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FACOLTÀ DI INGEGNERIA DEI SISTEMI

Corso di Laurea Magistrale in Ingegneria Matematica

Tesi di II Livello
Appello di Laurea del 22 Ottobre 2010

Numerical solution of elliptic problems
by virtual control methods

Candidato:
Cristina Marchesini
Matricola 724463

Relatore:
Alfio Quarteroni

Correlatore:
Marco Discacciati

Anno Accademico 2009-2010





Abstract

The virtual control approach is based on the optimal control theory that has been introduced in
domain decomposition method with overlapping subdomains to treat both heterogeneous couplings,
involving Navier-Stokes and full potential operators ([1]), and homogeneous problems, either elliptic
and parabolic (see [2, 3, 4, 5]). In the pioneering papers by Glowinski et al. ([1, 2]), this method
was referred to as a Least Square formulation of the multi domain problem.
The basic idea of this approach consists in introducing two “virtual” controls which play the role of
unknown Dirichlet data on the interfaces of the decomposition and then minimizing the L2-norm
of the difference between solutions (defined inside the two subdomains) on the overlap. A recent
general description of this approach can be found in [6].

In this work we focus on the homogeneous domain decomposition method for a scalar elliptic problem
in two dimensions. The approach is extended to the case of Neumann boundary controls on the
interfaces and the difference between the solutions on the overlap is minimized in the L2-norm,
the H1

0-norm and the H1-norm. An augmented H1
0-norm is also considered and the behavior of

the method is studied in both the cases of a penalized cost functional and of a non-penalized cost
functional. Well posedness is proved for all these choices of the cost functional. The optimality
system is derived analytically and then it is numerically approximated by the Galerkin-Finite Element
method. The numerical simulations allow the validation of the theoretical model and a comparison
between the different control strategies: we vary the choice of boundary controls and the choice of
cost functional.

Even in the simple case of the Poisson equation, the numerical solution of such PDE-constrained
optimization problems is usually quite expensive. The large dimensional linear systems which result
from discretization and which need to be solved are of saddle-point type. The fact that we are
solving a coupled problem on two domains introduces some additional difficulties and a high number
of iterations is needed to achieve convergence. We study the issue of preconditioning the linear
system that arises from a coupled virtual control problem. For that we take inspiration from the
results derived in the contest of the domain decomposition and those concerning the preconditioning
of optimization problems.

Finally, the method is applied to the solution of the Stokes problem. The numerical simulations
permit the identification of a suitable cost functional to be minimized on the overlapping region.
Again, the virtual controls can play both the role of a Dirichlet condition on the velocity or that of
the normal component of the Cauchy stress tensor. A preconditioning approach is also tested.
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In what follows, for each chapter, the content of the work is outlined.
In Chapter 1 the theoretical setting of the problem is presented. First, we present a general
introduction to the optimal control problem. The derivation of the optimality system is reported
following both the Lions and the Lagrangian approach, focusing on the theory concerning the
elliptic equations. Then we introduce the specific virtual control problem in the case of the scalar
elliptic equation. The state equations depend on both Dirichlet and Neumann boundary controls
and different choices of the cost functional are introduced. The well posedness of the problem is
proved and the optimality system (made of state, adjoint and optimality equations) is derived for
each type of control and each choice of the cost functional.

In Chapter 2 we introduce the discretization of the problem using finite elements. The discrete
version of the optimality systems is derived. In this chapter we describe three possible approaches
for the solution of the optimality system: two of them iterate between the equations and one
regards the coupled virtual control problem as a global linear system. In the latter case, the issue of
preconditioning is studied, for Neumann boundary controls and the L2-norm cost functional.

In Chapter 3 we report the numerical results obtained with our methods. The theoretical results
concerning the model are validated on a variety of test cases. We verify the well posedness of the
optimization problem and carry out a comparison between the different control approaches introduced
in Chapter 1. In a different section we report the numerical results concerning the preconditioning
of the global matrix: we compare the efficiency of the different approaches introduced in Chapter
2.

In Chapter 4 the virtual control with overlap method is studied in the case of the Stokes problem.
The optimality system is derived for different choices of the cost functional and of the space of the
boundary controls. A preconditioning matrix is introduced and we report numerical results concerning
the validation of the theoretical model and of the preconditioning approach.

The proofs of the well posedness of the virtual control method with Neumann boundary controls
applied to the solution of the elliptic equation are not found in literature and represent an original
contribution of this work. Moreover, the study of several cost functionals for the minimization of
the difference between the solutions on the overlap for both the elliptic and the Stokes problems is
new. Finally, the analysis of preconditioning the virtual control method is inspired to the results for
the control problems and domain decomposition methods and it also represents an original part of
the work.

The numerical simulations in this work have been carried out in the Matlab environment. A great
part of this work concerned the implementation of finite elements code.

This work has been carried out in the Chair of Modeling and Scientific Computing (CMCS) of
the École Polytechnique Fédérale de Lausanne (CH), in the contest of the international exchange
program Erasmus of the European Union.

Lausanne, September 2010.



Sommario

Il metodo dei controlli virtuali è basato sulla teoria del controllo ottimo introdotta nell’ambito delle
tecniche di decomposizione di dominio con ricoprimento per trattare problemi di accoppiamento
eterogeneo, per esempio Navier-Stokes e operatori potenziali [1] e problemi omogenei di tipo ellittico
e parabolico (si vedano [2, 3, 4, 5]). Nei primi lavori in cui il metodo viene trattato [1, 2], si parla di
formulazione ai minimi quadrati del problema multi-dominio.
Questo approccio si basa sull’idea di introdurre due controlli “virtuali” che rappresentano i dati di
Dirichlet incogniti sulle interfacce della decomposizione e successivamente di minimizzare la norma
L2 della differenza tra le due soluzioni (definite sui due sottodominii) nella regione di ricoprimento.
Per una descrizione generale dell’approccio si veda [6].

In questo lavoro, ci siamo concentrati su un problema di decomposizione di dominio omogeneo per
un’equazione scalare ellittica in due dimensioni. Il metodo è esteso al caso di controlli virtuali di
tipo Neumann e la differenza tra le soluzioni sulla regione di ricoprimento viene minimizzata nella
norma L2, nella norma H1

0 e nella norma H1. Inoltre viene introdotta una norma H1
0 aumentata e il

metodo viene studiato in presenza e in assenza di penalizzazione del funzionale. La buona posizione
del problema è dimostrata per tutte queste scelte del funzionale costo. Il sistema di ottimalità
viene derivato analiticamente e successivamente viene discretizzato con il metodo degli elementi
finiti. Attraverso le simulazioni numeriche è possibile convalidare il modello teorico ed effettuare un
paragone tra i vari approcci al variare della scelta del tipo di controlli, Neumann o Dirichlet, e della
scelta del funzionale costo.

Anche nel semplice caso dell’equazione di Poisson, la risoluzione numerica del problema di controllo
virtuale è piuttosto costosa dal punto di vista computazionale. Il sistema lineare che deriva dalla
discretizzazione è di dimensioni elevate e presenta una struttura di tipo punto-sella. Il fatto che
si sta risolvendo un problema accoppiato su due sottodominii introduce delle difficoltà aggiuntive
e un grande numero di iterazioni è necessario per arrivare a convergenza. In questo lavoro viene
studiato il problema di trovare un precondizionatore efficace per un sistema lineare che deriva da un
problema di controllo virtuale. Per fare questo ci ispiriamo ai risultati derivanti dalla decomposizione
di dominio e dal precondizionamento di problemi di controllo ottimo.

Il metodo viene poi applicato al problema di Stokes. Attraverso le simulazioni numeriche vogliamo
identificare il funzionale costo adatto per la minimizzazione della differenza tra le soluzioni sulla zona
di ricoprimento. Anche in questo caso i controlli possono rappresentare le condizioni al bordo di
Dirichlet per la velocità o la derivata normale del tensore degli sforzi di Cauchy. Inoltre viene testato
un approccio di precondizionamento.
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La tesi è organizzata come segue.
Nel Capitolo 1 viene descritta l’ambientazione teorica del problema. Dopo un’introduzione generale
ai problemi di controllo ottimo, vengono riportati i risultati sulla derivazione del sistema di ottimalità
secondo l’approccio alla Lions e l’approccio Lagrangiano, facendo particolare attenzione ai risultati
sulle equazioni di tipo ellittico. In seguito, viene introdotto nello specifico il problema di controllo
virtuale. Le equazioni di stato possono dipendere sia da controlli di tipo Dirichlet che da controlli
di tipo Neumann e diversi funzionali costo sono introdotti. La buona posizione del problema è
dimostrata e il sistema di ottimalità (costituito dalle equazioni di stato, aggiunte e di ottimalità)
viene derivato per ogni scelta dello spazio dei controlli e del funzionale costo.

Nel Capitolo 2 introduciamo la discretizzazione del problema mediante gli elementi finiti e presentiamo
la versione discreta del sistema di ottimalità. In questo capitolo vengono descritti tre possibili approcci
per la risoluzione del sistema di ottimalità: due di questi iterano tra le equazioni del sistema e nel
rimanente si costruisce il sistema lineare globale associato al problema di ottimalità. In quest’ultimo
caso, studiamo il problema di trovare un precondizionatore efficace per il sistema, nel caso di controlli
di tipo Neumann e del funzionale che osserva la norma L2 della differenza tra le soluzioni.

Nel Capitolo 3 riportiamo i risultati delle simulazioni numeriche. I risultati teorici sul modello di
controllo virtuale vengono testati su diversi casi tesi. Verifichiamo la buona posizione del problema
di controllo ed effettuiamo un confronto tra i diversi approcci descritti nel Capitolo 1. In un secondo
momento, riportiamo i risultati sul precondizionamento della matrice globale: verifichiamo l’efficienza
dei vari approcci introdotti nel Capitolo 2.

Nel Capitolo 4 il metodo di controllo virtuale con ricoprimento viene applicato al problema di Stokes.
Il sistema di ottimalità è derivato per diverse scelte del funzionale costo e dello spazio dei controlli.
Anche per questo problema viene introdotto un precondizionatore e si presentano i risultati numerici
per la validazione del modello e dell’approccio di precondizionamento.

Le dimostrazioni di buona posizione del problema di controllo virtuale applicato all’equazione ellittica
nel caso di controlli di tipo Neumann rappresentano un contributo originale di questo lavoro. Anche lo
studio di diversi funzionali costo per la minimizzazione della differenza tra le soluzioni sulla regione di
ricoprimento rappresenta una novità. Inoltre, il precondizionamento di problemi di controllo virtuale
non si trova in letteratura, e rappresenta anch’esso una parte originale della tesi.

Le simulazioni numeriche sono state effettuate con Matlab. La programmazione di codici a elementi
finiti ha costituito una cospicua parte del lavoro.

Questo lavoro è stato sviluppato presso la cattedra di Modellistica Numerica e Calcolo scientifico
(CMCS) dell’École Polytechnique Fédérale de Lausanne (CH), nell’ambito di uno stage di studio
di sei mesi, conformemente al progetto di mobilità e scambio internazionale Erasmus dell’Unione
Europea.

Lausanne, settembre 2010.
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Chapter 1

Coupled Virtual Control for the
Scalar Elliptic Problem

The virtual control method can be regarded as a special case of overlapping domain decomposition
method. The idea consists in introducing a control function (called virtual control in [7]) on the
subdomain interfaces which have the role of guaranteeing that the two solutions match on the region
of overlap. In this section we treat the case of the scalar elliptic equation and concentrate on the
case of two overlapping domains: in this situation we have to deal with two control interfaces, one
for each subdomain, simultaneously.

In the first section of this chapter we briefly review some basic theoretical results concerning the
control theory of partial differential equations. The results are presented in a general framework and
the specific problem that we have to solve is not taken into account. In the second section we will
adapt these concepts to the case of the coupled virtual control and some new results will have to be
introduced. This subdivision justifies the change of notations between the two sections: in the first
we will use the classical notation of the optimal control theory while in the second section we will
use a notation closer to the one that is typically used in the contest of virtual control.

1.1 Optimal Control for Partial Differential Equations

In this section we will recall the basic concepts of the optimal control theory of systems governed by
partial differential equations (PDE’s). The classical setting of optimal control problems is based on
the work by J.L. Lions in [8] and [9]. We will concentrate our description on problems governed
by linear elliptic equations. An alternative analysis of optimal control problems makes use of the
Lagrangian formalism and is based on the solution of the optimization problem as a problem of
constrained minimization.
A detailed description of the theoretical setting of the optimal control presented in this section can
be found in [8] and in [10], and the functional analysis results can be found in [11] and [12].
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2 CHAPTER 1. COUPLED VIRTUAL CONTROL FOR THE SCALAR ELLIPTIC PROBLEM

1.1.1 The Problem Setting

In order to introduce the results concerning the optimal control theory we need to list the mathematical
entities that are necessary for the definition of the model:

• The control function u, belonging to a functional space Uad of the admissible controls. The
space of the controls is chosen according to the role of the control function (distributed
control or boundary control) and to the possible constraints that u needs to satisfy.

• The state of the system y(u), depending on the control u and satisfying the state equation

Λy(u) = f .

This problems is defined by the physical system subject to the control variable and has to be
coupled with suitable boundary conditions.

• The observation equation, denoted as z(u), depending on the control variable u through the
state variable y(u) in the following way

z(u) = Cy(u).

This function belongs to the space of the observed functions Z.

• The cost functional J(u), defined on the space Z, with J(z(u)) ∈ R and J(u) ≥ 0.

• The control problem: determine an optimal control u ∈ Uad such that

J(u) = inf
v∈Uad

J(v),

which is equivalent to
J(u) ≤ J(v) ∀v ∈ Uad .

At this point it is necessary to study the issue of the existence and of the unicity of the optimal
control and it is necessary to determine the optimality conditions. Moreover we need to analyze the
structure and the properties of the equations that govern the control problem.

An Existence and Uniqueness Result

In this section we report some results on the unicity and on the existence of the minima of cost
functionals, concentrating our analysis on the results related to the optimal control theory.
We consider a Hilbert functional space U on R, with the norm ‖ · ‖ defined by the scalar product on
U : ‖v‖ =

√
(v , v). We define:

u, v → π(u, v) ∀u, v ∈ U ,

and we assume that π is a continuous, symmetric and bi-linear form on U (for an explanation of
these definitions see [11]). Moreover we define:

v → L(v), ∀v ∈ U ,
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with L continuous linear form on U . We want to minimize over the space of the admissible controls
Uad ⊂ U the quadratic functional J, which can be written as:

J(v) = π(v , v)− 2L(v) ∀v ∈ Uad . (1.1)

The existence and the unicity of the minimum of (1.1) is given by the following result.

Theorem 1. Let π(u, v) be coercive on U :

π(v , v) ≥ c‖v‖2 ∀v ∈ U , c > 0.

Then there exists a unique element u ∈ U such that

J(u) = inf
v∈Uad

J(v). (1.2)

Theorem 2. In the same hypothesis of Theorem 1, the solution u ∈ Uad is characterized by the
following variational inequality:

π(u, v − u) ≥ L(v − u), ∀ ∈ Uad .

Theorem 3. If the function v → L(v) is strictly convex and satisfies the condition J(v)→∞ with
‖v‖ → ∞,∀v ∈ Uad , the only element u ∈ U that satisfies (1.2) is characterized by the following
inequality:

J ′(u) · (v − u) ≥ 0, ∀v ∈ Uad . (1.3)

This means that the optimal control problem can be reformulated conveniently as follows: find
u ∈ Uad such that (1.3) holds.

Choice of Functional Spaces and Definition of Adjoint Operator

We now want to define the functional spaces in which to set the variables of the control problem.
Moreover we give the definition of the adjoint of an operator that will be used in the following
derivation of the optimal control system. We give here an outline of the results, a more detailed
description can be found in [11] and [12].

We consider two Hilbert spaces V and H that verify the following statements:

• V ⊂ H;

• the injection of V in H is continuous;

• V is dense in H.

If these hypothesis hold true, denoting V ∗ as the dual space of V , we have that

V ⊂ H ⊂ V ∗,
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and we refer to the triplet V , H and V ∗ as an Hilbert triplet. In what follows we will chose the
spaces V and H as H1(Ω) and L2(Ω) respectively, where we recall that

L2(Ω) =
{
f : Ω→ R :

∫
Ω

f (x)2dΩ < +∞
}
,

H1(Ω) =
{
f ∈ L2(Ω) : Di f ∈ L2(Ω), ∀i = 1, ..., n

}
.

Ω ⊂ Rn is the domain on which the problem is studied and Di f denotes the distributional derivative
of f with respect to xi .
We present here the definition of the adjoint operator.

Definition 1. Given a linear and continuous operator A and φ,ψ ∈ V , the adjoint operator of A is
defined as the operator A∗ for which the following identity holds true:

V 〈Aφ,ψ〉V ∗ =V ∗ 〈φ,A∗ψ〉V ,

where the notation V 〈A·, ·〉V ∗ refers to the duality product on V .

In the same hypothesis of Definition 1 we have the following:

Definition 2. A is said to be self-adjoint if

A ≡ A∗.

In what follows we will give a detailed description of the optimal control theory in the case of elliptic
problems.

1.1.2 Control of Elliptic Variational Problems

In this section we report the basic results of existence and uniqueness for optimal control problems
governed by elliptic partial differential equations. We chose the Hilbert spaces V and H as in the
previous section. We consider

• a bilinear form a(u, v), continuous and coercive on V ;

• a linear form L(v) = (f , v), continuous on V , where f ∈ V ∗.

The Lax-Milgram Lemma guarantees the existence and the uniqueness of a solution y ∈ V such
that

a(y , v) = (f , v) ∀v ∈ V. (1.4)

The equation (1.4) can be interpreted in the following way: since the form v → a(u, v) is linear and
continuous, thanks to the Riesz Representation Theorem, we can rewrite

a(u, v) = (Au, v), Au ∈ V ∗,

which defines A ∈ L (V, V ∗). Hence (1.4) is equivalent to

Ay = f .
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This equation represents the physical system and it is called state equation. We may now formulate
the first control problem. On the Hilbert space of the controls U we define the operator B with
B ∈ L (U , V ∗). For a control u ∈ U , the state of the system y is given by the solution of

Ay = f + Bu, y(u) ∈ V, (1.5)

this equation defines y(u) uniquely by virtue of the Lax-Milgram Lemma. For example, B can be
the identity or the trace opertator.
We are also given an observation equation

z(u) = Cy(u),

where C ∈ L (V,H). Often C is a restriction operator, in the sense that one is interested in
controlling the state of the system in a part of the domain or of the boundary. Finally we are given
N ∈ L (U ,U), where N is symmetric and positive definite and such that

(Nu, u)V ≥ ν‖u‖2
U , ν > 0, (1.6)

we will refer to this term as a penalization term. With every control u ∈ U we associate the
cost:

J(u) = ‖Cy(u)− zd‖2
H + (Nu, u)U , (1.7)

where zd is a given element in H. Let Uad be a closed, convex subset of U . We can now state the
control problem: find infv∈Uad J(v).

According to (1.5) the map u → y(u) is an affine map of U → V . In order to be able to write the
cost functional (1.7) in the form defined in (1.1) we write:

J(u) = J(u) = ‖C(y(u)− y(0)) + Cy(0)− zd‖2
H + (Nu, u)U .

We obtain a cost functional of the form (1.1) by setting

π(u, v) = (C(y(u)− y(0)), C(y(v)− y(0)))H + (Nu, v)U ,

L(v) = (zd − Cy(0), C(y(v)− y(0)))H,

so that we have
J(v) = π(v , v)− 2L(v) + ‖zd − Cy(0)‖2

H.

Since ‖zd − Cy(0)‖2
H is clearly ≥ 0, from (1.6) we have that

π(v , v) ≥ ν‖v‖2
U ∀v ∈ U .

So Theorem 1 can be applied and there exists a unique element u ∈ Uad such that

J(u) = infv∈UadJ(v).

Definition 3. The element u ∈ Uad for which J(v) attains its minimum is called the optimal control.

If N = 0 one can in general only conclude that π(v , v) ≥ 0. In this case the demonstration of
the existence of the optimal control is straightforward, the unicity is not guaranteed. We will be
particularly interested in the non penalized case and in some particular cases we will be able to prove
the coercivity of the cost functional even if N = 0.
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The Set of Inequalities Defining the Optimal Control

Once that, under suitable hypotheses, the unicity and the existence of the control u is proved, we
need to study the structure of the equations that define the optimal control problem in order to
extract from these the information needed for the solution of the problem. We recall that, in virtue
of Theorem 3, if u is an optimal control then

J ′(u) · (v − u) ≥ 0 ∀v ∈ Uad (1.8)

and conversely. Since A is an isomorphism of V onto V ∗ (according to the Lax-Milgram Lemma) we
may write

y(u) = A−1(f + Bu),

and we have that
y ′(u) · (v − u) = A−1B(v − u) = y(v)− y(u).

Therefore the condition (1.8) is equivalent to

(Cy(u)− zd , Cy(v)− Cy(u)))H + (Nu, v − u)U ≥ 0 ∀v ∈ Uad . (1.9)

We now need to introduce the dual H∗ of H and we denote by Λ = ΛH the canonical isomorphism
of H on to H∗, moreover we denote by C∗ ∈ L (H∗, V ∗) the adjoint of C. We can rewrite:

(C∗Λ(Cy(u)− zd), y(v)− y(u))H + (Nu, v − u)U ≥ 0 ∀v ∈ Uad , (1.10)

and we transform (1.10) through the adjoint state. We denote the adjoint of the operator A as
A∗ ∈ L (V, V ∗). For a control v the adjoint state p(v) ∈ V is defined by:

A∗p(v) = C∗Λ(Cy(v)− zd).

So we can deduce that the inequality (1.10) can be transformed as

(C∗Λ(Cy(u)− zd), y(v)− y(u))H + (Nu, v − u)U =

(A∗p(u), y(v)− y(u))H + (Nu, v − u)U =

(p(u), Ay(v)− Ay(u))H + (Nu, v − u)U =

(p(u), B(v − u))H + (Nu, v − u)U =

(B∗p(u), v − u)H + (Nu, v − u)U ≥ 0 ∀v ∈ Uad ,

where B∗ ∈ L (V,U∗) is the adjoint of B, U∗ being the dual of U . If we now denote as ΛU the
canonical isomorphism of U onto U∗, we can finally reformulate (1.10) as

(Λ−1
U B

∗p(u) + Nu, v − u)U ≥ 0 ∀v ∈ Uad , (1.11)

We remark that we have implicitly shown that 1
2J
′(u) = Λ−1

U B
∗p(u) + Nu. All the results can be

summarized in the following
Theorem 4. A necessary and sufficient condition for u to be an optimal control is that the following
equations and inequalities are satisfied:

Ay(u) = f + Bu, (1.12)

A∗p(u) = C∗Λ(C(y(u)− zd)), (1.13)

(Λ−1
U B

∗p(u) + Nu, v − u)U ≥ 0 ∀v ∈ Uad . (1.14)
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If N satisfies (1.6) the optimal control is unique, if N = 0 there exists at least one solution. We
refer to the system formed by (1.12), (1.13), (1.14) as the optimality system.

1.1.3 Lagrangian Approach to Control Problems

In this section we describe the Lagrangian approach for the resolution of an optimal control problem.
This method is broadly used in many applications because the derivation of the optimality system is
typically more straightforward in this case, since one does not have to pass through the definition of
the adjoints in order to be able to formulate the problem.
In general, the use of the Lagrangian permits the determination of the extreme point x of a certain
function f subject to the constraint expressed by the function g. In an optimal control problem one
wants to find a function u ∈ U such that

J(y , u) is minimized,

where J is the cost functional and y is the solution of the following state equation

Ay(u) = f + Bu, y ∈ V,

that has to be coupled with suitable boundary conditions. The operators A and B have the same
meaning that was given them in the previous section. We remark that this problem can be seen
as a constrained optimization problem where the function to be minimized is represented by the
cost functional, the constraint is represented by the state equation and the minimum is the optimal
control u. The resolution of the optimal control problem can be reduced to the search of the
extreme points of the Lagrangian functional defined in the following way

L(y , p, u) = J(y , u) + 〈p, f + Bu − Ay(u)〉, (1.15)

where the variable p represents the Lagrange multiplier and the symbol 〈·, ·〉 denotes the duality
product. In this contest the extreme points of L(y , p, u) are the functions ŷ , û and p̂ that correspond
to the optimum. The problem is:

find (ŷ , p̂, û) : ∇L(ŷ , p̂, û) = 0,

that can also be expressed as: find the solution (ŷ , p̂, û) of
Ly (ŷ , p̂, û) = 0,

Lp(ŷ , p̂, û) = 0,

Lu(ŷ , p̂, û) = 0.

We now consider the elliptic state equation in its weak formulation; with y ∈ V , u ∈ U and f ∈ H,
we have:

a(y , ϕ) = (f , ϕ) + b(u, ϕ), ∀ϕ ∈ V,

where a(·, ·) represents the linear elliptic operator and the bilinear form b(·, ·) introduces in the
weak formulation the control term. The cost functional that has to be minimized can be expressed
as

J(y , u) =
1

2
‖Cy − zd‖2 +

1

2
n(u, u).
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We remark that no hypotheses were made on the choice of the boundary conditions, on the type of
control problem (distributed or boundary control) and on the observation of the system; this is in
order to be able to use the most general expression for the equations.
We now consider the Lagrange multiplier p ∈ V and (1.15) becomes:

L(y , p, u) = J(y , u) + b(u, p) + (f , p)− a(y , p)

and we want to solve the problem

find (ŷ , p̂, û) ∈ V × V × U : ∇L(ŷ , p̂, û)[(ϕ, φ,ψ)] = 0, ∀(ϕ, φ,ψ) ∈ V × V × U .

We obtain the following set of equations
Ly [ϕ] = (Cy − zd , Cϕ)− a(p, ϕ) = 0 ∀ϕ ∈ V,
Lp[φ] = (f , φ) + b(u, φ)− a(y , φ) = 0 ∀φ ∈ V,
Lu[ψ] = b(p,ψ) + n(u, ψ) = 0 ∀ψ ∈ U ,

and rearranging the various term we obtain
a(p, ϕ) = (Cy − zd , Cϕ) ∀ϕ ∈ V,
a(y , φ) = (f , φ) + b(u, φ) ∀φ ∈ V,
b(p,ψ) = n(u, ψ) ∀ψ ∈ U .

This system is complementary to the optimality system introduced in Theorem 4, in fact the three
equations represent respectively the adjoint equation, the state equation and the optimality condition.
The adjoint variable, seen as a Lagrange multiplier, is related to the sensitivity of the cost functional
to the variations of the observation equation, which depend of the variations of the control variable
u. The last equation represents the derivative of the cost functional J ′(u) in virtue of the Riesz
Representation Theorem (see [11]).

In the theory developed by Lions the derivation of the adjoint equations is obtained through the
introduction of suitable adjoint operators, while in this approach the adjoints are obtained by
derivation of the Lagrangian functional with respect to the state variable. The main difference
resides in the fact that Lions’ approach formulates the equations in their strong form while the
Lagrangian formalism generates the equations of the optimality system in their weak formulation.
These approaches do not lead to the definition of the same adjoint problems but this does not
imply that a method is better than the other. It is important however, when solving an optimization
problem, to be coherent to the theoretical setting taken into account.

1.1.4 Some Results on Non-Homogeneous Dirichlet Problems

We consider a second-order elliptic operator with coefficients sufficiently regular in Ω̄. Let f and g
be functions or distributions on Ω and Γ respectively. We search for y in a suitable class, that will
be specified later, such that

Ay = f in Ω,

y = g on Γ. (1.16)
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We consider a test function Ψ in Ω̄ and we multiply the first equation by Ψ and through the use of
Green’s Formula we obtain∫

Ω

(Ay)Ψdx =

∫
Ω

fΨdx = −
∫
Γ

∂y

∂νA
ΨdΓ +

∫
Γ

y
∂Ψ

∂νA∗
dΓ +

∫
Ω

y(A∗Ψ)dx,

and, using the Dirichlet boundary condition we deduce∫
Ω

y(A∗Ψ)dx =

∫
Ω

fΨdx −
∫
Γ

g
∂Ψ

∂νA∗
dΓ +

∫
Γ

∂y

∂νA
ΨdΓ.

At this point it is natural to impose the condition Ψ|Γ = 0, so that we obtain∫
Ω

y(A∗Ψ)dx =

∫
Ω

fΨdx −
∫
Γ

g
∂Ψ

∂νA∗
dΓ. (1.17)

The idea is to use (1.17) as an equation that defines a function y which by definition is a weak
solution of (1.16). Let ϕ be a given element in L2(Ω). The solution of

A∗Ψ = ϕ,

Ψ|Γ = 0

belongs to the space H2(Ω), thanks to the elliptic regularity results (see [11]). This means that A∗

is an isomorphism of H2(Ω) ∩H1
0(Ω) onto L2(Ω). By transposing the isomorphism (thus the name

of this approach: transposition method) we also see that if Ψ→ L (Ψ) is a continuous linear form
on H2(Ω) ∩H1

0(Ω), then there exists a unique y ∈ L2(Ω) such that∫
Ω

y(A∗Ψ)dx = L (Ψ), ∀Ψ ∈ H2(Ω) ∩H1
0(Ω).

We can now take f ∈ L2(Ω) and g ∈ H− 1
2 (Γ ), so that the linear form

L (Ψ) =

∫
Ω

fΨdx −
∫
Γ

g
∂Ψ

∂νA∗
dΓ

is continuous on H2(Ω) ∩H1
0(Ω). We have thus proved the following

Theorem 5. For f ∈ L2(Ω) and g ∈ H− 1
2 (Γ ), there exists a unique y ∈ L2(Ω) such that (1.17) is

true.

1.2 Coupled Virtual Control: the Poisson Problem

Virtual control is a powerful technique that has been introduced in the domain decomposition method
with overlapping subdomains. In this section we want to prove the well posedness of the coupled
virtual control method on two overlapping subdomains for the solution of the Poisson equation.
We will test the method for different choices of the control space and for different choices of the
functional that is minimized on the overlapping region.
We consider a two dimensional domain Ω and we adopt the following notation (see Figure 1.1): Ω1

and Ω2 are two overlapping subdomains of Ω such that

Ω̄ = Ω̄1 ∪ Ω̄2, Ω1 ∩Ω2 = Ω12 6= ∅,
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Ω1

Ω2

Ω12

Γ1

Γ2

� �
Figure 1.1: Reference domain.

∂Ω12 = Γ1 ∪ Γ2 ∪ (∂Ω1 ∩ ∂Ω2),

∂Ωi = Γ1 ∪ ΓDi ∪ ΓNi , with Γi = ∂Ωi\∂Ω,

where {ΓDi , ΓNi } represents a suitable partition of ∂Ωi ∩ ∂Ω, i = 1, 2. We will refer to Γ1 and Γ2 as
the control interfaces of the problem. Moreover we have that

Γ = ∂Ω, ΓD = ΓD1 ∪ ΓD2 , ΓN = ΓN1 ∪ ΓN2 .

1.2.1 The Formulation of the Problem

In this section we present the setting of the coupled virtual control method. In particular, we
introduce the state problems and the relative cost functional. In the following sections we will place
the formulation of this problem in the framework of optimal control and derive the optimality system
related to it.

The homogeneous domain decomposition is formulated through two unknown functions λ1 and λ2

in the following way: we want to solve on the two overlapping domains Ω1 and Ω2 the following
Poisson problems, that will be referred to as the state problems:
for i = 1, 2, find ϕi ∈ H1(Ωi) so that

−∇ · (K∇ϕi) = f i in Ωi

K∇ϕi · ni = Ψi
N on ΓNi

ϕi = Ψi
D on ΓDi

ϕi = λi on Γi .

(1.18)

Let f i ∈ L2(Ωi), Ψi
N ∈ H−

1
2 (Ωi) and Ψi

D ∈ H
1
2 (Ωi). We seek for the unknown control variables λ1

and λ2 in the following space of admissible controls:

ΛDi =
{
µ ∈ H

1
2 (Γi) : ∃Ψ ∈ H1(Ωi),Ψ = µ on Γi ,∇Ψ · ni = 0 on ΓNi ,

Ψ = 0 on ΓDi
}
.

The virtual controls can also play the role of Neumann boundary condition; in this case the set of
admissible controls is

ΛNi =
{
µ ∈ H−

1
2 (Γi) : ∃Ψ ∈ H1(Ωi),∇Ψ · ni = µ on Γi ,∇Ψ · ni = 0 on ΓNi ,

Ψ = 0 on ΓDi
}
,
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and, for i = 1, 2, the state problems assume the following form:
−∇ · (K∇ϕi) = f i in Ωi

K∇ϕi · ni = Ψi
N on ΓNi

ϕi = Ψi
D on ΓDi

K∇ϕi · ni = λi on Γi .

(1.19)

In what follows we will refer to the spaces of the virtual controls as Λ1 and Λ2 when there is no
need to distinguish whether the virtual controls are of “Dirichlet” or of “Neumann” type.

The virtual controls are determined as solution of a minimization problem. In fact we want to
minimize a suitable cost functional, depending on the difference between the two solutions ϕ1 and
ϕ2 on the overlapping region Ω12 = Ω1 ∩Ω2. The aim is to be able to recover the global solution
of the Poisson problem on Ω when the cost functional is minimized. We want to test the good
position of the minimization problem when observing the difference (ϕ1 − ϕ2)|Ω12 in the following
ways:

Minimization in the L2(Ω12) norm

JL2 (λ1, λ2) =
1

2

∫
Ω

χ12(ϕ1 − ϕ2)2. (1.20)

Minimization in the H1
0(Ω12) semi-norm

JH1
0
(λ1, λ2) =

1

2

∫
Ω

χ12(∇ϕ1 −∇ϕ2)2. (1.21)

Minimization in the H1(Ω12) norm

JH1 (λ1, λ2) =
1

2

∫
Ω

χ12(ϕ1 − ϕ2)2 +
1

2

∫
Ω

χ12(∇ϕ1 −∇ϕ2)2. (1.22)

Minimization in an augmented H1
0(Ω12) norm

ĴH1
0
(λ1, λ2) =

1

2

∫
Ω

χ12(∇ϕ1 −∇ϕ2)2 +
1

2

∫
∂Ω

χ12(ϕ1 − ϕ2)2. (1.23)

We remark that we referred to (1.21) as a semi-norm. The choice of this notation will be clarified in
the following section as we will show that JH1

0
(λ1, λ2) is a norm or a semi-norm according to the

boundary conditions that are imposed on ∂Ω12.
We will analyze the different choices separately, showing theoretically that not all the approaches
guarantee the uniqueness of the solution. The implementation of the different choices in our code
will then allow us to validate our conclusions and to make a comparison between the different cost
functionals.

A penalization term can be added to all the cost functionals ((1.20)-(1.23)):

1

2
β1

∫
Γ1

λ2
1 +

1

2
β2

∫
Γ2

λ2
2. (1.24)
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This term serves a regularization purpose and we will see that all the cost functionals, when penalized,
are coercive. In a sequent analysis we will show that the conditioning of the problem improves for
high values of the coefficients β1 and β2. It is important to remark that the penalization of the cost
functional implies a modification of the original problem. In the case of a penalized cost functional
the fact that the minimum is reached does not guarantee that the difference between the solutions is
actually zero on the overlap. We recall that we are studying a homogeneous domain decomposition
problem and we want to be able to recover the exact solution of the global problem. For this reason,
the most interesting cases are the non penalized ones and the ones corresponding to very low values
of the penalization coefficients β1 and β2. In the non penalized case infλ1,λ2 J(λ1, λ2) = 0, which is
achieved by taking the controls λ1 and λ2 as the restrictions (traces) of the global solution on Γ1

and Γ2 respectively.

In order to be able to prove the well posedness of the virtual control problem, applying the results
presented in section 1.1, it is useful to split the problem in a part depending on the controls and a
part depending on the data. Thanks to the linearity of the original problem we have that:

ϕi = ϕi ,λi + ϕi ,f , (1.25)

where ϕi ,f (i = 1, 2) is the solution of a problem depending only on the given data while ϕi ,λi (i = 1, 2)

depends only on the virtual controls. More precisely, for i = 1, 2, ϕi ,λi ∈ H1(Ωi) satisfies
−∇ · (K∇ϕi ,λi ) = 0 in Ωi

K∇ϕi ,λi · ni = 0 on ΓNi
ϕi ,λi = 0 on ΓDi

K∇ϕi ,λi · ni / ϕi ,λi = λi on Γi ,

(1.26)

and for i = 1, 2, ϕi ,f ∈ H1(Ωi) satisfies:
−∇ · (K∇ϕi ,f ) = f i in Ωi

K∇ϕi ,f · ni = Ψi
N on ΓNi

ϕi ,f = Ψi
D on ΓDi

K∇ϕi ,f · ni / ϕi ,f = 0 on Γi ,

(1.27)

where we considered both the choices for the controls (Neumann or Dirichlet) on the interfaces Γ1

and Γ2.
Correspondingly the cost functionals ((1.20)-(1.23)) can be split into the sum of a quadratic and of
an affine functional in the following way:

• JL2 (λ1, λ2) = J0
L2 (λ1, λ2) + AL2 (λ1, λ2),

where

J0
L2 (λ1, λ2) =

1

2

∫
Ω

χ12(ϕ1,λ1 − ϕ2,λ2 )2,

AL2 (λ1, λ2) =
1

2

∫
Ω

χ12(ϕ1,f − ϕ2,f )2 +

∫
Ω

χ12(ϕ1,λ1 − ϕ2,λ2 ) · (ϕ1,f − ϕ2,f ),
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• JH1
0
(λ1, λ2) = J0

H1
0
(λ1, λ2) + AH1

0
(λ1, λ2),

where

J0
H1

0
(λ1, λ2) =

1

2

∫
Ω

χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )2,

AH1
0
(λ1, λ2) =

1

2

∫
Ω

χ12(∇ϕ1,f −∇ϕ2,f )2 +

∫
Ω

χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ) · (∇ϕ1,f −∇ϕ2,f ),

• JH1 (λ1, λ2) = J0
H1 (λ1, λ2) + AH1 (λ1, λ2),

where

J0
H1

0
(λ1, λ2) = J0

L2 (λ1, λ2) + J0
H1

0
(λ1, λ2),

AH1
0
(λ1, λ2) = AL2 (λ1, λ2) + AH1

0
(λ1, λ2),

• ĴH1
0
(λ1, λ2) = Ĵ0

H1
0
(λ1, λ2) + ÂH1

0
(λ1, λ2),

where

Ĵ0
H1

0
(λ1, λ2) =

1

2

∫
Ω

χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )2 +
1

2

∫
∂Ω

χ12(ϕ1,λ1 − ϕ2,λ2 )2,

ÂH1
0
(λ1, λ2) =

1

2

∫
Ω

χ12(∇ϕ1,f −∇ϕ2,f )2 +

∫
Ω

χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ) · (∇ϕ1,f −∇ϕ2,f )

+

∫
∂Ω

χ12(ϕ1,λ1 − ϕ2,λ2 ) · (ϕ1,f − ϕ2,f ).

We remark that the splitting of JH1 (λ1, λ2) as been obtained by linear combination of the splitting
of JL2 (λ1, λ2) and JH1

0
(λ1, λ2). If added, the penalization term is obviously part of the functional

depending on the sole controls.

1.2.2 Existence and Uniqueness of the Solution

The aim of this section is to place the coupled virtual control problem in the general framework of
optimal control presented in the previous section. We want to prove the well posedness of the state
problems, and we want to verify the hypothesis of the coercivity of the cost functional in order to be
able to use the results of Theorem 1.

The Well Posedness of the Boundary Value Problem

Let’s consider problems (1.26) and (1.27) in the case of Neumann boundary controls. The choice of
Neumann boundary controls is motivated by the fact that natural boundary conditions are included
in a more straightforward way in the weak formulation of the problem. Moreover, this choice allows
us to follow the approach presented in [8]. Proofs concerning the problem with Dirichlet boundary
controls can be found in [3], [4] and [5]. We denote by V i the Hilbert space H1

ΓD
(Ωi), i = 1, 2.
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In virtue of the splitting of the solutions (1.25) we can study the well posedness of the problems
depending on the data and of the problems depending on the controls separately. In order to write
the weak formulation of problems (1.27) we introduce, for each problem, a function Ri so that
Ri ∈ H1(Ωi) and Ri |ΓDi = Ψi

D and so that there exists a constant C > 0 so that

‖Ri‖Hi (Ωi ) ≤ C‖Ψ
i
D‖H 1

2 (ΓDi )
i = 1, 2. (1.28)

The functions Ri , i = 1, 2 represent the lifting of the Dirichlet data of the state problems. We
consider

ϕ̂i ,f = ϕi ,f − Ri , i = 1, 2. (1.29)

The weak formulation of the problem for ϕ̂i ,f reads as follows: for i = 1, 2, find ϕ̂i ,f ∈ V i so
that ∫

Ωi

K∇ϕ̂i ,f∇ψ = −
∫

Ωi

K∇Ri∇ψ +

∫
Ω1

f iψ +

∫
ΓNi

Ψi
Nψ ∀ψ ∈ V i . (1.30)

Introducing the bi-linear form

ai(ϕ,ψ) =

∫
Ωi

K∇ϕ∇ψ ∀ϕ,ψ ∈ V i ,

and the linear form

F i(ψ) = −
∫

Ωi

K∇Ri∇ψ +

∫
Ωi

f iψ +

∫
ΓNi

Ψi
Nψ ∀ψ ∈ V i ,

we can write problems (1.30) as:
for i = 1, 2, find ϕ̂i ,f ∈ V i so that

ai(ϕ̂i ,f , ψ) = F i(ψ) ∀ψ ∈ V i . (1.31)

For i = 1, 2, the bi-linear form ai(·, ·) is continuous and coercive on V i and thanks to the hypothesis
on the data the linear form F i(·) is continuous on V i . So the Lax-Milgram Lemma guarantees that
problems (1.31) admit a unique solution ϕ̂i ,f ∈ V i , for i = 1, 2. Moreover we have that

‖ϕ̂i ,f ‖V i ≤ M
(
‖f i‖L2(Ωi ) + ‖Ψi

N‖H− 1
2 (ΓNi )

)
M > 0, i = 1, 2,

and recovering ϕi ,f , thanks to (1.28) we obtain that

‖ϕi ,f ‖V i ≤ M
(
‖f i‖L2(Ωi ) + ‖Ψi

N‖H− 1
2 (ΓNi )

+ ‖Ψi
D‖H 1

2 (ΓDi )

)
M > 0, i = 1, 2. (1.32)

In an analogous way given λi ∈ ΛNi , problems (1.26) admit a unique solution ϕi ,λi ∈ V i so that

‖ϕi ,λi‖V i ≤ M‖λi‖Λi M > 0, i = 1, 2. (1.33)

In accordance to the notations introduced in section 1.1 we introduce, for i = 1, 2, the following
operators

Ai ∈ L (V i , (V i)∗),

Bi ∈ L (H−
1
2 (Γi), (V i)∗).
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The definition of these linear operators is analogous to the one given in section 1.1. These operators
are continuous in virtue of the well posedness of the state problems. In particular, the operators Ai
define an isomorphism of V i onto (V i)∗, i = 1, 2. We are now able to write the problems (1.27)
and the problems (1.26) in the following operatorial form: for i = 1, 2

Aiϕ
i ,f = f ,

Aiϕ
i ,λi = Biλi .

The Well Posedness of the Control Problem

In this section we want to verify the well posedness of the cost functionals (1.20)-(1.23). We first
rewrite the expressions of the cost functionals given in section 1.2.1 in the generic form (1.1), then
we will prove the coercivity of all the cost functionals in the penalized case and the coercivity of all
the cost functionals, with some restrictions, in the non-penalized case.
We give here a generic expression of a cost functional that minimizes the difference between the
solutions on the overlapping region. Later we will specify the form the operators that define the
choice of J(λ1, λ2) between (1.20)-(1.23). The generic expression of the observation operators is
the following:

z i(λi) = Ciϕ
i , where Ci ∈ L(V i , H) i = 1, 2,

H being an Hilbert space. As we will see, the choice of the Hilbert space in which the observation is
set depends on the choice of the cost functional. Then we are given the operator Ni ∈ L (ΛNi ,ΛNi ),
which is symmetric and verifies the following coercivity assumption

(Niλi , λi)ΛNi
≥ νi‖λi‖2

ΛNi
νi > 0, i = 1, 2. (1.34)

This operator is related to the penalization term and its definition is analogous for all the different
choices of the cost functional to be minimized. In fact, the operators Ni are identified as

(Niλi , λi)ΛNi
=

1

2
βi

∫
Γi

λ2
i i = 1, 2,

and we recognize that ν1 = 1
2β1 and ν2 = 1

2β2. The choice Ni = 0, i = 1, 2, corresponds to
the non-penalized case. In what follows we will treat the penalized and the non-penalized case
separately.

In the virtual control problem we seek for the couple of controls (λ1, λ2) that minimizes the difference
between the solutions of (1.18) on Ω12. We remark that this setting is different than the one
presented in section 1.1 because we want to find, simultaneously the optimal boundary values to
be assigned on the control interfaces of two distinct state problems. For this reason we need to
introduce the space of admissible controls (Uad = ΛN)

ΛN = ΛN1 × ΛN2 .

On this space we define the norm ‖(·, ·)‖ΛN in the following way:

‖(µ1, µ2)‖ΛN =
√
‖µ1‖2

ΛN1
+ ‖µ2‖2

ΛN2
. (1.35)
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Thanks to the inequalities√
a2 + b2 ≤ a + b ≤

√
2
√
a2 + b2 ∀a ≥ 0, b ≥ 0,

a norm equivalent to (1.37), sometimes easier to use is

‖(µ1, µ2)‖ΛN = ‖µ1‖ΛN1
+ ‖µ2‖ΛN2

. (1.36)

The fact that (1.36) is actually a norm is easily verified, in fact:

• ‖(µ1, µ2)‖ΛN ≥ 0 and ‖(µ1, µ2)‖ΛN = 0⇔ (µ1, µ2) = (0, 0);

• ‖α(µ1, µ2)‖ΛN = ‖αµ1‖ΛN1
+ ‖αµ2‖ΛN2

= |α|(‖µ1‖ΛN1
+ ‖µ2‖ΛN2

) = |α|‖(µ1, µ2)‖ΛN ;

• ‖(µ1, µ2) + (ν1, ν2)‖ΛN = ‖µ1 + ν1‖ΛN1
+ ‖µ2 + ν2‖ΛN2

≤ ‖µ1‖ΛN1
+ ‖ν1‖ΛN1

+ ‖µ2‖ΛN2
+ ‖µ2‖ΛN2

= ‖(µ1, µ2)‖ΛN + ‖(ν1, ν2)‖ΛN .

To every couple of controls we associate the cost functional

J(λ1, λ2) =
1

2
‖C1ϕ

1 − C2ϕ
2‖2
H + (N1λ1, λ1)ΛN1

+ (N2λ2, λ2)ΛN2
.

According to (1.25) the cost functional J(λ1, λ2) can be decomposed in a quadratic and into an
affine part as follows:

J((λ1, λ2)) =
1

2
π((λ1, λ2), (λ1, λ2))− L((λ1, λ2)) + ‖C1ϕ

1,f − C2ϕ
2,f ‖2

H,

where the quadratic form π is defined as

π((λ1, λ2), (µ1, µ2)) = (C1ϕ
1,λ1 − C2ϕ

2,λ2 , C1ϕ
1,µ1 − C2ϕ

2,µ2 )H

+ (N1λ1, µ1)ΛN1
+ (N2λ2, µ2)ΛN2

,

and the linear form L is defined as

L((µ1, µ2)) = −(C1ϕ
1,µ1 − C2ϕ

2,µ2 , C1ϕ
1,f − C2ϕ

2,f )H.

We remark that the quadratic linear form π is equivalent to the quadratic part of the generic cost
functional that has been referred to as J0 and the linear form L corresponds to the affine part of
the generic cost functional that we have denoted as A .

The control problem is: find (λ1, λ2) ∈ ΛN such that

J(λ1, λ2) = inf
(µ1,µ2)∈ΛN

J(µ1, µ2).

We want to verify the hypotheses of Theorem 1, in order to be able to guarantee the existence and
the uniqueness of the optimal controls (λ1, λ2) that minimize the cost functional. In particular we
have to verify that

• L((µ1, µ2)) is continuous on ΛN ,

• π((λ1, λ2), (µ1, µ2)) is continuous and coercive on ΛN .
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Before proceeding we have to identify the observation operators C1 and C2 for each specific choice
of the cost functional and analogously we need to identify the Hilbert space in which the observation
is placed. For every choice of the cost functional the observation operator is the composition of the
restriction operator χ12 ∈ L∞(Ω) with the injection map of V into H.

We can identify the Hilbert space H for the different cost functionals that we have previously
introduced.

• JL2 (λ1, λ2) ←→ H = L2(Ω12)

• JH1
0
(λ1, λ2) ←→ H = H1

0(Ω12)

• JH1 (λ1, λ2) ←→ H = H1(Ω12)

• ĴH1
0
(λ1, λ2) ←→ H = H1(Ω12)

The derivation of these injection is straightforward and derives explicitly from the definition of the
cost functional.

The proof of the continuity of the linear functional L((µ1, µ2)) can be given independently of the
distinction between a penalized and a non-penalized cost functional (Ni 6= 0 or Ni = 0), because the
penalization terms appear only in the definition of the quadratic part of the cost functional. We want
to verify the hypothesis of Theorem 1. We first show that L((µ1, µ2)) is continuous on ΛN :

|L((µ1, µ2))| ≤ ‖(C1ϕ
1,µ1 − C2ϕ

2,µ2‖H‖C1ϕ
1,f − C2ϕ

2,f ‖H
≤ (‖C1‖L (V 1,H)‖ϕ1,µ1‖V 1 + ‖C2‖L (V 2,H)‖ϕ2,µ2‖V 2 )

(‖C1‖L (V 1,H)‖ϕ1,f ‖V 1 + ‖C2‖L (V 2,H)‖ϕ2,f ‖V 2 )

≤ C̃(‖µ1‖ΛN1
+ ‖µ2‖ΛN2

)

≤ C̃‖(µ1, µ2)‖ΛN ∀(µ1, µ2) ∈ ΛN ,

where we have used (1.32) and (1.33).
In analogous way we can prove the continuity of the quadratic form π((λ1, λ2), (µ1, µ2)) on
ΛN :

|π((λ1, λ2), (µ1, µ2))| ≤ ‖(C1ϕ
1,λ1 − C2ϕ

2,λ2‖H‖C1ϕ
1,µ1 − C2ϕ

2,µ2‖H + ‖N1λ1‖ΛN1
‖µ1‖ΛN1

+ ‖N2λ2‖ΛN2
‖µ2‖ΛN2

≤ (‖C1‖L (V 1,H)‖ϕ1,λ1‖V 1 + ‖C2‖L (V 2,H)‖ϕ2,λ2‖V 2 )

(‖C1‖L (V 1,H)‖ϕ1,µ1‖V 1 + ‖C2‖L (V 2,H)‖ϕ2,µ2‖V 2 )+

‖N1‖L (ΛN1 ,Λ
N
2 )‖λ1‖ΛN1

‖µ1‖ΛN1
+ ‖N2‖L (ΛN1 ,Λ

N
2 )‖λ2‖ΛN2

‖µ2‖ΛN2

≤ C‖(λ1, λ2)‖ΛN‖(µ1, µ2)‖ΛN ∀(µ1, µ2) ∈ ΛN .

We proceed to prove the coercivity of the quadratic part of the cost functionals (1.20)-(1.23). We
now need to distinguish between the penalized and the non-penalized case: in the first case the
proof is straightforward and is valid for all the choices of the cost functional, in the second case we
see that one obtains a weaker result and a distinction has to be done between the different cost
functionals.
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The Penalized Case

Since ‖C1ϕ
1,µ1 − C2ϕ

2,µ2‖2
H is clearly ≥ 0, from (1.34) follows the coercivity of the bi-linear form

on ΛN :

π((µ1, µ2), (µ1, µ2)) ≥ (N1λ1, λ1)ΛN1
+ (N2λ2, λ2)ΛN2

≥ ν1‖λ1‖2
ΛN1

+ ν2‖λ2‖2
ΛN2

= min(ν1, ν2)‖(λ1, λ2)‖2
ΛN ∀(µ1, µ2) ∈ ΛN .

It is obvious that this argument is no longer valid in the case Ni = 0, i = 1, 2. We observe that
in this proof the term related to the definition of the cost functional is ignored so that the choice
between (1.20)-(1.23) is irrelevant (this term should verify the continuity assumptions but does not
define the coercivity of the cost functional).

The Non-Penalized Case

In this case the verification of the coercivity of the bi-linear form π is not straightforward. If the
control functions λ2 and λ2 are smooth enough one can define the semi-norm

|||(µ1, µ2)||| = π((µ1, µ2), (µ1, µ2)) = ‖C1ϕ
1,µ1 − C2ϕ

2,µ2‖2
H (1.37)

on the space of the controls. Expression (1.37) is a semi-norm thanks to its symmetry and because
the solutions of the state problems depending on the sole controls ϕi ,λi are identically zero if λi = 0,
i = 1, 2 because they are the solution of a homogeneous Poisson problem. If we can prove that
(1.37) is actually a norm for the virtual controls, then the optimization problem will admit a unique
solution in the space of λ1 and λ2 obtained by completion of this norm. This abstract space is of
course “very large” and cannot be identified explicitly.

The semi-norm (1.37) is a norm is the following holds

π((µ1, µ2), (µ1, µ2)) = 0 ⇒ µ1 = µ2 = 0. (1.38)

In order to be able to prove this assumption for the different cost functionals we need the following
result

Proposition 1. If the solutions ϕ1,µ1 and ϕ2,µ2 of (1.26) are such that ϕ1,µ1 = ϕ2,µ2 a.e. in Ω12,
then µ1 = 0 on Γ1 and µ2 = 0 on Γ2.

Proof. We define

w =


ϕ1,µ1 in Ω1\Ω12

ϕ1,µ1 = ϕ2,µ2 = ϕ in Ω12

ϕ2,µ2 in Ω2\Ω12.

Since ϕ1,µ1 and ϕ2,µ2 are solutions of the global state problems on Ω1 and Ω2 respectively, and
because of the continuity between these solutions on the overlap Ω12 (derived from the fact that the
cost functional is minimized) w is the solution of the global Darcy problem on Ω. This problem is
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homogeneous and this implies w ≡ 0 on Ω so that necessarily w |Γ1 , w |Γ2 and ∂w
∂n1
|Γ1 ,

∂w
∂n2
|Γ2 , which

proves that λ1 = λ2 = 0 in both the cases of Dirichlet and Neumann boundary controls.

This results guarantees that if the solutions are matching on the overlapping region the virtual
controls are necessarily the null controls. So now, for each different cost functional we have to prove
that its minimization assures that the solutions of the state problems are equal on the overlap:

π((µ1, µ2), (µ1, µ2)) = 0 ⇒ ϕ1,µ1 = ϕ2,µ2 a.e. in Ω12. (1.39)

We will see that this result is not always true and that we need to distinguish between the different
choices for the cost functional.

Proposition 2. The cost functionals J0
L2 (µ1, µ2), J0

H1 (µ1, µ2) and Ĵ0
H1

0
(µ1, µ2) define a norm on

the space of the controls (λ1, λ2). The cost functional J0
H1

0
(µ1, µ2) defines a norm on the space of

(λ1, λ2) if ∂Ω12 ∩ ΓD 6= 0, otherwise it only defines a seminorm.

Proof. For each cost functional, we want to prove that (1.39) is verified. Then, from Proposition 1
follows (1.38).
In the case of J0

L2 (µ1, µ2) we have that

J0
L2 (µ1, µ2) =

1

2

∫
Ω

χ12(ϕ1,µ1 − ϕ2,µ2 )2 =
1

2
‖ϕ1,µ1 − ϕ2,µ2‖2

L2(Ω12) = 0

⇒ ϕ1,µ1 = ϕ2,µ2 a.e. in Ω12.

Analogously, if minimizing J0
H1 (µ1, µ2) we have that

J0
H1 (µ1, µ2) =

1

2

∫
Ω

χ12(ϕ1,µ1−ϕ2,µ2 )2+
1

2

∫
Ω

χ12(∇ϕ1,µ1−∇ϕ2,µ2 )2 =
1

2
‖ϕ1,µ1−ϕ2,µ2‖2

H1(Ω12) = 0

⇒ ϕ1,µ1 = ϕ2,µ2 a.e. in Ω12.

In the case of Ĵ0
H1

0
(µ1, µ2) the following holds

Ĵ0
H1

0
(µ1, µ2) =

1

2

∫
Ω

χ12(∇ϕ1,µ1 −∇ϕ2,µ2 )2 +
1

2

∫
∂Ω

χ12(ϕ1,µ1 − ϕ2,µ2 )2 =

1

2
‖∇ϕ1,µ1 −∇ϕ2,µ2‖2

L2(Ω12) +
1

2
‖ϕ1,µ1 − ϕ2,µ2‖2

L2(∂Ω∩∂Ω12) = 0

⇒ ‖ϕ1,µ1 − ϕ2,µ2‖2
L2(∂Ω∩∂Ω12) = 0 ⇒ ϕ1,µ1 − ϕ2,µ2 = 0 a.e. on ∂Ω ∩ ∂Ω12.

This implies that the Poincaré inequality holds for the difference between the solutions (ϕ1,µ1 −
ϕ2,µ2 )|Ω12 and this guarantees that

(ϕ1,µ1 − ϕ2,µ2 )|Ω12 ∈ H1
ΓD

(Ω12),

so that the following holds

‖∇ϕ1,µ1 −∇ϕ2,µ2‖2
L2(Ω12) ' ‖ϕ

1,λ1 − ϕ2,λ2‖2
H1
ΓD

(Ω12) ⇒ ϕ1,µ1 = ϕ2,µ2 a.e. in Ω12.



20 CHAPTER 1. COUPLED VIRTUAL CONTROL FOR THE SCALAR ELLIPTIC PROBLEM

When considering the cost functional J0
H1

0
(λ1, λ2) we observe that

J0
H1

0
(λ1, λ2) =

1

2

∫
Ω

χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )2 =
1

2
‖∇ϕ1,λ1 −∇ϕ2,λ2‖2

L2(Ω12) = 0,

now if
(ϕ1,λ1 − ϕ2,λ2 )|Ω12 ∈ H1

ΓD
(Ω12) i .e. (∂Ω12 ∩ ΓD) 6= ∅

we obtain that

‖∇ϕ1,λ1 −∇ϕ2,λ2‖2
L2(Ω12) ' ‖ϕ

1,λ1 − ϕ2,λ2‖2
H1
ΓD

(Ω12) ⇒ ϕ1,λ1 = ϕ2,λ2 a.e. in Ω12.

We observe that the cost functional that minimizes the difference between the solutions in H1
0(Ω12)

does not guarantee the uniqueness of the optimal controls if a full Neumann condition is applied
on the boundary of the overlap. The point is that the difference between the two state solutions,
restricted on the overlap, has to belong to the space H1

0(Ω12), in order to have J0
H1

0
defining a norm

on the space of the controls (λ1, λ2). We remark that adding a term that controls the difference
between the solutions on a part of the boundary (ĴH1

0
) we recover the coercivity of the cost functional.

This results will be confirmed by the numerical simulations.

We have shown that adding a penalization term of the form (1.24) is not necessary for the well
posedness of the problem. We observed that if ∂Ω12 ∩ ΓD = ∅, JH1

0
can be modified as in (1.23)

in order to obtain a coercive cost functional. With this choice one still controls the difference the
solutions and does not need to add a penalization term on the single controls λ1 and λ2 as in (1.24).
In what follows the penalized formulation will be used only in the algebraic one-shot approach for
the solution of the problem, that will be described in the contest of preconditioning.

1.2.3 The Optimality System

We want to compute ∇J = ∇J0 +∇A for J = JL2 , J = JH1
0
, J = JH1 and J = ĴH1

0
in order to

find the optimal controls (λ1, λ2) corresponding to the minimum of the cost functional. For this
reason, we compute the Gateaux derivatives of the different cost functionals with respect to the two
controls λ1 and λ2. Then we show that for each cost functional these derivatives can be rewritten
in terms of the solution of the dual problems of (1.26) and (1.27), with forcing term and boundary
conditions depending on the solution of the state problems (1.26) and (1.27).

In the case of the minimization of JL2 we also present the derivation of the optimality system
according to the Lagrangian formalism.

Minimization in the L2(Ω12) Norm

In the case of this cost functional we will develop the formulation of the optimality system in presence
of the penalization term (1.24). The non penalized formulation can be obtained by simply setting
β1 = β2 = 0. The penalized formulation for the remaining cost functionals can be derived in an
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analogous way.

The derivatives of functional (1.20), split in the part depending on the controls and the part
depending on the data, assume the following form

〈
∂J0
L2

∂λ1
, µ1〉 = lim

δ→0

(1

2

∫
Ω

χ12(ϕ1,λ1 + δϕ1,µ1 − ϕ2,λ2 )2 −
1

2

∫
Ω

χ12(ϕ1,λ1 − ϕ2,λ2 )2
)

+ lim
δ→0

(1

2

∫
Γ1

(λ1 + δµ1)2 −
1

2

∫
Γ1

λ2
1

)
=

∫
Ω

χ12(ϕ1,λ1 − ϕ2,λ2 )ϕ1,µ1 +

∫
Γ1

λ1µ1 ∀µ1 ∈ Λ1, (1.40a)

〈
∂J0
L2

∂λ2
, µ2〉 = −

∫
Ω

χ12(ϕ1,λ1 − ϕ2,λ2 )ϕ2,µ2 +

∫
Γ2

λ2µ2 ∀µ2 ∈ Λ2, (1.40b)

〈
∂AL2

∂λ1
, µ1〉 =

∫
Ω

χ12(ϕ1,f − ϕ2,f )ϕ1,µ1 ∀µ1 ∈ Λ1, (1.40c)

〈
∂AL2

∂λ2
, µ2〉 = −

∫
Ω

χ12(ϕ1,f − ϕ2,f )ϕ2,µ2 ∀µ2 ∈ Λ2. (1.40d)

We now consider the following dual problem
−∇ · (K∇Ψ1) = χ12(ϕ1,λ1 − ϕ2,λ2 ) in Ω1

K∇Ψ1 · n1 = 0 on ΓN1
Ψ1 = 0 on ΓD1

K∇Ψ1 · n1 / Ψ1 = 0 on Γ1,

(1.41)

and show how we can express the partial derivative (1.40a) as a function of the solution of this
problem Ψ1. In fact we have∫

Ω1

χ12(ϕ1,λ1 − ϕ2,λ2 )ϕ1,µ1 =

∫
Ω1

−∇ · (K∇Ψ1)ϕ1,µ1 =∫
Ω1

−∇ · (K∇ϕ1,µ1 )Ψ1 −
∫
∂Ω1

(K∇Ψ1 · n1)ϕ1,µ1 +

∫
∂Ω1

(K∇ϕ1,µ1 · n1)Ψ1,

and remarking that ϕ1,µ1 is solution of (1.26) and that Ψ1 is solution of (1.41) we obtain that

〈
∂J0
L2

∂λ1
, µ1〉 = −

∫
Γ1

(K∇Ψ1 · n1)µ1 +

∫
Γ1

λ1µ1 ∀µ1 ∈ ΛD1 , (1.42)

in the case of Dirichlet boundary controls, and we obtain that

〈
∂J0
L2

∂λ1
, µ1〉 =

∫
Γ1

Ψ1µ1 +

∫
Γ1

λ1µ1 ∀µ1 ∈ ΛN1 , (1.43)

in the case of Neumann boundary controls.
In an analogous way, considering the following dual problems

−∇ · (K∇Ψ2) = −χ12(ϕ1,λ1 − ϕ2,λ2 ) in Ω2

K∇Ψ2 · n2 = 0 on ΓN2
Ψ2 = 0 on ΓD2

K∇Ψ2 · n2 / Ψ2 = 0 on Γ2,

(1.44)
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
−∇ · (K∇Ψ̃1) = χ12(ϕ1,f − ϕ2,f ) in Ω1

K∇Ψ̃1 · n1 = 0 on ΓN1
Ψ1 = 0 on ΓD1

K∇Ψ̃1 · n1 / Ψ̃1 = 0 on Γ1,

(1.45)


−∇ · (K∇Ψ̃2) = −χ12(ϕ1,f − ϕ2,f ) in Ω2

K∇Ψ̃2 · n2 = 0 on ΓN2
Ψ̃2 = 0 on ΓD2

K∇Ψ̃2 · n2 / Ψ̃2 = 0 on Γ2,

(1.46)

we can reformulate the remaining partial derivatives as

〈
∂J0
L2

∂λ2
, µ2〉 = −

∫
Γ2

(K∇Ψ2 · n2)µ2 +

∫
Γ2

λ2µ2 ∀µ2 ∈ ΛD2 , (1.47a)

〈
∂AL2

∂λ1
, µ1〉 = −

∫
Γ1

(K∇Ψ̃1 · n1)µ1 ∀µ1 ∈ ΛD1 , (1.47b)

〈
∂AL2

∂λ2
, µ2〉 = −

∫
Γ2

(K∇Ψ̃2 · n1)µ1 ∀µ2 ∈ ΛD2 , (1.47c)

in the case of Dirichlet controls, or as

〈
∂J0
L2

∂λ2
, µ2〉 =

∫
Γ2

Ψ2µ2 +

∫
Γ2

λ2µ2 ∀µ2 ∈ ΛN2 , (1.48a)

〈
∂AL2

∂λ1
, µ1〉 =

∫
Γ1

Ψ̃1µ1 ∀µ1 ∈ ΛN1 , (1.48b)

〈
∂AL2

∂λ2
, µ2〉 =

∫
Γ2

Ψ̃2µ2 ∀µ2 ∈ ΛN2 , (1.48c)

in the case of Neumann boundary controls.

Lagrangian Derivation of the Optimality System

In order to define the Lagrangian functional (as in (1.15)) of this optimization problem we need to
distinguish between Dirichlet and Neumann boundary controls. In fact, we observe that the state
equations represents the constraint of the Lagrangian and its expression varies according to the
choice of boundary controls that has been implemented. Moreover, in this case we do not want to
split the solution in a part depending on the data and a part depending on the controls as in (1.25)
but we work with the global solutions ϕ1 and ϕ2.
We recall the expression of the cost functional

J(λ1, λ2) =
1

2

∫
Ω

χ12(ϕ1 − ϕ2)2 +
1

2
β1

∫
Γ1

λ2
1 +

1

2
β2

∫
Γ2

λ2
2.

The bilinear forms related to the state problems (1.18) and (1.19) read as follows:

a(ϕi , ρ) = (f i , ρ) + b(λ, ρ) ∀ρ ∈ V i , i = 1, 2,
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In the case of Dirichlet boundary controls, through the use of the transposition approach presented
in section 1.1.4 we have that

a(ϕi , ρ) = −
∫

Ωi

ϕi∇ · (K∇ρ),

b(λ, ρ) =

∫
Γi

λi∇ρni ,

where we have to assume that ρ ∈ H2(Ωi) ∩ H1
ΓD

(Ωi) and ϕi ∈ L2(Ωi). In the case of Neumann
boundary controls the bilinear forms related to the differential operator of the state problem and to
the weak formulation of the control term are

a(ϕi , ρ) =

∫
Ωi

K∇ϕi∇ρ,

b(λ, ρ) = −
∫
Γi

λiρ,

We are now able to derive the specific expression of the Lagrangian cost functional in both the cases
of Dirichlet and Neumann boundary controls, for i = 1, 2:

LD(ϕi ,Ψi , λi) =
1

2

∫
Ω

χ12(ϕ1 − ϕ2)2 +
1

2
β1

∫
Γ1

λ2
1 +

1

2
β2

∫
Γ2

λ2
2 +

∫
Ωi

ϕi∇ · (K∇Ψi)−
∫
Γi

λi∇Ψini ,

LN(ϕi ,Ψi , λi) =
1

2

∫
Ω

χ12(ϕ1 − ϕ2)2 +
1

2
β1

∫
Γ1

λ2
1 +

1

2
β2

∫
Γ2

λ2
2 −

∫
Ωi

K∇ϕi∇Ψi +

∫
Γi

λiΨ
i .

We see how the dual variable plays the role of the Lagrangian multiplier. We remark that because of
the regularity conditions on the test function of the weak formulation of the state equation in the
case of Dirichlet boundary controls, one has to make sure that the adjoint variable is sufficiently
regular. This is obviously true in the case of the adjoint of the Poisson operator. We now proceed
to the derivation of the Lagrangian functional, following the approach presented in section 1.1.3.
It is important to remark that in this approach the state, adjoint and control variable are seen as
independent, so that the dependencies between these three variables have to be neglected when
differentiating the functional. In this sense, the differentiation approach used in this contest differs
from the derivatives computed for example in (1.40a).
In the case of (λ1, λ2) ∈ ΛD and i = 1 we obtain the following expressions:

LDλ1
[µ] = β1

∫
Γ1

λ1µ−
∫
Γ1

µ∇Ψ1n1 = 0 ∀µ ∈ ΛN1 ,

LDϕ1
[ρ] =

∫
Ω1

χ12(ϕ1 − ϕ2)ρ+

∫
Ω1

ρ∇ · (K∇Ψ1) = 0 ∀ρ ∈ H2(Ω1) ∩ V 1,

LDΨ1 [ξ] =

∫
Ω1

ϕ1∇ · (K∇ξ)−
∫
Γ1

λ1∇ξn1 = 0 ∀ξ ∈ V 1,
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and for i = 2 the complementary expressions:

LDλ2
[µ] = β2

∫
Γ2

λ2µ−
∫
Γ2

µ∇Ψ2n2 = 0 ∀µ ∈ ΛN1 ,

LDϕ2
[ρ] = −

∫
Ω2

χ12(ϕ1 − ϕ2)ρ+

∫
Ω2

ρ∇ · (K∇Ψ2) = 0 ∀ρ ∈ H2(Ω2) ∩ V 1,

LDΨ2 [ξ] =

∫
Ω12

ϕ2∇ · (K∇ξ)−
∫
Γ2

λ2∇ξn2 = 0 ∀ξ ∈ V 1,

where we have repetitively used the property that the derivative of a linear continuous application is
given by the application itself.
We recognize that we have obtained the optimality equation, the adjoint equation and the state
equation respectively for the two problems on Ω1 and Ω2. These equations are derived in their weak
formulation and are equivalent to the strong formulations of the equations derived in the previous
section. Analogously we can derive the optimality systems on the two domains with the Lagrangian
approach in the case of Neumann boundary controls: for i = 1

LDλ1
[µ] = β1

∫
Γ1

λ1µ+

∫
Γ1

µΨ1 = 0 ∀µ ∈ ΛN1 ,

LDϕ1
[ρ] =

∫
Ω1

χ12(ϕ1 − ϕ2)ρ−
∫

Ω1

K∇ρ∇Ψ1 = 0 ∀ρ ∈ V 1,

LDΨ1 [ξ] = −
∫

Ω1

∇ϕ1∇ξ +

∫
Γ1

λ1ξ = 0 ∀ξ ∈ V 1,

and for i = 2:

LDλ2
[µ] = β2

∫
Γ2

λ2µ+

∫
Γ2

µΨ2 = 0 ∀µ ∈ ΛN1 ,

LDϕ2
[ρ] = −

∫
Ω2

χ12(ϕ1 − ϕ2)ρ−
∫

Ω2

∇ρ∇Ψ2 = 0 ∀ρ ∈ V 1,

LDΨ2 [ξ] =

∫
Ω12

∇ϕ2∇ξ +

∫
Γ2

λ2ξ = 0 ∀ξ ∈ V 1.

We observe how the two approaches have led to the same optimality system at the weak differential
level. We remark that the transposition approach permits a natural inclusion of the Dirichlet control
variable in the weak formulation of the state problem. In order to be able to do this, a double
integration by parts of the state equation has been performed and we remark how the boundary
term

∫
Γi
λiρ, apart from defining the Dirichlet boundary condition on the state problem, defines the

expression of the partial derivative of the non penalized part of the cost functional.

We have derived the optimality system for the virtual control Poisson problem in both the cases of
Dirichlet and Neumann virtual controls and following a Lions and a Lagrangian approach. The first
led to a strong formulation of the optimality system and the second to a weak formulation of it.
The two approaches are complemetar and lead to the same approximation of the coupled virtual
control problem.
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Minimization in the H1
0(Ω12) Norm

As said before, in the case of this cost functional we develop the formulation of the optimality
system omitting the penalization term (1.24). We first determine the expressions of the partial
derivatives:

〈
∂J0
H1

0

∂λ1
, µ1〉 = lim

δ→0

(1

2

∫
Ω

χ12(∇ϕ1,λ1 + δ∇ϕ1,µ1 −∇ϕ2,λ2 )2 −
1

2

∫
Ω

χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )2
)

=

∫
Ω

χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )∇ϕ1,µ1

= −
∫

Ω

∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ))ϕ1,µ1

+

∫
∂Ω

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1ϕ
1,µ1 ∀µ1 ∈ Λ1,

〈
∂J0
H1

0

∂λ2
, µ2〉 =

∫
Ω

∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ))ϕ2,µ2

−
∫
∂Ω

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n2ϕ
2,µ2 , ∀µ2 ∈ Λ2,

〈
∂AH1

0

∂λ1
, µ1〉 = −

∫
Ω

∇ · (χ12(∇ϕ1,f −∇ϕ2,f ))ϕ1,µ1

+

∫
∂Ω

(χ12(∇ϕ1,f −∇ϕ2,f )) · n1ϕ
1,µ1 , ∀µ1 ∈ Λ1,

〈
∂AH1

0

∂λ2
, µ2〉 =

∫
Ω

∇ · (χ12(∇ϕ1,f −∇ϕ2,f ))ϕ2,µ2

−
∫
∂Ω

(χ12(∇ϕ1,f −∇ϕ2,f )) · n2ϕ
2,µ2 ∀µ2 ∈ Λ2.

We observe that in this case the partial derivatives include a term on the boundary due to to the
integration by parts that we had to perform because of the presence of the derivation term in the
expression of the cost functional. This term introduces a complication in the formulation of the
dual problem, for this reason, we will treat separately the formulation where we seek for the controls
in ΛD1 × ΛD2 and the formulation where we seek for the controls in ΛN1 × ΛN2 .
We remark the presence of a term of the form ∇ · (χ12(...)). The divergence of a discontinuous
function cannot be performed, so that one should refer to this term as a formal notation. We have
used the integral notation to describe a duality product that has to be interpreted in a distributional
sense. The well posedness of this expression is guaranteed by the regularity of the functions
ϕi ,µi , i = 1, 2, which are solutions of a Poisson problem. In fact the integration by parts will not be
actually performed, and the dual problem (1.49) in its weak formulation will have as forcing term
the partial derivative in its form before the integration.

When dealing with Dirichlet boundary controls we consider the following dual problems
−∇ · (K∇Ψ1) = −∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) in Ω1

K∇Ψ1 · n1 = (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1 on ΓN1
Ψ1 = 0 on ΓD1
Ψ1 = 0 on Γ1,

(1.49)
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Ω12
Γ1

Γ2

� ��
� ΓNΓD

ΓD

ΓN

Γ1

Γ2

ϕ1,µ1 = 0

Ψ1 = 0

ϕ1,µ1 = µ1

Ψ1 = 0

K∇ϕ1,µ1 · n1 = 0

K∇Ψ1 · n1 = (χ12(∇ϕ1,λ1 −∇ϕ2,λ2)) · n1

Figure 1.2: Boundary conditions for the test function ϕ1,µ1 and the solution of the dual problem Ψ1.


−∇ · (K∇Ψ2) = ∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) in Ω2

K∇Ψ2 · n2 = −(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n2 on ΓN2
Ψ2 = 0 on ΓD2
Ψ2 = 0 on Γ2,

(1.50)


−∇ · (K∇Ψ̃1) = −∇ · (χ12(∇ϕ1,f −∇ϕ2,f )) in Ω1

K∇Ψ̃1 · n1 = (χ12(∇ϕ1,f −∇ϕ2,f )) · n1 on ΓN1
Ψ̃1 = 0 on ΓD1
Ψ̃1 = 0 on Γ1,

(1.51)


−∇ · (K∇Ψ̃2) = ∇ · (χ12(∇ϕ1,f −∇ϕ2,f )) in Ω2

K∇Ψ̃2 · n2 = −(χ12(∇ϕ1,f −∇ϕ2,f )) · n2 on ΓN2
Ψ̃2 = 0 on ΓD2
Ψ̃2 = 0 on Γ2.

(1.52)

We now show how we can rewrite the first partial derivative 〈
∂J0

H1
0

∂λ1
, µ1〉 as a function of the solution

of problem (1.49) (refer to Figure 1.2):

−
∫

Ω

∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ))ϕ1,µ1 +

∫
∂Ω

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1ϕ
1,µ1 =

−
∫

Ω1

∇ · (K∇Ψ1)ϕ1,µ1 +

∫
∂Ω

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1ϕ
1,µ1 =∫

Ω1

−∇ · (K∇ϕ1,µ1 )Ψ1 −
∫
∂Ω1

(K∇Ψ1 · n1)ϕ1,µ1 +

∫
∂Ω1

(K∇ϕ1,µ1 · n1)Ψ1

+

∫
∂Ω

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1ϕ
1,µ1 =

−
∫
Γ1

(K∇Ψ1 · n1)µ1 +

∫
Γ1

(∇ϕ1,λ1 −∇ϕ2,λ2 ) · n1µ1.

We have obtained that
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〈
∂J0
H1

0

∂λ1
, µ1〉 = −

∫
Γ1

(K∇Ψ1 · n1)µ1 +

∫
Γ1

(∇ϕ1,λ1 −∇ϕ2,λ2 ) · n1µ1 ∀µ1 ∈ ΛD1 , (1.53a)

〈
∂J0
H1

0

∂λ2
, µ2〉 = −

∫
Γ2

(K∇Ψ2 · n2)µ2 +

∫
Γ2

(∇ϕ1,λ1 −∇ϕ2,λ2 ) · n2µ2 ∀µ2 ∈ ΛD2 , (1.53b)

〈
∂AH1

0

∂λ1
, µ1〉 = −

∫
Γ1

(K∇Ψ̃1 · n1)µ1 +

∫
Γ1

(∇ϕ1,f −∇ϕ2,f ) · n1µ1 ∀µ1 ∈ ΛD1 , (1.53c)

〈
∂AH1

0

∂λ2
, µ2〉 = −

∫
Γ2

(K∇Ψ̃2 · n2)µ2 +

∫
Γ2

(∇ϕ1,f −∇ϕ2,f ) · n2µ2 ∀µ2 ∈ ΛD2 . (1.53d)

When dealing with Neumann boundary controls we consider the following dual problems


−∇ · (K∇Ψ1) = −∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) in Ω1

K∇Ψ1 · n1 = (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1 on ΓN1
Ψ1 = 0 on ΓD1

K∇Ψ1 · n1 = (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1 on Γ1,

(1.54)


−∇ · (K∇Ψ2) = ∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) in Ω2

K∇Ψ2 · n2 = −(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n2 on ΓN2
Ψ2 = 0 on ΓD2

K∇Ψ2 · n2 = −(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n2 on Γ2,

(1.55)


−∇ · (K∇Ψ̃1) = −∇ · (χ12(∇ϕ1,f −∇ϕ2,f )) in Ω1

K∇Ψ̃1 · n1 = (χ12(∇ϕ1,f −∇ϕ2,f )) · n1 on ΓN1
Ψ̃1 = 0 on ΓD1

K∇Ψ̃1 · n1 = (χ12(∇ϕ1,f −∇ϕ2,f )) · n1 on Γ1,

(1.56)


−∇ · (K∇Ψ̃2) = ∇ · (χ12(∇ϕ1,f −∇ϕ2,f )) in Ω2

K∇Ψ̃2 · n2 = −(χ12(∇ϕ1,f −∇ϕ2,f )) · n2 on ΓN2
Ψ̃2 = 0 on ΓD2

K∇Ψ̃2 · n2 = −(χ12(∇ϕ1,f −∇ϕ2,f )) · n2 on Γ2.

(1.57)

In an analogous way we show how we can rewrite the first partial derivative 〈
∂J0

H1
0

∂λ1
, µ1〉 as a function

of the solution of problem (1.54):

−
∫

Ω

∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ))ϕ1,µ1 +

∫
∂Ω

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1ϕ
1,µ1 =

−
∫

Ω1

∇ · (K∇Ψ1)ϕ1,µ1 +

∫
∂Ω

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1ϕ
1,µ1 =∫

Ω1

−∇ · (K∇ϕ1,µ1 )Ψ1 −
∫
∂Ω1

(K∇Ψ1 · n1)ϕ1,µ1 +

∫
∂Ω1

(K∇ϕ1,µ1 · n1)Ψ1

+

∫
∂Ω

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1ϕ
1,µ1 =

∫
Γ1

Ψ1µ1.
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We have obtained that

〈
∂J0
H1

0

∂λ1
, µ1〉 =

∫
Γ1

Ψ1µ1 ∀µ1 ∈ ΛN1 , (1.58a)

〈
∂J0
H1

0

∂λ2
, µ2〉 =

∫
Γ2

Ψ2µ2 ∀µ2 ∈ ΛN2 , (1.58b)

〈
∂AH1

0

∂λ1
, µ1〉 =

∫
Γ1

Ψ̃1µ1 ∀µ1 ∈ ΛN1 , (1.58c)

〈
∂AH1

0

∂λ1
, µ1〉 =

∫
Γ1

Ψ̃2µ2 ∀µ2 ∈ ΛN2 . (1.58d)

Minimization in the H1(Ω12) Norm

In this case, because of the linearity of the problem, the results derive from a linear combination of the
previous ones. The forcing terms imposed to the dual problems are obtained by linear combination
of the ones imposed in the case of the minimization of JL2 and of JH1

0
. The partial derivatives are

given by the sum of the partial derivatives of the functionals that minimize the L2 and the H1
0 norm

of the difference between the two solutions on the overlap. In this case we do not need to distinguish
between the case of Neumann boundary controls and the case of Dirichlet boundary controls.

〈
∂J0
H1

∂λ1
, µ1〉 = 〈

∂J0
L2

∂λ1
, µ1〉+ 〈

∂J0
H1

0

∂λ1
, µ1〉 ∀µ1 ∈ Λ1,

〈
∂J0
H1

∂λ2
, µ2〉 = 〈

∂J0
L2

∂λ2
, µ2〉+ 〈

∂J0
H1

0

∂λ2
, µ2〉 ∀µ2 ∈ Λ2,

〈
∂AH1

∂λ1
, µ1〉 = 〈

∂A 0
L2

∂λ1
, µ1〉+ 〈

∂A 0
H1

0

∂λ1
, µ1〉 ∀µ1 ∈ Λ1,

〈
∂AH1

∂λ2
, µ2〉 = 〈

∂A 0
L2

∂λ2
, µ2〉+ 〈

∂A 0
H1

0

∂λ2
, µ2〉 ∀µ2 ∈ Λ2.

Minimization in an Augmented H1
0(Ω12) Norm

The partial derivatives of the cost functional are as follows

〈
∂Ĵ0
H1

0

∂λ1
, µ1〉 = 〈

∂J0
H1

0

∂λ1
, µ1〉+

∫
∂Ω

χ12(ϕ1,λ1 − ϕ2,λ2 )ϕ1,µ1 ∀µ1 ∈ Λ1,

〈
∂Ĵ0
H1

0

∂λ2
, µ2〉 = 〈

∂J0
H1

0

∂λ2
, µ2〉 −

∫
∂Ω

χ12(ϕ1,λ1 − ϕ2,λ2 )ϕ2,µ2 ∀µ2 ∈ Λ2,

〈
∂ÂH1

0

∂λ1
, µ1〉 = 〈

∂A 0
H1

0

∂λ1
, µ1〉+

∫
∂Ω

χ12(ϕ1,f − ϕ2,f )ϕ1,µ1 ∀µ1 ∈ Λ1,

〈
∂ÂH1

0

∂λ2
, µ2〉 = 〈

∂A 0
H1

0

∂λ2
, µ2〉 −

∫
∂Ω

χ12(ϕ1,f − ϕ2,f )ϕ2,µ2 ∀µ2 ∈ Λ2.



1.2. COUPLED VIRTUAL CONTROL: THE POISSON PROBLEM 29

In the case of Dirichlet controls we now consider the following dual problems
−∇ · (K∇Ψ1) = −∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) in Ω1

K∇Ψ1 · n1 = (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1 + χ12(ϕ1,λ1 − ϕ2,λ2 ) on ΓN1
Ψ1 = 0 on ΓD1
Ψ1 = 0 on Γ1,

(1.59)


−∇ · (K∇Ψ2) = ∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) in Ω2

K∇Ψ2 · n2 = −(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n2 + χ12(ϕ1,λ1 − ϕ2,λ2 ) on ΓN2
Ψ2 = 0 on ΓD2
Ψ2 = 0 on Γ2,

(1.60)


−∇ · (K∇Ψ̃1) = −∇ · (χ12(∇ϕ1,f −∇ϕ2,f )) in Ω1

K∇Ψ̃1 · n1 = (χ12(∇ϕ1,f −∇ϕ2,f )) · n1 + χ12(ϕ1,f − ϕ2,f ) on ΓN1
Ψ̃1 = 0 on ΓD1
Ψ̃1 = 0 on Γ1,

(1.61)


−∇ · (K∇Ψ̃2) = ∇ · (χ12(∇ϕ1,f −∇ϕ2,f )) in Ω2

K∇Ψ̃2 · n2 = −(χ12(∇ϕ1,f −∇ϕ2,f )) · n2 + χ12(ϕ1,f − ϕ2,f ) on ΓN2
Ψ̃2 = 0 on ΓD2
Ψ̃2 = 0 on Γ2.

(1.62)

We obtain that

〈
∂Ĵ0
H1

0

∂λ1
, µ1〉 = −

∫
Γ1

(K∇Ψ1 · n1)µ1 +

∫
Γ1

(∇ϕ1,λ1 −∇ϕ2,λ2 ) · n1µ1 ∀µ1 ∈ ΛD1 , (1.63a)

〈
∂Ĵ0
H1

0

∂λ2
, µ2〉 = −

∫
Γ2

(K∇Ψ2 · n2)µ2 +

∫
Γ2

(∇ϕ1,λ1 −∇ϕ2,λ2 ) · n2µ2 ∀µ2 ∈ ΛD2 , (1.63b)

〈
∂ÂH1

0

∂λ1
, µ1〉 = −

∫
Γ1

(K∇Ψ̃1 · n1)µ1 +

∫
Γ1

(∇ϕ1,f −∇ϕ2,f ) · n1µ1 ∀µ1 ∈ ΛD1 , (1.63c)

〈
∂ÂH1

0

∂λ2
, µ2〉 = −

∫
Γ2

(K∇Ψ̃2 · n2)µ2 +

∫
Γ2

(∇ϕ1,f −∇ϕ2,f ) · n2µ2 ∀µ2 ∈ ΛD2 . (1.63d)

In the case of Neumann controls we solve the following dual problems
−∇ · (K∇Ψ1) = −∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) in Ω1

K∇Ψ1 · n1 = (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1 + χ12(ϕ1,λ1 − ϕ2,λ2 ) on ΓN1
Ψ1 = 0 on ΓD1

K∇Ψ1 · n1 = (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1 on Γ1,

(1.64)


−∇ · (K∇Ψ2) = ∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) in Ω2

K∇Ψ2 · n2 = −(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n2 + χ12(ϕ1,λ1 − ϕ2,λ2 ) on ΓN2
Ψ2 = 0 on ΓD2

K∇Ψ2 · n2 = −(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n2 on Γ2,

(1.65)


−∇ · (K∇Ψ̃1) = −∇ · (χ12(∇ϕ1,f −∇ϕ2,f )) in Ω1

K∇Ψ̃1 · n1 = (χ12(∇ϕ1,f −∇ϕ2,f )) · n1 + χ12(ϕ1,f − ϕ2,f ) on ΓN1
Ψ̃1 = 0 on ΓD1

K∇Ψ̃1 · n1 = (χ12(∇ϕ1,f −∇ϕ2,f )) · n1 on Γ1,

(1.66)
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
−∇ · (K∇Ψ̃2) = ∇ · (χ12(∇ϕ1,f −∇ϕ2,f )) in Ω2

K∇Ψ̃2 · n2 = −(χ12(∇ϕ1,f −∇ϕ2,f )) · n2 + χ12(ϕ1,f − ϕ2,f ) on ΓN2
Ψ̃2 = 0 on ΓD2

K∇Ψ̃2 · n2 = −(χ12(∇ϕ1,f −∇ϕ2,f )) · n2 on Γ2,

(1.67)

and we obtain

〈
∂Ĵ0
H1

0

∂λ1
, µ1〉 =

∫
Γ1

Ψ1µ1 ∀µ1 ∈ ΛN1 , (1.68a)

〈
∂Ĵ0
H1

0

∂λ2
, µ2〉 =

∫
Γ2

Ψ2µ2 ∀µ2 ∈ ΛN2 , (1.68b)

〈
∂ÂH1

0

∂λ1
, µ1〉 =

∫
Γ1

Ψ̃1µ1 ∀µ1 ∈ ΛN1 , (1.68c)

〈
∂ÂH1

0

∂λ2
, µ2〉 =

∫
Γ2

Ψ̃2µ2 ∀µ2 ∈ ΛN2 . (1.68d)

1.2.4 A Scalar Elliptic Problem

We have previously observed that, in the non penalized case, the unicity of the solution is not
guaranteed if one minimizes the cost functional:

JH1
0
(λ1, λ2) =

1

2

∫
Ω

χ12(∇ϕ1 −∇ϕ2)2,

when pure Neumann boundary conditions are applied on ∂Ω12 ∩ Γ . In fact, in this case, the fact
that the gradients of the state solutions are equal on the overlap does not guarantee that the same
holds for the non derived solutions. The problem was solved considering the cost functional (1.23),
that imposes the equivalence of the solutions of the state problems on a part of the boundary of the
overlapping region.

In this section we want to show that if the bilinear forms defined by the state problems are coercive
in the H1(Ω12) norm, the fact that the cost functional JH1

0 (λ1,λ2) is minimized guarantees the unicity
of the solution. Consequently the problem associated to the optimality system is well posed in this
case. We consider the following problem:
for i = 1, 2, find ϕi ∈ H1(Ωi) so that

αϕi −∇ · (K∇ϕi) = f i in Ωi

K∇ϕi · ni = Ψi
N on ΓNi

ϕi = Ψi
D on ΓDi

K∇ϕi · ni/ϕi = λi on Γi ,

(1.69)

with α > 0. The cost functionals considered in this case are the same as those presented in the
previous section ((1.20)-(1.23)), so that the form of the partial derivatives is unaltered and so will
be the forcing terms and the boundary conditions imposed to the dual problems. As the systems
(1.69) are self-adjoint the dual problem will be of the same form of (1.69).
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The proofs of the well posedness of the control problem are also equivalent if we consider the
following bilinear form and linear functional in the weak formulation of the state problem:

ai(ϕ,ψ) =

∫
Ωi

ϕψ +

∫
Ωi

K∇ϕ∇ψ ∀ϕ,ψ ∈ V i ,

F i(ψ) = −
∫

Ωi

Riψ −
∫

Ωi

K∇Ri∇ψ +

∫
Ωi

f iψ +

∫
ΓNi

Ψi
Nψ ∀ψ ∈ V i ,

where the spaces V i and the liftings Ri are the same that have been defined in section 1.2.2. We
can see that in this case the bilinear forms ai , i = 1, 2 define the H1 norm ‖ · ‖H1 = ‖ · ‖L2 + ‖∇ · ‖L2 .
Now we want to show that if we consider the problems (1.69) one is able to prove that (1.21) is
actually a norm on Ω12. In the case where α = 0, if (∂Ω12 ∩ ΓD) 6= ∅ one was not able to prove
that

JH1
0
(λ1, λ2) = 0 ⇒ ϕ1,λ1 = ϕ2,λ2 a.e. in Ω12.

Again, the solutions of the problems (1.69) ϕ1 and ϕ2 can be split in a part depending on the given
data of the problem and in a part depending on the sole controls λ1 and λ2 as in (1.25), and our
analysis is restricted to the case (λ1, λ2) ∈ ΛN , for the same motivations that were previously given.
Considering the part of the cost functional that depends on the sole controls J0

H1
0
, analogously as

before we have that

J0
H1

0
(λ1, λ2) = 1

2

∫
Ω χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )2 = 1

2‖∇ϕ
1,λ1 −∇ϕ2,λ2‖2

L2(Ω12) = 0 ⇒

∇ϕ1,λ1 = ∇ϕ2,λ2 a.e. in Ω12.

This result is now sufficient to prove that the solutions that depend on the control variables are
almost everywhere equal on the overlapping region Ω12. Defining w = ϕ1,λ1 − ϕ2,λ2 , we have that
∇w = 0 a.e. in Ω12. We can subtract the first equation in the system (1.69), when i = 2 to the
same equation when i = 1. We obtain a diffusion-reaction equation for w on the overlap

αw −∇ · (K∇w) = 0 in Ω12, (1.70)

which reduces to αw = 0 in Ω12 and this implies ϕ1,λ1 = ϕ2,λ2 almost everywhere in Ω12.
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Chapter 2

Discretization and
Preconditioning

2.1 The Discretization of the Problem

We now introduce the discretization of the optimization problem. It is obvious that the problem
cannot be solved exactly, so we have to look for an approximate solution.
There is one philosophical issue that arises when effecting the discretization of an optimal control
problem: the choice between the differentiate-then-discretize and the discretize-then-differentiate
approach.

2.1.1 Differentiate-then-Discretize or Discretize-then-Differentiate

In an differentiate-then-discretize approach one obtains the adjoint equations and the optimality
conditions at the partial differential equations level and then discretizes the result. In a discretize-then-
differentiate approach one first discretizes the continuous state equations and the cost functional.
Then one obtains a discrete adjoint problem and discrete optimality conditions.
Thus we have two paths for arriving at the discrete adjoint and at the discrete partial derivatives of the
cost functional. In general the two paths lead to different approximations because the differentiation
and the discretization steps do not commute. Evidently for both the differentiate-then-discretize and
the discretize-then-differentiate approaches, as the grid size goes to zero, the discretized gradients
of the cost functional all converge to the same thing (if the solutions are smooth enough). However
for finite values of the grid size (that are used in practice) there can be a substantial difference.

One advantage of the discretize-then-differentiate approach is that one obtains the exact gra-
dient of the discretized functional. This is not the case when one differentiates and then discretizes
because the approximate gradient obtained in this case is neither the gradient of the continuous cost
functional nor the gradient of the discretized cost functional and this can lead to inconsistencies
when solving the problem. Moreover in the discretize-then-differentiate approach an automatic

33



34 CHAPTER 2. DISCRETIZATION AND PRECONDITIONING

differentiation software can be used to compute the derivatives of the cost functional. This simplifies
the implementation of the code but the drawback is that such software usually requires more storage
and CPU time with respect to a handwritten code.
In general the choice between the two strategies has been, and remains, more a matter of taste,
then a result made on the basis of clear advantages possessed by one approach over the other. Both
strategies have been used with great success. A more detailed analysis of the two strategies can be
found in [13].

Our choice was to implement a differentiate-then-discretize approach because our analysis is
oriented towards a theoretical approach. We are interested in deriving the differential forms of the
adjoints and of the derivatives of the cost functional in order to be able to point out the differences
between the various choices for the cost functional.

2.1.2 The Finite Elements Approximation of the Problem

We consider a regular triangulation Th of the domains Ω̄1 and Ω̄2, depending on a positive pa-
rameter h > 0, made up of non overlapping triangles K. We set hK = diam(K),∀K ∈ Th where
diam(K) = maxx,y∈K |x−y | is the diameter of the element K, we define h = maxK∈ThhK . Moreover
we assume the grid to be regular and quasi uniform (see [14]).
We assume that the triangulations T 1

h and T 2
h induced on the subdomains Ω1 and Ω2 are compatible

on the overlapping region Ω12, that is they share the same triangles therein.

We denote by Pr the space of polynomials of global degree less or equal to r , for r = 1, 2, ...:

Pr =
{
p(x1, x2) =

∑
i ,j≥0,i+j≤r

ai jx
i
1x
j
2 with ai j ∈ R

}
.

We introduce on each domain Ω1 and Ω2 the spaces of finite elements:

Xr,ih =
{
vh ∈ C0(Ωi) : vh|K ∈ Pr ∈ T ih

}
r = 1, 2, ... i = 1, 2.

Moreover we define
◦
Xr,ih =

{
vh ∈ Xr,ih : vh|ΓDi = 0

}
.

The spaces Xr,ih and
◦
Xr,ih are a suitable approximation of H1(Ωi) and H1

ΓDi
(Ωi), i = 1, 2.

We set V ih =
◦
Xr,ih .

In a generic domain Ω, each function vh ∈ Vh is characterized univocally by the values it takes in
the nodes N j , (j = 1, ...Nh, where Nh is the total number of nodes of the grid Th, excluding the
boundary nodes where vh = 0). A basis on the space Vh can be the set of characteristic Lagrangian
functions ψj ∈ Vh, j = 1, ..., Nh such that

ψk(N j) = δjk =

{
0 j 6= k

1 j = k,
j, k = 1, ..., Nh.
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A general function vh ∈ Vh can be expanded as a linear combination of the basis functions of Vh in
the following way:

vh(x) =

Nh∑
k=1

vkψk(x) ∀x ∈ Ω, vk = vh(Nk).

The Discretization of the Primal Problems

We want to introduce the Galerkin formulation of the problems that depend on the data (1.27).
We first have to explain how we treat the Dirichlet boundary data in the discretized problem. The
functions Ψ1

D and Ψ2
D are assigned on the Dirichlet boundary of Ω1 and Ω2, respectively. For

i = 1, 2, we denote by N ih the internal nodes of the grid T ih and by Nt,ih the total number of nodes,
thus including the boundary nodes that we suppose to be numbered last. {Nb,ij , j = N ih + 1, ...Nt,ih }
is the set of boundary nodes.
The extension of the Dirichlet boundary data is constructed as follows:

Rih ∈ Xr,ih : Rih(x) =

Nt,ih∑
k=N ih+1

Ψi
D(Nk)ψk(x) ∀x ∈ Ωi , i = 1, 2.

We are now ready to write the finite elements formulation of problems (1.27): for i = 1, 2, find
◦
ϕh

if
∈ V ih so that

∫
Ωi

∇ ◦
ϕh

if
∇ψh =

∫
Ωi

f iψh +

∫
∂Ωi

Ψi
Nψh −

∫
∂Ωi

∇Rih∇ψh ∀ψh ∈ V ih .

The approximate solution will then be provided by ϕhif =
◦
ϕh

if
+ Rh, i = 1, 2.

Expressing the discrete solution
◦
ϕh

if
, i = 1, 2, in terms of the basis {ψj}, in the following way

◦
ϕh

if
=

N ih∑
k=1

◦
ϕk

if
ψk(x) with

◦
ϕk

if
=
◦
ϕh

if
(Nk) k = 1, ..., N ih, i = 1, 2,

we obtain, for j = 1, ..., Nh, the following linear system of N ih equations in the N ih unknowns
◦
ϕk

if
:

N ih∑
k=1

◦
ϕk

if
∫

Ωi

∇ψk∇ψj =

N ih∑
k=1

f ik

∫
Ωi

ψkψj +

N ih∑
k=1

Ψi
N,k

∫
∂Ωi

ψ̂k ψ̂j −
Nt,ih∑

k=Nh+1

Ψi
D,k

∫
Ωi

∇ψ̂k∇ψj ,

where we defined as {ψ̂j} the analogous basis functions on the boundary.
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We introduce the following matrices and vectors: for i = 1, 2

Ci = [c ijk ] ∈ RN ih×N ih with c ijk =

∫
Ωi

∇ψk∇ψj

ϕfi = [
◦
ϕj
i f

] ∈ RN ih×1 with
◦
ϕj
i f

=
◦
ϕ
i f

(N j)

Mi = [mi
jk ] ∈ RN ih×N ih with mi

jk =

∫
Ωi

ψkψj

f i = [f ij ] ∈ RN ih×1 with f ij = f i(N j)

Ni = [nijk ] ∈ RN ih×N
N,i
h with nijk =

∫
ΓNi

ψ̂kψj

ΨN,i = [Ψi
N,j ] ∈ RN

N,i
h ×1 with Ψi

N,j = Ψi
N(N j)

Di = [d ijk ] ∈ RN ih×N
b,i
h with d ijk =

∫
Ωi

∇ψ̂k+N ih
∇ψj

ΨD,i = [Ψi
D,j ] ∈ RN

b,i
h ×1 with Ψi

D,j = Ψi
D(N j)

where, for i = 1, 2, we defined as NN,ih the total number of nodes on ΓNi .
The discretization of problems (1.27) can be written as the following linear problem: for i = 1, 2,
find ϕfi so that

Ciϕ
f
i = Mi f i + NiΨN,i −DiΨD,i . (2.1)

We remark that the discretization of the problem depending on the data is independent of the
choice of the space for the virtual controls (Dirichlet or Neumann controls), since the boundary data
imposed on Γ1 and Γ2 are homogeneous in both cases.

We proceed in an analogous way for the discretization of problems (1.26) depending on the sole
controls (λ1, λ2). We define

λi = [λi ,j ] ∈ RN
Γi
h ×1 with λi ,j = λi(N j),

and

ϕλi = [
◦
ϕj
i ,λi

] ∈ RN ih×1 with
◦
ϕj
i ,λi

=
◦
ϕ
i ,λi

(N j),

where NΓih , (i = 1, 2) is the number of nodes on Γ1 and Γ2.
If the controls correspond to a Neumann boundary condition, for each interface, we introduce the
matrix

NΓi = [nΓijk ] ∈ RN ih×N
Γi
h with nΓijk =

∫
Γi

ψ̂kψj ,

so that the discretization of the problems reads as: for i = 1, 2, find ϕλi so that

Ciϕ
λ
i = NΓiλi , (2.2)

whereas if the controls correspond to a Dirichlet boundary condition we need to introduce

DΓi = [dΓijk ] ∈ RN ih×N
Γi
h with dΓijk =

∫
Ωi

∇ψ̂k∇ψj ,

so that the discretization of the problems reads as: for i = 1, 2, find ϕλi so that

Ciϕ
λ
i = −DΓiλi . (2.3)
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We remark that in the case of Neumann boundary controls, the nodes where the controls are
computed are part of the unknowns of the state problem. In the case of Dirichlet boundary controls,
the nodes on the control interfaces are not part of the internal nodes of the primal problem, and an
extension of the controls has to be computed, through the matrices DΓi , i = 1, 2.

The Discretization of the Dual Problems

The discretization of the dual problems is formulated in an analogous way.
We observe that all the dual problems of the optimality systems presented in the previous section
are of the following form: for i = 1, 2, find Ψi ∈ H1

ΓDi
(Ωi) so that:

−∇ · (K∇Ψi) = f i in Ωi

K∇Ψi · ni = gΓNi
on ΓNi

Ψi = 0 on ΓDi ,

(2.4)

with the following boundary condition on the control interface:

Ψi = 0 on Γi ,

if we are considering Dirichlet boundary controls, or with

K∇Ψi · ni = gΓi on Γi ,

if considering Neumann boundary controls.
We denoted the forcing term through a generic function f i which varies according to which cost
functional we are minimizing. The same is valid for the boundary data gΓNi and gΓi .

For i = 1, 2, the weak formulation of problems (2.4) reads as: find Ψi ∈ H1
ΓDi

(Ωi) such that∫
Ωi

∇Ψi∇ψ =

∫
Ωi

f iψ +

∫
ΓNi

gΓNi ψ ∀ψ ∈ H1
ΓDi

(Ωi)

if (λ1, λ2) ∈ ΛDi and as: find Ψi ∈ H1
ΓDi

(Ωi) such that∫
Ωi

∇Ψi∇ψ =

∫
Ωi

f iψ +

∫
ΓNi

gΓNi
ψ +

∫
Γi

gΓiψ ∀ψ ∈ H1
ΓDi

(Ωi)

if (λ1, λ2) ∈ ΛNi . Since the Dirichlet data of the problem is always homogeneous there is no need to
split the solution as the sum of two terms as in (1.29).

We can define the following linear functionals on H1
ΓDi

(Ωi): for i = 1, 2,

FDi (ψ) =

∫
Ωi

f iψ +

∫
ΓNi

gΓNi
ψ ∀ψ ∈ H1

ΓDi
(Ωi),

FNi (ψ) =

∫
Ωi

f iψ +

∫
ΓNi

gΓNi ψ +

∫
Γi

gΓiψ ∀ψ ∈ H1
ΓDi

(Ωi),



38 CHAPTER 2. DISCRETIZATION AND PRECONDITIONING

corresponding, respectively, to Dirichlet and Neumann controls.

The finite elements approximation of the generic dual problem reads as follows: for i = 1, 2,
find Ψi

h ∈ V ih such that ∫
Ωi

∇Ψi
h∇ψh = Fi(ψh) ∀ψh ∈ V ih , (2.5)

where Fi is either equal to FDi or to FNi according to the choice of the space in which we seek the
virtual controls.

As we did when discretizing the primal problem, for i = 1, 2 we can reformulate the solution ψi as
decomposed on the Lagrangian basis {Ψj}, j = 1, ..., Nh in the following way

Ψi
h =

N ih∑
k=1

Ψi
kψk(x) with Ψi

k = Ψi
h(N ik) k = 1, ..., Nh,

and substituting these expressions in (2.5) we obtain the following linear systems:

CiΨi = f i , (2.6)

where

Ci = [c ijk ] ∈ RN ih×N ih with c ijk =

∫
Ωi

∇ψk∇ψj

Ψi = [Ψi
j ] ∈ RN

i
h×1 with Ψi

j = Ψ(N ij)

and the vectors f i ∈ RN
i
h×1 assume a form that we will specify according to the different cost

functionals.

We now want to specify the form assumed by the right hand side and the Neumann boundary data of
the different dual problems according to which cost functional is being minimized. We will write the
explicit forms of the linear functionals FD(ψ) and FN(ψ) and introduce the matrices and vectors
needed for their finite element approximations. As usual we will proceed following the order of
the four different cost functionals considered in the previous section. For the sake of simplicity
we consider only the duals of the state problems depending on the sole controls (1.26). As a
further simplification we focus our analysis on the problems corresponding to domain Ω1. It is clear,
from section 1.2.3, that the formulations corresponding to the problems depending on the data
will be analogous and that the formulations corresponding to the second domain Ω2 differ only in
sign.

Before proceeding in this analysis we introduce the matrices that we will use in the following part of
this section. We observe that all the data that appear on the right hand side of the dual problems
are multiplied by the characteristic function of the overlapping domain: χ12. For this reason it is
clear that we need to identify the nodes of the triangulation corresponding to the overlap Ω12. We
denote this set of nodes as {N12

j , j = 1...N12
h }, where we indicated as N12

h the total number of nodes
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on the overlap. We need to consider the following matrices: for i = 1, 2,

C12
i = [c12,i

jk ] ∈ RN ih×N ih with c12,i
jk =

∫
Ωi

χ12(∇ψk∇ψj)

M12
i = [m12,i

jk ] ∈ RN ih×N ih with m12,i
jk =

∫
Ωi

χ12(ψkψj)

N12
i = [n12,i

jk ] ∈ RN ih×N
N12,i
h with n12,i

jk =

∫
ΓNi ∩∂Ωi

χ12(ψk ψ̂j),

where NN12,i
h indicates the number of nodes on the boundary (∂Ωi ∩ ∂Ω12) ∩ ΓNi . Since the basis

functions that appear in the previous integrals are multiplied by the characteristic function of the
overlap, the matrices C12

i and M12
i will have non null entries only in correspondence of the rows and

columns associated to the vector of nodes N12. The same holds for matrix N12
i whose non null

entries will be in correspondence of the nodes belonging simultaneously to the Neumann boundary
of the domain taken into consideration and to the boundary of the overlap.

Minimization in the L2(Ω12) norm In this case the data of the dual problem (1.41) assume the
following form:

f = χ12(ϕ1,λ1 − ϕ2,λ2 ),

gΓN = 0,

gΓ = 0,

So that

FD(ψ) = FN(ψ) =

∫
Ω1

χ12(ϕ1,λ1 − ϕ2,λ2 )ψ ∀ψ ∈ H1
ΓD

(Ω1).

It is straightforward to deduce that the algebraic formulation of this term, which goes on the
right hand side of the linear system (2.6) is

f 1 = M12
1 ϕ

1,λ1 −M12
1 ϕ

2,λ2 .

Minimization in the H1
0(Ω12) norm Referring to problem (1.49) if we consider Dirichlet boundary

controls and to problem (1.54) if we consider Neumann boundary controls, we observe that in
this case the data imposed on the dual problem are:

f = −∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )),

gΓN = (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1,

gΓ = (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1.

Consequently the linear functionals appearing in the weak formulation of the dual problem
assume the following form:

FD(ψ) =−
∫

Ω1

∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ))ψ

+

∫
ΓN1

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1ψ ∀ψ ∈ H1
ΓD

(Ω1),
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FN(ψ) =−
∫

Ω1

∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ))ψ

+

∫
ΓN1 UΓ1

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1ψ ∀ψ ∈ H1
ΓD

(Ω1).

By integration by parts we obtain that

FD(ψ) =

∫
Ω1

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ))∇ψ −
∫
ΓN1

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1ψ

+

∫
ΓN1

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1ψ

=

∫
Ω1

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ))∇ψ ∀ψ ∈ H1
ΓD

(Ω1),

for what concerns the problem deriving from the use of Dirichlet boundary controls, and
analogously we obtain that

FN(ψ) =

∫
Ω1

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ))∇ψ −
∫
ΓN1 UΓ1

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1ψ

+

∫
ΓN1 UΓ1

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1ψ

=

∫
Ω1

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ))∇ψ = FD(ψ) ∀ψ ∈ H1
ΓD

(Ω1),

for what concerns the problem deriving from the use of Neumann boundary controls.
We see how the contribution deriving from the boundary terms is canceled when considering
the weak formulation of the problem. We can write the algebraic formulation of this term
using matrix C12:

f 1 = C12
1 ϕ

1,λ1 − C12
1 ϕ

2,λ2 .

Minimization in the H1(Ω12) norm Now the data of the dual problem is as follows:

f = χ12(ϕ1,λ1 − ϕ2,λ2 )−∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )),

gΓN = (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1,

gΓ = (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1,

By linear combination of the previous results we obtain:

FD(ψ) =

∫
Ω1

χ12(ϕ1,λ1 − ϕ2,λ2 )ψ −
∫

Ω1

∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ))ψ

+

∫
ΓN1

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1ψ ∀ψ ∈ H1
ΓD

(Ω1).

FN(ψ) =

∫
Ω1

χ12(ϕ1,λ1 − ϕ2,λ2 )ψ −
∫

Ω1

∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ))ψ

+

∫
ΓN1 UΓ1

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1ψ ∀ψ ∈ H1
ΓD

(Ω1).
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Again, by integration by parts we obtain:

FD(ψ) =

∫
Ω1

χ12(ϕ1,λ1 − ϕ2,λ2 )ψ −
∫

Ω1

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ))∇ψ ∀ψ ∈ H1
ΓD

(Ω1).

FN(ψ) =

∫
Ω1

χ12(ϕ1,λ1−ϕ2,λ2 )ψ−
∫

Ω1

(χ12(∇ϕ1,λ1−∇ϕ2,λ2 ))∇ψ = FD(ψ) ∀ψ ∈ H1
ΓD

(Ω1),

and this term is discretized as

f 1 = M12
1 ϕ

1,λ1 −M12
1 ϕ

2,λ2 + C12
1 ϕ

1,λ1 − C12
1 ϕ

2,λ2 .

Minimization in an augmented H1
0(Ω12) norm We now refer to problems (1.59) and (1.64). This

is the data assigned to dual problems:

f = −∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )),

gΓN = (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1 + χ12(ϕ1,λ1 − ϕ2,λ2 ),

gΓ = (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1,

so that we obtain the following linear functionals

FD(ψ) =−
∫

Ω1

∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ))ψ

+

∫
ΓN1

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1ψ

+

∫
ΓN1

χ12(ϕ1,λ1 − ϕ2,λ2 )ψ ∀ψ ∈ H1
ΓD

(Ω1),

FN(ψ) =−
∫

Ω1

∇ · (χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ))ψ

+

∫
ΓN1 UΓ1

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 )) · n1ψ

+

∫
ΓN1

χ12(ϕ1,λ1 − ϕ2,λ2 )ψ ∀ψ ∈ H1
ΓD

(Ω1).

By integration by parts

FD(ψ) =−
∫

Ω1

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ))∇ψ

+

∫
ΓN1

χ12(ϕ1,λ1 − ϕ2,λ2 )ψ ∀ψ ∈ H1
ΓD

(Ω1),

FN(ψ) =−
∫

Ω1

(χ12(∇ϕ1,λ1 −∇ϕ2,λ2 ))∇ψ

+

∫
ΓN1

χ12(ϕ1,λ1 − ϕ2,λ2 )ψ = FD(ψ) ∀ψ ∈ H1
ΓD

(Ω1).

Now we still have a contribution from the boundary on the right hand side of the weak
formulation of the problem. The algebraic formulation of the right hand side is now:

f 1 = C12
1 ϕ

1,λ1 − C12
1 ϕ

2,λ2 + N12
1 ϕ

1,λ1 |ΓN1 ∩∂Ω12
− N12

1 ϕ
2,λ2 |ΓN1 ∩∂Ω12

.
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The Discretization of the Optimality Conditions

Once again we will follow the order of the previously introduced cost functionals. In order to
discretize the partial derivatives of the objective functional we do not need to introduce any new
matrix. In order to simplify the notation we refer again to domain Ω1 and to the quadratic part of
the cost functional, that depends only on the virtual controls.

Minimization in the L2(Ω12) norm In the case of Dirichlet controls the partial derivatives assume
the following algebraic form:

−DTΓ1
Ψ1,

while in the case of Neumann boundary controls we have that

NTΓ1
Ψ1.

Minimization in the H1
0(Ω12), H1(Ω12) and H1

0(Ω12) norm In this case we obtain, for Dirichlet
and Neumann controls respectively, the following expressions

−DTΓ1
Ψ1 +DTΓ1

(ϕ1,λ1 − ϕ2,λ2 ),

NTΓ1
Ψ1.

When adding a penalization term to the cost functional (see (1.24)), a term is added to the optimality
conditions. To introduce the algebraic discretization of this term we need to define , for i = 1, 2,
the following interface mass matrices

MΓi = [mΓi
jk ] ∈ RN

Γi
h ×N

Γi
h with mΓi

jk =

∫
Γi

(ψ̂k ψ̂j).

The penalization term is added to the optimality condition related to the dual problem that depends
only on the virtual controls, and not on the given data of the problem. This term has, for i = 1, 2,
the form βMΓ1λi .

In the following pages we report, in Table 2.1 and Table 2.2, the algebraic formulations of the
optimality systems that we introduced. The first table refers to Dirichlet virtual controls and
the second table to Neumann virtual controls. In both tables, we vary the choice of the cost
functional that is being minimized. In order to give an exhaustive description we consider, for
each cost functional, the penalized case. The non penalized case can be easily obtained setting
β1 = β2 = 0.

The Discretization of the Scalar Elliptic Problem

When solving the state problems of the form (1.69) one should consider the discretization of the mass
term αϕi , for i = 1, 2. The formulations of the primal problems and of the adjoints will be modified
by taking this term into account. The optimality conditions are unaltered. The discretization of state
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problems depending on the data (2.1), and of the state problems depending on the sole controls, for
both Neumann (2.2) and Dirichlet (2.3) boundary controls, read as follows: for i = 1, 2

Miϕ
f
i + Ciϕ

f
i = Mi f i + NiΨN,i − D̃iΨD,i ,

Miϕ
λ
i + Ciϕ

λ
i = NΓiλi ,

Miϕ
λ
i + Ciϕ

λ
i = −D̃Γiλi ,

where Mi is the mass matrix assembled on Ωi , for i = 1, 2, while the matrices responsible of the
lifting of the Dirichlet boundary conditions D̃i and D̃Γi are now defined as

D̃i = [d ijk ] ∈ RN ih×N
b,i
h with d ijk =

∫
Ωi

ψ̂k+N ih
ψj +

∫
Ωi

∇ψ̂k+N ih
∇ψj

D̃Γi = [dΓijk ] ∈ RN ih×N
Γi
h with dΓijk =

∫
Ωi

ψ̂kψj +

∫
Ωi

∇ψ̂k∇ψj ,

where for all the notations one should refer to the section on the discretization of the problem in
the case of the Poisson equation. For what concerns the discretization of the dual problems, the
generic form of the linear system associated to the adjoint (2.6) now reads as

MiΨi + CiΨi = f i ,

2.2 Solution Algorithms

We have derived for each model a system of partial differential equations whose solution leads to
the optimal controls (λ1, λ2), the optimal states (ϕ1, ϕ2) and the optimal adjoint states (Ψ1,Ψ2).
One cannot solve the state systems independently since the boundary conditions (λ1, λ2) are not
known. Similarly, one cannot solve the adjoint systems independently because the states (ϕ1, ϕ2)

that appear in the forcing terms are not known and one cannot solve the optimality conditions
because the adjoint variables (Ψ1,Ψ2) are not known. Otherwise said, the optimality system is fully
coupled.

In what follows we will describe three different approaches for the solution of the discretized optimality
systems presented in Table 2.1 and in Table 2.2. All the three approaches have been implemented
in our code, and all converge to the same finite elements solution. Differences, advantages and
disadvantages of one approach over the other will be pointed out when describing the results obtained
with the numerical simulations.

2.2.1 Solving the Extremality Equation: Iterative Algorithm

We iterate between the equations in the optimality system in order to find the couple of controls
(λ1, λ2) that minimize the cost functional. We aim to solve ∇J = ∇J0 +∇A = 0, where

〈∇J0, (µ1, µ2)〉 = (〈
∂J0

∂λ1
, µ1〉, 〈

∂J0

∂λ2
, µ2〉),

〈∇A , (µ1, µ2)〉 = (〈
∂A

∂λ1
, µ1〉, 〈

∂A

∂λ2
, µ2〉).
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Given an initial guess for the control variables we solve the state equations, then we solve the
adjoints, then through the optimality condition we obtain a new approximation of the controls. The
process is repeated until satisfactory convergence is achieved. It can be shown that this simple
iterative method is equivalent to a steepest descent algorithm (with a fixed step size) for the cost
functional (see [15]).

In the initialization part we compute the term that depends on the data of the problem ∇A , as
follows:

1. compute ϕ1,f and ϕ2,f ;

2. compute Ψ̃1 and Ψ̃2;

3. compute ∇A .

In the main loop we solve by an iterative method the linear system ∇J0(λ1, λ2) = −∇A . We
choose the Bi-CGStab algorithm, because the matrix J0(λ1, λ2) is non symmetric in the case of
Dirichlet virtual controls (for a detailed description of the solution of linear systems with Bi-CGStab
see [16]). We start with an initial guess for the virtual controls (λ0

1, λ
0
2) and at the generic iteration

k we:

1. compute ϕ1,λ1 and ϕ2,λ2 ;

2. compute Ψ1 and Ψ2;

3. compute ∇J0(λk1, λ
k
2).

The method stops when the relative increment between two consecutive iterates (λk1, λ
k
2) and

(λk−1
1 , λk−1

2 ) is lower than a certain tolerance.

The gradients of the cost functional ∇A and ∇J0 are computed in the weak form, but we are
looking for the controls variables in the strong form. The gradient of the cost functionals lives on
the interfaces Γ1 and Γ2, so we want to multiply it by the inverse of the interface mass matrix.
Moreover, the gradient is a bidimensional vector, so we need to constuct the following mass matrix,
associated to both the interfaces of the problem:

MΓ =

[
MΓ1 0

0 MΓ2

]
We multiply ∇A by M−1

Γ and the same is implemented for ∇J0 at each iteration of the main
loop.

This is the algorithm that was first implemented and it was used to test the theoretical model and
the theoretical results.

2.2.2 A Descent Method

Another approach consists of directly minimizing the functional, using its gradient as a direction
of descent. The step length can be automatically selected by the algorithm, for example using the
Armijo Rule. The gradient algorithm for this method reads as follows:
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initialization:

1. choose τ , α : 0 < α < 1 and (λ0
1, λ

0
2). Set k = 0, s = 1;

2. solve the non homogeneous problems (1.27) to compute ϕ1,f and ϕ2,f ;

3. solve the dual problems of (1.27) to compute Ψ̃1 and Ψ̃2;

4. compute ∇A ;

5. solve the homogeneous problems (1.26) with (λ0
1, λ

0
2) to compute ϕλ

0
1 and ϕλ

0
2 ;

6. compute ϕ1,0 = ϕλ
0
1 + ϕ1,f and ϕ2,0 = ϕλ

0
2 + ϕ2,f ;

7. evaluate J0(ϕ1,0, ϕ2,0);

main loop:

1. set k = k + 1;

2. solve the dual problems of (1.26) with (ϕλ
k−1
1 , ϕλ

k−1
2 ) to compute (Ψ1,k ,Ψ2,k);

3. evaluate ∇Jk = ∇(J0k + A );

4. update 〈(λk1, λk2), (µ1, µ2)〉 = 〈(λk−1
1 , λk−1

2 ), (µ1, µ2)〉 − s〈( ∂(J0+A )
∂λ1

, ∂(J0+A )
∂λ2

), (µ1, µ2)〉;

5. solve the homogeneous problems (1.26) with (λk1, λ
k
2) to compute ϕλ

k
1 and ϕλ

k
2 ;

6. compute ϕ1,k = ϕλ
k
1 + ϕ1,f and ϕ2,k = ϕλ

k
2 + ϕ2,f ;

7. evaluate Jk(ϕ1,k , ϕ2,k);

8. if Jk ≥ Jk−1 set s = αs and go to step (4); otherwise, continue;

9. if |J
k−Jk−1|
|Jk | > τ set s = α−1s and go to step (1); otherwise, stop;

The bulk of the computational costs are found in the solution of the state equations and of the
adjoint problems (steps (2) and (5) of the main loop). Steps (8) and (9) define the automatic step
length determination sub-algorithm.

This algorithm was not used for in our work. The criterion used for the choice of the step length
is not optimal and its behavior varies according to the different problems that we considered. A
further analysis could lead to the definition of descent methods that work better than the one that
we presented. Inspecting the various possibilities for the minimization algorithm was not the main
goal of this work, so we did not further investigate this aspect.

2.2.3 The One-Shot Approach

In the so-called one-shot approach one constructs a global linear system whose solution gives
simultaneously the optimal controls, the adjoint variables and the state variables.

The motivation of this approach derives from the need to speed up the convergence of the solution
of the problem. As we will see in chapter 3, concerning the numerical results, the number of loops
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needed to achieve convergence iterating between the equations is excessively high, and this number
increases with the refinement level of the mesh.

We constructed the global linear system in order to be able to study a preconditioner for the global
matrix. The issue of preconditioning a problem that derives from optimization is analyzed in literature
following the one shot approach (a preconditioner for the martix deriving from an optimality system
is studied).

The assembling of the global matrix will be presented in section 2.3, where the preconditioning issue
is analyzed.

2.2.4 A Comparison Between the Solution Algorithms

We now discuss some advantages and disadvantages of the minimization algorithms that have been
previously introduced. The iterative algorithm for the solution of the extremality equation and the
descent method follow the same approach in which the state problem, the adjoint problem and the
optimality condition (solve ∇J = 0 in the first case and minimizing functional J in the direction of
∇J in the second case) are handled independently. In the one shot approach the solution is obtained
by a single solve of the optimality system.

In general, the one shot approach is more straightforward but it can be difficult to implement in the
case of complicated problems (e.g. for the Stokes equations we would obtain a very big matrix).
In some cases just solving for the state problem may involve a high number of variables or a non
linearity. In these circumstances an optimization algorithm is to be preferred. Moreover, the global
system is almost always solved by an iterative method and the number of iterations needed to achieve
convergence is often significantly higher than the number of iterations needed by the first iterative
method and the descent approach. A preconditioner for the global matrix is indispensable.

We implemented the first method where the extremality equation is solved by an iterative algorithm
and the one shot approach successfully. The first approach is preferable when one is not interested
in preconditioning the problem: the number of iterations needed to achieve convergence is smaller
than the one needed by a non preconditioned iterative method used for the solution of the global
system. As said before, we used this method to test the theoretical model in our first simulations.
The second approach allowed us to investigate the issue of preconditioning.

2.3 Preconditioning the Optimality System

The matrix deriving from an optimization problem is usually ill conditioned, so any iterative algorithm
for the solution of the linear system has to be preconditioned to assure a satisfactory convergence
rate. The issue of preconditioning the matrix of an optimality system is an open subject of research
and many approaches have been proposed in the past years. Most of our difficulties will derive
from the fact that we are treating a coupled problem and that the observation is restricted to Ω12,
subdomain of both Ω1 and Ω2.
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In this section we will analyze different approaches of preconditioning. We will take in consideration
both the theoretical results concerning the preconditioning of optimization problems and the
theoretical results concerining the preconditioning of domain decomposition problems. We start by a
description of the theoretical setting.

2.3.1 The Optimality System as a Global Linear System

We started our analysis motivated by the work on preconditioners for the solution of optimization
problems presented in [17]. For this reason, in this section, we will follow some of the choices that
have been made in this work:

• the solutions of the state problems (1.18) are no longer split in a part depending on the
controls and in a part depending on the data, so from now on we will refer to the global
solutions ϕ1 and ϕ2;

• the cost functional minimized over the overlapping region is

JL2 (λ1, λ2) =
1

2

∫
Ω

χ12(ϕ1 − ϕ2)2 +
1

2
β1

∫
Γ1

λ2
1 +

1

2
β2

∫
Γ2

λ2
2.

We remark that the penalization term is present in this choice for the cost functional (we will
also consider the non penalized case, when setting β1 = β2 = 0);

• the control variables are imposed as a Neumann boundary condition: (λ1, λ2) ∈ ΛN .

We first present a brief summary of the problem setting.The problems satisfied by the global solutions
of the optimality system (ϕ1 and ϕ2) can be obtained by linear combination of the problems that
have been considered in the previous sections. The same holds for the solutions of the dual problems
and of the optimality conditions; we give here their differential and algebraic formulation.

The state problems on Ω1 and Ω2, respectively, are the following:
find ϕ1 ∈ H1(Ω1) so that 

−∇ · (K∇ϕ1) = f 1 in Ω1

K∇ϕ1 · n1 = Ψ1
N on ΓN1

ϕ1 = Ψ1
D on ΓD1

K∇ϕ1 · n1 = λ1 on Γ1,

(2.7)

and find ϕ2 ∈ H1(Ω2) so that
−∇ · (K∇ϕ2) = f 2 in Ω2

K∇ϕ2 · n2 = Ψ2
N on ΓN2

ϕ2 = Ψ2
D on ΓD2

K∇ϕ2 · n2 = λ2 on Γ2,

(2.8)

where λ1 and λ2 are the solutions of the minimization problem

inf JL2 (λ1, λ2),
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with

JL2 (λ1, λ2) =
1

2

∫
Ω

χ12(ϕ1 − ϕ2)2 +
β1

2

∫
Γ1

λ2
1 +

β2

2

∫
Γ2

λ2
2.

As previously said, this is the only cost functional that will be considered in this section so from now
on we will refer to JL2 (λ1, λ2) as J(λ1, λ2).
The derivatives of the cost functional assume the form:

〈
∂J

∂λ1
, µ1〉 =

∫
Ω

χ12(ϕ1 − ϕ2)ϕµ1 + β1

∫
Γ1

λ1µ1,

〈
∂J

∂λ2
, µ2〉 = −

∫
Ω

χ12(ϕ1 − ϕ2)ϕµ2 + β2

∫
Γ2

λ2µ2.

We introduce the dual problems:
find ϕ1 ∈ H1(Ω1) so that

−∇ · (K∇Ψ1) = −χ12(ϕ1 − ϕ2) in Ω1

K∇Ψ1 · n1 = 0 on ΓN1
Ψ1 = 0 on ΓD1

K∇Ψ1 · n1 = 0 on Γ1,

(2.9)

find ϕ2 ∈ H1(Ω2) so that
−∇ · (K∇Ψ2) = χ12(ϕ1 − ϕ2) in Ω2

K∇Ψ2 · n2 = 0 on ΓN2
Ψ2 = 0 on ΓD2

K∇Ψ2 · n2 = 0 on Γ2.

(2.10)

We remark that the formulation of the couple of dual problems is similar to (1.41) and (1.44). In
the definition of the forcing terms we find the global solutions of the dual problems, instead of the
solutions of the problems depending on the sole controls. Moreover we remark that the sign of
the forcing term is inverted with respect to the previous formulation. This is again to follow the
approach of [17]; this choice implies a different sign in the formulation of the optimality conditions,
but apart from this the global formulation of the optimality system is equivalent to the previous one.
The optimality conditions read as follows:

−
∫
Γ1

Ψ1µ1 + β1

∫
Γ1

λ1µ1 = 0 ∀µ1 ∈ ΛN1 , (2.11)

−
∫
Γ2

Ψ1µ2 + β2

∫
Γ2

λ2µ2 = 0 ∀µ2 ∈ ΛN2 . (2.12)

After introducing the weak formulation of the optimality system and its finite elements approximation,
we can rewrite the state equations, the dual problems and the optimality conditions as discrete linear
systems as follows:
the state equations

C1ϕ1 − NΓ1λ1 = M1f 1 + N1ΨN,1 −D1ΨD,1 = d1 (2.13)

C2ϕ2 − NΓ2λ2 = M2f 2 + N2ΨN,2 −D2ΨD,2 = d2 (2.14)
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the dual problems
C1Ψ1 +M12

1 ϕ1 −M12
2 ϕ2 = 0 (2.15)

C2Ψ2 −M12
1 ϕ1 +M12

2 ϕ2 = 0 (2.16)

the optimality conditions
−NTΓ1

Ψ1 + β1MΓ1λ1 = 0 (2.17)

−NTΓ2
Ψ2 + β2MΓ2λ2 = 0 (2.18)

After reordering the equations the global problem can be formulated as follows:



β1MΓ1 0 0 0 −NTΓ1
0

0 β2MΓ2 0 0 0 −NTΓ1

0 0 M12
1 −M12

2 C2 0
0 0 −M12

1 M12
2 0 C2

−NΓ1 0 C1 0 0 0
0 −NΓ2 0 C2 0 0





λ1

λ2

ϕ1

ϕ2

Ψ1

Ψ2


=



0

0

0

0

d1

d2


, (2.19)

where the equations that define the optimality system have been written in the following order:
optimality conditions, dual problems, state problems.

Because of the symmetry of the problem we take β1 = β2 = β. In order to write the system in a
more compact form we define the following matrices:

MΓ =

[
MΓ1 0
0 MΓ2

]
∈ R(N

Γ1
h +N

Γ2
h )×(N

Γ1
h +N

Γ2
h ),

M12 =

[
M12

1 −M12
2

−M12
2 M12

1

]
∈ R(N1

h+N2
h )×(N1

h+N2
h ),

E =

[
NΓ1 0
0 NΓ2

]
∈ R(N1

h+N2
h )×(N

Γ1
h +N

Γ2
h ),

K =

[
C1 0
0 C2

]
∈ R(N1

h+N2
h )×(N1

h+N2
h ),

and the following vectors

λ =

[
λ1

λ2

]
R(N

Γ1
h +N

Γ2
h )×1, ϕ =

[
ϕ1

ϕ2

]
∈ R(N1

h+N2
h )×1, Ψ =

[
Ψ1

Ψ2

]
∈ R(N1

h+N2
h )×1.

Now we rewrite (4.29) as βMΓ 0 −ET

0 M12 KT

−E K 0


λϕ

Ψ

 =

0

0

d

 . (2.20)
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We observe that the coupled optimality system has now the form of a generic optimality system.
We hid the contributions of the variables corresponding to the two different domains Ω1 and Ω2

and we refer now to one control, one state and one adjoint variable. The block responsible of the
coupling between the two problems is the mass matrix M12 assembled on the overlap Ω12.

The matrix is symmetric indefinite and has a saddle-point structure of the form

A =

[
A BT

B −C

]
, (2.21)

where A =

[
βMΓ 0
0 M12

]
, B =

[
−E K

]
, C = 0.

We have proved the well posedness of the differential optimality system and the matrix A derives
from the Galerkin approximation of the differential problem. This is sufficient to guarantee the non
singularity of the matrix A, so that the system (2.20) admits a unique solution.

Introducing x = [λ, ϕ]T and x = Ψ, we can write (2.20) in the following generic form:[
A BT

B −C

] [
x

y

]
=

[
0

d

]
. (2.22)

A Brief Analysis of the Numerical Solution of Saddle Point Problems

Linear systems of saddle point type arise in many applications of computational science and
engineering (for example, fluid and solid mechanics and optimization). Many methods and results
on the numerical solution of saddle point problems have been proposed, although many of these
solvers have been developed with respect to specific applications. In fact, when choosing a particular
approach (or developing a new one) understanding the specifics of the problem at hand is essential.
A review of many of these approaches can be found in [18].

Besides the distinction between direct and iterative methods, solution algorithms for generalized
saddle point problems can be subdivided into two categories: segregated and coupled methods.
Segregated methods compute the unknown vectors (x , y in (2.22)) separately. This approach
involves the solution of two linear systems of smaller size (called reduced systems), one for each
variable. Segregated methods can be either direct or iterative, or involve a combination of the two;
for example, one of the reduced systems could be solved with a direct method and the other one
iteratively. The main representative of the segregated approach is the Schur complement reduction.
Coupled methods deal with the system (2.22) as a whole, computing x and y simultaneously and
without making explicit use of the reduced systems. These methods include both direct solvers based
on triangular factorizations of the global matrix A, and iterative algorithms like Krylov subspace
methods applied to the entire system, usually in presence of a preconditioner.
The segregated approach is typical of the domain decomposition: a Schur complement matrix is
constructed and one solves a reduced problem on the sole interface between the separate domains. On
the contrary, in the solution of optimization problems the coupled method is tipically preferred.

Most of the theoretical results concerning the solution of saddle point linear systems are derived
with the assumption that the (1, 1) block of the saddle point matrix (the matrix A in (2.21)) is
nonsingular. This property is not verified in (2.20) because the matrix M12 is singular. This matrix
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Method Required A Required P

CG symmetric positive definite symmetric positive definite
MINRES symmetric symmetric definite
GMRES general general
BiCGStab general general

Table 2.3: Summary of Krylov subspace methods.

is assembled on the sole overlapping region of the two domains Ω1 and Ω2, so that all the entries
belonging to the rows and columns corresponding to Ω1\Ω12 and Ω2\Ω12 will be equal to zero. In
(2.20) the matrix A is only positive semidefinite.

We will also consider a different reordering of the equations appearing in (2.20) in order to deal with
a positive definite (1, 1) block. In this case the matrix A will be non symmetric. The fact that the
matrix A is non singular permits different factorizations of the matrix A and these will be used in
the contest of preconditioning.

To solve (2.20), or a reordering of it, we will mainly use Krylov subspace methods. These methods
require to form an orthogonal basis of the sequence of successive matrix powers times the initial
residual (the so called Krylov subsequence). The approximations to the solution are then formed
by minimizing the residual over the subspace formed. The prototypical method in this class is
the conjugate gradient (CG). Other methods that we will use are the generalized minimal residual
method (GMRES), the minimal residual method (MINRES) and the biconjugate gradient stabilized
method (BiCGStab). A detailed analysis of these methods can be found in [19]. The choice of
the solution algorithm is motivated by the properties satisfied by the matrix A, as we can see from
Table 2.3.

An iterative method has to be coupled with a preconditioner to get satisfactory convergence. We
want to find a matrix P for which P−1A has better spectral properties than A (and such that P−1v

is cheap to evaluate for any given vector v). In fact, for symmetric problems, the (worst-case) rate
of convergence of Krylov subspace methods like CG or MINRES depends on the distribution of the
eigenvalues of A. For non-symmetric problems the situation is more complicated, and the eigenvalues
may not describe the convergence of non-symmetric matrix iterations like GMRES or BICGStab.
Nevertheless, a clustered spectrum (away from 0) often results in rapid convergence.

We then solve a symmetric preconditioned system equivalent to

P−1Ax = P−1b.

Generally speaking, there are two approaches to constructing preconditioners. The first is based on
purely algebraic techniques, like incomplete factorizations and sparse approximate inverses. These
preconditioners require little knowledge of the problem at hand and can be applied in a more or
less black-box fashion. When applied to saddle point linear systems these preconditioners are often
found to perform poorly. The second approach develops preconditioners that are tailored to the
particular application at hand. This approach requires knowledge of the specific characteristics of the
problem and the more information one can use, the better the quality of the resulting preconditioner.
The drawback of this approach is that the range of problems that can be treated with a particular
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preconditioner will necessarily be narrow.
For saddle point problems, the construction of high-quality preconditioners requires the exploitation
of the block structure of the problem, together with detailed knowledge of the origin and of the
structure of the various blocks. Because this varies from application to application the choice of the
preconditioner is strongly problem dependent.

In what follows we list the preconditioners that have been implemented and tested in this work. We
will motivate our choices and discuss the advantages and disadvantages of one approach over the
other. The numerical results obtained with our numerical simulations will be presented in section
3.1.2.

2.3.2 A Block Diagonal Preconditioner

The matrix A is symmetric indefinite and can be solved with a preconditioned MINRES algorithm.
Our first approach was to construct a block diagonal preconditoner (as in [17]) of the following
form:

Pd =

[
A 0
0 BA−1BT

]
.

In [20] it is shown that the preconditioned matrix P−1A has exactly two or exactly three distinct
eigenvalues. The drawback of this approach is that it can be shown that the forming the precondi-
tioned system is essentially as expensive as computing the the inverse of A using an appropriate
factorization of the matrix. For this reason, the exact preconditioner needs to be replaced by an
approximation. Moreover the presence of the Schur complement BA−1BT in the (2, 2) block of the
preconditioner implies that A has to be invertible, which is not the case in (2.20). In fact, the block
diagonal preconditioner for A reads as:βMΓ 0 0

0 M12 0
0 0 β−1EM−1

Γ ET +KM−1
12 K

T

 ,
and, as it has been previously remarked, the matrix M12 in not positive definite since most of its
columns and rows are zeros. This problem could be overcome by considering the approximate inverse
of M12 or by inverting its restriction on the indices of the nodes belonging to the overlapping region
and then re-extending the result to the whole domain. However, as we can see from Table 2.3,
MINRES requires a positive definite preconditioner and we need to modify P in order to satisfy
this constraint. In order to deal with a positive definite preconditioner we introduced the following
modifications of the mass matrix assembled on the overlap M12.
We tested the following modifications of M12:

M̃12 = M12 + αI, (2.23)

M̂12 =

[
M1 0
0 M2

]
, (2.24)

where Mi is the mass matrix assembled on the whole domain Ωi , i = 1, 2. M̂12 is the matrix
that would appear in the optimality system if the overlap had been extended to the whole domain
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Ω = Ω1 ∪ Ω2. We refer to the preconditioning matrices in which these modifications have been
implemented as P̃d and P̂d .
Because of the presence of βMΓ in the upper-left part of the precondtioner we observe that this
approach cannot be used in the non penalized case β = 0. The computational cost of the assembling
of this preconditioner is of two solutions of a linear system and two matrix-vector modification.

2.3.3 Gauss-Seidel and Jacobi Preconditioners

We can reorder the equations that constitute the optimality system in order to deal with a positive
definite (1, 1) block. In particular we can interchange the second and the third rows of A in (2.20),
obtaining the following linear system:βMΓ 0 −ET

−E K 0

0 M12 KT

λϕ
Ψ

 =

0

d

0

 . (2.25)

The matrix associated to this linear system also has a saddle point structure

Ã =

[
Ã D̃

B̃ −C̃

]
,

where

Ã = βMg, B̃ =

[
−E

0

]
, C̃ =

[
−K 0

−M12 −KT

]
, D̃ =

[
0 −ET

]
.

We observe that now both the diagonal blocks appearing in the global matrix are positive definite,
but the symmetry of the matrix is lost. Moreover, the matrix C is no longer zero. In this case we
will use a GMRES solver instead of MINRES.
A common preconditioning approach comes from the block LU factorization

Ã =

[
Ã D̃

B̃ −C̃

]
=

[
I 0

B̃Ã−1 I

] [
Ã D̃

0 −C̃ − B̃Ã−1D̃

]
.

Another common approach is to use a block Gauss-Seidel preconditioner which consists in neglecting
part of the coupling:

PGS =

[
Ã 0

B̃ −C̃

]
=

[
I 0

B̃Ã−1 I

] [
Ã 0

0 −C̃

]
.

This is a block triangular preconditioner, in fact PGS is equal to the lower triangular part of A. This
preconditioner has been successfully used in many applications (for an example see [21]). One could
also consider a simpler preconditioner extracting the diagonal part of A; this is called the Jacobi
preconditioner:

PJ =

[
Ã 0

0 −C̃

]
.

The explicit form of the Gauss-Seidel and of the Jacobi preconditioners for the iterative solution of
(2.25) is the following:

PGS =

βMg 0 0

−E K 0

0 M12 KT

 , PJ =

βMg 0 0

0 K 0

0 M12 KT

 .
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In both approaches, in order to deal with an invertible preconditioner, the penalization term has to
be present (β 6= 0). Because of the presence of the matrix C̃, the cost of the solution of a linear
system on the preconditioner is comparable to the resolution of the original problem, since one has
to solve for the primals and the duals. This shows that this approach cannot be used in practice
unless one finds a suitable approximation of PGS and PJ .

2.3.4 Preconditioning of Saddle Point Linear Systems with a Matrix Featur-
ing a Singular (1,1) Block

We once again concentrate on the linear system (2.20). The matrix of this problem is symmetric
semidefinite, invertible, and with an ill-conditioned (1, 1) block.

In [22] and [23] a preconditioner for saddle point matrices with singular (1, 1) block is presented. The
motivation of these works is the solution of linear systems deriving from interior point optimization
methods. The attractive property of the proposed approach is that eigenvalue clustering improves
with increasing ill conditioning of the singular block. As we previously said, for symmetric problems,
the Krylov subspace methods converge at a rate dependent on the number of distinct eigenvalues of
the preconditioned matrix, so it is desirable to have a small number of distinct eigenvalues or at
least a small number of clusters because in this case the convergence will be rapid.

These preconditioners have been developed with respect to a very specific problem; we found out
that (2.20) verifies all the hypotheses necessary for the definition of this preconditioner. Here we
present a brief summary of the problem setting.
We want to find a preconditoner for the saddle point matrix:

A =

[
A BT

B 0

]
,

where A ∈ Rn×n is a symmetric and positive semidefinite matrix with nullity (dimension of the kernel
of A) p, and the matrix B ∈ Rm×n has full row rank. It can be proven (see [18]) that the assumption
that A is nonsingular implies that ker(A) ∩ ker(B) = 0, which is used in the derivation of the
results concerning the spectral clustering of the preconditioned matrix.
In the case of the matrix in (2.20) the non singularity of A is guaranteed by the well posedness of
the differential formulation and we recall that B =

[
−E K

]
: the presence of the stiffness matrix

K guarantees that B has full row rank.

The approach is based on the augmentation of the (1, 1) block using a weight matrix W (W ∈ Rm×m
is symmetric positive definite). In [22] the following preconditioner is proposed.

Pt =

[
A+ BTW−1B tBT

0 W

]
. (2.26)

The preconditioned matrix P−1
t A will have

λ = 1

with algebraic multiplicity n −m,

λ± =
−t ±

√
t2 + 4

2
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with multiplicity 2p, and the 2(m − p) remaining eigenvalues verify

λ± =
−t ±

√
1 + 4µ2

1+µ2

2
,

where µ are some m − p eigenvalues of the following generalized eigenvalue problem:

BTW−1Bx = µ2Ax. (2.27)

For example in the case k = −1 we have λ = 1 with multiplicity n − m and λ± = 1±
√

5
2 with

multiplicity 2p. Since λ+ is a strictly increasing function of µ on (0,∞) (and λ− is strictly decreasing)
the intervals containing the remaining eigenvalues can be found using limµ→0,∞ λ±(µ) and we easily
obtain

λ+ ∈ (1,
1 +
√

5

2
) λ− ∈ (

1−
√

5

2
, 0). (2.28)

When A is highly singular many of the generalized eigenvalues µ of (2.27) are large, so that the
corresponding eigenvalues λ± are bounded away from zero.

The simplest choice for the weight matrix is W = I. As proposed in [22] we can take W = γI with
γ chosen so that the augmentation term 1

γB
TB is of norm comparable to the one of A. For this

reason we tested the case 1/γ = max(A).
Since computing the (1, 1) block of the preconditioner at each iteration of the minimization algorithm
is expensive, we considered a Cholesky factorization (HHT = A+BTW−1B). The preconditioning
matrix can be factorized as follows:

Pt =

[
H tBTW−1

0 I

] [
HT 0

0 W

]
.

To reduce the computational cost one should use an inexact factorization (LU or Cholesky), even if
the number of iterations of GMRES will increase.

We also present the preconditioners introduced in [23], with the corresponding LU factorization of
the (1, 1) block. The first one reads as

P̃t =

[
A+ BTW−1AB (1− t)BT

0 tW

]
, t 6= 0

P̃t =

[
L 1−t

t B
TW−1

0 I

] [
U 0

0 tW

]
.

We remark that for t = 1 we obtain a block diagonal preconditioner. It is possible to demonstrate
that the eigenvalues of the preconditioned matrix P̃−1

t A satisfy

• λ = 1 with multiplicity n

• λ = − 1
t with multiplicity p

• λ = − µ
t(µ+1) with multiplicity m − p, where µ is the solution of a generalized eigenvalue

problem.
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Moreover the following bounds can be obtained for λ

(0,−
1

t
) (t < 0), (−

1

t
, 0) (t > 0).

The second preconditioner reads as

P̂t =

[
G + tBTW−1B tBT

0 1−t
t W

]
, 1 6= t > 0

P̂t =

[
L t2

1−tB
TW−1

0 I

] [
U 0

0 1−t
t W

]
.

In this case, for P̂−1
t A we have that

• λ = 1 with multiplicity n

• λ = − 1
t−1 with multiplicity p

• λ = − µt
(t−1)(µt+1) with multiplicity m − p, where µ is the solution of a generalized eigenvalue

problem.

Moreover the following bounds can be obtained for λ

(0,
1

t − 1
) (t > 10), (

1

t − 1
, 0) (t < 1).

In this section we have presented a preconditioner that has the property that the more ill-conditioned
the (1,1) block of the saddle point matrix is, the faster a minimum residual solver such as MINRES
converges. In fact the more the size of the nullity of A increases, the more the eigenvalues will be
clustered and bounded away from 0.
This property is extremely interesting in the framework of our application, where we want to use low
values of the penalization coefficient β, in order to modify the original problem as least as possible.
In fact for low values of β the (1, 1) block of the matrix A is more ill-conditioned. In particular, in
the case β = 0 (no modification of the original problem) the size of the nullity of A increases of a
value equal to the size of the problem on the interfaces. We remark how in the previous application
the value of β had to be different from 0. On the other hand, these preconditioners are not optimal
in the case of high values of the penalization coefficient. We can conclude that this approach is
recommended in the case of no or very small penalization, which is the most common and most
interesting situation in the practice of optimization.

2.3.5 Preconditioning The Schur Complement Interface Equation

We introduce an approach belonging to the class of segregated methods for the solution of saddle
point linear systems. The inspiration for this approach derives from the domain decomposition theory
(see [24]). We want to uncouple the equations that characterize the linear system (2.20) in order
to reduce the the global problem to an equation of the form Σλ = f for the vector of the controls
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λ. In order to define the interface equation we write the optimality, adjoint and state equations of
the control problem for the coupled variables λ, ϕ and Ψ:

βMΓλ− ETΨ = 0, (2.29)

M12ϕ+KTΨ = 0, (2.30)

−Eλ+Kϕ = d. (2.31)

We substitute in the equation (2.29) representing the optimality condition the dual variable Ψ derived
from the adjoint equation (2.30):

βMΓλ+ ET (KT )−1M12ϕ = 0,

then we substitute the expression of the state variable ϕ derived from the state equation (2.31):

βMΓλ+ ET (KT )−1M12(K−1(d + Eλ)) = 0.

Rearranging the various terms we obtain the following equation on the interface:(
βMΓ + ET (KT )−1M12K

−1E
)
λ = −ET (KT )−1M12K

−1d, (2.32)

that can be rewritten as Σλ = f , where

Σ = βMΓ + S, f = −ET (KT )−1M12K
−1d,

and
S = ET (KT )−1M12K

−1E.

Once that one has obtained λ from (2.32), the state variable ϕ can be obtained by the resolution of
the state equation (2.31):

ϕ = K−1(d + Eλ).

The dual variable Ψ can be derived in an analogous way from (2.30); however we remark that this
variable is defined in the optimality system as an intermediate step between the optimality conditions
and the state equations. Unless one is interested in evaluating the explicit form of the solution of
the dual problem, this step can be skipped. The fact that the solution of the adjoints does not need
to be determined explicitly represents an advantage of the segregated approach.

The matrix Σ associated to the problem on the interface is the sum of two terms: the first is
the mass matrix on the interface weighted with the coefficient β, related to the penalization and
the second (S) is a matrix related to the solution of the optimality system. This matrix takes the
Neumann data on the control boundary (E), solves the state equation (K−1), restricts the solution
of the state equation on the overlapping region (M12), solves the dual problem ((KT )−1) and takes
this data to the boundary (ET ). We will refer to Σ as the Schur Complement matrix.

We implemented the solution of the interface equation. The matrix Σ is symmetric positive definite,
so the system is solved with a Conjugate Gradient algorithm. Since the assembling of Σ and of
the right hand side f is very costly (two inversions of a stiffness matrix and two matrix-vector
multiplications for Σ and two inversions of a stiffness matrix and two matrix-vector multiplications
for the right hand side), we introduced an LU factorization of the matrix K.
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In order to devise a possible preconditioner for Σ, we can rewrite the Schur complement matrix
showing the contributions of the matrices corresponding to the two domains Ω1 and Ω2:

Σ =

[
βMΓ1 + NTΓ1

(CT1 )−1M12
1 C

−1
1 NΓ1 −NTΓ1

(CT1 )−1M12
2 C

−1
2 NΓ2

−NTΓ2
(CT2 )−1M12

1 C
−1
1 NΓ1 βMΓ2 + NTΓ2

(CT2 )−1M12
2 C

−1
2 NΓ2

]
.

On the diagonal of this matrix we recognize two matrices with the same structure of Σ and
corresponding to the two different overlapping domains. We can call them Σ1 and Σ2:

Σ =

[
Σ1 −NTΓ1

(CT1 )−1M12C
−1
2 NΓ2

−NTΓ2
(CT2 )−1M12C

−1
1 NΓ1 Σ2

]
.

Similarly we define S1 = NTΓ1
(CT1 )−1M12

1 C
−1
1 NΓ1 and S2 = NTΓ2

(CT2 )−1M12
2 C

−1
2 NΓ2 . One idea is to

take the block diagonal preconditioner

PΣ =

[
Σ1 0

0 Σ2

]
=

[
βMΓ1 + S1 0

0 βMΓ2 + S2

]
(2.33)

neglecting the terms related to the coupling.
When β is high the penalization terms βMΓ1 and βMΓ2 dominate the matrices S1 and S2, therefore
there is no need to assemble S1 and S2 in the case β = 1. For this reason we consider the following
preconditioner

P = βMΓ + (1− β)PS, (2.34)

where

PS =

[
S1 0

0 S2

]
and PΣ = βMΓ + S.

We remark that the preconditioner (2.34) corresponds to a linear combination of MΓ and PΣ that
weights the magnitude of the penalization. The cost of assembling this precoditioner is given by
the cost of assembling S1 and S2 so twice the cost of two matrix-vector multiplication and of two
system resolutions. In practice, since we have already assembled the interface matrix Σ, we can
obtain this preconditioner by simply extracting the diagonal blocks of this matrix.

We also thought of a simplified version of this preconditioner. If we neglect in S the part related
to the solution of the dual problem, we still have a map from the interface to the interface which
passes through the solution of a stiffness problem. For this reason we considered

P̃ = βMg + (1− β)P̃S, (2.35)

where

P̃S =

[
S̃1 0

0 S̃2

]
=

[
NTΓ1

C−1
1 NΓ1 0

0 NTΓ2
C−1

2 NΓ2

]
.

The cost of assembling for P̃ is of two matrix vector multiplications and two system resolutions. So
it requires half of the computations required for P .

A further approximation consists of assembling the stiffness matrices that are inverted in the
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preconditioner on a restriction of the two overlapping domains Ω1 and Ω2, close to the interfaces.
For this reason in the latter preconditioner we consider C1 = C2 = C12, where C12 is the stiffness
matrix assembled only on the overlapping region Ω12, and the interface mass matrices are restricted
accordingly. We refer to this preconditioner as P̃12 and we have:

P̃12 = βMΓ + (1− β)P̃S12 , (2.36)

where

P̃S12 =

[
(S̃1)12 0

0 (S̃2)12

]
=

[
NTΓ1

C−1
12 NΓ1 0

0 NTΓ2
C−1

12 NΓ2

]
.

The last approximation we introduce is to precondition on both interfaces with the same matrix, for
example S̃1. By doing this we again reduce of a factor two the number of computations needed to
assemble the preconditioning matrix. In this case

P̃ 1
12 = βMg + (1− β)P̃S1

12
, (2.37)

where

P̃S1
12

=

[
(S̃1)12 0

0 (S̃1)12

]
=

[
NTΓ1

C−1
12 NΓ1 0

0 NTΓ1
C−1

12 NΓ1

]
.

In this section we have presented a series of preconditioners for the Suhr complement matrix Σ. The
matrices are presented in decreasing order of assemblage complexity. We have adopted a Jacobi
preconditioning approach: all the preconditioning matrices, from (2.33) to (2.37), are block diagonal.
The two blocks refer to the two overlapping subdomains. This shows that the preconditioner acts in
a decoupled way and neglects the terms related to the coupling between the two problems.

Equivalence Between the Extremality Equation and the Shur Complement System

Through the Schur complement reduction, we have derived a linear system for the vector of the
controls λ of the following form:

Σλ = f . (2.38)

We want to show the equivalence between this approach and the solution of the extremality equation
presented in section 2.2.1. We can prove that solving the linear system related to the optimality
condition

∇J0(λ) = −∇A (2.39)

iterating between the equations as shown in section 2.2.1 is equivalent to solving (2.38) itera-
tively.

In fact, the algorithm of minimization of the cost functional corresponds to the following iterative
scheme: given λ0, solve ∀k > 0

λ(k+1) − λ(k) = sM−1
Γ

(
f −Σλ(k)

)
, (2.40)

where s is a scalar related to the length of the descent step. In order to show this we denote

λ(k) =

λ(k)
1

λ
(k)
2

 , ϕ(k) =

ϕ(k)
1

ϕ
(k)
2

 , Ψ(k) =

Ψ
(k)
1

Ψ
(k)
2

 ,
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and we refer to the gradient minimization algorithm (presented in section 2.2.2) because the steps
are easier to interpret, but the results obtained with the BiCGStab algorithm (section 2.2.1) are
analogous, since the latter is also equivalent to a descent method.
At the step (k + 1) of the algorithm we compute λ(k+1) from λ(k) in the following way:

1. λ(k) → ϕ(k) :
ϕ(k) = K−1(d + Eλ(k))

2. ϕ(k) → Ψ(k) :

Ψ(k) = −(KT )−1M12ϕ
(k) = −(KT )−1M12K

−1(d + Eλ(k))

3. Ψ(k) → λ(k+1) :

λ(k+1) = λ(k) − sM−1
Γ (βMΓλ

(k) − ETλ(k))

= λ(k) − sM−1
Γ (βMΓλ

(k) + ET (KT )−1M12K
−1(d + Eλ(k))

Reordering the terms appearing in the last equation we obtain (2.40). Denoting by r (k) = f −Σλ(k)

the residual at the k-th step of the algorithm, we can rewrite iteration (2.40) as

λ(k+1) = λ(k) + sM−1
Γ r (k).

This corresponds to an iterative algorithm for the solution of the Schur complement equation (2.38).
The interface mass matrix MΓ is needed to pass from the weak formulation in which the optimality
condition is stated to the strong formulation in which we are looking for the controls. For high
values of β, this matrix behaves as a good preconditioner for Σ, due to the fact that the interface
mass matrix that appears in the definition of the Schur complement is the dominant term in this
case. However, as previously remarked, the non preconditioned problem is well conditioned for high
values of the penalization coefficient so that preconditioning is not needed.

2.3.6 The Optimality System and the Schur Complement Equation in the
Case of Dirichlet Boundary Controls

All our analysis on preconditioning has been carried out in the case of Neumann boundary controls,
so we have derived the global expression of the optimality system and the expression of the Schur
complement equation in this particular case. In order to be exhaustive, in this section we want
to show the algebraic formulation of the global system and of the interface equation in the case
of Dirichlet boundary controls. Again we treat the case of a penalized L2(Ω12) cost functional,
and we are not splitting the cost functional into a part depending on the data and into a part
depending on the sole controls. We present here the discretized state, adjoint and optimality
equations corresponding to this particular problem. This description will be synthetic because the
derivation of these results is analogous to what we have shown in the case of Neumann boundary
controls in the previous section.
All the matrices have already been introduced in the section concerning the discretization of the
problem. The state equations are as follows

C1ϕ1 +DΓ1λ1 = d1, (2.41)
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C2ϕ2 +DΓ2λ2 = d2, (2.42)

the dual problems are analogous to the case of Neumann boundary controls

C1Ψ1 +M12
1 ϕ1 −M12

2 ϕ2 = 0, (2.43)

C2Ψ2 −M12
1 ϕ1 +M12

2 ϕ2 = 0, (2.44)

and the optimality conditions are

DTΓ1
Ψ1 + β1MΓ1λ1 = 0, (2.45)

DTΓ2
Ψ2 + β2MΓ2λ2 = 0. (2.46)

After reordering the equations the global problem can be formulated as follows:



β1MΓ1 0 0 0 DTΓ1
0

0 β2MΓ2 0 0 0 DTΓ1

0 0 M12
1 −M12

2 C2 0
0 0 −M12

1 M12
2 0 C2

DTΓ1
0 C1 0 0 0

0 DTΓ2
0 C2 0 0





λ1

λ2

ϕ1

ϕ2

Ψ1

Ψ2


=



0

0

0

0

d1

d2


, (2.47)

where the equations that define the optimality system have been written in the following order:
optimality conditions, dual problems, state problems.
We can group the various blocks defined in (2.47) in order to obtain the following linear system:βMΓ 0 DT

0 M12 KT

D K 0


λϕ

Ψ

 =

0

0

d

 . (2.48)

This linear system is analogous to (2.20). The only difference is represented by the presence of the
matrix D that is needed to lift the Dirichlet boundary data and to state the optimality condition.
The definition of this matrix is the following:

D =

[
DΓ1 0
0 DΓ2

]
∈ R(N1

h+N2
h )×(N

Γ1
h +N

Γ2
h ),

where the matrices DΓ1 and DΓ2 have been defined in section 2.1. Again, the system can be reduced
to the following equation on the interfaces for the vector of controls λ:(

βMΓ +DT (KT )−1M12K
−1D

)
λ = −DT (KT )−1M12K

−1d.

We can define ΣD = βMΓ +DT (KT )−1M12K
−1D and decomposing this matrix into blocks depending

on the contributions of the two subproblems on Ω1 and Ω2 we can see that ΣD is made up of the
following terms:

Σ =

[
βMΓ1 +DTΓ1

(CT1 )−1M12
1 C

−1
1 DΓ1 −DTΓ1

(CT1 )−1M12
2 C

−1
2 DΓ2

−DTΓ2
(CT2 )−1M12

1 C
−1
1 DΓ1 βMΓ2 +DTΓ2

(CT2 )−1M12
2 C

−1
2 DΓ2

]
.



64 CHAPTER 2. DISCRETIZATION AND PRECONDITIONING

The diagonal terms of ΣD are related to the two uncoupled subproblems while outside the diagonal
are represented the coupling terms.
In this case the matrices Σ1 and Σ2 behave as the Steklov-Poincaré operator of the domain
decomposition theory (see [24]). In fact the matrices map a Dirichlet control in the space of the
Neumann controls.



Chapter 3

Numerical Results

3.1 Numerical Results

In this section we will present the numerical results obtained with our simulations, using Matlab.
The first part of the results concerns the validation of the theoretical model described in section
1.2. The second part concerns the numerical solution of the problem in presence of the different
preconditioning approaches presented in section 2.3.

3.1.1 The Model

In this section we want to test the theoretical results that have been derived in section 1.2. We
solve the discrete problems presented in Table 2.1 and in Table 2.2 via the the iterative minimization
algorithm described in section 2.2.1. We are interested in testing the well posedness of the model
and the convergence orders of the finite elements approximation of the solution. Moreover, through

Ω12

(0,−1.1) (2.2,−1.1)

(2.2, 1.1)(0, 1.1)

(0,−δ)

(0, δ) (2.2, δ)

(2.2,−δ) Ω2

Γ2

ΓV
2

ΓH
2

ΓV
2

Ω1

Γ1

ΓH
1

ΓV
1ΓV

1 { {
Figure 3.1: Domain and boundary conditions

65
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these tests, we can study the convergence behavior of the algorithm with respect to the different
choices of the cost functional and with respect to the different choices of Dirichlet or Neumann
boundary controls.

The solution of the optimization problem is the couple of vectors (λ1, λ2) that define the controls
on the interfaces. Then, solving the linear systems related to the state problems one finds the
approximations of the states ϕ1

h and ϕ
2
h, on Ω1 and Ω1 respectively. We build the solution on the

whole domain in the following way

ϕGh =

{
ϕ1
h on Ω1

ϕ2
h on Ω2\Ω12.

(3.1)

When the algorithm has reached convergence the value of the discretized cost functional is very
close to 0 (10−15-10−20), so that ϕ1

h|12 and ϕ2
h|12 can be considered equivalent. Another approach

could be to build ϕGh as

ϕGh =


ϕ1
h on Ω1\Ω12

ϕ1
h+ϕ2

h

2 on Ω12

ϕ2
h on Ω2\Ω12.

(3.2)

It is important to make sure that ϕGh is equivalent to the finite elements approximation of the
following global problem 

−∇ · (K∇ϕ) = f in Ω

K∇ϕ · n = ΨN on ΓN

ϕ = ΨD on ΓD.

(3.3)

that we will denote as ϕh.

We initialize the algorithm with the controls (λ0
1, λ

0
2) = (0, 0) and we set a tolerance of 10−10 on the

relative residual between the subsequent iterations as a stopping criterion. As a first analysis we test
the convergence of the algorithm when minimizing the following cost functionals on the overlapping
region: J = JL2 , J = JH1

0
, J = JH1 . We remark that all the cost functionals are minimized without

the presence of the penalization term (1.24).

We want to test that the numerical solution of the coupled virtual control method converges as
predicted by the finite elements estimates:

‖ϕ− ϕGh ‖H1(Ω) ≤ Chr |ϕ|Hr+1(Ω), (3.4)

‖ϕ− ϕGh ‖L2(Ω) ≤ Chr+1|ϕ|Hr+1(Ω), (3.5)

where h denotes the level of the mesh refinement and r is the degree of the polynomials used to
approximate the discrete finite elements solution.
Moreover we check that the errors between the numerical and the exact solution in the L2(Ω) and
in the H1(Ω) norm are the same that one obtains solving the global elliptic problem on Ω:

‖ϕ− ϕGh ‖H1(Ω) = ‖ϕ− ϕh‖H1(Ω),

‖ϕ− ϕGh ‖L2(Ω) = ‖ϕ− ϕh‖L2(Ω)
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(c) h = 0.05

Figure 3.2: The Dirichlet virtual controls at the final iteration, for the three levels of mesh refinement.
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Figure 3.3: The Neumann virtual controls at the final iteration, for the three levels of mesh refinement.

The algorithm was tested on a regular mesh with an overlap defined by δ = 0.3. The domain is
represented in Figure 3.1 and we applied Dirichlet boundary conditions on Γ Vi , i = 1, 2 and Neumann
boundary conditions on ΓHi , i = 1, 2. The boundary conditions and the forcing term are imposed in
order to obtain the numerical approximation of the following cubic exact solution:

ϕex = x(1− x)(y − 1) +
1

3
(y − 1)3 + 2x. (3.6)

We interpolated the numerical solution with both linear and quadratic finite elements, and in
correspondence of three levels of mesh refinement defined by h = 0.2, h = 0.1 and h = 0.05. We
remark that in this test the boundary conditions are imposed so that (∂Ω12 ∩ ΓN) 6= ∅. As shown in
section 1.2.2, this choice guarantees the well posedness of the optimization problem with all the
choices for the cost functional (1.20)-(1.22).

In figure (4.3) and in figure (3.3) we report the virtual controls (λ1, λ2) obtained by our minimization
algorithm in the case of linear finite elements. The first group of images shows the Dirichlet boundary
controls while the second group the Neumann boundary controls.The solutions are represented for
the three levels of mesh refinement. For each choice of the parameter h the figure on the left
represents the solution λ1 on the interface Γ1 (y = −δ) and the figure on the right represents the
solution λ2 on the interface Γ2 (y = δ). We observe that with Dirichlet boundary controls the exact
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Figure 3.4: The Neumann virtual controls at the final iteration, for the three levels of mesh refinement,
when Neumann boundary conditions are applied on Γ V1 and Γ V2 .

solutions on the interfaces

ϕ|Γ1 = x(1− x)(−δ − 1) +
1

3
(−δ − 1)3 + 2x,

ϕ|Γ2 = x(1− x)(δ − 1) +
1

3
(δ − 1)3 + 2x,

with δ = 0.3, are recovered without spurious oscillations. In the case of Neumann boundary, there is
a small deviation from the exact conditions on the control boundaries

(∇ϕ · n1)|Γ1 = −x2 + x + (−δ − 1)2,

(∇ϕ · n2)|Γ2 = x2 − x − (δ − 1)2,

with δ = 0.3, close to the edges of the interface. We should recall that Dirichlet boundary conditions
are applied on Γ V1 and on Γ V2 : the oscillations are due to the fact that a mixed boundary condition
is applied to the subdomains and the controls should manage this discontinuity. In fact, as we can
see from Figure 3.4, when a Neumann boundary condition is applied to the sides of the overlap the
controls converge smoothly to the exact solution. We remark that in both cases the oscillations do
not affect the errors between the numerical and the exact solution.

In figure (3.5) we report the solution of the state problems: ϕ1
h and ϕ

2
h. The solutions are calculated

on Ω1 and Ω2 respectively and then extended to zero on the remaining part of the global domain Ω.
In Figure 3.6 we represent the global solution ϕGh , constructed as in (3.1). Moreover, we report in
Figure 3.7 the convergence history of the three cost functionals (in logarithmic scale) that minimize
the difference between the solutions in the L2(Ω12) norm, the H1

0(Ω12) and the H1(Ω12) norm, at
each iteration of the BiCGStab algorithm. The graphs are represented in the case of Dirichlet and
Neumann boundary controls. In the case of JL2 , with both choices of boundary controls (Dirichlet
and Neumann) the convergence is non monotonic and we observe that in the first iterations (before
the 10th iteration) the cost functional reaches a value lower than 10−6, and by the time that the
algorithm has achieved convergence the cost functional reaches a value of the order of 10−18 in
the case of Dirichlet boundary controls and of the order of 10−15 in the case of Neumann boundary
controls. In the case of JH1

0
we observe a smoother convergence and a reduced number of iterations

needed to achieve convergence (especially in the Dirichlet case). Moreover, in the Dirichlet case,
the cost functional reaches a value of the order of 10−23 and, in the case of Neumann boundary
controls, a value of 10−20, when convergence is achieved. The case corresponding to JH1 is similar
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Figure 3.5: The state solutions ϕ1 and ϕ2 on Ω1 and Ω2, for h = 0.1.
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Figure 3.6: The global state solution ϕ on Ω, for h = 0.1.
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h #D #N ‖ϕGh − ϕ‖H1 ‖ϕGh − ϕ
ex‖L2 ‖ϕh − ϕex‖H1 ‖ϕh − ϕex‖L2

JL2

0.2 17 27 0.6677 0.0236 0.6677 0.0236

0.1 34 72 0.3345 0.0059 0.3345 0.0059

0.05 42 165 0.1673 0.0015 0.1673 0.0015

JH1
0

0.2 5 14 0.6677 0.0236 0.6677 0.0236

0.1 11 24 0.3345 0.0059 0.3345 0.0059

0.05 26 36 0.1673 0.0015 0.1673 0.0015

JH1

0.2 10 14 0.6677 0.0236 0.6677 0.0236

0.1 20 26 0.3345 0.0059 0.3345 0.0059

0.05 35 37 0.1673 0.0015 0.1673 0.0015

Table 3.1: Convergence with P1 elements (tol = 10−10, δ = 0.3).

h #D #N ‖ϕGh − ϕ‖H1 ‖ϕGh − ϕ
ex‖L2 ‖ϕh − ϕex‖H1 ‖ϕh − ϕex‖L2

JL2

0.2 35 82 0.0150 3.4558e − 04 0.0150 3.4558e − 04

0.1 58 179 0.0038 4.3508e − 05 0.0038 4.3508e − 05

0.05 70 397 9.4476e − 04 5.4581e − 06 9.4476e − 04 5.4581e − 06

JH1
0

0.2 13 24 0.0150 3.4558e − 04 0.0150 3.4558e − 04

0.1 27 35 0.0038 4.3508e − 05 0.0038 4.3508e − 05

0.05 44 46 9.4476e − 04 5.4581e − 06 9.4476e − 04 5.4581e − 06

JH1

0.2 21 26 0.0150 3.4558e − 04 0.0150 3.4558e − 04

0.1 35 35 0.0038 4.3508e − 05 0.0038 4.3508e − 05

0.05 59 47 9.4476e − 04 5.4581e − 06 9.4476e − 04 5.4581e − 06

Table 3.2: Convergence with P2 elements (tol = 10−10, δ = 0.3).

to the latter case: in the case of Neumann controls we have almost the same number of iterations
and a very similar convergence history, in the case of Dirichlet boundary controls the convergence is
less smooth and a higher number of iterations is required.

In Table 3.1 and in Table 3.2 we report the convergence history of the algorithm with P1 and P2

finite elements respectively. The results concern the cost functionals J = JL2 , J = JH1
0
, J = JH1 and

both the choices of the space for the controls, ΛD and ΛN . The column marked as #D indicates the
number of iterations needed to achieve convergence in the case of Dirichlet controls; analogously the
column marked as #N indicates the number of iterations needed to achieve convergence in the case
of Neumann controls. We report the errors obtained by the virtual control iterative algorithm and
the ones obtained solving the global problem (3.3). In each case we verified that the errors obtained
between the solution of the iterative virtual control algorithm and the exact solution and the errors
between the finite elements solution and the exact solution are the same. The convergence orders
are the ones predicted by the finite elements theory. The number of iterations needed to achieve
convergence is strongly dependent on the level of the mesh refinement (we remark that these results
are obtained without preconditioning) and it is highest in the case of JL2 with Neumann controls
(both with linear and quadratic finite elements). In general the number of iterations needed to
achieve convergence is higher when controlling the L2 norm of the difference between the solutions.
In the remaining cases the number of iterations is lower and not dependent on the choice of the
space for the control and of the choice between the H1

0 and the H1 norms.
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Figure 3.7: Convergence history of the different cost functionals using the BiCGStab algorithm (h = 0.05,
δ = 0.3, P1 finite elements).
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On the Coercivity of the Cost Functionals

We now want to verify the theoretical results derived in section 1.2.2 about the coercivity of the cost
functionals (1.20)-(1.23), when there are no Dirichlet boundary conditions imposed on ∂Ω12 ∩ ∂Ω.
For this reason, we now apply Dirichlet boundary conditions on ΓHi , i = 1, 2 and Neumann boundary
conditions on Γ Vi , i = 1, 2 (refer to Figure 3.1 for the notation of the boundaries). In particular we
want to validate the following results:

• the choice of the cost functionals JL2 and JH1 always guarantees the well posedness of the
optimization problem;

• the choice of the cost functional JH1
0
does not guarantee the uniqueness of the solution, since

it only defines a semi-norm for the difference between the states on Ω12;

• penalizing JH1
0
as in ĴH1

0
one obtains a coercive problem;

• when solving the coupled problem defined by (1.69) the optimality system is well posed with all
of the choices for the cost functional that were previously described, thanks to the coercivity
of the bilinear forms related to the state problems.

One way to make sure that these results are true, is to impose the boundary conditions and the
forcing terms of the state problems so that one approximates an exact solution whose degree is of
the same order of the the finite elements used to interpolate it. If the uniqueness of the solution is
guaranteed, the errors between the numerical and the exact solution will be very close to zero. For
this reason we want to recover the following exact linear solution

ϕex1 = (y − 1) + x, (3.7)

when using P1 finite elements, and the following exact quadratic solution

ϕex2 = (1− x)(y − 1) + x, (3.8)

when using P2 finite elements.

In Table 3.3 we report the results concerning the convergence to the linear and of the quadratic
exact solutions ϕex1 and ϕex2 with linear and quadratic finite elements, respectively. In the first
column we report the choice of the cost functional that is being minimized; then we wrote the
number of iterations needed to achieve convergence, the order of the errors obtained between the
numerical and the exact solution and the values reached by the cost functional in both the cases of
Dirichlet and Neumann boundary controls. We remark that the tolerance on the residual imposed
as a stopping criterion was lowered to a value of 10−12; this is because the numerical solution has
to be approximated very strictly in order to be able to recover such small errors (the error is not
dominated by the error on the finite elements, when interpolating a solution of the same order of
the finite elements).
We observe that when a full Neumann boundary condition is applied to ∂Ω12 ∩ ∂Ω the algorithm
based on the minimization of the gradient (functional (1.21)) is not able to recover the exact
solution (highlighted results). This is because no data is fixed on the boundary of the overlap. The
solution exists (i.e. the functional is minimized, which means that ∇ϕ1 = ∇ϕ2 q.o. in Ω12) but it
is not unique. The point is that if no Dirichlet data is applied on ∂Ω ∩ ∂Ω12 the difference of the
two solutions on the overlap (ϕ1 − ϕ2)|Ω12 does not belong to H1

ΓD
(Ω12) but only to H1(Ω12) so
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(a) JH1
0
. (b) dJH1

0
.

Figure 3.8: The linear solution obtained minimizing a non coercive and a coercive cost functional, in the
case ∂Ω12 ∩ ΓD = ∅.

functional (1.21) only represents a seminorm for the space and its minimization does not guarantee
that ϕ1 = ϕ2 almost everywhere in Ω12.
On the contrary, when minimizing the difference between the states in the full H1(Ω12) norm (JH1)
or in the augmented semi-norm (ĴH1

0
), we observe that the quadratic and the linear solutions are

interpolated exactly.
In Figure 3.8 we report the solutions of the state problems in the case of the minimization of the
semi-norm (JH1

0
) and of the augmented semi-norm (ĴH1

0
), when a Dirichlet condition is applied only

on parts of the boundaries of the domains ∂Ω1 and ∂Ω2 that do not belong to the boundary of the
overlap ∂Ω12. One can see that the gradients of the solutions are the same on the overlapping region,
and this is confirmed by the results stated in Table 3.3 that show that the value of the cost functional
is very close to zero. When the cost functional is penalized with the addition of a term depending
on the difference between the solutions on ∂Ω12 ∩ ∂Ω the exact solution is recovered.

The Scalar Elliptic Problem

We now test the results concerning the scalar elliptic problem (1.69). Again, we applied Dirichlet
boundary conditions on ΓHi , i = 1, 2 and Neumann boundary conditions on Γ Vi , i = 1, 2 so that
∂Ω12 ∩ ΓD = ∅. We want to verify that now the exact solution is recovered even with the functional
minimizing the difference between the gradients of the states: JH1

0
. In Table 3.4 we report the

numerical results associated to this problem. In this case we consider exclusively the minimization of
the cost functional (1.21). The first part of the table concerns the approximation of the linear and
quadratic exact solutions (ϕex1 and ϕex2 ) with linear and quadratic finite elements respectively, in the
second part of the table we report the error when the exact solution is the cubic function (ϕex) for
both choices of finite elements. As predicted by the theory the algorithm converges to the exact
solution in this case.
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J #D error ∼ J ∼ #N error ∼ J ∼

P1, ϕex1

JL2 68 10−11 10−25 250 10−10 10−21

JH1
0

17 1 10−16 210 10 10−14

JH1 45 10−12 10−25 35 10−12 10−23dJH1
0

40 10−12 10−26 24 10−12 10−23

P2, ϕex2

JL2 84 10−12 10−24 559 10−10 10−20

JH1
0

51 1 10−17 63 1 10−16

JH1 99 10−12 10−24 53 10−12 10−23dJH1
0

142 10−12 10−24 60 10−12 10−23

Table 3.3: ∂Ω12 ∩ ΓD = ∅, h = 0.1, tol = 10−12, δ = 0.3.

h #D #N ‖ϕGh − ϕ
ex‖H1 ‖ϕGh − ϕ

ex‖L2 ‖ϕh − ϕex‖H1 ‖ϕh − ϕex‖L2

P1, ϕex1

0.2 30 22 0.0502 0.0051 0.0502 0.0051

0.1 49 31 0.0246 0.0013 0.0246 0.0013

0.05 73 43 0.0123 3.2259e − 04 0.0123 3.2259e − 04

P2, ϕex2

0.2 78 35 1.2969e − 04 5.2796e − 06 1.2969e − 04 5.2796e − 06

0.1 112 51 1.6456e − 05 3.3203e − 07 1.6456e − 05 3.3203e − 07

0.05 125 63 2.0715e − 06 2.0812e − 08 2.0715e − 06 2.0812e − 08

P1, ϕex
0.2 29 22 0.6454 0.0197 0.6454 0.0197

0.1 53 33 0.3226 0.0049 0.3226 0.0049

0.05 82 42 0.1613 0.0012 0.1613 0.0012

P2, ϕex
0.2 59 34 0.0152 3.5060e − 04 0.0152 3.5060e − 04

0.1 114 46 0.0038 4.3826e − 05 0.0038 4.3826e − 05

0.05 225 59 9.4784e − 04 5.4782e − 06 9.4784e − 04 5.4782e − 06

Table 3.4: Convergence minimizing JH1
0
:∂Ω12 ∩ ΓD = ∅ and coercive bilinear form (α = 1), tol = 10−12,

δ = 0.3.
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(c) δ = 0.9.

Figure 3.9: The mesh on the overlapping domains for δ = 0.1, δ = 0.3 and δ = 0.9.

On the Dependence on the Size of the Overlapping Region

As a further analysis on the behavior of the method, we varied the size of the overlapping region
Ω12 between the two domains. It is important to compare the results on domains with different
sizes of the overlap (different δ, see Figure 3.1) but with matching discretization. To this aim we
implemented a converter from a mesh file in the .mesh format (generated using GMSH) to the
Matlab format. This approach permits a greater flexibility in the generation of the mesh. In Figure
3.9 we report three meshes with different size of the overlapping region. We remark that for δ = 0.1

the two domains only have two layers of triangles in common, while in the case corresponding to
δ = 0.9 the overlap is almost as big as the whole domain.

In Table 3.5 we report the results related to the algorithm tested on the meshes described in Figure
3.9. We report the number of iterations needed to achieve convergence for the different choices of
the cost functional, of the mesh refinement and of the boundary controls: Dirichlet or Neumann. In
every case that we have considered the algorithm has converged and we remark that, for every choice
of the cost functional, and for every size of the overlapping region, the number of iterations needed
to achieve convergence increases when refining the grid. For increasing sizes of the overlapping
region, for a fixed value of h, we remark that

• when minimizing JL2 with Dirichlet controls the number of iterations decreases when using P1

finite elements and is more or less stable when using P2 finite elements;

• when minimizing JL2 with Neumann controls the number of iterations needed to achieve
convergence seems to be increasing, with both the choices of P1 and P2 finite elements;

• the minimization of the cost functionals JH1
0
and JH1 is independent of the size of the overlapping

region.

In order to further investigate these results we have generated a mesh where the size of the overlap
reduces to the grid size (i.e. δ = h). The corresponding results are listed in Table 3.6. We
observe that when considering JL2 the number of iterations needed to achieve convergence increases
significantly when refining the mesh and consequently the size of the overlap, especially if P2 elements
are used. In the case of JH1

0
and JH1 the behavior is analogous but the number of iterations, when

reducing h, increases in a very small amount.

These results need further investigation: in this work we limit ourselves to their description.
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D N
h = 0.2 h = 0.1 h = 0.05 h = 0.2 h = 0.1 h = 0.05

P1

δ = 0.2

JL2 12 54 138 27 55 130

JH1
0

5 12 27 12 20 33

JH1 10 23 39 14 21 31

δ = 0.6

JL2 17 34 42 27 72 165

JH1
0

5 11 26 14 24 36

JH1 10 20 35 14 26 37

δ = 1.8

JL2 11 31 42 24 66 201

JH1
0

5 11 25 14 24 30

JH1 10 22 34 14 25 36

P2

δ = 0.2

JL2 28 56 74 68 146 330

JH1
0

14 28 50 24 31 43

JH1 23 40 66 23 32 45

δ = 0.6

JL2 35 58 70 82 179 397

JH1
0

13 27 44 24 35 46

JH1 21 35 59 26 35 47

δ = 1.8

JL2 35 54 78 92 217 437

JH1
0

13 27 43 24 37 45

JH1 20 34 60 27 35 47

Table 3.5: Number of iterations (tol = 10−10).

D N
h = 0.2 h = 0.1 h = 0.05 h = 0.2 h = 0.1 h = 0.05

P1, δ = h

JL2 12 25 42 25 57 112

JH1
0

5 14 31 12 20 23

JH1 10 26 57 14 21 24

P2, δ = h

JL2 28 313 615 75 159 283

JH1
0

14 30 62 22 29 33

JH1 23 47 90 25 32 34

Table 3.6: Number of iterations (tol = 10−10).
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Figure 3.10: Pattern of the global matrix, h = 0.2, δ = 0.3.

3.1.2 Preconditioning

In this section we report the results obtained with the various preconditioning approaches presented
in section 2.3. We want to test the efficiency of the different choices that have been implemented, as
well as the advantages and disadvantages of the various techniques. We are dealing with the problem
of finding an appropriate preconditioner for the saddle point linear system (2.20). A representation
of the structure of the global matrix is helpful to understand the characteristics of A: in Figure
3.10 we report the pattern of the matrix. This matrix is symmetric and is of saddle point structure.
The central block (the M12 matrix in (2.20), colored in green) represents the coupling term of
the problem. We observe that this matrix is positive semi-definite: only the rows and columns
corresponding to the nodes on the overlapping region are different from zero. The (red) block on
the upper-left part of the matrix represents the penalization term that is added for the regularization
of the cost functional. When the penalization coefficient β is equal to zero the ill-posedness of the
matrix increases.

The analysis has been carried on for values of β ranging from 0 to 1. The case corresponding to
β = 0 represents the non penalized case in which the consistency of the original problem is preserved.
The opposite situation, β = 1, is implemented in order to study the behavior of the limit case of a
highly penalized cost functional. This choice is never recommended in practice because this term
implies a modification of the original problem and one looses the possibility to recover the exact
solution.

The domain of the problem is again the one represented in Figure 3.1, with overlap defined by
δ = 0.3 and with the Dirichlet boundary conditions applied on the vertical sides of the domain. All
the tests have been carried out with P1 finite elements and in all the approaches we have fixed a
tolerance of 10−10. We are considering Neumann boundary controls and the minimization of the
cost functional JL2 .
We study the convergence of the numerical solution of the coupled virtual control problem to the
exact cubic solution (3.6) introduced in the previous section. In Table 3.7 we report some preliminary
results on the resolution of the non preconditioned problem. We report the number of iterations



78 CHAPTER 3. NUMERICAL RESULTS

errors

β # J ∼ ‖ϕGh − ϕ
ex‖H1 ‖ϕGh − ϕ

ex‖L2

10−8

MINRES
h = 0.2 2240 10−8 0.6677 0.0236

h = 0.1 17376 10−8 0.3345 0.0059

h = 0.05 85816 10−8 0.1673 0.0015

BiCGStab
h = 0.2 27 10−8 0.6677 0.0236

h = 0.1 73 10−8 0.3345 0.0059

h = 0.05 158 10−8 0.1673 0.0015

10−4

MINRES
h = 0.2 2114 10−4 0.6671 0.0237

h = 0.1 9108 10−4 0.3412 0.0069

h = 0.05 28397 10−4 0.2141 0.0040

BiCGStab
h = 0.2 23 10−4 0.6671 0.0237

h = 0.1 28 10−4 0.3412 0.0069

h = 0.05 29 10−4 0.2141 0.0040

1

MINRES
h = 0.2 492 0.2707 7.2823 0.7743

h = 0.1 1744 0.2689 13.0570 0.7475

h = 0.05 6027 0.2684 24.6345 0.7329

BiCGStab
h = 0.2 3 0.2707 7.2823 0.7743

h = 0.1 3 0.2689 13.0570 0.7475

h = 0.05 3 0.2684 24.6345 0.7329

Table 3.7: Convergence history without preconditioning: MINRES on the global system and BiCGStab to
solve the extremality equation.
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β P̃d P̂d

10−8

h = 0.2 126 141

h = 0.1 209 191

h = 0.05 257 226

10−4

h = 0.2 208 246

h = 0.1 417 476

h = 0.05 572 976

1

h = 0.2 28 34

h = 0.1 30 33

h = 0.05 38 33

Table 3.8: Convergence history: Preconditioned MINRES with P̃12 and P̂12.

needed for the resolution of the global linear system (2.20) to the number of iterations needed to
solve the extremality equation (2.39). The first linear system, being symmetric indefinite, is solved
with MINRES, the second linear system being non symmetric is solved by the use of BiCGStab.
With these results we want to show the consistency of the two approaches: in both cases the cost
functional is minimized and its lower bound is dominated by the presence of the penalization term.
The errors between the numerical and the exact solution are the same in both cases and we observe
that with β = 10−8 the errors ‖ϕGh − ϕex‖H1 and ‖ϕGh − ϕex‖L2 are equal to the ones recovered
by the algorithm in the case of absence of penalization with a precision of 10−4 (see Table 3.1).
This means that for β ∼ 10−8 the variation from the original problem caused by the presence of the
penalization term is negligible if one is satisfied by this level of accuracy. Moreover we observe that,
in both the approaches, the number of iterations that are needed to achieve convergence lowers
significantly as the penalization coefficient is augmented. This behavior is particularly evident in the
case of the extremality equation and can be explained through the results obtained in section 2.3
on the equivalence between the resolution of the extremality equation and the Schur complement
equation. In fact we have shown that for high values of the penalization term the iterations needed
to solve the extremality equation are equivalent to the iterations of a preconditioned Richardson
algorithm.

A Block Diagonal Preconditioner

In this section we describe the results obtained with the block diagonal preconditioners presented
in section 2.3.2. We are solving the linear system (2.20) with MINRES and we precondition the
algorithm with the matrices P̃d and P̂d . When considering P̃d we set the coefficient α = 0.1 in
order to deal with a positive definite preconditioner. The results obtained with this approach are
presented in Table 3.8. The results have to be compared with the ones obtained with the non
preconditioned MINRES algorithm presented in Table 3.7. The number of iterations needed to
achieve convergence is significantly reduced when preconditioning. For β = 10−8 the preconditioners
behave in a similar way, the method requires a lower number of iterations to converge with respect
to the non preconditioned case but it is still dependent on the level of the mesh refinement. For
β = 10−4 the number of iterations is higher with respect to what happens in less penalized case of
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Figure 3.11: Pattern of the global reordered matrix, h = 0.2, δ = 0.6.

β = 10−8, this aspect still needs further investigation. For a highly penalized problem, β = 1, we
observe that the choice of P̂d is more efficient and the method achieves convergence independently
of the level of the mesh refinement. We have recovered the behavior of the non preconditioned
BiCGStab for the resolution of the optimality equation. Preconditioning the problem with P̃d the
behavior is similar but there is still some dependency on the level of discretization.

We can conclude that this choice for preconditioning the linear system (2.20) is not optimal. First
of all, we are interested in finding an effective preconditioner for small values of the penalization
coefficient β because we want to solve a problem that preserves the consistency with the original
one; and we have shown that this approach is effective only for a highly penalized problem. Moreover
the costs for the resolution of a linear system for the preconditioners is so high that this option is
not successfully implementable in practice.

Gauss-Seidel and Jacobi Preconditioners

In this section we solve the linear system related to the optimization problem presented in section
2.3.3. The linear system (2.25) corresponds to a reordering of the rows of (2.20) so it is equivalent
to the latter although it presents some peculiarities. In fact the matrix in (2.25) is not symmetric
but presents a positive definite (1, 1) block. The pattern of this matrix is represented in Figure 3.11,
where the colored block represent the corresponding blocks in Figure 3.10. Because of the lack of
symmetry the problem is solved with GMRES.
The first observation that arises from an examination of Table 3.9 regards the non preconditioned
case. In fact, we observe that the number of iterations needed to achieve convergence in the case
of the resolution of the non symmetric linear system with GMRES is lower than the number of
iterations needed to achieve convergence when solving the symmetric linear system with MINRES
(results presented in Table 3.7). This means that without preconditioning, it is better to deal with a
non symmetric problem whose diagonal blocks are all positive definite. The results concerning the
preconditioned problem are also reported in Table 3.9. We observe that in presence of preconditioning
the number of iterations needed to achieve convergence is significantly reduced, but with neither
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β P = I P = PGS P = PJ

10−8

h = 0.2 294 21 41

h = 0.1 784 42 78

h = 0.05 1768 70 123

10−4

h = 0.2 284 21 39

h = 0.1 634 26 50

h = 0.05 1205 28 50

1

h = 0.2 99 5 9

h = 0.1 182 5 9

h = 0.05 332 5 9

Table 3.9: Converge history for Ã: GMRES and preconditioned GMRES with PGS and PJ .

n m p n −m 2p 2(m − p)

β 6= 0 180 160 120 20 240 80

β = 0 180 160 140 20 280 40

Table 3.10: Dimension of the problem, h = 0.2.

preconditioner we obtain a number of iterations independent of the mesh size. The Gauss-Seidel
preconditioner performs better than the Jacobi preconditioner, even if the two matrices only differ for
the presence of the E block, related to the lifting of the Neumann boundary conditions. We observe
that when β = 1 the number of iterations (with both preconditioners) is low and independent of the
level of the mesh refinement. It is hard to make a comparison between this case and the the case of
the block diagonal preconditioner introduced in the previous section, because of the difference that
already exists between the non preconditioned approaches. Both the block diagonal preconditoner
presented in section 2.3.2 and the Gauss-Seidel and Jacobi preconditioner presented in this section
are very costly to assemble and do not perform well in the case of low penalization. The conclusion
is that these approaches are far from optimal in the particular case of a linear system deriving from
a coupled optimization problem.

A Preconditioner for Highly Singular (1, 1) Block

We now concentrate on the case of the preconditioning approach presented in section 2.3.4. As
previously shown, these preconditioners are tailored for the case of symmetric saddle point matrices
with a highly singular (1, 1) block. For this reason we test them on the optimality linear system in
the original form (2.20).
We first concentrate on the results concerning the first preconditioner of this kind, Pt , whose
definition is given in (2.26). As a preliminary analysis we want to verify the theoretical bounds of
the eigenvalue distribution of the preconditioned matrix. In Figure 3.12 we report these eigenvalues
when t = −1 and h = 0.2 (mesh refinement), for two values of the penalization coefficient β. The
numbers referring to the dimension of the problem in this particular case are shown in Table 3.10,
for the notation refer to section 2.3.4. As predicted, we observe n − m eigenvalues equal to 1,
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(a) β = 10−8.
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(b) β = 1.

Figure 3.12: Eigenvalue distribution.

p eigenvalues equal to 1−
√

5
2 , p eigenvalues equal to 1+

√
5

2 and the remaining are bounded in the
intervals given in (2.28). Moreover we confirm that the spectral clustering is stronger and the
eigenvalues are bounded away from 0 when A is more ill-conditioned (for small values of β).

In Table 3.11 we report the convergence history with the following preconditioners: Pt with t = −1

and with γ = 1, Pt with t = −1 and with the choice 1/γ = max(A) (we refer to this preconditioner
as Pγ−1), and Pt with t = 1 and t = 2 and γ = 1. We verify the property that all the preconditioners
are more effective for an ill-conditioned A; in particular, when β = 0, so that the dimension of the
kernel of the matrix is augmented, we attain convergence in two iterations. Moreover we remark
that the choice γ = 1 gives better results with respect to the choice in which the augmentation
term is weighted in order to be in norm comparable to A, in the case of the preconditioner P−1. We
remark that for high values of the penalization term the convergence is not independent of the mesh
refinement but the number of iterations needed to achieve convergence is still significantly reduced
with respect to the non preconditioned case. We recall that, since we are solving a virtual control
problem, we are interested in a non penalized cost functional. Small values of the penalization term
are acceptable as long as the modification induced on the original problem is negligible. For this
reason this preconditioning approach is optimal for a matrix deriving from a coupled virtual control
problem.

In Table 3.12 we make a comparison between the preconditioner Pt , presented in [22] and the
preconditioners presented in [23]. The values of the parameter t are chosen as in the cited works.
P̃−1 behaves better than P−1 because it guarantees a stronger spectral clustering, as predicted by
the eigenvalues bounds. Moreover we remark the following properties, in agreement with what is
observed in [23]: the number of iterations with P̃−1 is smaller than the number of iterations with P̃1

and P̃2 and the number of iterations with P̂t is smallest when t = 2.
Because of the fact that we are interested in the case of very small or inexistent penalization we can
conclude that the various preconditioning approaches, for the different values of the parameter t are
equivalent. In fact the number of iterations needed to achieve convergence differs, in the various
cases, only in correspondence of high values of the penalization term (β = 0.4 and β = 1).



3.1. NUMERICAL RESULTS 83

β P = I P = P−1 P = Pγ−1 P = P1 P = P2

0

h = 0.2 338 2 2 2 2

h = 0.1 − 2 2 2 2

h = 0.05 − 3 2 2 3

10−8

h = 0.2 338 4 7 5 4

h = 0.1 − 5 9 6 4

h = 0.05 − 6 7 7 7

10−4

h = 0.2 337 8 15 8 8

h = 0.1 − 9 35 9 9

h = 0.05 − 11 103 12 13

1

h = 0.2 329 14 24 16 15

h = 0.1 − 20 43 21 21

h = 0.05 − 29 85 29 31

Table 3.11: Convergence history: GMRES and preconditioned GMRES. − means that the method did not
converge in the first 1000 iterations.

β P̃−1 P̃1 P̃2 P̂ 1
2
P̂2 P̂4 P̂8

0

h = 0.2 2 2 2 2 2 2 2

h = 0.1 2 2 2 2 2 2 2

h = 0.05 2 3 3 2 2 3 3

10−8

h = 0.2 3 3 3 5 4 4 4

h = 0.1 4 4 5 5 4 4 5

h = 0.05 4 6 6 8 5 5 6

10−4

h = 0.2 5 5 5 8 7 7 7

h = 0.1 6 6 7 9 9 9 9

h = 0.05 7 9 9 12 10 12 11

1

h = 0.2 8 9 9 15 14 15 15

h = 0.1 11 13 12 19 17 18 20

h = 0.05 15 17 18 28 24 26 27

Table 3.12: Convergence history: preconditioned GMRES.
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β P = I K(Σ) PΣ K(P−1
Σ Σ) P̃ P̃12 P̃ 1

12

0

h = 0.2 31 104 13 ∼ 25 20 20 20

h = 0.1 84 105 13 ∼ 25 34 32 32

h = 0.05 204 106 13 ∼ 25 55 52 57

10−8

h = 0.2 31 104 13 ∼ 25 20 20 20

h = 0.1 85 105 13 ∼ 25 35 32 32

h = 0.05 203 106 13 ∼ 25 55 55 56

10−4

h = 0.2 31 103 13 ∼ 25 16 16 16

h = 0.1 46 104 13 ∼ 25 19 18 18

h = 0.05 50 104 13 ∼ 25 21 21 19

1

h = 0.2 12 4.25 5 1.69 5 5 5

h = 0.1 12 4.36 5 1.69 5 5 5

h = 0.05 10 4.41 5 1.66 5 5 5

Table 3.13: Shur complement equation. Convergence history: CG and preconditioned CG.

β = 0 β = 10−8 β = 10−4 β = 1

B C B C B C B C

h = 0.2 27 31 27 31 23 31 3 12

h = 0.1 72 84 73 85 28 46 3 12

h = 0.05 165 204 158 203 29 50 3 10

Table 3.14: Comparison between the resolution of the extremality equation with the BiCGStab algorithm (B)
and the resolution of the Schur complement equation using the Conjugate Gradient algorithm
(C), for different values of β.

Preconditioning the Interface Equation

We test here the various preconditioning approaches for the Schur complement equation presented
in section 2.3.5. Because of the symmetry and of the positive definiteness of the Schur complement
matrix we solve the system by the conjugate gradient method. In the first column of Table 3.13 we
report the number of iterations needed to achieve convergence for the non preconditioned linear
system, for different values of the mesh refinement and for different values of the penalization
coefficient β. We remark that for strong penalizations the rate of convergence is independent
of the level of refinement of the mesh. We observe (column two) that the condition number
of this matrix is independent of h for β = 1. As a matter of fact, being the interface matrix
βMΓ + ET (KT )−1M12K

−1E, when β is high the first term is dominant and, since MΓ is a mass
matrix on the control interfaces, the condition number is independent of the mesh refinement.

The block diagonal precondtioner PΣ (2.33), is very efficient, for all the levels of penalization of
the cost functional. In fact, the number of iterations needed to achieve convergence is small and
independent of h, because the condition number of the preconditioned matrix is independent of h.
The drawback of this preconditioner is the high computational cost needed for its assembling. For
this reason we tested the following simplifications of PΣ: P̃ , P̃12 and P̃ 1

12 defined in (2.35), (2.36)
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and (2.37) respectively. The convergence history of the various approaches is reported in Table 3.13.
The approximations of P behave similarly and the results we obtain are satisfactory for values of
β starting from 10−4. Since the results for P̃ , P̃12 and P̃ 1

12 are analogous, a natural choice is to
choose as a preconditioner P̃ 1

12, which is the less costly to assemble.

In Table 3.14 we report a comparison between the resolution of the extremality equation and of the
Schur complement equation. The equivalence between the two has been proved in section 2.3.5 and
here we report the number of iterations needed to achieve convergence of the two non-preconditioned
algorithms. The first was used in the numerical results presented in section 3.1.1 and the second
has been implemented in the contest of preconditioning. We remark that the behavior of the two is
analogous. The speed of convergence increases more significantly with β in the case of the iterative
algorithm that solves the extremality equation: in fact we have shown that this approach corresponds
to a Richardson method preconditioned with the matrix MΓ , which is an effective preconditioner for
high values of the penalization parameter.
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Chapter 4

Coupled Virtual Control for the
Stokes Problem

In this chapter we want to apply the virtual control method to the Stokes system. We will formulate
the problem and introduce the different cost functionals that will be minimized on the overlapping
region. Then we will present the algebraic formulation of the problem and the numerical results
obtained with our numerical simulations.

4.1 Coupled Virtual Control: the Stokes Problem

4.1.1 Formulation of the Problem

We want to solve on the two overlapping domains Ω1 and Ω2 the following Stokes problems:
for i = 1, 2, find (ui , pi) ∈ [H1(Ωi)]2 × L2(Ωi) so that

−ν∆ui +∇pi = f i in Ωi

∇ · ui = 0 in Ωi

ν∇ui · ni − pini = uiN on ΓNi
ui = uiD on ΓDi
ui = λi on Γi ,

(4.1)

where, for i = 1, 2, f i , uiN , u
i
N are suitably chosen regular data, Γi represent the control interfaces

and ΓDi and ΓNi are suitable partitions of ∂Ωi : ΓDi ∪ ΓNi = ∂Ωi\Γi and ΓDi ∩ ΓNi = ∅.
We look for the control variables λ1 and λ2 in the following spaces

ΛDi =
{
µ ∈ [H

1
2 (Γi)]2 : ∃v ∈ [H1(Ωi)]2, v = µ on Γi , v = 0 on ΓDi

}
, i = 1, 2.

The virtual controls can also play the role of natural boundary conditions, in this case λ1 and λ2

correspond to the normal components of the Cauchy stress tensors on the interfaces, Γ1 and Γ2. In

87



88 CHAPTER 4. COUPLED VIRTUAL CONTROL FOR THE STOKES PROBLEM

that case, the state problems to be solved are of the following form:
for i = 1, 2, find (ui , pi) ∈ [H1(Ωi)]2 × L2(Ωi) so that

−ν∆ui +∇pi = f i in Ωi

∇ · ui = 0 in Ωi

ν∇ui · ni − pini = uiN on ΓNi
ui = uiD on ΓDi

ν∇ui · ni − pini = λi on Γi ,

(4.2)

and we seek for the controls in the spaces

ΛNi =
{
µ ∈ [H−

1
2 (Γi)]2 : ∃v ∈ [H1(Ωi)]2,∃p ∈ L2(Ωi), (ν∇ui − pi)ni = µ on Γi , v = 0 on ΓDi ,

(ν∇ui − pi)ni = 0 on ΓNi
}
, i = 1, 2.

We define ΛD = ΛD1 × ΛD2 and ΛN = ΛN1 × ΛN2 and we will refer to the spaces Λ1 and Λ2 if there is
no need to specify which type of boundary conditions are applied on the control interfaces.
The optimal controls are determined as solutions of a minimization problem; in particular, we want
to minimize a suitable cost functional depending on the difference between the two solutions (u1, p1)

and (u2, p2) on the overlapping region Ω12.
The issue of the choice of the cost functional is critical. We have to make sure that we are
controlling, on the overlapping region, the difference between both the components of the velocities
((u1

1 − u2
1)|Ω12 and (u1

2 − u2
2)|Ω12) and the difference between the pressures ((p1 − p2)|Ω12) of the

state problems.
The choice of the optimal cost functional will be discussed in what follows. We now want to derive
the general formulation of the optimality system, for both choices of the spaces of the virtual
controls: ΛD and ΛN . The velocities can be controlled by minimizing the following cost functionals:

JuL2 (λ1, λ2) =
1

2

∫
Ω

χ12(u1 − u2)2, (4.3)

JuH1
0
(λ1, λ2) =

1

2

∫
Ω

χ12(∇u1 −∇u2)2, (4.4)

and the pressure can be controlled through the cost functional.

JpL2 (λ1, λ2) =
1

2

∫
Ω

χ12(p1 − p2)2. (4.5)

We will now derive the expressions of the optimality conditions and of the adjoint problems associated
to (4.3), (4.4) and (4.5). A cost functional that controls both the pressures and the velocities
can be obtained by linear combination of (4.3), (4.4) and (4.5), and analogously one can obtain
the formulation of the optimality equations and of the adjoints. For example, in the numerical
simulations, the following cost functionals will be tested:

JtotH1 (λ1, λ2) =
1

2

∫
Ω

χ12(u1 − u2)2 +
1

2

∫
Ω

χ12(∇u1 −∇u2)2 +
1

2

∫
Ω

χ12(p1 − p2)2, (4.6)

JtotH1
0
(λ1, λ2) =

1

2

∫
Ω

χ12(∇u1 −∇u2)2 +
1

2

∫
Ω

χ12(p1 − p2)2, (4.7)
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ĴtotH1
0
(λ1, λ2) =

1

2

∫
Ω

χ12(∇u1 −∇u2)2 +
1

2

∫
∂Ω

χ12(u1 − u2)2 +
1

2

∫
Ω

χ12(p1 − p2)2. (4.8)

In the case of (4.6) one minimizes the difference between the velocities in the H1(Ω12) norm and
the difference between the pressures in the L2(Ω12) norm. With the choice (4.7), the H1

0(Ω12)

semi-norm of the difference between the velocities is considered and with (4.8) one considers an
augmented H1

0(Ω12) norm. We can remark the analogy of (4.8) with the augmented cost functional
related to the solution of the Poisson problem (1.23): a term controlling the difference between the
solutions (the velocities, in this case) on part of the boundary of the overlap is added.

Again we can split both problems in one problem depending on the controls (λ1, λ2):
for i = 1, 2, find (ui ,λi , pi ,λi ) ∈ [H1(Ωi)]2 × L2(Ωi) so that

−ν∆ui ,λi +∇pi ,λi = 0 in Ωi

∇ · ui ,λi = 0 in Ωi

ν∇ui ,λi · ni − pi ,λini = 0 on ΓNi
ui ,λi = 0 on ΓDi

ν∇ui ,λi · ni − pi ,λini/ui ,λi = λi on Γi ,

(4.9)

and one problem depending on the data:
for i = 1, 2, find (ui,f , pi ,f ) ∈ [H1(Ωi)]2 × L2(Ωi) so that

−ν∆ui ,f +∇pi ,f = f i in Ωi

∇ · ui ,f = 0 in Ωi

ν∇ui ,f · ni − pi ,f ni = uiN on ΓNi
ui ,f = uiD on ΓDi

ν∇ui ,f · ni − pi ,f ni/ui ,f = 0 on Γi ,

(4.10)

so that, for i = 1, 2

ui = ui ,λi + ui ,f pi = pi ,λi + pi ,f . (4.11)

The cost functionals (4.3), (4.4) and (4.5) can be split in a quadratic part and in an affine part in
the following way:

• JuL2 (λ1, λ2) = J0
uL2 (λ1, λ2) + AuL2 (λ1, λ2),

where

J0
uL2 (λ1, λ2) =

1

2

∫
Ω

χ12(u1,λ1 − u2,λ2 )2,

AuL2 (λ1, λ2) =
1

2

∫
Ω

χ12(u1,f − u2,f )2 +

∫
Ω

χ12(u1,λ1 − u2,λ2 ) · (u1,f − u2,f ),

• JuH1
0
(λ1, λ2) = J0

uH1
0
(λ1, λ2) + AuH1

0
(λ1, λ2),

where

J0
uH1

0
(λ1, λ2) =

1

2

∫
Ω

χ12(∇u1,λ1 −∇u2,λ2 )2,

AuH1
0
(λ1, λ2) =

1

2

∫
Ω

χ12(∇u1,f −∇u2,f )2 +

∫
Ω

χ12(∇u1,λ1 −∇u2,λ2 ) · (∇u1,f −∇u2,f ),
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• JpL2 (λ1, λ2) = J0
pL2 (λ1, λ2) + ApL2 (λ1, λ2),

where

J0
pL2 (λ1, λ2) =

1

2

∫
Ω

χ12(p1,λ1 − p2,λ2 )2,

ApL2 (λ1, λ2) =
1

2

∫
Ω

χ12(p1,f − p2,f )2 +

∫
Ω

χ12(p1,λ1 − p2,λ2 ) · (p1,f − p2,f ),

4.1.2 The Optimality System

We are now interested in deriving the expression of the optimality systems (state and adjoint
problems, optimality condition) for the different choices of the cost functionals (4.3), (4.4) and
(4.5). The partial derivatives of the cost functional that minimizes the L2 norm of the difference
between the velocities on the overlap read as follows:

〈
∂J0

uL2

∂λ1
, µ1〉 =

∫
Ω

χ12(u1,λ1 − u2,λ2 )u1,µ1 ∀µ1 ∈ Λ1,

〈
∂J0

uL2

∂λ2
, µ2〉 = −

∫
Ω

χ12(u1,λ1 − u2,λ2 )u2,µ2 ∀µ2 ∈ Λ2,

〈
∂AuL2

∂λ1
, µ1〉 =

∫
Ω

χ12(u1,f − u2,f )u1,µ1 ∀µ1 ∈ Λ1,

〈
∂AuL2

∂λ2
, µ2〉 = −

∫
Ω

χ12(u1,f − u2,f )u2,µ2 ∀µ2 ∈ Λ2.

In the case of the minimization of JH1
0
we have that:

〈
∂J0

uH1
0

∂λ1
, µ1〉 = −

∫
Ω

∇ · (χ12(∇u1,λ1 −∇u2,λ2 ))u1,µ1 +

∫
∂Ω

(χ12(∇u1,λ1 −∇u2,λ2 )) · n1u
1,µ1 ∀µ1 ∈ Λ1,

〈
∂J0

uH1
0

∂λ2
, µ2〉 =

∫
Ω

∇ · (χ12(∇u1,λ1 −∇u2,λ2 ))u2,µ2 −
∫
∂Ω

(χ12(∇u1,λ1 −∇u2,λ2 )) · n2u
2,µ2 ∀µ2 ∈ Λ2,

〈
∂AuH1

0

∂λ1
, µ1〉 = −

∫
Ω

∇ · (χ12(∇u1,f −∇u2,f ))u1,µ1 +

∫
∂Ω

(χ12(∇u1,f −∇u2,f )) · n1u
1,µ1 ∀µ1 ∈ Λ1,

〈
∂AuH1

0

∂λ2
, µ2〉 =

∫
Ω

∇ · (χ12(∇u1,f −∇u2,f ))u2,µ2 −
∫
∂Ω

(χ12(∇u1,f −∇u2,f )) · n2u
2,µ2 ∀µ2 ∈ Λ2,

The expressions of the form ∇ · (χ12(..)) must be looked at as formal notation. In fact, it describes
a duality product in a distributional sense. This notation derives from an integration by parts and
it is needed to be able to give the strong formulation of the adjoint problems. In practice, this
expression of the partial derivative will not be used, and we will take into account only the partial
derivative before its integration by parts.
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When observing the pressures the partial derivatives read as:

〈
∂J0

pL2

∂λ1
, µ1〉 =

∫
Ω

χ12(p1,λ1 − p2,λ2 )p1,µ1 ∀µ1 ∈ Λ1,

〈
∂J0

pL2

∂λ2
, µ2〉 = −

∫
Ω

χ12(p1,λ1 − p2,λ2 )p2,µ2 ∀µ2 ∈ Λ2,

〈
∂ApL2

∂λ1
, µ1〉 =

∫
Ω

χ12(p1,f − p2,f )p1,µ1 ∀µ1 ∈ Λ1,

〈
∂ApL2

∂λ2
, µ2〉 = −

∫
Ω

χ12(p1,f − p2,f )p2,µ2 ∀µ2 ∈ Λ2.

The generic expression of the duals of the state problems (4.9) and (4.10) is the following:
for i = 1, 2, j = λ, f , find (vi ,j , qi ,j) ∈ [H1(Ωi)]2 × L2(Ωi) so that

−ν∆vi ,j +∇qi ,j = F1 in Ωi

∇ · vi ,j = F 2 in Ωi

ν∇vi ,j · ni − qi ,jni = g on ΓNi
vi ,j = 0 on ΓDi

(4.12)

The index i refers to the domain on which the problem is solved: Ω1 or Ω2. The index j denotes
whether the right hand side of the problem is function of the states depending on the sole controls
(solutions of (4.9)) or of the states depending on the given data of the problem (solutions of
(4.10)).

In Table 4.1, we report, for the three cost functionals (4.3)-(4.5), the specific data assigned to the
dual problems and the final expressions of the optimality conditions. The table has to be read in the
following way: we solve for (v, q) an adjoint system with forcing term of the continuity equation
F1, forcing term of the equation derived from the conservation of the mass F 2 and boundary
condition on ∂Ω12 ∩ ΓN equal to g; we rewrite the weak formulations of the partial derivatives of
the cost functional (〈 ∂J∂λ , µ〉

D in the case of Dirichlet boundary controls and as 〈 ∂J∂λ , µ〉
N in the case

of Neumann boundary controls) as functions of (v, q). From an analysis of Table 4.1 we can state
the following observations:

• the adjoint in the case of the minimization of JpL2 represent a non divergence-free Stokes
problem, in particular the mass is not conserved on the overlap region Ω12;

• in the case of the minimization of JuH1
0
a boundary term is applied to the adjoint problem on

the part of the boundary ∂Ω12 ∩ ΓN , this part includes the interfaces Γ1 and Γ2 in the case of
Neumann boundary controls (in the case of Dirichlet controls the condition imposed on the
interfaces is homogeneous);

• in the case of the minimization of JuH1
0
, if the controls belong to the space ΛD, an extra term

appears in the expression of the partial derivative, depending on the solutions of the state
problems;

• in general, the choice of the space of the controls ΛN simplifies the expression of the partial
derivatives, in fact, in this case, the partial derivatives are symmetric and depend on the sole
solution of the adjoint v and not on the normal component of the Cauchy stress tensor.
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4.1.3 The Generalized Stokes Problem

As we did in section 1.2 we consider the following generalized Stokes problem: for i = 1, 2, find
(ui , pi) ∈ H1(Ωi)xL

2(Ωi) so that

αu− ν∆ui +∇pi = f i in Ωi

∇ · ui = 0 in Ωi

ν∇ui · ni − pini = uiN on ΓNi
ui = uiD on ΓDi

ν∇ui · ni − pini/ui = λi on Γi .

(4.13)

We are interested in testing if the results that we have obtained in the case of the scalar elliptic
problem are extendible to the Stokes system. In particular we want to verify if taking α > 0 guarantees
the well posedness of the problem when considering the minimization of the H1

0 semi-norm of the
difference between the velocities on the overlap.

The derivation of the optimality system in this case is analogous to the case when α = 0, apart
from considering as dual problem a system of equations of the same form as (4.13).

4.1.4 Minimization Algorithms

As we have done in the case of the scalar elliptic equation we consider a couple of solution
algorithms for the optimality system deriving from the virtual control approach applied to the Stokes
problem.

Solving the Extremality Equation: Iterative Algorithm

We iterate between the equations in the optimality system in order to find the couple of controls
(λ1, λ2) that minimize the cost functional. We aim to solve ∇J = ∇J0 +∇A = 0, where

〈∇J0, (µ1, µ2)〉 = (〈
∂J0

∂λ1
, µ1〉, 〈

∂J0

∂λ2
, µ2〉),

〈∇A , (µ1, µ2)〉 = (〈
∂A

∂λ1
, µ1〉, 〈

∂A

∂λ2
, µ2〉).

Given an initial guess for the control variables we solve the state equations, then we solve the
adjoints, then through the optimality condition we obtain a new approximation of the controls. The
process is repeated until satisfactory convergence is achieved.

In the initialization part we compute the term that depends on the data of the problem ∇A , as
follows:

1. compute (u1,f , p1,f ) and (u2,f , p2,f );

2. compute (v1,f , q1,f ) and (v2,f , q2,f );

3. compute ∇A .
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In the main loop we solve by an iterative method the linear system ∇J0(λ1, λ2) = −∇A . We
choose the BiCGStab algorithm, because the matrix J0(λ1, λ2) is non symmetric in the case of
Dirichlet virtual controls. We start with an initial guess for the virtual controls (λ0

1, λ
0
2) and at the

generic iteration k we:

1. compute (u1,λ1 , p1,λ1 ) and (u2,λ2 , p2,λ2 );

2. compute (v1,λ1 , q1,λ1 ) and (v2,λ2 , q2,λ2 );

3. compute ∇J0(λk1, λ
k
2).

The method stops when the relative increment between two consecutive iterates (λk1, λ
k
2) and

(λk−1
1 , λk−1

2 ) is lower than a certain tolerance.

The One Shot Approach

In the one-shot approach one constructs a global system for the resolution of the coupled virtual
control problem. The formal expression of this system will be derived in the following section, when
dealing with the issue of preconditioning, which is designed with the aim of reducing the high number
of iterations needed for the solution of the linear system.
The global matrix is composed with four matrices corresponding to the Stokes problem (a state
problem and an adjoint problem for each domain), plus the terms related to the coupling, the
boundary conditions and the optimality equations.

4.2 Preconditioning the Optimality System

In this section we will first present the expression of the global optimality linear system, then we
will derive the expression of the corresponding Schur Complement equation on the interface and
propose a preconditioner for it, analogously to what has been done in section 2.3.

4.2.1 The Optimality System as a Global Linear System

We assemble the global matrix with respect to a problem with the following specifications:

• the virtual controls represent a Neumann boundary condition ((λ1, λ2) ∈ ΛN));

• the solutions (u1, p1) and (u2, p2) are not split in a part depending on the controls and in a
part depending on the data (consequently, this decomposition will not be present in the cost
functional and in the adjoint problems);

• we minimize the following cost functional:

Jtot(λ1, λ2) =
1

2

∫
Ω

χ12(u1 − u2)2 +
1

2

∫
Ω

χ12(∇u1 −∇u2)2 +
1

2

∫
Ω

χ12(p1 − p2)2+

1

2
β1

∫
Γ1

λ1
′λ1 +

1

2
β2

∫
Γ2

λ2
′λ2, (4.14)
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which is a linear combination of (4.3), (4.4) and (4.5). With this choice we are sure to
control the H1(Ω12) norm of the difference between the velocities and the L2(Ω12) norm of
the difference between the pressures. We also remark the presence of a penalization term
on the cost functional: this term was added in order to be able to study the behavior of the
optimization problem with respect to this additional control. We take β1 = β2 = β.

On Ω1 the state problem read as follows: find (u1, p1) ∈ [H1(Ω1)]2 × L2(Ω1) so that

−ν∆u1 +∇p1 = f1 in Ω1

∇ · u1 = 0 in Ω1

ν∇u1 · n1 − pin1 = u1
N on ΓN1

ui = u1
D on ΓD1

ν∇u1 · n1 − p1n1 = λ1 on Γ1,

(4.15)

and on Ω2 as: find (u2, p2) ∈ [H1(Ω2)]2 × L2(Ω2) so that

−ν∆u2 +∇p2 = f2 in Ω2

∇ · u2 = 0 in Ω2

ν∇u2 · n2 − p2n2 = u2
N on ΓN2

u2 = u2
D on ΓD2

ν∇u2 · n2 − p2n2 = λi on Γ2.

(4.16)

The forcing terms and the boundary data that have to be imposed on the right hand side of the adjoints
when minimizing (4.14) can be derived by linear combination of the results obtained for (4.3), (4.4)

and (4.5). In particular one obtains the following problem on Ω1: find (v1, q1) ∈ [H1(Ω1)]2×L2(Ω1)

so that 

−ν∆v1 +∇q1 = −χ12(u1 − u2) + χ12(∇u1 −∇u2) in Ω1

∇ · v1 = χ12(p1 − p2) in Ω1

ν∇v1 · n1 − q1n1 = −χ12(∇u1 −∇u2) · n1 on ΓN1
v1 = 0 on ΓD1

ν∇v1 · n1 − q1n1 = −χ12(∇u1 −∇u2) · n1 on Γ1,

(4.17)

and the following system on Ω2: find (v2, q2) ∈ [H1(Ω2)]2 × L2(Ω2) so that

−ν∆v2 +∇q2 = χ12(u1 − u2)− χ12(∇u1 −∇u2) in Ω2

∇ · v2 = −χ12(p1 − p2) in Ω2

nu∇v2 · n2 − q2n2 = χ12(∇u1 −∇u2) · n2 on ΓN2
v2 = 0 on ΓD2

ν∇v2 · n2 − q2n2 = χ12(∇u1 −∇u2) · n2 on Γ2.

(4.18)

We can express the optimality conditions (partial derivatives of (4.14) set to zero) as functions of
the solutions of the dual problems (4.17) and (4.18):

〈
∂Jtot
∂λ1

, µ1〉 = −
∫
Γ1

v1 · µ1 + β

∫
Γ1

λ1 · µ1 = 0 ∀µ1 ∈ Λ1, (4.19)

〈
∂Jtot
∂λ2

, µ2〉 = −
∫
Γ2

v2 · µ2 + β

∫
Γ2

λ2 · µ2 = 0 ∀µ2 ∈ Λ2. (4.20)
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After the discretization of the problem with the use of finite elements (a detailed description can be
found in [14]) the state and dual problems and the optimality conditions can be rewritten as discrete
linear systems in the following way:[

A1 BT1
B1 0

] [
u1

p1

]
−
[
MΓ1 0

0 0

] [
λ1

0

]
=

[
f1
0

]
(4.21)

[
A2 BT2
B2 0

] [
u2

p2

]
−
[
MΓ2 0

0 0

] [
λ2

0

]
=

[
f2
0

]
(4.22)[

A1 BT1
B1 0

] [
v1

q1

]
+

[
M12 + C12 0

0 −Mp
12

] [
u1

p1

]
−
[
M12 + C12 0

0 −Mp
12

] [
u2

p2

]
=

[
0

0

]
(4.23)[

A2 BT2
B2 0

] [
v2

q2

]
−
[
M12 + C12 0

0 −Mp
12

] [
u1

p1

]
+

[
M12 + C12 0

0 −Mp
12

] [
u2

p2

]
=

[
0

0

]
(4.24)

β1MΓ1λ1 −MΓ1v1 = 0 (4.25)

β2MΓ2λ2 −MΓ2v2 = 0 (4.26)

By reordering the equations (optimality conditions, adjoints, states) we can obtain the following
global matrix:2666666666666666666666666664

β1MΓ1
−MΓ1

β2MΓ2
−MΓ2

M12 + C12 0 −M12 − C12 0 A1 BT1
0 −Mp

12 0 Mp
12 B1 0

−M12 − C12 0 M12 + C12 0 A2 BT2
0 Mp

12 0 −Mp
12 B2 0

−MΓ1
A1 BT1
B1 0

−MΓ2
A2 BT2
B2 0

3777777777777777777777777775

, (4.27)

corresponding to the vector of unknowns[
λ1 λ2 u1 p1 u2 p2 v1 q1 v2 q2

]T
(4.28)

and the right hand side [
0 0 0 0 0 0 d1 0 d2 0

]T
. (4.29)

We can see that the global system has the following formβMΓ 0 −ET

0 M12 KT

−E K 0


 λu∗
v ∗

 =

0

0

d

 , (4.30)

where λ =
[
λ1 λ2

]T
, u∗ =

[
u1 p1 u2 p2

]T
and v ∗ =

[
v1 q1 v2 q2

]T
. The struc-

ture of this linear system in analogous to (2.20); it is of saddle point type, so that the same
considerations that have been made in section 2.3.1 hold true. The main difference between (2.20)
and (4.30) resides in the bigger dimension of the matrix related to the coupled Stokes problem.
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4.2.2 Preconditioning the Schur Complement Interface Equation

As we have done in section 2.3.5 we can eliminate the unknowns corresponding to the state’s
solutions and to the adjoint’s solutions in (4.30) in order to obtain the following equation on the
interface

βMΓλ+ ET (KT )−1M12K
−1Eλ = −ET (KT )−1M12K

−1d. (4.31)

We define Σ = βMΓ + S where S = ET (KT )−1M12K
−1E. MΓ is the mass matrix on the control

interfaces and is related to the penalization term and S is the matrix related to the solution of the
problem. We refer to Σ as the Schur complement matrix. The matrix S maps the vector of the
controls λ from the Neumann boundary condition on the interfaces to the optimality equation back
on the interfaces, through the resolution of the state and adjoint problems.

Analogously to what has been done in section 2.3.5, we want to derive the expression of a
preconditioner for the matrix Σ. It is helpful to highlight the contributions coming form the two
different subdomains, in the following way:

Σ =

[
βMΓ1 + NTΓ1

(DT1 )−1M12
1 D

−1
1 NΓ1 −NTΓ1

(DT1 )−1M12
2 D

−1
2 NΓ2

−NTΓ2
(DT2 )−1M12

1 D
−1
1 NΓ1 βMΓ2 + NTΓ2

(DT2 )−1M12
2 D

−1
2 NΓ2

]
, (4.32)

where we have defined, for i = 1, 2 the matrix related to the Stokes problem as

Di =

[
Ai BTi
Bi 0

]
.

On the diagonal of the matrix (4.32) we recognize two matrices with the same structure of Σ and
corresponding to the two different overlapping domains, we can call them Σ1 and Σ2:

Σ =

[
Σ1 −NTΓ1

(DT1 )−1M12D
−1
2 NΓ2

−NTΓ2
(DT2 )−1M12D

−1
1 NΓ1 Σ2

]
.

We tested the following block diagonal preconditioner

P12 = βMΓ + (1− β)PS12 , (4.33)

where the matrices MΓ and PS12 are weighted with respect to the amount of penalization, and
where

PS12 =

[
MT
Γ1
D−1MΓ1 0

0 MT
Γ1
D−1MΓ1

]
.

This preconditioner represents an iterface-to-interface map that passes through the resolution of the
Stokes operator. The solution of the adjoint has been neglected and consequently we have omitted
the matrices related to the coupling M12

i (i = 1, 2).
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Figure 4.1: Dirichlet controls at the final iteration. In clockwise order: first component of the velocity on
Γ1, second component of the velocity on Γ1, first component of the velocity on Γ2, second
component of the velocity on Γ2.

4.3 Numerical Results

The model

On the Coercivity of the Cost Functional

In analogy with the approach used for the solution of the scalar elliptic equation, we want to test
the coercivity of the different cost functionals presented in section 4.1.1. The domain is again the
one represented in Figure 3.1, and we use the minimization algorithm that iterates between the
problems to solve the extremality equation. We impose the boundary conditions and the forcing
terms in order to recover the following exact linear solution:

uex1 = y

uex2 = x − 1

pex = x + y − 1.

(4.34)

We use P2-P1 finite element spaces, so that we expect to interpolate (4.34) exactly. We use
Dirichlet boundary conditions on ∂Ω12 ∩ ∂Ω. We first test the minimization of (4.3)-(4.5): none
of the resolutions of the optimality systems related to these cost functionals led to the correct
approximation of (4.34). In particular, we observe the following behavior:

• the minimization of JuL2 or JuH1
0
both lead to the correct approximation of one component of

the velocities, the other component converges to a solution different from the exact one and
the pressures do not coincide on the overlap;

• the minimization of JpL2 is not sufficient to guarantee the convergence;

• the minimization of JuL2 + JpL2 tends to recover the exact solution but we observe some
spurious oscillations.

A stronger control is necessary when dealing with the Stokes problem. The functionals depending
on the sole velocity do not guarantee the uniqueness of the solution. In fact, since the pressure is
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Figure 4.2: Neumann controls at the final iteration. In clockwise order: first component of the stress tensor
on Γ1, second component of the stress tensor on Γ1, first component of the stress tensor on Γ2,
second component of the stress tensor on Γ2.

imposed only through the stress tensor on the boundary, different couples of velocity and pressure
satisfy the the local problems on Ω1 and Ω2. The minimization of the difference between the
pressures on the overlap is also not sufficient. For this reason we have to use a functional that
depends on both the velocities and the pressures. We implemented the minimization of the cost
functional (4.6), which minimizes the difference in H1(Ω12) of the velocities and the difference
between the pressures in L2(Ω12), and we obtained satisfactory results. The same holds for the cost
functionals (4.7) and (4.8).

In Table 4.2 we report the results corresponding to these choices for the cost functional, varying the
conditions that are applied on the boundary of the overlap: the algorithm has converged to the exact
linear solution, with the exception of the case of the minimization of JtotH1

0
when ∂Ω12 ∩ ΓD = ∅. In

fact, in this case, the cost functional only represents a semi-norm for the difference between the
velocities on the overlap, and is not sufficient to recover the exact solution. In Figure 4.1 and in
Figure 4.2 we report the controls obtained with the minimization algorithm in the case of Dirichlet
and Neumann boundary controls respectively.

In Table 4.3 we report the convergence history of the different functionals when a Neumann boundary
condition is applied on the boundary of the overlap and we solve the generalized Stokes problem (4.13)
with α = 1. In this case the exact solution is recovered for all of the choices (4.6)-(4.8).

We remark that in Table 4.2 and in Table 4.3 Dirichlet boundary controls have been considered. In
the case where ∂Ω12 ∩ ΓD 6= 0 one should pay particular attention to the initial values imposed to
the problems that depend on the given data. In fact imposing an homogeneous Dirichlet boundary
condition on the interfaces Γ1 and Γ2 as we do in (4.10) might not be the best choice.
We have to assure that the Dirichlet data imposed on the two subdomains Ω1 and Ω2 is continuous
otherwise some spurious oscillations are generated for the pressure pf . These errors will be propagated
along the solution of the algorithm since the solution of the problem depending on the data goes on
the right hand side of the extremality equation ∇J0 = −∇A .

For this reason we choose a non homogeneous Dirichlet value on the interfaces, imposing

ui ,f = uΓi on Γi , i = 1, 2,
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(a) First component of the velocity.
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(b) Second component of the velocity.
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(c) Pressure.

Figure 4.3: The state solution of the Stokes problem on Ω1 and Ω2, for h = 0.1.
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J #iter er ror ∼ J ∼

∂Ω12 ∩ ΓD 6= ∅
JtotH1 189 10−10 10−17

JtotH1
0

157 10−10 10−17

ĴtotH1
0

157 10−10 10−16

∂Ω12 ∩ ΓD = ∅
JtotH1 257 10−10 10−16

JtotH1
0

− 1 10−10

ĴtotH1
0

456 10−10 10−16

Table 4.2: Convergence of the different functionals with different boundary conditions, h = 0.1, tol = 10−10.

J #iter er ror ∼ J ∼

∂Ω12 ∩ ΓD = ∅
JtotH1 323 10−10 10−17

JtotH1
0

428 10−8 10−16

ĴtotH1
0

292 10−10 10−17

Table 4.3: Convergence of the different functionals, Generalized Stokes (α = 1), h = 0.1, tol = 10−10.

so that ui ,f |ΓDi ∪Γi ∈ H
1
2 (ΓDi ∪Γi). The value assumed by the solution on the virtual control interfaces

is obviously unknown: what we do is to impose uΓi as a parabolic function that matches the value of
the Dirichlet boundary data on the edges of the interfaces.
Moreover if the problem on Ωi is a “full Dirichlet problem” (∂Ωi = ΓDi ∪ Γi), uΓi has to ensure the
compatibility condition: ∫

∂Ωi

ui ,f · ni = 0 i = 1, 2,

which derives from the fact that the solution must be divergence free.

Testing the Convergence Orders

As a further analysis, we want to test the convergence orders to the exact solution, when we impose
the boundary conditions and the forcing terms in order to approximate:

uex1 = −exsin(y)

uex2 = −excos(y)

pex = exsin(y).

(4.35)

In Table 4.4 we report the errors obtained solving the Stokes problem globally in Ω. We want to
make sure that the finite elements approximation of (4.35) with the virtual control minimization
algorithm leads to the same approximation of the solution of the global problem. In Table 4.5 and
in Table 4.6 we report the number of iterations needed to achieve convergence and the errors with
respect to the exact solution obtained through the minimization of (4.6) with Dirichlet and Neumann
boundary conditions, respectively.
It is interesting to observe that the functional never attains the value of 0, which is in contrast with
what happens when converging to the linear solution. There is a dependence of the minimum on the
grid size. Consequently the errors obtained with the iterative algorithm are similar but not exactly
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h ‖u1 − uex1 ‖H1 ‖u1 − uex1 ‖L2 ‖u2 − uex2 ‖H1 ‖u2 − uex2 ‖L2 ‖p − pex‖L2

0.2 0.0328 8.8143e − 04 0.0325 7.3640e − 04 0.0240

0.1 0.0082 1.0853e − 04 0.0081 8.5491e − 05 0.0059

0.05 0.0020 1.3492e − 05 0.0020 1.0198e − 05 0.0015

Table 4.4: Convergence of the global finite element solution.

h # J ∼ ‖u1 − uex1 ‖H1 ‖u1 − uex1 ‖L2 ‖u2 − uex2 ‖H1 ‖u2 − uex2 ‖L2 ‖p − pex‖L2

0.2 223 10−5 0.0332 9.2855e − 04 0.0331 9.7799e − 04 0.0248

0.1 405 10−7 0.0082 1.1132e − 04 0.0082 1.1492e − 04 0.0059

0.05 792 10−8 0.0021 1.3850e − 05 0.0020 1.4268e − 05 0.0015

Table 4.5: Convergence history, Neumann controls, tol = 10−12.

the same as those obtained when solving the global problem. In Figure 4.3 we report the solutions
of the state problems on Ω1 and Ω2.

h # J ∼ ‖u1 − uex1 ‖H1 ‖u1 − uex1 ‖L2 ‖u2 − uex2 ‖H1 ‖u2 − uex2 ‖L2 ‖p − pex‖L2

0.2 258 10−5 0.0332 9.3098e − 04 0.0332 9.8312e − 04 0.0249

0.1 678 10−7 0.0082 1.1139e − 04 0.0082 1.1505e − 04 0.0059

0.05 1548 10−8 0.0021 1.3855e − 05 0.0020 1.4276e − 05 0.0015

Table 4.6: Convergence history, Dirichlet controls, tol = 10−12.

Preconditioning

Finally, we present the results concerning the preconditioning approach presented in section 4.2. We
tested this preconditioner for different values of β and the results are reported in Table (4.7). We
remark that the preconditioned linear system takes less iterations to converge, with respect to the
non-preconditioned one. Analogously to what we have observed when preconditioning the linear
system deriving from the virtual control applied to the Poisson problem, we remark that the global
matrix is well conditioned for high values of the penalization coefficient β. In order to apply this
approach effectively one needs to find a suitable approximation for the preconditioner, because the
computational cost needed for its assemblage and for its resolution is excessively high.
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β = 0 β = 10−8 β = 10−4 β = 1

I P I P I P I P

h = 0.2 73 39 73 33 78 34 27 13

h = 0.1 120 41 121 41 137 41 27 13

h = 0.05 187 47 187 45 208 46 26 13

Table 4.7: Solution of the global matrix (4.30) for different values of β, with (P) and without preconditioning
(I).
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Conclusions

In this work we have investigated the virtual control approach in the contest of domain decomposition
problems. The method has been extended to the case of Neumann boundary controls and different
cost functionals have been considered for the observation of the difference between the solutions.
The well posedness of the optimization problem has been proved and validated with numerical
simulations. The method has been applied efficiently for the homogeneous domain decomposition of
the scalar elliptic equation and of the Stokes problem.

The issue of preconditioning the optimality system that arises from a coupled virtual control problem
has been studied and we have shown that a recent preconditioning approach, developed in the contest
of interior point optimization problems, applies efficiently to the case of the scalar elliptic equation.
Moreover, we have studied a Schur complement approach for the construction of the preconditioning
matrix as it is typically done in the contest of domain decomposition. This preconditioner has been
tested in both the cases of the elliptic equation and of the Stokes system. The preconditioners are
shown to be efficient, but an approximate version of the matrices has to be introduced due to the
high computational costs needed for their assemblage and resolution.

A good understanding of the coupling of the homogeneous problems is the first step towards a
heterogeneous domain decomposition approach. The method can be applied to the solution of
the Stokes/Darcy problem that describes the process of the filtration of a fluid in porous media;
in fact this problem treats the coupling of the Stokes equation for the fluid with the Darcy scalar
elliptic equation for the pressure in the porous media. The analysis of the well posedness of the
different cost functionals has been carried out for the homogeneous problems and can be extended
to the multi-physics problem. We have shown which cost functionals guarantee convergence in
the case of the elliptic equation and of the Stokes problem. In particular we have shown that in
the case of the Stokes problem the cost functional should depend on the difference between the
velocities and the pressures simultaneously. The choice of the space of the controls, either Neumann
or Dirichlet, permits a flexible approach and the results on preconditioning obtained in this work
represent a starting point for the analysis of the issue of preconditioning the coupled heterogeneous
problem.
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