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Chapter 1

Introduction

Cryptography is the discipline of securing a communication by employing dif-
ferent kinds of strategies to protect against undesired behaviors. Nowadays,
it is present ubiquitously in everyday life, being used in personal computers,
smartphones, set-top boxes and a number of other devices. In a digital com-
munication scenario with many interconnected devices, cryptography is used to
prevent unauthorized users to access confidential information and to provide
secure authentication of communicating users.

On the other side, someone may want to break the security of a commu-
nication system, typically by accessing confidential information or gaining au-
thorizations he was not supposed to have. This is commonly called attacking a
system.

The devices willing to communicate securely through cryptographic means
have to run specific algorithms aimed at providing the necessary security con-
straints. For simplicity, we can consider these algorithms as accepting two
inputs, called the plaintext and the key, and producing an output called the
ciphertext. The key is the secret element that makes it possible to compute the
other data and therefore it is the main target of an attacker. Originally, an
attacker was supposed to consider a possible access to plaintext and ciphertext
and to proceed by discovering weaknesses in the underlying mathematical struc-
ture to relate the data in his possession and the key, thus potentially discovering
it.

In the present times, with the great improvement of cryptographic algo-
rithms and the ubiquitous presence of cryptographic devices, a new possibility
has to be taken into consideration. The attacker can indeed consider, if in pos-
session of a target device, different outputs and inputs. Namely, he can monitor
some physical quantity as an additional output and he can manipulate the phys-
ical interface of the device as an additional input for his purposes. This way it
becomes possible to analyze and exploit the internals of the algorithms, and the
spectrum of information that the attacker can use to relate with the key greatly
extends. Because of the nature of this kind of attacks, they are referred to as
side channel attacks.

The commonly measured physical quantities are the power consumption and
the electromagnetic radiation of the target device. Attacks that use this kind
of information are called passive attacks, because the attacker only monitors
the device. If, conversely, the attack comprises physically interfering with the

1



2 CHAPTER 1. INTRODUCTION

computations, we speak of an active attack. Common ways to actively attacking
a device include, as an example, forcing variations on the power supply line
causing clock glitches or other kinds of errors, or shooting with a laser on specific
zones of the chip. Active attacks are commonly called also fault attacks because
the computations done by the device are subject to errors due to the effects of
the attacking procedure.

Cryptographic algorithms vary among different kinds of applications. One of
these is known as digital signature. Digital signature is a way to authenticate the
source of digital data to allow a secure verification that the entity on one end of
the communication channel is really who he pretends to be. A widespread algo-
rithm for signatures is DSA (Digital Signature Algorithm), which is a standard
by NIST [NIS09]. There exists a variant of it as well, called ECDSA (Ellip-
tic Curve Digital Signature Algorithm), which is based on the same principles
while using a different algebraic structure to perform computations, namely the
elliptic curves.

In this thesis we present a new method to develop a fault attack against
the mentioned ECDSA algorithm. Our attack belongs to the aforementioned
family of fault attacks. Some manipulation of the device under attack has
to be performed in order to cause it to produce wrong results, which will be
subsequently analyzed to extract leaked secret information.

The considered fault model is one of the most commonly studied in the
literature, namely the bit flip. An example of this kind of fault can be found
in [BBPP09]. We suppose that the device uses some wrong value during its
computations, differing from the correct one in a single bit. The error appearing
as a changing flip then propagates through subsequent computations and finally
displays as an invalid signature. Collecting a number of this kind of faulty
signatures allows to analyze them by means of our attacking procedures, and
eventually discovering the sought secret key.

The proposed procedures are an evolution of some ideas taken from known
attacks. Nonetheless, they are a novelty in the particular way they are de-
veloped and applied. The major distinguishing points are the position in the
computations considered for the fault, and the main search procedure used to
analyze the results.

About the position of the fault, we developed an attack to the final oper-
ation performed during the signature computation. This operation is usually
considered less interesting than the rest of the algorithm, and therefore also
leaved unprotected. Our attack shows how it is possible to exploit this kind of
vulnerability.

The employed analysis procedure then allows to reveal a-posteriori whether
or not the error introduced is exploitable through the attack. This is important
since the fault injection procedure is usually unable to induce the error in such
a precise way. Our procedure exploits a special version of the elliptic curve
discrete logarithm problem, which we will discuss in deeper detail in subsequent
sections.

The attack is discussed with great detail in its theoretical aspects. Then,
simulations of the attack are described as well, to show its practical feasibil-
ity and performance. Some experimentation is also performed, to the extent
permitted by a very cheap equipment.

The subsequent chapters are structured as follows. In chapter 2 we present an
overall description of the considered cryptosystem and the commonly employed
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algorithms. Chapter 3 is dedicated to a deeper presentation of side channel
attacks and fault injection techniques. In chapter 4 we describe the known sci-
entific literature about fault attacks against elliptic curve based cryptosystems,
to better frame our work. In chapter 5 the new proposed attack is detailed
and all possible issues are explained and analyzed. We also present some ways
to extend the attack ideas to different, more general, fault models. Chapter
6 describes some performance evaluations and the results that were obtained
applying the attack in both simulated and physical environments. In chapter
7 a very cheap countermeasure to protect against the attack is proposed and
analyzed. Finally, in chapter 8 we draw conclusions and sketch the guidelines
for a future expansion of the work.
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Chapter 2

Elliptic Curve
Cryptography

We now introduce the basics of cryptography as it is studied today. Especially,
we focus on the mathematical structures and algorithms that will be considered
in following.

At first, we give a brief overview of the different purposes of cryptography,
the methods employed to achieve them, and the evolution lines of the algorithms
followed in the past times. We then start exploring in detail the mathematics
behind a relatively recent family of cryptographic functions, namely elliptic
curves. In doing this we will introduce the structure, describe it in a precise
mathematical way and present the reasons why it is considered a suitable ba-
sis for the development of cryptographic primitives, namely the elliptic curve
discrete logarithm problem. A resume of some elliptic curve based algorithms
is also presented, together with a complete analysis of the ECDSA algorithm.
At last, we will present also the most used algorithms for a kind of arithmetic
operations that will be the main object of the subequent work.

2.1 Introduction to Modern Cryptography

The purpose of cryptography is to provide strong security properties to means
of communication. We can think of two main classes of security problems the
communications have to deal with, and for which cryptography offers a valuable
help. Such problems are confidentiality and authentication.

When referring to confidentiality we are thinking of some parties who want
to communicate a message that should not be read or interpreted by external
entities. The important point is to deny the ability to read or interpret the
given messsage.

A different problem is represented by authentication. We do not mind who
can access a content, instead we are interested in the ablity to generate a specific
message. It is possible to perform authentication if we know that only a given
subject can produce some information. An example from the non-digital world
is represented by signatures. The signature authenticates the subject writing
it, since no one else is (hopefully) able to generate the same strokes. Said
differently, authentication opposes the falsification of information.

5



6 CHAPTER 2. ELLIPTIC CURVE CRYPTOGRAPHY

Over the centuries, a number of algorithms have been developed to meet
the cited security needs. The main reason to develop a new algorithm being a
successful attempt to break an older one, i.e. to access confidential information
or to forge authentication messages.

A cardinal concept has however remained constant in the history of cryp-
tography. A key is the object that allows to perform the secure operations. The
various algorithms are developed in order to allow the owner of a key to do
secure operations, while everyone else cannot do the same.

Let’s introduce some useful and wide used terminology. We already saw the
key, which is a value needed to be able to compute cryptographic functions. The
operation of making a message unreadable is called encrypting or enciphering,
while the converse is decrypting or deciphering. When dealing with authenti-
cation, the message created by the involved subject is called, for the analogy
seen above, digital signature. The operation performed by the other party is
called signature verification, and consists in verifying wether a given signature
was generated by the known subject rather than someone else.

When considering the security of a system a number of properties have to
be taken into account. We give an informal description of the properties which
should be satisfied by a system to be considered secure.

Confidentiality An operation provides confidentiality if only a set of autho-
rized subjects can access the considered informations.

Integrity Information enjoys integrity if it is not possible to manipulate it
without explicit authorization.

Authenticity It is related to identification, an authenticated message is guar-
anteed to have been generated by a clearly identified subject.

Non-Repudiation It should not be possible to deny a previosly granted au-
thorization.

Traditional encryption algorithms have recently also been called symmetric
key or, less frequently, private key cryptography. This is because such algo-
rithms are designed to allow the use of only one key, which has to be kept secret
in order to be useful. The key is used for example to encrypt a message as well
as to decrypt it, or to sign a message and to verify the signature. This has
been practical for a long time, but today’s digital communication infrastructure
needs a more flexible tool. Actually a number of issues arise from the use of
symmetric key protocols. We sketch the most important ones:

• A different key is needed for each communication channel. Two subjects
need one key, but if n subjects are involved, they all need a key shared
with everyone else, thus making the number of keys explode, as n(n−1)/2
keys must exist.

• An owner of the key is able to do every computation allowed in the cryp-
tosystem, i.e. both encryption and decryption, or the verification of a
signature as well as its generation. This imposes problems for example on
non-repudiation properties.

• The key must be exchanged by the parties before they are able to use it,
meaning the entities have to meet in a secure way to guarantee they can
securely communicate in the future.
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The last of these is particularly famous and known as the key distribution prob-
lem. Indeed, this has been the main reason for developing a new kind of cryp-
tography.

When considering a world-wide system, with constant addition of new users,
it is clear that the mentioned problems are really restrictive. Fortunately, a
totally new species of algorithms has been invented to bypass all those issues.
The first of these algorithms is the famous RSA, proposed by [RSA78]. The new
style is known as public key cryptography, as it proposes the use of different keys,
of which one has to be published. More precisely, each user has a pair of keys, a
secret one and a public one. He then has access to the public keys of everyone
else. The secret key is used to decrypt messages and to generate signatures,
while the public key is needed to encrypt data and to verify signatures.

2.2 Elliptic Curve Basics

In 1985, Koblitz and Miller independently proposed the use of a mathematical
object as a basis for building new cryptographic algorithms. Such an object is
elliptic curves.

Elliptic curves began their history as an object of studies more than one
century ago, but were confined to pure mathematics. Namely, their main field
of application has been represented by number theory. Elliptic curves have been
an important tool used in the proof of Fermat’s Last Theorem [Wil95].

Precisely speaking, elliptic curves are geometric objects endowed of an al-
gebraic structure, which is the actual support to cryptographic applications.
Elliptic curves are defined over some kind of field. This means they can be de-
fined over R or C, and the first studies were indeed on curves defined over such
fields. For number theory and cryptography in particular it is however more
advantageous to consider finite fields.

Cryptographic curves base fields are partitioned into two main classes, namely
so-called binary fields and prime fields. As binary field is intended a field of char-
acteristic 2. Conversely, a prime field is meant to be a field with characteristic p,
which of course has to be prime and it is chosen to be a large number. The used
fields must have a high order and, if binary fields are considered, they have to
be extension fields, i.e. F2n . Prime fields are instead usually base fields, such as
Z/pZ, for some large prime p. We will describe here only prime field curves, as
these are the type which we will focus on in the whole subsequent work. Binary
field curves are defined in an analogous way, but lead to different arithmetic to
be considered for both implementation and attacks. Our choice is however not
arbitrary, since prime field curves are the more used class.

2.2.1 Formal Description

Consider the base field, with large prime characteristic p > 3, Z/pZ. In the
following we will steal the notation usually reserved to p-adic numbers and
denote this field as Zp for readability purposes. We will also continue to use the
Z symbol instead of the generic F to remember the isomorphism between the
field and the set of residues modulo p.

An elliptic curve over Zp is an algebraic variety in Zp × Zp defined by the
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polynomial given in equation (2.1)

y2 = x3 + a4x + a6 (2.1)

and it is denoted by E, or by E/Zp to emphasize its defining field. The co-
efficients a4 and a6 are named this way to maintain consistency with differ-
ent expressions also used for elliptic curve defining polynomials. Briefly, this
means considering the points P = (x, y) ∈ Zp × Zp that satisfy the equation
y2 = x3 + a4x + a6 together with a point at infinity, usually denoted as O. For
the curve to be regular it must also hold 4a3

4 + 27a2
6 6= 0.

The order of the curve, denoted as |E|, is defined as the number of points
lying on it, including O. An important result states that the order n = |E| of a
curve satisfies

p + 1− 2
√

p ≤ n ≤ p + 1 + 2
√

p (2.2)
We will see in section 5.6 that these tight bounds on the order n are fundamental
for our attack feasibility.

An endowed group structure is the foundation of computations and crypto-
graphic properties of the curve. The point at infinity O is taken as the group
identity. Given two points P = (xP , yP ) and Q = (xQ, yQ) an associative and
commutative operation, usually called point addition and denoted by +, yielding
R = (xR, yR), is defined in the following way:

xR = λ2 − xP − xQ

yR = λ(xP − xR)− yP

where

λ =


yQ−yP

xQ−xP
ifP 6= Q

3xP +a4
2yP

ifP = Q

The inverse of P is denoted by −P . It is easy to see, from the defining
polynomial, that P = (xP , yP )⇒ −P = (xP ,−yP ).

The order n of the group is typically chosen to be prime. This implies that
the obtained group is cyclic, and a point called the generator is usually taken
and standardized together with other curve parameters for protocol definitions.
We will denote such a point with G.

The group addition law is used to build another operation, called scalar
multiplication. A scalar is some integer k ∈ Z, and a point P is called the base
point for the scalar multiplication defined as

[k]P = P + P + . . . + P︸ ︷︷ ︸
k times

(2.3)

It is taken [0]P = O, and [−k]P = −[k]P .
Some useful properties of the scalar multiplications follow from the associa-

tivity and commutativity of the group operation and from the finiteness of the
order n of the curve:

1. [k1 + k2]P = [k1]P + [k2]P

2. [k](P + Q) = [k]P + [k]Q

3. [k]P = [k + λn]P = [k mod n]P n = |E|, λ ∈ Z
It follows that an elliptic curve E/Zp with prime order n is isomorphic to

the group Zn through the map k ↔ [k]P .
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2.2.2 Discrete Logarithm Problem

Considering the operation Q = [k]P , we refer to P as the base point and to k
as the scalar factor. We will consider also the inverse operation consisting in
finding a scalar k satisfying Q = [k]P given the points P and Q. This is known
as an elliptic curve discrete logarithm computation, because of the structural
similarity with modular exponentiation operations.

Just as in modular exponentations, it happens that computing a logarithm
is far more difficult than computing a point scalar multiplication. Indeed, there
are no known algorithms for computing discrete logarithms in polynomial time.
For this reason the scalar multiplication plays the role of one-way function in
elliptic curve based cryptosystems, providing their public key capabilities. The
problem of computing this kind of logarithm is known as the elliptic curve
discrete logarithm problem, or ECDLP. Practical applications use some secret,
like a key or a nonce, as scalar factor in multiplications. This way it is possible
to publish the resulting point, as it is not possible for an attacker to compute
the employed secret.

2.2.3 Baby Step Giant Step

Even though discrete logarithms take exponential time to be computed, it is of
interest to examine known algorithms for the task. As it can be guessed, many of
the ideas are taken from the discrete logarithm in modular arithmetic. The main
exception being the impossibility to employ the famous index calculus algorithm,
because of significant requirements missing in the elliptic curve version of the
problem. This is one of the reasons that let elliptic curve systems supersede
classical ones in expected security margin.

One of the most used algorithms for discrete logarithm computation is the
baby-step-giant-step. We describe it because, as it will be showed, it can be
used to greatly improve some attack performances. We are not interested in
the details of other algorithms, though they can be used too. The main reasons
why we chose the baby-step-giant-step algorithm are the ease to adapt it from
the general case to the particular scenario we will have to deal with, and the
great possibilities offered in terms of space/time trade-off flexibility.

The algorithm is based on the following rewriting of the sought logarithm k,
for some suitable values of the other variables,

k = αm + β (2.4)

This then leads to the scalar multiplication

Q = [k]P = [αm]P + [β]P

[β]P = Q− [α][m]P

The algorithm proceeds by precomputing the values [β]P for every 0 ≤ β < m.
The successive step sets an accumulator starting from Q and checks whether one
of the precomputed values is found when subsequently subtracting [m]P from
it. It is easy to see that this procedure eventually finds a suitable value for the
logarithm if it exists. The value m can be used to tune the algorithm’s memory
and time requirements. It is moreover possible to compute many logarithms
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Algorithm 1 Baby Step Giant Step
Input: point P , point Q, precomputed values tβ = [β]G ∀β ∈ [0,m− 1]
Output: logarithm k : Q = [k]P
1: A← [m]P
2: α← 0
3: found ← false
4: while found = false do
5: if ∃β : Q = tβ then
6: k ← αm + β
7: found ← true
8: end if
9: Q← Q−A

10: α← α + 1
11: end while
12: return k

with the same base in shorter time, because the precomputations must be done
only once.

We sketch the details of the procedure in algorithm 1.

2.3 Elliptic Curve Based Protocols

A number of algorithms exists based on elliptic curve primitives for all the major
public key tasks. Namely, there are protocols for encryption of confidential
information, for authentication and for key exchange. We present here the most
significant ones, to show how elliptic curves are practically used to build various
kinds of cryptographic algorithms. Please refer to [HMV04] for more details.

An explanation of how a cryptographic protocol typically works is shown in
figure 2.1.

A typical elliptic curve key generation procedure works in two steps. A
private key d is generated at random as a number satisfying 0 < d < n, where n
is the order of the curve used. The corresponding public key Y is then obtained
by scalar multiplication, namely as Y = [d]G where G is the chosen generator
of the curve.

2.3.1 ECIES

A protocol for data encryption, originally proposed by Bellare and Rogaway, is
Elliptic Curve Integrated Encryption Scheme. It is a variant of the ElGamal
encryption scheme and is presented in algorithms 2 and 3.

A representation of this algorithm is shown in figure 2.2.
In the algorithm description the following functions are used:

KDF A key derivation function based on a hash function (or some other cryp-
tographic function) depending on the considered standard.

ENC A symmetric key encryption function.

DEC The decryption function corresponding to ENC.
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symmetric cipher encryption

ek(m)
m

k

c

symmetric cipher decryption

dk(c)
c

k

m

Figure 2.1: Cryptographic Functions

Algorithm 2 ECIES Encryption
Input: curve parameters (E, G), plain data m, public key Y = [d]G
Output: encrypted data (R,C, t)
1: k ← random ∈ [1, . . . , n− 1]
2: R← [k]G
3: Z ← [k]Y
4: if Z = O then
5: goto 1
6: end if
7: (k1, k2)← KDF(xZ , R)
8: C ← ENCk1(m)
9: t← MACk2(C)

10: return (R,C, t)

MAC A message authentication code.

The decryption algorithm works because Z = [k]Y = [kd]G = [d]R.

2.3.2 ECDH

Simply derived from the classical Diffie-Hellman key agreement protocol ( [DH75])
is Elliptic Curve Diffie-Hellman. It is based on computing two scalar multiplica-
tions performed in a different order but leading to the same result, and therefore
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Algorithm 3 ECIES Decryption
Input: curve parameters (E, G), encrypted data (R,C, t), private key d
Output: plain data m
1: Z ← [d]R
2: (k1, k2)← KDF(xZ , R)
3: check t = MACk2(C) or reject the ciphertext
4: m← DECk1(C)
5: return m

Alicem

kpub

Bob

kpriv

OK/NO
m

c

(R, t)

Figure 2.2: ECIES

used as a key exchange protocol. We show the one party’s computations in algo-
rithm 4. The only secret employed is each party’s secret key. Curve parameters
and obviously public keys are publicly available.

We sketch this algorithm too in figure 2.3.

Algorithm 4 ECDH
Input: Alice’s private key a, curve parameters (E, G)
Output: Shared secret k
1: A← [a]G
2: send A to Bob
3: receive B = [b]G from Bob (b being Bob’s secret key)
4: P ← [a]B
5: return xP

Note that P = [a]B = [a]([b]G) = [ab]G. Bob computes the same way so
that both parties obtain the point P = [ab]G, which is otherwise computable
only knowing both secret keys. A third player is then not able to compute P
unless she can solve ECDLP. The x-coordinate of the point is then typically
used as shared secret for subsequent computations.

2.3.3 ECDSA

An algorithm for digital signatures is derived from the classic DSA and ported
to the elliptic curve domain. Elliptic Curve Digital Signature Algorithm, or
ECDSA, is used to authenticate the origin of a message. It works as described
in the algorithms 5 and 6. We will discuss the algorithm in deep details in the
next section, since the rest of the work is developed for this signature algorithm.
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Alice

random a

shared secret k

Bob

random b

shared secret k

A = [a]G

B = [b]G

Figure 2.3: ECDH

The ECDSA algorithm is standardized by NIST in [NIS09] and it is con-
sidered to meet high security requirements, being its use allowed for top secret
information [NSA10].

2.4 Signature Algorithm Details

In this section, we will discuss in detail the major points in the ECDSA compu-
tations: a secure parameters generation, the actual signature generation, and a
description of the verification procedure.

Alicem

kpriv

Bob

kpub

OK/NO
m

S

Figure 2.4: Digital Signature Protocol

The ECDSA protocol is a digital signature protocol, and therefore it is aimed
at communication authentication. It can be used for example in protocols of
the type challenge-response. In this scenario, a subject willing to authenticate
to another will be requested to sign a message. This operation is shown in
figure 2.4. A private key is used to generate a signature of a given message.
The algorithms then allow a different subject to verify whether the signature
was generated using the given private key. The verification proceeds without
actually knowing the private key that was used, but using a different one, called
the public key, that is mathematically related to the private one.

We also give graphical representations of the algorithms in the ECDSA fam-
ily in figures 2.5, 2.6 and 2.7.
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2.4.1 Parameters Generation

rand

private key d

[d]G

public key Y

Figure 2.5: Key Pair Generation

The choice of the curve parameters is of course an important issue to guaran-
tee the security of the system. For this reason there are a number of standardized
curves, allowing the use of either different base fields and different key lengths,
to meet different needs and security levels.

The NIST curves are referred to as P-l for the prime field and as B-l for the
binary field, where l denotes the length of the key to be employed.

A different option is to generate a random curve for a particular need. A
procedure exists to generate a curve at random allowing for a subsequent ver-
ification of it to be truly random. This algorithm is standardized in [ANS05].
Anyway the use of a random curve is not a common option, due to the great
algorithm complexity when one wants to ensure the meeting of security con-
straints.

Once a curve has been chosen, either standard or random, a key pair is
needed to use the algorithms. Such a pair is of course made up of a secret and
a public key.

Consider a curve E/Zp, we denote by n the order |E| of the curve. For
security reasons, the order n must not be a smooth number (i.e. with small
prime factors). The reason for this constraint is the Pohlig-Hellman attack,
see [PH78]. The order is considered secure if it is of the form n = hq, where q
is a large prime, and h, called the co-factor, must satisfy 1 ≤ h ≤ 4. The NIST
curves have prime orders.

As for most elliptic curve protocols, the private key is a random scalar. In
other words an integer between 1 and n− 1, i.e. a random element of Z∗

n. Let’s
denote with l the length in bits of n, l = dlog2 ne. Therefore, the overall length
of the secret key is l bits too.

The public key corresponding to a secret d ∈ Z∗
n is computed as Y = [d]G.

Retrieving the secret from the public key requires solving an ECDLP, and is
therefore considered not feasible.

It is important to note that the keys in the pair are very different objects:
the private key lies in Z∗

n, while the public key is a point on the curve E/Zp.
In signature algorithms, some computations are done as integer computations
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modulo n, in other words, being n prime, in the field Zn. This field should not
be confused with Zp, which is the field for the curve construction and which the
point coordinates belong to.

2.4.2 Signature Generation

rand

k

[k]G

r

e+rd

k

s

hash

m

e

d

Figure 2.6: ECDSA Signature Generation

Signature computation is done by means of algorithm 5.

Algorithm 5 ECDSA Signature Generation
Input: private key d, curve parameters (E, G), message m
Output: signature S
1: e← hash(m)
2: k ← random ∈ [1, . . . , n− 1]
3: P ← [k]G
4: r ← xP mod n
5: s← (e + rd)/k mod n
6: return S = (r, s)

In the unlikely case either r or s is 0 the algorithm is run again with a
different k to obtain valid values.

The hash funcion employed in the step 1 of the algorithm must return an
l-bit value and it should obviously satisfy all the requirements usually requested
for a cryptographic hash function.

The random value k generated in step 2 is called the nonce and it is im-
portant it is truly random and never reused. If two signatures are generated
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with the same nonce k = k1 = k2, it is trivial to retrieve the secret key. In
this case it holds r1 = x[k]G = r2. This makes it also trivial to identify
such signatures. From s1 = (e1 + rd)/k and s2 = (e2 + rd)/k we can write
(e1 + rd)/s1 = k = (e2 + rd)/s2. It follows

e1

s1
− e2

s2
=

(
r

s2
− r

s1

)
d

from which the secret key can be obtained since the message hashes and all the
involved values except d are known.

Also if the random generation function has any weaknesses it can be easy to
exploit it to recover the secret key from the resulting signatures, as in the case
presented in [NNTW05].

The point P = [k]G computed in step 3 and more specifically its x-coordinate
is the ephemeral key used to mask the other values. Being the nonce discarded
at the end of execution, it is not possible to compute again the same ephemeral
key, which therefore is responsible for carrying information about the nonce in
a non-invertible way.

Eventually, s is the actual signature, being computed mixing the message
hash with the secret key.

The output of the algorithm is the whole pair (r, s). Without the value r
there would be no information about k.

2.4.3 Signature Verification

The steps to verify an ECDSA digital signature are presented in algorithm 6.

Algorithm 6 ECDSA Signature Verification
Input: public key Y = [d]G, curve parameters (E, G), message m, signature S
Output: signature validity
1: e← hash(m)
2: u1 ← e/s mod n
3: u2 ← r/s mod n
4: T ← [u1]G + [u2]Y
5: w ← xT mod n
6: if w = r then
7: return valid signature
8: else
9: return not valid signature

10: end if

We now write the verification algorithm in a more compact form to better
analyze it and understand its correctness. This is important to understand some
attacks shown in the sequel.

For readability we intend all the operations implicitly in Zn, i.e. modular
additions, products and inversions. Starting from the generation algorithm the
following holds

s =
e + rd

k
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Figure 2.7: ECDSA Signature Verification

From the field structure of Zn, we can write it as

k =
e + rd

s

Using these values as scalar factors to multiply the curve generator we obtain

[k]G =
[e

s

]
G +

[
rd

s

]
G

By substituting the public key Y = [d]G, the equation becomes

[k]G =
[e

s

]
G +

[r

s

]
Y

Note that the right part is exactly the point T computed by the verification al-
gorithm, since u1 = e/s and u2 = r/s. From the signature generation equations,
it holds r = x[k]G mod n, thus

r = x[k]G mod n = xT mod n = w

2.5 Scalar Multiplication Algorithms

The heaviest computation in the signature algorithm is represented by the el-
liptic curve scalar multiplication. We examine the main algorithms used to
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implement it in ECDSA context. Note that these are just portings of the square
and multiply algorithm normally employed for modular exponentiation.

2.5.1 Double and Add

The basic method is described in algorithm 7.

Algorithm 7 Binary Left-to-Right Double-and-Add
Input: base point G, scalar factor k = (kl−1 · · · k1k0)2
Output: point multiplication P = [k]G
1: P ← O
2: for i in l − 1 downto 0 do
3: P ← 2P
4: if ki = 1 then
5: P ← P + G
6: end if
7: end for
8: return P

The algorithm can be understood considering the binary representation of
the scalar k. The following recursion is then exploited

(kl−1 · · · kµki)2 = 2(kl−1 · · · kµ)2 + kµ−1

Multiplying the generator by these values leads to

[(kl−1 · · · kµkµ−1)2]G = [2] [(kl−1 · · · kµ)2]G + [kµ−1]G

There exists also a version of the algorithm proceeding in the opposite di-
rection when scanning the scalar k, known as right-to-left. It has an analogous
overall structure, and we don’t need the details here.

2.5.2 Double and Always Add

A vulnerability of algorithm 7 is due to the conditional branch of step 4. This
leads to different and recognizable power consumption patterns depending on
the key bits, which are exploitable in so called SPA attacks. To address this
problem, an algorithm is developed. We present it in algorithm 8. As it can be
noted it always performs point addition. The absence of branches makes the
power consumption resulting from different bits of the key undistinguishable.

2.5.3 Montgomery Ladder

The Montgomery Powering Ladder algorithm, shown in algorithm 9, was origi-
nally proposed by [Mon87] and analyzed by [JY02]. In this case too, the power
consumption does not depend upon the scalar factor bits.

2.6 Integer Multiplication Algorithms

Many attacks exist that target the scalar multiplication operation, and it actu-
ally seems natural to attack this operation. We will see many examples of this
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Algorithm 8 Binary Left-to-Right Double-and-Always-Add
Input: base point G, scalar factor k = (kl−1 · · · k1k0)2
Output: point multiplication P = [k]G
1: P0 ← O
2: for i in l − 1 downto 0 do
3: P0 ← 2P0

4: P1 ← P0 + G
5: P0 ← Pki

6: end for
7: return P0

Algorithm 9 Montgomery Ladder
Input: base point G, scalar factor k = (kl−1 · · · k1k0)2
Output: point multiplication P = [k]G
1: P0 ← O
2: P1 ← G
3: for i in l − 1 downto 0 do
4: P1−ki

← P1−ki
+ Pki

5: Pki ← 2Pki

6: end for
7: return P0

in chapter 4. It is anyway important to consider also another operation involved
in the signature computation, i.e. modular multiplication. Since our attack will
target the multiplications in prime modular fields, we present in this section the
most used algorithms for integer multiplications. We will see in the sequel how
these relate to modular multiplications.

In the cryptographic applications, the involved numbers are often large inte-
gers that do not fit in a computer register. For this reason, algorithms to manage
multiple precision integer arithmetic must be developed. We will therefore show
such multiple precision algorithms, assuming that the computer is able to han-
dle the basic single precision operations, such as addition and multiplication of
w-bit numbers.

2.6.1 Operand Scanning

The most natural procedure, in fact also known as schoolbook multiplication,
is the operand scanning, which we describe in algorithm 10. We consider w-bits
words and σ-words operands. We show the algorithm working on operands of
the same length, because this is the case we will deal with. Anyway, it can be
easily adapted to operands of different lengths.

In the algorithm we use the notation (uv) to denote a 2w-bits value which
is the concatenation of u and v, i.e. u2w + v.

2.6.2 Product Scanning

Algorithm 11, known as product scanning, is basically a restructuring of the
scanning cycles.
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Algorithm 10 Operand Scanning Integer Multiplication
Input: factors a = (aσ−1 · · · a1a0)2w and b = (bσ−1 · · · b1b0)2w

Output: product c = ab = (c2σ−2 · · · c1c0)2w

1: ci ← 0 ∀i ∈ [0, . . . , 2σ − 2]
2: for i in 0 to σ − 1 do
3: u← 0
4: for j in 0 to σ − 1 do
5: (uv)← ci+j + ajbi + u
6: ci+j ← v
7: end for
8: ci+σ ← u
9: end for

10: return c

Algorithm 11 Product Scanning Integer Multiplication
Input: factors a = (aσ−1 · · · a1a0)2w and b = (bσ−1 · · · b1b0)2w

Output: product c = ab = (c2σ−2 · · · c1c0)2w

1: R0 ← 0
2: R1 ← 0
3: R2 ← 0
4: for k in 0 to 2σ − 2 do
5: for {(i, j) : i + j = k, 0 ≤ i, j ≤ σ − 1} do
6: (uv)← ajbi

7: (ε, R0)← R0 + v
8: (ε, R1)← R1 + u + ε
9: R2 ← R2 + ε

10: end for
11: ck ← R0

12: R0 ← R1

13: R1 ← R2

14: R2 ← 0
15: end for
16: c2σ−1 ← R0

17: return c

The operands are anyway used in the same way: a step of the algorithm
is dedicated to combine each pair (ai, bj) of words through a single precision
multiplication. As we will see, this means that the developed attacks work on
both algorithms without modifications.

We use the same notation (uv) as above for multiplication results. Plus,
we denote with (ε, R) the addition results, meaning the sum yields the single
precision word R and a possible carry out ε, which can assume the values 0 and
1.



Chapter 3

Side Channel Attacks

In the history of cryptography, encryption algorithms have been menaced by
constantly improving attacks, ranging from the early known ciphertext attacks,
in which the cryptanalyst is able to find secret information knowing only a
ciphertext, to modern chosen plaintext attacks, when the attacker can choose a
plaintext and get it encrypted by a remote device. All these attacks share an
important common feature: they are aimed at attacking the structure of the
cryptographic algorihtm.

In the recent times, cryptographic algorithms have become very strong against
such kinds of mathematical attacks, and the match between cryptographers and
cryptanalysists seems greatly unbalanced in favor of the former. But attacks of
a very different kind, known as side channel attacks, are arising today. Instead
of attacking the mathematics underlying an algorithm, the attacker targets the
actual implementation. This leads to a number of different ideas and threats to
be taken into account. The main disadvantage of such a kind of attack is the
need for physical access to a cryptographic device, but this is becoming a less
important point with the advent of modern widespread use of digital hardware
in every application field. It indeed often happens that the owner of the device
and the owner of the secret stored inside it do not coincide. This happens for
example with mobile sim’s, credit cards, pay tv cards, and other such mobile
devices.

It seems therefore important to study the techniques employed for such at-
tacks, and the possible ways to defend against them.

3.1 Classification of Attacks

A first class of side channel attacks is represented by passive attacks. These are
based on the passive observation of information related to the cryptographic
hardware, that should not be normally taken into consideration. The attacker
does not modify the hardware he has access to, but monitors a measure of some
quantity, including for example the power consumption or the electromagnetic
radiation. These quantities are supposed to be related to the secrets inside the
device in a way that depends on the considered algorithms. After collecting
sets of data measurement, the attack proceeds by analyzing such datas by cor-
relations or pattern matching techniques. This analysis, together with suitable

21
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hypotheses, allows to retrieve the sought secret information.
A different class of side channel attacks is made up by active attacks, or fault

attacks. In this case, an attacker aims at somehow influence the behaviour of
a device to make it perform in a wrong way. To reach this goal, a number of
techniques have been developed and present different properties. We will sketch
them in the following section.

A fault attack proceeds by provoking an unexpected behaviour of the device,
collecting resulting wrong data, and eventually analyzing them together with
some hypotheses. If suitable conditions are met, this again leads to the discovery
of secret information. Usually, it is necessary to compare correct and wrong
results corresponding to the same encryption to recover secret information. For
this reason, fault attacks are commonly refered to as differetianl fault attacks,
or DFA. We will see examples of details of this kind of technique in chapter 4.

3.2 Fault Injection Techniques

A classification of fault attacks is as follows:

Non-invasive attacks The attacker limits his action on normally accessible
interfaces of the device, without inducing physical modifications to the
system. This class is typically populated by passive attacks, such as power
analysis, timing analysis, but some fault attacks also belong here, i.e. those
aimed at disturbing the clock or power signals.

Semi-invasive attacks The attacker is expected to unpack the chip but there
is no electrical contact with the surface. Fault attacks belonging to this
class are evolving very quickly for their relative cheapness. Typical exam-
ples of this class are optical and laser attacks.

Invasive attacks The maximum level of interaction with the chip is reached,
in that depackaging and depassivation of it are employed. This way very
powerful attacks become possible, like direct probing or forcing of electrical
signals. These techniques are anyway related to very high costs to be
performed.

Various techniques exist to induce a faulty behaviour during the computation
of a cryptographic device. A summary is as follows:

Cosmic rays It is well known, from space travel application, that cosmic rays
interacting with electronic hardware cause mulfunctioning. Typically, the
consequence is a bit flip in memory areas, as it is described for example
in [GA03]. Anyway, it is not an easy task to produce and direct cosmic
rays to the wanted surface or area, and waiting for a cosmic ray to hit the
desired location by chance is too time consuming.

High energy radiation Other kinds of radiation, like a-, b-rays can induce
faulty behaviour in hardware. Having less energy than cosmic rays, these
radiations cannot penetrate the packaging of chips, and thus require semi-
invasive operation. With X-rays the situation is slightly better, because
the more energy of these radiations let them to penetrate the packaging,
see [BECN+06] and [GA03]. The main problems for such techniques reside
again in the difficulty to target the specific location.
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Heat Electronic devices have a well defined range of temperatures allowing
them to work correctly. If the chip is overheaten it starts showing a
faulty behaviour. The idea is to tune the temperature to such a value
that allows certain operations to be carried out correctly while others are
faulted, e.g. to obtain working writes but faulty reads. For more details,
see again [BECN+06] and [GA03]. The equipment needed for such attacks
is not too expensive, a strobe lamp being enough, but the difficulties are
related to the reachable precision, besides the fine-tuning needs. The
induced faults typically hit many locations and are not narrow in time.

Light attacks It is possible to induce currents, and thus faults, in the device
because of photoelectric effect. To exploit this, it is needed to focus light
on the target chip area. For this reason, lasers are good tools in that they
offer great directionality of the beam, and a description of their use can
be found in [MRL+06] and [LAM+07]. A cheaper mean of fault injection
is white light. It is possible to induce faults also by simply focusing an
intense light for a short time, as presented in [SA03].

Ion beams Focused ion beams can interfere with the chip too. They can be
used to obtain a number of effects, ranging from the destruction of the
passivation layer to allow electrical probing of the inner circuit, to local
ionization of the silicon that is interpreted as a signal by the circuit.

Power line alteration Since physical access to the device is assumed, it is
possible to consider altering the power supply of the chip. Two ways are
mainly employed. Namely, injecting spikes on the power line or keeping the
power at a different level throughout the whole computations. Both these
techniques clearly lead to possibly modifying the data being processed
by the device, in a way that tightly depends on the specific hardware.
Typically, bit flips in read and written data appear, as well as errors on
the program flow caused by wrong instructions being decoded by the logic.
Practical results obtained with power spikes are presented in [ABF+03],
[SH08] and [KQ07]. Results with underfeeding the power line are showed
in [BBPP09].

Clock line alteration Modifications of the supplied clock, usually called glitches,
can also be considered, as are described in [AK96]. The effects of clock
alteration are due to the program counter logic. Being this much simpler
than the rest of the computer, it is possible to make the program counter
register to increment while the rest of the computer has not yet completed
its execution. This then leads to an instruction execution being skipped,
and thus to modify the behaviour of the program.

External electrical field Applying a controlled electrical field near the device
is another possible method of fault injection. Again, the problem is tar-
geting specific areas on the chip, moreover, if the chip is not unpackaged,
some knowledge of the internal layout is needed. In [QS02] it is presented
a way to induce eddy currents near the circuits by use of magnetic fields.
This method of fault injection can be very precise and does not need the
chip to be unpackaged.
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3.3 Fault and Error Models

To effectively develop a fault attack, it becomes necessary to have a formal
description of the physical alteration that happen in the circuit. For this reason
two models are introduced to better describe the system and abstract from the
physical layer. Namely, a fault model is used to characterize the way followed
to induce the fault and its properties. An error model is instead constructed
to describe the logical alterations that affect the algorithm exectuion. Once
an attacker has access to such characterization of his operations, it becomes
possible for him to analyze the behavior of the wrong computations and, making
hypotheses and checking results against them, obtain some knowledge about
secret information.

A fault model has a couple of directions to be classified into.
It is possible to characterize the fault basing on the control on the fault

location:

no control it is not possible to control the location of the fault,

loose control it is possible to choose a target variable,

complete control a particular bit can be targeted by the fault.

The possibilities in timing control are also interesting, and are classified as:

no control it is not possible to control the location of the fault,

loose control a block of few operations is targeted,

precise control the exact time is chosen and a certain operation is therefore
hit.

An error model specifies in which way the error affects the algorithms, and
it is possible to differentiate among the following:

The error, seen at the algorithm level, can behave in different ways:

• change the value of a variable,

• modify the flow control of the program.

In case a variable is modified, the number of affected bits can be:

• single faulty bit,

• few faulty bits, e.g. a byte,

• random amount of faulty bits.

The fault type can be one of:

set/reset the bit or variable is set to 1 or 0

bit flip the bit has its value flipped

random the bit or variable is changed in a random way

In case the program flow is altred, typically we observe a conditional com-
putation taking the wrong branch.

For the construction of the fault model, it can be useful to take into account
also the probability distributions of the various characterization dimensions.
Usually, no control over a location means that one among a certain number N
of locations can be hit with a probability 1/N .
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3.4 DFA Example

We present here an example of fault attack, to help the reader in better under-
standing the mechanisms that lead an attacker to exploit a computation error
to discover some secret.

A very simple yet effective attack is considered, namely the so-called safe-
error attack. Let us consider a digital signature function sd(m) using the secret
key d. A corresponding signature verification function vy(m) using the public
key y will be used to analyze the results.

Suppose that the attacker is able to manipulate the device in such a way that
it computes the function sd′(m) where d′ is obtained by forcing one of the bits
of d to assume the value 0. The actual manipulation technique is not important
here. It suffices that the attacker can consider this effect among his hypotheses.
The attacker can then apply the verification function, since he is in possession
of the public key. We see how the output of this verification will lead to a secret
leakage.

If the verification fails the attacker can tell that the bit of the private key
at the position of the bit that was changed has value 1. If, conversely, the
verification succeeds, then the attacker can tell that the bit was not actually
changed, and therefore has value 0.

If the attacker has the possibility to repeat this attack applying the technique
to force a bit for every position within the secret key, he can then recover the
whole key by hitting one bit of it at a time.

Of course this attack is very simple, and its major weakness is the need
for a very precise fault injection technique, that can imply very high costs. A
challenge for a fault attack is to be effective with the most flexible hypotheses as
possible, thus to possibly reduce the cost of the whole procedures, both in terms
of laboratory equipment and of computational effort to analyze the results. We
will see in the next chapter several other examples, specifically targeting elliptic
curve based protocols, and their characteristics in terms of performance and
feasibility will be discussed.
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Chapter 4

Known Attacks Against
Elliptic Curve Based
Protocols

We present the most important known results on fault attacks to elliptic curve
based cryptosystems, with a particular focus on ECDSA.

We start considering the basic elliptic curve operation: the scalar multiplica-
tion. This is usually implemented with the double and add algorithm, which is
just a different name for the square and multiply algorithm commonly used for
exponentiation in the RSA cryptosystem (see chapter 2 for more details on the
algorithm). Because of this inherent analogy between the scalar multiplication
and the modular exponentiation operations, it is possible to port some attacks,
originally targeting RSA, to attack elliptic curve cryptosystems too.

We then analyze attacks thought specifically for the elliptic curve scalar
multiplication. In this section we show some vulnerabilities that can arise from
a too simplistic implementation of an elliptic curve based cryptosystem and the
ways to protect from these menaces.

Eventually we consider a full fledged cryptosystem such as ECDSA and the
known methods to attack it by means of fault injection.

In the following we adopt the usual notation, concentrating on the scalar
multiplication P = [k]G on the curve defined by E/Fp : y2 = x3 + a4x + a6.

4.1 Attacks Mutuated from RSA

The following are attacks originally thought to target the RSA crpytosystem.
Because of the inherent similarity between modular exponentation and elliptic
curve scalar multiplication, the same ideas can be used. However, typical el-
liptic curve based cryptosystems involve more operations than the bare scalar
multiplication, and this is the cause of the main disadvantages of the shown
attacks.

27
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4.1.1 Faults on Intermediate Values During the Multipli-
cation

An attack on the RSA cryptosystem was described in [BDL97] which exploits
faults on intermediate operands during the square and mutliply algorithm ex-
ecution. Such attack has been ported to elliptic curve scalar multiplication
in [BMM00] since it uses the same overall algorithm, i.e. the double and add. It
is possible to adapt this kind of attack to both the left-to-right and the right-
to-left versions of the double and add algorithm.

The attack needs a fault model of single-bit flips happening at random mo-
ments during the scalar multiplication. By collecting a sufficient amount of
faulty results it becomes possible to retrieve all the bits of the secret scalar k in
blocks.

As stated by the authors, in the general case, given a curve E/Fp, said
m = o(log log log p), l the length in bit of k, the number of needed faulty results
is O((l/m) log l). The attack proceeds by simulating the device computation
starting from suitable hypotheses, checking whether a fault on one bit might
have produced some of the collected output.

The authors sketch a way to perform the attack to ElGamal decryption as
well. It does not seem obvious how to apply it to ECDSA because of the nonce.

4.1.2 Sign Change Attack

A different idea, derived from an RSA equivalent, comes from [BOS04].
The fault model assumed requires the attacker to be able to change the sign

of an intermediate point used during the computation, i.e. changing only the
y-coordinate of a target point Qi, leading to Q̃i = −Qi to be used instead. A
faulty multiplication result Q̃ is then output in place of the correct Q = [k]P .
Computing Q + Q̃ can lead to bits of k to be revealed in blocks as described in
the article.

While most of the attacks rely on modifying in some way the curve over
which the computations are made, the sign change attack does not require to
change such structure. This has the important (dis)advantage of being less
practically detectable by the device, since a simple verification of the involved
points is no more effective. The attack is possible on various double and add
algorithms, though, according to the authors, it is easier to realize on NAF-
based implementations.

4.1.3 Faults on the Scalar Factor

In [BDH+98] it is presented an attack to the RSA cryptosystem in which a fault
on the secret exponent is exploited. The idea can be easily ported to elliptic
curve scalar multiplication. Suppose a single bit flip in the representation of k
is injectable, producing k̃ = k ± 2i for some i. An attacker then uses both a
correct result Q = [k]P and a faulty one Q̃ = [k̃]P to recover the i-th position
bit of k by simply computing Q − Q̃ = ∓2iP and checking this value against
all possible candidates. It is also possible to use the attack even with multiple
bit errors, given a heavier computation effort: said l the length of k, the attack
runs in O(lt) time instead of O(l) in the case of t-bit errors.
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The authors also show how to extend this attack to DL-based systems, in
particular they describe a way to attack classical DSA using the same faults
and ideas shown above.

To adapt this attack to ECDSA very little effort is necessary. Let d =∑l−1
i=0 di2i, and there be a bit-flip fault yielding dj → d̃j for some j. Denote the

faulty key by d̃. A faulty signature is produced such that S̃ = (r, s̃) where s̃ =
(e+ d̃r)/k mod p and d̃ = d+(d̃j −dj)2j . Let ũ1 = e/s̃ mod p, ũ2 = r/s̃ mod p.
Computing T̃ = [ũ1]P +[ũ2]Y , where Y is the public key [d]P , makes the attack
possible.

For each j ∈ 0, . . . , l − 1 and σ ∈ {−1, 1}, check whether T̃ + [σ2jr
s̃ ]P = r. If

that is the case then d̃j−dj = σ and we can recover the whole secret d, faulting
one bit of it at a time.

4.1.4 Safe-Error Attack

Consider an implementation of the double-and-always-add algorithm as a pro-
tection against SPA. If a precise timing control fault model is assumed it is
possible to inject a fault during the addition step in a given iteration i. If an
invalid output is detected then the fault is effective, ki = 1. If, conversely, the
output is correct, then the addition is dummy, hence ki = 0. The secret k has
been completely broken.

4.2 Elliptic Curve Scalar Multiplication Attacks

The attacks in this section are thought specifically for the elliptic curve scalar
multiplication. They typically involve the use of some modification of the curve
structure. This way it is possible to make a discrete logarithm problem arise
which is different from the original one and likely easier to compute.

4.2.1 Chosen Input Point

The first attack proposed by [BMM00] performs an injection of a malicious base
point directly as input to the device. In the case it does not perform a check
to establish whether or not the point lies on the curve then the computation
takes place on the shifted curve Ẽ as previously described. The attack consists
in carefully choosing a weak curve and a point on it in such a way that it has
a small or smooth order n′. Feeding the device with this point will result in an
output point for which the discrete logarithm is solvable, thus obtaining some
c for which k ≡n′ c holds. Repeating the process for other input points and
related orders n′i we obtain more equations that can be used to recover the
secret k by means of the Chinese Remainder Theorem.

The previously described attack does not actually use any fault and is not
to be considered feasible in practice, since it relies only on a somehow trivial
implementation error. It is however useful to understand the general mechanism
of more sophisticated attacks.
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4.2.2 Faults on the Base Point

A second attack in [BMM00] considers a less näıve device, which in turn checks
for the input point to be on the expected curve. The way to make the device
compute on a shifted curve is now an actual fault injection on the register
containing the point coordinates. The device then computes kP̃ ∈ Ẽ instead of
kP ∈ E and the logarithm computation is feasible again. A minor disadvantage
of this procedure is the missed possibility to preventively choose an insecure
shifted curve, having to rely on chance instead.

The curve over which the computation has been done on can be recovered
from the output point (xQ, yQ), since the following holds: ã6 = y2

Q−x3
Q−a4xQ.

In case the coefficients define an elliptic curve (i.e. the discriminant does not
nullify when ã6 is put in the curve equation), we have reduced the original
logarithm problem to a new one.

The problem now is we do not know the base point P̃ for the logarithm
computation. We have therefore to rely on knowing a precise fault model, e.g.
suppose that P̃ differs in only one bit from the input point P . We can then test
all candidates for P̃ and verify which one belongs to the curve Ẽ, and be able
to compute the discrete logarithm with respect to that base point.

Considering a more general fault model, in the case only one coordinate of
P is changed (assume x for simplicity, faulty y case is analogous), the point can
still be retrieved. [CJ05] notes that x̃ is a root of x3 + a4x + ã6 − y2, and can
therefore be guessed among at most three choices.

The authors in [BMM00] propose a way to apply this attack to the ElGamal
decryption as well. Slight modification must be taken into account since we do
not have access to the y-coordinate of the output point. They claim that the
logarithm may still be computable if again P̃ differs in only one bit from P .

The attack can also be adapted to ECDSA, again with slight modifications
to meet the cryptosystem properties. Since the base point is now fixed and
publicly known, our problem is only to retrieve the Ẽ curve parameters, which
again cannot be done since we do not have the y-coordinate of the output point.
Moreover, also the x-coordinate now belongs to a small set of possible values
which we have to explore. Given an appropriate fault model we can however
recover the nonce k and thus the private key in subexponential time.

4.2.3 Faults on the Underlying Field

A fault can be injected to affect the representation of the field K on which the
curve is defined. Such idea has been presented by [CJ05]. Let Fp be a field of
prime characteristic p and E/Fp : y2 = x3 + a4x + a6 an elliptic curve. If we
manage to modify the internal representation of p we can attack the system to
recover the secret k even with an only pair of correct and faulty results.

Let p̃ be the faulty value which the system relies on for its computations. The
performed operation then becomes Q̃ = [k]P̃ where P̃ = (x̃P , ỹP ), x̃P ≡p̃ xP and
ỹP ≡p̃ yP , and can be viewed as to happen over a curve Ẽ/Zp̃ : y2 = x3+ã4x+ã6

with ã4 ≡p̃ a4 and ã6 ≡p̃ ỹ2
Q − x̃3

Q − a4x̃Q ≡p̃ ỹ2
P − x̃3

P − a4x̃P .
Knowing the points P̃ and Q̃ it is possible to recover p̃ since it divides

(ỹ2
Q − x̃3

Q − a4x̃Q) − (ỹ2
P − x̃3

P − a4x̃P ). This is made possible by the fact
that today’s curves use small primes for p with respect to modern factorization
algorithms possibilities, thus making the discover of p̃ feasible.
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It is now possible to solve the discrete logarithm on smaller curves and
reconstruct the value of k through the CRT ( [CJ05]).

If ECDSA is considered, we don’t have access to the complete output point
Q but only to a value r for which r = x̃Q mod n holds where n is the order
of P in the original curve E, so that we cannot recover p̃. Anyway, if we have
a somehow stronger fault model such that we know that only one bit of p is
flipped, we can try all possible candidates ξi for p̃. For each ξi we can search
for an x̃Q in a small set (since n is roughly the same size as p) and consider the
curve Ẽi/Zξi , then proceed as described above by solving the discrete logarithm
on Ẽi. The problem of this method resides in the low probability for Ẽ to have
smooth order and give rise to an easily solvable DL problem [BMM00].

4.2.4 Faults on the Curve Parameters

A fault on the a4 coefficient leads to a similar situation. The device output Q̃
lies on Ẽ : y2 = x3 + ã4x + ã6. Knowing P and Q̃ we can compute ã4 and ã6 as
the solutions to y2

P = x3
P + ã4xP + ã6 and y + Q2 = x3

Q + ã4xQ + ã6, then solve
the DL.

4.2.5 Attacking the Montgomery Ladder

The Montgomery Ladder algorithm for double and add computation has the
important property of not using the y-coordinate of the points during the com-
putation. This has been exploited by [FLRV08] to conduce an attack by feeding
the device with a malicious point. The main idea is that about half of the pos-
sible x-coordinate values lead to a point on the given curve, while the other half
leads to points on the twist of the curve, which is typically cryptographically
less secure.

It is therefore straightforward how to conduce the attack by asking the device
for a computation based on a malicious x-coordinate, corresponding to a point
on the twist, and then solving the DL on the twist.

The obvious countermeasure is to validate the input or output (or both)
coordinate, by simply verifying that x3 + a4x + a6 be a quadratic residue in Fp.
In the case the device carries out this verification we can however try to modify
the value injected faults to bypass the check. Given a model in which only one
register is affected and yields a faulty value, the authors show a technique to
recover the secret k with only one or two faults (in case of large registers).

The attack can be furthermore adapted to multiplications with a fixed base
point, thus obviously belonging to the curve and not to the twist. In this case
the authors propose to inject faults both at the beginning and at the end of the
computation. Now, having more than only two faulty results leads to a more
efficient attack, the overall attacking procedure remaining the same.

4.3 Attacks to ECDSA

The attacks in this section target the whole ECDSA cryptosystem, and are yet
the most effective. The attack we will propose in chapter 5 belongs to this type.



32 CHAPTER 4. KNOWN ATTACKS

4.3.1 Faults on the Group Order Parameter

A fault model for which we inject a fault during the loading of the group order
n is used by [KIIK08] to fully recover the secret key d from a target ECDSA
implementation. Suppose we obtain from the device a bunch of faulty results
(ñi, r̃i, s̃i), assuming also that we don’t know the ñi’s.

Suppose a small prime ξ exists such that ξ | ñi and ξ - d. Suppose also
that s̃i ≡ξ 0 and r̃i 6≡ξ 0. Then (e + rd)/k ≡ξ 0 and, with high probability,
(e + rd) ≡ξ 0 and hence d ≡ξ −e/r̃i. For a given ξ, we can recover d mod ξ
by computing the various −e/r̃i as candidates for d mod ξ for each admissible
signature, i.e. a signature for which s̃i ≡ξ 0 and r̃i 6≡ξ 0 holds.

Analyzing the frequencies of the candidates occurrences leads to discovering
of d mod ξ as described by the authors. It is then possible to reconstruct d by
CRT if sufficiently many ξ’s were used. The article notes that, for a common
160-bit key d, using ξ’s among all primes less than 131 suffice and 250000 faulty
signatures are required to recover d with high probability.

4.3.2 Nonce Recovering

In [SM09] is presented an attack which exploits instruction skips to recover some
bits of the nonces k used in signature computation. These can be later used to
perform lattice attacks (see [HGS01] and [NS03]) to recover the secret key d.
The presented attack can be adapted to every variation of the double and add
algorithm. We will now consider a left-to-right implementation.

Assume a doubling operation is skipped while computing [k]P , say Q̃ the
faulty result and Q the corresponding correct one. Let l be the length in bits of
the nonce k, and l − i be the faulty iteration. Let also k̃ = (ki, . . . , k0)2. It can
be shown that [2]Q̃−Q = [k̃]P .

We now try to find k̃, i.e. some bits of the used nonce k.
Q̃ can be easily recovered from the faulty signature (r̃, s̃) since xQ̃ ≡n r̃.

Being both xQ̃ and r̃ less than p, and being n roughly the same size as p we can
consider all the (few) possibilities for xQ̃, and hence for Q̃.

To retrieve the correct point Q another way has to be followed. Let ũ1 =
e/s̃ mod p, ũ2 = r/s̃ mod p. It can be shown that Q = [ũ1]P + [ũ2]Y holds,
where Y is the public key [d]P .

Our only unknown value is now k̃, which indeed is only i bits in length. For
sufficiently small i we can explore the whole space and find the k̃ actually used
in the signing process. This eventually leads to feasibility of lattice attacks to
recover the whole secret key d.

The authors state that 50 signatures are sufficient to recover a common
160-bit key.

4.3.3 Known Nonce Bits

An attack based on the same underlying ideas is presented in [NNTW05]. Here
the authors discuss a way to inject a fault during the random choice of k.
Because of the fault, the value k is not truly random, but it is known to have
some bits always set to 0 in the lowest positions.

An important characteristic of the attack is the maintained validity of the
output signature, even in faulty conditions. This happens because the same
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nonce k, being it really random or faulty, is used throughout the whole algo-
rithm. This is both an advantage and a disadvantage from the attacker’s point
of view.

It is advantageous because the device cannot simply discard invalid signa-
tures to counter this attack. It is anyway also a disadvantage because the
attacker must develop some procedure to identify the signatures that were pro-
duced after an occured fault. This is not simply achievable by using only the
resulting signatures. The authors indeed propose to monitor the power con-
sumption of the device to evaluate the time passed before cryptographic opera-
tions start. When this time differs from the average the corresponding signature
is taken to be derived from a faulty nonce.

If a number of signatures are collected and correct estimations of the faulty
nonces are made, it is possible again to employ the so-called lattice attack to
find the secret key, as already showed in the previous section.

4.4 Final Considerations

The presented attacks cover a wide range of possiblities and performance, as
well as ideas to break a given algorithm or cryptosystem. We can sketch here a
resume of what we can understand by studying these attacks.

Great computational effort Attacks are often feasible theoretically, needing
only subexponential time or amount of faulty signatures. However, this
does not always correponds to practical feasibility.

Check of parameters If a device does not check for the parameters it is given
to be valid, then it becomes easy to cheat the device and make it perform
computations that can lead to secret leakage. See for example the attack
in section 4.2.1. Anyway, this method is not much suited to every elliptic
curve based protocol, because it wants the algorithm to use points or some
variable recevied from exteranl world. This is not the case for example
in ECDSA, where the algorithm receives only the hash to be signed and
generates all the other values at random or has it memorized internally.
Moreover, the countermeasure is very cheap and indeed it is very unlikely
to be find an device unprotected with respect to this kind of attacks.

Scalar multiplication Some attacks are not difficult to perform on the prim-
itive scalar multiplication. It can happen that attacks lead to move an
original ECDLP problem to a smaller or weaker curve, thus letting it to
be solved more easily. It can however become unclear how to adapt this
to attack more complicated algorithms, like ECDSA, that employ more
operations to produce their output. Anyway, the scalar multiplication is
the most characterizing operation of elliptic curve based algorithms, and
therefore it is the main target of all the presented attacks.

Very precise fault If the fault is injectable with a high level of precision, e.g. a
given variable can be altered in a known way for sure, then it is quite easy
to recover some secret, for example by cheking whether the injected fault
was effective or not, or whether the resulting signature was valid or not.
Attacks of this type are described in the sections 4.1.3 and the 4.1.4. This
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however has implications of large costs to generate the fault accordingly
to the hypotheses, since it is necessary to repeatedly fault every bit or
portion of the secret that is sought for. This is a quite wide concept, the
more precise knowledge of the fault and more precise the control on space
and time is, the more easy an attack becomes.

The most interesting attacks to ECDSA are the ones reported in sections
4.3.1, 4.3.2 and 4.3.3, since they target the whole signature scheme. However
they also have some drawbacks. Namely we either need a large amount of faulty
signatures (attack 4.3.1) or a fault model quite difficult to obtain in practice
(attack 4.3.3). Attack 4.3.2 is instead quite practical and not much greedy of
resources.

In the subsequent chapters we will show how to develop a different attack,
with some similar aspects to the one in section 4.3.2, to obtain the possiblity to
exploit faults in a different operation. Instead of attacking the scalar multiplica-
tion, normally considered in the presented attacks, we will move to a commonly
less considered and protected part of the algorithm. The performance of our
attack remains of the same order of magnitude of attack 4.3.2. Hoewever, the
attack target is different and the associated fault and error model is not difficult
to obtain.



Chapter 5

Proposed Fault Attack

This chapter introduces the actual attack procedure. We start describing the
funding ideas that lead us to develop the attack, considering its greatest inno-
vation point, i.e. the possibility to perform an attack by inducing a fault into a
different position of the algorithm than the scalar multiplication. Then we show
an overview of the whole attacking procedure, from the analysis of the collected
results to the discovery of the secret key used by the attacked device.

A deeper insight to the fault analysis is then shown. We start considering a
suitable hypothesis for the induced fault and show how this impacts on the final
results. Each possibility is taken into account, leading to an overall algebraic
description of the faulty results, which will be the ones collected from the real
device computations.

The possible faults are then again considered to explain how to recover some
intermediate values. Each faulty result is indeed carrying information about
some variable not directly accessible from the outside of device. Getting to
know these variables is a starting point to reconstruct the whole secret key.

One more point is the possibility to use the logarithm search procedure. This
is an important factor to achieve reasonable and feasible performance of the
mentioned analysis. It is derived from a rewriting of the signature equations
that, through adapting an algorithm to compute discrete logarithms, exploits a
favorable property of the variables to effectively speed up the analysis.

Once these hidden variables are discovered it becomes possible, through the
use of more procedures, to use them to reconstruct the whole secret key. Such
procedures are then detailed with a deep analysis of every issue that can show
up.

It must be kept in mind that all the procedures described are a general idea
of development for the attack and have to be tuned to the specific conditions
and results to obtain the maximum performance. The factors that influence
such performance are highlighted and commented in the next sections.

Eventually, we also consider some ways to possibly extend the work to more
complicated fault models than the one considered, since we focused only on a
very simple model. Two ideas are sketched together with a few results related
to them.
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5.1 Notation and Conventions

We present a brief summary of conventions used in the chapter. The purpose
of naming conventions is to keep a certain level of consistency between different
sections to help reading. Each variable will be explained in detail in the text,
when it is introduced. This list should serve only as a quick reference for the
large amount of variables used in the sequel.

Sets
Z the integer ring
Q the rational field
Zn the quotient Z/nZ
Zp basic finite field of characteristic p
Z∗

p = Zp \ {0} the multiplicative subgroup of Zp

E/Zp an elliptic curve over the field Zp

Operator Notation
1/k finite field multiplicative inverse k−1

[k]P elliptic curve scalar multiplication
Elliptic Curves
O point at infinity of an elliptic curve
P = (xP , yP ) a point on a curve E
|E| order of the curve
|P | order of a point on the curve
G : 〈G〉 = E the generator of the curve E
Integers
p a large prime
n = |G| = |E| prime order of (the generator of) a curve
ECDSA
d private key
Y = [d]G public key
e hash of the signed message
k nonce
r = x[k]G first signature value
s = (e + rd)/k second signature value
u1 = e/s first verification scalar
u2 = r/s second verification scalar
T = u1G + u2Y verification point
Faults
z̃ faulty value of variable z
ε = z̃ − z error characterizing a faulty variable in additive

form
Indexes and Lengths
l a variable’s length in bits
σ a variable’s length in words
w the device’s word length in bits
i, j loop iteration indexes
ı̄, ̄ iteration index of the faulty computation
λ = ı̄ + ̄ fault exponent
µ word-wise faulty bit index
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5.2 Attack Rationale

Almost every known attack against elliptic curve cryptosystems mainly targets
the scalar multiplication, commonly refered to as the [k]P operation. It actu-
ally seems quite natural to try modifying in some extent the points or the curve
during the computation, since this is the heaviest and most characterizing op-
eration. It has to be noted however that in ECDSA the scalar multiplication
does not involve the secret key.

When a fault is targeting the scalar multiplication, the resulting signature
is typically not valid because the nonce is used again during the computation
of s. The only way to have in output a valid signature is to modify the nonce k
in a way that affects both the scalar multiplication and the computation of s.
This is actually done in the attack proposed in [NNTW05], but the fault model
they propose is not easy to realize in practice.

Moreover, by faulting the scalar multiplication it is not easy to understand
the kind of fault or where it happened, since a faulty r̃ represents some sort
of random point on the curve. In other words, a strong a-priori knowledge of
the injected fault must exist. The common way to find some relation binding
the faulty r̃ to the real one, [k]G, is to know to some extent how a faulty k̃
can be used to represent the fault. To understand this, consider for example
a fault that can be represented as k̃ = k − 2j . In this case, the output r̃
will be related to the expected correct value as it is the x-coordinate of the
point P̃ = [k̃]G = [k − 2j ]G = [k]G − [2j ]G = P − [2j ]G. The output of
faulty computations can usually be checked against this kind of relations to
help finding the occured fault. It is clear that a random fault during the scalar
multiplication can not be easily recognized and identified.

These observations lead to think of a fundamentally different type of attack.
We do not affect the scalar multiplication, willing to hit the computation of s
instead. This way, we obtain an r value which is still correct w.r.t. the nonce
k. A problem has to be faced up to, since every time a signature is generated,
a different nonce is used and the resulting signature is different. This makes
impossible to study the comparison of corresponding correct and faulty compu-
tation. Therefore, we will rely on r as the only source of information. In some
occasions we will even manage to find the correct s starting from a faulty one
thanks to the knowledge of r. The correctness of r allows us to relax the hy-
potheses about the knowledge of the fault. We will indeed be able to determine
whether the fault was of the foregone type or not, and even to localize it with
some precision, doing computations starting from the output values.

The operations involved in the considered computation are modular multi-
plications, inversions and additions. We focus our attention on the multiplica-
tion operations because those are the operations involving the most interesting
values, i.e. d and k.

5.3 Attack Overview

Let’s now introduce an overall description of the proposed attack. The fault
model we consider assumes the fault happening during one of the two multipli-
cations constituting the final stage, i.e. the computation of the value s, reported
in step 5 of algorithm 5. We will show in detail the differences arising from the
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two cases in the following sections. The fault is also supposed to hit only one
word of one of the factors. In other words it hits one of the variables being
multiplied at step 5 of algorithm 10, or at step 6 of algorithm 11.

The last condition we impose is the fault being a bit flip. This means the
operand gets one bit of its representation changed from 0 to 1 or vice-versa.
This error model is quite realistic, see for example [BBPP09]. We can express
such an error as a → a ⊕ 2µ, however, we will use a different representation
to make it possible to analyze it algebrically. Given these hypotheses, we de-
rive a representation of the output faulty s value and analyze it to get back
informations about the multiplication involved during the fault.

We have to go through two main steps in order to get the whole secret key.
Namely, our attacks can be split in

1. word retrieval,

2. key reconstruction.

While the fault hits a factor of one multiplication step, we will be able to
retrieve information about the other factor being multiplied by the faulty one.
This factor is actually a word of one of the multiple precision values involved. In
the best case we are able to retrieve the whole word. We will see two techniques
to perform this retrieval:

• exhaustive search,

• logarithm extraction.

The exhaustive search is a natural and simple method. The logarithm com-
putation is made possible by some rewritings of the signature equations, and
provides a great performance improvement. Moreover, this kind of search will
give important information on whether the introduced fault was of the foregone
type or not, by simply failing to find a solution.

Once we recover a word, we will be able to use it to reconstruct the secret
key. In this case too, we have different ways to perform the operation, depending
on which multiplication and operand were affected by the fault:

• direct key words permutation,

• lattice attack.

This last stage of the attack has quite good performance, and it is possible to
tune the algorithms depending on the actual data.

5.4 Faulty Computation Analysis

Let us now consider the evolution of the algorithm when it is affected by the
fault. We will obtain a description of the outputs of the device resulting from
the given error.
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5.4.1 Bit Flip

As described in section 5.3, we suppose a single bit flip fault model. Introducing
a bit flip means changing one bit of a given value. A formal description of the
fault is

a→ a⊕ 2µ

It is however too complicated to handle such a representation of the error, since
we are going to deal with operations in integer ring arithmetic. We therefore
use a different equation to represent the same fault. The notation we will use
in the following to denote a faulty value is:

ã = a + ε

This notation allows us to handle the arithmetic of the fault, at the cost of a
sign indetermination. We use the variable ε to generically denote an additive
error value.

ε = ±2µ

Such a value must be interpreted as follows:

• µ ∈ [0, w − 1] is the flipped bit position in the w-bit word,

• the ± takes care of the fault direction, i.e. whether it is a flip-up (0→ 1,
sign +) or a flip-down (1→ 0, sign −).

This kind of fault can happen for example as a consequence of a faulty load
operation, or for some modification in a register.

5.4.2 Fault Propagation in the Integer Multiplication

We now show how an injected fault propagates through the multiplication and
analyze the resulting values. Note that the operands are referenced only in step
5 of algorithm 10 or in step 6 of algorithm 11. We suppose that the fault happens
when accessing one of those values during one iteration of the algorithm.

The algorithm can be rewritten for better understanding in compact form
as

c =
σ−1∑
i=0

σ−1∑
j=0

ajbi2(i+j)w

We refer to the multiplications as tij = ajbi. Thus obtaining

c =
σ−1∑
i=0

σ−1∑
j=0

tij2(i+j)w

Consider the iteration (̄ı, ̄) of the algorithm, thus specifically the multipli-
cation ābı̄ and a bit flip fault on ā, yielding ã̄ = ā + ε. This is without loss
of generality, for the simmetry of the algorithm w.r.t. the two operands. The
result of the faulty multiplication is

t̃ı̄j = ã̄bı̄

t̃ı̄j = (ā + ε)bı̄
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t̃ı̄j = ābı̄ + εbı̄

and, refering to the correct result,

t̃ı̄j = tı̄j + εbı̄

The whole multiplication thus runs as

c =
σ−1∑
i=0

σ−1∑
j=0

t′ij2
(i+j)w

where

t′ij =
{

t̃ij = tij + εbi if (i, j) = (̄ı, ̄)
tij otherwise

The faulty iteration (̄ı, ̄) intervenes in that it influences which word bı̄ gets
propagated and also the alignment of the fault in the final result. In effect, we
can write the final result as

c̃ =
∑

i

∑
j

t′ij2
(i+j)w

c̃ =
∑
i 6=ı̄

∑
j 6=̄

tij2(i+j)w + t̃ı̄̄2(ı̄+̄)w

c̃ =
∑
i 6=ı̄

∑
j 6=̄

tij2(i+j)w + tı̄̄2(ı̄+̄)w + εbı̄2(ı̄+̄)w

c̃ =
∑

i

∑
j

tij2(i+j)w + εbı̄2(ı̄+̄)w

c̃ = c + εbı̄2(ı̄+̄)w

Remembering the definition of the bit flip ε = ±2µ, we can write the final
expression for the faulty product

c̃ = c± bı̄2(ı̄+̄)w+µ (5.1)

We can see from (5.1) that the result of the faulty product is again writable
as the correct value plus an additive error. Such an error is composed of the
word bı̄ together with a shifting factor 2(ı̄+̄)w+µ. As we will see in the sequel,
we will be able to retrieve information about the interested word bı̄ and about
λ = ı̄ + ̄.

5.4.3 Fault Propagation in the Whole Signature

We saw how an integer multiplication gets modified if the supposed fault hap-
pens. Although, the actual operations used in ECDSA computations are modu-
lar multiplications. The algorithm usually employed for modular multiplications
in the final stage of ECDSA is quite simple, it barely consists of an integer mul-
tiplication followed by the appropriate modular reduction. We cite the well
known library OpenSSL [Ope] as an example of use of this algorithm. In this
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scenario, we don’t need special care to handle our description of the fault. If
c = ab and z = ab mod n, it in effect holds

z̃ = c̃ mod n

z̃ = c± bı̄2(ı̄+̄)w+µ mod n

Let’s consider the actual multiplications involved in ECDSA. Namely, in step
5 of algorithm 5. Such operations are rd and k−1(e + rd).

Suppose the fault hits the multiplication c = rd, and specifically a word of
r. Then, denoting by λ the sum ı̄ + ̄, the result can be written as

c̃ = rd± dı̄2λw+µ mod n

This leads to the output

s̃ = k−1(e + c̃) mod n

s̃ = k−1e + k−1c̃ mod n

s̃ = k−1e + k−1(rd± dı̄2λw+µ) mod n

s̃ = s± k−1dı̄2λw+µ mod n (5.2)

Suppose the fault hits the multiplication s = k−1(e + rd) instead, and in
particular a word of k−1. It then holds

s̃ = s± bı̄2λw+µ mod n (5.3)

where b = e + rd mod n.

5.5 Exhaustive Search

We show how to recover the word bı̄ involved in the error affecting the output
value s. The notable point is that the admissible errors are few in number,
compared with the key space size. While the key is typically a few hundreds
bits long, the error we are looking for is only w bits long. Common devices
manage words of 32 bits, but other devices could use words as short as 16 or
even 8 bits. This allows to make hypotheses on the fault and subsequently test
every possible value, according to the hypotheses, thus recovering the sought
data.

Let’s consider the case, shown in section 5.4, of the fault happening during
the last multiplication. We saw it holds

s̃ = s± bı̄2λw+µ mod n

where we again denote with b the computed value e + rd mod n. Obviously, s̃
makes the signature verification fail. We can therefore guess the error part ε
and verify the correctness of our guess by applying the verification algorithm to
the value ŝ computed as

ŝ = s̃− ε mod n = s̃∓ bı̄2λw+µ mod n

There is only one correct s, and therefore only one ε that leads to the verification
succeeding.

The error ε is made up by the following elements:
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• the faulty multiplication loop iteration ı̄,

• the faulty word ̄,

• the faulty bit position within the word µ,

• the direction of the bit flip,

• the operand word bı̄.

The complexity of the search process can therefore be expressed as the number
of signature verifications to be made to find the error ε. Any a-priori knowledge
of one or more of the previous elements reduces the search space for ε, thus
improving the search process performance.

In the worst case, i.e. if no information is available, the information needed
for the error retrieval is equivalent to

• λ = ı̄ + ̄: log(2σ − 1) bits,

• µ: log w bits,

• sign: 1 bit,

• bı̄: w bits.

For example, for a common 256-bits key, and 32-bits device, we have

σ = l/w = 8

and a number N of needed verifications

N = 15 · 32 · 2 · 232 ≈ 24+5+1+32 = 242

Suppose we have some informations about the fault instead, like knowing
precisely the hit iteration (̄ı, ̄) and the flipped bit position µ, in this case we
have to test only N = 232 signatures.

As can be seen, the heaviest contribute is given by the sought word bı̄. In
either case, the procedure is fully parallelizable, since each signature verification
can be carried out by a single processor.

Let’s now analyze the case the fault hit the first multiplication instead, i.e.
rd. It is not easy as before to guess the error affecting the final s̃, but we show
how to use the verification algorithm to retrieve the error in this case too. The
idea is based on the attack decribed in [BDH+98].

Consider the fault r̄ → r̄ ± 2µ during the iteration ı̄. As seen before
(equation (5.2)) this time the error is made up by the inverse of the nonce too,
k−1.

s̃ = s± k−1dı̄2λw+µ mod n

Remembering the signature verification algorithm presented in section 2.4,
we can write the following, refering to the faulty s̃

s̃ = s + ε

s̃ =
e + rd

k
± dı̄2λw+µ

k
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k =
e + rd

s̃
± dı̄2λw+µ

s̃

k =
e

s̃
+

rd

s̃
± dı̄2λw+µ

s̃

multiplying by the generator G of the curve we obtain

[k]G =
[e

s̃

]
G +

[r

s̃

]
Y ±

[
dı̄2λw+µ

s̃

]
G (5.4)

We note that in equation (5.4) the only unknown value is ±dı̄2(ı̄+̄)w+µ. This is
because, although k is not known, we have access to r, which carries information
about the x-coordinate of the point [k]G, being r = x[k]G mod n. From this
consideration we derive the possibility of an exhaustive search over the unkonwn
variables. Guessing the correct values lets equation 5.4 to hold. It can be noted
that the degrees of freedom for the search are the same as the case seen above.

For the nature of the verification step, which does not involve directly the
scalar s but performs a comparison of point coordinates instead, it happens
that the values leading to a correct verification may be not unique. Anyway,
empirical tests made evidence that, for a curve of size suited for cryptographic
applications, false positives never happen.

In both cases (either multiplication affected), the search procedure reveals
the value bı̄2λw+µ or dı̄2λw+µ. From now on, we will refer only to bı̄ for brevity,
remembering that the same holds for dı̄ too. They remain two kinds of uncer-
tainty:

• we do not know the alignment of the word, since we can not tell which
power of two is a factor of bı̄ and which contributes in µ,

• we know only the sum λ = ı̄ + ̄ and can not tell the separate values ı̄ and
̄.

We show how to deal with these issues in the next sections.
A minor point has also to be discussed. Namely, in the very unlikely case

(P ≈ 2−w) that the word bı̄ is 0, it can be noted that there is no error on the
output, thus making it not possible to retrieve this word.

5.5.1 Word Alignment

As stated above, given the retrieved value bı̄2λw+µ, we can not a-priori know
which power of two is a factor of the value bı̄ and which amount have to be
considered in µ.

Consider the example below.

• w = 8

• bı̄ = (01101010)2

• µ = 3

The recovered data is therefore (01101010)2 · 2λ8 · 23. We can not distinguish
among these cases:

• (01101010)2 · 2λ8 · 23
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• (11010100)2 · 2λ8 · 22

• (00110101)2 · 2λ8 · 24

The information recovered from the search process is equivalent to an odd
integer b′ and a power of two 2λw+µ+h, such that it holds

bı̄2λw+µ = b′2λw+µ+h

It is not possible to distinguish between different admissible values of h. From
the equation above we can write

bı̄ = b′2h

We know that bı̄ is at most w bits in length, i.e. it holds bı̄ < 2w. Therefore it
is possible to put the bound b′2h < 2w. Besides this we can not discern the real
value of h.

An interesting value for the subsequently described attack is the expected
value of the uncertainty we have over the shift of the word. We want to give a
measure of how much a word can be shifted, i.e. how many possible retrieved
words correspond to a certain value. We consider that a word can be shifted
at most k positions to the right if it has k many trailing 0’s, and k positions
to the left if k many leading 0’s are present. As an example, if the word bı̄ =
(zw−1 · · · z0)2 = (001 · · · 10)2 is being used in computations, it can be retrieved
as 4 different possible shifted values. Supposing the word is evenly distributed
in [0, 2w − 1], said k the number of possible shifts of the word, the expected
value of k is E[k] ≈ 3.

5.5.2 Word Position

The second mentioned problem is the uncertainty about the retrieved word
index ı̄. We in fact may know only the sum λ = ı̄ + ̄. The indexes ı̄ and ̄ can
assume values in the set [0, σ − 1], then λ ∈ [0, . . . , 2σ − 2].

Table 5.2: Fault on given iteration
ı̄ (fault) λ (possible result)

0 0, . . . , σ − 1
1 1, . . . , σ
...

...
σ − 2 σ − 2, . . . , 2σ − 3
σ − 1 σ − 1, . . . , 2σ − 2

We show in table 5.2 how the sought index ı̄ is related to the retrieved λ.
Briefly, if the fault happens on iteration (̄ı, ̄), it follows that λ ∈ [̄ı, . . . , ı̄+σ−1].
This set is only half as big as the whole domain of λ, i.e. [0, . . . , 2σ − 2].

In table 5.3 we show the same information, in a reversed form. In other
words, we show the possible values for ı̄ which could have generated a given
retrieved λ. We note that the case λ = σ − 1 is associated with the maximum
uncertainty, while for λ = 0 and λ = 2σ − 2 there is no uncertainty at all, since
we know that ı̄ is respectively 0 or σ − 1.
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Table 5.3: Faulty iteration retrieval
λ (retrieved) ı̄ (possible source)

0 0
1 0, 1
2 0, 1, 2
...

...
σ − 2 0, 1, 2, . . . , σ − 2
σ − 1 0, 1, 2, . . . , σ − 2, σ − 1

σ 1, 2, . . . , σ − 2, σ − 1
σ + 1 2, . . . , σ − 2, σ − 1

...
...

2σ − 3 σ − 2, σ − 1
2σ − 2 σ − 1

5.6 Logarithm Search

We now propose a way to achieve a great performance improvement in the search
procedure. Namely, we see how it is possible to compute the sought word as an
elliptic curve discrete logarithm.

The presented ideas are based on the observation that, even if the nonce k is
clearly not known outside the device, it is possible to have access to informations
about it through the value r. This is where the importance of having a correct
computation of this value becomes evident.

The value r is bound to the x-coordinate of the point [k]G through a modular
reduction: r = x[k]G mod n. We can anyway make a guess on [k]G. For equation
2.2, we know that the possible values for x[k]G are at most 2. Admissibles values
for the coordinate are r and possibly r + n. For each possible x-coordinate, we
have 0 or 2 corresponding points, because of the symmetry of the elliptic curve
defining polynomial 2.1 w.r.t. the y-coordinate. Moreover, said x the guessed
coordinate, it must be checked also whether the value x3+a4x+x6 is a quadratic
residue modulo n. In case the resulting value is not a quadratic residue, then
the coordinate has to be discarded.

Summarizing, the possible elliptic curve points arising from a given r are as
follows:

(r, y1) (r,−y1)
(r + n, y2) (r + n,−y2)

where y1 satisfies y2
1 = r3 + a4r + a6 mod n and y2 satisfies y2

2 = (r + n)3 +
a4(r + n) + a6 mod n. Clearly, if r is coming from a correct computation [k]G,
at least one of the above pairs of points must exist, i.e. at least one of r and
r + n must yield a quadratic residue. There is no way of determining which
of these 2 or 4 points is the correct [k]G, therefore we will have to repeat the
following attack procedure up to 2 or 4 times, until a solution is found. We will
refer to the considered hypothesis as the point R, and we intend the following
to be implicitly repeated for every candidate R.

Let’s analyze separetely the two possible situations arising from a fault on
the two different multiplications that can be affected by the fault.
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Suppose the fault occurs on the multiplication rd. We already saw the
expression for the output s̃ value

s̃ = s± k−1dı̄2λw+µ

We know also how to rewrite the verification algorithm to express a way of
checking hypotheses on dı̄, from equation (5.4)

[k]G =
[e

s̃

]
G +

[r

s̃

]
Y ±

[
dı̄2λw+µ

s̃

]
G

It is possible to further manipulate this equation to obtain

±
[
dı̄2λw+µ

s̃

]
G = [k]G−

[e

s̃

]
G−

[r

s̃

]
Y

[dı̄]
[
2λw+µ

s̃

]
G = ±

(
[k]G−

[e

s̃

]
G−

[r

s̃

]
Y

)
If we substitute to the unknown [k]G a guess R we obtain

[dı̄]
[
2λw+µ

s̃

]
G = ±

(
R−

[e

s̃

]
G−

[r

s̃

]
Y

)
In this form, we have evidence of a scalar multiplication involving the key
word dı̄ as scalar, some known data on the right side, and unknown data
λw + µ that can assume only a small range of values. We can now compute
the word dı̄ as logarithm using a guess for

[
s̃−12λw+µ

]
G as base point, and

±
(
R−

[
s̃−1e

]
G−

[
s̃−1r

]
Y

)
as target point.

In case the fault occurs during the second multiplication, the equations are
only slightly different. The output from the device is

s̃ = s± bı̄2λw+µ

We can again consider the verification algorithm and write

s̃ =
e + rd

k
± bı̄2λw+µ

s̃ =
e + rd

k
± kbı̄2λw+µ

k

k =
e

s̃
+

rd

s̃
± kbı̄2λw+µ

s̃

Performing the point multiplication, we obtain

[k]G =
[e

s̃

]
G +

[r

s̃

]
Y ±

[
bı̄2λw+µ

s̃

]
[k]G

[bı̄]
[
2λw+µ

s̃

]
[k]G = ±

(
[k]G−

[e

s̃

]
G−

[r

s̃

]
Y

)
We again can substitute the R point, leading to

[bı̄]
[
2λw+µ

s̃

]
R = ±

(
R−

[e

s̃

]
G−

[r

s̃

]
Y

)
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In this case too, it appears clear how to perform a logarithm computation to
obtain the sought word bı̄.

In both the cases shown above we wrote our problem in the form of an
ECDLP. Our writings anyway expose a special case of the problem, since there
is a-priori information about the scalar factor. Namely, we know in advance that
such factor is very small if compared with the order n. Actually, our sought
value is only w bits long. This makes it possible to perform the logarithm
computation in tractable time. We can in effect adapt the baby-step-giant-step
algorithm saw in section 2.2 to this special case. Recall equation (2.4)

k = αm + β

Since we know that k < 2w, we just have to tune m and the bounds on α and
β to restrict the search phase to interesting values. This makes the logarithms
computable, see section 6.1 for details.

5.7 Key Reconstruction

It is now possible to use the words retrieved through the search process described
above to compute the whole secret key. It happens again that the fault position
influences the procedure needed to recontruct the key. We now show how to
proceed in the two situations.

5.7.1 Direct Key Words

We analyze the easier case first, i.e. if the fault occured on the first multiplication
rd. In this case we know the recovered word is directly one word of the key,
dı̄. Clearly, the attack should be repeated a number of times to gain access to
all the various words. The questions to face up to are the ones mentioned in
section 5.5. If no hypotheses are made, we would have to discover the key only
by trying every value and check whether the guess d̂ satisfies [d̂]G = Y . This
means trying all the permutations of the σ retrieved words, possibly considering
a different alignment for each word, as described above.

The number of scalar multiplications needed to make this verification can
quickly explode and become unfeasible.

Anyway, it is possible to use the information from the retrieved λ to sort the
words in the correct way without the need for scalar multiplications.

Remember from what was shown in table 5.3 that there are cases for which
we have no uncertainty, i.e. if λ = 0 or λ = 2σ − 2. These can be used to put
apart the words d0 and d2σ−2. After that it is possible to proceed with the same
consideration but on a problem of smaller size. Indeed, once the words d0 and
d2σ−2 are known, the values λ = 1 and λ = 2σ − 3 carries no more uncertainty
too and it becomes possible to know also which words belong to the 1-st and
(σ − 2)-th position. It is possible to continue this way until the full ordering of
the key words is known.

5.7.2 Lattice Attack

In case the second multiplication is affected by the fault, the method to obtain
the key is slightly more complicated. Since we came to know a word bı̄, the
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immediate consideration is indeed the following

e + rd mod n = α12(ı̄+1)w + bı̄2ı̄w + α0

where the α0,1 represent the unknown part of e + rd.
It is not possible to derive some bits of the key from the relation above. In-

formally, this is because of the modular reduction modn involved, which causes
the high bits coming from the product rd to scramble the rest of the number.
What is needed is a number of equations of this form. Having more datas it
will become possible to compute the unknown d involved in the equations.

Since r changes at every execution of the signature algorithm, it is easy to
have the needed datas. Moreover, it should be pointed out that for the following
attack to be more efficient, it would be useful that the equations come from the
case ı̄ = 0. For more considerations on this, please see [NS03]. This is not an
issue anyway, since we can suppose to hit the wanted word with probability
P = 1/σ, and we are also able to identify the good cases by looking at the λ’s.
In other words, it can be necessary to repeat the attack σ times, and to keep
only the results for which it holds λ = 0.

In this scenario, the equation above becomes

e + rd mod n = α2w + bı̄

The important fact to note is that α is smaller than n, actually being only l−w
bits long. We can rewrite this, as

e + r

2w
d mod n =

bı̄

2w
+ α mod n

r

2w
d mod n =

bı̄ − e

2w
+ α mod n (5.5)

The problem, put in this form, is known in mathematics literature as hidden
number problem, and its relationship with the DSA family of algorithms is deeply
analyzed in [HGS01] and [NS03].

We limit ourselves to a brief description of the problem. The right side of
equation 5.5 can be considered an approximation of the left side because, as we
saw above, α is small w.r.t. to the rest of the numbers involved. Thus, a system
of equations like 5.5 is a linear system with approximated known terms. This
can be reconduced to a closest vector problem in an integer lattice, whence the
attack name. The solution of the system is simply the unknown d. We managed
to retrieve the secret key in this case too.

To address the problem of word alignment (see section 5.5), we have two
main ways to proceed. The actual choice should be a combination of the two to
obtain the best performance, considering the cost of the word retrieval.

It is possible to try the lattice attack more than once, using every possible
alignment of the words. Or it is possible to discard some values, keeping only
the certain ones, i.e. the words of the type (1 · · · 1)2. We know that r and thus
e+rd change at every execution, and the retrieved word bı̄ can be considered to
be evenly distributed in [1, 2w−1], therefore the discussed type of word appears
with probability P ≈ 1/4.
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5.8 More Fault Models

Let’s now consider a few different fault models, to see how the attack ideas can
be extended or adapted in different scenarios.

Because of the nature of the integer multiplication, if the fault gets more
complicated than the base case of single bit flip, the error increases in size and
becomes dependent on more data, thus increasing also the computational effort
needed to perform the search procedures. The cases leading to a still simple
description are shown below.

In the following sections we sketch the ideas that can be used to perform an
attack, without describing in deep detail the problems that can arise.

5.8.1 Word Set to 0

Consider a word of a factor being set to 0 before intervening in the multiplica-
tion. Said a and b the two factors,

c = ab =
σ−1∑
i=0

σ−1∑
j=0

ajbi2(i+j)w

we obtain, as a consequence of the fault t̃ı̄̄ = 0,

c̃ =
σ−1∑
i=0

σ−1∑
j=0

tij2(i+j)w − ābı̄2(ı̄+̄)w

c̃ = c− ābı̄2(ı̄+̄)w

If this fault happens during the multiplication rd, we can apply the same
search procedure seen above to find the value tı̄̄ = r̄dı̄. This is of course 2w
bits long, so the logarithm extraction must be adapted to the case. The point
here is that we know r, we can therefore try the integer division tı̄̄/rk for every
k ∈ [0, σ − 1]. For k = ̄ we obtain the key word dı̄. It is moreover of negligible
probability that tı̄̄ is divisible by words of r other than the correct one. We
can repeat this for many signatures as it has been done in the attack described
in the previous sections to reveal all the words. Then it is possible to apply the
same technique to discover the ordering of the words exploiting the retrieved
λ’s.

5.8.2 Few Changed Bits

Let’s now consider a more general fault type. The only constraint we impose is
again that the fault hits one iteration of the multiplication. We anyway allow a
variable to be modified in an almost random way.

Suppose the fault is on a word of r, r̄, and suppose it is modified in a
completely unknown way. The computed value is

c̃ = c + ∆dı̄2λw

where we denote with ∆ the error affecting the faulty word of r:

r̃̄ = r̄ ±∆
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Again, we know a way to recover ∆dı̄. Since the key is always the same, we
can collect many signatures affected by this kind of fault, and then, for each
word position ı̄, compute the corresponding word dı̄ as the greatest common
divisor of the retrieved ∆dı̄’s.

Suppose now the fault hits a word of d instead of r. The faulty result is then

c̃ = c±∆r̄2λw

It is no more so simple to retrieve the key, but we anyway found it is possible
to get to full knowledge of the key if we know in advance that the fault modifies
less than half the number of bits in the word, i.e. the number of faulty bits N
satisfies N < w/2.

We know that we can recover, through the logarithm, the value ∆r̄. The
words r̄ are not constant, but we can exploit the fact we know r. We therefore
can get to know the fault ∆ that was affecting the key word dı̄. A Ccllection
of many results of this kind can be used to guess in which way the bits of the
word have been modified.

The idea is to find a way to express the value ∆ as a set of bit flips. If
it is possible to know whether a bit flipped up or down, then it is possible to
reconstruct the key. A way to reach such a goal is to write the error ∆ in
NAF form, i.e. as a signed digit number (zw−1 · · · z0) with zk ∈ {−1, 0, 1}. The
NAF form is chosen because it is the signed digit representation with the lowest
number of non-zero digits for a given ∆, and thus there is a good chance that
this is the actual occured fault. Each digit carries the information codified as

zk = 0 unmodified bit
zk = 1 bit flip up
zk = −1 bit flip down

This estimation of the bit flips is of course not always correct, and the limit
for this idea to work is, as said above, the number of bit flips occured. If they
are always less than w/2, simulated experiments show that a number of faulty
signatures can lead to discover the involved key word. To do this, we just have
to collect many informations for evey key word bit k. If, for given bit position
k, a majority appears of digits zk = 1 the key bit is 0, while if, conversely, there
is a majority of zk = −1 then the key bit is taken to be 1. Remember that it is
also possible to check the recovered key by comparing [d]G with the public key
Y . In case it is not correct, we can modify the key hypothesis starting from the
more ambiguous bits, since the difference in the amount of positive and negative
digits is an index for the hypothesis quality.

The described idea leads also to consider that a less uncertain fault can be
used in a similar way. In case we know in advance that the modified bits are
always flipped in a known direction, i.e. always up or always down, then we can
use faults on d also if they are truly random, since we no more need the NAF
conversion.

It seems more difficult to apply procedures similar to the ones described in
the section to faults on the multiplication k−1(e + rd), because in this case the
operands enjoy no special properties, i.e. there is no constant or known operand.
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5.9 Final Remarks

We have presented a novel method to develop a complete fault attack against
the ECDSA digital signature algorithm.

To achieve this purpose we took ideas from some known attacks, namely [], [],
and adapted them to ours. A very common and easy to obtain fault model has
been considered, with the purpose of letting the attack remain at a quite general
level. A theoretical line of attack has been completely developed, with every
step well defined from the fault injection to the final recovery of the secret key.
Once it is possible to apply the considered fault model and some results are
collected, a precise way to derive the secret key is shown to be effective.

A minor disadvantage of this attack is the possibility of a trivial counter-
measure, i.e. if the device checks for the validity of a signature to be output then
it immediately will refuse to output every signature interesting for our attack.
This is due to the fact that the r value is correct with respect to the generated
nonce k, while the s value is wrong. Anyway, this is quite common to a number
of attacks and the full signature verification is considered to be a quite complex
countermeasure.

The main advantages of the proposed attack are to be found among the
following:

• The fault needs only to appear during the multiplication iterations we
have described. The actual positions within the word or loop iteration do
not matter for the attack effectiveness. Anyway, if the fault hits a specific
position known a-priori, then the attack performance improves.

• The procedures employed to recover the intermediate values used in the
computations can identify a-posteriori whether or not the fault was of
the foregone type. In other words, it is possible to set apart the faulty
signatures derived from an interesting fault from the ones that have been
corrupted in some other way and are therefore not to be considered. This
way it is possible to proceed with the key reconstruction.

• The position of the fault is on an operation that is typically considered
less interesting than the scalar multiplication and therefore probably less
protected. With this we want to demonstrate that also such operation
has to be protected in order to have a secure implementation of an overall
very secure algorithm like ECDSA.

In the next chapters we show a more practical point of view, considering
simulations and an actual physical realization of the developed procedures, as
well as an idea for a very cheap countermeasure to protect against this new
attack.
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Chapter 6

Analysis of the Attack

We now present the practical results that have been obtained by applying the
attack in a real world scenario.

Initially, software simulations of the various parts of the attack have been
performed. We report here the main results obtained and a description of the
test methodology. Simulations were meant to test both the attacck correctness
and performance. A comparison of the performance and characteristics of the
proposed attack with other known attacks is then presented to highlight the
obtained results.

Finally we present also the methodology and technique used to attack a real
device. We describe the equipment and the reasons why its low cost can be
sufficient for this attack. In the last sections we show the results obtained when
testing the fault injection at various levels, from the use of a program consisting
in only simple multiplication operations to a whole ECDSA signature.

6.1 Software Simulations

Prior to the actual fault injection on the physical device, software simulations
have been made to test feasibility and performance of the attack.

The main tool adopted for the task is Sage [SAG], a Python library for
algebra and other mathematics. Different kinds of simulations have been made
to test the various parts and versions of the attack.

The exhaustive search procedure (see section 5.5) has been initially tested
for faults happening on the final multiplication k−1(e+rd). Being the signature
verification algorithm quite slow, the procedure has been tested considering de-
vices using small words, at most w = 16 bits, and key sizes of at most l = 256
bits. This is because the procedure needs to perform the verification procedure
for every candidate ŝ = s̃− b̂ı̄2λ̂w+µ, and the value b̂ı̄ satisfies 0 < b̂ı̄ < 2w. Em-
ploying a small word length thus heavily reduces the number of trials needed.
Moreover, the algorithm is quite slow because for every candidate ŝ it is nec-
essary to compute its inverse ŝ−1 mod n for the signature verification. This
leads to the need of running the whole verification algorithm for every different
candidate.

The exhaustive search has been also employed for the word retrieval when
the fault hits the first multiplication, i.e. rd. In this case the procedure can be

53



54 CHAPTER 6. ANALYSIS OF THE ATTACK

sped up a little, because there is no need for repeated signature verifications. It
is possible to improve the search so that the needed operations are limited to a
few scalar multiplications at setup time, followed by subsequent point additions.
Recalling equation (5.4), we can rewrite it as

[k]G =
[e

s̃

]
G +

[r

s̃

]
Y ± d̂ı̄

[
2λ̂w+µ̂

s̃

]
G

We can therefore precompute the values

T0 =
[e

s̃

]
G +

[r

s̃

]
Y

P =
[
1
s̃

]
G

and subsequently add and subtract [2λ̂w+µ̂]P to an accumulator starting from
T0. The needed operations are therefore only point doublings and additions,
thus saving the time needed for scalar multiplications, which are the heaviest
computation to be performed in the verification algorithm.

Logarithm search procedures have been tested to check the correctness of the
retrieved result. Recall that in this case it is possible to have a collision in the
computed points, since the point [k]G is only partially known, i.e. it is possible
that different scalar factors exist leading to the same sought x-coordinate value.
This can lead to the logarithm finding a scalar factor which is not correct with
respect to the sought word. The procedure actually often finds wrong values
when tested on a system involving small numbers, for example a curve defined
on a prime number 16 or 32 bits long. This is however not a real problem,
since such sizes are obviously not suited for cryptographic applications. When
dealing with curves of suitable size, e.g. 192 or 256 bits, a point collision never
happens and the scalar factor extracted by the logarithm is the correct one.

The logarithm search lets us obtain a considerable speed up against the
exhaustive search. As an example, consider the following scenario

• l = 256→ 8 bits

• w = 32→ 32 bits

• σ = l/w = 8→ 3 bits

where we see the contribute, expressed in bits, of each variable to the search
space size. We also have 1 bit for the sign indetermination An exhaustive search
would therefore require nearly 232+8+3+1/2 = 243 signature verifications to be
computed, where the halving is because we want an expected value estimation.
For a verification time of about 8.5 ms (see [Cry]), this results in approximately
7.5 · 1010 s ≈ 2.4 · 103 years. A logarithm extraction for the example above has
been computed in approximately 26 s. Being both the exhaustive search and
the logarithm extraction parallelizable to the same extent, the speed up factor
is approximately 3 · 109.

Another good property of the proposed search procedures, important for
the attack performance, is the possibility to check whether the fault was of the
foregone type or not. It is indeed possible to tell that the fault does not satisfy
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the hypotheses if the search fails when computed against such hypotheses, since
it always finds a solution if the fault was correctly put forward. This way it
becomes possible to throw away the faulty results that do not allow a valid word
retrieval and consider only the ones which actually are useful for the remainder
of the attack.

Simulations of the lattice attack have then been done, to make estimations of
its performance. Such performance is bound to the employed lattice dimension,
which is ν = N + 1, where N is the number of faulty signatures contributing
in the attack. A higher dimension lattice leads to the attack finding the correct
value with higher probability, but it needs more computational effort.

Table 6.1: Lattice attack performance, probability of success
p-192 p-256 p-384 p-521

8
30 1 42 1 72 1
26 0.57 36 0.57 60 0.56
23 0 31 0 50 0

16
13 1 18 1 28 1 37 1
12 0.33 16 0.19 25 0.75 34 0.43
11 0 15 0 23 0 32 0

32
7 1 9 1 13 1 17 1
6 0.48 8 0.43 12 0.25 16 0
5 0 7 0 11 0

The values reported in table 6.1 have been experimented for the lattice at-
tack. The table reports lattice dimensions and corresponding success probability
for various word size and key length combinations. It is possible to note that the
success probability quickly diminishes when using a smaller amount of faulty
signatures, especially when large word sizes are considered.

These simulations showed that the overall procedure of the attack can be
used starting from the faulty values hypotheses. With the use of logarithm
search the most heavy computation becomes feasible, requiring only few seconds
if appropriately tuned. A whole attack on real world numbers has not been
performed but we can give estimation of its performance. We can consider the
curve p-256 and a 32-bit machine, so read from table 6.1 that we need 9 words.
The involved numbers are composed by 8 words, and therefore we expect needing
9 · 8 · 3 ≈ 200 faulty signatures if we suppose to have an even distribution of the
faults among the words. The factor 3 is considered to take into account what
we called the word alignment issue, see section 5.5.1. It is possible to consider
for the extraction of 200 logarithms a required time of about 200 · 10 = 2000
seconds, if no parallelization is employed. The lattice attack time is not relevant
now, being less than 10 seconds. We can therefore estimate an effort of less than
4 hours to break a 256-bit key.

6.2 Comparison with Known Attacks

As sketched in section 5.2, the proposed attack does not involve the scalar
multiplication. This has some effects on the power of the attack, inducing
some advantages together with some disadvantages. We outline here the most
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significant differences with other attacks, particularly those targeting ECDSA,
as listed in section 4.3.

Main weaknesses include:

Operation execution time The target multiplication has a very short exe-
cution time w.r.t. the scalar multiplication. A measured value is a factor
of about 15 between the time needed for modular multiplication (compu-
tation of s) and the time required for scalar multiplication (computation
of r).

Need for quick fault The fault must hit only one iteration of the operation,
otherwise the faulty value gets more complicated and needs more (expo-
nential) effort to let the retrieval procedure succeed.

Use of the faulty variable A faulty value must be used from the beginning of
the multiplication in place of a correct one. A fault targeting for example
the internals of the ALU or a write of a product value is not exploitable
through the presented attack.

Conversely, the following properties make our attack powerful:

Admissible random fault The fault needs not be too much precise in time
nor in location. An even distribution of the fault during the multiplication
is admissible and even useful.

Fault check possibility Given a faulty signature pair (r, s) it is possible to
try the retrieval procedure and subsequently tell whether the fault was or
was not obeying the hypotheses oberving the retrieval success.

Small fault requirement Our attack needs very few faulty signatures when
compared with other known attacks. Even in the worst cases a few tenths
of faulty signatures are sufficient to retrieve the whole key.

Not tight dependency from the underlying group The attack is not tightly
bound to elliptic curve based groups. It is simply portable to other DSA-
based schemes defined over any DLP-secure group, since it hits the mod-
ular multiplication, which is independent of the employed group.

Fault hypotheses greatly improve performance Any a-priori knowledge
over the fault properties greatly reduce uncertainty. The attack per-
formances thus greatly improve, because the retriaval procedures has to
explore smaller search spaces. Moreover, some kinds of knowledge can
reduce the importance of the otherwise unavoidable issues described in
section 5.5. For example, knowing the position of the bit being modified
by the fault completely erases the word alignment issue.

6.3 Towards Experimentation

We now describe how our attack can be practically tested in physical environ-
ment. The major point is the very low cost of the employed apparatus.

As a fault injection mean, we used low supply voltage. As previously
sketched in chapter 3, the kind of faults injectable through a low voltage at-
tack enjoy some distinguishing features.
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It is not possible to control the location nor the timing of the fault. The fault
model has therefore to rely on a probabilistic description of location and timing.
Moreover, the particular nature of the injected fault is strongly dependent upon
the actual considered hardware. It is not immediate to estimate which kind of
behaviour will a certain device expose under low voltage conditions.

A different characterization dimension is about the life span of the fault.
In the case of low voltage we deal with transient faults. The hardware is not
physically altered, and the fault effects cease after a short period of time, i.e. it
is not necessary to wait until a system reset to experiment a correct behaviour
again.

For our tests we used the ST SpearHEAD development board. The board
has a well studied faulty behaviour when forced in low supply voltage conditions,
see [BBPP09] for details.

The fault model of this board is greatly compatible with the one needed for
the proposeed attack. Such a fault model is indeed a single bit flip during the
loading of data from memory. Specifically, when underfeeding the power line it
can happen that a memory read leads to a wrong value to be transfered to the
core. Such a value is of a very well defined form: the bit in a given position is
flipped from 1 to 0. No flip in the opposite direction occurs, and the position of
the wrong bit is a characteristic of the board remaining constant between the
executions.

It is clear that this fault model is compatible with the presented attack.
It also has some advantages because of the fixed position of the flipped bit,
which makes us know the value µ used to improve the attack performance. We
expect that a fraction of the loads during the integer multiplication algorithms
execution is affected by the fault, leading to our attack feasibility. The attacker’s
job thus consists in letting the system run its ECDSA algorithm tuning the
supply voltage to reach the desired fault rate. Collection of the output signatures
should then lead to detection and exploitation of the faulty ones.

6.4 Equipment

Let us now describe the actual apparatus used to perform the tests. The board,
as previously said, is a development and testing board produced by ST Micro-
electronics. It is named SpearHEAD and comprises an ARM-based SoC. The
processor is specifically an ARM 926 EJ-S, featuring all kinds of features ex-
pected from a modern computer. The board is also equipped with various I/O
interfaces, including serial lines, ethernet, USB, and GPIO, among others. We
used a Pentium 3 machine to drive the board and collect the results connecting
to the board through a serial line, as well as to analyze the results.

The board specifications tell the SoC has to be fed from a 1.2 V line. This is
normally carried out by proper circuitry on the board. To attack it we have to
bypass this circuitry and impose our own. We must operate this way because
underfeeding the whole board from the power supply pins would not lead to the
desired results. First, the SoC would not get underfeeded if the original circuitry
is left as is, and second we would experiment great mulfunctioning of the whole
board, for example on I/O parts, probably before than on the chip. Clearly
this is not wanted, in that we have to manipulate only the SoC behaviour, for
example to keep the ability to communicate with the board at least to collect
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results data.
For the actual attacking operation, we used the power supplier 6633B from

Agilent. This is anyway not directly suitable for the attack because of too
coarse resolution of the output voltage. The supplier indeed has a resolution of
about 12 mV, but this is too high a step for the SoC, in that it causes sudden
changes between normal work and system hang. To face this issue, we set up
a breadboard to mount an op-amp used to downscale the voltage provided by
the supplier. Being G the gain of the set up op-amp circuit, we obtain

Vin = GVsupply

meaning that we have to set the power supplier at a higher voltage than the
required one to get the desired resolution

∆Vin = G∆Vsupply

With suitable gain, we obtained a resolution at the board pins of about 1 mV.
This step is acceptable for our purposes.

The injection of the faults was done by slowly decreasing the voltage supplied
to the SoC. The system requires more energy at reset time, so we let it do
this step in normal conditions. Moreover, before starting the main program,
we lower the system’s clock rate to reach more stability while injecting the
faults, as described in [BBPP09]. After the system starts running the program
code, the voltage is actually descreased, until the results start showing faulty
behaviour. This happens somewhere between 800 and 850 mV, depending on
environmental conditions. The system is then left running in this condition to
collect a large amount of data. The fault rate is kept low, thus having a lot of
correct computations interleaved with a few faulty ones, so that we can expect
each faulty computation to be the consequence of one only error.

The ECDSA implementation we ran our attack against is based on Cryp-
toLib, a proprietary software library for various cryptographic operations from
ST Microelectronics, similar to OpenSSL [Ope]. This choice has been made to
have full control on the software to tune it to the desired features.

The actual code run on the board is varied from time to time to experiment
and test the behaviour of different operations. Namely, we can summarize our
tests in the following:

• finding the rough point where the faults start happening and where the
board exhibits hang up,

• checking whether the theoretical fault model of wrong memory read cor-
responds to the board’s behaviour,

• checking whether the integer multiplication exhibits the expected be-
haviour,

• performing the attack on the whole signature algorithm.

In the next sections we will see the results obtained in these tests. We an-
ticipate that unfortunately our setup was unable to show a complete success of
the attack on the ECDSA signature, but we anyway attacked the basic multi-
plication operation to a satisfying extent.
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6.5 Integer Multiplication

After verifying that the observed fault is of the type described in previous stud-
ies and tuning up the fault injection apparatus, we started testing the integer
multiplication. This is because it is the core operation we want to target, and
the experiment is aimed at verifying the level at which the board exhibits our
needed fault.

We experimented the following key factors to determine whether the multi-
plication leads to the expected results.

Instruction cache If the instruction cache is enabled the system executes as
expected, while if the instruction cache is disabled the system becomes
very unstable and hangs up after very few executions, thus preventing us
to collect data.

Data cache The data cache influences the ability to hit the desired operators.
Indeed, with data cache disabled the fault appears in different places in
the program, and the multiplication operands are hit very rarely among
others, non-identified, variables. Moreover it is easy for the board to early
start emitting values which do not back up to correct ones.

Compilation options If the code is compiled turning off every code optimiza-
tion then the resulting program has a much larger number of otherwise
avoidable loads from memory, thus in this case too we saw almost no
faults on the multiplication operands. A normal optimized compilation
leads to foregone faults intead, since the multiplication becomes the most
load greedy operation.

Supply voltage The system is quite susceptible to little voltage changes of as
low as few, 3 ÷ 5, mV. A small variation quickly takes the system from
correct behaviour to hang up, so we have to tune the voltage every time
to a good point that depends, amongst all, on the physical environment.

Clock rate The voltage at which the faults appear changes with the clock
setting. Also the voltage interval from correct behaviour and hang up
depends on the clock, and we found that at the nominal clock rate the
board does not tolerate our voltage variations. Thus we run the system
at a slower clock to be able to tune the voltage in an acceptable range.

Once these points have been correctly set up, we experiment the following
basic statistics.

• The faulty computations are about 1/100 of the total.

• The faults of the wanted kind are always about 1/3 of all faults.

The faulty computations rate is quite variable, being it dependent among
an always varying voltage level. The order of magnitude of the rate is anyway
managed to be kept between 10−3 and 10−1.

The rate of the faults of the good kind is instead very stable. It is always
approximately 1/3, no matter how other conditions change. The majority of
the remaining 2/3 of the faults seem to hit the values when they are loaded for
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being output. A small fraction, about 1/30 of total, is instead a combination of
more than one fault of the preceeding kinds.

We ran the tests especially on multiplications of 256-bit integers, which,
on a 32-bit device, are composed of 8 words. The resulting statistics do any-
way not change when different types of operands are used. They are constant
when changing the operands’ length as well as the operands’ values, being these
random values or particular forged ones.

Statistics on the faulty iteration (̄ı, ̄) have also been made. Remembering
that j is the inner cycle variable and i the outer one, we saw that the distribution
on ı̄ is almost uniform, while ̄ shows a different distribution, which changes
greatly between runs with different operands. The cause of this very non-even
distribution was not deeply investigated.

These results show that the multiplication is targetable by the faults in-
jectable through low voltage technique and the fault distribution is suitable for
our attack against the multiplication.

6.6 Complex Operations

We now show the problems encountered when attacking more complex opera-
tions than simple integer multiplication. In other words, we complicated the
program to make it compute modular multiplications and even a full ECDSA
signature.

Recall that the modular multiplication is simply an integer multiplication
followed by a modular reduction. When attacking this operation, a different
behaviour emerged. The faulty output values are not as expected, and early
hang up of the system also appeared. By analyzing the power traces associated
to the computations, it emerged that the integer division operation employed
during the modular reduction is associated with an abnormal power consump-
tion. The reason should be bound to the fact that such an operation is a 64-bit
division, which is not implemented in the ARM hardware. The fault appeared
is of a completely different type from the bit flip observed when hitting memory
loads. Namely, the fault affecting the division is causing a quotient being set to
0 instead of its correct value.

In these conditions, it was discovered that the faults on the division appear at
a higher voltage than the faults on the multiplication, thus making the attack
not feasible anymore. Faults on the multiplication indeed appear only if the
voltage is quickly dropped down, but this causes also the system to hang.

Even with this problematic behaviour, we tried attacking the whole ECDSA
algorithm. We aimed at finding foreseen faults on the s value together with
correct r. One more problem, yet easily predictable, arises here, i.e. the scalar
multiplication taking longer time than the final stage, thus being subject to
attract the majority of faults. The ratio between the two operation durations
has been computed in about 15. The rate of faults on s w.r.t. the ones on r is
anyway much different. We actually can’t even tell a precise estimation, because
such a kind of fault appeared only 2 times among hundreds of computations.
Moreover, it was not possible to recognize these faults among the expected ones.

We can conclude that our setup was probably too cheap to attack ECDSA.
More clever fault injection techniques such as glitches would probably lead to
better results.
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6.7 Results Resume

The simulations showed that the attack is correctly outlined in its parts. Once
an error of the correct type can be injected through some fault, the studied pro-
cedures manage to recover the expected values. Full success has been obtained
in both parts of the attack with good performance.

The word recovery has been practiced with real cryptographic curve parame-
ters, but considering a device with a small word size (namely, 8 bits), because of
the large time needed with real world values (32 bits). The procedure retrieves
correct values, but needs a quite large amount of time. Anyway, the logarithm
search procedure has been subsequently developed, and, since the great perfor-
mance improvement of about 109 that comes with it, it has become possible to
consider also more realistic numbers, i.e. words 32 bits in length. The retrieved
values are still correct, and the time taken by the logarithm search is about 26
seconds on a Pentium 3 machine. This procedure has not anyway been opti-
mized to the maximum extent, as it would be possible as explained in section
2.2.3. Full parallelism and optimization would allow for even better results.

The second part of the attack, specifically consisting in the application of a
so-called lattice attack to solve the hidden number problem deriving from the
involved values, has been also run with real world parameters. Here, the main
determining factor for the performance of the attack is bound to the dimension
of the lattice, or in other words the number of collected signatures that take
part in the attack. We found that the lattice attack is carried out in less than
10 seconds on an i7 processor if the lattice dimension does not exceed 30, which
is a value suitable for our attack as shown in table 6.1. Greater dimensions take
anyway a still admissible time.

The practical experimentation showed that the cheap equipment used is
able to produce the fault needed for the attack. Moreover, we experiment the
foregone type of fault, suitable for subsequent computations. This happens
while the device is computing integer multiplications, and the wanted type of
fault appears at a rate of about 1/3 among the overall faulty results. The good
faults are also easily distinguishable from the rest.

When switching to more complex operations than the integer multiplication,
however, the faults change their type of distribution and it seems more difficult
to obtain the sought values. The cause of this is related to a different power
absorbtion by the device when computing divisions that are not implemented
in hardware. Two solutions are possible to face this problem.

• It is possible to change the software to try adapting it in avoiding the
use of such high precision divisions, replacing them with normal precision
ones. This way it may happen that the observed fault is again of the
known type. Anyway this option is clearly suitable only for a testing
environment and cannot be applied in a real attacking scenario.

• More expensive equipment can be used, to produce faults through more
sophisticated methods like glitches or spikes (as presented in section 3.2)
in place of a simple constant underfeeding of the power supply line.

Thus in general we conclude the attack is well designed and there are rea-
sonable suggestions on how to put it into full practice.
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Chapter 7

Countermeasures

In this chapter we discuss a possible countermeasure aimed at protecting from
the presented attack. A brief introduction to generic countermeasures is first
given. We introduce physical layer countermeasure techniques. These are meth-
ods that aim to protect against any kind of attack, considering the fault at
hardware level and trying to recognize it. These countermeasures are character-
ized by a very high cost, and the need to completely redesign a hardware piece
to allow for their introduction in the system. Software countermeasures are a
cheaper and more flexible solution, but they can only protect against known
attacks.

Here we focus on the latter type and propose a countermeasure for the
specific attack discussed in the rest of the work. The fundamental advantage of
the proposed countermeasure is its very low cost, as we will see below.

7.1 Generic Countermeasures

We show some typically employed countermeasures that can be applied to any
cryptosystem or any device, being very generic. The drawback of these methods
is their inherent high realization and design cost.

7.1.1 Physical Countermeasures

A first way to protect cryptographic hardware is of course represented by phys-
ical layer countermeasures. It is possible to embed sensors in the hardware to
make it aware of unwanted conditions, as well as to introduce systems that make
the device not usable if put in abnormal conditions.

Let’s describe a list of possible ideas.

Supply voltage detectors To prevent low or high voltage attacks.

Power spikes detectors React to abrupt variations on the power line.

Frequency detectors Check whether the clock frequency is inside a safe in-
terval.

Light detectors Using photodiodes it becomes possible to prevent light at-
tacks.
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Active shields Metal shields covering the whole chip can react by making
the hardware not usable if a disconnection or modification of this layer
happens. It also mkes more difficult to locate specific circuit areas.

Temperature sensors Check for environmental temperature.

Hardware redundancy Hardware can be made redundant to check whether
a computation leads to different results in different locations.

Dummy random cycles Attacks that need synchronization can become diffi-
cult if dummy instruction cycles are inserted at random during execution.

Unstable frequency generator Another protection against attacks requiring
synchronization, because events occur at different times during different
executions.

7.1.2 Logic Level Countermeasures

The use of dual rail logic has been proposed to counteract fault attacks. In dual
rail logic each bit is encoded by using two wires. This way, 2 of the 4 possible
combinations (< 0, 1 > and < 1, 0 >) are made correspond to actual bits, while
the other 2 configurations (< 0, 0 > and < 1, 1 >) represent errors.

It therefore becomes possible to detect faults that affect only one wire di-
rectly in the logic level.

7.1.3 Software Countermeasures

A very different kind of countermeasure is given by software modifications. The
underlying hardware is left as is, perhaps unprotected. The cost of the device
therefore does not increase, and it is possible to apply these countermeasures on
already existing pieces of hardware too. The software is modified in an attempt
to make the data obtainted through faults unusable for attacks. Anyway, soft-
ware countermeasures usually impact on algorithms complexity, thus increasing
computation time.

Some possibilities are the following.

Checksums Usually employed to check data integrity.

Redundancy As in hardware, it is possible to introduce redundancy in soft-
ware algorithms too, and subsequently check whether a computation yields
different, thus faulty, results.

7.2 Proposed Countermeasure

The countermeasures described above are generic, and applicable to any device
or algorithm. Anyway, such methods introduce a not so little additional cost.
Indeed, it is clear that ideas like hardware duplication are quite expensive in
terms of chip area. Software countermeasures are also typically expensive, this
time in terms of execution time. We propose here a different idea, applicable
only to the kind of signatures saw in the rest of the work, and aiming to protect
especially against the new attack presented in chapter 5.
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7.2.1 Algorithm

The proposed countermeasure belongs to the software class. We modify the
signature algorithm to make it secure against the attack to the final stage mul-
tiplication saw earlier.

Algorithm 12 ECDSA Signature Generation
Input: signature intermediate values e, k, r, secret key d
Output: signature value s
1: k−1 ← 1/k mod n
2: t1 ← rd mod n
3: t2 ← t1 + e mod n
4: s← t2k

−1 mod n
5: return s

The trivial way to compute s is presented in algorithm 12, while the proposed
modification is referenced in algorithm 13.

Algorithm 13 ECDSA Signature Generation
Input: signature intermediate values e, k, r, secret key d
Output: signature value s
1: k−1 ← 1/k mod n
2: t1 ← k−1k−1 mod n
3: t2 ← t1d mod n
4: t3 ← kr mod n
5: t4 ← k−1e mod n
6: t5 ← t2t3 mod n
7: s← t4 + t5 mod n
8: return s

Algorithm 13 outputs exactly the same result as algorithm 12. Anyway, it
performs slightly different operations in the final stage, i.e. the computation of
s. This makes the attack no more applicable, because the new operations lead
to faulty values propagate in a different way, which is more difficult to eploit in
order to recover the secret key.

For clarity, we express the two algorithms in a compact form:

s = k−1(e + rd) mod n

s = (k−2d)(kr) + k−1e mod n

It is easy to see that the two computations lead to the same result, being the
second just a complicated version of the first.

Let’s see some example computation.
An attacker can inject a fault in step 2, obtaining a faulty t̃2 = t2±dı̄2λw+µ.

This yields an output value s̃ = s±dı̄kr2λw+µ, which can be interesting because
it contains the key word dı̄. It is however not possible to retrieve the error by
exhaustive search, because it contains also the nonce k, which is not known and
large. The logarithm search is not possible either:

[k]G =
[e

s̃

]
G +

[r

s̃

]
Y ±

[
dı̄k

2r2λw+µ

s̃

]
G
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The problem here is the factor k2, which makes it not possible to know the point
it is involved in.

A different fault injectable by an attacker is in step 5. He can then obtain
s̃ = s ± tı̄2λw+µ, where t denotes the computed t2 = k−2d. This would make
it possible to perform a search procedure and obtain the word tı̄. Anyway, this
would not be sufficient to mount the lattice attack, because of the presence of
the unknown and not constant k−2.

It can be seen that other locations for the fault would lead to useless datas
too.

7.2.2 Cost Analysis

Being this countermeasure specific to a certain attack to the DSA class of algo-
rithms, it must not impact on cost as much as a generic countermeasure, which
aims at protecting against many more kinds of attack. It furthermore is a soft-
ware countermeasure, thus its influence is to be expressed in terms of execution
time penalty.

We express execution time in terms of the basic modular arithmetic opera-
tions, denoting with M a modular multiplication, I a modular inversion and S
a modular squaring.

The trivial algorithm 12 has a complexity of 2M+1 I. Adopting the counter-
measure in algorithm 13 makes the cost of the computation increase to 5M+1 I.
Although being almost double the original cost, this is not the actual complex-
ity to be considered, because the heaviest computational effort is needed for
the elliptic curve scalar multiplication during the first stage of the signature
generation.

Let’s take as an example the elliptic curve p-256 from NIST [NIS09]. The
complexity of the scalar multiplication takes 256 D + 128 A, where D is the
elliptic curve point doubling, and A the elliptic curve point addition. A typical
implementation entails a point doubling take 4M + 4S and a point addition
12 M + 4S. This translates in a complexity of 2562 M + 1536 S + 1 I for the
trivial algorithm and 2565 M + 1536 S + 1 I for the countermeasure.

It is now clear that the countermeasure has a neglactable impact on the
software implementation cost.

7.3 Considerations

The attack presented in the previous chapters is easily counterable. The counter-
measure we have introduced is strictly countering the discussed attack. Anyway,
its funding idea, i.e. to infect the computations with the nonce, can be useful
in preventing from new, active or passive, attacks too since an attacker has to
deal with this large, unknown and always changing value whenver he tries to
study the computation of the second element of the signature.

The countermeasure is yet very cheap, as we saw in section 7.2.2. It not only
requires very few additional operations, but it also uses the already available
nonce thus saving the time for another random value to be computed.

We showed that also the second stage of the ECDSA signature generation
is vulnerable and should therefore be taken into consideration for protection.
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However, a cheap method exists to defend against possible attacks on this part
of the algorithm.
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Chapter 8

Conclusions and Future
Work

This thesis presents a novel fault attack against the ECDSA signature algorithm.
Major target points that are obtained concern the reduced cost of both realizing
the required fault model and the computational effort needed for the attack
procedures.

The developed attack relies on a simple fault model obtainable with cheap
equipment. The bit-flip is indeed one of the most commonly considered fault
models in the literature. It is practical to describe mathematically and leads to
effective attacks. Moreover, the possibility exists to induce bit flips at a very
low cost, needing only a suitable power supplier to feed the chip with low power.

From the actual attack point of view, we have a very straightforward proce-
dure we can summarize as the following:

1. set up a working environment for fault injection,

2. collect a number of results from the perturbed computations,

3. analyze the results and keep the useful ones,

4. performing the final attack procedure over the chosen results.

This workflow can be employed because some conditions are met:

• typically we can set up the environment to make the faults appear at a
low rate, therefore it is possible to easily discard the great amount of valid
signatures and keep a few faulty ones for subsequent analysis,

• the logarithm analysis procedure is able to identify and tell apart the
signatures resulting from an occured fault matching the foregone type.

Our attack is also powerful in that it does not need a large amount of sig-
natures, even if long keys are employed. Once it is known that a given set of
faulty signatures come from the foregone kind of fault, it is possible to proceed
with the attack on such set. A typical order of magnitude for the number of
needed signatures is around 100, but this can vary slightly depending on some
decisions of the attacker. In very lucky scenarios it is possible to complete the
secret key recovery with as few as some tenths of faulty signatures.
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The needed computing power for the attack is also not big a deal. Simu-
lations showed that it is possible to perform the attack on a typical desktop
computer in a few hours or even minutes.

The real novelty of the proposed attack is the discovery of a potential weak-
ness in a step of the algorithm which is typically not considered to be interesting
and therefore underprotected. The attack then proceeds by using some ideas
taken from other known attacks as well as one new procedure to efficiently an-
alyze the results collected from the device, i.e. what we called the logarithm
search procedure.

In this work we also presented a possible countermeasure to protect an imple-
mentation of the cryptosystem from the analyzed attack. The countermeasure
we suggest is very cheap because it targets the precise point where the weakness
was identified. This anyway means that it cannot protect against future attacks
if they will be based on different ideas.

Further studies are possible starting from the idea presented here.
Indeed, we did not analyze in great detail the possibilities that arise when

considering different kinds of fault models. This is because when the fault gets
more complex than a single bit flip the modifications to the output values get
complicated too, and the computational effort needed for the attack increases
very quickly if a näıve approach is employed. We sketched some ideas on how
to deal with some still simple kinds of faults. Obviously, it turns out that the
more the attacker knows about the fault in advance, the fewer trials and the
less computational complexity are needed. That said, it can be interesting to
further develop and study methods for dealing with these more complex kinds
of fault as well.

Another advancement can be possibly studied. We dealt only with modular
multiplications performed through trivial, yet actually employed, algorithms:
an integer multiplication followed by modular reduction. It may be interesting
to analyze the results obtainable when different strategies are employed, like the
Montgomery modular multiplication algorithm.

Finally, we propose a more practical development line too. It may be pos-
sible to analyze the different type of fault observed on our equipment when
dealing with high precision divisions. The fault type is very precise and it may
be exploitable to build an attack somehow related to the one that has been
presented in the previous sections.



Appendice A

Estratto in Italiano

A.1 Introduzione

La crittografia è la disciplina che si occupa di sviluppare algoritmi per garantire
la sicurezza delle comunicazioni. Storicamente gli algoritmi crittografici sono
stati continuamente oggetto di attacchi, ovvero metodi studiati per violarne la
sicurezza. Al giorno d’oggi esistono algoritmi noti particolarmente robusti e
difficilmente gli attacchi hanno prestazioni in grado di minacciare realmente la
sicurezza delle applicazioni che li utilizzano.

Un nuovo scenario si è però aperto da poche decine di anni. Invece delle
comuni tecniche di attacco basate esclusivamente su proprietà matematiche de-
gli algoritmi, si considerano nuove tipologie di attacco, cosiddette side-channel.
Un attacco side-channel non si limita allo studio della struttura matematica
dell’algoritmo, bens̀ı si concentra su una specifica implementazione. In altre pa-
role un attacco side-channel richiede di avere un accesso fisico ad un dispositivo
crittografico in modo da utilizzare canali di comunicazione con esso che siano
non-standard e non previsti in fase di progettazione. Tali canali sono costituiti
dall’interfaccia fisica del dispositivo sotto attacco.

Esistono due tipologie principali di attacchi side-channel, gli attacchi passivi
e quelli attivi. Un attacco passivo procede monitorando una qualche quantità
fisica relativa al dispositivo, come la corrente assorbita o la radiazione elettroma-
gnetica, durante le computazioni. Attraverso l’analisi della quantità osservata
è poi possibile risalire alla chiave segreta utilizzata. Durante un attacco di tipo
attivo invece si manipola direttamente l’interfaccia del dispositivo, in modo da
indurlo ad eseguire computazioni sbagliate. Il tipo di manipolazione può variare
significativamente dall’applicazione di un’alimentazione troppo bassa, a dei glit-
ch sull’alimentazione o sul clock, al bombardamento con laser o altre particelle.
Una volta che il dispositivo abbia eseguito le computazioni in questo stato di-
sturbato ed emesso i suoi risultati, sarà possibile, attraverso opportune ipotesi
ed analisi dei risultati, arrivare a scoprire la chiave segreta. I due metodi di
attacco, attivo e passivo, possono essere adeguatamente miscelati per ottenere
eventuali prestazioni migliori.

Gli algoritmi crittografici si dividono anch’essi in due grandi famiglie, ovvero
quelli detti a chiave privata e a chiave pubblica. Le principali differenze tra le
due famiglie si trovano nelle applicazioni e nelle prestazioni degli algoritmi. Gli
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algoritmi a chiave privata vengono tipicamente usati per fornire proprietà di
confidenzialità ad una comunicazione, cifrandone il contenuto in modo che que-
sto non sia intelligibile da soggetti diversi da quelli autorizzati. Questi algoritmi
hanno anche tipicamente le prestazioni maggiori. Gli algoritmi a chiave pubbli-
ca sono usati principalmente per le applicazioni di autenticazione, ovvero per
garantire in modo sicuro che i soggetti partecipanti alla comunicazione siano chi
pretendono di essere. In altre parole ci si concentra sulla possibilità di impedire
la falsificazione dei dati. Per questo motivo gli algoritmi usati a questo scopo
vengono anche detti di firma digitale.

In questa tesi si presenta un nuovo metodo di attacco basato su iniezione
di guasti, dunque di tipo attivo, mirato all’algoritmo di firma digitale ECDSA,
standardizzato dal NIST in [NIS09].

I punti di novità riguardando principalmente la posizione del guasto inietta-
to e la procedura di ricerca dell’errore. Per quanto riguarda la posizione, l’idea
è di colpire un punto nella computazione della firma che viene di solito ritenuto
meno importante e per questo probablmente meno protetto. La procedura di ri-
cerca sfrutta una particolare caratteristica dei risultati che permette di risolvere
efficacemente il problema del logaritmo discreto e cos̀ı ricostruire la chiave.

A.2 Crittografia Basata su Curve Ellittiche

L’algoritmo crittografico oggetto dello studio è ECDSA, un algoritmo sviluppato
a partire da DSA utilizzando come struttura algebrica per le primitive le curve
ellittiche.

Le curve ellittiche sono oggetti geometrici studiati in matematica per una va-
rietà di applicazioni. In crittografia esse sono usate in quanto è possibile costrui-
re su esse strutture algebriche adatte alla creazione di una primitiva crittografica
sicura.

Precisamente, i punti di una curva ellittica vengono dotati di un’operazione
di gruppo. Il gruppo cos̀ı ottenuto è utilizzato per la creazione di una funzione
one-way, v. equazione 2.3. Una funzione di questo tipo è facilmente calcolabile,
mentre la sua inversa, pur essendo ben definita, non è calcolabile in tempi rapidi.
La difficoltà dell’inversione di questa funzione viene sfruttata come base per la
costruzione di algoritmi crittografici, e su di essa si basa la sicurezza di tali
algoritmi.

La famiglia ECDSA è costituita dagli algoritmi di generazione delle chiavi,
generazione della firma, verifica della firma, ed eventualmente generazione della
curva nel caso non venga scelto di usare una curva standard. La generazione
della chiave consiste nella semplice scelta di un numero casuale. I dettagli di
generazione e verifica della firma sono riportati negli algoritmi 5 e 6. Per gli scopi
dell’attacco descritto nel seguito è importante tenere presente anche l’algoritmo
di moltiplicazione modulare, riportato nell’algoritmo 10.

A.3 Attacchi Side-Channel

Gli algoritmi crittografici vengono continuamente sottoposti a tentativi di rot-
tura, ovvero si cerca di scoprire metodi per violare la sicurezza degli stessi. Un
metodo di questo tipo, in grado per esempio di decifrare informazioni confiden-
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ziali o che consenta di guadagnare l’accesso ad una chiave segreta, viene detto
attacco.

Fino a pochi decenni fa, gli attacchi erano ideati e indirizzati alla sola strut-
tura matematica sottostante gli algoritmi. Si classificano ad esempio attacchi
in grado di recuperare una chiave segreta dati una o più coppie di testo cifrato
con il corrispondente testo in chiaro, oppure ipotizzando di avere la possibilità
di ottenere il cifrato di qualunque testo in chiaro, e di seguito con altre ipotesi
di questo tipo.

Più recentemente, un altro tipo di attacco sta guadagnando successo. Si
tratta di attacchi che ipotizzano un accesso fisico ad un dispositivo che esegua
operazioni crittografiche, contenendo al suo interno i segreti necessari. Si consi-
dera di non essere in grado di avere un accesso diretto a tali segreti. Gli attacchi
di tipo side-channel non considerano solo la forma matematica di un algoritmo
crittografico, ma anche la sua specifica implementazione, e per raggiungere lo
scopo vengono usati canali di comunicazione con il dispositivo diversi da quelli
ufficialmente pensati in fase di progettazione.

Ad esempio, si considerano canali di accesso secondari ad un dispositivo il suo
consumo di potenza o la radiazione da esso emessa. Un attacco può svilupparsi
dal monitoraraggio di alcune di queste quantità interessanti.

Un’altra via percorribile è quella di manipolare in modo anomalo l’interfaccia
fisica del dispositivo. Per esempio inviando glitch sul segnale di clock, o spike
sul segnale di alimentazione. Altri metodi di questo tipo sono riportati nel
capitolo 3. L’obiettivo di queste tecniche è di ottenere risultati sbagliati a causa
delle condizioni anomale forzate sul dispositivo. L’analisi di questi risultati può
portare a scoprire la chiave segreta. Un semplice esempio è riportato in sezione
3.4.

Per la realizzazione di attacchi basati sui guasti si utilizzano modelli per
astrarre dal livello fisico del dispositivo in esame. Una spiegazione dei tipi di
questi modelli si trova in sezione 3.3.

Inoltre, una lista di attacchi noti a sistemi basati su curve ellittiche è ripor-
tata nel capitolo 4.

A.4 Attacco Proposto

L’attacco che proponiamo appartiene alla categoria degli attacchi basati sui gua-
sti. Considereremo un modello di guasto semplice ed efficace, molto studiato in
letteratura: il bit flip. Supporremo cioè che durante lo svolgimento delle com-
putazioni, il dispositivo sotto attacco utilizzi una variabile con un bit cambiato
rispetto al valore corretto.

L’attacco procede dall’iniezione del guasto e si articola successivamente in al-
cune fasi di realizzazione. Si può delineare la seguente struttura per la procedura
di attacco:

• immersione del dispositivo in ambiente controllato al fine di costringerlo
ad operare in condizioni di funzionamento anomale,

• esecuzione dell’algoritmo di firma digitale da parte del dispositivo in con-
dizioni di guasto,

• raccolta dei risultati delle computazioni guaste e non,
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• identificazione all’interno della collezione dei risultati derivanti dal tipo di
guasto previsto,

• taratura e utilizzo di una procedura di recupero della chiave segreta a
partire dai risultati ottenuti al passo precedente.

La presente descrizione si concentra sugli ultimi due passi esposti. I metodi
per iniettare guasti sono infatti ampiamente studiati in letteratura e, finchè
valgono le ipotesi di bit flip, i dettagli del metodo utilizzato non sono importanti
al fine delle procedure seguenti.

Sono state identificate due posizioni, all’interno dell’algoritmo di genera-
zione di una firma digitale ECDSA, per le quali un guasto provoca la riuscita
dell’attacco. Precisamente, è necessario che il guasto colpisca una delle due mol-
tiplicazioni modulari che compongono il calcolo del valore s della firma digitale,
come descritto in sezione 5.3.

Data la natura piuttosto semplice del guasto, è possibile analizzare come
l’errore nella computazione si propaga durante l’esecuzione dell’algoritmo. Si
ottiene che il bit sbagliato provoca l’addizione di un termine di tipo 2̄bı̄ al
risultato s correttamente corrispondente al valore r precedentemente calcolato.
In questa scrittura, bı̄ rappresenta una parola di uno degli operandi partecipanti
alla moltiplicazione modulare. Maggiori dettagli sulla propoagazione dell’errore
sono esposti in sezione 5.4. A seconda della posizione in cui il guasto avviene,
questa parola potrebbe essere una parola del valore intermedio (e + rd) oppure
una parola della chiave segreta d. La firma cos̀ı ottenuta è quindi costituita dalla
coppia (r, s̃) e ovviamente non è valida, ovvero non supera il test dell’algoritmo
di verifica.

Se il guasto è avvenuto in questo modo, è possibile recuperare la parola bı̄

attraverso una procedura di ricerca esaustiva, oppure attraverso una procedura
adattata dall’algoritmo per il calcolo del logaritmo discreto su curve ellittiche.
Si vedano a questo scopo le sezioni 5.5 e 5.6.

Le procedure di ricerca appena citate si applicano ad una firma guastata e
consentono di stabilire se il guasto è avvenuto nel modo cercato oppure no, oltre
a trovare la parola bı̄ in caso positivo. Per portare l’attacco a successo, questa
ricerca va ripetuta per una quantità di firme maggiore di uno. L’ordine di gran-
dezza di tale valore dipende dalla lunghezza della chiave segreta, dalla lunghezza
delle parole del dispositivo utilizzato. Per sistemi tipici possiamo comunque in-
dicare un numero di firme necessario tra 10 e 100. Il valore preciso dovrebbe
invece essere trovato durante l’esecuzione delle ricerche dipendentemente dai
risultati trovati, se si intende ottimizzare le prestazioni.

La successiva parte dell’attacco consiste nell’ottenere la chiave segreta a par-
tire dalle singole parole ritrovate per ogni firma guasta. Per questo la procedura
è diversa a seconda che il guasto abbia colpito l’una o l’altra moltiplicazione mo-
dulare. Comunque la ricerca precedente è in grado di evidenziare a posteriori
in quale caso ci si trovi.

Nel caso le parole trovate corrispondano alle parole della chiave segreta sarà
necessario soltanto trovare la permutazione giusta di tali parole per ricostruire
la chiave. Ciò può essere effettuato per tentativi esaustivi, ma il costo dell’ope-
razione è piuttosto elevato se la chiave è composta di più di 16 parole. Abbiamo
perciò trovato il modo di ottenere degli indizi dai risultati della procedura di
ricerca al fine di limitare notevolmente il numero di tentativi da effettuare. In
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casi fortunati, ma realistici, questo può ridursi anche ad un tentativo solo, ovve-
ro è nota in partenza la posizione di ogni parola della chiave. Questa procedura
è dettagliata nelle sezioni 5.5.2 e 5.7.1.

A.5 Analisi dell’Attacco

L’attacco descritto è stato verificato con sia con simulazioni software che su un
dispositivo reale.

Le simulazioni hanno evidenziato la correttezza delle analisi e delle procedure
proposte. È stato inoltre possibile valutare le prestazioni di dette procedure su
versioni ridotte del crittosistema. Una stima per un caso reale dice che è possibile
recuperare una chiave da 256 bit in meno di 4 ore.

Per i dettagli dei risultati ottenuti con le simulazioni, si veda il capitolo 6.
L’attacco è stato verificato anche su un dispositivo fisico, utilizzando un

metodo di iniezione di guasto che sfrutta la sottoalimentazione del chip. Il
modello di errore della board usata è noto e particolarmente adatto per l’attacco
da testare, consistendo nel cambiamento di un bit di cui è nota a priori la
posizione all’interno della parola e la direzione del cambiamento, ovvero da 1
a 0. I guasti sono stati effettivamente trovati e le moltiplicazioni hanno subito
i cambiamenti predetti. Un problema si è però verificato durante il test su
operazioni più complesse della moltiplicazione intera. Il modello di errore del
dispositivo si è infatti rivelato essere diverso quando vengono eseguite divisioni
intere a precisione doppia, non implementate in hardware.

I dettagli dei test e alcune idee per fronteggiare questo problema si trovano
ancora nel capitolo 6.

A.6 Contromisura

Una contromisura indirizzata particolarmente all’attacco descritto è stata inol-
tre realizzata. Si tratta di una modifica all’algoritmo di calcolo del secondo ele-
mento della firma, tale da rendere impossibile l’analisi dei risultati descritta nelle
precedenti sezioni. La contromisura è dedicata a questo specifico attacco, ma
verosimilimente l’idea è abbastanza generale da consentire di proteggere anche
contro eventuali attacchi futuri indirizzati allo stesso frammento dell’algoritmo
di firma.

I dettagli della modifica da apportare all’algoritmo sono riportati nel capitolo
7. Caratteristica positiva della contromisura sviluppata è il costo estremamente
basso in termini di operazioni aggiunte all’algoritmo.

A.7 Conclusioni

Abbiamo presentato un contro ECDSA, basato sui guasti, e di tipo innovativo, in
quanto viene attaccata una parte dell’algoritmo di generazione della firma tipi-
camente ritenuta meno interessante. Il modello di guasto richiesto per l’attacco,
ovvero il bit flip, è semplice ed è tra i più studiati in letteratura. Inoltre esso
è ottenibile anche con strumentazione molto economica, come quella utilizzata
per i nostri esperimenti.
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L’attacco richiede poche firme errate, e può essere facilmente adattato a casi
specifici migliorandone le prestazioni. Anche la possibilità di parallelizzare al
massimo ogni procedura consente di raggiungere buone prestazioni.

Una contromisura efficace è stata sviluppata, ed ha un costo molto basso in
termini di tempo di esecuzione.

Possibili sviluppi futuri di questo lavoro si possono trovare tra lo studio di
modelli di errore più complicati rispetto al cambiamento di un singolo bit e lo
studio di algoritmi diversi per l’esecuzione della moltiplicazione modulare, v.
capitolo 8. Semplici esempi per quanto riguarda diversi modelli di errore sono
riportati in sezione 5.8.
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