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Abstract

The industrial application of contra-rotating open rotor con�gurations may represent a
milestone in the evolution of aeronautical propulsion systems. In fact these kinds of propeller
allow to obtain a very high gain of e�ciency, thanks to the low swirl component present in the
wake and the high by-pass ratio. This principle is not a new idea, but problems related to noise
emissions and installation e�ects have prevented its application from being di�used in a large
industrial context during the last thirty years. Nowadays the interest in this technical solution
is supported by economic and environmental motivations as well as innovative mathematical
and computational capabilities.

The goal of this work is the set up of CROR CFD simulations by using the elsA code, devel-
oped by Cerfacs and Onera. The main purpose is the application of unsteady time integration
methods, in order to allow a complete analysis of rotor-rotor interactions. Therefore the chal-
lenge of the presented calculations is the assessment of some simulation techniques typically
used in turbomachine analysis, in a context of external aerodynamics. In particular the steady
mixing plane technique and the unsteady chorochronic approach have been applied.

The simulation set up is presented through the steps of physical consistency analysis, veri-
�cation and validation. These three sections represent the whole process from the prediction of
the reality, to the analysis of the results. This allows to show all the particularities that have
been brought to light in the use of the mesh generator Autogrid, the solver elsA, and in the
post-processing of the results.

Keywords

Contra-rotating open rotor, CROR, phase lag, mixing plane, unsteady turbomachine simula-
tions, RANS

Sommario

L'applicazione industriale della con�gurazione a rotori non carenati contro-rotanti può cos-
tituire un vera e propria svolta nell'evoluzione dei sistemi propulsivi aeronautici. Questo tipo
di eliche, infatti, assicura un elevato incremento di e�cienza grazie alla ridotta componente
di velocità tangenziale nella scia e all'altissimo rapporto di diluizione che è possibile ottenere
senza carenatura. Tale con�gurazione non si basa su un principio innovativo, ma una sua
larga di�usione in ambito industriale è stata impedita durante gli ultimi trent'anni da problemi
legati all'elevato rumore e a fenomeni di accoppiamento aeroelastico con il resto del velivolo.
Oggi l'interesse verso questa soluzione tecnica è rinato supportato da motivazioni economiche
e ambientali che possono basarsi su metodi numerici innovativi ed elevate potenze di calcolo.

L'obiettivo di questo lavoro è la messa a punto di simulazioni numeriche di rotori non carenati
contro-rotanti utilizzando il codice elsA, sviluppato da Cerfacs e Onera. Lo scopo principale
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è l'applicazione di metodi d'integrazione temporale non stazionari, al �ne di permettere una
completa e accurata analisi delle interazioni tra i due rotori. La peculiarità di questo studio è
quindi costituita dall'utilizzo di tecniche di simulazione speci�che per analisi di turbomacchine,
in un contesto di aerodinamica esterna. In particolare sono stati utilizzati gli approcci mixing-
plane e chorochronic.

La trattazione presenta le tre fasi che costituiscono il processo di simulazione, dalla pre-
visione della �sica da modellare, all'analisi dei risultati: analisi �sica, veri�ca e validazione.
Esse permettono di illustrare gli elementi che contraddistinguono il caso in esame rispetto alla
simulazione di una turbomacchina convenzionale. In particolare le seguenti peculiarità sono
emerse nell'utilizzo del programma di generazione della griglia e nell'applicazione dei metodi di
integrazione temporale per il calcolo non stazionario:

� bassa qualità della griglia nelle zone del dominio più lontane dall'asse di rotazione della
macchina;

� elevato numero di punti necessari per un'accurata simulazione dei fenomeni d'interazione
tra i rotori e delle dinamiche d'estremità di pala (vortici d'estremità e fenomeni di com-
primibilità);

� passo temporale estremamente ridotto rispetto a quelli tipicamente utilizzati in simu-
lazioni di turbomacchine convenzionali (�no a 15 volte più piccolo).

Il primo punto trova la sua motivazione nella tecnica di generazione della griglia utilizzata.
É innanzi tutto necessario speci�care che non è attualmente possibile utilizzare una griglia non
strutturata con il codice elsA, quindi la scelta è stata obbligata verso una griglia strutturata.
Il programma Autogrid consente di ottenere tale tipo di mesh in maniera semi-automatica, es-
sendo sviluppato speci�catamente per turbomacchine. Tuttavia la presenza del campo esterno,
cioè al di sopra delle estremità delle pale, non rientra nelle con�gurazioni previste dal pro-
gramma, in quanto questo è tipicamente utilizzato per ambiti di aerodinamica interna. Quindi
i punti, la cui distribuzione può essere controllata su piani a raggio costante �no all'altezza delle
pale, vengono proiettati automaticamente sulla super�cie esterna del cilindro che costituisce il
domino numerico ed è distante dall'asse circa cinque volte l'apertura delle pale. Le celle della
mesh che si trovano nelle zone esterne hanno quindi forme decisamente irregolari.

Tale condizione è probabilmente una delle ragioni per la quale non è stato possibile appli-
care la formulazione di velocità relativa, di comune utilizzo in simulazioni di turbomacchine.
Tale formulazione è basata sull'espressione delle grandezze cinematiche secondo il sistema di
riferimento locale, cioè che segue le pale nel loro moto di rotazione. Quindi attraversando il
piano di interfaccia tra i due rotori, le incognite del �usso subirebbero una forte discontinuità,
passando da un sistema di riferimento all'altro. La formulazione utilizzata è stata quindi quella
che esprime la velocità secondo il sistema riferimento globale. Tale variazione dalle consuetudini
non comporta alcuna limitazione teorica, ma necessita di alcune accortezze nell'applicazione
dei metodi di simulazione mixing plane e chorochronic e nell'analisi dei risultati.

Anche dal punto di vista della discretizzazione temporale si sono riscontrate alcune par-
ticolarità. Infatti l'analisi di convergenza del passo temporale ha evidenziato la necessità di
intervalli estremamente ridotti rispetto a quelli deducibili dalle caratteristiche geometriche e di
funzionamento dei rotori con i parametri tipicamente utilizzati per analisi di compressori, tur-
bine o fan. Questo implica l'esistenza di fenomeni aerodinamici caratterizzati da una frequenza
molto più alta della �blade passing frequency�, come, ad esempio, i vortici d'estremità.
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L'analisi dei risultati ha consentito di valutare l'e�etto dei metodi numerici, dei modelli di
turbolenza e delle tecniche d'integrazione temporale.

In�ne il funzionamento del sistema è stato studiato in maniera qualitativa dimostrando la
�sicità dei risultati ottenuti.

Parole chiave

rotori contro-rotanti, chorochronic, mixing plane, turbomacchine, RANS
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1.1 Context and motivation

Since the birth of the aviation, the success of aeronautical companies has always been based
on the ability to �nd the right solutions to the numerous problems prompted by the wish to
improve �ight performances. Notably in this �eld a �right� solution is the most e�cient but
also the cheapest idea to reach the goal. This is why in more than a century, since the �rst
human powered �ight, the aeronautical history has been full of bright intuitions, often born
by simple feelings raised by experience and observation of physical phenomena. Nevertheless
the biggest challenge has always been to achieve the idea with the available technologies. This
has led to compromises between physical requests and technological limitations. That is why
new technologies could now allow to solve the problems which have prevented some ideas from
being realized. This work is actually part of one of these attempts.

In the context of signi�cantly increased costs of fuel a consensus has emerged among air-
framers, engine manufacturers and airliners: future commercial transport aircraft must deliver
signi�cant improvements in operating costs, through both e�ciency improvements and main-
tenance cost reductions. This has brought the Contra Rotating Open Rotor (CROR), also
simply referred to as Open Rotor, back into focus, as this propulsion system promises a step
change in e�ciency levels over turbofan engines due to its ultra high bypass ratio. The prin-
ciple of creating thrust by imparting a little acceleration to a big mass of air is already used
by conventional turboprops but, at high �ight speeds, propellers su�er from a rapid loss of
e�ciency caused by increased compressibility e�ects. An advanced contra-rotating open rotor
engine may extend the fuel e�ciency of a turboprop, usually limited to Mach values around
0.7, to Mach 0.8. Nonetheless that is still less than the typical operating regime of modern
commercial turbofan-powered aircrafts [1]. Therefore the open rotors represent an e�ective
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solution particularly for the single-aisle transport aircraft class, now dominated by the Airbus
A320 and the Boeing B737 families.

CROR powerplants had previously been the focus of a large research undertaking led by
NASA and the US industry in the late 1970s and 1980s, motivated by the high fuel costs
arising from the 1973 oil crisis. Signi�cant advances in the development of CROR engines
were achieved, but primarily due to the decrease in oil prices that followed, interest in bringing
these engines to market waned. With today's revived interest in this propulsion system, out of
economic and environmental considerations, the largest challenge for the realization of such a
commercially viable engine relates to the issue of noise emissions and installation e�ects with
the airframe. The rapid improvement of numerical methods in aerodynamics and aeroacoustics
achieved in recent years have enabled these tools to play an important role in the research and
design of CRORs to address these concerns.

The �rst methods that have been employed, of increasing complexity and computational
cost, include the lifting line, transonic potential and Euler calculations [2]. The lifting line
methods represent each propeller blade by a single line of bound vorticity at the blade quarter-
chord location and include e�ects of twist and sweep. Although the required computational
time for these methods is very low, their treatment of compressibility is approximate and the
results give a limited amount of �ow �eld information. This led to the development of the
transonic potential method. This approach yields detailed blade surface �ow properties and
information about the �ow �eld around the propeller. However, at the beginning of 1990s,
state-of-the-art Euler methods were the most accurate. Euler methods have a demonstrated
capability for predicting both steady and unsteady high-speed propeller �ow �elds, but cannot
reveal any information regarding viscous phenomena.

(a) (b)

Figure 1.1: Example of studied CROR con�gurations (source: web)

To enable further improvements in open rotor aerodynamics and performance prediction,
more sophisticated numerical methods are required such as full three-dimensional Navier-Stokes
calculations. This approach gives greater detail especially in the areas of boundary layer de-
velopment and viscous wakes, which are actually the phenomena at the origin of the acoustics
and structure integration problems that still prevent CRORs to be used. Therefore taking
into account viscosity e�ects is fundamental to analyze and �nd solutions to these concerns.
Moreover this kind of dynamics has an unsteady inherent nature which rises the need of speci�c
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time integration methods to numerically model the interactions between the two rotors. The
present work �nds his motivation from this context, assessing advanced classical turbomachin-
ery methods applied to an Open Rotor con�guration.

Many of the di�culties encountered in the application of a Navier-Stokes solver to an
open rotor arise because of the removal of the casing that is present in conventional arranging
turbomachinery. The lack of an outer solid wall requires a new meshing strategy and careful
application of boundary conditions in the far-�eld. The combination of turbomachinery and
external aerodynamics �ows makes the analysis of open rotor con�gurations a real challenge.
The computational mesh needs to give good resolution of the important �ow features near the
blade surface such as the boundary layers, the regions of transonic �ow, wakes and the tip
vortex formation, but also extend a signi�cant distance away from the open rotor to a location
where appropriate boundary conditions can be imposed.

1.2 Working principle

The bene�t of two contra-rotating propellers is quite clearly visible by simple considerations
based on the third principle of dynamics. If the motion of the accelerated air �ow after the
propulsion system is parallel to the direction of �ight, the thrust will be maximum, while every
tangential component of the velocity vector is a loss of energy. Unfortunately a well known
e�ect of a traditional propeller is the presence of a strong rotating slipstream. Therefore to
obtain a straight �ow after the propulsion system a new component of motion is necessary.
From this simple consideration the idea of a second propeller turning in the opposite direction
is born.

In particular the energy of the slipstream depends on the load of the propeller, de�ning the
load as the ratio between the momentum increase provided by the rotor, and its area. The more
the propeller is loaded, the more energy is present in the slipstream. The con�guration tested
in the present study can by classi�ed between a turbofan and a turbopropeller, in relation
to its number of blades and diameter (�gure 1.2). This is the reason of the appellation this
con�guration is commonly referred to: prop-fan.

Figure 1.2: The studied prop-fan con�guration
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Therefore the prop-fan is lightly loaded with respect to a high pressure ratio turbofan
but it is highly loaded in relation to turbopropellers designed for lower �ight speed [3]. The
turbofan has the smallest diameter and imparts the highest swirl velocity to the airstream. The
swirl from the turbofan rotor is turned to the axial direction by a downstream row of stator
blades. These stators convert tangential velocity to a static pressure rise which appears as an
increase in propulsive thrust and e�ciency. The lightly loaded propellers of a turboprop do
not impart a high swirl velocity and as a result do not have a signi�cant amount of energy
in the slipstream. Prop-fan diameters are about 50 percent smaller than the conventional
propellers. Swirl velocities for the prop-fans are higher and the full recovery of the swirl energy
by employing counter rotation can signi�cantly improve the design point cruise e�ciency [3].

1.3 Framework for the numerical approach: trust in CFD

One of the useful applications of CFD is the possibility of using numerical results to analyze
the performances of several con�gurations. This is typical of conceptual design phase, during
which windtunnel experiments are very expensive. Therefore the need to evaluate the degree
of similarity between results and reality rises immediately.

The �rst attempts to answer these questions were made in the cases where an experimental
validation is not possible, like nuclear energy phenomena or missile tests. Therefore since the
end of 1970s some o�cial organizations (most of all in US), like the Society for Computer

Simulations, performed e�orts to improve simulation quality and evaluate errors. In 1980s the
Defense Modeling and Simulation Organization of the United States Department of Defense
began to look for a normalization about this subject: the terms validation and veri�cation are
introduced.

Thanks to these works a CFD simulation can now be considered as composed by three
elements [4]:

1. Reality: the phenomena that need to be simulated.

2. Mathematical model: the equations that describe the reality with a degree of approx-
imation and limited by some assumptions. In Fluid Mechanics this is performed by the
Navier-Stokes equation system, which is based on the assumption that the �uid, at the
scale of interest, is a continuum. To be applied, the model needs some boundary and
initial conditions as well as a turbulence model if the considered variables are averaged
quantities, like in the case of the Reynolds Averaged Navier Stokes (RANS) equations, as
will be described in chapter 4. In particular the boundary conditions setting may become
quite complicated when numerous domains are present in the calculation �eld. In fact
in these cases some speci�c methods are necessary to transfer information from a block
boundary to the near ones, which may involved a time dependence if the domains are in
relative motion between each other.

3. Numerical Solution: the results obtained by the equations, most of the time through
a numerical method. This allows the use of the model in a discrete domain in order to
perform the simulation using a computer.

These elements constitute some steps which can make the solution quite far from the reality.
Therefore a thorough knowledge of the processes that connect each element with the others is
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Figure 1.3: The main steps of a CFD simulation

necessary to be aware of the limitations the solution can be trusted with. Moreover the quality
of both the Mathematical Model and the Numerical Solution has to be checked by some speci�c
methods.

1. Modeling and Physical Consistency Analysis: description of physical phenomena
by equations. It is the �rst step to perform a simulation. This process begins with a thor-
ough observation of the nature and the ��tting� of the reality in mathematical rational
schemes. For this last purpose conservation laws are very e�ective instruments providing
methods based on natural fundamental relations. A typical issue in turbomachinery is the
interactions among di�erent speed rotating parts. Thence some speci�c methods to trans-
fer information from a moving domain to another are needed. Moreover the assumptions
established about the simulated phenomena allow to set the limits of applicability of the
mathematical model and to evaluate the result information content. The two methods
that have been used for the present work are treated in the chapter 2 and a comparison
between their results is presented in chapter 5. Besides a brief description of the equations
solved to simulate the �ow is presented in the chapter 4.

2. Simulation and Veri�cation: solution of equations in the numerical reality of the
computers. This means, �rst of all, the transition from a continuum nature to a world
where only discrete variations are admitted. To perform this passage a discretization of
the geometry and the computational domain is required as well as some space and time
integration methods. Therefore many sources of error could be involved in the simulation,
among which the most important are:

� iteration process error

� space discretization error

� time discretization error

The purpose of the Veri�cation process is just the evaluation of these errors, which means
to check if the equations of the mathematical model have been solved properly.
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To monitor the evolution of the results during the iteration process, the residuals are
calculated at each iteration and some criteria are used to evaluate the convergence of the
solution. In particular a calculation is considered converged if the residual values have
lost at least 2.5 order of magnitude, comparing to the �rst iteration value, and a stabilized
trend is established.

The space and time convergence methods that have been applied in the present study are
brie�y described in the following:

� Space discretization
Based on the exact problem, formulated as a system of conservation laws in integral
form, the space discretization has been performed by using the method of the Finite
Volumes. Therefore the unknowns are averaged values assigned to the center of
the discretization cells. Thus a Riemann problem is established at every interfaces
between two cells. To calculate the �ux through the interfaces two methods have
been used and compared: the Jameson Scheme and the Roe Scheme. The �rst
is a second order centered scheme, which needs a term of arti�cial viscosity to be
stabilized, whereas the second is an upwind scheme that can reach the second or
the third order depending on the associated limiter. These techniques are treated
in chapter 4, while a comparison and their consequences on the simulation results
are presented in chapter 5. The calculation �eld is de�ned by a three-dimensional
multi-domain block-structured grid, realized using Autogrid.1 The most important
characteristics of the obtained domain are described in chapter 3 and their e�ects
are shown on some result comparisons in chapter 5.

� Time discretization
Used to model unsteady phenomena, the tested time integration methods are the
Backward Euler Scheme, the Gear Scheme and the Dual Time Stepping. The �rst
one is an explicit method, precise to �rst order in time, which is particularly adapted
to high frequency phenomena, not allowing the use of large time steps but involv-
ing a relatively low cost in calculation time. To increase the precision of the time
dependence the more expensive second order implicit Gear Scheme and Dual Time
Stepping have also been tested.

After the choice of the numerical scheme and the time integration method some param-
eters need to be set to perform an e�cient calculation. In particular the e�ects of the
time step and the mesh size have been analyzed using the Richardson method, to relate
the result quality to the calculation cost. That is the possibility to �nd the convergence
conditions in terms of maximum time step and minimum number of cells.

3. Prediction and Validation: comparison of the calculation results with the reality and
extrapolation to new con�gurations. The objective of a �uid dynamics simulation is, most
of the times, the prediction of the �ow generated by a speci�c geometry. Nevertheless
a process of validation is necessary to evaluate the accuracy of the simulated �ow, that
actually is to check that the mathematical model previously chosen was well adapted to
the studied �ow. During this phase the similarity between results and reality is estimated

1Autogrid is a semi-automatic software particularly dedicated to the mesh generation for turbomachinery
simulations.

- 6 -



1.4. Objectives (Introduction)

using an available trusted solution. Obviously the geometry used for the validation must
be similar to those that are the �nal object of the study, thence it is usually not possible
to dispose of an analytical solution. That is why to validate a numerical model some
windtunnel experiments have to be conducted. Unfortunately the present work do not
dispose of such a term of comparison, therefore the validation process is simply based
on a qualitative description of the physical phenomena that occur in the simulated �ow.
For this purpose the results of each methods used in the present work are presented in
chapter 6.

1.4 Objectives

In this framework, the present study focus on the veri�cation phase. Nonetheless the processes
of modeling and validation are brie�y described to give an idea of the �nal results information
content and of its limitations. In other words this project aims at assessing numerical methods,
already in use for turbomachine simulations, applied to a generic CROR con�guration. There-
fore the reader should keep in mind that the working characteristics of the treated geometry are
not the object of the study and should not be directly compared with existing engine perfor-
mances. As mentioned above, since acoustics and airframe integration are important concerns
for open rotors, the emphasis is put on unsteady time integration methods. In particular two
methods have been tested. Both allow to limit the calculation domain to a single channel. This
means that only one blade for each rotor is present in the numerical �eld, and some speci�c
periodic conditions are used to take into account the presence of the other blades.

Mixing Plane Method: a technique to take into account the e�ects of each rotor on the
other in a conservative steady manner. At each side of the interface plane between the
two rotors all the physical variables are averaged over the azimuthal direction to obtain
some radius dependent functions. These are then transmitted unchanged to the opposite
side of the plane. The lateral faces of the channel are simply treated as space periodic
boundaries, according to the axial symmetry of the geometry. This method allows, with
a relatively low computational cost, to get the mean overall �ow features, but it lacks
provision for the interactions between the two rotors. It can also provide a good initial
solution for the unsteady method.

Chorochronic Method: an unsteady technique to model rotor-rotor interactions. The trans-
mission of information from a rotor to the other, and from one side of the channel to the
opposite, is based on a time and space periodicity. In this way both the viscous and po-
tential e�ects of each row are correctly transmitted to the other. This physical accuracy
involves a quite high cost in term of calculation time. In fact, to reach an established
periodic state more than a rotor revolution are needed.

Quantifying the relative accuracy and computational e�ciency of these methods is a central
point of the present work. This will hopefully give some help to next studies focused on the
engine performances rather than the numerical simulation.
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1.5 Structure of the report

The philosophy of the entire study is performing the simulations being aware of the consistency
and the quality of the obtained results. The structure of this report follows this idea describing
the steps that connect the simulation to the physics of the phenomena.

Therefore the �rst step is the discussion of some techniques that allow to model rotor-rotor
interactions, focusing on their pros and cons, which �nally lead the choice of the methods
applied in the present work, chapter 2. The �eld of calculation is then discretized, by using the
Autogrid software, whose principal features are described in chapter 3. In the following chapter
the Navier Stokes equations are obtained, thus the assumptions and the degree of uncertainty
involved by the modeling process are determined. In the same chapter the di�erent methods
that have been used to take into account turbulence dynamics and to discretize the equations
in time and space, are also presented.

Once the modeling step is accomplished the calculation can be performed, and the results
veri�ed. Therefore the last two chapters are dedicated to the analysis of the solutions obtained
by using di�erent methods. In particular the chapter 5 is dedicated to the veri�cation of the
solving process. Results obtained by di�erent numerical methods are here compared and the
error due to the time and space discretization is determined. Moreover this chapter carries
out a comparison between the mixing plane and the chorochronic approach, evaluating the
consistency of each techniques and bringing to light their limits.

Finally the step of validation has to ensure a high degree of similarity between the simula-
tions and the foreseen reality, thence a reference solution should be used to be compared with
the numerical results. Unfortunately, as mentioned above, there are no experimental data avail-
able to accomplish this phase. Nonetheless a kind of validation is performed in the last chapter,
where some aspects of the results are explained under qualitative physical considerations.
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Chapter 2

Turbomachinery simulation approach: state of the art

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The numerical domain . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Mixing plane method . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Unsteady simulations with periodic side boundaries . . . . . . . . 12

2.4.1 Side boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Interface boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Chorochronic method . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Side boundary treatment: spatio-temporal phase displacement . . . . 15

2.5.2 Interface boundary treatment . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.3 Memory administration . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 360◦ approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Introduction

The relative motion between successive blade rows in presence of boundary layers, wakes, shocks
and tip leakages are the major sources of unsteadiness that may a�ect turbomachinery �ows.
All these interactions are strongly coupled, increasing in magnitude as the gap between the
blade rows is decreased, and a�ecting consequently the performance of the machine.

A distinction has to be made between potential and wake interactions phenomena.

Potential interactions result from the relative motion of blade rows, and propagate in both
upstream and downstream directions of the �ow. The potential �eld generated by a rotor
is felt as an unsteady disturbance by the front row and by the non rotating annulus. One
major consequence of potential interactions is the generation of �uctuating forces on the
blades. The prediction of these unsteady forces constitutes essential data for aeroelastic
design.

Wake interactions are due to the presence of viscous boundary layers, wakes and secondary
�ows, which propagate through the downstream airfoils. As wakes and boundary layers
leaving a row meet another row, they are transported towards the pressure side of the
passage a�ecting signi�cantly the redistribution of the stagnation pressure and enthalpy
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across the blade row. The impingement of the wakes a�ects also the laminar-turbulent
transition. In addition, the wakes leaving a rotor in a boundary layer have higher swirl
component of velocity than the mainstream air, making the wake propagation generally
three-dimensional.

The �rst level of approximation is based on the assumption of steady relative �ows, ne-
glecting hereby all unsteady components. The second step, allowing a higher level of accuracy,
consists in considering the time evolution of the �ow, in order to take into account some kinds
of unsteadiness. The �rst section of this chapter will brie�y present the shape of a typical
turbomachine numerical domain and its components. This will introduce the following sections
where some simulation techniques are described.

2.2 The numerical domain

Both in steady and unsteady calculations the purpose of the simulation technique is to manage
the presence of di�erent domains in relative motion to each other. Except for the 360◦ ap-
proach (see section 2.6), this problem is faced to by exploiting the time periodicity of the row
interaction phenomena and the geometrical axial symmetry of the turbomachine. In fact these
characteristics allow to limit the dimensions of the numerical domain by imposing some par-
ticular conditions at its boundaries. As shown in �gure 2.1 there are two kinds of boundaries,
that present di�erent problems:

Figure 2.1: Example of a typical turbomachine numerical domain

Channel side boundaries . They are the borders between the blades included in the nu-
merical domain and the other blades of the same row. Therefore the condition applied to
this surfaces has to take into account the presence of the row portion that is not included
in the domain.

Interface boundary . It forms the surface between two sub-domains that belong to di�erent
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rows. This boundary must transmit the interaction e�ects between the two rows and
consider their relative motion.

2.3 Mixing plane method

If, in the rows interface region, �ow variations in the pitch-wise direction are neglected, one can
assume that the relative �ow �eld across successive rotors and stators is steady. This technique
is referred to as Mixing Plane Approach, and has been widely used since the publication of
Denton & Singh [25]; see also Arts [26]. This approach not only neglects the unsteady e�ects of
rows interactions, but also introduces an error generated by the arti�cial mixing process applied
at the interface. On the other hand the advantages of this technique are the low calculation
time, allowed by a steady simulation, and the reduction of the numerical domain to a single
channel (only one blade for each row is included in the domain).

Periodic side boundaries

The azimuthal reduction of the domain dimension is realized by imposing periodic conditions
between the upper and lower side boundaries of the domain, which can include only a portion
of the blade rows. This means that the �ow calculated in the grid cells near one side boundary
is use to ful�ll the ghost cells of the opposite side, as shown in �gure 2.2.

Figure 2.2: Principle of periodical side boundaries

Mixing plane interface

Mixing plane simulations can be seen as coupled steady calculations performed on the successive
rows, exchanging boundary conditions at the interfaces [28]. One side of the interface can be
seen as an inlet, the physical boundary condition being provided by the average of the �ow
on the other side. The opposite side is treated as an outlet, with the exit boundary condition
being in the same way provided by the �ow on the �rst side. The quite particular character
of this boundary condition is that it usually adapts itself to the sense of propagation of the
�ow, which can be di�erent from one span-wise position to the other. Under this approach,
all variables are circumferentially averaged and mixed-out at the rows interfaces, whereby all
unsteady components of the rows interaction are lost.
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The main problem is to ensure conservation at the interface, which cannot be obtained for
all averaged quantities, since it is not possible to satisfy all the averaged conservation laws and
conserve the averaged entropy at the same time. Hence error sources from numerical mixing
are introduced, generating entropy jumps if conservative variables are averaged, which is some
sort of numerical counterpart of the mixing loss that would occur if the �ow was actually mixed
between the two rows [18]. Di�erent choices for the averaged variables lead to di�erent error
sources. For instance mass, energy and two momentum averaged conservation, plus entropy
can be imposed. Another alternative consists in imposing a strict conservation of the pitch-
averaged mass �ow, swirl, total temperature and total pressure. This is not a trivial issue on
the theoretical side, as no option appears to be absolutely superior to the others. In the present
work the quantities that are imposed to be conserved are the Riemann invariants.

(a) (b)

Figure 2.3: Example of a �ow �eld obtained by a mixing plane approach (entropy contours). The domain
is duplicate once by geometric periodicity.

2.4 Unsteady simulations with periodic side boundaries

An unsteady calculation is fundamental to capture the unsteadiness of the interaction between
di�erent rows. In this kind of simulation boundary conditions take a key role by introducing
in each domain associated to a blade row the e�ects of the other rows. This has to be made
with time dependent boundary conditions. In this section the case where an axial symmetry
common to all the rows can be established, is considered. In �gure 2.4 on the facing page an
example of this kind of con�guration is represented.

This characteristic allows to impose a condition of spatial periodicity between the two
opposite sides of the domain (see section 2.3). In fact in the case of an unsteady simulation,
where the row interactions are captured, also the dynamics of the �ow must have an axial
symmetry that match with the lateral dimension of the domain. This involves a common
periodicity for all the rows and limits the simulated phenomena to the dynamics due to the
passage of a row blades in front of the considered portion of another row.

2.4.1 Side boundary conditions

Periodic conditions at the side boundaries can be applied in two cases:

� an azimuthal periodicity common to all the rows occurs, which may include several chan-
nels of the real geometry;

� a limited modi�cation of the given geometry can be a�orded, in order to restore period-
icity.
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In the following the two approaches are brie�y described.

Multi-channel simulation with periodic boundaries

In the particular case where the di�erent number of blades of the considered rows have a
common divisor factor m, the numerical domain can be reduced to 360◦/m. In fact a simple
axial periodic condition can be applied to the two sides of the considered row portion, by using
the �ow calculated near the limit of the domain as boundary condition at the opposite side.

With this approach only the deterministic interactions can be captured, in fact the condition
of spatial periodicity is required for the simulated phenomena as well. This means that, for
instance, rotating stall or upstream localized disturbances cannot be simulated.

The most important drawback of this method is the requirement on the geometry of the
machine. In fact the factor m directly determine the size of the numerical domain. For instance
in the case of the open rotor con�guration treated in the present study the multi-channel
periodic boundaries technique would involve no advantages with respect to a 360◦ approach
(described at the end of this chapter).

(a) (b)

Figure 2.4: Multi-channel simulation 4:3, performed by N. Gourdain (entropy contours). The domain is
duplicate once by geometric periodicity.

Blade number reduction with periodic boundaries

This technique, proposed by Arnone and Pacciani [34], allows to apply an unsteady approach
to a portion of a modi�ed geometry when no common divisor factor exists among the blades
number of the considered rows. The idea is to use a di�erent number of blades in order to �nd
a common divisor factor and then be able to apply the periodic boundary conditions discussed
above. For instance, Bardoux [35] applied this technique to the turbine VEGA2 changing
the number of blades of the row to pass from a con�guration 23:37 to a con�guration 23:46,
obtaining two row blades for each nozzle guide vane, as shown in �gure 2.5 on the next page.
Actually one can notice that performing the simulation on a con�guration 24:36, that means
two row blades in front of 3 nozzle guides vanes, would provide a geometry more similar to the
real one.
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Figure 2.5: Blade number reduction performed by Bardoux analyzing the turbine VEGA2. Modi�cation
from a 23:37 to a 23:46 geometry, obtaining azimuthal periodic boundaries at the sides of a
360/23◦ sector

The obvious drawback of this approach is the modi�cation of the original geometry. This
involves di�erences both in the �ow and in the working point characteristics, as the choking
condition. In some cases, in order to get the solution closer to the reality, the chord of the blade
pro�les can be modi�ed, keeping constant the chord-pitch ratio. Nonetheless the frequency and
amplitude of the unsteady �uctuations are di�erent from those of the real geometry.

2.4.2 Interface boundary conditions

The interaction plane between two rows needs to transmit information between two domains
in relative motion to each other. This is treated by a sliding mesh approach.

Sliding mesh approach

The sliding mesh model allows adjacent grids to slide relative to one another. In doing so,
the faces of the the grid cells do not need to be aligned on the grid interface. This situation
requires a means of computing the �ux across a non-conformal interface boundary. This is
performed by determining the intersection between the grid interfaces at each new time step.
The resulting intersection produces one interior zone (a zone with �uid cells on both sides) and
one or more periodic zones. The resultant interior zone corresponds to where the two interface
surfaces overlap; the resultant periodic zone corresponds to where they do not.

The number of cell faces in these intersection zones will vary as the grid interfaces move
relative to one another. Subsequently, �uxes across the grid interface are computed using the
portion of cell faces resulting from the intersection of the two interfaces. In the example shown
in �gure 2.6 on the facing page, the grid interfaces are composed of cell faces A-B and B-C for
grid #1, and call faces D-E and E-F for grid #2. The intersection of these interfaces produces
the faces d-a, a-e, e-b, etc. Faces produced in the region where the two cell zones overlap (a-e,
e-b, and b-f) are grouped to form an interior zone, while the remaining faces (d-a and f-c)
are paired up to form a periodic zone. To compute the �ux across the interface into cell IV,
for example, face E-F is ignored and faces e-b and b-f are used instead, bringing information
into cell IV from cells I and II, respectively. In a similar way, the periodic zone is realized by
considering the faces d-a and f-c as the same face, connecting cells II and III.

2.5 Chorochronic method

The chorochronic method, also called phase-lag or phase-shift, is based on a spatio-temporal
periodicity between the side boundaries, which allows to limit the calculation �eld to a single
channel still being able to capture the deterministic unsteadiness of the �ow. This means
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2.5. Chorochronic method (Turbomachinery simulation approach: state of the art)

Figure 2.6: Two-dimensional grid interface, treated with sliding mesh technique

treating only one blades per row, extending the discretized volume in the pitch-wise direction
just to reach an axial periodicity of the numerical domain. Such a characteristic is fundamental
for an open rotor simulation because of the very high number of grid cells required by the
external �eld mesh. The fundamental assumption this simpli�cation is based on, is that all the
simulated time-dependent phenomena are due to deterministic causes:

� passage of a row blades in front of the considered channel of another row, which generates
both potential and wake e�ects;

� phase displacement between the blades of the same row to analyze �utter dynamics;

� turning wave at the inlet of the row.

Therefore the chorochronic methods does not allow to take into account phenomena not directly
dependent from the turning speed of the machine as, for instance, the vortex emissions at the
blades trailing edge or the rotating stall. On the other hand, the required assumption means
that a relation exists between the �ow time evolution and the motion of the considered blades.
This relation can be speci�ed by a mathematical expression that connects the �ow around a
blade in a certain time instant, to that around the next blade of the same row in another time
instant, as explained in the following.

In the present report only the single-frequency approach is described, considering that the
studied con�guration is composed by just one stage, but being aware that more complicated
approaches are needed if the e�ects of several stages have to be considered.

2.5.1 Side boundary treatment: spatio-temporal phase displacement

In the following pictures the two blades that are included in the numerical domain are gray
colored, and the bold lines de�ne the �eld boundaries. The rows represent a typical turbine
con�guration, where the front row is a stator (thence actually Ω1 = 0) and the following a
rotor. The streamlines represent di�erent time instant �ows, and they are referred to the local
coordinate system (moving with the blades).

Taking into consideration the channel side boundaries, the phase-shift δt is the time af-
ter which the �ow calculated at a boundary cell can be used as boundary condition for the
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corresponding cell at the opposite side of the channel:

φ
(
x, r, θ, t

)
= φ

(
x, r, θ +

2π

Z
, t+ δt

)
(2.1)

where φ is a physical quantity of the solution and Z the number of blades of the considered row.
According to �gure 2.7, this is performed by �lling the ghost cells of a boundary, represented
with dotted lines, with the solution calculated near the opposite side, as shown by the arrows.
In order to apply this process, the chorochronic period is de�ned as the necessary time step
δt for the �ow around a blade to occur around the next or the previous blade of the same
row. This depends on the rotation direction of the considered rotor and the relative number of
blades between the two rows, as explained in the following paragraph.

Figure 2.7: Example con�guration with the numerical domain δt

The entity of this time step depends on the physical unsteady phenomena that have to
be considered. In the present study the considered interactions between the two rotors are
only time-dependent e�ects, which means no turning waves or phase displacement between the
blades of the same row. In this case the time step δt is called chorochronic period, and is treated
in detail in the next paragraph.

Chorochronic period

The purpose of this paragraph is to obtain the expression of the spatio-temporal phase dis-
placement in the case of interaction between two rows. More detailed discussions can be found
in the Neubauer's thesis [33] for a heuristic explanation, or in the article of Wang and Chen
[32] for a more mathematical derivation.

Referring to �gure 2.8 on the facing page, at the time instant t0 the leading edge of the
considered rotor blade is in front of the trailing edge of the stator blade. This relative position
de�nes the �ow represented by continuous lines, which is the solution at the time t0. As one
can see the same relative position occurs at the time instants t0− δt and t0 + δt in the channels
adjacent to the discretized one. Therefore, in these cases the solution obtained at t0 can be
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applied as boundary condition, in order to determine the �ows at di�erent times, represented
by dotted lines in parts (a) and (c) of the �gure. Conversely the calculation of the t0 solution
needs the boundary condition obtained by the t0 + δt �ow, for the upper side of the channel,
and by the t0 − δt �ow, for the bottom side.

(a) (b) (c)

Figure 2.8: Physical description of the chorochronic period δt

The need to know the �ow at the time t0 + δt for the calculation of the t0 solution is the
cause of the long time of convergence that typically a�ects chorochronic calculations. In fact
the updating of the boundary condition depends on the quality of the solution that, obviously,
is a�ected by the boundary conditions. In practice the future instant condition is taken by the
previous period (so that the t0−T+δt �ow is used instead of the t0+δt one, where T is the blade
passing period). This means that for the simulation of a certain time instant, the �ow obtained
some hundreds of iterations before is used. It is worth to remark that the convergence speed is
lower than that of a calculation performed with periodic boundaries. The experience has shown
that a factor of about 3 exists between the lengths of time required to reach the convergence
state by the chorochronic method and the multichannel periodic boundaries technique.

As one can see, the chorochronic period corresponds to a relative rotation equal to the
di�erence between the pitches of the two rows. Thence it can be expressed in the form:

δt =

∣∣∣∣∣
2π
Z1
− 2π

Z2

Ω1 − Ω2

∣∣∣∣∣ (2.2)

with

Z1 = number of blades of the upstream row (2.3)

Z2 = number of blades of the downstream row (2.4)

The monitoring of the variation of the boundary conditions during the calculation can be an
e�cient way to control the convergence of the iterative process. In fact the convergence state
corresponds to a perfectly periodic trend of these �uctuations. In the present work a similar
technique has been applied, as explained in section 5.2.3.

2.5.2 Interface boundary treatment

As mentioned above the main advantage of the chorochronic method is the reduction of the
numerical domain to a single channel, without any requirements on the geometry of the machine.
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This is allowed by phase-lag conditions on the side boundaries, nevertheless it has a strong e�ect
on the interface boundary too. In fact in this case the calculations on the two sub-domains,
which belong to di�erent rows, have di�erent spatial evolutions by following the discretized
blades during their rotation around the machine. Therefore one side of the interface is uncovered
for the most of time.

This situation requires to associate the sliding mesh technique with a process intended to
cover each interface surface with a reconstruction of the opposite side of the interface boundary.
As shown in �gure 2.9, the reconstruction of one side cover uses the di�erent solutions of the
other side taken at di�erent time instants. In the �rst picture the relative position of the two
sub-domains at an initial instant t0 is shown. After a blade passing period of the front row
(T1), the downstream sub-domain takes the right position to completely cover the upstream
interface boundary with the initial t0 solution1.

(a) Initial time (b) A T1, after the initial time

(c) Covering of the upstream interface boundary, n1 T1

after the initial time

Figure 2.9: Covering of the interface boundary front side with two instant solutions of the downstream
channel

The �gure 2.9c shows the position of the upstream sub-domain after n1 blade passing

1The blade passing period is the period by which the blade of a row sees the blades of the other row passing.
This depends on the relative rotation speed between the rows and on the number of blades of the opposite row:
T1 = 2π

Z2 |Ω1−Ω2|
and T2 = 2π

Z1 |Ω1−Ω2|
.
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periods. During the time elapsed from t0, the rear sub-domain has moved downward, leaving
the front side of the interface boundary completely uncovered. Thence, in order to cover it, two
solutions of the downstream side, which di�er from each other of the time T1, need to be used.
The applied values are taken by the last �elds computed in rear domain that correspond to the
right instants. The whole factor n2 represents the number of blade passing periods T2 elapsed
for the downstream domain since the initial time, therefore the most updated solutions of the
rear channel that can be used, have been calculated in the instant t0+n2 T2 and t0+n2 T2+T1 .

Actually, the absence of a geometrical interpolation among the cell faces of the two interface
boundary sides, allows to simulate the motion of the two sub-domains just by applying the time-
dependent condition described above. That is, the two domain portions do not move. This
means that vectors and frames of reference are not turned to follow the movements of the
blades, reducing the computational cost of each iteration. On the other hand a process of
reconstruction is needed to bring in the right position each result extraction and to obtain
multi-channel �elds, as described in section 6.2.1.

2.5.3 Memory administration

The idea of using a spatio-temporal boundary condition between the two sides of a channel has
been proposed by Erodos et al. [27].

The Erodos technique works by keeping in memory the solution at boundaries at each
iteration. This technique is called direct store.

He [29] proposes to implement the phase displacement condition by decomposing the �eld
at the side boundaries using the Fourier series, limited to order N :

φ(x, r, θ, t) =
N∑

k=−N
φ̂k(x, r, θ)e

(ikωt) (2.5)

in order to store in memory only the coe�cients of the series φ̂k. This method, called shape

correction, allows to reduce the memory required by the calculation. The elsA code uses this
technique, and the number of the stored harmonics can be �xed by the user.

A third method is proposed by Giles [30, 31]. It is based on a spatio-temporal transformation
of the initial equations, which allows to only impose a spatial periodicity at the side boundaries
of the channel. The drawback of this method is that each cell of the grid follows a di�erent time
evolution, in other words an extraction corresponding to a certain iteration gives cell values
that actually refer to di�erent time instants depending on the cell the value belongs to. This
makes the post-processing of the results quite complicated. Moreover this technique su�ers of
numerical stability problems. Therefore it is �nally not widely used.

2.6 360◦ approach

This approach is the reference method. If the condition of a good temporal and spatial dis-
cretization is satis�ed, all the interactions between the rows are captured. In this case no
requirements of spatial or temporal periodicity are needed, neither on the geometry nor on
the captured phenomena. In fact the whole machine is considered in the numerical domain.
The limits among the various channel meshes are simply connections between adjacent blocks,
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and the azimuthal boundary concept loses its relevance. All the interfaces between two rows
are treated by using interpolations that ensure the �uxes conservation, as the sliding mesh
technique.

The obvious drawback of this approach is the very high cost,

� in terms of memory, due to the need of consider every channel of every row in the numerical
�eld;

� in terms of CPU time, due to the size of the domain but also to the transient state which
typically needs from 1 to 5 periods to �nish.

In the case of the 360◦ approach the number of periods which are needed to get a convergence
state is lower than the case of chorochronic periodicity. Nonetheless, in this case, one period
actually means a complete row revolution, while the unsteadiness period of a chorochronic
calculation is simply the blade passing period. Therefore, �nally, the convergence times can be
similar, if the number of blades of each row is not too high.
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Chapter 3

Mesh Generator: Autogrid
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3.1 Introduction

The discretization of the geometry and its surrounding domain is one of the most important
steps in the modeling of the reality. The local number and position of points may have some
very important e�ects on the iterating process and simulation results. The space discretization,
in fact, has to be performed with awareness about the physical phenomena which could develop
in each particular zone of the domain. This kind of estimation may involve a number of grid
points higher than what would be necessary, but it is only after a thorough post-processing of
the �rst results, that the point distribution can be better adapted to the solution. Nonetheless
high frequency dynamics could not be resolved if the number of points is not su�cient since
the beginning. A method to analyze the in�uence of the grid size on the solution and to �nd
the minimum number of points to obtain an accurate simulation, is applied in the chapter 5. In
the present chapter the most important features of the software used for the mesh generation
are presented, as well as the characteristics of the obtained grid.

3.2 CROR mesh topology

Autogrid is a semi-automatic software particularly dedicated to the mesh generation for tur-
bomachinery simulations. Some useful features are available to quickly obtain a mesh adapted
to the geometry of a rotating machine. In the present study only the structured mesh poten-
tialities of the software have been exploited, because of the elsA limitation about unstructured
mesh.

According to the time integration methods that are planned to be used, only a single channel
needs to be considered in the numerical domain. The azimuthal dimensions of the channel are
�xed by the number of blades of the two rotors. In fact a condition of periodicity, in space
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3.2. CROR mesh topology (Mesh Generator: Autogrid)

or both time and space according to the method, can be established at the lateral boundaries.
This point is thoroughly developed in the chapter 2.

3.2.1 Internal �eld

The �rst meshed region has been the internal part of the channel, that is the space around the
blades, from the front to the rear far�eld, extended to the blade tips, as shown in �gure 3.1.

Figure 3.1: Internal channel topology

In particular the longitudinal �eld size has been �xed to 20 meters, with the propeller
system placed in the center of this region. This allows to keep the limits of the numerical
domain su�ciently far from the region of interest, considering that the hub is about 8 meters
long and the chord of the blades about 0.5 meters.

In this part of the �eld, the most noteworthy zones are situated upstream and downstream
of the spinner tips, around the blade airfoil and near the blade tips. These regions are described
in the next sections.

Spinner tips

Two butter�y blocks have been used in the regions where very low values of radius occur, in
order to keep a regular grid even where the classical quadrilateral scheme would not be e�ective.
The peculiarity of this kind of blocks is, referring to �gure 3.2 on the next page, the distribution
of the iso-i and iso-j planes, and the form of the k-constant planes. In fact this shape allows
to discretize an angular sector, including the region near the center of the circle, still keeping
a good mesh quality.

Blade airfoil

The region around the blades has been discretized by a C block, as shown in �gure 3.9a on
page 26. Next to this one, four H blocks allow a good control of the distribution of points
in order to carefully calculate the �ow near the stagnation point and the wake leaving the
trailing edge. The characteristics of the mesh near the blade walls are detailed in the �gure
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(a) Block topology to treat the upstream
and downstream spinner tips

(b) Point distribution in the
butter�y block

Figure 3.2: Spinner tip topology and butter�y mesh

(a) Block topology to treat the spinner tips (b) Wall mesh obtained by the butter�y block

Figure 3.3: Upstream spinner tip discretized by butter�y blocks

3.5, where the high mesh density used to capture the wake can be noticed. Nonetheless this
re�nement cannot continue in the H block after the upstream blade, because of the need to
have an azimuthal constant points distribution at the interface between the two rotors. In fact,
although this characteristic is not strictly required, it allows to perform a better interpolation
between the two sides of the plane, needed to transmit the information from a channel portion
to the other. On the other hand, in the downstream �eld of the second rotor the wake mesh
e�ect can be maintained. Moreover, the topology blocks in this region are purposely shaped
around the spinner to follow the wake convection (�gure 3.1 on the preceding page).

Once the distribution on a radius-constant plane has been de�ned, the software will keep
the same parameters for each span-wise section, adapting the shape of the channel and of the
blocks to the corresponding blade airfoil. The following �gures show the evolution in the span-
wise direction of the mesh around the blades. Each image corresponds to a circumferential grid
plan, identi�ed by the j coordinate, oriented in the span-wise direction: j = 1 (near the blade
root), j = 25 (about the center of the blade span) and j = 50 (near the blade tip).
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Figure 3.4: j=1, blade root mesh

Figure 3.5: Mesh around the upstream rotor root airfoil
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Figure 3.6: j=25, center of the blade span mesh

Figure 3.7: j=50, blade tip mesh
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Blade tip

The blade tips are regions where high gradients of the physical quantities typically occur,
therefore to dispose of a good quality mesh is fundamental. This means to have a high number
of points but also some regularly shaped cells. In order to reach this goal, the C and H blocks
around the each blade are extended over the blade span, as shown in �gure 3.8, and at the
place of the blade volume two other mesh blocks are placed. In particular the shape of the tip
pro�le is reproduced using a O and a C blocks.

Figure 3.8: Scheme of the blade area topology

(a) Topology around the blade walls (b) Topology over the blade tips

Figure 3.9: Blade topology schemes

The �gure 3.10 and 3.11 on the facing page show the grid obtained at the upper end of
the internal channel, over the �rst rotor blade. It is worth to notice that the high level of
automation in the generation of the mesh with Autogrid often involves some limitations in the
control of the points distribution. This happens, most of all, in zones above the blade tips. In
fact, in this areas, the imposed number of cells and the geometrical constraints, coming from
the axial periodicity and the internal channel shape, involve a lower quality of the mesh in
terms of high expansion ratio and low orthogonality.
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Figure 3.10: Mesh over the upstream rotor blade

(a) Leading edge (b) Trailing edge

Figure 3.11: Mesh detail of the leading and trailing edge over the upstream rotor blade
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3.2.2 External Field

Figure 3.12: The whole numerical domain

The size of the external �eld has been �xed in order to keep the limits of the numerical
domain su�ciently far from the blades zone. That is 10 meters from the rotation axis, with the
maximum blade span equal to about 2 meters. In fact one of the purposes of the performed
calculations is to evaluate the phenomena generated by the interactions of the two open rotors,
which are a�ected by the absence of the casing. Once the boundaries of the external �eld are
�xed, Autogrid allows to generate the mesh automatically. This tool is quite useful, nonethe-
less no modi�cation can be made on the azimuthal and axial number of points. This �nally
means that the internal channel mesh is simply projected on the surface of the outer cylinder.
Obviously the high radius of the far �eld zones works as a shape deformation factor in this
process. Moreover the number of points in the radial direction cannot be too low, because of
the azimuthal and axial cell density. Besides, the passage through the rotors interface, involves
a strong variation of the relative velocity, ampli�ed by the high radius, which may prevent the
calculation from reaching a converged state. Therefore a good mesh quality should be kept on
the whole interface surface. Nevertheless, in order to maintain an acceptable calculation time,
a coarsening factor is applied, involving very high aspect ratios in the radial direction. Finally
this may be one of the reasons that prevents the relative velocity formulation from being used,
entailing the application of the absolute velocity formulation.
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Figure 3.13: External boundary of the numerical �eld

Figure 3.14: Detail of the interface zone on the outer surface
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3.3 Mesh quality

The quality of the obtained grid is de�ned through some geometrical parameters, able to
describe the the shape of the cells and their evolution in space:

Aspect ratio It is a measure of the ratio between the two dimensions of a cell on each plane
(range 0-50000);

Expansion ratio It is a measure of the size variation between two adjacent cells, in I, J and
K direction (range: 1-100);

Angular deviation It is a measure of the angular variation between two adjacent cells in I,
J and K directions (range: 0-180 degrees);

Orthogonality It is the minimum angle between the edges of the element (range: 0-90 de-
grees);
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The mesh �nally used for the calculations presented in the following of this report has
the characteristics described in the table 3.1 on the next page, which refers to the �gure 3.15.
Subsequently two other meshes have been realized, in order to study the in�uence of the number
of points on the solution and �nd the grid convergence condition. The Richardson extrapolation,
used for this purpose, and its application is described in the chapter 5. In particular the number
of points of the two coarse grids is respectively about a half and a quarter of the �rst mesh size.
Actually, the coarsening has been performed keeping three levels of multi-grid which �nally
prevents the number of points previously �xed from being exactly obtained. The e�ects of the
coarsening on quality of the two smaller meshes is shown in the tables 3.2 and 3.3.

Figure 3.15: Scheme of the mesh zones, referred to the tables 3.1, 3.2, 3.3 on the following page
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Domain parts Points Min Orthog. Max Asp. Ratio Max Exp. Ratio Angle Dev.

Entire mesh 11804436 7.634 283589.1 5.068 36.9
Zone 1 353585 32.69 33933.25 2.159 19.886
Zone 2 3192405 21.992 20650.02 2.517 14.257
Zone 3 4094377 21.376 12414.32 2.969 36.9
Zone 4 476729 24.797 15409.92 1.903 21.048
Zone 5 3471390 7.934 283589.1 5.068 1.01
Zone 6 215950 76.306 37094.85 1.659 0.008

Table 3.1: Characteristics of the �ne mesh: n points

Domain parts Points Min Orthog. Max Asp. Ratio Max Exp. Ratio Angle Dev.

Entire mesh 5604072 90132 453730.8 5.097 36.828
Zone 1 164093 32.681 171858.5 2.056 20.653
Zone 2 1603157 27.547 29323.86 3.41 15.102
Zone 3 1874345 20.894 6185.032 4.802 36.828
Zone 4 186773 30.952 89774.04 1.958 17.28
Zone 5 1678838 9.132 453730.8 5.097 1.584
Zone 6 96866 69.393 89774.04 1.958 17.28

Table 3.2: Characteristics of the �rst coarse mesh: n/2 points

Domain parts Points Min Orthog. Max Asp. Ratio Max Exp. Ratio Angle Dev.

Entire mesh 3025632 8.029 606328.5 4.35 36.436
Zone 1 90469 32.66 212142.8 2.523 21.176
Zone 2 904237 24.576 32403.13 3.597 28.676
Zone 3 989257 21.484 9273.49 3.436 36.436
Zone 4 90469 35.612 107628.5 2.577 20.598
Zone 5 902190 8.029 606328.5 4.35 8.385
Zone 6 49010 60.184 141345.9 2.902 7.028

Table 3.3: Characteristics of the second coarse mesh: n/4 points
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4.1 Introduction

The elsA project has been initially launched by ONERA (O�ce National d'Etudes et Recherches
Aérospatiales) in 1997, to become in 2001, a collaboration with CERFACS (Centre Européen
de Recherche et de Formation Avancée en Calcul Scienti�que). The �rst operational version
was delivered to industry partners in September 1998.

The elsA (standing for �ensemble logiciel de simulation en Aérodynamique�) software is a
multi-application CFD simulation platform dealing with internal and external aerodynamics
from the low subsonic to the high supersonic �ow regime. The compressible 3-D Reynolds
averaged Navier-Stokes equations for arbitrary moving bodies are solved by a cell centered
�nite-volume method with various discretization schemes on multi-block structured meshes.
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4.2. The Derivation of Conservation Laws (Solver: elsA)

In the present chapter the equation system that is solved to perform the simulations is
presented. The main assumptions are also treated to properly set the theoretical frame the
calculations are based on. Moreover the numerical methods that have been used are brie�y de-
scribed, as well as some computational techniques applied to improve the calculation e�ciency.
A more detailed explanation of the implemented mathematical method can be found in the
theoretical manual of elsA [19].

4.2 The Derivation of Conservation Laws

4.2.1 Integral and di�erential forms

To see how conservation laws arise from physical principles, we begin by deriving the equation
for the conservation of mass in a one-dimensional gas dynamics problem. As during the whole
study, we adopt a macroscopic description of the dynamic and thermodynamic behavior of the
considered �uid, in general a gas. This supposes that all the scale length characteristics of
the �ow are large with respect to the mean free path of the molecules constitutive of the gas.
Moreover, we admit:

� that the gas consists of only one species (atomic or molecular) or possibly of several
species, but in this last case we are interested only in the mixture and suppose that these
species are chemically inert and that the thermodynamic state of gas is at equilibrium
and may described using only one temperature;

� that the density of the �uid is su�ciently low so that the e�ects of gravity may be
neglected (massless �uid).

These are actually the main assumptions elsA code is based on.
To obtain the equation of mass conservation the classical case of a �ow in a tube is analyzed.

Moreover, in order to have only one space dimension from which the �ow is dependent we assume
that the properties of the gas, such as density and velocity, are assumed to be constant across
each cross section. Let x represent the distance along the tube and ρ(x, t) be the density of the
gas at point x and time t. This density is de�ned in such a way that the total mass of gas in
any given section from x1 to x2, say, is given by the integral of the density

mass in [x1, x2] at the time t =

∫ x2

x1

ρ(x, t) dx. (4.1)

If we assume that the walls of the tube are impermeable and that mass is neither created
nor destroyed, then the mass in this one section can change only because of gas �owing across
the endpoints x1 or x2.

Now let v(x, t) be the velocity of the gas at the point x time t. Then the rate of �ow, or
�ux of gas past this point is given by

mass �ux at (x, t) = ρ(x, t)v(x, t). (4.2)

By our comments above, the rate of change of mass in [x1, x2] is given by the di�erence in
�uxes at x1 and x2
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d
dt

∫ x2

x1

ρ(x, t) dx = ρ(x1, t)v(x1, t)− ρ(x2, t)v(x2, t). (4.3)

This is one integral form of the conservation law. Another form is obtained by integrating
this in time from t1 to t2, giving an expression for the mass in [x1, x2] at time t2 > t1 in terms
of the mass at time t1 and the total (integrated) �ux at each boundary during this time period

∫ x2

x1

ρ(x, t2) dx =

∫ x2

x1

ρ(x, t1) dx+

∫ t2

t1

ρ(x1, t)v(x1, t) dt−
∫ t2

t1

ρ(x2, t)v(x2, t) dt (4.4)

To derive the di�erential form of the conservation law, we must introduce an important
assumption: ρ(x, t) and v(x, t) are di�erentiable functions. Thence, using

ρ(x, t2)− ρ(x, t1) =

∫ t2

t1

∂

∂t
ρ(x, t) dt (4.5)

and

ρ(x2, t)v(x2, t)− ρ(x1, t)v(x1, t) =

∫ x2

x1

∂

∂x

(
ρ(x, t)v(x, t)

)
dx (4.6)

in (4.4) it gives

∫ t2

t1

∫ x2

x1

{
∂

∂t
ρ(x, t) +

∂

∂x

(
ρ(x, t)v(x, t)

)}
dx dt = 0. (4.7)

Since this must hold for any section [x1, x2] and over any time interval [t1, t2], we conclude
that in fact the integrand in (4.7) must be identically zero, that means

ρt + (ρv)x = 0 conservation of mass (4.8)

which is the desired di�erential form of the conservation law for the conservation of mass,
where the subscripts indicate the relative partial derivative.

Typically the equation (4.8) must be solved in conjunction with equations for the conserva-
tion of momentum and energy, which can be obtained with some similar processes. Moreover
these last equations involve some other quantities: the pressure p, the viscous shear stress τ
and the heat �ux q. Therefore in order to solve the system a model of the �uid is needed.
The necessary relations that allow to close the problem are treated in the next section. The
three equations for the conservation of mass, momentum and energy form the Navier-Stokes
System. Based on the continuum assumption, it can be written as

∂W

∂t
+

∂

∂x
(f − fv) +

∂

∂y
(g − gv) +

∂

∂z
(h− hv) = 0 (4.9)

- 35 -



4.2. The Derivation of Conservation Laws (Solver: elsA)

where

W =


ρ
ρu
ρv
ρw
ρE

 is the vector of the conservative variables, (4.10)

f =


ρu

ρu2 + p
ρuv
ρuw

ρu(ρE + p)

 , g =


ρu
ρvu

ρv2 + p
ρvw

ρv(ρE + p)

 , h =


ρw
ρwu
ρwv

ρw2 + p
ρw(ρE + p)

 are the convective �uxes,

(4.11)

fv =


0
τxx
τxy
τxz

(τ ~U)x − qx

 , gv =


0
τyx
τyy
τyz

(τ ~U)y − qy

 , hv =


0
τzx
τzy
τzz

(τ ~U)z − qz

 are the viscous �uxes.

(4.12)

introducing the total energy per unit mass E and the velocity vector ~U = (u, v, w)T . Thence
the terms of viscous dissipation are

(τ ~U)x = τxxu+ τxyv + τxzw

(τ ~U)y = τyxu+ τyyv + τyzw (4.13)

(τ ~U)z = τzxu+ τzyv + τzzw

4.2.2 Closure of the problem

As mentioned above, some further information are necessary to close the problem. In particular,
by knowing some �uid characteristics, this can be done specifying the scalar p, the tensor τ
and the vector q as functions of the conservatives variables ρ, ρ~U and ρE.

Thermodynamic characteristics

A complete description of the thermodynamics state of the gas must be included in the Navier
Stokes system. In order to describe the relations that allow to obtain the expressions p =
p(ρ, ~U,E) and q = q(ρ, ~U,E) the discussion proposed by Callen [5] and Galgani and Scotti
[6] is followed. Therefore the properties of a thermodynamics system are de�ned focusing
on the central role played by his fundamental thermodynamic relation. This relation is the
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starting theoretical point to introduce the intensive thermodynamics variables and to obtain
the equations of state of the system. The purpose of this approach is to show how a complete
description of the thermodynamics of the gas is �nally included in the system (4.9), even if
only a single equation of state is actually visible.

For a mono-component simple �uid [5] in thermodynamic equilibrium, all the thermody-
namic properties of the system are de�ned by a fundamental relation which speci�es an extensive
quantity of the system, the entropy S in terms of the extensive variables (internal) energy Ei,
volume V and mass M :

S = S(Ei, V,M) (4.14)

This equation represents the fundamental thermodynamic relation in the entropic rep-
resentation. Thanks to the property of the temperature to be always positive, this relation is
monotone with respect to the internal energy, thence we can now invert the equation considering
the internal energy as unknown, obtaining the energetic representation [7].

Ei = Ei(S, V,M) (4.15)

The equations of state are obtained by taking the partial derivatives of the fundamental
relation and by assuming these functions as de�nition of the intensive variables.

dEi =
∂Ei
∂S

∣∣∣∣
V,M

dS +
∂Ei
∂V

∣∣∣∣
S,M

dV +
∂Ei
∂M

∣∣∣∣
S,V

dM (4.16)

T
.
=
∂Ei
∂S

∣∣∣∣
V,M

P
.
= −∂Ei

∂V

∣∣∣∣
S,M

γ
.
=
∂Ei
∂M

∣∣∣∣
S,V

(4.17)

Moreover the enthalpy and the Helmholtz and Gibbs (free) energies can also be obtained
from the fundamental relation by using the Legendre transformation.

F = Ei − ST → Helmholtz Free Energy (4.18)

G = Ei − ST + PV → Gibbs Free Energy (4.19)

H = Ei + PV → Enthalpy (4.20)

From which the speci�c heat capacities can now be obtained by a further derivation

Cp
.
=

T

M

∂S

∂T

∣∣∣∣
P

=
1

M

∂H

∂T

∣∣∣∣
P

(4.21)

Cv
.
=

T

M

∂S

∂T

∣∣∣∣
V

=
1

M

∂M

∂T

∣∣∣∣
V

(4.22)
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Pressure Expression In the case of a Polytropic Ideal Gas the fundamental relation in the
energetic representation, in terms of speci�c values (per unit mass), is

e = (s, v) = e0 exp(δ(s− s0)/R)
(v0

v

)δ
with δ = γ − 1 (4.23)

where e, s, v are the internal energy, entropy and the volume per unit mass, e0, s0, v0 are the
speci�c internal energy, entropy and volume of a reference state 0, R = 287.058 J/(kgK) is the
ideal gas constant and γ = 1.4 is the speci�c heat ratio.

Therefore the intensive variables temperature and pressure are speci�ed by the equations
of state


T
.
=
∂e

∂s

∣∣∣∣
v

=
δe

R

P
.
= −∂e

∂v

∣∣∣∣
s

=
δe

v

(4.24)

From which the classic equation of state is easily deducted:

Pv = RT (4.25)

The system (4.24) still represents a complete thermodynamic description of the gas, but
to obtain the state equation we have obviously lost some information. This con�rms the
thermodynamic principle that two equations of state are necessary to completely specify the
thermodynamic properties of a �uid, at least in the case of a simple (mono-component) �uid
system, see Callen [5].

In order to �nd the relation to specify the pressure in terms of conservative variables, we
can simply use the second equation of the system (4.24), aware that some information about
entropy variations have been lost.

E = e+
1

2
U2 =

p

(γ − 1)ρ
+

1

2
U2 (4.26)

⇒ P = P (ρ, U,E) =

(
E − 1

2
U2

)
(γ − 1)ρ (4.27)

In this connection, it is worth reminding that a second equation of state, although not explicitly
used in the solution of the Euler equations, plays actually a role in selecting the physically
relevant unique solution within the in�nite set of weak solutions of the nonlinear hyperbolic
problem through the intermediate of the entropy condition.
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Heat Flux Expression The conduction heat �ux vector is speci�ed by the Fourier's law.

qx = −α∂T
∂x

, qy = −α∂T
∂y

, qz = −α∂T
∂z

(4.28)

where

α =
µCp
Pr

(4.29)

with Pr = 0.72 for the air, and Cp is the speci�c heat capacity at constant pressure, obtained
by the fundamental relation in the energetic representation:

Cp =
∂h

∂T

∣∣∣∣
P

= R
γ

γ − 1
(4.30)

Fluid Mechanical Behavior

In order to specify the shear stress tensor τ = τ(ρ, ~U,E), the mechanical behavior of the �uid
has to be known. For a Newtonian �uid, like the air, the stress versus strain rate curve is linear
and passes through the origin. The constant of proportionality is the viscosity. Therefore the
tensor elements are

τxx = 2µ∂u∂x + λ
(
∂u
∂x + ∂v

∂y + ∂w
∂z

)
, τxy = τyx = µ

(
∂v
∂x + ∂u

∂y

)
τyy = 2µ∂v∂y + λ

(
∂u
∂x + ∂v

∂y + ∂w
∂z

)
, τxz = τzx = µ

(
∂w
∂x + ∂u

∂z

)
τzz = 2µ∂w∂z + λ

(
∂u
∂x + ∂v

∂y + ∂w
∂z

)
, τyw = τwy = µ

(
∂v
∂z + ∂w

∂y

) (4.31)

with

µ = 1.78938 10−5Kg/(ms)

λ = β − 2

3
µ

where β is the Volume Viscosity, that is near zero for a mono-atomic gas and µ is the
Dynamic Viscosity, whose dependency from the temperature is taken into account by the
Sutherland's law.

4.3 Averaged Navier Stokes Equations

4.3.1 Statistical Treatment

Turbulent �ows are modeled by non-linear relations. This involves a wide range of spatial and
temporal scales associated to the di�erent phenomena that occur in the �ow. In particular the
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smallest scale turbulent dynamics play a fundamental role in the energy conservation. In fact,
according to the Kolmogorov theory, the turbulent dissipation occurs just in these structures
[9]. Therefore it is really important to model, in some way, this kind of phenomena. Never-
theless to capture the smallest scales a very �ne time and space discretization is needed, which
is absolutely not compatible with the memory and CPU time limitations that are normally
imposed by the employed hardware.

From the identi�cation of these di�erent scales the RANS (Reynolds Averaged Navier-
Stokes) and U-RANS (Unsteady RANS) methods are derived. The main idea is that the space
and time discretization have to be �ne enough to simulate the mean motion, while some speci�c
turbulence models are used to take into account the �uctuation with respect to the mean motion.

Let φ be the mean �eld and φ′ the �uctuation �eld, which together form the complete �eld
φ(x, t). In particular if φ is a steady mean �ow we can base the statical discussion on the values
taken by the variable φ during some N di�erent observations of the �eld: φk(x, t). Therefore,
in the particular case of a steady �ow, the mean value is de�ned by

φ(x) = lim
N→∞

1

N

N∑
k=1

φk(x, t) (4.32)

In the case of a periodic mean �ow, a time step should be properly identi�ed to exclude
the turbulent �uctuation but capture the time dependency of the mean �ow, in fact a phase
average has to be performed. This technique is based on the assumption that the signal is
formed by three components: a steady mean, a periodic component and �uctuations. In this
case the time step needs to be larger than the turbulent dynamics, but small enough to allow
a good reconstruction of the periodic component, which represents the time dependency of the
mean motion.

Subsequently the complete �eld is de�ned by

φ = φ+ φ′, with φ′ = 0 (4.33)

This decomposition was proposed by Reynolds in 1883 [11]. Nonetheless for compressible �ows
it is useful to introduce a density weighted mean. This technique is also proposed by Reynolds,
and extended to compressible �ows by Favre [12].

φ = φ̃+ φ′′, with φ̃′′ = 0 (4.34)

where

φ̃ =
ρφ

ρ
(4.35)

and the �uctuation �eld must respect the conditions

{
ρφ′′ = 0

φ′′ 6= 0
(4.36)
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4.3.2 Mean Flow Equations

Both average techniques are used to obtain the Navier Stokes system in the form solved by
elsA for the mean �eld. In particular the density weighted mean allows to treat the thermal
and cinematic variables.

ρ = ρ+ ρ′, ρ′ = 0

P = P + P ′, P ′ = 0

ui = ũi + u′′i , ρu′′i = 0, i = 1, 2, 3

T = T̃ + T ′′, ρT ′′ = 0

E = Ẽ + E′′, ρE′′ = 0

(4.37)

Therefore, the averaged form of the equation (4.9) is

∂W

∂t
+

∂

∂x
(f − fv) +

∂

∂y
(g − gv) +

∂

∂z
(h− hv) = 0 (4.38)

where the unknowns and the convective �ux vectors maintain the same structure:

W =


ρ
ρũ
ρṽ
ρw̃

ρẼ

 , f =


ρũ

ρũ2 + p
ρũṽ
ρũw̃

ρũ(ρẼ + p)

 , g =


ρũ
ρṽũ

ρṽ2 + p
ρṽw̃

ρṽ(ρẼ + p)

 , h =


ρw̃
ρw̃ũ
ρw̃ṽ

ρw̃2 + p

ρw̃(ρẼ + p)

 (4.39)

While the viscous �uxes become

fv =


0

τxx − ρũ′′u′′
τxy − ρũ′′v′′
τxz − ρũ′′w′′

(τŨ)x − qx − ρE′′u′′ − Pu′′ + τxxu′′ + τxyu′′ + τxzu′′



gv =


0

τyx − ρṽ′′u′′
τyy − ρṽ′′v′′
τyz − ρṽ′′w′′

(τŨ)y − qy − ρE′′v′′ − Pv′′ + τyxv′′ + τyyv′′ + τyzv′′



hv =


0

τzx − ρw̃′′u′′
τzy − ρw̃′′v′′
τzz − ρw̃′′w′′

(τŨ)z − qz − ρE′′w′′ − Pw′′ + τzxw′′ + τzyw′′ + τzzw′′



(4.40)
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in which, for a mono-atomic �uid, the components of the averaged stress tensor τ are de�ned
by

τij = µ

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3
δij

(
∂ũi
∂xi

+
∂ũj
∂xj

+
∂ũk
∂xk

))
(4.41)

where δij is the Kronecker Delta, which takes the value 1 if i = j, and 0 otherwise.
The most important di�erence between the system (4.38) and the system (4.9) is the pres-

ence of the �uctuation terms. This comes from the inherent non-linear nature of the equations,
which involves that it is not possible to study only the mean �ow because it is coupled with
the turbulence �uctuations. This unknown terms are called Reynolds Stresses: ũ′′i u

′′
j , and

form a symmetric tensor whose trace is actually the double of the Turbulent Kinetic Energy :
k = 1

2

∑
i ũ
′′
i u
′′
i

Taking into account the energy equation, the polytropic ideal gas model can be applied to
obtain

ρE′′u′′i = cvρT ′′u′′i + ρu′′i u
′′
j ũi +

1

2
ρu′′ju

′′
ju
′′
i

Pu′′i = (γ − 1)cvρT ′′u′′i

(4.42)

Therefore the total energy component of the viscous �ux become

fvi 5 = ũjτij − qi − cpρT ′′u′′i − ρu′′i u′′j ũi +
1

2
ρu′′ju

′′
ju
′′
i + τiju′′j − P ′u′′i (4.43)

where the terms τiju′′j and −P ′u′′i can be neglected within a boundary layer and for Mach
number lower than 5, according to the Morkovin's hypothesis [16]. In fact he observed that in
this case the turbulence maintains an incompressible behavior.

In conclusion the average process involves a loss of information about turbulent dynamics,
which a�ects also the mean �ow solution. Nonetheless this process provides a new equation
system, where some new variables are present:

� the Reynolds stress ũ′′i u
′′
j

� the turbulent heat �ux cpρT ′′u′′i

� the third order term 1
2ρu

′′
ju
′′
ju
′′
i which will be neglected.

This rises the need of some speci�c techniques to close the problem, which can also model some
of the lost information.

4.3.3 Turbulence models

According to the development presented in section (4.3) the purpose of the turbulence models
is to close the RANS equation system. In particular the quantities that need to be modeled
are the Reynolds stress tensor ũ′′i u

′′
j and the turbulent heat �ux cpρT ′′u′′i .
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Spalart-Allmaras and k − ω models have been applied to perform the simulations of the
present study, and both are based on the Boussinesq Hypothesis. Even before that Reynolds
brought to light the connection between turbulent stresses and velocity �uctuations, Boussinesq
proposed to use a turbulent isotropic viscosity µ(t) (also referred to as eddy viscosity). It is a
scalar quantity able to play the role of the molecular viscosity µ in representing the dependency
between the strain rate and the stress tensors. In this way the turbulent stresses will be speci�ed
as functions of the mean �ow. Therefore, in analogy with the equation (4.41), the Reynolds
stress tensor can be speci�ed by the (4.44).

To obtain this expression a fundamental role is played also by the kinetic energy of tur-
bulence k = 1

2

∑
i ũ
′′
i u
′′
i , that is a half of the trace of the Reynolds stress tensor. In fact this

tensor is directly taken into account simply as (−2
3ρk)I, becoming a second quantity that can

be modeled to �nally consider the e�ects of the Reynolds stress tensor ũ′′i u
′′
j and the turbulent

heat �ux cpρT ′′u′′i .
Thence by modeling the two quantities, turbulent viscosity µ(t) and turbulent kinetic energy

k, the following expressions can be written:

τ
(t)
ij = −2

3
δij

(
µ(t)

(
∂ũi
∂xi

+
∂ũj
∂xj

+
∂ũk
∂xk

)
+ρk

)
+µ(t)

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(4.44)

q
(t)
i = −cpµ

(t)

Pr(t)

∂T̃

∂xi
(4.45)

Turbulence models play a key role when performing RANS simulations of turbulent �ows.
The prediction of physical �ow phenomena such as boundary layer separation, wall friction or
shock-boundary layer interactions strongly depends on the choice of the turbulence model. Most
of �rst-order models rely on the local equilibrium idea to directly specify the turbulent viscosity
in terms of known quantities of the mean �ow. Among these, the algebraic models are robust
and cheap, nonetheless their underlying physical assumptions limit the complexity of �ows that
can be adequately simulated. Two-equations models are independent of an algebraic length scale
and take naturally into account history e�ects through transport equations, and are therefore
considered to be more general. A large number of this kind of models have been proposed in
the literature and they actually show reasonable results for a large variety of �ows. Nonetheless
they need some corrections in the case of complex turbulent �ows because they do not naturally
account for streamline curvature and rotation, and they cannot describe the anisotropy of
turbulence. Some modi�cations are also needed to predict adverse pressure gradient �ows. To
overcome some of these drawbacks two-equations models have been developed. Menter proposed
the Shear Stress Transport (SST) correction for the k−ω model, which has been applied in the
present work. However, sti� source terms and complex boundary and free stream conditions
restrict their general applicability. One-equation models seem to be a good compromise between
the algebraic and two-equations models. In particular the Spalart-Allmaras model, which solves
a transport equation for the turbulent viscosity, became quite popular because of its reasonable
results for a wide range of �ow problems and its numerical properties.

Reynolds stress models, which do not rely on the eddy viscosity hypothesis, have a high
potential to accurately predict complex three dimensional �ows, where anisotropic non-linear
e�ects are important. Nonetheless the large additional number of equations involves a high
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computational cost. Moreover they include terms that are very di�cult to model (more than the
case of two-equations models). Finally these reasons do not yet permit their wide application.

The methods applied in the present study are based on transport equations, which are
speci�ed in the form

d
dt

∫
Ωi

~W (t)dΩ +

∮
Si

~Fc · d~s−
∮
Si

~Fv · d~s =

∫
Ωi

QdΩ (4.46)

Introducing the vector of the turbulence variable ~W (t). Therefore in this section the �ux ~Fc
and ~Fv will refer to the turbulence variables. In particular, if the transported quantities are
e1 . . . en, the terms of the (4.46) are:

� the vector of the turbulent variables e1 . . . en:

~We1...en = [e1 . . . en]T (4.47)

� the convective �ux:

∮
Si

~Fc · d~s =

∮
Si


e1

...

en

 ~U · d~s (4.48)

� the di�usive �ux:

∮
Si

~Fv · d~s = −
∮
Si


(µ+

µ(t)

σe1
)~∇e1

...

(µ+
µ(t)

σen
)~∇en

 · d~s (4.49)

where σe1 . . . σen are generally constant parameters, except in some models of the layer
type, as Menter, where they are �eld functions.

While the source term has a speci�c expression which depends on the model considered.

k − ω with SST Menter modi�cation

The �rst turbulence model used in the present study is the two-equations k − ω Wilcox model
with the BSL (Baseline) Menter modi�cation and the SST correction.

k − ω Wilcox Model In k − ω models the transported quantities are the kinetic energy
of turbulence k and the speci�c rate of dissipation ω = ε/(β∗k) [13]. Where β∗ = 0.09 is a
constant and ε is the isotropic rate of dissipation, which is an unknown in k−ε models like that
which is used by the BSL modi�cation, as shown in the following. Therefore in the transport
equations (4.46) one �nds:
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~W(kω) = [ρk, ρω]T with

{
k : kinetic energy of turbulence

ω : speci�c rate of dissipation
(4.50)

and the source term

∫
Ωi

~Q(kω)dΩ =

∫
Ωi

 τ (t)~∇~U − β∗ρKω
γ

ν(t)
τ (t)~∇~U − βρω2

 dΩ (4.51)

Finally the eddy viscosity is de�ned as

µ(t) =
ρk

ω
(4.52)

and the constants of the model are as follows:

β∗ = 0.09 σ∗ = 0.5 σe1 =
1

σ∗
γ =

β

β∗
− σ k2

√
β∗

β = 0.075 σ = 0.5 σe2 =
1

σ
k = 0.41

Baseline Menter model The main problem with the Wilcox k − ω model is its sensitivity
to the ω value at the edge of the boundary layers and wakes. To avoid this problem, Menter
developed the BSL (Baseline) model in the hope to preserve the good behavior of the Wilcox
model in the internal area of boundary layers and to obtain an outer edge condition insensitive
to the ω∞ value. For that, he replaced the Wilcox model in the outer region of the boundary
layers by a k−ε model of Launder-Sharma written in terms of k−ω variables [14]. This requires
the introduction of a blending function F1 between the models. This function is a sensor whose
purpose is to separate the internal region of the boundary-layers, where the Wilcox model
applies, from the external region ( beyond y/δ ' 0.7) where Launder-Sharma is used. The
Wilcox model is also replaced by k− ε in the wakes. Therefore the source term of the model is
written :

∫
Ωi

~Q(kω)dΩ =

∫
Ωi

 τ (t)~∇~U − β∗ρKω
γ

ν(t)
τ (t)~∇~U − βρω2 + 2

ρσω
ω

~∇k · ~∇ω

 dΩ (4.53)

The constants are obtained by averaging the constants of each model, using the blending
function F1

Cste = F1Cste1 + (1− F1)Cste2 (4.54)

By making F1 = 1, one �nds the constants (subscripted �1�) of the original Wilcox model.
F1 = 0 makes it possible to obtain the k − ε Launder-Sharma model, in a k − ω formulation,
after a change of variables. The constants of this model are the following :
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σ∗1 = 0.5 σ1 = 0.5 β1 = 0.075 σω1 = 0

σ∗2 = 1.0 σ2 = 0.856 β2 = 0.0828 σω2 = 0.856

β∗ = 0.09 k = 0.41 γ =
βi
β∗
− σi

k2

√
β∗

; i = 1, 2

In particular the blending function F1 is de�ned by

F1 = tanh ζ4

ζ = min

[
max

( √
k

0.09ωy
;

500ν

ωy2

)
;

4ρσω2k

Dkωy2

]
Dkω = max

(
ρσω2

ω
~∇k · ~∇ω ; 10−20

) (4.55)

As it is noted, the function F1 requires the calculation of the distance to the wall. It nevertheless
is written in a purely local form to be easily coded without using topological information.

SST Correction of the Menter model The SST correction of Menter relies on the
observation that for the models with 2 transport equations using the eddy viscosity concept,
the ratio of the shear stress τ (t) to the value of ρk is equal to the quantity a1

√
Pk/Dk (ratio of

production over dissipation of k, with a1 ' 0.31), whereas in experiments one measures rather
τ (t)/ρk ' a1 in a large part of the boundary layer.
In the case of �ows in the presence of positive gradients of pressure, the ratio Pk/Dk can be
de�nitely higher than 1 which leads, with the 2 equation models, to over-estimate the shear
stress and thus, indirectly, to underestimate the e�ect of the positive pressure gradients. To
cure this inconsistency Menter then proposes to limit the eddy viscosity coe�cient by using the
function

µ(t) =
ρk

max
(
ω , rot(~U)F2/a1

) where a1 =
√
β∗

F2 = tanh ι2 with ι = max

(
2
√
k

0.09ωy
,

500ν

y2ω

) (4.56)

The SST correction of the Menter model can, in theory, correct any model of the k − ε type
which has trouble to predict separations su�ciently early, since its e�ect is to reduce the µ(t)

value. This correction is also coded in elsA for the Wilcox model.

Spalart-Allmaras

The Spalart-Allmaras model ([15]) uses only one transport equation for the kinematic viscosity
transform ν̃ which, far from the walls, merges with ν(t) = µ(t)/ρ. The equation for ν̃ results
from a step by step construction by addition of terms intended for taking into account more and
more physical phenomena. On the basis of a �convection = production + di�usion� form for free
shear �ows, the Spalart-Allmaras model adds the terms necessary to obtain a logarithmic zone
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in the velocity pro�les. It ends by terms intended to trigger the laminar-turbulent transition,
its position being supposed known a priori. These last terms are described at the end of this
part.

Therefore the Spalart-Allmaras transport equation is composed by the following terms,
according to the (4.46) form:

� the vector of the turbulent variable:

~W(ν̃) = ρν̃ (4.57)

� the convective �ux:∮
Si

~Fc(ν̃)
· d~s =

∮
Si

ρν̃ ~U · d~s (4.58)

� the di�usive �ux:∮
Si

~Fv(ν̃)
· d~s = −

∮
Si

1

σν̃
(µ+ ρν̃)~∇ν̃ · d~s (4.59)

� the source term:∫
Ωi

~Q(ν̃)dΩ =∫
Ωi

(
Cb1(1− ft2)S̃ρν̃ +

Cb2
σ
~∇(ρν̃) · ~∇ν̃ − Cω1fω −

Cb1
k2

ft2ρ
ν̃2

η2

)
dΩ

(4.60)

with: 
S̃ = ω +

ν̃

k2η2
fv2 ; fv2 = 1− χ

1 + χfv1
; χ =

ρν̃

µ

fω = g

(
1 + C6

W3

g6 + C6
W3

)1/6

; g = r + Cω2(r6 − r) ; r =
ν̃

S̃k2η2

ft2 = CT3 exp(−Ct4χ2)

(4.61)

In which the constants take the following values:

Cb1 = 0.1355 σ = 2/3 CW3 = 2 CT3 = 1.2

Cb2 = 0.622 k = 0.41 Cv1 = 7.1 Ct4 = 0.5

Cω1 = Cb1/k
2 + (1 + Cb2)/σ Cω2 = 0.3

Finally the eddy viscosity is evaluated by the following relations:

µ(t) = ρν̃fv1 ; fv1 =
χ3

χ3 + C3
v1

; χ =
ρν̃

µ
(4.62)
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Additional term related to transition initiation The Spalart-Allmaras model admits
ν̃ = 0 as solution, even in the presence of longitudinal velocity gradients in the boundary layer.
This solution is nevertheless unstable. To initiate the growth of the µ(t) �eld, the solution
must be disturbed. In the case of imposed transition, or for a very turbulent calculation,
µ(t) proportional to µ can be imposed after some iterations of calculation. But if a transition
criterion is used this is not possible, thence Spalart introduced into its model an additional
source term which is activated only in the vicinity of a user-de�ned transition point. This term
is equal to fT1∆~U with

fT1 = cT1gt exp

[
−ct2

ω2
t

∆U2
(d2 = g2

t d
2
t )

]
∆U = |U | − |Ut|

gt = min(0 , 1 ,
∆U

ωt∆xt
)

cT1 = 1 ct2 = 2

(4.63)

introducing:

Ut : modulus of velocity at the transition point;

ωt : modulus of rotational velocity at the point of transition;

d : cell distance from the wall;

dt : cell distance from the wall, at the point of transition;

∆xt : length of the cell of calculation at the transition point.

4.4 Finite Volume Discretization

This section will summarize some basic numerical concepts and issues. Several methods are
available for the discretization of the conservation laws of �uid mechanics: �nite di�erences
(FDM), �nite elements (FEM), and �nite volumes (FVM). The approach implemented in elsA

is the FVM which is by far the most general and the most widely applied. The reason behind the
appeal to the FVM lies in its generality, its conceptual simplicity and its ease of implementation
for arbitrary grids, structured as well as unstructured (even if, for instance, elsA can treat only
the �rst type). Moreover the FVM has some remarkable properties which are important to
remember, when developing or applying an existing CFD code. The FVM is based on cell-

averaged values. This distinguishes the FVM from the �nite di�erences and �nite elements
methods, where the main numerical quantities are the local function values at the mesh points.

Once a grid has been generated, the FVM consists in associating a local �nite volume, also
called control volume, to each mesh point and applying the integral conservation law to this
local volume.

An essential advantage of the FVM is connected to the very important concept of conser-
vative discretization. Is is fundamental to maintain the global conservation of the basic �ow
quantities, mass, momentum and energy, at the discrete level and this puts conditions on the
way the discretization process of the equations is performed. Moreover the application of the
integral form of the conservation relations ensure the capability of solving the hyperbolic Euler
system, modeling shock waves as discontinuities.
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The integral conservation laws, as the (4.3), are applied to each control volume Ωi, associated
to the mesh point i, de�ning hereby the equation for the unknowns Wi attached to the same
vertex or cell

∂

∂t

∫
Ωi

WdΩ +

∮
Si

~F · d~s =

∫
Ωi

QdΩ (4.64)

where ~F is the �ux of the scalar variable W through Si, which is the whole external surface
of the volume Ωi, Q is a source term and d~s = ~nds writing ~n the local normal versor of
the in�nitesimal surface ds. The advantage of this method, especially in absence of source
terms, is that the �uxes are calculated only on two dimensional surfaces instead of in the three
dimensional space.

The equation (4.64) is then replaced by its discrete form, where the volume integrals are
expressed as averaged values over the cell and the surface integral is replaced by a sum over all
the bounding faces f of the considered volume.

∂

∂t
(WiΩi) +

∑
Faces

(~F ·∆~s)f = Qi∆Ωi (4.65)

where ∆~s speci�es the multiplication between the local versor perpendicular to the face f and
its surface. A general and important interpretation of any numerical, conservative scheme is
obtained directly from the integral conservation laws. If the equation (4.64) is integrated from
t = n∆t to (n+ 1)∆t for a control volume Ωi associated to a node or a cell i, we obtain

∫
Ωi

WdΩ

∣∣∣∣n+1

=

∫
Ωi

WdΩ

∣∣∣∣n− ∑
Faces

∫ n+1

n
(~F ·∆~S)fdt+

∫ n+1

n
dt
∫

Ωi

QdΩ (4.66)

Subsequently the cell and time-averaged source Q
∗
i and the numerical �ux F

∗
over each side

can be de�ned by introducing the cell-averaged conservative variable W
n
i and source Q

n
i at the

time n∆t:

W
n
i
.
=

1

Ωi

∫
Ωi

WdΩi

∣∣∣∣n Qi
.
=

1

Ωi

∫
Ωi

QdΩi (4.67)

~F ∗ ·∆~S
.
=

1

∆t

∫ n+1

n

~F ·∆~Sdt Q
∗
i
.
=

1

∆t

∫ n+1

n
Qidt (4.68)

Therefore the conservative discretization takes the form

W
n+1
i Ωi = W

n
i Ωi −∆t

∑
Faces

~F ∗ ·∆~S + ∆tQ
∗
iΩi (4.69)

This is an exact relation for the time evolution of the space-averaged conservative variable W
n
i

over the cell i. The numerical �ux ~F ∗ completely identi�es a scheme by the way it approximates
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the time-averaged physical �ux along each cell face. The absence of a time index on the balance
of �uxes and on the source term is meant to indicate that one can choose between n for an
explicit scheme, or n+ 1 for an implicit scheme.

The above formulation of a numerical scheme can be generalized if one considers that the
space discretization is completely de�ned by its numerical �ux, leaving open the choice of the
time integration. A general numerical scheme can then be de�ned as a system of ordinary
di�erential equations in time by

d
dt
W iΩi = −

∑
Faces

~F ∗ ·∆~S +Q
∗
iΩi ≡ −Ri (4.70)

The right hand side de�nes the residual representing the balance of �uxes over the cell. This
balance, in absence of source terms, must tend to zero at convergence for a steady state problem.

4.4.1 Convective �uxes

In order to derive the discretized �ux form, the decomposition of the �uxes in convection and
viscous terms, as shown above, is used. Thence the term

∮
Si
~F · d~s of the equation (4.64) can

be considered as

∮
Si

~F · d~s ≡
∮
Si

~Fc · d~s−
∮
Si

~Fv · d~s (4.71)

With a structured mesh several methods have been developed to evaluate the convective
�ux. In the present study the centered Jameson Scheme and the upwind Roe Scheme have been
used. A central scheme typically allows to obtain a higher precision than an upwind scheme,
but in some con�guration the �rst one can be not robust enough and the second can provide
better results. In this section both schemes will be brie�y described considering, for reasons of
clarity, an incompressible �ow.

The viscous �uxes modeling can be dealt with separately, therefore it will be described at
the end of this section.

Central Discretization

The non-linear convective terms of the Navier Stokes equations ~H =
(
~U ~∇
)
·~U can be written in

di�erent forms by using the equation for the conservation of mass, which for an incompressible
�ow is ~∇ · ~U = 0. In particular the i-component of this term can be expressed as

Hi =
∑
l

Hil with l = i, j, k and (4.72)

� divergence form,

Hil =
∂uiul
∂xl

(4.73)
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� convective form,

Hil = ul
∂ui
∂xl

(4.74)

� skew symmetric form,

Hil =
1

2

(
∂uiul
∂xl

+ ul
∂ui
∂xl

)
(4.75)

Although these forms are strictly equivalent in the continuous Navier Stokes equation sys-
tem, they involve di�erent e�ects on the discretization error, as shown by Kravchenko and Moin
[17]. These e�ects have to be taken into account in the choice of the discretization technique,
in fact di�erent methods provide di�erent forms for the non-linear convective term [10].

Let us consider the cell i, whose interfaces with the near cells i−1 and i+1 are respectively
Si−1/2 and Si+1/2. In this frame the numerical �uxes through the interfaces are ~F ∗i−1/2 and
~F ∗i+1/2. These �uxes depends on the values taken by the unknown variable at the both sides pf
the interface. In particular with a central scheme, they can be calculated in two ways:

� as the �ux of the average between the values of the unknown in the two cells, as proposed
by Jameson et al. [23]

~F ∗i+1/2 = ~F ∗
(1

2

(
~Wi + ~Wi+1

))
(4.76)

� as the average of the �uxes obtained by the unknown in the two cells

~F ∗i+1/2 =
1

2

(
~F ∗
(
~Wi

)
+ ~F ∗

(
~Wi+1

))
(4.77)

The di�erence between the two methods can be evaluated by using the one-dimension
hyperbolic equation

∂u

∂t
+
∂f(u)

∂x
= 0 (4.78)

where the �ux is f(u) = u2. The �nite volume method allows to derive the semi-discrete
equation

Vi
∂u

∂t
+ F ∗i+1/2 − F

∗
i−1/2 = 0 (4.79)

where Vi is the volume of the considered cell.
The evaluation of the �uxes with the method (4.76) provides

∂u

∂t
+

1

∆x

[(
ui+1 − ui

2

)2

−
(
ui − ui−1

2

)2
]

=
∂u

∂t
+

1

2

(
u2
i+1 − u2

i−1

2∆x
+ 2ui

ui−1 − ui+1

2∆x

)
= 0
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(4.80)

which corresponds to the following second-order �nite volume approximation for the �ux deriva-
tive ∂f(u)

∂x = ∂u2

∂x :

1

2

(
u2
i+1 − u2

i−1

2∆x
+ 2ui

ui+1 − ui−1

2∆x

)
=
∂u2

∂x
+

1

6

∂3u2

∂x3
∆x2 − 1

2

∂u

∂x

∂2u

∂x2
∆x2 +O(∆x4) (4.81)

In the same way, by the method (4.77)

∂u

∂t
+
u2
i+1 − u2

i−1

2∆x
= 0 (4.82)

is obtained, and its discretization error is

u2
i+1 − u2

i−1

2∆x
=
∂u2

∂x
+

1

6

∂3u2

∂x3
∆x2 +O(∆x4) (4.83)

Therefore the evaluation of the numerical �uxes by the equation (4.76) provides the approx-
imation of the non-linear terms in the skew-symmetric form, while using the equation (4.77)
the divergence form is obtained. The di�erence between the two approximation is the second
order term −1

2
∂u
∂x

∂2u
∂x2 ∆x2 which involves an e�ect of di�usion or anti-di�usion, depending on

the sign of ∂u∂x .
Kravchenko and Moin [17] showed that the skew-symmetric form entails a lower aliasing

error, while the divergence form approximation is less dissipative.

Jameson's arti�cial viscosity The central schemes that are implemented in elsA are joined
by the Jameson's model for the arti�cial viscosity [23]. This method adds to the central scheme
some terms of the second and fourth order, to stabilize the method near discontinuities and
high gradient regions. Thus, introducing F J to refer to the center numerical �ux with Jameson
arti�cial viscosity, it can be written as

~F Ji+1/2 = ~F ∗i+1/2 − di+1/2 (4.84)

Where the dissipation �ux is de�ned by

di+1/2 = ε
(2)
i+1/2( ~Wi+1 − ~Wi)− ε(4)

i+1/2( ~Wi+2 − 3 ~Wi+1 + 3 ~Wi − ~Wi−1) (4.85)

The coe�cients ε(2)
i+1/2 and ε(4)

i+1/2 are used locally adapt the dissipation �ux. The dependence
from the local solution is given by the scale factor ri+1/2, which is de�ned as the average of
the spectral radius of the Jacobian matrix associated to the solution in the cells i and i+ 1.

ε
(2)
i+1/2 = k(2)ri+1/2νi+1/2

ε
(4)
i+1/2 = max(0, k(4)ri+1/2 − ε

(2)
i+1/2)

with ri+1/2 =
1

2

(
λ(A)Ii + λ(A)Ii+1

)
(4.86)
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where λ(A)Ii is the spectral radius of the Jacobian matrix A =
∂
(
~F ∗( ~Wi)·s

)
∂ ~W

calculated at the cell

center with the averaged surface vector s = 1
2(si+1/2 + si−1/2) in the I direction, for example.

The sensor νi+1/2 controls the dissipation near discontinuities, like shock waves. It can be
obtained by the normalized second order pressure derivative

µi =
∣∣∣pi+1 − 2pi + pi−1

pi+1 + 2pi + pi−1

∣∣∣ from which νi+1/2 = max(µi, µi+1) (4.87)

Therefore the pressure term in the de�nition of ε2 is a second order term, except near high
pressure gradient regions, where it become a �rst order. Near shock waves, for example, the
term ε2 is dominant. Nonetheless ε2 do not prevent oscillations to occur where the gradient are
not high enough to activate the second order viscosity. These �uctuations can reach about 1%
for density variations and they can, in some cases, prevent the convergence to a steady state.
To solve this problem the fourth order term is included, but limited near discontinuities by the
increase of the second order term. In fact its e�ect are a low dissipation in the whole domain
that can nonetheless reactivate some �uctuations where the gradients are very high.

For transonic steady �ows some typical values of k2 are between 0.5 and 1.0, while k4 can
vary from 0.01 to 0.03. For subsonic �ows the second order arti�cial viscosity can be �xed to
zero. In the case of incompressible �ows the de�nition of ε2 and ε4 needs to be modi�ed to
adapt the dissipation �uxes to the convection �uxes.

Roe �ux

A classical scheme involves the exact solution of the Riemann problem for each cell interface
and for each time instant. These calculations, performed on the whole domain, are actually very
expensive and the results are then averaged on each cell, losing most of the precise information
obtained by the exact solution of the problem. The purpose of the Roe approximation is to use a
simpli�ed method to calculate the interface �uxes, obtaining approximate values whose average
can be compared with an exact solutions average. In particular Roe proposes to linearize the
Riemann problem, still maintaining some important numerical properties. Thence the classical
hyperbolic problem

∂ ~W

∂t
+
∂ ~f( ~W )

∂x
= 0 (4.88)

where we can de�ne the Jacobian matrix

A( ~W ) =
∂ ~f( ~W )

∂ ~W
to obtain

∂ ~W

∂t
+A( ~W )

∂ ~W

∂x
= 0 (4.89)

becomes

∂ ~W

∂t
+A∗( ~WL ,

~WR)
∂ ~W

∂x
= 0 (4.90)

where ~WL ,
~WR are the left and right solution of the Riemann problem at the considered inter-

face.
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In particular the linearized Jacobian matrix A∗( ~WL ,
~WR) is calculated by imposing the

fundamental properties:

1. A∗( ~WL ,
~WR) ( ~WR − ~WL) = f( ~WR)− f( ~WL)

to obtain a conservative method that exactly solves the Riemann problem if a single

discontinuity occurs between the left and right states;

2. A∗( ~WL ,
~WR) has linear independent real positive eigenvalues

to still have a hyperbolic problem which can be solved;

3. A∗( ~WL ,
~WR) −→ A( ~W ) if ( ~WL ,

~WR) −→ ~W
to exactly solve continuous �uxes.

The linear matrix A∗ can now be calculated as function of an intermediate state ~W ∗ between
~WL and ~WR . In particular A∗( ~WL ,

~WR) = A( ~W ∗( ~WL ,
~WR)). The variables of ~W ∗ are de�ned,

thanks to the properties shown above, with a ρ weighted average, known as Roe Average:
< · >√

ρ

ρ∗ = < ρ∗ >√
ρ

=
√
ρRρL

u∗l = < u∗l >√ρ =
(
√
ρul)R + (

√
ρul)L√

ρR +
√
ρL

H∗ = < H∗ >√
ρ

=
(
√
ρH)R + (

√
ρH)L√

ρR +
√
ρL

(4.91)

Therefore the Roe �ux at the interface i+ 1/2 is de�ned by

~Fi+1/2 =
1

2
A
(
~W ∗
(
~Wi, ~Wi+1

))(
~Wi − ~Wi+1

)
(4.92)

Extension to higher orders The upwind spatial discretization described above allows to
have a stable numerical scheme, which is able to capture discontinuities without �uctuations.
Nonetheless the original formulation of the Roe scheme has order 1 in space, therefore an
extension to a higher order is fundamental. The Van Leers's MUSCL (Monotone Upwind
Schemes for Conservation Laws) method allows to extend to the second order an upwind scheme
keeping the TVD (Total Variation Diminishing) property.

Numerical properties To avoid �uctuations near discontinuities an e�ective property
is the monotonicity condition. If uni is a scalar quantity and H is the numerical method, as

un+1
i = H

(
. . . , uni−1, u

n
i , u

n
i+1, . . .

)
(4.93)

H is monotone if

∂H
∂uni+j

> 0 ∀j (4.94)
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But, according to the Godunov theorem: Linear numerical schemes for solving partial di�eren-
tial equations (PDEs), having the property of not generating new extrema (monotone scheme),

can be at most �rst-order accurate. Therefore the need of a less restrictive condition rises.
The MP (Monotonicity Preserving) property can thus become a good reference condition to
evaluate the behavior of a scheme in high gradient zones. In fact it imposes that:

1. no generation of new local extrema;

2. no increase of a local maximum or decrease of a local minimum.

This property can be imposed mathematically by using the Total Variation Diminishing (TVD)
condition:

TV
(
un+1

)
≤ TV

(
un
)

with TV (u) =
∑
i

∣∣ui+1 − ui
∣∣ (4.95)

Second order extension The evaluation of the �ux in an upwind scheme at the interface
i+ 1/2 needs the knowledge of the two states uLi+1/2 and uRi+1/2 at both sides of the interface.

The �rst order method uses the states calculated on the cells i and i + 1 as uLi+1/2 ≡ ui and

uRi+1/2 ≡ ui+1. The extension to the second order by the MUSCL approach is based on the
use of extrapolated boundary condition to calculate the interface �ux, by considering a linear
evolution of the variables ui and ui+1 in the cells i and i+ 1.

Figure 4.1: MUSCL approach to the boundary conditions of the Riemann problem at interfaces

In particular the slope of the solution in each cell is calculated with respect to the local
gradient of the solution in the �eld, as shown in the relation (4.98). This method provide a
second order solution in space, but it involves �uctuation in high gradient zones in fact new
extrema occur. Therefore, to keep the TVD condition some slope limiters are necessary.

Thence in our cases, the boundary values of the Riemann problem that is established at
each interface are obtained by
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~WL
i+1/2 = ~Wi +

1

2
σi (4.96)

~WR
i+1/2 = ~Wi+1 −

1

2
σi+1 (4.97)

where W is the conservative variable vector and σi is the slope of the linear evolution of W in
ith cell. In particular for the present study the minmod limiter has been applied. Therefore
the slope is calculated by

σi = φminmod
(
Wi −Wi−1,Wi+1 −Wi

)
(4.98)

Moreover, according to [7] and [8], the slope limiter can be seen as a �ux limiter of a high

resolution method, which rules the combination of a �rst order upwind scheme and a second
order scheme, depending on the local gradient of the solution:

~FHRi+1/2 = ~FLi+1/2 + φi+1/2

[
~FHi+1/2 − ~FLi+1/2

]
(4.99)

where the high resolution �ux ~FHR is formed by a low order component ~FL and a high order
component ~FH , whose importance is ruled by the limiter φ.

The limiter can thus be written as

φminmod(θ) = max
(
0,min(1, θ)

)
with θi+ 1

2
=

~Wi − ~Wi−1

~Wi+1 − ~Wi

(4.100)

and can be represented in the Harten TVD diagram. In the �gure 4.2 on the next page the gray
region bounds the zone in which the limiter behavior respects the TVD condition and allows
a second order scheme if no high gradients occur, while the bold line is the minmod limiter
behavior.

Third order extension A more general expression of the right and left state of the
Riemann problem at the ith interface is given by Chakravarthy [22]:

~WL
i+1/2 = ~Wi +

(
1 + Ψ

4
∆i+1/2 +

1−Ψ

4
∆i−1/2

)
(4.101)

~WR
i+1/2 = ~Wi+1 −

(
1−Ψ

4
∆i+3/2 +

1 + Ψ

4
∆i+1/2

)
(4.102)

where Ψ is the �precision factor� and for the �rst equation, introducing ∆ ~Wi+1/2 = ~Wi+1− ~Wi,
the limiters are speci�ed by

∆i+1/2 = φ
(
∆Wi+1/2 , ω∆Wi−1/2

)
(4.103)

∆i−1/2 = φ
(
∆Wi−1/2 , ω∆Wi+1/2

)
(4.104)
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φ

θ

φ(θ) = θ
2

1

1 2 3

φ(θ) = 2θ

Figure 4.2: Region on which the limiter function φ(θ) must lie in order to give second order TVD methods

in which φ is the slope limiter function and ω is the �compression factor�.
Thence this scheme has three degree of freedom: Ψ, φ, ω. Di�erent combinations of their

values can provide various schemes, for example with Ψ = −1 and ω = 1 the second order
extension shown above is obtained. In particular Ψ = 1/3 provides a third order upwind
scheme. The version implemented in elsA of this scheme does not use any limiter, which can
explain the remarkable di�erences that often occur between the second and the third order
extension.

Finally the compression factor can control the numerical dissipation, taking di�erent values
in the range

1 ≤ ω ≥ 3−Ψ

1−Ψ
(4.105)

where a low ω value means a high dissipation. But in elsA it is �xed to 1.

4.4.2 Viscous Fluxes

Viscous �uxes are calculated separately from convection �uxes treated above, using a second
order central scheme. The details of this method are not treated in the present work, therefore
for further information the elsA theoretical manual may be a help [19]. In order to calculate
the viscous �uxes the gradient of velocity, temperature and turbulence �eld have to be known.
They are obtained at the center of each cell applying the �ux-divergence theorem (or theorem
of Green-Ostrogradsky) to a shifted control volume. For example for the scalar quantity φ the
following relation is veri�ed:

(
~∇φ
)
S

=
1

VS

∫
VS

~∇φdV =
1

VS

∫
∂S
φ~ndS (4.106)
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where VS is the shifted control volume, ∂S is its boundary and
(
~∇φ
)
S
is gradient of φ evaluated

at the center of VS as the averaged of its real value inside the volume.

4.5 Time integration methods

After the space discretization an ordinary di�erential equation in the form (4.70) is obtained:

dW
dt

= − 1

Ω
R (4.107)

where R is the modeled residual, which contains the contributions of the convective �ux, the
di�usive �ux and the source term. Therefore the time integration is not coupled with the
space discretization, which guarantees that a steady solution will not be a�ected by any time
integration method or by a time step value [20].

4.5.1 Explicit Time Integration

Explicit time integration is applied rather to fast unsteady problems, involving �high frequency�
phenomena and not allowing the use of large time steps. For slow unsteady problems, in fact,
the numerical cost of the temporal cycle is strongly reduced by the use of implicit methods of
integration in time, increasing the numerical �eld of stability of the schemes and thus allowing
the use of large time steps.

Runge-Kutta Scheme

The basic idea of the Runge-Kutta time integration method is the evaluation of the solution
in several intermediate instants between n and n+ 1 [19]. In this way the numerical time step
is further divided to have a higher precision order and a better stability. A formulation of the
method with m steps to advance the numerical solution from the time step tn = n∆t to the
time step tn+1 = tn + ∆t is

W 0 = Wn

W (1) = W (0) − α1
∆t

Ω
R(W (0))

...

W (k) = W (0) − αk
∆t

Ω
R(W (k−1))

...

W (n+1) = W (m)

(4.108)

Hirsch has proved that this scheme has order k when applied to the classic linear hyperbolic
equation ∂u/∂t+ a∂u/∂x = 0 [20]. But it falls to order 2 in the case of a non-linear equation.

During the present study some simulations used the Backward Euler Scheme, which is the
one-step application of the Runge-Kutta Scheme. This allowed to strongly reduce the time of
calculation but with a lower precision order with respect to an implicit method. The comparison
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between the two approach is presented in chapter 5. Moreover it is worth to remind that for
an approximation in space of the type �simple centered� of the convective �ux, i.e. obtained
by arithmetic mean of the �ux densities taken at the center of the two cells adjacent to the
considered face, the retrograde Euler scheme is unconditionally unstable. Several Runge-Kutta
steps (m > 1)are thus necessary. For an �upstream� approximation of the convective �ux, the
Backward Euler Scheme is stable under certain linear stability conditions on the time step ∆t.
Nonetheless these considerations are strictly veri�ed for schemes without arti�cial viscosity and
where no real viscous phenomena are taken into account. In fact the presence of viscosity, both
arti�cial and real, adds a stabilizing e�ect to the scheme. That is the reason that allowed some
of the simulations presented in the following chapters to be performed.

4.5.2 Implicit Time Integration

The step ∆tn can be speci�ed by using the relation (4.70) discretized with respect to time
considering a linear evolution of the unknown W between tn and tn + 1

Ω
∆Wn

∆t
= −(Rn+1 −Rn) (4.109)

where ∆Wn = Wn+1 − Wn. This can �nally be combined with the previous step relation,
applying some coe�cients that allow to assign di�erent weights to the various terms, according
to [21]

(1 + ξ)
Ω∆Wn

∆tn
− ξΩ∆Wn−1

∆tn−1
= −

(
θRn+1 + (1− θ + φ)Rn − φRn−1

)
(4.110)

In particular the coe�cients de�ne a family of explicit schemes(θ = 0) or implicit schemes
(θ 6= 0).

The equation (4.110) can be solved by using some Linear Multi-Step methods. In these
techniques the temporal variation of a quantity is reconstructed starting from a linear combi-
nation of the values taken by this quantity in di�erent time instants. The methods implemented
in elsA use the two instant n − 1 and n to calculate an initial solution at n + 1, then an it-
erative method is applied keeping frozen the physical time. Therefore two cycles are actually
executed. The �external� one is the physical time progress, for which each step is the time step
previously �xed, while the �internal� cycle is a steady iteration process needed to properly solve
the equation (4.110).

This principle is clearly understandable thinking about a simple signal, where one variable
depends on time, for example W = W (t). In this case the �rst iteration of the (4.110) solution
provides the initial value W̃n+1 for the variable at the time tn+1, using the known points
Wn(tn) and Wn−1(tn−1). Subsequently the steady iteration process provides Wn+1 with a
�xed precision.

Principally two methods are available to applied this technique: Gear Approach and Dual

Time Stepping. While they are exactly similar when iterative processes are converged, there is
no guarantee that their behavior are comparable when the iterative process is severely curtailed,
or that their computational costs are similar.
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Figure 4.3: Time integration principle of second-order DTS and Gear approaches

Gear Approach

The Gear Approach, or Newton Approach, is based on a Newton iterative method to reset to
zero the �unsteady� residual that occurs at each step of the time increase. In fact the system

L(Wn+1) = (1 + ξ)
∆Wn

∆tn
Ω− ξ∆Wn−1

∆tn−1
Ω + θRn+1 + (1− θ + φ)Rn − φRn−1 = 0 (4.111)

with ∆Wn = Wn+1 −Wn and ∆Wn−1 = Wn −Wn−1, have to be solved at each time step.
Thence the algorithm performed by the Gear Method in the internal iterative process is

∂L(Wn+1)

∂Wn+1

∣∣∣∣ν(Wn+1,ν+1−Wn+1,ν) = −L(Wn+1,ν) ⇒ Wn+1,ν+1 = Wn+1,ν− L(Wn+1,ν)

∂L(Wn+1)
∂Wn+1

∣∣∣∣ν

⇒ Wn+1,ν+1 = Wn+1,ν − L(Wn+1,ν)

(
(1 + ξ)

Ω

∆tn
I + θ

∂R

∂W

∣∣∣∣n+1,ν
)−1

(4.112)

where ν represents a generic iteration.
In particular, the gear method that is implemented in elsA uses the parameters shown in

the following table:

θ 1
ξ 0.5
φ 0

Dual Time Stepping

The Dual Time Stepping (DTS) method is based on an internal time step ∆τ , used to reach a
steady state of the unknown Wn+1 for each physical time instant tn+1. Therefore the conver-
gence condition is a constant value of Wn+1 in the considered volume Ω, with respect to the
�Dual Time� τ . This condition can be found by applying an iterative system solver to
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Ω
dWn+1

dτ
+ L(Wn+1) = 0 (4.113)

Still with

L(Wn+1) = (1 + ξ)
∆Wn

∆tn
Ω− ξ∆Wn−1

∆tn−1
Ω + θRn+1 + (1− θ + φ)Rn − φRn−1 (4.114)

The evolution of the unsteady residual with respect to the internal time can be linearized
from the iteration ν to the following ν + 1, which corresponds to the time increase ∆τ

L(Wn+1,ν+1) = L(Wn+1,ν) +
∂L
∂τ

∣∣∣ν∆τ +O(∆τ) (4.115)

where the residual derivative can be written as

∂L
∂τ

∣∣∣ν∆τ =
∂L
∂W

∣∣∣ν ∂W
∂τ

∆τ ' ∂L
∂W

∣∣∣ν∆W (4.116)

Therefore the algorithm of the internal solution is

(
Ω

∆τ
I +

∂L(Wn+1)

∂Wn+1

∣∣∣∣ν
)

(Wn+1,ν+1 −Wn+1,ν) = −L(Wn+1,ν)

⇒ Wn+1,ν+1 = Wn+1,ν−L(Wn+1,ν)

(
Ω

∆τ
I+(1+ξ)

Ω

∆tn
I+θ

∂R

∂W

∣∣∣∣n+1,ν
)−1

(4.117)

The relation shows that the DTS methods is strictly equivalent to the gear approach if ∆τ →
0. Otherwise the internal time step calculated by imposing a CFL factor will determine the
di�erences between the two approaches, which are shown in the chapter 5.

4.6 Multi-grid acceleration method

Traditional iterative methods work by approaching the solution to the converged state at each
iteration. The reduction of the error during this process is actually related to some mesh
characteristics. In particular, by de�ning the frequency of the error components with respect
to the grid step dimensions, it can be observed that high frequencies are deadened much more
quickly than low frequencies. Based on this consideration, the idea of the multi-grid technique
is to progressively reduce the mesh size, which means increasing the cell dimensions, in order
to smooth the error components that have a low frequency on the �ne grid but become high
frequencies on the coarse grid. Therefore each multi-grid iteration is composed of some di�erent
grid steps, which make the iteration more expensive with respect to a simple-grid iteration, but
also much more e�ective.

Therefore the multi-grid technique performed a correction of the solution on the �ne grid
by using the values obtained on various levels of coarse grids, as shown in �gure 4.4 on the
following page.
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Figure 4.4: 3-steps V-cycle of the multi-grid technique

The correction strategy applied in the steady simulations described in the present report is
the V-cycle on three levels. The triple-grid cycle is initialized by a solution calculated by one
or more iterations on the �nest grid. This solution and the residual are then restricted and
transferred to the next level of coarsening grid to initialize a second step of calculation during
which one or more iterations are carried out. These stages form the phase called downward.
The ascending phase starts with the calculation of the correction on the coarsest grid, i.e. of
the di�erence between the new solution and the initial solution on this grid. This correction
is subsequently prolonged on the previous-level grid (the solution of the coarse grid is not
transferred on the �ne grid). Finally the solution previously calculated on the �ne level is
corrected.

The e�ects of the triple-grid V-cycle applied during the present study are shown in the
chapter 5.

4.7 CROR splitting algorithm

Since the conception step of elsA, the code has been thought to run in parallel mode. This means
to allocate the topological blocks of the grid to di�erent processors, which can perform the
calculation at the same time working on a portion of the domain. This allows a very important
reduction of the calculation time, even if the information exchange among the processors slows
each single-processor computation. Therefore in a parallel con�guration, each calculation unit
is loaded with a number of cells, that determines the time needed by the processor to perform
an iteration. This means that the more loaded unit will be the slowest and the others have to
wait for it. In order to limit this e�ect a good load balance among the units has to be achieved
by splitting the blocks and allocating them to obtain an e�ective con�guration. ElsA disposes
of an adapted splitting and balancing tool that is able to realize this operation.

One of the major problems risen with the elsA version that has been used, was the limit
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imposed by the presence of the rows interaction plane to the parallel computation. In fact the
particular operations performed on the information transmitted between the two side of the
interaction plane (see chapter 2), was not coded to work if the blocks were allocated to di�erent
processors. This involves the need to have the topological blocks next to the interaction plane
associated to the same calculation unit, preventing the elsA splitting algorithm to be directly
applied.

To solve this problem a new balancing algorithm has been coded in order to satisfy the
requirements imposed by the CROR con�guration that has been studied. The operations
performed by the new code are showed in the �gure 4.5.

Figure 4.5: Splitting and balancing algorithm

At every iteration the ten biggest blocks are divided in a point and a direction chosen to
maintain at least three multi-grid levels. After the splitting the balancing process is performed,
during which the blocks next to the interaction plane are considered as a single block, in order to
keep them on the same processor. Subsequently the balance error is calculated by comparing
the maximum obtained load with the optimum one, which corresponds to the total number
of cells divided by the number of processors. If this is less than an imposed error limit the
algorithm will stop.

4.7.1 Balancing process

The balancing process is composed by two steps, during which the the blocks next to the
interaction plane are considered as a single block. The �rst performs an initial distribution of
the blocks among the calculation units, while the second will modify this distribution reaching
the best balance.

Step 1 First of all a list of the blocks is realized by ordering them in relation to their dimen-
sion. Subsequently one block is allocated to each processor, starting from the biggest block.
When this operation is �nished it is performed a second time by scrolling the processors in the
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inverse order. This is repeated until all the blocks are allocated. In this way a quite equilibrated
con�guration is reached(see �gure 4.6).

Step 2 A second step is necessary to reach the best con�guration possible with the available
blocks. The dimension of the smallest block allocated in the most loaded processor is compared
with the load di�erence between this processor and the less loaded one. If the dimension of the
block is lower than the load di�erence, the block is allocated to the less loaded processor (see
�gure 4.6).

Figure 4.6: Example of the balancing process steps
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Chapter 5

Veri�cation of the solutions
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5.1 Introduction

In the present chapter the numerical errors involved by the solution of the equations are evalu-
ated. The quality of the simulation results, with respect to the Navier Stokes solution, depends
on several factors, which typically have also a strong in�uence on the computational cost.
Therefore the purpose of this chapter is to de�ne a relation between the result accuracy and
the required calculation time, in order to provide a practical help in the realization of future
CROR analysis.

First of all, the evolution of the solution during the calculation needs to be monitored in
order to be able to stop the process when no more quality variations are expected. Thence, the
�rst section will describe the technique that has been developed to accomplish this operation.
Subsequently, the time and space discretization, as well as the numerical methods and turbu-
lence models, play a key role in the solution of the equations. Thus, section 5.3 is dedicated
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to the presentation of the techniques that have been used to evaluate the errors involved by
the discretization, and to compare the numerical schemes and turbulence models that have
been applied. The results of these analysis are then presented in the last three sections, al-
ways in relation to the computational cost that each method involves. For this last issue the
converged conditions are identi�ed for the time and space discretization, and a technique of
solution convergence acceleration is described and evaluated for a steady calculation.

5.2 Convergence Criteria

The monitoring of the iterative process evolution is a fundamental element of the calculation.
In fact it allows to control the correct progression of the solution and to set the point after
which the results can be considered no longer dependent from further iterations. Therefore a
good method to quickly evaluate the quality of the results without the need of stopping the
process and performing time expensive post-processing operations is needed.

5.2.1 Residual calculation

As shown in the chapter 4, taking into consideration the Navier Stokes equation system the
following terms can be identi�ed:

�
~W
(
M, t

)
: the vector of the conservative unknowns, de�ned in any point M of the �ow,

for any time instant t > 0;

�
~CF : the density of the convective �ux;

�
~Fd: the density of the di�usive �ux;

�
~Q: the source term;

They allow to express the conservation laws for the ith cell, of volume Ωi and surface Σi

composed by the 6 sides Σi,j , in the form

d
dt

∫
Ωi

~WdΩ +

∮
Σi

(
~CF + ~Fd

)
· ~ndΣ =

∫
Ωi

~QdΩ (5.1)

After the discretization in space by a method of �nite volumes, these conservation laws are
written in the semi-discrete form, as the equation (4.70):

d
dt

(
Ωi
~W i

)
+

6∑
j=1

(
~F
)

Σi,j
·∆~Sj − Ωi

~Qi = 0 (5.2)

with

~W i =
1

Ωi

∫
Ωi

~WdΩ (5.3)

and the other averaged quantities de�ned in the same way. The relation (5.2) can also be
expressed as

d
dt

(
Ωi
~W i

)
+ ~Ri = 0 (5.4)
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where ~Ri indicates the residual:

~Ri =
6∑
j=1

(
~F
)

Σi,j
·∆~Sj − Ωi

~Qi (5.5)

Therefore, in the case of a steady �ow, the converged solution is obtained when, for t
su�ciently large, one has:∣∣∣∣ ddt(Ωi

~W i

)∣∣∣∣ =
∣∣∣~Ri∣∣∣ < ε (5.6)

Finally the residual is written as

~Ri = −
∆
(
Ωi
~W i

)
∆t

(5.7)

In practice the residual in norm L2, for the lth component W l of the conservative variables
vector, is calculated on the following way, without taking account of possible variations of
volume:

Res(n+1)
exp

(
W l
)

=

 1

N

N∑
k=1

(
W l,n+1
k −W l,n

k

∆t

)2
 1

2

(5.8)

where ∆t represents the local time step �xed by the de�nition of the CFL parameter and N
the number of volumes of control, i.e. the number of grid cells.

5.2.2 Mixing plane approach monitoring

In the case of the steady mixing plane approach, the convergence condition is obtained when
the variations of the solution of the equation at each iteration are su�ciently low. This allows
to base the control of the result evolution on the residual calculation at each iteration.

Moreover, the solution progressing from the initial imposed condition can be evaluated by
observing the orders of magnitude lost by the residuals. In the present study the convergence
has been considered established if the following criteria were satis�ed:

� loss of at least 3 order of magnitude of the residuals starting the calculation from a
uniform �ow condition imposed everywhere in the �eld;

� stabilized trend of the residuals for at least 1000 iterations.

The following graphs show the trend of the residuals during a mixing plane calculation
performed by using the Jameson numerical scheme associated with the k-ω turbulence model
and applying a 2 levels multi-grid acceleration (only 1 coarse grid). The seven images correspond
to the �ve conservative variables of the averaged Navier Stokes system plus the two unknowns
of the turbulence model.
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(a) Residual of ρ (b) Residual of ρu

(c) Residual of ρv (d) Residual of ρw

(e) Residual of ρe

Figure 5.1: Conservative variables residuals

(a) Residual of ρk (b) Residual of ρω

Figure 5.2: Turbulent variables residuals
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5.2.3 Chorochronic approach monitoring

For an unsteady calculation the evaluation of the convergence becomes a little more compli-
cated. In fact the equation solutions always present some variation between an iteration and
the following one. This is due to the evolution of the physical time that involves a variation in
the geometry of the numerical �eld. In fact a periodic trend can be appreciated in the residual
graph, as shown by �gure 5.4 on page 71.

As one can observe from the equation (5.8), the drawn residual values are a sort of average
of the cell residuals over the whole domain. Thence a kind of spatial �lter is actually applied
to the solution variation that has to be monitored. In particular, for an unsteady calculation
the convergence criterion is focused to the periodicity of the results evolution, therefore its
characteristics are very important. In order to avoid the �ltering e�ect of the residuals, some
total pressure and total temperature probes have been placed in the �eld. This allows to
capture the values of these physical quantities at every iteration. The probes are constituted
by cells from which periodic extractions are performed. In particular each probe is formed by a
strip of cells, as shown in �gure 5.3, whose values are spatially averaged to obtain a single value
which represents a sample of the physical quantity evolution that occurs in the probe region.
Subsequently a Fourier analysis allows to assess the characteristics of this time-dependent
signals to �nally set up some convergence criteria.

In the case presented in this report, the changing of the geometry is modeled by time-
dependent boundary conditions, as described in chapter 2. This means di�erent interactions
between the two portions of the domain, associated to a blade of each rotor. The period of the
relative motion depends on the revolution speed and blade number of each row. Therefore the
unsteadiness of each rotor sub-domain has a speci�c frequency, as can be noticed in �gure 5.5.

The position of the probes has been chosen in order to capture the disturbances due to
the relative motion between the rows and also the interaction between the wakes of each rotor
blades. Moreover, their shape is determined to extend the probes on the whole span dimension
of the region of interest.

Figure 5.3: Grid cells used as probes, with the topology blocks they are part of
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The calculation �gures 5.4 to 5.6 are referred to, has been performed by applying the second-
order Roe numerical scheme, associated to the k − ω turbulence model and a time step based
on Nq0 = 150, which means 1650 iterations for each front row period and 1350 for each rear
row period1.

Referring to the �gures 5.3 and 5.5:

Probe 1 It detects a signal composed by weak �uctuations characterized by a period of
|Ω1 − Ω2|2π/Z2, which corresponds to 1650 iterations. This is due to the in�uence of
the potential �eld of the downstream rotor on the �ow around the upstream row blades.

Probe 2 It is still placed in the upstream channel, on the interaction plane just out of the
wake of the front row, from which it captures only the potential �eld as a constant signal.
It also detects as a periodic signal the potential e�ects of the rear rotor, with a period of
|Ω1 − Ω2|2π/Z2.

Probe 3 It is placed on the same plane as the second probe, but it belongs to the downstream
channel domain. It captures the potential �eld of the rear row as a constant value, but
also the potential and the wake e�ects of the front rotor, with the period |Ω1−Ω2|2π/Z1,
corresponding to 1350 iterations.

Probe 4 It is placed inside the wake of the rear rotor, which explains the loss of energy with
respect to the values detected by the other probes. Nonetheless the e�ects of the front
row are still visible as a |Ω1 − Ω2|2π/Z1 period wave, which is not as clean as the signal
of the probe 3 because of the two wakes interaction. Therefore, the signal of the probe
4 is the slowest in satisfying the convergence criteria, since it is composed by a higher
number of harmonics (�g. 5.5).

The Fourier analysis performed on the detected signals allow to evaluate the following
characteristics, shown in �gure 5.6:

� the average value of the signal;

� the signal energy calculated on 3.5 periods and the di�erence between every calculation
step;

� the power spectral density of the signal considering an arbitrary number of harmonics.

By using these information the converged state is considered established if the variation of
the signal energy between two consecutive 3.5 periods steps is less then 10−2, while the power
spectral density shows a stabilized trend composed by horizontal strips.

Figure 5.4 shows the residual associated to the �rst conservative variable, the density. As
one can notice from this �gure, the loss of order of magnitude is much less then in the case
of a mixing plane calculation (�gure 5.1a on page 68). That is due to the initial condition of
the chorochronic calculation, that is actually a converged mixing plane solution, thence the

1The number of iterations corresponding to a blade passing period is calculated by dividing it by the time
step:

|Ω1 − Ω2|2π
Z2

Z2Z1Nq0

|Ω1 − Ω2|2π
= Z1 Nq0 for the front row period (5.9)

where Z1 = 11, Z2 = 9 and, in this calculations, Nq0 = 150
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averaged variation of physical quantities is lower than in the steady case which start from a
constant �eld.

Moreover, by comparing �gure 5.4 and 5.6b, one can observe that the information given by
the residual during the calculation is not su�cient to evaluate the evolution of the solution. In
fact a periodic trend seems to be established in the residual trend much before the satisfaction
of the criterion on the signal energy variation.

Figure 5.4: Density residual for a chorochronic calculation

Figure 5.5: Total pressure detected by the four probes during the calculation
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(a) (b)

(c) (d)

Figure 5.6: Total pressure signals detected by the probe 4: rear row outlet
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5.3 Analysis techniques

5.3.1 Performance calculation method

In this section a method for the thrust calculation of the propellers system is presented. The
most important limit of this technique is come to light for the calculation of the torque, as
explained at the end of this section. Therefore it has not been possible to obtain the e�ciency
of the studied con�guration. Anyway the integral method that has been applied provides a
global quantity, the thrust, useful to analyze the di�erent numerical schemes, turbulence models
and spatial discretization characteristics.

Principle of the technique

The calculation of the �ow energy increase through the rotors has been based on an integral
approach. The whole system has been included in the control volume shown in �gure 5.7,
by de�ning two surfaces normal to the main �ow direction x. Subsequently the �ow of the
axial component of momentum has been calculated by integration over each plane. This allows
to impose the equilibrium of the control volume. In fact the net �ow of momentum through
the volume will be equivalent to the resultant of the external forces applied on the volume
boundaries. In particular this force is composed by the pressure acting on the upper and x-
normal planes, and a component applied by the blades and the spinner walls. Moreover it has
been veri�ed that the upper boundaries of the volumes are su�ciently far from the propellers
to be parallel to the local �ow direction. Therefore there is no mass �ow through them, and the
pressure on these surfaces cannot have any e�ect on the longitudinal and azimuthal equilibrium.

The limits of the volume need to be set taking into consideration the whole zone of in�uence
of the propellers. According to the Disk Actuator Theory, the e�ect of the propeller is already
present in a wide upstream region. This makes fundamental the position of the front surface, in
fact its momentum �ow will be subtracted from the momentum that leaves the control volume,
to obtain the net �ow. Therefore the upstream surface must be placed where the undisturbed
conditions occur, otherwise a fraction of the energy added to the �uid by the propeller would
not be considered.

The downstream surface position is based on di�erent considerations, in fact, in the case
of a single propeller it could be placed immediately after the disk, being able to capture the
entire �ow of axial momentum. Nevertheless, in the case of two contra-rotating propellers a
more complicated phenomenon has to be considered. The purpose of the second rotor is to
add to the �ow an azimuthal component of momentum opposite to the component due to the
�rst rotor. Nonetheless the e�ect of a blade on the �uid is local. In other words a certain
space is needed for the downwash due to every blades, working as a wing, to form an uniform
wake. This is fundamental in the present application because it means that immediately after
the two propellers opposite azimuthal components of momentum are still balancing themselves,
increasing the axial momentum component, which gives thrust.

∫
S2

(
ρ(A, x2)u2

i (A, x2)
)
dA−

∫
S1

(
ρ(A, x1)u2

i (A, x1)
)
dA+ Fi = 0 (5.10)

Where: Fi is the ith component of the resultant force applied to the control volume surfaces,
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Figure 5.7: The control volume for the calculation of performances

A is an in�nitesimal element of surface, S1 and S2 are the surfaces at constant x1 and x2, and
ui is the ith component of the velocity vector.

Thrust calculation

The calculation of the thrust T is performed by considering the �ow of the x-component of
momentum through the volume and the pressure on its sides. This is actually the balance of
dynalpy, as shown by the following equation. In fact the applied force Fi, in the x direction,
is composed by the resultant of the pressures on S1 and S2, and a force contrary to the thrust
applied by the blades to the air �ow.

According to the �gure 5.7, let T be the force applied by the �uid on the blades, and u the
x-component of the velocity. Therefore

⇒ T =

∫ rmax

0

∫ 2π

0

(
P (θ, r, x2) + ρ(θ, r, x2)u2(θ, r, x2)

)
dθdr

−
∫ rmax

0

∫ 2π

0

(
P (θ, r, x1) + ρ(θ, r, x1)u2(θ, r, x1)

)
dθdr

(5.11)

Mixing plane In the case of the mixing plane calculation the lateral boundaries of the channel
are connected by a simple condition of spatial periodicity. Therefore the �ow of dynalpy through
the two surfaces can be multiplied by the number of blades of the front row, for S1, and the
rear row for S2. Subsequently the net net �ow of dynalpy through the 360◦ control volume is
obtained by the two surfaces �ow di�erence.
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Chorochronic Chorochronic calculations provide unsteady results, that involve a process of
reconstruction of the 360◦ �ow �eld a little more complicated than the mixing plane geometrical
duplication. In fact the �ows around two consecutive blades of the same rotor correspond to
di�erent time instants, as explained in details in section 6.2.1. In other words, to compose the
complete �eld around the machine, the results extracted at several iterations must be used.
Therefore it is no longer possible to base the thrust calculation on a single channel �ow but the
di�erence from the inlet and the outlet �uxes through each rotor must be calculated after the
reconstruction of the entire machine. In this way the instant thrust will be correctly obtained.

Actually, even after the chorochronic reconstruction, the unsteadiness of the results makes
the integral thrust not constant in time. In particular these �uctuations have, as period, the
chorochronic period δt. In fact, if one considers the �ow around a blade, he will �nd the same
�ow around the next blade only after the chorochronic period. This two instants will provide
the same integral thrust value, but between them it can be di�erent. Anyway the frequency of
this �uctuation is quite high, and the variation in the thrust are supposed to be negligible.

However this concept shows that a local thrust can be identi�ed with respect to the az-
imuthal position around the machine. This �eld of force has di�erent values for each angular
position and it is not constant in time. This consideration may be important in studies focused
on aeroelasticity phenomena, because they show how the ratio between the number of blades
of the two rotors and the blade passing frequency can have in�uences on the frequency of some
aerodynamic strains. Moreover the thrust calculation strategy applied to the chorochronic
analysis performed during the present study �nds its explanation from these remarks. In fact
the periodicity of the thrust variation allows to calculate an 360◦-averaged value of the dynalpy
�ux for each x-normal surface, and then to applicate the equation 5.10 on page 73 to obtain
the integral thrust.

Finally the thrust results of chorochronic simulations show that the angular �uctuation can
be neglected. In fact, performing the comparison of the dynalpy �ow through S2 for di�erent
time instant, no remarkable variations occur. This is likely due to the position of S2, that it is
quite far from the propellers allowing the local e�ects of the blades to be mixed out, generating
a �ow nearly uniform in the tangential direction.

Torque

The equation 5.11 on the preceding page can also be used to calculate the torque absorbed by an
isolated row. In fact if the transported quantity through the control volume is the tangential
component of the momentum, the resultant of the external forces acting on the �ow is the
torque absorbed by the row.

Nevertheless, the presence of a second contra-rotating propeller prevent this method from
being applied in a CROR con�guration. In fact, its purpose is to reduce the tangential amount
of momentum converting this one to a longitudinal motion. Thence the integral calculation
would capture a very low �ux of tangential momentum through the downstream surface. Even
the region between the two propellers is actually a�ected from the e�ects of the second rotor,
preventing the possibility of analyzing the two rows separately. For these reasons the torque
has not be calculated for the con�guration analyzed on the present work, but the solution that
should be adopted in the future development is the integration of pressure and viscous strain
on the blade walls.
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5.3.2 Richardson extrapolation

The Richardson extrapolation is one of the most e�ective techniques to evaluate the error
due to the numerical discretization [36]. It can be applied both to the space and the time
discretization but in the present section we will consider, as an example, only the e�ects of
the mesh, being aware that a similar discussion can be made for the time step. The goal of
the analysis is to have a curve that shows the e�ect of the grid dimension on a quantity value,
where an asymptotic trend should occur. Therefore the problem in this evaluation is to know
a reference solution to calculate the error involved by a certain coarse level of the mesh.

The Richardson extrapolation method is based on the hypothesis that the space discretiza-
tion error δg can be speci�ed by using a series, which involves the cell dimensions and the
precision order of the numerical scheme that is applied:

δg = φmath − φnum−g =
n∑
i=1

αih
pi (5.12)

introducing:

φmath : the value of the quantity φ in the exact continuous solution of the equations

φnum−g : the value of the quantity φ in the solution obtained on the considered grid g

n : the number of terms used in the series;

αi : a function of the mesh and the quantity considered to evaluate the error;

h : a measure of the cell dimension;

pi : the truncation error of the ith term

In particular the terms αi and pi are di�erent combinations of the derivatives of the quantity
φ with respect to h.

Therefore the asymptotic state is the range of cell dimensions h in which the dominant term
of the series is the term with the lowest order. Which means that the error is only due to the
precision order of the numerical scheme, and there is no other sources of error that come from a
too coarse spatial discretization. Thence, for a solution calculated on a grid in the asymptotic
range, the error can be written as

δg = αhpobs (5.13)

Where pobs is the observed order of the scheme, which means the e�ective precision order
that corresponds to the considered mesh and quantity. In this frame the exact solution φmath,
the observed order pobs and the coe�cient α are the 3 unknowns of the problem of evaluation
of δg. Therefore by calculating the numerical solution on three mesh with di�erent cell dimen-
sions, the solution of the system allows to estimate the value of the error due to the spatial
discretization. It is worth to focus on the hypothesis that pobs and α are considered as constant
for the three meshes, which means that all the grids are in asymptotic range, that can be a
quite restrictive condition.

If the cell dimensions of the three grids are h1, h2, h3 from the �nest to the coarsest, and
introducing:
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φk : the solution on the kth grid

r21 =
h2

h1
r32 =

h3

h2

ε21 = φ2 − φ1 ε32 = φ3 − φ2

(5.14)

the system can written as:

pobs =

∣∣∣∣ ln |ε32/ε21|
ln(r21)

+ q(p)

∣∣∣∣ (5.15)

φRE =
(rpobs21 φ1 − φ2)

rpobs21 − 1
(5.16)

δg−RE1 =

∣∣∣∣φRE − φ1

φRE

∣∣∣∣ (5.17)

with : q(pobs) = ln

(
rpobs21 − s
rpobs32 − s

)
and s = 1 · sign

(
ε32

ε21

)
(5.18)

where φRE is the extrapolated solution and δg−RE1 is the extrapolated error of the �nest
mesh. At the same way the other error can be calculated:

δg−RE2 =

∣∣∣∣φRE − φ2

φRE

∣∣∣∣
δg−RE3 =

∣∣∣∣φRE − φ3

φRE

∣∣∣∣ (5.19)

to �nally obtain the needed curve.

5.4 Time discretization

5.4.1 Time step calculation

The time step is the increase of physical time between an iteration and the following one. This
actually determine the sampling frequency used to reconstruct the periodic signal generated by
the �ow unsteadiness. In other words if the time step is too long, for instance, some important
physical information will be lost. Therefore the de�nition of the time step is strictly connected
to the physics of the phenomena we want to simulate.

The de�nition of the principal unsteadiness allows to identify the period of the signal we need
to reconstruct using the samples obtained by the result of each iteration. Being the purpose
of the chorochronic simulation the analysis of the rotor-rotor deterministic interactions, the
unsteadiness periods T1 and T2 can be obtained by the blade passing frequency of the two
rotors:

T1 =
2π

Z2 |Ω1 − Ω2|
(5.20)

T2 =
2π

Z1 |Ω1 − Ω2|
(5.21)
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where Z1 and Z2 are the number of blades of the two rotors and |Ω1−Ω2| is the relative velocity
of revolution between the rows.2

Subsequently the sampling period can be obtain as a fraction of T1 and T2. First of all we
divide the period of each row by its number of blades, obtaining a common expression for the
two rotors. This is useful because it means that the two passage periods will be sampled by
two whole numbers of iterations. Finally a further reduction factor is needed to obtain a time
step su�ciently low: Nq0.

∆T =
2π

Z1 Z2 |Ω1 − Ω2|Nq0
(5.22)

In particular the factor Nq0 will be the parameter that allows to set the time step to di�erent
values, keeping the property of being representative for the two rows. The convenience of using
this factor will be clear in section 6.2.1, where it will be very practical during the operation of
chorochronic assembly.

5.4.2 Time step convergence

Once the choice about the time integration method is accomplished, the most important pa-
rameter to properly simulate the �ow evolution in time is the time step. This is the increase of
the physical time between an iteration and the following one. Which means that, with a long
time step, the simulation of a blade passage period, for instance, will be faster than the case
with a shorter time step. Nevertheless the temporal discretization needs to be su�ciently �ne
to properly capture the main �ow unsteadiness. Therefore an evaluation of the global e�ect
of the time step on the �nal solution has been performed. In particular three time step have
been tested. According to the time step expression (5.23), presented in the section 5.4.1, the
parameter used to set up the time step is Nq0.

∆T =
2π

Z1 Z2 |Ω1 − Ω2)|Nq0
(5.23)

The values typically taken by Nq0 in turbomachine simulations are around 10, but in the
con�guration analyzed in the present work, the number of blades of the two rows are particularly
low. This characteristic involves lower blade passing frequencies, thence even a lower Nq0
value can be su�cient. Actually a strong dependence of the �ow from this parameter has been
brought to light for such a low values, therefore the convergence analysis has been performed
using Nq0 = 150, 87, 50.

Subsequently the Richardson extrapolation has been used to identify an extrapolated exact
solution which allowed to calculate the error of the three test cases. The physical quantity
the analysis is based on, is the time averaged total pressure captured by the fourth probe
(placed after the rear rotor) during the iterative calculation process (see �g. 5.3 on page 69
and 5.6b on page 72). The choice has been forced by the long time needed to compute the
thrust performance in a chorochronic simulation.

The Richardson technique, based on the quantities described in table 5.1, �nally provides
an observed order of Pobs = 0.57 which involves an extrapolated Ptotextr = 0.747.

2The blade passing frequency is the frequency by which the blade of a row sees the blades of the other row
passing.
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time step number Nq0 time step Ptot relative error %

∆T0 150 7.9488 e-04 0.7180 3.85
∆T1 87 1.3705 e-03 0.7075 5.26
∆T2 50 2.3846 e-03 0.6931 7.19

Table 5.1: Results of the tested time steps

(a) Calculated and extrapolated total pressure (b) Temporal discretization Error

Figure 5.8: Time step convergence

In conclusion a particular need of small time steps has been discovered. This means that,
in comparison with the internal �ow of a classical turbomachine, an open rotor presents some
dynamics that are characterized by a frequency much higher than the BPF (blade passing
frequency). For instance the blade tip vortices are composed by fast turbulence structures that
can generate high frequency components. Thence the need of capturing their evolution and the
interactions among them and the downstream rotor can involve the use of a time step quite
small. Moreover they are probably stronger than the turbulence structures generated by the
blades tip gaps in a turbine or a compressor, and this can explain the peculiarity of the open
rotor con�guration.

5.4.3 Choice of the time integration method

Three time integration methods have been tested in order to identify the most e�cient in terms
of time of calculation and quality of the results. The compared techniques are the �rst order
Backward Euler scheme and the second order Dual Time Stepping and Gear approach.

Initially, during the set up phase of the chorochronic calculations, a second order method has
been applied to avoid eventual problems due to a low precision in the temporal reconstruction.
Then, in a following phase, the �rst order scheme has been tested to verify the possibility of
obtaining some good results with a lower cost in terms of CPU time. All the calculations used
to compare these methods have been performed with a very low time step (Nq0 = 150, see
section 5.4.1).

Second order approaches

Between the two second order techniques, the Gear internal algorithm immediately shows to be
much more e�ective. The comparison can be based on the number of internal iterations that
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each methods needs to bring the residuals to the imposed value 5 · 10−03. In fact, as explained
in the section 4.5.2, the internal cycle is a steady iterative process that is performed at every
external iteration, that means after every increase of the physical time.

After an initial transitory, the Gear internal cycle reaches the imposed lower limit of 5·10−03

with about 3 iterations, while the DTS approach needs around 30 iterations to get to the same
values. This is the cause of the huge di�erence between the calculation speeds of the two
methods, which still presents a factor of about 10 as shown by table 5.2. In fact the calculation
speed is measured considering the external cycle that corresponds to the physical time progress.

Calculation
speed [it/hour]

Gear 345
DTS 35

Table 5.2: Results of the comparison between Gear and DTS time integration schemes

From these considerations the second order time integration method that has been used in
every calculation is the Gear approach. Therefore no comparison have been done about the
results obtained by the two methods, because of the high computational cost of a complete
DTS calculation.

Comparison between Gear approach and Backward Euler scheme

A further acceleration of the calculation can be obtained by reducing the order of the time
integration method. Thence the Backward Euler scheme has been tested. In fact it correspond
to the one-step application of the Runge Kutta scheme, not involving an internal cycle as the
Gear and DTS approaches. Besides the Backward Euler is an explicit method, for which the
CFL condition may become very important to ensure the stability of the numerical scheme. In
particular, as discussed in the section 4.5.1, the method use to calculate the convective �uxes
becomes instable if the CFL if higher than 1. Nevertheless, in the present application, the
viscosity introduced by the viscous �uxes and the turbulence model has stabilized the global
scheme, allowing the use of CFL higher than 1.

For the comparison of the results, the thrust obtained by using the two techniques is taken
as global quantity able to represent the precision of the simulation. Therefore, assuming the
Gear approach more accurate, the Backward Euler involves an error of about 0.877% and a
calculation speed about 2.2 times higher than the second order scheme, as shown by table 5.3:

Calculation Calculation Thrust
speed [it/hour] time [hours]

Gear 345 150 6571.2
Backward Euler 820 60 6513.4

Table 5.3: Results of the comparison between Gear and Backward Euler time integration schemes

Moreover no remarkable di�erence occurs in the number of periods needed by the two
approaches to reach a converged state. Thence, in conclusion, the Backward Euler scheme
seems to be a very e�ective possibility for the present applications. Actually in this analysis
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the e�ect of the time step has not be taken into account, and this may be an important factor
for the evaluation of the time integration performance. In fact a second order scheme is able
to properly reconstruct the unsteady �ow even using a time step quite high, while, on the
other hand, the Backward Euler is limited by the stability considerations discussed above.
Therefore more accurate conclusions can be drawn on a comparison performed after setting the
two method to their converged time step, which ensure the minimum calculation time. In the
next section this particular condition will be found for the Gear approach.

5.5 Space discretization

5.5.1 Spatial discretization at the walls: y+

The �rst veri�cation about the quality of the equations solution process is the control of the
spatial discretization near the walls. This can be evaluated by the y+ coordinate. In fact this
is a dimensionless measurement that allows to describe the structure of the boundary layer, as
shown in the �gure 5.11. Therefore the accuracy of the boundary layer discretization can be
evaluated by the limits of the cells near the wall, expressed with the y+ coordinate. Tipically the
boundary layer e�ects are considered properly simulated if the y+ coordinate takes values lower
than 1. Figures 5.9 and 5.10 show that this criterion is not satis�ed everywhere. Nonetheless the
mesh is su�ciently �ne in the rear part of the blade walls, where a separation of the boundary
layer would involve a strong decrease on the rotor performance.

Figure 5.9: y+ on the walls of the employed geometry
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Figure 5.10: y+ in the root regions

Figure 5.11: Boundary layer structure

5.5.2 Mesh Convergence

The in�uence of the number of points on the �nal solution has been evaluated for three mixing
plane calculations. This choice is actually due to the time that would be necessary to perform
this analysis by using chorochronic calculations. In fact the e�ects of the number and distri-
bution of points would surely be di�erent. Keeping a �ne mesh on whole channel width would
be necessary in order to capture the rotor-rotor interactions as, for example, the wakes of the
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upstream rotor in the downstream channel. Nevertheless the mixing plane calculations can
already give some important information, as described in the following. The three meshes have
been compared by using the values of thrust calculated by each �ow with the method described
in the chapter 6. The �rst grid that has been used is the �nest: 12 millions of points. On this
mesh the mixing plane and chorochronic calculations have been tested and a good quality of
the results, in terms of expected physical phenomena simulation, has been observed. Therefore
the other two grids have been realized decreasing the number of point to respectively a half and
a quarter. Actually the need of keeping three levels of multi-grid has not allowed to exactly ob-
tain the �xed size. This last point has �nally involved the application of a Newton solver to the
implicit equation of the observed order ( 5.15 on page 77). The decreasing of the grid quality
involved by the reduction of the number of points is shown in the tables 3.2 and 3.3 on page 32.

The Richardson technique, based on the grid characteristics that are described in the table
5.4, �nally provides an observed order of Pobs = 1.43 which involves an extrapolated thrust of
Textr = 5739.6.

grid number number of points thrust relative error %

grid 0 11.804.436 5964.0 3.9
grid 1 5.604.072 6388.7 11.3
grid 2 3.025.632 7374.3 28.5

Table 5.4: Characteristics of the compared grids

(a) Calculated and extrapolated thrusts (b) Spatial discretization Error

Figure 5.12: Results of the mesh convergence analysis

In order to have a con�rmation of the good accuracy of the extrapolated Textr, one can
notice two principal points of the analysis, according to graphs 5.12:

� the trend of the error with respect to the number of cells is monotonous, with con�rm
that a �ner mesh will provide better results;

� the observed order of convergence is not far from the theoretical Jameson scheme order: 2.

In conclusion, the error of 3.9 % involved by the �nest grid can be accepted for the purpose
of the present study. Nevertheless, in a future mesh convergence analysis performed by using
chorochronic calculations, the hypothesis of using a �ner grid at the place of the grid 2 here
utilized, should be taken into account.
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5.5.3 Multi-grid e�ects

The multi-grid technique, described in the chapter 4, has been applied to the steady mixing
plane calculation in order to accelerate the convergence process. Graphs 5.13 show the residual
trends obtained with di�erent levels of multi-grid.

(a) No multi-grid acceleration

(b) Multi-grid applied with 1 coarse grid (c) Multi-grid applied with 2 coarse grids

Figure 5.13: Multi-grid e�ects on a mixing plane calculation

What is worth to notice is that without the application of the multi-grid technique the
solution is reaching a converged state only after 10000 iterations, while the use of one coarse
grid already allows to obtain the converged solution after 2000 iterations. A smaller gain can
still be achieved by using 3 levels of multi-grid (that is 2 coarse grids).

The drawback of this method consists, �rst of all, in the constraint on the number of points
of every topology block of the mesh, as described in chapter 4. Moreover each iteration becomes
a little more expensive with the use of several grids, as can be observed in table 5.5, which shows
the speed of the three calculations of �gure 5.13 in terms of iterations per hour. Nevertheless
the gain in terms of time of calculation is very important.

Multi-grid Iterations to Calculation Time to
levels converge speed converge

No multi-grid acceleration 10000 980 it/hour 10.2 h
2 multi-grid levels 2000 560 it/hour 3.6 h
3 multi-grid levels 1000 480 it/hour 2.1 h

Table 5.5: Multi-grid e�ects on mixing plane simulations
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5.6 E�ects of numerical scheme and turbulence model

The results obtained by di�erent numerical schemes and turbulent models are compared in
order to verify the in�uence of the solution method applied to the Navier Stokes system. In
particular the tested numerical schemes are:

� Jameson scheme (second order centered scheme)

� Roe scheme with minmod limiter (second order upwind scheme)

While the turbulence models:

� k − ω with SST Menter modi�cation

� Spalart Allmaras

Figures 5.15 and 5.16 show some �elds corresponding to blade root and blade tip zones.
The shown results have been obtained by chorochronic simulation and they have not been
reconstructed because of the time this operation requires.

The biggest in�uence can be seen in the root regions between the two turbulence models.
This may be caused be the in�uence of the spinner boundary layers, which might have developed
di�erent characteristics during its evolution from the stagnation point. Graphs 5.14 allow to
easily evaluate this di�erence in a mixing plane simulation.

The thrust performances obtained by the tested methods are shown in tables 5.6 and 5.7.
The calculation time shows that the converged solution is reached faster by the Roe scheme
associated with the minmod limiter, even if the turbulence model applied in this studies with
the Roe scheme is the two equations kω. Nevertheless the choice of the limiter is fundamental
for the performance of the Roe numerical scheme. In fact also the third order extension has
been tested (see section 4.4.1), but it has not been possible to obtain a converged solution
because of the too long calculation time required (a calculation speed of 106 [it/h] has been
observed).

numerical scheme thrust calculation convergence
speed [it/h] time [hours]

Roe (minmod limiter) 6333.6 345 80
Jameson 6571.2 174 150

Table 5.6: Thrust performance and computational cost obtained with the tested numerical schemes
(chorochronic simulations)
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turbulence method thrust calculation convergence time
speed [it/h] time [hours]

kω (SST Menter) 6571.2 174 150
Spalart Allmaras 5001.6 260 100

Table 5.7: Thrust performance and computational cost obtained with the tested turbulence models
(chorochronic simulations)

(a) Front row root (b) Rear row root

(c) Front row tip (d) Rear row tip

Figure 5.14: kω and Spalart Allmaras pressure coe�cient distributions (mixing plane simulations)
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(a) Roe - kω (Static pressure) (b) Roe - kω (Absolute velocity)

(c) Jameson - kω (Static pressure) (d) Jameson - kω (Absolute velocity)

(e) Jameson - Spalart Allmaras (Static pressure) (f) Jameson - Spalart Allmaras (Absolute velocity)

Figure 5.15: Static pressure and velocity close to blade roots (chorochronic simulations)
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(a) Roe - kω (Static pressure) (b) Roe - kω (Mach number)

(c) Jameson - kω (Static pressure) (d) Jameson - kω (Mach number)

(e) Jameson - Spalart Allmaras (Static pressure) (f) Jameson - Spalart Allmaras (Mach number)

Figure 5.16: Static pressure and Mach number close to blade tips (chorochronic simulations)
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Validation of the solutions
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6.1 Introduction

As mentioned in the introduction of this report, this chapter should compare the simulation
results with the real �ow, typically represented by a windtunnel experiment or an analytical
solution. Unfortunately no terms of comparison were available to validate the solutions, thence
a simple qualitative description of the existing dynamics is presented. This con�rms the quality
of the results, which are quite close to the predicted reality and to the expectations based on
the theory of contra-rotating propellers.

6.2 Post processing of the results

6.2.1 Chorochronic reconstruction

As explained in section 2.5, the space coordinates of the grid points do not change during a
chorochronic calculation. Nonetheless the boundary conditions simulate the rotation of the
discretized blades around the machine, see �gure 6.1a on the next page. This means that a
process of reconstruction is needed to bring in the right position each result extraction and to
obtain multi-channel �elds.

The �rst step, once the �eld corresponding to a certain iteration is loaded on the mesh,
is the rotation of the two sub-domains to the angular position reached by each blade during
the calculation. This operation is possible thanks to the knowledge of the time step∆T , the
extraction iteration N , the initial position θ0 and the rotation velocity of the rows Ω:

θ = θ0 + ∆TNΩ (6.1)
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The �gures 6.1b and 6.1c show the e�ect of the step 1.
Subsequently a multi-channel �eld can be obtained by assembling di�erent extractions, that

is single-channel �elds corresponding to di�erent time instants.

(a) Simulated dynamics that need to be recon-
structed (static pressure contours)

(b) Result extraction (entropy contours)

(c) Step 1: positioning of the numerical �eld (d) Step 2: assembly of di�erent time instant �elds

Figure 6.1: Chorochronic reconstruction steps (entropy contours)

The number of iterations that one has to wait in order to have the �elds around two
following blades can be determined as follows. It is worth to remind that the chorochronic
period is de�ned as the necessary time step δt for the �ow around a blade to occur around the
next or the previous blade of the same row, and it is expressed by:

δt =

∣∣∣∣∣
2π
Z1
− 2π

Z2

Ω1 − Ω2

∣∣∣∣∣ (6.2)

From this time one can obtain the corresponding number of iterations nit by dividing it by the
time step ∆T , which is de�ned as the time increase of each iteration:

∆T =
2π

Z1 Z2 |Ω1 − Ω2|Nq0
(6.3)
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nit =
δt

∆T
=

2π |Z2 − Z1|
Z1 Z2 |Ω1 − Ω2|

Z1 Z2 |Ω1 − Ω2|Nq0
2π

= |Z2 − Z1|Nq0 (6.4)

This simple relation is fundamental to perform the extractions at the right iterations.

6.2.2 Pressure Coe�cient distribution on the blade surfaces

The accuracy of the chorochronic method in capturing unsteady phenomena allows to observe
the e�ects of the row interactions on the pressure coe�cient distribution on the blade surfaces.
The most remarkable case is when a downstream rotor blade passes through the wake of a
front blade. Figures 6.2 to 6.6 refer to an airfoil positioned at about 95% of the rear rotor
span. In particular, in �gure 6.2 the distributions of pressure coe�cient on the airfoil at four
time instants are overlapped. The di�erent instants correspond to the conditions represented
by �gures 6.3, 6.4, 6.5, 6.6, and show that the low velocity zone inside the wake, combined
with the revolution motion of the crossing blade, causes a local peak of incidence. This is
visible when the leading edge goes into the wake and an augmentation of local velocity occurs,
corresponding to a pressure coe�cient reduction, (see �gure 6.3). A similar dynamics exists
when the trailing edge is leaving the wake. These phenomena are more evident close the tips
of the blades, where the tangential velocities are higher.

Figure 6.2: Pressure coe�cient on a rear blade airfoil while crossing a front blade wake (see �g. 6.3, 6.4,
6.5, 6.6)

Taking into consideration the upstream blades, the potential e�ects of the second rotor also
a�ect the pressure distribution, as can be observed by the signal of the probe 1 used to monitor
the convergence (�gure 5.5 on page 71). However these phenomena are less evident than the
wake e�ect on the rear blades.

This kind of interactions is the origin of strong unsteadiness in the load distribution and
they absolutely have to be taken into consideration during design steps and aeroelastic analysis.
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Figure 6.3: Entropy contours and pressure coe�cient evolution on a downstream blade, instant (a)

Figure 6.4: Entropy contours and pressure coe�cient evolution on a downstream blade, instant (b)
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Figure 6.5: Entropy contours and pressure coe�cient evolution on a downstream blade, instant (c)

Figure 6.6: Entropy contours and pressure coe�cient evolution on a downstream blade, instant (d)
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6.2.3 CROR slipstream convection

A qualitative analysis of the �ow convection in the slipstream of the propeller can be performed
by the sequence 6.7. The point where two blade wakes cross themselves provide a practical
reference to follow the convection. By the motion of these points one can remark that the
downstream �ow has almost no azimuthal component of velocity. Therefore the e�ect of the
second contra-rotating rotor is what expected by the theory.

(a) Instant #1 (b) Instant #2

(c) Instant #3 (d) Instant #4

Figure 6.7: Unsteady potential e�ects between the two rotors (entropy contours)
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6.2.4 Blade tip dynamics

An important element that characterizes the CROR con�guration is the absence of the casing,
which involves blade tip phenomena as tip vortices. For this reason a very �ne mesh as been
realized to discretize regions close to blade tips. As shown in �gures 6.9 and 6.10 on the next
page, this also allows to capture shock phenomena with a high precision.

Figure 6.8 shows the presence of tip vortices by using the Q criterion. This method allows
to identify the vortex regions by means of the Q parameter, de�ned as:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(6.5)

Ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(6.6)

Q =
1

2

(
‖Ω‖2 − ‖S‖2

)
(6.7)

Therefore Q tends to zero outside vortices and it is greater than 1 inside. Nonetheless, in �gure
6.8 the level of the Q parameter used to show the green surfaces is lower than 1, because of
the di�culty of the post-processing software in calculating partial derivatives near the faces of
the topological blocks of the grid. Thus, the presence of vortices can be observed, being aware
that their real extension is much larger.

Figure 6.8: Tip vortices shown by using the Q criterion
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The high mesh density allows to capture a shock wave on the suction side of the airfoil and
to follow its high entropy wake being convected downstream. An accurate unsteady simulation
of these kind of phenomena is also fundamental in the design of the blade shape. In fact they
may cause aeroelastic dynamics due to transonic �utter, as well as compressibility losses of
energy.

Figure 6.9: Shock wave captured thanks to the high mesh density (entropy contours)

Figure 6.10: Convection of the high entropy regions caused by the shock waves (entropy contours)
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6.2.5 Comparison between Mixing Plane and Chorochronic approaches

As expected by the method limits described in chapter 2, the entropy �eld of the mixing plane
simulation (�gure 6.11a) shows the mixing-out of the blade wakes at the interface plane, giving
a non-physical �ow �eld. In fact the rear rotor receives a constant and uniform inlet �ow.
Nonetheless the e�ect of the upstream rotor is well perceived by the second one. This can be
seen by the uniform �ow at the inlet zone of the rear rotor, since its degree of entropy is higher
than that of the upstream undisturbed �eld. Moreover the potential e�ects of the downstream
blades propagate towards the front row and they are transmitted to the upstream side of the
interface. This con be observed in �gure 6.12a, where the blue low Mach number regions close
to the stagnation points at the trailing edge of the upstream blades, become wider near the
interface. The di�erence between these regions and the shape of the rear blade wakes, clearly
shows that the mixing plane method is able to model a kind of row interactions by a steady
calculation, but providing a non-physical �eld.

In the chorochronic results the �ow �eld characteristics are correctly transmitted through
the interface between the rotors. This allows to capture the deterministic unsteadiness of the
row interactions. For instance �gure 6.11b shows the impact of the downstream blades with
the upstream row wakes, which is the source of important acoustic phenomena. Moreover the
e�ects of the front row wakes on the distribution of Mach number around the rear airfoils may
cause periodic aeroelastic phenomena that have to be taken into account in the design step of
the propellers (�gure 6.12b).

(a) Mixing plane simulation (b) Chorochronic simulation

Figure 6.11: Mixing plane and Chorochronic entropy �ows

The thrust performance obtained by the two methods are shown in table 6.1, with the
corresponding time necessary to reach a converged solution. As one can observe the steady
calculation involves en error of -9.2 % with respect to the unsteady simulation, but the calcu-
lation time is 98% lower. The thrust di�erence is caused by the averaging process the mixing
plane method is based on. In fact the conservation of the Riemann invariants applied in the
presents study, causes an increase of entropy, which cannot be conserved because of the inherent
non-linear nature of the conservation equations. According to the theory presented in section
2.3, the conservation of other averaged quantities can be imposed, and this may provide more
accurate results. Unfortunately this kind of test has not been performed during the present
work, but it may represent a motivation for future investigations.
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method thrust calculation
time [hours]

mixing plane 5964.0 2
chorochronic 6571.2 150

Table 6.1: Thrust performances obtained by the two methods and their computational cost

(a) Mixing plane simulation

(b) Chorochronic simulation

Figure 6.12: Mixing plane and Chorochronic relative Mach numbers
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7.1 Conclusions

The �rst step of the work has been the set up of numerical simulations to a contra-rotating open
rotor con�guration. In particular the challenge was the application of turbomachine dedicated
tools in presence of an open �eld. This purpose has been successfully achieved bringing into
light some important points in the use of the code and the mesh generator. Among them the
most important are:

� the low mesh quality in the external �eld, that may prevent the relative velocity formu-
lation from being applied;

� the high number of grid points necessary to capture the rotor-rotor interaction phenom-
ena;

� the very low time steps in relation to typical turbomachine simulations, necessary to
capture high frequency dynamics caused by the open �eld (ex. tip vortices).

The remark of these particularities and their analysis, have allowed the achievement of a good
experience in the use of the tools that have been applied, such as the mesh generator Autogrid
and the Richardson extrapolation.

Moreover some useful techniques have been tested for the monitoring of the convergence.
The e�ciency of the multi-grid acceleration method has been veri�ed. The Fourier analysis has
proved to be an e�ective tool to analyze the periodicity of the signal captured by some well
positioned probes, in the case of an unsteady calculation.

The second step has been the analysis of the results, in order to verify the capability to sim-
ulate the rotor-rotor unsteady interactions that represents the goal of this work. Unfortunately
no terms of comparison were available to validate the solutions, thence a simple qualitative
description of the present dynamics has been performed. This has con�rmed the quality of the
results, which are quite close to the predicted reality. In fact the chorochronic reconstruction
that have been realized showed that the potential and the wake e�ects are clearly visible and
a�ect the pressure distribution on the blades, which has a periodic trend. These visualizations
also show that main direction of the �ow in the wake is parallel to the propellers axis, as
expected by the theory of contra-rotating propellers.

Moreover this step has allowed the comparison among di�erent numerical schemes and
turbulence models as well as time integration methods. These comparisons may open the
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possibility to perform new analysis to understand in details the di�erences showed in this
report.

7.2 Future developments

Starting from the present work conclusions, the di�erence that occurs between the thrust per-
formances obtained by the mixing plane and the chorochronic approaches can be a motivation
to investigate the possibility of imposing in the mixing plane model the conservation of aver-
aged quantities other than the Riemann invariants. In fact this may reduce the gap with the
unsteady simulations.

Otherwise, the next scheduled step in the CROR simulations with elsA is the application of
the Time Spectral Method. This is a time integration method that will improve the calculation
e�ciency and open the possibility to extend the studies to installation e�ects as well as incidence
working conditions. In fact, as mentioned in the introduction, the aeroelasticity dynamics
between the blades and among them and the airframe, is one of the two major issues that this
propeller con�guration has to face to.

Subsequently the blade design will have a fundamental role in the noise emission reduction.
Also for this purpose an acceleration in the convergence time of the unsteady calculations is
needed.
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