, Cr1 is the recovery coefficient and η1

is the function which links the opening rate x to the effective valve section.
Both x and η1 assume values between 0 and 1.
Under the hypothesis of linear relation, η1 can be considered as a linear coeffi-
cient (for example η1=1). With this assumption, the Simulink scheme which
implements the PI control between the control input (u1) and the discharge
from Lake 1 (q12) is shown in Fig.4.6 and the Matlab function of the valve,
which considers also the difference in altitude between Lake 1 and Lake 2, is
presented below.

25

Fig. 4.6: Simulink implementation of block P1 with PI control.

function out=valve1(u,g,Av1,Cr1,eta1,Zout1,Zin2)

kv1=sqrt(2)*Av1/Cr1;
if u(3)>Zin2

out(1)=kv1*eta1*u(1)*sqrt(g*(u(2)-u(3)));
else

out(1)=kv1*eta1*u(1)*sqrt(g*(u(2)-Zout1));
end

% u(1)=x1
% u(2)=L1
% u(3)=L2
% out(1)=q12

Simulating the whole system with a proper assignment of the gain of
the valve control loop, it has been verified that the dynamic between the
discharge reference u1 and the flow rate q12 is much faster than those between
the system inputs ui and the other considered variables (levels Li and powers
Pei), as long as the opening of the valve remains in its non saturated domain.
Then, the valve control loop has been removed from the model and each flow
rate qij has been posed equal to its reference ui.

as long as the opening of the valve remains in its non saturated domain.

26

Chapter 5

Model Tuning

The Simulink model presented in Chapter 4 has been developed for control
synthesis purposes, therefore it has to be simple enough to easily permit the
project of a control law coping with the requirements and constraints previ-
ously defined. At the same time, it must be sufficiently detailed to capture
the dynamics of the real system we are interested in. This trade-off leads to
a model whose parameters have to be tuned so as to duplicate the dynamics
of a more detailed one, which can be usefully employed for simulation and
validation, but which is not well suited for model-based control due to its
complexity.
In the problem analyzed in this Thesis, a non-linear complex model of the
considered hydro power valley has been provided by EDF R&D-STEP. This
model is implemented in the software environment Scilab-Scicos and uses
nonlinear sub-blocks coded in the Mascaret language [1] [13] in order to solve
the de Saint Venant equations.
Despite the Scicos model was already available when this Thesis started, and
its development has been completely uncorrelated from the Simulink model
of Chapter 4, they obviously have two similar sets of parameters, which can
both be set at the same values. The only exceptions are the Strickler coeffi-
cient kstr and the river width W :

• the Strickler coefficient is not set into the Scicos model as it is auto-
matically calculated by the internal algorithm;

• the river width is set into the Scicos model as a matrix of values which
defines the shape of the river section along the stream.

In the adopted tuning procedure, the river width has been initially ap-
proximated with a linear interpolation of the shape matrix and only the
Strickler coefficient has been tuned (Section 5.1).

27

Subsequently, the hypothesis of a well-fitting linear interpolation has been
relaxed and a sort of tuning also for the river width has been made (Section
5.2).

5.1 Tuning of the Strickler coefficient

5.1.1 Assumptions and problem definition

The Scicos model used to test and tune the Simulink one is very detailed and
takes the information of the river shape from a 3D-matrix of values. This
allows one to obtain detailed simulation results, but this information is too
complex to be taken into account by our control-oriented model. For this
reason, a first attempt can be done by approximating the section at each
discretization step of the Simulink model as a rectangle, whose dimensions
are computed by linear interpolation of the parameter matrix of the Scicos
model. This approximation implies the assumptions that the behavior of the
reach is indeed well-described by a lower number of parameters and that the
linear approximation does not move far away from the real shape of the river.

According to the previous statements, for each reach the only parameter
which has to be tuned is the Strickler coefficient kstr. Hence, the parameter
estimation procedure consists in looking for the value of kstr that minimizes
an objective function based on the difference between the output value of the
Simulink reach model, namely the level measured at the end of the reach, and
the corresponding output returned by a reference Scicos simulation, when the
two models are set with the same values of parameters, they are stimulated
by the same configuration of inputs and they work at the same operating
point.
The objective function J can easily be chosen as a quadratic one:

J =

Tsim∑
t=0

(L(k̂str, t)− Lr(t))2 (5.1)

where:

• Tsim is the simulation time of the Simulink model called at each function
evaluation;

• k̂str is the current guess for the Strickler coefficient value;

• L(k̂str, t) is the scalar level output at time t of the Simulink reach model;

28

• Lr(t) is the scalar level output at time t of the Scicos reach model.

The parameter estimation scheme is presented in Fig.5.1, where kstr is
the unknown parameter, α is the vector of known parameters and u(t) is the
time-varying vector of the system inputs in a defined configuration (scenario).

Fig. 5.1: Parameter estimation scheme.

5.1.2 Minimization methods

In order to find the value of the unknown parameter which minimizes the
defined objective function, different non linear minimization methods can be
used, such as:

• Gradient descent method [44]:
The estimate of the unknown parameter x is iteratively computed by
upgrading the current value with the gradient of the goal function,
weighted by a coefficient µ.

xi+1 = xi − µi ·
[
∂J

∂x

]
x=xi

(5.2)

• Adjoint state method [7]:
It is an extension of the gradient descent method, where an auxiliary
unknown variable p is introduced in the upgrade equation; another
equation, which extends the state of the discrete system, for p is nec-
essary.

• Matlab routine lsqnonlin (various methods) [2]:
It is a Matlab function explicitly created for the solution of the mini-
mization of nonlinear problems whose objective function is defined as
a sum of squares.
It employs different methods, depending on the selected options [2]:

29

– by default, it uses a large-scale algorithm. This algorithm is a sub-
space trust region method and is based on the interior-reflective
Newton method. Each iteration involves the approximate solution
of a large linear system using the method of Preconditioned Con-
jugate Gradients (PCG);

– if the option “LargeScale” is set to “off”, the lsqnonlin routine uses
the Levenberg-Marquardt method with line-search.

– alternatively, a Gauss-Newton method with line-search may be
selected, which is generally faster when the residual is small.

5.1.3 Tuning algorithm

The tuning algorithm consists in finding, independently for each reach, the
value of kstr which minimizes the sum of squares of the difference between
the time responses of the same reach in the two models and with the same
scenario.
According to previous simulations, the selected tuning scenario is set as a
sequence of two ramps of the flow rate at the inlet section of the reach. First,
a positive ramp which rise from 0m3/s to 40m3/s in 600s, then, 1600s later,
a negative ramp with the same features. The variable to be considered in
setting the optimization procedure is the water level at the end of the reach.
In order to use a reliable and already developed minimization routine, the
lsqnonlin optimization function in its default configuration has been chosen.

The kernel of the Matlab script which performs the minimization (tuning) is
the command:

k=lsqnonlin(@(k) J(k,tr,Lr),k0);

where tr and Lr are the time and the level of the time response of the refer-
ence model, the Scicos one, stored in a Matlab variable, while k0 is the first
guess value for the Strickler coefficient.
J is the Matlab function which simulates the Simulink model of the reach in
the chosen scenario and with the current value of the unknown parameter k
and computes the difference between its response L and Lr. At each function
evaluation of the minimization method implemented by lsqnonlin, a simula-

30

tion is called passing to the Simulink model a different value for the Strickler
coefficient.
The full script which defines this function is presented below:

function out=J(k,tr,Lr)

L=sim(’reachsimID’,[],[],[tr,ones(length(tr),1)*k]);

out=Lr-L;

where:

• reachsimID.mdl is the Simulink model which simulates only the reach
currently analyzed;

• [tr,ones(length(tr),1)*k] is the time vector of the external input, namely
the current value of the unknown parameter k, which is constant during
the simulation.

A sample of a Simulink scheme used for the tuning of one reach is shown in
Fig.5.2

Fig. 5.2: Simulink model which simulates the reach in P8 during the tuning
procedure.

If the simulation is forced to use a fixed step time, the length of L is
the same as Lr and no other expedients are requested. On the contrary, if
the achievement of a satisfactory precision in the considered scenario using
a fixed step method implies a too large simulation time, it is necessary to
simulate the Simulink model with a variable step method. In this case, the

31

base algorithm would not run, due to the difference in size and timing of the
two vectors of the time responses. It is however possible to run a further
algorithm which interpolates the two time responses referring to a defined
time vector, for example that returned by the Scicos simulation. In this case,
the function which computes the residuals used by lsqnonlin is no longer J,
but Jint computed as follows:

function out=Jint(k,tr,Lr)

[t,S,L]=sim(’reachsimID’,[],[],[tr,ones(length(tr),1)*k]);
Li=interp1(t,L,tr,’spline’)’;

out=Lr-Li;

However the above procedure, proposed to circumvent the problems re-
lated to the use of a variable step method, implies a very high computational
burden for the lsqnonlin optimization solver, so that no satisfactory solutions
have been reached.
For this reason, it is better to perform the model tuning based only on the
Strickler coefficient with the first and simpler algorithm, simulating the two
models with a fixed step method and adopting the same step time and the
same simulation time.

5.1.4 Results

By applying several times the algorithm presented above, each time starting
from a different initial guess for the unknown parameter, it can be noticed
that the optimal solution given by the optimization solver never makes the
objective function to be close to zero. In order to understand the cause, it
is worth to analyze the results obtained and to perform a few more simula-
tions of the Simulink model using different values of the Strickler coefficient.
Looking at these simulations, it can be noticed that the difference between
the two time responses Lr and L can be split into two main components:

1) the difference in the final value of the transient, starting from the same
point;

2) the difference in the amplitude of the oscillations in the last part of the
transient.

32

In particular, observing the results, the second difference can be directly
imputed to the Strickler coefficient, while the first one seems to be indepen-
dent from this parameter. This leads to infer that the Strickler coefficient is
not the only unknown parameter which contributes to the difference between
the two models, as it affects only the oscillations at the end of the transient.
So there must be some other parameters which influence the height of the
time response.
As stated above in Section 5.1.1, these parameters are necessarily those that
define the shape of the river, which has been approximated as rectangular and
dimensioned with a linear interpolation of the Scicos input data. Therefore,
it can be argued that this approximation is not sufficient to allow the two
models to have the same behavior and, of course, to perform a satisfactory
parameter identification based only on the Strickler coefficient.
It is so necessary to perform a more refined tuning, based also on the river
shape parameters.

5.2 Tuning based on river width

In order to perform a tuning procedure which takes in account both the
shape parameters and the Strickler coefficient, two different approaches can
be followed:

1) to use all the information provided on the river shape by Scicos, building
a new 3D-discretized model for the reaches;

2) to maintain the current approximation of rectangular section and 1D dis-
cretization, while approximating the river width no longer with a linear
interpolation, but with a constant equivalent value which has to be tuned
in order to make the two responses fit.

Of course the first solution is too complex and is far from the objective
of the present work, which is to obtain a simple but realistic control-oriented
model. Furthermore, it would imply the development of a model with the
same parameters of the Scicos one, while the goal is to produce a model as
general as possible, in order to allow further uses.

For these reasons, the second option has been chosen and a new tuning
algorithm has been developed. It consists in two main steps:

1) to find the equivalent value of the river width which makes the heights of
the two time responses fit;

33

2) to find the value of Strickler coefficient which makes the oscillations at
the end of the transient of the two time responses fit.

In order to perform the first step without loosing all the information on
the river shape, and so to have a more realistic model, the river width along
the stream is not taken as a pure constant, but as a straight line whose pa-
rameters are tuned. In this way, the main trend (increasing or decreasing) of
the width along the river is maintained and the parameters to be tuned for
each reach are only the starting point and the angular coefficient of the line,
in addition to the Strickler coefficient. These parameters can easily be found
by running several simulations and comparing the obtained results with the
reference time response of the Scicos model.

It is important to note that, due to the high uncertainty introduced by the
variability of the river shape, no automatic algorithm has been used, so that
the comparisons between the two responses have been not performed by a
solver which minimizes an objective function, but simply by direct inspection
of the results.

Once the width parameters have been tuned, the second step consists in
tuning the Strickler coefficient of each reach.
Even if an automatic procedure, like the one presented in Section 5.1.3, might
now work better because the widths have been correctly tuned, the overall
uncertainty makes the choice of a man-made tuning be simpler and more
reliable also in this case.

The results obtained by the tuning procedure for one reach are shown in
Fig.5.3, where the oscillations at the beginning of the Scicos response can be
due to a problem in the Scicos simulator initialization. From the figure, it
is apparent that both the main dynamics and the gain of the Scicos model
are properly duplicated by the Simulink environment, so that this last model
can be used for the control synthesis described in the following Chapters.

34

Fig. 5.3: Comparison between the Scicos and Simulink models after the
tuning procedure.

35

36

Chapter 6

Linearization and Analysis

Once the nonlinear model of the hydro power valley has been built and tuned,
it is possible to start the development of a MPC algorithm which uses the
same model for the prediction of the future behavior of the system. However,
before proceeding, it is worth to derive a linearized model first, in order to
have the possibility to analyze the system with some standard tools, such
as the RGA or the Singular Value analysis. In fact, these methods allow
one to have a deeper understanding of the system dynamics and interactions
and can help in the design of the control law. Moreover, in so doing, it
will be possible to test the different solutions adopted for the controller on a
linear model, with faster simulations with respect to the use of a nonlinear
one. Finally, the availability of a linearized model allows one to compare the
performance of the controller when using a simpler (linear) model for the pre-
diction of the nonlinear system. For these reasons, in the following sections,
the linearization of the nonlinear model of the HPV and the corresponding
analysis are discussed.

6.1 Model Linearization

The first step in order to derive a linearized model is to choose the lineariza-
tion point, that is the combination of states and inputs which corresponds
to the plant steady state of interest. Then, the variables of the linearized
model will correspond to the variations of the real variables with respect to
the steady state conditions.
In the problem considered here, the steady state operating point where to
perform the linearization has been provided by EDF R&D-STEP and corre-
sponds to the same used for the model tuning and mentioned in Chapter 5.

37

Subsequently, the system linearization can be performed according to two
different strategies:

• the Simulink tool Timed-Based Linearization [2] can be used; it is based
on a numeric method which automatically computes the linearized sys-
tem matrices through system simulation;

• the matrices of the linearized system can be manually determined by
evaluating the partial derivatives of the system equations at the steady
state.

Both methods have pros and cons but, due to the complexity of the system
equations, the automatic (numeric) one seems easier and more suitable for
our purposes. However, since it is based on an automatic procedure, it is
necessary to check its results with whose produced by the second method.
Therefore, both methods have been followed, by considering the first as the
main one, while the second is used for validation.

6.1.1 Linearization with the Simulink Tool

In Simulink it is possible to linearize a system with the Timed-Based Lin-
earization (TBL) tool, included into Model Wide Utilities. This is a Simulink
block which has to be added to the Simulink model to be linearized. When
the simulation is running, it calls the Matlab function linmode [2] and com-
putes the matrices of the linearized system around the point reached at a
specified time. In order to define the input and output variables of the lin-
earized model to be computed, it is necessary to provide an Input port for
each system input and an Output port for each output. In this way, it is pos-
sible to get the linearized system around a specified steady state by simply
organizing the simulation scenario so that the system states reach the re-
quired steady state in a prescribed time and by setting the linearization time
to a value close to the end of the simulation. At the end of the simulation, the
Timed-Based Linearization block saves in the workspace a structure contain-
ing the matrices of the linearized system, which can now be used to create
and simulate a new linear system, for example with a State-Space block.
Fig.6.1 shows how a single block describing a river reach can be linearized.
The same has been done for the whole system.

38

Fig. 6.1: Linearization of block P6 with TBL.

6.1.2 Analytical Linearization

The linearization approach based on analytical developments implies to ana-
lyze one by one all the system equations and, for each one of them, to perform
a linearization procedure at the prescribed operating point. The so obtained
linear equations can be organized in a set of four matrices A, B, C and D,
which define a generic linear system (6.1) and can be used to analyze and
simulate it with Simulink.{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(6.1)

How to linearize the system equations is discussed in the following para-
graphs, where they have been divided by type and rule in the system descrip-
tion, since each kind of equation needs specific comments.

Lakes state equations

All the state equations of the lake models are linear, so that the linearization
procedure is trivial and simply consists of replacing the variables with their
variations.

L̇ = qin−qout
A

⇓
∆L̇ = ∆qin−∆qout

A

(6.2)

Reaches state equations

As shown in Section 3.2, each reach is described by a number of state equa-
tions which depends on the number of cells used for discretization. These

39

equations can be divided in those where the state variable is the water height
and those where the state variable is the flow rate.
The first ones are already linear and, as for lakes equations, they can be
treated as in equation (6.3).

∂Hi

∂t
= − 1

W
· Qi−Qi−1−Qlat

dx

⇓
∂∆Hi

∂t
= − 1

W
· ∆Qi−∆Qi−1−∆Qlat

dx

(6.3)

The second ones are strongly nonlinear and their linearization requires
attention. However, they also can be linearized as described in the following.
Initially, the equation of the flow rate for a generic slot of discretization,
already presented in equation (3.16), is reported in equation (6.4).

∂Qi

∂t
= − 2Qi

WHi
· Qi−Qi−1

dx
+ [1

W
(Qi

Hi
)2 − gWHi] · Hi+1−Hi

dx
+

+gWI0Hi − gWHi

k2str
· (W+2Hi

WHi
)4/3 · (Qi

WHi
)2

(6.4)

In order to simplify the notation, the function f can be defined as in
equation (6.5).

f =
∂Qi

∂t
(6.5)

So, the linearized equation can be written as in (6.6).

∂

∂t
∆Qi =

∂f

∂Qi

∣∣∣∣
ss

·∆Qi+
∂f

∂Qi−1

∣∣∣∣
ss

·∆Qi−1 +
∂f

∂Hi+1

∣∣∣∣
ss

·∆Hi+1 +
∂f

∂Hi

∣∣∣∣
ss

·∆Hi

(6.6)

where ss means Steady State and the value of each partial derivative is pre-
sented in equations (6.7).

40

∂f
∂Qi

∣∣∣
ss

= − 6
dx·W

Qi

Hi
+ 2

dx·W
Qi−1

Hi
+ 2

dx·W
Hi+1

Hi
2 Qi − 2g

k2str·W

(
1
Hi

+ 2
W

) 4
3 Qi

Hi

∂f
∂Qi−1

∣∣∣
ss

= 2
dx·W

Qi

Hi

∂f
∂Hi+1

∣∣∣
ss

= 1
dx·W

Qi
2

Hi
2 − gW

dx
Hi

∂f
∂Hi

∣∣∣
ss

= 3
dx·W

Qi
2

Hi
2 − 2

dx·W
Qi Qi−1

Hi
2 − 2

dx·W
Qi

2
Hi+1

Hi
3 − gW

dx
Hi+1 + 2gW

dx
Hi + gWI0+

− g
k2str·W

[
4

3Hi

(
1
Hi

+ 2
W

) 1
3

+
(

1
Hi

+ 2
W

) 4
3

]
Qi

2

Hi
2

(6.7)

where Hi and Qi represent the steady state values of the river height and of
the flow rate in each river section i.

Power equations

As the produced and absorbed powers are computed by multiplying levels
and flow rates (see equation (3.4)), which are both system variables, all the
power equations are nonlinear. Their general linearization is reported in
equation (6.8) and an example of how the power Pe5 is linearized (in the
case that the flow rate q57 is pumped and not turbined) is shown in (6.9).

P = q ·K ·Hh

⇓
∆P = ∆q ·K ·Hh + ∆Hh ·K · q

(6.8)

Pe5 = q57Kp57(dZ57 + L5 − Zout57) + q58Kt58(dZ58 + L5 − Zout58)
⇓

∆Pe5 = (q57Kp57 + q58Kt58)∆L5+

+Kp57(dZ57 + L5 − Zout57)∆q57+

+Kt58(dZ58 + L5 − Zout58)∆q58

(6.9)

41

Duct equation

The last nonlinear equation computes the flow rate in the duct between Lake
5 and Lake 4 (3.5). As the chosen steady state implies that the water flows
form Lake 4 to Lake 5, the sign operator and the modulus operator can be
neglected and the equation is linearized as follows.

q54 = −Ad54

√
2 · g · (L4 − L5)

⇓
∆q54 = − g·Ad54√

2g·(L4−L5)
(∆L4 −∆L5)

(6.10)

6.1.3 Comparison of the two approaches

Once the linearized model has been computed, both manually and using the
appropriate Simulink tool, it is possible to compare the two approaches.
Of course, it is not sufficient to verify the matching of the two linearized
models to assert that they are both reliable. As a matter of fact, it is nec-
essary to verify also the correspondence between the linearized models and
the nonlinear one, when it is used around the chosen steady state.
Due to this consideration, the test performed to evaluate the correspondence
between the two linear models consists in exciting both with the same sce-
nario of inputs, starting from the same states, and comparing the transients
of the system outputs. The more the curves are overlapped, the more the two
models are similar (ideally, they are expected to have the same transients).
At the same time, also the nonlinear model is run and its outputs are com-
pared with those of the linear models.

Some of the results obtained with the described test are reported in Fig-
ures 6.2 and 6.3, where the level of a lake (6.2) and the final level of a reach
(6.3) given by the three models are compared. In both figures, the blue curve
corresponds to the nonlinear model, the red one coincides with the manually
linearized model and the green one is that of the linear model obtained by
the Timed-Based Linearization.

From these results, it can be noticed that the correspondence between
the two linearized models is always well satisfied, but they both behave as
the nonlinear one only for the lakes, while they present a little difference in
the part describing the reaches.
This is not surprising because, as stated in Section 6.1.2, the equations of
the lakes are already linear and do not necessitate to be linearized, while the
reach equations are strongly nonlinear, so that a linear approximation leads

42

Fig. 6.2: Testing of the linearized models on a lake level.

to a non-perfect matching between the time responses. However, the dif-
ference between nonlinear and linearized models is always under reasonable
values (referring to the normal range of variation of the levels of the reaches),
so it can be concluded that the whole nonlinear system is well described by
the linearized ones.

Furthermore, as the matching between the two linearization approaches is
good, it is possible to infer that, in this case, the Simulink Timed-Based Lin-
earization is reliable and that no mistakes were introduced during the manual
linearization. Anyway, a more important conclusion is that it is possible to
use the TBL for all the possible following linearizations, being reasonably
sure that the returned linear system, obtained by a numerical linearization,
is very close to that which we would obtain correctly linearizing the system
equations. Such a knowledge makes the procedure much faster because it
avoids to re-calculate all the equations of a new linear model each time it is
necessary to modify a bit the nonlinear one.

43

Fig. 6.3: Testing of the linearized models on a reach level.

6.2 Analysis of the Linearized Model

Before developing the control law, it is important to analyze the system to
be controlled, in order to better understand its structure and to verify some
expected behaviors. In this way, some useful information may be taken into
account in the project of the controller. In addiction, a simple and quick
analysis might point out some potential errors due to the modeling phase.
Of course, the first analysis of the implemented system was performed during
the development of the software described in Chapter 4, by simulating sep-
arately each subsystem and verifying its correspondence to the underlying
physical phenomena. However, the computed linearized system allows for
some more and deeper analysis which imply the use of the system matrices.
The first analysis performed is a direct inspection of the system matrices,
which allows one to verify the number and the coupling of the variables. The
second and the third one are the Relative Gain Array analysis [39] and a Sin-
gular Value analysis [28], to better understand the input-output couplings
and the variation of the dynamic gain in a “Multiple Input - Multiple Out-
put” (MIMO) system.

44

6.2.1 Direct Inspection of the System Matrices

The direct inspection consists in looking at the system matrices to verify
if their structure and their values are coherent with the described system,
pointing out potential interesting aspects.

Outputs Reduction

The first check is done on the dimensions of the matrices, that are verified
to agree with the number of inputs, outputs and states of the system.
Subsequently the values of the elements of the matrices are controlled and
the first, most noticeable, aspect that turns up is that the matrix D, which
expresses the direct couplings between the inputs and the outputs of the sys-
tem, contains some elements whose value is different from zero.
This means that some controlled variables have algebraic relationships with
some inputs. So it is possible to define an instantaneous value for some out-
puts simply imposing a value to a given input.
This effect, in system modeling, is usually due to some neglected dynamics,
which are supposed to be much faster than the nominal band of the system.
In this case, since the matrices are calculated numerically by the TBL, such
neglected dynamics may result both by a part of the system so built on pur-
pose or by a numerical result of the linearization, due to the values given to
the parameters.

Recalling the choices reported in Section 2.2, it is clear that all the con-
trolled flow rates qij (which constitute a subset of the system outputs) are
necessarily equal to their references ui (which are the inputs) due to the hy-
pothesis introduced at the beginning of this work. So, the presence of a set
of elements different from zero in the matrix D is not surprising. This obser-
vation suggests the opportunity to reduce the dimensions of the system by a
more appropriate choice of the outputs. As a matter of fact, the flow rates
are not actually system outputs, as they are imposed with their references,
so their values are always available and they do not need a dynamic simu-
lation to be performed. According to this consideration, the set of selected
outputs is reduced to only the powers and the levels and a further automatic
linearization is performed.
The matrices so obtained are smaller than the previous ones and permit an
easier treatment of the linear system for both analysis and simulation. Their

45

dimensions are reported below.

A : (9 + 2N6 + 2N7 + 2N8 + 2N9) × (9 + 2N6 + 2N7 + 2N8 + 2N9)
B : (9 + 2N6 + 2N7 + 2N8 + 2N9) × (12)
C : (16) × (9 + 2N6 + 2N7 + 2N8 + 2N9)
D : (16) × (12)

Powers Dependence

After reducing the system matrices by eliminating the unnecessary variables,
another direct inspection can be performed and, looking at the matrix D,
it is immediately evident that there are still direct couplings between the
inputs (now the actual flow rates) and the power outputs. These are not
due to a part of the system structure which deliberately neglects some fast
dynamics, but are generated by the numerical linearization and their cause
can be attributed to the values assumed by the system parameters.
After an accurate inspection of the system and of the role of its parameters,
such as the lake surfaces Ai, it is clear that this happens because, in the
linearized model, the powers are computed as the sum of the two contribu-
tions of level and flow rate (see equations (6.8) and (6.9)) and the changes
in level variations from the steady state (∆L) are numerically much smaller
(by a scale factor of 105) than the changes in flow rate variations (∆q) which
caused them.
This fact implies that the contribution of ∆L to the variations of power (∆P)
is negligible compared to that provided by ∆q.
Such a situation explains the lack of dynamic interaction between inputs
(∆q) and power outputs in the system generated by the TBL. As a matter
of fact, such a dynamic interaction is provided only by the level variations,
which are dynamically linked to the flow rate variations.
Then, the transfer functions between inputs and powers are only static gains.

The previous observations lead to an important conclusion, namely that dur-
ing the development of the control law it is possible to consider the powers
as inputs rather than outputs of the system. As the main objective of the
MPC control is to follow a power set point over a period while respecting the
constraints on levels and flow rates, the controller will then have no prob-
lems in following the power set point without constraints, but all its efforts
will be focused on finding those values of powers which do not move too far
away from the assigned profile and that guarantee the satisfaction of all the
constraints at the same time.

46

6.2.2 Relative Gain Array analysis

One of the simplest and most famous tools used to evaluate the couplings
between the inputs and the outputs of a MIMO system is the Relative Gain
Array [39]. This is a heuristic method which returns a matrix where each
element value is as high as the coupling between the input corresponding to
its column and the output corresponding to its row is significant. The values
of the RGA matrix are independent by the adopted units of measure of the
system variables.
The main advantage of the RGA is that it gives a quick information on the
inputs which are suitable to be used to control some outputs and which in-
teractions may affect the control and have to be taken into account.
Actually, as MPC is a centralized control method which makes these choices
by itself with an optimization algorithm, the RGA is not very useful in or-
der to design the controller, but it gives important information in order to
check the system structure and to better understand its internal interactions.

The RGA matrix is calculated by multiplying element-wise the matrix of
the static gains by its transposed inverse matrix, as in equation (6.11).

Λ = G(0)� (G(0)−1)T (6.11)

where Λ is the RGA, G(0) is the static gain matrix and � means the element
by element product.
It is important to notice that the RGA actually gives information only on
a system in static conditions, while no information is provided at other fre-
quencies. However, this is often enough to have good suggestions on how to
assign the control variables to the controlled ones in a decentralized control
scheme. Finally, it has to be noticed that G(0), and so the general transfer
matrix G(s), must be square and without integrators, otherwise it is impos-
sible to calculate the inverse matrix.

In order to compute the RGA associated to the HPV linearized model and
taking into account the previous considerations on the direct dependence of
the power on the input flow rates, it is natural to focus the RGA analysis
only on that part of the system which links the flow rates to the levels of
lakes and reaches. So, the analyzed system for the RGA has 9 inputs and
only 9 outputs, that makes the transfer matrix square.
Nevertheless, it is still not possible to compute the RGA, since the transfer
function matrix contains pure integrators, which represent the water accu-
mulation phenomenon in lakes and reaches. To overcome this problem, two
main ideas may be followed:

47

• to multiply the whole transfer matrix by the Laplace operator s and to
proceed with the normal RGA calculation;

• to compute a RGA with a gain matrix not computed in static condi-
tions, but at a low frequency with respect to the main system dynamics,
for example 1

3600
Hz.

Both solutions have been considered and in both cases it happens that
the gain matrix is still singular, even if its elements are no longer infinite.
Now the singularity cannot be due to the integrators, but to the interactions
between the variables. Therefore, a further inspection on the system and on
the new gain matrix has been done.

In particular, the transfer matrix at frequency 1
3600

Hz has been computed
and analyzed. It is reported in Fig.6.4, where the rows represent the level
outputs L1, L2, L3, L4, L5, L6, L7, L8 and L9 and the columns represent the
flow rate inputs q12, q23, q34, q57, q58, q67, q78, q89 and qout.

Fig. 6.4: Transfer matrix evaluated at 1
3600

Hz.

This analysis leads to conclude that the reason of the singularity is that
the two input flow rates q57 and q58 act in the same way on the outputs L4

and L5, creating a singular sub-matrix in the transfer matrix (elements (4,4),
(4,5), (5,4) and (5,5) in Fig.6.4).
In confirmation of the previous statement, it is verified that removing one
row and one column associated to one of those variables, makes the condition
number of the gain matrix to decrease by a factor of 1017.

Therefore, it is reasonable to not analyze a further reduced RGA, but to
look only at the transfer matrix evaluated in the selected frequency and pre-
sented in Fig.6.4.
From that matrix, the following statements can be inferred:

48

• each level is correctly affected in the same way by the two inlet and
outlet flow rates;

• for Lake 4 and Lake 5 this does not occur because of the existing un-
controlled connection between them;

• flow rates q57 and q58 give the same contribution to levels L4 and L5

and this fact causes the mentioned singularity of the gain matrix;

• the expected decoupling between the variables which describe a sub-
system upstream the valley and those relative to a downstream one is
verified as the whole matrix is almost diagonal.

Then, all the conclusions derived by the RGA analysis confirm that the sys-
tem is reliable and add some further information on the already available
knowledge.

6.2.3 Singular Value Analysis

For “Single Input - Single Output” (SISO) systems, the analysis of the de-
pendence of the gain of a given transfer function on the frequency is usually
performed through the Bode diagrams, which plot the modulus and the phase
of the Fourier transform of the frequency response G(jω) of the system ver-
sus the frequency.
For MIMO systems this approach cannot be directly applied, since the SISO
transfer functions (and their Bode diagrams) between the single input-output
pairs do not fully represent the plant behavior. However, some useful infor-
mation can be provided by the singular value analysis [28], which allows to
define and analyze the system gain at different frequencies also in the MIMO
case by resorting to the properties of the induced norm of a generic matrix
and to the singular value decomposition.

Singular Value Decomposition

It can be proven that each matrix Φ, either square or not, can be decomposed
into three different matrices as in equation (6.12) [28] [44]:

Φ = UΣV (6.12)

where U and V are unitary matrices and, if Φ is square, Σ is a square diag-
onal matrix whose main diagonal contains real positive values arranged in a

49

decreasing order, as shown in equations (6.13) and (6.14). These values are
named “singular values” and are univocally associated to the matrix Φ.

Σ =


σ1 0 0 0
0 σ2 0 0
0 0 . . . 0
0 0 0 σn

 (6.13)

σ = σ1 > σ2 > . . . > σn = σ (6.14)

It is useful for our purposes to define the condition number of the matrix
Φ as the ratio between the maximum singular value and the minimum one,
as in equation (6.15). Such a ratio is also important to evaluate the required
computational burden in order to perform the numeric inversion of Φ.

γ =
σ

σ
(6.15)

Induced Norm

The induced p-norm is only one of the several possible definitions for a norm
of a matrix [10] and is defined in the following equation (6.16).

‖ Φ ‖ip= sup
w 6=0

‖ Φ · w ‖p
‖ w ‖p

(6.16)

where w is a generic vector whose elements can be either real or complex.
One of the most useful properties of this norm is that the induced 2-norm of
a matrix Φ corresponds to its maximum singular value and its minimum one
can be also obtained by a similar definition:

σ(Φ) =‖ Φ ‖i2= sup
w 6=0

‖ Φ · w ‖2

‖ w ‖2

(6.17)

σ(Φ) = inf
w 6=0

‖ Φ · w ‖2

‖ w ‖2

(6.18)

Equations (6.17) and (6.18) lead to (6.19), which is an important result
that allows one to perform the singular value analysis.

σ(Φ) ≤ ‖ Φ · w ‖2

‖ w ‖2

≤ σ(Φ) (6.19)

50

Singular Value Analysis

The Frequency Response Theorem [39] states that if a linear and asymptot-
ically stable SISO system whose transfer function is G(jω) receives as input
a generic sinusoidal signal with amplitude U and frequency ω, after an initial
transient the system output signal must have the same frequency as the input
with a phase shift equal to the phase of G(jω) and must have an amplitude
equal to the product between U and the modulus at ω of the transfer function
(see equation (6.20)).

U(jω) = Usin(ωt) ⇒ Y (jω) = U |G(jω)|sin(ωt+ 6 (G(jω))) (6.20)

Then, the gain in frequency of a SISO system can be written as in the
following equation (6.21).

|G(jω)| = |Y (jω)|
|U(jω)|

(6.21)

Similarly, for a MIMO system a sort of gain in frequency can be defined
as the ratio between the 2-norm of the output vector and that of the input
vector, as shown in equation (6.22).

‖ Y (jω) ‖2

‖ U(jω) ‖2

=
‖ G(jω) · U(jω) ‖2

‖ U(jω) ‖2

(6.22)

This equation, recalling (6.19), leads to:

σ(G(jω)) ≤ ‖ G(jω) · U(jω) ‖2

‖ U(jω) ‖2

≤ σ(G(jω)) (6.23)

Such a relationship allows one to infer two main conclusions:

• the gain of a MIMO system does not depend only on the system, but
also on the direction of the input vector U ;

• such a gain is upper and lower bounded by the maximum and by the
minimum singular values of the frequency-variant transfer matrix.

Then, the plot of the singular values σ(G(jω)) and σ(G(jω)) versus fre-
quency gives an information which is similar to that provided by a magnitude
Bode diagram for SISO systems, that is the range of variation of the gain
of the MIMO system with the different possible combinations of the input
signals.
This is a practical way to analyze the linear model and to verify if it respects

51

the potential constraints for the gain at prescribed frequencies (typically a
higher gain is required at the working frequencies, while a lower gain is ex-
pected at high frequencies in order to minimize the high-band disturbances).

According to the definition presented in equation (6.15), the frequency-dependent
condition number can be calculated as follows:

γ(G(jω) =
σ(G(jω)

σ(G(jω)
(6.24)

The more γ(G(jω), evaluated at one frequency ω, is close to 1, the more
the gain of the MIMO system at that frequency does not depend on the in-
puts.

Within the Matlab environment, two useful functions which automatically
compute and plot the singular values are provided:

• svd.m implements the singular value decomposition; it computes the
singular values of a prescribed matrix of defined elements;

• sigma.m plots with respect to frequency the diagram of all the singular
values of a linear dynamic system expressed in its transfer matrix form.

The singular value analysis of the considered linear system is reported in
Fig.6.5. Looking at this figure, two considerations can be done:

• the general slope of the diagram accounts for the presence of pure in-
tegrators, which imply that the static gain is +∞ and the initial slope
is −20dB/dec;

• most of the singular values are close to the greater one, while the lower
is very close to zero with respect to the others.

The second observation is very interesting and deserves a deeper analysis.
As all the lake surfaces have, more or less, the same order of magnitude and
also the imposed variations to the flow rates are quite similar to each other,
it were expected to find a gain which does not change considerably with the
input distribution and then to have a frequency plot of the singular values
described by a narrow beam of curves.
Such a configuration is instead valid only for all except one singular values,
while the smallest one seems to be close to zero. This fact implies that the

52

Fig. 6.5: Result of the singular value analysis.

gain of the system normally assumes values which belong to a precise and
not-so-wide range, while there are some particular configurations of the input
variables which make the gain to be very low, so that the outputs are not
affected by them.

In order to understand and check this result, a further inspection of the
system has been performed and an example of input vector which does not
make the outputs move has been found. As a matter of fact, if a positive
quantity ∆q is assigned to the system inputs as follows:

∆q57 = −∆q ∆q78 = −∆q ∆q58 = +∆q

while all the other inputs are null, the whole set of outputs does not change,
that is all the variations of the levels are zero.
Then, the behavior of the minimum singular value shown in Fig.6.5 can be
explained with the presence of a double route for the water in order to arrive
to the third reach from the fifth lake. Such a particularity of the system
structure explains the reason why there exists a configuration of the input
vector which makes the system gain to be so low.

53

The system analysis is concluded and no particularly critical problems have
been met. However, several interesting information about the system have
been found and an overall check has been performed.
Therefore, it is possible to proceed with the development of the MPC con-
troller for the hydro power valley described by the analyzed model.

54

Chapter 7

Model Predictive Control

This chapter presents the Model Predictive Control (MPC) strategy adopted
to control the hydro power valley considered in this Thesis.
Initially, the overall idea of MPC and its most widely used implementation
for control of linear systems [28] are presented and commented. Then, a new
MPC algorithm for nonlinear systems is discussed, with particular emphasis
on the problems related to the choice of a suitable optimization solver.
Afterwards, a few ways to provide an integral action with a MPC controller
are presented, discussing both classical and new strategies.
Finally, the application of the developed controller to the system described
in the previous chapters is reported and its results are discussed.

7.1 The Model Predictive Control approach

Model Predictive Control is currently one of the most widely used advanced
control technologies for process plants [35] [8] [22] [31] [28].
The history of this technology originates from the industrial world, as MPC
was first implemented in industry long before a thorough understanding of
its theoretical properties was available. As a matter of fact, academic in-
terest in MPC started growing in the mid eighties and the understanding of
MPC properties has now built a strong conceptual and practical framework
for both practitioners and theoreticians, even if several issues are still open.

The main idea of the MPC strategy is to generate the control inputs for the
controlled system as solutions of a real-time optimization problem, which
consists in finding the vectors of control inputs over a time horizon which
minimize a prescribed cost function.

55

Assume that the system under control is described by the discrete-time and
a priori nonlinear model

x(k + 1) = f(x(k), u(k)) (7.1)

where x and u are the state and the control vectors, respectively.
For system (7.1), assuming that the state x is available, the simplest cost
function considered in the development of MPC is quadratic and defined as
in equation (7.2).

J =
H−1∑
i=0

(‖x(k + i)‖2
Q + ‖u(k + i)‖2

R) + ‖x(k +H)‖2
S (7.2)

At each discrete sampling time k, the value of the function J is com-
puted as the sum of the squared norms of the states x and control inputs
u, weighted by the positive definite matrices Q and R, over the prediction
horizon H. The state of the terminal state, i.e. of the state at the end of the
prediction horizon, is weighted in a different way through a square positive
semidefinite matrix S.
In the problem formulation, a set of constraints on the control variables and
on the system outputs are often considered, including control limits due to
saturations of the actuators or state limits representing physical constraints.

Therefore, the optimization problem is composed by several elements:

• the process model (prediction model), which is used to compute the pre-
diction of the controlled variables over a defined time interval, called
“prediction horizon”, knowing the current set of system states and in-
puts;

• the process measurements, which provide the information on the vari-
ables of the real system, in particular on the current state of the system,
which is used to initialize the simulation of the prediction model;

• the cost function, which contains the future inputs, the states and the
outputs computed through simulation of the prediction model, over the
whole prediction horizon;

• the constraints on the control variables and on the system states and
outputs to be taken into account during the optimization.

56

Once the optimal set of future inputs over the prediction horizon has been
computed, only the vector corresponding to the current time slot k is really
applied to the system. Afterwards, in the next (discrete) time instant, the
full procedure is re-iterated, according to a receding horizon strategy. At each
iteration, the prediction horizon is shifted forward by one time instant, so
that the prediction is always computed over a prediction horizon of the same
length and the control law resulting from the application of MPC becomes
time-invariant, although implicitly defined.

In order to reduce the computational burden of the optimization problem
to be solved at any sampling time, it is possible to optimize only with re-
spect to a subset of the u(k+i) vectors, by defining the “control horizon” Hc.
Then, the algorithm minimizes only with respect to the vectors from u(k) to
u(k + Hc), while those from u(k + Hc + 1) to u(k + H − 1) are maintained
equal to u(k+Hc). In this way, the number of vectors to be optimized is not
longer H but Hc, which is obviously smaller.

Fig.7.1 [35] resumes the procedure described above and shows the structure
of a typical MPC implementation.

7.1.1 Pros and cons of the MPC strategy

The main advantages of MPC, that explain its wide use in the process in-
dustry, are discussed below [28]:

• in its simplest formulations, the MPC architecture is very easy to im-
plement in a real control application;

• its parameters can often be tuned easily with a few experiments on the
system;

• it manages systems with a high number of variables (inputs, outputs,
states) and parameters, a typical situation in the process industry;

• it takes automatically into account also the saturations on the control
variables and on the system outputs;

• it allows to choose between different cost functions and also allows the
final user to define them, according to the various possible objectives
of the control;

57

Fig. 7.1: General scheme of MPC.

• also economic cost functions can be minimized, so economic problems
(for example the minimization of the cost of the overall production) are
considered directly inside the control law, during the on-line choice of
the control inputs.

On the other hand, as the optimization procedure is performed at each sam-
pling time, the MPC strategy is not indeed advisable for those applications
with fast dynamics requiring short sampling times, such as automotive or
robotics, but it is well suitable for slow systems, such as those in the process
industry (chemical, petrochemical, hydro, gas, . . .).
For these reasons, the MPC strategy seems to be a promising approach for
controlling the hydro power valley considered in this Thesis.

7.1.2 MPC for linear systems

If the controlled system can be well described by a linear model, this model
can be used for prediction in the MPC structure.

58

In this case, under the hypotheses that the cost function is quadratic like
the one presented in equation (7.2) and that there are no constraints, the
optimization problem has an explicit solution and does not need any opti-
mization engine to be solved. This makes the algorithm much faster, because
at each sampling time the optimal set of vectors of the control inputs can be
calculated in a closed form.
As a matter of fact, if the system is linear (see (7.3)), there are no constraints
and the cost function can be expressed in a matrix form as in (7.4), MPC
corresponds to a generic problem of linear quadratic optimal control [28].
In particular, let the system be described by:{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k)

(7.3)

and the performance index be:

J =
H−1∑
i=0

(x(k+i)TQx(k+i)+u(k+i)TRu(k+i))+x(k+H)TSx(k+H) (7.4)

Then, the minimization of (7.4) can be directly executed in two ways:

1) the iterative approach;

2) the matrix-based approach.

The iterative approach consists in computing the coefficient K of the
control law u(k) = −Kx(k) by the backward iterative evaluation of the
Riccati equation [28] [45]. The algorithm is reported below.

• P (H) = S

• for i=H-1 to 1 do


K(i) = (R +BTP (i+ 1)B)−1BTP (i+ 1)A
P (i) = ATP (i+ 1)A+Q− ATP (i+ 1)BK(i)

u(k + i) = −K(i)x(k + 1)

• K(0) = (R +BTP (1)B)−1BTP (1)A

• K = K(0) ⇒ u(k) = −Kx(k)

The matrix-based approach, instead, allows for a one-shot calculation of
all the vectors of the optimal control variables over the prediction horizon
with a matrix calculus.

59

This is possible if the system matrices are properly arranged into bigger ma-
trices, which multiply the input and the state vectors enlarged to cover all
the prediction horizon, according to the discrete Lagrange equation (7.5) [39].

x(k + 1) = Aix(k) +
i−1∑
j=0

Ai−j−1Bu(k + j), i > 0 (7.5)

The equation which describes the behavior of the system in the prediction
horizon is presented in (7.6), that can be easier written as in (7.7).


x(k + 1)
x(k + 2)
x(k + 3)

. . .
x(k +H)

 =


A
A2

A3

. . .
AH

x(k)+


B 0 0 . . . 0
AB B 0 . . . 0
A2B AB B . . . 0
.

AH−1B AH−2B AH−3B . . . B




u(k)
u(k + 1)
u(k + 2)

. . .
u(k +H − 1)


(7.6)

X(k) = Ax(k) + BU(k) (7.7)

where X(k) and U(k) are the extended column vectors which contain all the
future states and inputs, while A and B are the extended matrices built as
shown in (7.6).
Similarly, also the equation of the cost function can be written in an extended
matricial form. Defining the matrices Q and R as in (7.8), it is possible to
obtain the expression (7.9).

Q =


Q 0 0 . . . 0
0 Q 0 . . . 0
0 0 Q . . . 0
.
0 0 0 . . . S

 R =


R 0 0 . . . 0
0 R 0 . . . 0
0 0 R . . . 0
.
0 0 0 . . . R


(7.8)

J = X(k)TQX(k) + U(k)TRU(k)

= (Ax(k) + BU(k))TQ(Ax(k) + BU(k)) + U(k)TRU(k)

= x(k)TATQAx(k) + 2x(k)TATQBU(k) + U(k)T (BTQB + R)U(k)
(7.9)

60

The performance index (7.9) has a quadratic form, then its minimum can
be easily found by solving the equation obtained setting to zero its derivative
with respect to the vector U(k), see (7.10).

∂J

∂U
= 2U(k)T (BTQB + R) + 2x(k)TATQB = 0 (7.10)

Then, for linear systems and under the hypotheses listed above, the con-
trol law can be directly obtained as shown in (7.11).

U(k) = −(BTQB + R)−1BTQATx(k)
= −Kx(k)
⇓

u(k)
u(k + 1)
. . .

u(k +H − 1)

 = −


K(0)
K(1)
. . .

K(H − 1)

x(k)

(7.11)

According to the receding horizon principle, only the first element of the
vector U(k), is really used, see (7.12).

u(k) = −K(0)x(k) (7.12)

When constraints are present, such as those in (7.13), the problem be-
comes a finite-horizon optimization problem with constraints, which can no
longer be directly solved in a closed form but needs to be solved numerically.

Umin < U(k) < Umax (7.13)

7.1.3 MPC for nonlinear systems

If the model of the controlled system is nonlinear and if its linearized model
does not provide a satisfactory prediction of the real process behavior, it is
necessary to use a nonlinear prediction model. The corresponding optimiza-
tion problem is no longer linear and there is not any explicit solution to be
used as in the previous case. Therefore, an appropriate optimization solver
is required.
The choice of the solver can be difficult, since it depends on the problem at
hand and on the required performance of the control. To this regard, various
licensed solvers are available and also the Matlab environment provides some
of them in the Optimization Toolbox.

61

While the main advantage of implementing a nonlinear MPC is that the pre-
diction of the system variables is more accurate, its worst disadvantage is
that the solver must be able to find acceptable solutions of a non convex,
and often very difficult due to nonlinearities, optimization problem.

7.2 Definition and implementation of the MPC

controller

In Chapter 6 a linearized model of the hydro power valley at a given steady
state has been derived and its correspondence with the nonlinear model has
been analyzed and verified. Therefore, we could assume that a linear model
is available for the synthesis of MPC.
However, one of the objectives of this Thesis is to develop a quite general
MPC controller with the following properties:

• since the considered hydro power valley is only a case study, the con-
troller should not be strictly related to the case at hand, but it should
be possible to use it also with different systems, or with the same system
but in different working conditions;

• it must allow to change the cost function according to the current con-
trol objectives, because the required behavior of the system may change
after the controller has been built; for example it may be asked to follow
both local or global power references while respecting the constraints
on levels and flow rates;

• it must be able to manage both linear and nonlinear constraints;

• its structure must be enough flexible to permit a further modification
in order to implement a distributed control architecture.

These properties can be achieved only with a nonlinear MPC structure,
which has been chosen to develop a nonlinear MPC controller.

This choice is significant because, while a linear MPC controller already built
is available in the Matlab MPC Toolbox, no software for nonlinear MPC is
available for free and the only way to get the required controller is to entirely
build it from scratch.
As the model has been built in Simulink, the Matlab-Simulink environment
has been chosen also for the development of the controller.
Even if the optimization solver, which is the core of a nonlinear MPC archi-
tecture, can be chosen between those provided by the Matlab Optimization

62

Toolbox, a different software (Tomlab [3] [25]) has been chosen for this pur-
pose, for the reasons discussed in the following Section 7.2.3.

Therefore, a full MPC controller has been created, following the guidelines
for the development of classical MPC algorithms presented in Section 7.1.
The structure of the controller and the chosen control objective functions are
presented in the following paragraphs.

7.2.1 Choice of the objective functions

Even if the developed controller is able to work with any cost function that
the final user may define, two main optimization criteria are expected to be
used for the hydro power valley [17]:

• to follow several local set points of power, one for each power plant of
the valley, while respecting the assigned constraints;

• to follow only one global set point of power, which defines the desired
trajectory of the total electric power produced in the valley, while re-
specting the assigned constraints.

In both cases, the classic objective function presented in (7.2) has to
be changed into the “trajectory tracking” form, which does not minimize
the system state vectors x(k + i), but the difference between the controlled
output vectors and the imposed set point (y(k + i)− SP (k + i)).
The trajectory tracking form corresponding to (7.2) is presented in (7.14).

J =
H−1∑
i=0

(‖y(k + i)− SP (k + i)‖2
Q + ‖u(k + i)‖2

R) + ‖x(k +H)‖2
S (7.14)

Local set points

When this reference is chosen, a matrix containing the required values for
each power in each time slot of the prediction horizon has to be defined dur-
ing the initialization of the controller.
Then, the corresponding cost function J to be minimized is defined as follows.

J =
H∑
i=0

(
(yP (k + i)− SPloc(k + i))TQP (yP (k + i)− SPloc(k + i)) + u(k + i)TRu(k + i)

)
(7.15)

where:

63

• yP (k + i) is the column vector of the predicted power outputs of the
sampling time k + i;

• SPloc(k + i) is the column vector of local set points at time k + i;

• QP is the diagonal matrix of the weights of the predicted power errors;

• R is the diagonal matrix of the weights of the future inputs.

Global set point

If the reference is expressed as a global power request, the set point is a
vector whose values represent the time variation of the reference.
Then, the corresponding cost function J to be minimized is defined in (7.16).

J =
H∑
i=0

((

npower∑
j=1

yP (k+ i, j)−SPglob(k+ i))2qP + u(k+ i)TRu(k+ i)) (7.16)

where:

• npower is the number of power outputs;

• yP (k + i, j) is the generic element of the vector of predicted power
outputs yP (k + i);

• SPglob(k + i) is the global scalar set point at time k + i;

• qP is the scalar weight of the global power error.

Constraints

During the minimization procedure of the selected cost function J , the solver
must also verify that the solution fulfills the imposed constraints, which define
the upper and lower limits for some system variables.
In the considered case [17], it is required to bound the flow rates ui, their
derivatives dui

dt
and the levels of lakes and reaches Li. Then, the constraints

to be included in the optimization problem are:

Li ≤ Li ≤ Li

ui ≤ ui ≤ ui

vi ≤ dui
dt
≤ vi

(7.17)

where:

64

• Li and Li are the lower and upper bounds for the levels Li;

• ui and ui are the lower and upper bounds for the flow rates ui;

• vi and vi are the lower and upper bounds for the flow rate variations
dui
dt

.

7.2.2 Controller Structure

In the development of a new controller using a software environment, the
first step is to divide the control algorithm into several sections and to assign
each one of them to a specific function or subfunction of the software.
Thus, a conceptual scheme of the implementation of the procedure discussed
in Section 7.1 in the Matlab-Simulink environment is presented in Fig.7.2.

Fig. 7.2: Conceptual scheme of the developed MPC controller.

The Matlab functions which compose the controller are listed below in
hierarchical order, from the higher to the lower one:

1) hpvdata.m initializes the parameters of the plant;

65

2) mpc data.m initializes the parameters of the controller;

3) mpc opt.m manages the interface of the discrete-time controller with the
continuous-time system;

4) tom main J.m sets and solves the optimization problem;

5) tom fc.m evaluates the cost function each time it is started by tom main J.m.

Initialization

The MPC algorithm described in Section 7.1 presents some parameters, to
be chosen by the final user, which define the overall performances of the
controller. These parameters are:

• dT is the sampling time of the controller measured in seconds (control
interval);

• H is the prediction horizon, measured in multiples of dT ;

• Hc is the control horizon, measured in multiples of dT ;

• nu is the number of the control variables;

• nlevel is the number of the level outputs of the system;

• npower is the number of the power outputs of the system;

• ny is the total number of the system outputs.

Moreover, the local or global set point have to be defined before starting
the simulations.
The Matlab function mpc data.m contains all the required definitions and
has to be called before running the simulations together with hpvdata.m,
which defines the parameters of the system.
The main parts of the script mpc data.m are reported below as an example
of configuration.

66

% MPC parameters definition
dT=7200; % [s]control interval
H=5; % [dT intervals] prediction (receding) horizon
Hc=5; % [dT intervals] control horizon
nu=9; % plant inputs
nlevel=9; % level outputs
npower=7; % power outputs
ny=nlevel+npower; % total plant outputs

nY=ny*H;
nU=nu*H;

% system inputs definition (differential values from steady state)
U0=zeros(1,nU); % initial inputs vector
dist=zeros(1,3); % constant disturbs: d1 d6 d9

% constant global set point definition (value from steady state)
SPgl=50e6;

% constant local set points definition (values from steady state)
% definition order:L1,L2,L3,L4,L5,L6,L7,L8,L9,Pe2,Pe3,Pe5,Pe6,Pe7,Pe8,Pe9
SP1=[0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0]*1e6; % set point at the initial time
SP=zeros(1,nY);
for i=1:H
SP(1,(i-1)*ny+1:i*ny)=SP1; % set point at time k+i
end

Continuous-Discrete Interface

As the controller is expected to be as flexible as possible, in order to allow
its use in different contexts, it is worth to include in the software an interface
layer which makes the choice of the discrete sampling time of the controller
independent from that of the controlled system.
Such a decoupling has been obtained by an event-check strategy.
An opportune set of Simulink blocks (Fig.7.3) generates an event ev each
time the simulation time is equal to a multiple of the MPC sampling time
dT . The function mpc opt.m at each simulation step checks the event ev : if
it is “FALSE ”, the previous value of the input vector U(k−1) is maintained,
otherwise the function tom main J.m is called to compute the new optimal
vector of U o(k).
The result is that, according to the MPC algorithm, the controller changes

67

its action on the controlled process only at the end of any control interval
dT , and maintains it constant during the interval.

Fig. 7.3: Event generator.

The main parts of the function mpc opt.m are reported below:
function out = mpc opt(u,dT,H,Hc,nU,nX,nY)

Up=u(1:nU); % previous output (manipulated variables)
cnt=u(nU+1); % counter
ev=u(nU+2); % event: if ev=1 compute new output (manipulated variables)
SP=u((nU+2)+1:(nU+2)+nY); % horizon set point
Xp=u((nU+2+nY)+1:(nU+2+nY)+nX); % plant states of the current sample time

if ev==1
U opt=tom main J(Up,Xp,H,Hc,dT,nU,nX,nY,SP);
U=U opt;
cnt=cnt+1 % plots the optimization sequential number
else
U=Up;
end

out(1:nU) = U; % manipulated variables
out(nU+1) = cnt; % time of the previous optimization

Solution of the optimization problem

The function tom main J.m has as inputs the previous control vector U(k−
1), the current state of the system X(k) and the set point SP , while it re-
turns the new optimal vector U o(k).
The function first sets the optimization problem, its objectives, its constraints
and its parameters using the appropriate Tomlab syntax [25]. Then, it solves
the problem using one of the various available Tomlab solvers [6] [3].

68

The solver works iteratively, evaluating at any iteration the value of the cost
function J through the Matlab function tom fc.m, corresponding to a dif-
ferent tentative value of U(k). The result of the optimization (U o(k)) is
returned by tom main J.m to the upper level of the software and it is routed
to a Simulink demultiplexer which extrapolates only the first vector u(k) and
routes it to the controlled system.
An instance of the main sections which compose the function tom main J.m
is reported below.

function out=tom main J(Up,Xp,H,Hc,dT,nU,nX,nY,nlevel,SPgl,SP)

%problem setting
x 0 = Up’; % Starting values for the optimization
x L = zeros(1,nU)’-25; % Lower bounds for x
x U = zeros(1,nU)’+25; % Upper bounds for x
fLB = 0; %Lower bound on function
f opt=0; % Optimal value for the objective function
c L L = -1*ones(1,H*nlevel); % Lower bounds on levels
c U L = +1*ones(1,H*nlevel); % Upper bounds on levels
c L dU = -10*ones(1,H*nu); % Lower bounds on flow rates
c U dU = +10*ones(1,H*nu); % Upper bounds on flow rates
c L = [c L L, c L dU]’; % Lower bound on constraints
c U = [c U L, c U dU]’; % Upper bound on constraints

Prob=simAssign(’tom fc’,[],[],[],x L,x U,[],x 0,fLB,[],[],[],[],c L,c U,[],[],f opt);

Prob.optParam.eps f=10; % Tolerance on objective function values
Prob.optParam.MaxIter=5; % Max iterations
Prob.optParam.MaxFunc=10; % Max function evaluations
Prob.user=[H Hc dT nU nX nY Xp SP nlevel SPgl]; % Prob user parameters

%problem solving
Result = tomRun(’knitro’, Prob, 3); % The solver ’knitro’ is chosen

out=Result.x k;

Computation of the cost function

Each time the optimization solver requires to evaluate the objective function
and to verify the constraints, the Matlab function tom fc.m is called with

69

the current tentative value of U(k). This function computes the selected
objective function J (7.15) or (7.16) and gets all the variables required to
calculate it.
Since the control input vector U(k) and the set point SP (k) are passed from
the calling function tom main J.m, the only information to be generated is
the vector of the system outputs Y (k), whose power elements are necessary
to calculate J , while its level elements constitute a subset of the constraints
to be satisfied.
Then, it is clear the need to use the prediction model in the MPC algorithm,
since the cost function (which expresses the control purposes) depends on
the future system outputs, which need a model for prediction.
In tom fc.m the prediction of the vector Y (k) is generated by the Matlab
command sim(), which simulates the prediction model (either linear or not)
defined separately in a Simulink file (for example hpv prediction model.mdl).

This simulation must start from the current state of the controlled system
and must end one prediction horizon later, therefore the whole state of the
controlled system must be measurable, or at least observable. This is a real
problem when the controller is applied to the real system, because each reach
model introduces 2N + 1 states, while in the real system only 3 variables are
really measured (the final level and the two flow rates at the boundaries of
the reach) and the implementation of a Kalman Filter to predict the unmea-
sured states [28] [45] [44] is indeed not trivial.
However, according to the purposes of this Thesis, the application of this
controller to a real system will be done only in a later phase and, at the
moment, it is reasonable to assume that the states of the controlled system
are all measurable.

After the simulation, the objective function and the constraints can be com-
puted and returned to the solver, which evaluates them and decides the new
value of U(k) for the next iteration.
The most significant parts of a possible implementation for tom fc.m are
presented below.

70

function [f c] = tom fc(x, Prob)

% prediction model simulation
opt=simset(’InitialState’,Xp);
Ye=sim(’hpv prediction model.mdl’,H*dT,opt,[tsim,Usim]);

% system outputs division
Ye=resample horiz(Ye,H); % resampling of the Ye vectors in H samples
Y L=Ye(:,1:nlevel); % levels
Y P=Ye(:,nlevel+1:ny); % powers

% local set points division
SP=reshape(SP,ny,H)’; %reorder SP in a H*ny matrix
SP L=SP(:,1:nlevel); %levels SP
SP P=SP(:,nlevel+1:ny); %powers SP

% weights definition
maxL=10;
maxP=10e6;
Q L=[1 1 1 1 1 1 1 1 1]/maxL∧2;
Q P=[1 1 1 1 1 1 1]/maxP∧2;
Q=[Q L Q P];
R =[1 1 1 1 1 1 1 1 1];

% goal functions computation
fPref = sum((SP P - Y P).∧2*Q P’);
fPtot = sum((ones(H,1)*SPgl - ones(npower,1)*(Y P)).∧2);
f = fPref; % fPtot; % choice of the objective function

% constraints computation
Yc=reshape(Y L,nlevel*H,1);
dUsimc=reshape(dUsim,nu*H,1);
c=[Yc; dUsimc]; %constraints

Simulink implementation

In the previous paragraphs, the conceptual scheme of the developed controller
(Fig.7.2) and the Matlab scripts which implement its subfunctions have been
presented. Now, the Simulink structure implementing this conceptual scheme
is shown.

71

Fig. 7.4: Simulink control scheme.

Fig. 7.5: Simulink MPC controller.

Fig.7.4 displays the general Simulink layout of the control scheme, where
the subsystems of the MPC controller and of the plant with their interface
variables are clearly visible. In particular, the subsystem which implements
the MPC structure explained above is shown in Fig.7.5, where it is possible
to notice all the correspondences with the conceptual scheme of Fig.7.2:

• the “MATLAB Function” block calls the function mpc opt.m, which
receives as inputs:

– the previous control variable vector;

– the event ev;

– the set point SP ;

– the state of the plant;

72

• the generator of the event ev, as shown in Fig.7.3;

• the “Memory U” block, which makes the control variable vector of the
previous simulation step time available;

• the demultiplexer, which selects the first vector u(k) from the larger
one U(k) and routes it towards the plant;

• the “Memory x” block, which only has the purpose to break the alge-
braic loop and to overcome numeric problems during the simulation.

The developed MPC controller has been entirely described, but no men-
tion has already been made to the choice of the optimization solver among
those provided by Tomlab. This choice is a very important step in order
guarantee satisfactory control performances and deserves a separate expla-
nation.

7.2.3 Optimization Tool

Why Tomlab

Since the optimization problem underlying the MPC controller is indeed not
trivial and involves a lot of variables, it is advisable to look for a good solver,
testing different solutions and choosing between them. Moreover, since the
solver will be employed in an on-line optimization, it must be provided with
a good interface with the Matlab environment, as it has to be automatically
called during the simulation, and, later, during the real-time control. Tomlab
[25] [6] [23] seems to satisfy these requests.

Tomlab is a general purpose environment in Matlab for the numerical
solution of many different optimization problems, which provides robust and
reliable tools to be used in the development of algorithms and software.
There are many good solvers available in the area of numerical analysis, oper-
ational research and optimization, but because of the different languages and
systems, as well as the lack of standardization, it is not indeed simple to use
them. As a matter of fact, if it is necessary to test different solvers, it is often
required to rewrite the problem formulation and the function specifications,
or to develop some new interface routines.

The strength of Tomlab is that it allows to define the optimization prob-
lem once and then to run the many available solvers, because it takes care
of all the interface problems, whether between languages or due to different
problem specifications. Furthermore, it is entirely developed in the Matlab

73

environment. Thus, it employs the concept of structure arrays and the ability
to execute Matlab code defined as string expressions. This makes Tomlab
very powerful and, most important, completely compatible with the software
where our controller has been defined, so that no interfaces are necessary.

For these reasons, Tomlab has been chosen as the platform for the solution
of the optimization problem associated to the MPC controller.

Optimization problem and available solvers

In order to choose the tool which best solves our optimization problem, it is
important to figure out which problem we are considering.
As a matter of fact, each solver is designed for a particular problem and, even
if it might work in other cases, it gives its best performances when properly
applied.
Then, the first step to choose a solver is to find out, among the available
solutions, those matching with the problem considered.
In the field of operations research, many families of problems have been
defined, such as:

• linear or nonlinear;

• quadratic or not quadratic;

• constrained or unconstrained;

• local or global;

• integer or continuous;

• . . .

The combination of these characteristics defines the typology of the prob-
lem: LP, MILP, QP, MIQP, MIQQ, NLP, LPCON, QPCON, LLS, MILLS,
NLLS, GLB, GLC, SDP, BMI, . . .
For each one of these families Tomlab provides:

• one function which mathematically sets the problem (ex. conAssign);

• one suitable solver for the specific case (ex. conSolve).

The problem setting is performed by the specific function, which creates
one standard structure named Prob that contains all the information on the
problem to be solved. An example of the Tomlab syntax is:

74

Prob = conAssign(’tom f’,’tom c’, parameters)

conAssign is the Tomlab function which creates a proper Prob structure
in which the problem to be solved is defined as a generic constrained non-
linear problem. It receives as input the problem parameters and the user
defined functions tom f and tom c, which compute the cost function and the
constraints.

The problem solving is always performed by the Tomlab function tomRun,
which receives as inputs the selected solver and the previously created prob-
lem structure Prob. For example, using the solver conSolve the syntax is:

Result = tomRun(’conSolve’, Prob)

In this way, once the problem has been defined, it is possible to test different
solvers simply by changing the name of the solver in the function tomRun,
without modifying the problem definition.

In our case, the optimization problem introduced by the MPC algorithm
does not belong to the set of standard cases because the cost function J can
not be directly expressed in terms of a static equation, while it requires the
simulation of a dynamic system.
This implies that most of the available tools can not be used, since they
require a defined structure for the cost function. Rather, one can use only
those which allow the user to freely define the minimization criterion.
With the help of the staff of the company which releases the Tomlab software,
a few optimization solvers have been selected: glcSolve, glcDirect, glcFast,
glcCluster, oqnlp, lgo, multiMIN, snopt, npsol. In particular, it has been
suggested to test snopt and npsol, which perform a local optimization, after
using one between glcSolve and glcDirect, which are global solvers, in order
to refine the solution.
Therefore, a simple test to evaluate their performance in a simple situation
has been run.

Solver testing

In order to test the behavior of the selected solvers and to finally take a
decision, they have been tested in the design of the MPC controller with a
particular control objective and in a defined scenario. To make the procedure

75

easier and faster, the linear model has been employed for both the controlled
plant and the prediction model.
In the adopted scenario, the controller must maintain the initial value of the
all the levels, when a step disturbance of 40m3/s acts on the inlet flow rate
of the first lake. Thus, the cost function is:

Jtest =
H∑
i=0

(yL(k + i)− SPL(k + i))T (yL(k + i)− SPL(k + i)) (7.18)

where:

• yL is the column vector of the levels;

• SPL is the column vector of the level set points, which coincides with
their initial state.

Actually, the optimal solution is obvious to understand and consists in
immediately giving to all the downstream flow rates a step equal to the dis-
turbance. However, it is not easy to find numerically this solution, as it
involves a lot of interacting variables. For this reason, it is a good test for
the optimization solver.

Initially, in order to have a benchmark to be compared with the test re-
sults, an open-loop simulation of the uncontrolled system in the previously
described scenario has been done. The simulation time has been chosen suf-
ficiently long with respect to the involved dynamics, in order to show what
happens also after a long period (8 hours).
All the results are reported in the following as variations of the considered
variables with respect to their steady state.
Fig.7.6 reports the expected result: when, at time 3000s the step disturbance
occurs, only the level L1 increases, due to the pure integrator describing the
dynamics of the lake.

Subsequently, the controller has been inserted and all the selected solvers
have been used.
The results achieved by each solver are listed below:

1) glcSolve: the simulation is completed in 1 minute, the results are reported
in Fig.7.7;

2) glcDirect : the simulation is completed in 1 minute 45”, no difference is
noticed from the results obtained with glcSolve;

76

Fig. 7.6: Open loop simulation.

3) glcFast : the simulation is completed in 1 minute 30”, no difference is
noticed from the results obtained with glcSolve;

4) glcCluster : the simulation stops (crashes) in the initial instants;

5) oqnlp: the simulation is completed in about 15 minutes, the results are
reported in Fig.7.8;

6) lgo: the simulation stops (crashes) in the initial instants;

7) multiMIN : the simulation stops (crashes) in the initial instants;

8) glcSolve + snopt : the simulation stops (crashes) in correspondence to the
instant where the disturbance occurs;

9) glcSolve + npsol : the simulation stops (crashes) in correspondence to the
instant where the disturbance occurs.

It can be noticed that none of the solvers achieves the expected optimal
result and some of them are clearly inefficient, as they cannot bear the com-
putational burden or their structure is not compatible with our problem.
However, four solvers achieve a solution and three of them reach exactly
the same result, even if they require different computational times. These
solutions (Fig.7.7 and Fig.7.8), even if not optimal, maintain all the levels

77

Fig. 7.7: Test with glcSolve.

under a satisfactory value, which is one tenth of the value reached in the
open-loop simulation (Fig.7.6). In particular, the responses obtained with
glcSolve, glcDirect and glcFast (Fig.7.7) seem to maintain the level better
limited, while that obtained with oqnlp (Fig.7.8) seems to diverge.
Therefore, initially the solver glcSolve has been chosen for the development
of the MPC controller.

Once the solver has been selected, it is possible to choose the Tomlab func-
tion for the problem setting, which generates the structure Prob, among those
compatible with that solver.
The most recommended function [6] for glcSolve is glcAssign. However, an-
other interesting function compatible with glcSolve is simAssign, which, un-
like glcAssign, allows to define only one function which computes both the
cost function and the constraints (as tom fc.m). This, in our case, is a great
advantage because it allows to simulate the prediction model only once (and
not twice) at each optimization step of the solver.
Therefore, simAssign is chosen as the problem setting function.

78

Fig. 7.8: Test with oqnlp.

Advanced solver testing

After choosing the solver, which has been tested in a simple situation (see
Section 7.2.3), it can be finally used in a likely working condition, that is
when the MPC controller is asked to follow a power set point while respect-
ing some constraints on levels and flow rates.
In this way, it is possible to evaluate the performances of the whole MPC
controller with respect to its parameters.

The considered working condition is defined as follows:

• the initial state is equal to the reference steady state defined in Chapter
6;

• the control objective is expressed by a set of local power set points,
therefore J is defined by (7.15);

• all the local set points are equal to the steady state while only one,
which corresponds to Pe5, differs from its steady state value by +50MW ;

• the bounds on all the levels differ from the steady state by ±1m;

• the bounds on all the flow rates differ from the steady state by±25m3/s;

79

• no bounds are imposed on the flow rate variations;

• the discrete sampling time dT of the controller has been set to 600s;

• the prediction horizon H has been set equal to 15 sampling times;

• the whole simulation time is 5 · 104s, about 14h.

The results obtained are shown in Figures 7.9, 7.10 and 7.11, which dis-
play the controlled powers, the levels to be bounded and the control variables
(flow rates). All the variables are plotted as variations with respect to the
steady state.

Fig. 7.9: Powers with glcSolve.

It can be noticed from Fig.7.9 and Fig.7.10 that the power Pe5 quickly
reaches its set point, with a considerable undershoot, and maintains the cor-
rect value with a small static error till the levels are not close to their bounds.
Then, to avoid the constraints violation, the set point tracking is sacrificed
and the power Pe5 seems to return to the initial value. Fig.7.11, instead,
shows that the flow rates stay always far away from their bounds.

The transient of the flow rates shows an unexpected behavior of the con-
trolled variables, which seem to change only by defined discrete values. The

80

Fig. 7.10: Levels with glcSolve.

same behavior, due to the existing direct relationship (see Section 6.2.1), is
also observable in the powers transients.
In order to better understand this result, several simulations with different
parametrizations have been run plotting in real-time the flow rates computed
during each optimization. The final observation is that glcSolve tries to find
the optimal point by incrementing the vector to be optimized always by a
constant value, whose amplitude depends on that of the set point.

This may explain the static error: if only discrete values are available for
the flow rates, and then for the powers, the solution can guarantee only that
the error is smaller than the discrete variation of the powers.
However, this fact is indeed bizarre and no satisfactory explanation has been
found in the Tomlab documentation [3] [25] [6] [23]. The only reasonable, but
incomplete, explanation is that glcSolve, a solver built to manage global op-
timization problems, uses large discrete variations in order to arrive quickly
close to the solution, but in this case it is no longer able to reduce these
variations for a fine tuning of the optimization process.

For these reasons, a local solver is tested instead of the global glcSolve.
Looking at the Tomlab documentation [25] [6] [24], the solver knitro has
been chosen, because it is recommended in association to the used problem

81

Fig. 7.11: Flow rates with glcSolve.

setting function simAssign. The new solver has been tested within the MPC
controller and with the same scenario and parametrization presented above.
The initial results show that the problem detected with the previous solver
is disappeared, but the overall performances are much worse. However, it is
sufficient to reduce the prediction horizon H from 15 to 5, in order to have
less variables to be optimized, to achieve some very interesting results, which
are reported in Figures 7.12, 7.13 and 7.14.

Looking at these figures, it is clear that in the first part of the simulation
the results are much better than in the previous case:

• Pe5 quickly reaches its set point;

• there are neither overshoots nor undershoots at the beginning of the
transient;

• the static error quickly goes to zero;

• all the variables vary with continuity.

On the other hand, the constraints are not always fulfilled, as Fig.7.13 shows
that three levels go beyond their bounds. This behavior can be explained
looking at Fig.7.14, where it is possible to notice that the flow rates arrive

82

Fig. 7.12: Powers with knitro.

close to their bounds and, as they constitute the variables respect to which
the objective function is minimized, their constraint violation avoidance takes
a higher priority in the optimization routine and penalizes both the trajec-
tory tracking and the other constraints satisfaction (which are necessarily
soft constraints).
However, the overall performances of the controller have been judged satis-
factory, also because the real bounds on the lakes levels are usually larger
than 1m, about 5m, and this guarantees a perfect tracking of the set point
for 5 times the actual period, that is about 3 days and half, much more than
the usual period of variation of the required power.
Therefore, the final decision has been to use knitro for the implementation
of the MPC controller.

7.2.4 Integral action

In the design of a controller, it is common practice to include also an inte-
gral action in order to guarantee that the static error vanishes in presence of
constant references or additive disturbances [39].
In this section, the classical approach used to add the integral action to a
MPC controller is presented. Then, an alternative solution is proposed and

83

Fig. 7.13: Levels with knitro.

discussed.

Integral action in MPC

The most common way to include an integral action in a MPC controller
consists in inserting one integrator on each control variable, as in Fig.7.15,
so that the vector u(k) is obtained as the output of the dynamic system de-
scribed in equations (7.19) and (7.20), where v(k) represents the state vector
of the integrators.

u(k) = u(k − 1) + δu(k) (7.19)

{
v(k + 1) = v(k) + δu(k)

u(k) = v(k) + δu(k)
(7.20)

Then, it suffices to include in the cost function to be minimized the vec-
tors δu(k+ i) in place of the vectors u(k+ i). In this way, the cost functions
presented in Section 7.2.1 have to be modified as follows.

84

Fig. 7.14: Flow rates with knitro.

Fig. 7.15: Scheme of the classical integral action for MPC.

The general trajectory tracking form presented in (7.14), becomes:

J =
H−1∑
i=0

(‖y(k + i)− SP (k + i)‖2
Q + ‖δu(k + i)‖2

R) + ‖x(k +H)‖2
S (7.21)

Then, the two objective functions chosen for our control purposes and
presented in equations (7.15) and (7.16) must be redefined as in (7.22) (local
set points) and (7.23) (global set point).

85

J =
H∑
i=0

((yP (k+i)−SPloc(k+i))TQP (yP (k+i)−SPloc(k+i))+δu(k+i)TRδu(k+i))

(7.22)

J =
H∑
i=0

((

npower∑
j=1

yP (k+i, j)−SPglob(k+i))2qP +δu(k+i)TRδu(k+i)) (7.23)

The Simulink implementation of this strategy is easy and can be per-
formed by substituting the vector δU(k) to the vector U(k) in the objective
function computation, within the Matlab function tom fc.m.

The construction of the vector δU(k) can follow two equivalent methods:

1) the vector passed by the solver to the function tom fc.m at each optimiza-
tion step is still U(k), then δU(k) is obtained by the discrete derivation
δU(k) = U(k)− U(k − 1);

2) the vector passed by the solver to the function tom fc.m at each opti-
mization step is directly δU(k); then, at the end of each optimization,
the solver returns to the upper level of the MPC algorithm the optimal
vectors δU o(k), which have to be integrated by the discrete integration
U o(k) = U(k − 1) + δU o(k) to obtain the control vector acting on the
system.

86

An example of implementation of the first method is shown below:

function [f c] = tom fc(x, Prob)
% x: current guess for the optimal input Uopt. Size(x)=[1,nU]:

% Usim and dUsim matrices construction
Usim=zeros(lt,nu); % simulation inputs matrix
for i=1:Hc
for j=1:nt
Usim((i-1)*nt+j,:)=x((i-1)*nu+1:i*nu)’;
end
end

dUsim=zeros(lt,nu); % simulation inputs increment matrix
for i=1:lt-1
dUsim(i,:)=Usim(i+1,:)-Usim(i,:);
end

% prediction model simulation
opt=simset(’InitialState’,Xp);
Y=sim(’hpv prediction model’,H*dT,opt,[tsim,Usim]);

% objective function calculation
fPref = sum((SP P - Y P).∧2*Q P’) + sum(dUsim.∧2*Rd’);
f = fPref;

The described strategy has been used to include an integral action in our
controller and several simulations have been performed. However, the inte-
gral action does not affect the control performances in terms of steady state
error and the obtained results are pretty equal to those reported in Figures
7.12, 7.13 and 7.14. The reason can be found in a simple theoretical analysis
[22] [9], which demonstrates the existence of a tricky problem when using the
described classical strategy associated to a state feedback control law.
Actually, a proof is easy to develop only for linear unconstrained problems,
but it is representative of what happens also in a more general case. Look-
ing at the overall control scheme represented in Fig.7.16, it is clear that the
control variable u is computed on the basis of the contributes of both the
reference Y o and the enlarged state vector [x v]T . More specifically, there is
a feedback of the integrator state v, through the regulator block Kv, which

87

makes the integral action disappear in practice.
The theoretical solution is to include in the control loop a state observer
which estimates both the process state x and the state of the integrator v. In
this way, as shown in Fig.7.17, the integrator is not canceled by the internal
feedback.

Fig. 7.16: Control with state feedback.

Fig. 7.17: Control with estimate state feedback.

Unfortunately, as stated in Section 7.2.2, we assumed that all the state
variables are available, so that no observers have been placed into the control
loop. Therefore, a different method to provide an integral action has been
used, that is the inclusion of an integral action directly acting on the error
variables, as it is common practice in the design of regulators for MIMO sys-
tems.

88

Integral action for MIMO systems

The classical approach to design a controller with integral action for a MIMO
system consists of the following steps:

1) the reference errors are created by subtracting the controlled variables to
their set points;

2) each error is passed through an integrator;

3) the remaining part of the MIMO controller is synthesized for the dynamic
system composed by both the controlled process and the set of the inte-
grators.

Fig.7.18 shows the structure of this solution, where every signal i is expressed
by its Laplace transform [39] [10]. Specifically, Ei(s) is the reference error,
Vi(s) is the integrator state and Ui(s) is the control variable, while R′(s) is
the stabilizing part of the controller and G(s) is the transfer function of the
controlled system.

Fig. 7.18: Control scheme with integral action for MIMO systems.

The conditions which have to be satisfied in order to use this control
scheme, both verified in our case, are:

• the number of control inputs must be greater or equal to the number
of controlled variables;

• the controlled system must not have invariant zeros in s = 0, that is
pure derivative actions.

89

The main difference of this approach with respect to the previous one is
that in this case the integrators do not act on the control variables generated
by the controller, but directly on the error signals, avoiding the problems
caused by the use of a state feedback.

Then, it is worth testing this method in our problem, with an equivalent
formulation suitable for a MPC control law. The algorithm which has been
developed is discussed below and the corresponding Simulink diagram is pre-
sented in Figures 7.19, 7.20 and 7.21.

1) within the controller block (Fig.7.20), the error e is computed;

2) the error is integrated generating the signal v, which is the state of the
integrator;

3) the integrator state vector v is passed, together with the measured state
of the controlled system x, to the prediction model, in order to initialize
its states; the prediction model now contains also the integrators to be
initialized, because it is necessary to simulate the behavior of the whole
system including the integrators;

4) when called by the function tom fc.m, the prediction model (Fig.7.21),
generates the prediction of the system outputs;

5) the predicted outputs ypr are subtracted to the set points SP , generating
the vector of the predicted error epr;

6) the predicted error epr is integrated by the integrators of the prediction
model starting from the previously initialized state vector v, generating
the signal vpr;

7) the signal vpr is returned together with the predicted output vector ypr
to the function tom fc.m, which includes both in the objective function
to be minimized:

90

function [f c] = tom fc(x, Prob)

. . .

SP L=SP(:,1:nlevel); %level set points
SP P=SP(:,nlevel+1:ny); %power set points

% prediction model simulation
opt=simset(’InitialState’,Xp);
Ye=sim(’hpv prediction model’,H*dT,opt,[tsim,Usim]);

Y L=Ye(:,1:nlevel); % levels
Y P=Ye(:,nlevel+1:ny); % powers
v L=Ye(:,ny+1:ny+nlevel); % integrated level errors
v P=Ye(:,ny+nlevel+1:2*ny); % integrated power errors

% objective function calculation
fPi = sum((v P).∧2*Q Pi’); % integral action contribute
fPref = sum((SP P - Y P).∧2*Q P’); % trajectory tracking contribute
f = fPref + fPi; % total objective function

Fig. 7.19: Control system with integrators.

In this way, the implemented cost functions are presented in (7.24) (local set
points) and (7.25) (global set point).

J =
H∑
i=0

((yP (k+i)−SPloc(k+i))TQP (yP (k+i)−SPloc(k+i))+v(k+i)TQPiv(k+i))

(7.24)

J =
H∑
i=0

((

npower∑
j=1

yP (k+ i, j)−SPglob(k+ i))2qP +v(k+ i)TQPiv(k+ i)) (7.25)

91

Fig. 7.20: MPC controller with integral action.

Fig. 7.21: Prediction model with integral action.

where:

• v(k + i) is the column vector of the predicted integrated errors of time
k + i;

• QPi is the diagonal matrix of the weights of the integrated errors.

Therefore, not only the error (Y (k)−SP (k)) is minimized over the prediction
horizon, but also its integral, reproducing the effect of the classical integral
action and leading to an asymptotically null static error.

However, simulating the resulting control system with integral action, it is
possible to observe that the obtained results are much worse than in the case
without integrators. This may be due to the added complexity caused by
the inclusion of the integrators. Therefore, in order to reduce the number

92

of variables to be optimized and to lighten the computational burden, the
discrete sampling time dT of the controller has been changed from 600s to
2700s, which is however a reasonable value in view of the dynamics of the
controlled system.
In this case, the results presented in Figures 7.22, 7.23 and 7.24 are very sat-
isfactory, since a significant contribution of the integral action is evident in
the last part of the simulation, where the controlled power Pe5 stays near the
set point, instead to completely loose its reference when the levels are close
to their bounds (like in Fig.7.12). At the same time, the levels excursion is
not compromised, even if their trend is not as regular as in Fig.7.13, which
represents the corresponding case without integrators.

Therefore, a pretty good solution in order to provide an integral action
to a MPC control system without state observer has been found. It is im-
portant to underline anyway that the integral effect on the overall control
performances is very sensitive to the integral weight QPi (see (7.24) and
(7.25)), which is an additional parameter of the MPC controller and has to
be chosen carefully.

7.3 MPC Control of the Hydro Power Valley

Once the controller has been completely developed, it is interesting to eval-
uate its performances when it is applied in its expected working conditions.
Thus, this section illustrates the results achieved by using the presented MPC
controller in several situations.
As a good nonlinear model of the considered hydro power valley is available,
it is natural to suppose that, in a further real implementation, it may play
the role of the prediction model, while the controller acts on the real system.
However, the high computational time required to simulate it with the avail-
able resources makes it very hard to use this model for prediction, as it has
to be called and simulated at each iteration of the optimization algorithm.
Then, in view of the purposes of this work, it has been decided to use a linear
prediction model within the controller, which makes the optimizations much
faster, and to use the nonlinear one as the controlled system. This config-
uration makes also possible to highlight the loss of performance due to the
non-exact correspondence between prediction model and controlled system,
which is what happens in a real implementation. To this regard, in order
to have a benchmark where the prediction model perfectly fits the system

93

dynamics, also the case in which both the predictor and the system are de-
scribed by the same linear model has been considered.
Besides, according to what inferred in Section 7.2.1, in each case, both the
prescribed local (7.15) and global (7.16) goal functions have been used and
the results achieved in the two cases have been commented.
In the simulations, a variation of 50MW is initially required to only one local
power (Pe5), then the same amount is required to all the valley, leaving the
controller decide the optimal distribution of the production. In this second
case, in order to replicate a likely working condition, a further test with a
variable global set point has been performed.

7.3.1 MPC of the linear system

When the linear model is used for both prediction and system simulation,
the solver takes advantage from this correspondence because its prediction is
exactly what the system is going to do in the near future. Then, any problem
in the computation of the control action depends only on the difficulty of the
optimization problem.
In the following, all the results reported are expressed as differences from the
steady states.

Local Set Point

In this case, all the powers of the system are provided by a local set point,
which has to be followed while fulfilling the constraints on levels and flow
rates.
The best results, as already shown in Figures 7.22, 7.23 and 7.24, have been
obtained by including the integral action in the control law.

Global Constant Set Point

In this case, only one global constant set point is defined, which represents
the variation of the total power required to the whole valley.
The associated optimization problem is more critical than in the previous
situation, because it theoretically has infinite optimal solutions. This may
lead to unexpected variations of the controlled variables between different
optimal solutions at each sample time of the controller.
Thus, in order to stabilize the final behavior, the flow rates variations have
been bounded between ±10m3/s2 so that, once one optimal solution is found,

94

it is not advantageous to change it any more.

From Figures 7.25, 7.26 and 7.27 it is possible to notice that the solver
decides to act only on the most significant power (Pe5) and, when the lev-
els come close to their bounds, it distributes the power request to the other
power plants, managing to satisfy the constraints.
The overall result is quite good, as the total power production (see Fig.7.26)
seems to maintain the required set point, even if with some oscillations when
the level constraints start to influence the optimization.

7.3.2 MPC of the nonlinear system

When the prediction model, in order to save computational time, is simpler
than that describing the controlled system, the optimization procedure is
affected by model errors that are not taken into account by the solver and
may degrade the controller performances. Therefore, it is important to un-
derstand which variables are affected by a significative prediction error and,
if necessary, to compensate this uncertainty with an appropriate choice of
the weighting matrix within the cost function.
Moreover, due to the possible presence of constant additional errors on the
predicted outputs, which do not depend on the real deviation of the controlled
variables from their references, the integral action may result counterproduc-
tive and it has to be used carefully.

Simulating under these conditions, it comes evident the loss of performances
with respect to the control of the linear system. However, some good re-
sults can be achieved by simply extending the level bounds to ±2m from the
steady states, which is anyway a reasonable value, as stated in Section 7.2.3.
In order to make the results comparable with those obtained with the linear
model, they have been all depolarized and they are reported as differences
from the steady states.

Local Set Point

Figures 7.28 and 7.29 show the results obtained by requiring the nonlinear
system to follow a set of local constant references, as described above.
It is possible to notice how the maintenance of the constant references is
worse than that observed in Fig.7.22, as the controlled variables loose their
set point many times, even in the first part of the simulation, when the level

95

constraints are still satisfied.
The low penalization of the worse predicted variable (like L9) makes it pos-
sible to guarantee a quite good behavior for the other variables, but it nec-
essarily degrades the control performances over the interested ones. As a
matter of fact, looking at Fig.7.29, the controller does not seem to guarantee
the respect of the constraint on L9.

Global Constant Set Point

Analogous considerations can be made when a global constant power refer-
ence is imposed. As a matter of fact, comparing Fig.7.30 with Fig.7.26 it is
evident that in the nonlinear case (Fig.7.30) the constant set point is main-
tained with more difficulty.

Global Variable Set Point

In the previous sections, it has been presented how the MPC controller be-
haves when operating with global or local constant set points.
Nevertheless, in the real application in which this controller is expected to
operate, it receives daily a global power reference from the transmission sys-
tem operator. Such a reference is not expected to be constant at all, as the
request of electric power changes a lot during the day, being greater during
the working hours and lower at night.

Therefore, to conclude this work of Thesis, it is important to test the de-
veloped controller in its natural working conditions, namely while operating
on the nonlinear system with a global sine-shaped power set point.
In view of these reasons, two tests have been performed, each one with a
different kind of reference:

• a square wave with a period of one day (86400s), simulating for one
day;

• a sine wave with a period of one day, simulating for two days.

The first one, even if not realistic, makes it possible to evaluate the con-
troller behavior when a sudden variation of set point occurs. Furthermore,
the power reference is often expressed as discontinue function composed by
little gradual steps, then, if the controller manages to follow one big step, it
is reasonable to suppose that it will have no problems to handle a series of
smaller ones.

96

In this situation, the optimization problem may become more difficult and,
in order to simplify it, it is worth to reduce the total number of variables
to be optimized, without changing the total prediction horizon. This has
been performed by incrementing the controller sample time dT from 2700s
to 7200s and reducing the prediction horizon H (which influences the number
of optimization variables) expressed in multiples of dT from 5 to 2, so that
the total time horizon Ht[s] = dT ·H = 14400s is almost the same.

Figures 7.31 and 7.32 show how the local powers contribute to follow the
global reference and it is possible to assert that there is a good trajectory
tracking. In particular, when the reference changes abruptly, the sum of
powers immediately adapts to the new required value.

The second kind of set point reproduces the most common function used to
describe the overall electric power request submitted to the transmission sys-
tem operator by the distributed networked loads, namely a sinusoidal wave.
In order to verify the behavior of the control system on a longer period, the
simulation have been prolonged to about two days (2 · 105s) and the results
achieved can be defined very satisfactory.

As a matter of fact, Fig.7.34 shows that, after an initial settlement, the
sinusoidal reference is tracked by the global power in an excellent way. More-
over, looking at Fig.7.35, it is interesting to underline that a periodic motion
of the power reference allows the level constraints be more easily respected
than in the constant case, because it involves a charge-discharge phenomenon
on the reservoirs, which corresponds to the normal working condition of a
hydro power valley. This situation also affects the quality of the set point
tracking, because the solver does not have to overcome frequent constraint
violations and can concentrate on the minimization of the objective function.

97

Fig. 7.22: Powers with integral action.

Fig. 7.23: Levels with integral action.

98

Fig. 7.24: Flow rates with integral action.

Fig. 7.25: Local powers of the linear model with global set point.

99

Fig. 7.26: Sum of powers of the linear model with global set point.

Fig. 7.27: Levels of the linear model with global set point.

100

Fig. 7.28: Powers of the nonlinear model with local set point.

Fig. 7.29: Levels of the nonlinear model with local set point.
101

Fig. 7.30: Sum of powers of the nonlinear model with global set point.

Fig. 7.31: Powers of the nonlinear model with global square-wave-shaped
set point. 102

Fig. 7.32: Sum of powers of the nonlinear model with global square-wave-
shaped set point.

Fig. 7.33: Powers of the nonlinear model with global sinusoidal set point.
103

Fig. 7.34: Sum of powers of the nonlinear model with global sinusoidal set
point.

Fig. 7.35: Levels of the nonlinear model with global sinusoidal set point.

104

Chapter 8

Conclusions and future
developments

8.1 Conclusions

In the first part of this Thesis, the model and the simulator of a hydro power
valley have been developed. The whole system has been studied and the
dynamic equations that describe its model have been derived. In particular,
the de Saint Venant equations for the modeling of open-channel hydraulic
systems in their different formulations have been considered and their finite-
difference approximation has been obtained.
Then, the mathematical model of the hydro power valley has been imple-
mented and simulated in the Matlab-Simulink software environment, paying
attention to the numerical aspects guaranteeing the stability of the solution.
Subsequently, a linearization of the model has been obtained both with a
numerical approach and by means of a symbolic procedure. An accurate
analysis of the obtained linear model has been performed, and some inter-
esting conclusions on its structure have been drawn.

Afterwards, a complete MPC controller has been developed, starting from
the basic theory of MPC and generalizing it to support both linear or non-
linear systems used as prediction models and to manage constraints on the
control variables and on the system states and outputs. The problems related
to the insertion of an integral action when using a MPC strategy without state
observer have been studied and an efficient approach has been proposed.
Finally, the controller has been tested on the hydro power valley model in
several working conditions and its performances have been commented.

105

Although the results achieved can be considered as complete by themselves,
this work can also be seen as the basis for future developments. Among
them, it is possible to recall the need of include in the problem solution also
a state observer, since the MPC control law here derived assumes that the
plant states are all measurable.
Moreover, new distributed MPC schemes can be designed to reduce and sub-
divide the computational task associated to a centralized solution. Indeed,
a distributed approach would be more similar to the currently adopted solu-
tions for hydro power valleys, based on decentralized control structures made
by simple PID regulators, and would be more robust with respect to faults.
Some guidelines on the development of a distributed controller are presented
in the next section, with some advices on the overall architecture to be de-
signed and on the possible ways to perform the decomposition of the global
cost function.

8.2 Hierarchical Distributed MPC control

The control of large and networked systems, such as the considered hydro
power valley, is usually based on a decentralized control scheme, made by
local controllers which ignore the interactions between the different subsys-
tems. Nevertheless, this approach may result in poor performances if the
subsystems interact significantly [4].
On the other hand, a centralized MPC, as any other centralized solution, is
impractical for the control of large-scale and geographically distributed sys-
tems due to the high computational burden associated to the controller and
to the high risk of communication losses.

A distributed MPC architecture seems to be a good intermediary step be-
tween decentralized and centralized control, as each local subsystem is pro-
vided by a local MPC controller which acts on only one (or a few) system
variable but, at the same time, takes into account also the interactions with
the other subsystems by including some information about their optimiza-
tion process into its goal function and considering an added set of constraints,
which describe its relationship with the variables of the interacting subsys-
tems [4].
Therefore, a feasible distributed architecture for the studied hydro power
valley and different advices on how to organize the control algorithm are
proposed [17].

106

8.2.1 Expected hierarchical and distributed architec-
ture

A possible hierarchical and distributed MPC architecture for the hydro power
valley is shown in Fig.8.1.
It consists of 2 layers:

• the global optimization layer, named “HPV Optimization”;

• local MPC controllers Ri layer.

Fig. 8.1: HD-MPC architecture.

Each Ri controller acts directly on one of the local subsystems Pi of the
valley, described and modeled in Chapters 2, 3 and 4, and communicates
with the other controllers through the higher optimization layer.
The kind of information exchanged between the two layers depends on the
method used to decompose the global optimization problem.
Some examples about the decomposition which can be used are presented
below [11] [32] [41]:

• Price decomposition: the higher layer sends a price vector to the plants,
and each of these subsystems minimizes a cost function that depends
also on those prices;

107

• Quantity decomposition: the higher layer manages the constraints and
sends the set points to the subsystems. Each subsystem minimizes its
cost function and sends a price to the coordination. This approach is
dual of the previous one;

• Prediction decomposition: each subsystem deals with only a subset of
the coupling constraints and sends to the other ones a price associated
with these constraints, and every subsystem takes into account the
prices associated with the constraints that it does not consider;

• Cascade decomposition: two loop levels can be considered, a fast loop
that regulates the variables around the set-points and manages the
physical constraints, and an optimization loop that computes the set-
points.

Price, Quantity and Prediction decomposition correspond to a spatial
partition, while Cascade decomposition refers to temporal decomposition.
In the following section, the decomposition procedure, its necessary assump-
tions and the explanation of the mentioned methods are presented.

8.2.2 Objective function decomposition

Assumptions

We assume that the global control problem is formulated as the following
constrained optimization problem:

uo = arg min
u,q

J(q, u) (8.1)

g(q, u) = 0 (8.2)

where q are the input flow-rates for each subsystem and u is the discharge
reference, which is assumed to be equal to the real discharge (see Section
2.2).
The constraint equation (8.2) considers only the coupling constraints due
to the mass conservation between two contiguous subsystems, expressed by
equation (8.3).

ui − qij = 0 (8.3)

where ui is the already defined discharge from the upstream subsystem Pi,
while qij is the inlet flow rate of the downstream subsystem Pj.
In the previous chapters, this relationship has been automatically taken into

108

account by the links between the subsystems within the Simulink model. In
this case, we underline the conceptual difference between a subsystem dis-
charge, named as and equal to its reference ui, and the inlet flow rate of the
next system, named qij.
For what concerns the other constraints which bound the values of levels,
flow rates and flow rate variations (presented in equation (7.17)) and which
have been considered in this work, for simplicity it is now worth to not con-
sider them during the presentation of the objective decomposition, as they
do not affect the conceptual coordination mechanism.

The primal problem presented in equations (8.1) and (8.2) can be associated
to the dual one by applying a lagrangian relaxation, that is the maximization
of the dual function Ψ(λ).

max
λ

Ψ(λ) (8.4)

where:

Ψ(λ) = min
u,q

(J(q, u) + λg(q, u)) (8.5)

and λ and g(q, u) are column and row vectors.

In the hierarchical an distributed architecture, such a dual problem is decom-
posed into several local optimization problems, following one of the possible
decomposition procedures listed above.

The basic hypothesis to be respected in order to apply the mentioned de-
composition solutions is that the objective and the constraint functions must
be additive. That is, it must be possible to write the objective and constraint
functions as follows:

J(q, u) =
M∑
i=1

Ji(qji, ui) j 6= i (8.6)

g(q, u) =
M∑
i=1

gi(qij, ui) j 6= i (8.7)

where M is the number of subsystems.

Under these assumptions, the indicated ways to perform the objective func-
tion decomposition are illustrated in detail.

109

Price decomposition

The price decomposition aims to solve the dual problem ((8.4), (8.5), (8.6),
(8.7)) rewritten in equation (8.8).

J(qo, uo) = max
λ

(min
ui,q

(
M∑
i=1

Ji(qji, ui) + λ

M∑
i=1

gi(qij, ui))) (8.8)

were q is a vector which contains qij and qji.

For a price λ, each local controller solves the local problem:

[uoi , q
o] = arg min

ui,q
(Ji(qji, ui) + λgi(qij, ui)) (8.9)

The local problem is in fact a constrained problem itself, but local con-
straints are ignored for simplicity.
With the new solution for the local problem, the price is adapted with the
following equation:

λo = λ+ ε
M∑
i=1

gi(q
o
ij, u

o
i) (8.10)

The optimal value ui and λ are not obtained one-shot. So ui and qij have
to be recomputed with the new λ, and so on until the new value of λ is equal
to the previous one. In that case, the equality constraint is satisfied. The
solution is admissible (fulfills the constraints) only at convergence.

Quantity decomposition

In the quantity decomposition approach, the terms of the constraint equa-
tions (8.7) are considered as quantities θi. The upper level imposes values
for the quantities such that the constraint equality is fulfilled.

g(q, u) =
M∑
i=1

gi(qij, ui) =
M∑
i=1

θi = 0 (8.11)

For given quantities, the local constrained problems are solved:

min
ui,qij

(
M∑
i=1

Ji(qji, ui)) (8.12)

gi(qij, ui) = θi (8.13)

110

The local problems can be solved by lagrangian relaxation with the max-
imization of the dual function:

[uoi , q
o, λoi] = arg max

λi
min
ui,q

(Ji(qji, ui) + λi(gi(qij, ui)− θi)) (8.14)

The coordinator updates the quantity with the price given by the local
optimization:

θoi = θi + ε(λi −
1

M

M∑
j=1

λoj) (8.15)

As for price decomposition, the update does not immediately give the op-
timal solution and, according to an iterative procedure, new quantities have
to be imposed to the local problem until the convergence is reached.
If the local optimizations succeed, then the solutions meet the constraints
even if the optimum is not reached. This could be an advantage over price
decomposition where the constraints are satisfied at optimum, but the local
optimization is a constrained and more difficult problem, without solution in
some cases (the plant is not able to give the quantity by satisfying its local
constraints).

Prediction decomposition

Unlike price and quantity decomposition, the prediction decomposition is a
method that was originally developed for control purposes.
Each subsystem is responsible of a subset of the constraints. This subset can
include for instance the constraint equations with its neighbors given by the
equation (8.16), restricted to the variables of the subsystem i (ui,qji,qij).

gi(ui, qij) = ui − qij = 0 (8.16)

Then, gi(ui, qij) are the constraint equations that are taken into account
by subsystem i.

We define µj as the price that the other subsystems are willing to pay to
the system i to fulfill their own constraints, while the contributions of sub-
system i to the constraints of the subsystem j will be denoted by gj(ui, qij).
We also suppose that we know the interaction variables qij and the price µj
given by the subsystem j to the subsystem i.
Then, for subsystem i, the local problem corresponds to the equations (8.17)
and (8.18), where a term is added to the objective function to take into
account the effect of the local control on the constraints for the subsystem j.

111

min
ui

(Ji(qji, ui) +
∑
j 6=i

µjgj(qij, ui)) (8.17)

gi(qji, ui) = 0 (8.18)

Under certain conditions, this problem is equivalent to the lagrangian
augmented problem described in equation (8.19):

[uoi , q
o
ji, µ

o
i] = arg max

µi
min
ui,qji

((Ji(qji, ui) +
∑
j 6=i

µjgj(qij, ui)) + µigi(qji, ui))

(8.19)
The solution of problem (8.19) provides the updates for the prices µi and

the interaction variables qji that are sent to the subsystem j. In parallel, the
jth minimization will compute the new price µj and the interaction variable
qji to be sent to the ith subsystem. At convergence the prices must be equal.
With this coordination, the exchanges are done on a one-on-one basis. Then,
no decision are taken outside the local optimization and the upper level de-
scribed in Fig.8.1 is just a communication level.

Temporal decomposition

If it is necessary to consider an objective function which is not additive, so
it cannot be decomposed over the M subsystems, a cascade decomposition
may be implemented.
In this case, the coordination level solves a centralized problem with a sim-
plified model that considers only the slow dynamics. This optimization com-
putes the power and level references for each subsystem, while a lower (cen-
tralized) MPC controller applies these set-points on the real system.
However, in order to apply this decomposition method, it is required to split
the dynamics of the system in fast and slow dynamics and this may result
not trivial. Then, this method should be used only if strictly necessary.

112

Appendix A

De Saint Venant equations
demonstration

In Section 3.2.1 the de Saint Venant equations which describe the one-
dimensional hydraulics of a river have been presented in two different forms
(see (3.6) and (3.7)), which consist of a mass balance equation and a momen-
tum balance equation.

The mass equation is the same for both formulations and is recalled in (A.1):

∂Q(x, t)

∂x
=
∂S(x, t)

∂t
(A.1)

In the sequel, the equivalence of the two forms of the momentum equation is
demonstrated.
Initially, the first formulation (3.6) is derived from the general expression of
the momentum conservation of a hydraulic system. Subsequently, the second
formulation (3.7) is drawn starting from the first one.

A.1 Definitions

Referring to a generic cross section of a river (see Fig.3.2), some useful vari-
ables are defined or recalled below:

• t is the time;

• x is the main spatial coordinate of the river;

113

• dx is a generic infinitesimal section of the main spatial coordinate x;

• M(x, t) is the generic momentum;

• dM(x, t) is the momentum variation;

• Mi(x, t) is the momentum at the beginning of the section;

• Mo(x+ dx, t) is the momentum at the end of the section;

• dm(x, t) is the mass of the water in the infinitesimal section;

• v(x, t) is the water speed;

• ρ is the water density;

• S(x, t) is the surface of the wetted cross section;

• p(x, t) is the pressure;

• P (x, t) is the generic impulse;

• Pi(x, t) is the impulse at the beginning of the section;

• Po(x+ dx, t) is the impulse at the end of the section;

• Pg(x, t) is the gravitational impulse;

• Pf (x, t) is the friction impulse;

• h(x, t) is the absolute altitude of the water surface;

• H(x, t) is the altitude of the water surface from the river bed;

• Q(x, t) is the flow rate through the cross section;

• If is the friction coefficient;

• I0 is the river bed slope.

In addiction, some useful equations which connect the previous variables are
defined:

M(x, t) = dm(x, t)v(x, t) (A.2)

dm(x, t) = ρS(x, t)dx (A.3)

114

dx = v(x, t)dt (A.4)

v(x, t) =
Q(x, t)

S(x, t)
(A.5)

∂h(x, t)

∂x
=
∂H(x, t)

∂x
− I0 (A.6)

From (A.2), (A.3) and (A.4), some further formulations of (A.2) can be
drawn:

M(x, t) = dm(x, t)v(x, t)

= ρS(x, t)v(x, t)dx

= ρS(x, t)v2(x, t)dt

(A.7)

A.2 First form of the momentum equation

The general expression of the momentum conservation for a river section is:

dM(x, t) = Mi(x, t)−Mo(x+ dt, t)+

+Pi(x, t)− Po(x+ dx, t)+

+Pg(x, t) + Pa(x, t)

(A.8)

where:

Mi(x, t) = ρS(x, t)v2(x, t)dt (A.9)

Mo(x+ dx, t) = Mi(x, t) +
∂Mi(x, t)

∂x
dx (A.10)

Pi(x, t) = p(x, t)S(x, t)dt (A.11)

Po(x+ dx, t) = Pi(x, t) +
∂Pi(x, t)

∂x
dx (A.12)

115

Pg(x, t) = −ρgS(x, t)dh(x, t)dt (A.13)

Pa(x, t) = −ρgS(x, t)Ifdxdt (A.14)

Substituting equations (A.9), (A.10), (A.11), (A.12), (A.13) and (A.14) in
(A.8), leads to (A.15):

d(ρS(x, t)v(x, t)dx) = −ρ∂S(x,t)v2(x,t)
∂x

dtdx −∂p(x,t)S(x,t)
∂x

dtdx+

−ρgS(x, t)dh(x, t)dt −ρgS(x, t)Ifdtdx

(A.15)

Replacing v(x, t) with (A.5), dividing both members by ρ · dx · dt and sepa-
rating the second partial derivative, equation (A.16) is obtained:

∂Q(x,t)
∂t

= − ∂
∂x

(Q
2(x,t)
S(x,t)

) −S(x,t)
ρ

∂p(x,t)
∂x

−p(x,t)
ρ

∂S(x,t)
∂x

+

−gS(x, t)dh(x,t)
dx

−gS(x, t)If

(A.16)

Since the considered system is supposed to be an non-deep open channel,
the pressure along the river can be considered constant and always equal to
the atmospheric pressure. Then, the pressure space derivative is null and
the contribution of the pressure term to the total momentum variation is
negligible with respect to the inertial, gravitational and friction ones.
Therefore, equation (A.16) can be rewritten as:

∂Q(x, t)

∂t
= − ∂

∂x

(
Q2(x, t)

S(x, t)

)
− gS(x, t)

dh(x, t)

dx
− gS(x, t)If (A.17)

Finally, moving all the terms to the first member and recalling (A.6), the
first form of the de Saint Venant momentum equation, presented in (3.6), is
found.

∂Q(x, t)

∂t
+
∂

∂x

(
Q2(x, t)

S(x, t)

)
+gS(x, t)

dH(x, t)

dx
+gS(x, t)(If − I0) = 0 (A.18)

116

A.3 Second form of the momentum equation

Once the first form of the de Saint Venant momentum equation has been
drawn from the general formulation, the computation of the second form can
be performed starting from this result (A.18).
In the sequel, the notation (x, t) will be omitted for simplicity.

Initially, equation (A.18) is divided by S, obtaining (A.19).

1

S

∂Q

∂t
+

1

S

∂

∂x

(
Q2

S

)
+ g

dH

dx
+ g(If − I0) = 0 (A.19)

Let now consider the partial derivatives ∂
∂t

(
Q
S

)
and ∂

∂x

(
Q2

S2

)
, which are com-

puted in equations (A.20), (A.21) and lead to a new expression for the first
and second term of (A.19):

∂
∂t

(
Q
S

)
= 1

S
∂Q
∂t

+Q ∂
∂t

(
1
S

)
⇓

1
S
∂Q
∂t

= ∂
∂t

(
Q
S

)
−Q ∂

∂t

(
1
S

) (A.20)

∂
∂x

(
Q2

S2

)
= 1

S
∂
∂x

(
Q2

S

)
+ Q2

S
∂
∂x

(
1
S

)
⇓

1
S
∂
∂x

(
Q2

S

)
= ∂

∂x

(
Q2

S2

)
− Q2

S
∂
∂x

(
1
S

) (A.21)

Thus, equation (A.19) becomes:

∂

∂t

(
Q

S

)
−Q ∂

∂t

(
1

S

)
+

∂

∂x

(
Q2

S2

)
− Q2

S

∂

∂x

(
1

S

)
+ g

dH

dx
+ g(If − I0) = 0

(A.22)

Recalling the de Saint Venant mass equation (A.1), the second term of (A.22)
can be rewritten as in (A.23), leading to (A.24).

−Q ∂
∂t

(
1
S

)
= + Q

S2
∂S
∂t

= − Q
S2

∂Q
∂x

(A.23)

117

∂

∂t

(
Q

S

)
− Q

S2

∂Q

∂x
+
∂

∂x

(
Q2

S2

)
−Q

2

S

∂

∂x

(
1

S

)
+g

dH

dx
+g(If−I0) = 0 (A.24)

Let now consider the expression 1
2
∂
∂x

(
Q
S

)2
, which can replace the sum of the

second and the fourth term in (A.24), as proved in (A.25), leading to (A.26).

−1
2
∂
∂x

(
Q
S

)2
= −Q

S
∂
∂x

(
Q
S

)
= − Q

S2
∂Q
∂x
− Q2

S
∂
∂x

(
1
S

) (A.25)

∂

∂t

(
Q

S

)
+

∂

∂x

(
Q2

S2

)
− 1

2

∂

∂x

(
Q2

S2

)
+ g

dH

dx
+ g(If − I0) = 0 (A.26)

Finally, adding the second to the third term of (A.26) and dividing by g, the
second form of the de Saint Venant momentum equation, presented in (3.7),
is found.

1

g

∂

∂t

(
Q

S

)
+

1

2g

∂

∂x

(
Q2

S2

)
+
dH

dx
+ (If − I0) = 0 (A.27)

Then, the equivalence of the two formulations of the de Saint Venant equa-
tions and their correspondence with the generic momentum conservation
equation have been demonstrated.

118

Bibliography

[1] www.edf.com. Web site of EDF.

[2] www.matworks.com. Web site of Matworks.

[3] www.tomopt.com. Web site of Tomlab.

[4] J.B.Rawlings S.J.Wright A.N.Venkat, I.A.Hiskens. Distributed mpc
strategies with application to power system automatic generation con-
trol. IEEE Transactions on Control Systems Technology, 16(6):1192–
1206, 2008.

[5] S.J.Wright A.N.Venkat, J.B.Rawlings. Distributed Model Predictive
Control of Large-Scale Systems. 2007.

[6] M.M.Edvall A.O.Goran. Tomlab Quick Start Guide. 2009.

[7] W.W.Symes A.Sei. Gradient calculation of the travel time cost func-
tion without ray-tracing. Center for Research on Parallel Computation
Transactions, Rice University, Houston, 94(15):1–15, 1994.

[8] E. Camacho and C. Bordons. Model Predictive Control in The Process
Industry. Springer, 1995.

[9] E. Camacho and C. Bordons. Model Predictive Control. Springer, 2004.

[10] S.Salsa C.D.Pagani. Analisi Matematica. Zanichelli, 2005.

[11] G. Cohen. Optimization with an auxiliary constraint and decomposition.
SIAM Journal on control and optimization, 28(1):137–157, 1990.

[12] K.Musiake D.Dutta, S.Herath. Flood inundation simulation in a river
basin using a physically based distributed hydrologic model. Hydrological
Processes, 14:497–519, 2000.

[13] Centre d’études techniques maritimes et fluviales. Guide de prise en
main MASCARET. 2007.

119

[14] R.Scattolini D.W.Clarke. Constrained receding-horizon predictive con-
trol. Control Theory and Applications, IEEE Proceedings D, 138:347–
354, 1991.

[15] B.H.Krogh S.Talukdar E.Camponogara, D.Jia. Distributed model pre-
dictive control. Control Systems Magazine, IEEE, 22:44–52, 2002.

[16] E.Gullhamn. Control of Water Content and Retention in Hydropower
Plant Cascades, Master Thesis Project. PhD thesis, KTH Computer
Science and Communication, Stockholm, Sweden, 2004.

[17] D. Faille. Control specification for hydropower valleys. Seventh Frame-
work Programme, HD-MPC, deliverable D.7.2.1., 2009.

[18] G.Glanzmann. Supervisory Water Level Control for Cascaded Power
Plants, PhD thesis. PhD thesis, IFA - Automatic Control Laboratory,
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 2004.

[19] G.Hauke. A stabilized finite element method for the saint-venant equa-
tions with application to irrigation. International Journal for Numerical
Methods in Fluids, 38:963–984, 2002.

[20] M.Wegner J.A.Cunge. Intégration numérique des équations
d’écoulement de barré de saint-venant par un schéma implicite de
différences finies. La Houille Blanche, 1:33–39, 1964.

[21] J.Dubois. Comportement Hydraulique et Modélisation des Écoulements
de Surface. PhD thesis, École Politechnique Fédérale De Lausanne, 1998.

[22] J.Maciejowski. Predictive Control with Constraints. Prentice-Hall, 2001.

[23] K.Holmstrom. The TOMLAB Optimization Environment in Matlab.
Advanced Modeling and Optimization. 1999.

[24] M.M.Edvall K.Holmstrom, A.O.Goran. User’s Guide for Tomlab Knitro
v6. 2009.

[25] M.M.Edvall K.Holmstrom, A.O.Goran. User’s Guide for Tomlab 7.
2010.

[26] J.B.Rawlings K.R.Muske. Model predictive control with linear models.
AIChE Journal, 39:262–287, 1993.

120

[27] X. Litrico and V. Formon. Infinite dimensional modelling of open-
channel hydraulic systems for control purposes. Proceedings of the Con-
ference on Decision and Control, Las Vegas, Neveda, USA, December
2002.IEEE., 2:1681–1686, 2002.

[28] R.Scattolini L.Magni. Complementi di Controlli Automatici. Pitagora
Editrice Bologna, 2006.

[29] G.Leugering M. Gugat. Global boundary controllability of the de st.
venant equations between steady states. Annales de l’Institut Henri
Poincaré (C) Non Linear Analysis, 20:1–11, 2003.

[30] R.Mose M.Zoaeter M.Abdallah, J.Vazquez. Traitement des conditions
aux limites intérieures et extérieures pour la simulation numérique uni-
dimensionnelle de l’écoulement de l’eau dans les canaux à surface libre.
J. Phys. IV France, 124:207–212, 2005.

[31] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Con-
strained model predictive control: Stability and optimality. Automatica,
36:789–814, 2000.

[32] M.Jamshidi. Large-Scale Systems: Modeling and Control. Elsevier Sci-
ence Ltd, 1983.

[33] G.Besancon X.Litrico M.Thomassin, D.Georges. Modélisation et identi-
fication d’un bief d’irrigation par une méthode de collocation. Journées
Identification et Modélisation Expérimentale JIME 2006, Poitiers,
France, 2006.

[34] M.Kurth V.Hagenmeyer M.Treuer, T.Weissbach. Flatness-based control
of a pumped storage power station. Proceedings of the 17th IFAC World
Congress, 2008, 17:11080–11085, 2008.

[35] M. Nikolaou. Model predictive controllers: A critical synthesis of theory
and industrial needs. Advances in Chemical Engineering, 26:131–204,
2001.

[36] N.L.Ricker. Model predictive control with state estimation. Industrial
Engineering Chemistry Research, 29:374–382, 1990.

[37] B.Sayyar-Rodsari N.Motee. Optimal partitioning in distributed model
predictive control. Proceedings of the American Control Conference,
2003, 6:5300–5305, 2003.

121

[38] A. Heinrich P. Rostalski G. Papafotiou C. Setz and M. Morari. Appli-
cation of model predictive control to a cascade of river power plants.
Proceedings of the 17th World Congress The International Federation of
Automatic Control, Seoul, Corea, July. 6-11 2008.IFAC, pages 11978–
11983, 2008.

[39] N.Schiavoni P.Bolzern, R.Scattolini. Fondamenti di Controlli Auto-
matici. McGraw-Hill, 2nd edition, 2004.

[40] J.P.Baume P.O.Malaterre. Modeling and regulation of irrigation canals:
existing applications and ongoing researches. Proceedings of the Inter-
national Conference on Systems, Man, and Cybernetics., 4:3850–3855,
1998.

[41] A. Rantzer. Dynamic dual decomposition for distributed control. Amer-
ican Control Conference, pages 884–888, 2009.

[42] K.Musiake R.Jha, S.Herath. River network solution for a distributed
hydrological model and applications. Hydrological Processes, 14:575–
592, 2000.

[43] R.Xia. Impact of coefficients in momentum equation on selection of
inertial models. Journal of hydraulic research, 32:615–621, 1994.

[44] S.Bittanti. Identificazione dei Modelli e Sistemi Adattativi. Pitagora
Editrice Bologna, 2004.

[45] S.Bittanti. Teoria della Predizione e del Filtraggio. Pitagora Editrice
Bologna, 2004.

[46] T.A.Badgwell S.J.Qin. A survey of industrial model predictive control
technology. Control Engineering Practice, 11:733–764, 2001.

[47] Q.Zhu S.Li, Y.Zhanga. Nash-optimization enhanced distributed model
predictive control applied to the shell benchmark problem. Information
Sciences, 329-349:137–157, 2005.

[48] M.von Siebenthal T.Geyer G.Papafotiou M.Morari G.Glanzmann. Su-
pervisory water level control for cascaded river power plants. Technical
Report CH-8092 Zurich, Automatic Control Laboratory, Swiss Federal
Institute of Technology (ETH), Switzerland, pages 1–10, 2005.

122

Ringraziamenti

Un doveroso e sentito ringraziamento va al Prof.Riccardo Scattolini, che con
infinita pazienza ha accompagnato e supervisionato questa esperienza, sapen-
domi dare con professionalità le dritte giuste nei momenti di difficoltà e di-
mostrandomi una fiducia costante che ha giovato non poco alla buona riuscita
del lavoro.

Warm thanks to Dott.Damien Faille, who was my guide during my stay in
Chatou and shared his office and a lot of his precious time with me, adding
his knowledge and experience to my work. Thanks also for his delicious pas-
tries.
Thanks to all the people who helped me with their competence, such as Frans
Davelaar, Rudy Negenborn and Marcus Edvall.

Je ne peux pas oublier de remercier touts les stagiaires de le groupe P1B
de le département STEP e touts ces qui ont partagé avec moi en amitié cette
si belle expérience à Chatou. Merci à Pierre-Alban, qui a partagé avec moi
les premiers jours de travail et m’a fait sentir moins seul dans un si grand
site. Merci à Adrian, pour sa amitié et aussi pour sa folie... mais surtout
pour sa amitié. Merci à David, pour toutes les conversations de bon matin
avec le département encore vide et pour les précieux conseils sur les fromages
Français. Merci à Jennifer, pour la gentillesse que m’a toujours démontré.
Merci à Fanny, Paula, Brice et Sidath, pour notres pic-nics sous la pluie et
pour ces avec le soleil, mais surtout merci parce-que votre présence m’a fait
arriver au travail avec le sourire chaque matin.

Un grosso grazie va al mio compagno di avventura, Fabio, con cui ho con-
diviso aspettative, preoccupazioni, idee e, soprattutto, bei momenti. Grazie
per l’intraprendenza, la compagnia e l’amicizia, che sono state il valore ag-
giunto di questa esperienza.

Ma forse l’avventura più grande sono stati i 5 anni tra i banchi del Poli,

dove di persone ne son passate tante ed è capitato che qualcuno di loro,
guardacaso, incrociasse la mia strada. Grazie a Cala, Giagia, Wolf, Flavio,
Stefano, Alessio, Mario, Marco, Endri, Michelino, Cerro, Tose, Max, Pala,
Ale, Dome, Beppe, Diego, Marco, Colz, Barce, Davide, Marco, Gio, Davide,
Beppe il Matto, Canta e il mitico Abe che da otto anni ormai mi sopporta e
che, esame dopo esame, è diventando il mio compagno di classe doc. Grazie
a tutti.
Un grazie speciale a Gabriele, per tutte le “colazioni abbondanti” prima di
ogni esame e per l’amicizia che ci ha accompagnato durante questa piccola,
ma lunga, battaglia.

E poi ci sono loro. Unici, irripetibili.
Ciossa, Anna, Vicky, Vale, Albe, Casa, Asto, Lamas.
Semplicemente, grazie di esserci.

E che senso avrebbero, queste pagine, questi grafici, questi simboli strani,
questo pezzo di carta e tutto ciò che ci gira attorno, se non ci fosse qualcuno
che ti ama da cui tornare e su cui posare la testa? Grazie Dani.

L’ultimo grosso grazie va alla mia famiglia ed ai miei genitori, per tutto
il bene che mi volete e per avermi permesso di arrivare fin qui. Grazie a
mamma Angela, per l’amore che mette in tutto quello che fa. Grazie a papà
Icilio, che ha sempre creduto in me e a cui dedico questo traguardo. Grazie
alla nonna Tina, che è sempre l̀ı a dire con i gesti che ci vuole bene. Grazie
a Chiara e Anna, che restano sempre le mie sorelline preferite.
E un grazie alla persona che per prima mi disse: “da grand te farem fà
l’ingegner”. Grazie nonna Maria.

124

