
POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione

Corso di Laurea Specialistica in Ingegneria Informatica

COMPACT AND PRIVACY PROTECTED PACKET

ATTRIBUTION

Relatore: Prof. Stefano ZANERO

Tesi di Laurea di:

Giuseppe MACRI’

Matricola n. 712384

Anno Accademico 2009–2010

Alla mia famiglia

Acknowledgments

I would like to spend a few words for those people who supported me

through my academic thesis work and personal growth. I am very thankful

for my parents who give me the possibility to join at Politecnico di Milano

first and at Univerisity of Illinois at Chicago, two amazing experiences, and

because they are near to me in any circumstance. Thanks to their support I

learn to never give up as student as well as person because I should learn

from the past to reach my goals and have a better future. A special thank is

dedicated to my brother, Antonio, he is my guideline for most of experience

and problem I had.

An important part of last period of my life is my friends. I would thank

them for supporting each other in our studies at both Politecnico di Mialno

and University of Illinois at Chicago. I can spend a great spare time with

them out of university.

Some special words are due to my advisors, Prof. Jakob Eriksson from

UIC and Prof. Stefano Zanero from Politecnico of Milan. Since my thesis

work was developed at UIC, I would like to thank Prof. Eriksson for who

provided a guidance in all areas of my thesis and project and besides uni-

versity he is a great person. Unfortunately I had no enough time to spend

with Prof. Zanero, but every time I was in trouble with any kind of prob-

lem he is available to talk and give a good suggestion. I would thank him

for coming over in Chicago for the thesis defense and for support he gave

during the presetation. I hope sooner or later I can enjoy travel around the

iii

ACKNOWLEDGMENTS iv

world as he does. Definitely if I didn’t get the job before graduating at Po-

litecnico di Milano I will spend more time with him to improve my thesis

work.

Thank you everyone

GM

Summary

Passive network monitoring systems are very useful to perform main-

tenance, protection and control of network. There are two important issues

with that kind of systems; the main important issue is user privacy. In fact

they are privacy implications subject to data protection laws.

Recent research articles [1] [2] confirm privacy-sensitive data not only

payload within packets but also header information. It is possible to extract

data from statistical analysis of network traffic. Many solutions to the pri-

vacy problem have been proposed based on static anonymization [3] [4].

A drawback of these solutions is the definition of policies to regulate the

anonymization.

All networking monitoring systems use a lot of storage in order to cre-

ate logs of the network users. This process is done to achieve a high security

level. With this system everything done by the user is stored therefore the

owner of the network is able to track any user. Having this level of control

is very useful when there is abnormal behavior of a user; it is possible to re-

trieve the identity of the client and at what time they performed abnormal

behavior.

Using this particular technique requires the system to use a consider-

able amount of memory space; considering the amount of users using the

network, privacy is the bigger issue. It would be better to a find solution

for both problems to avoid losing both security and storage space.

Two new methods have been implemented to change the NAT assign-

v

ACKNOWLEDGMENTS vi

ment port policy in order to create an assignment procedure to improve

privacy and storage efficiency.

Contents

Acknowledgments iii

List of Abbreviations xi

1 Introduction 1

2 Background and related work 6

2.1 Network Address Translations (NAT) 6

2.1.1 Port Address Translation (PAT) 7

2.2 Types of NAT . 8

2.3 Netfilter . 10

2.3.1 IPTables . 10

2.3.2 Netfilter NAT . 11

2.3.3 Connection Tracking 12

2.3.4 Conntrack-Tools . 13

2.4 PRISM Framework . 13

2.4.1 Architecture . 13

2.4.2 PRISM Behavior . 15

2.4.3 Drawbacks of PRISM framework 15

3 Methodology and Implementation 17

3.1 Environment Setup . 18

3.2 Methodologies . 18

vii

CONTENTS viii

3.2.1 Fixed Port Approach 18

3.2.2 Flexible Port Allocation 20

3.2.3 Privacy . 23

4 Experimental Validation 24

4.1 Experiments . 24

4.1.1 Manipulation and evaluation 24

5 Conclusions and Future work 27

5.1 Conclusions . 27

5.2 Future work . 27

A Implementation 29

A.1 Fixed port technique . 29

A.2 Flexible port technique . 31

B Scripting 35

List of Figures

2.1 Full cone NAT, image courtesy of Christoph Sommer (Wikipedia) 8

2.2 Restricted cone NAT, image courtesy of Christoph Sommer

(Wikipedia) . 9

2.3 Port Restricted cone NAT, image courtesy of Christoph Som-

mer (Wikipedia) . 9

2.4 Symmetric NAT, image courtesy of Christoph Sommer (Wikipedia) 9

2.5 Netfilter structure components, image courtesy of Jengelh

(Wikipedia) . 10

2.6 Iptables data flow, image courtesy of Guillermo Grandes (Wikipedia) 11

2.7 Packet flow paths, image courtesy of Martin A. Brown . . . 12

2.8 PRISM Architecture, image courtesy of Georgios V. Lioudakis 14

4.1 Number of users versus parallel connections 09/26/2001 . . 26

4.2 Number of users versus parallel connections 10/05/2001 . . 26

4.3 Number of users versus parallel connections 10/14/2001 . . 26

ix

List of Tables

3.1 UIC System requirements . 22

x

List of Abbreviations

NAT Network Address Translation

PAT Port Address Translation

NAPT Network Address Port Translation

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

TCP Transmission Control Protocol

UDP User Datagram Protocol

IANA Internet Assigned Numbers Authority

DHCP Internet Assigned Numbers Authority

PPC Privacy Preserving Controller

UIC University of Illinois at Chicago

OSI Open System Interconnection

HTTP Hypertext Transfer Protocol

FTP File Transfer Protocol

xi

Chapter 1

Introduction

A very important aspect of network architecture is management. The

network management is a set of actions which perform operations, main-

tenance and administration in a defined network. Software used for net-

work management are also called network-monitoring systems. The set of

available monitoring systems is very large and every network owner can

choose a different package based on needs and network size. An impor-

tant aspect of monitoring systems activity is network traffic measurement.

Behind bandwidth analysis, traffic measurement performs users’ network

activity reports (e.g. Local and Remote IP addresses, Port number or pro-

tocol and user name) [5]. Traffic monitoring is an important tool to support

operation and management of the network architecture, to menage anoma-

lies, to defend the network and users from any kind of possible attacks,

intrusions. Traffic monitoring is also required to perform information to

legal authorities with an accurate log for investigations [6].

Privacy-sensitive information is not limited to the content of network

packet. In fact considering the possible techniques used to end-to-end en-

cryption, from a privacy point of view the protection of packet payload is

trivial. More information can be extracted from protocols’ header with sta-

tistical analysis of network traffic. Most of solutions proposed use anonymiza-

1

CHAPTER 1. INTRODUCTION 2

tion of the traffic. Besides ethical issues, the privacy problem protection

domain has been growing within legislation area. Many countries have al-

ready adopted laws such that they can ensure users’ privacy and regulate

personal data collection, processing and dissemination. Regarding Euro-

pean Union, there are several rules to preserve the personal data from not

legal processing. Other countries, as U.S.A, provide several laws to protect

user information.

This document will focus on possible alternate solutions to tracking

users avoiding privacy issues and the loss of storage space performance.

All considerations and developed techniques are considered within a net-

work with NATed (Network Address Translation) machine. The thesis will

discuss: NAT background, current privacy preserving techniques and will

propose two different approaches and possible advantages of proposed

techniques.

The goal of the project is to implement a new kind of network moni-

toring system inside a router or an access point with a few hundred KBs

of available storage. The current work is part of a project named Xenonets,

developed by Bits Lab at UIC. The thesis, as discussed in the above para-

graph, is focused on NAT network; the feature of such kind of network is

to be able to use one global IP address serving many users with different

private IP addresses, but chapter two will introduce a better overview of

NAT machine. Particular attention during the project was on two different

aspects:

• System Storage Efficiency

• Users’ Privacy

As mentioned above a network monitoring system requires a large amount

of storage space in order to track users, especially in a network with a

NAT machine. Usually, monitoring systems store information as relation

CHAPTER 1. INTRODUCTION 3

database records [7]. The monitoring systems have to track each user’s ses-

sion (local and destination IP, local and destination port, exchanged byte,

timestamp, etc). Considering the current monitoring systems used in net-

works, privacy is one of the principal issues to preserve. Network moni-

toring systems are very useful tools because it is possible to perform many

kinds of operations in the network (management, planning and security).

Besides technical issues, privacy also has legal implications.

Before introducing a possible solution to the problem we need to know

which parameters are essential in order to track a user, as well as be more

storage space efficient. Considering the monitoring system used at Univer-

sity of Illinois at Chicago (UIC), the stored parameters for each user’s ses-

sion are: source IP and port, destination IP and port, timestamps, packet

length, payload bytes, interfaces. Many of these parameters are needed

in order to perform many network measurements as bandwidth quotas.

When the users are behind a Gateway, as UIC students, the real parameters

we need in order to retrieve a user are the following: outgoing gateway

port, timestamp and private IP address.

The new techniques are not based only about the smaller number of

saved information. The second part of the technique is changing the NAT

assignment port policy in both techniques. The NAT port policy assign-

ment is usually sequential; each time a new connection comes from an pri-

vate IP, the NAT tries to route the connection through a new available port

using incremental order; if there are no new available ports, the NAT, using

the outgoing port reuse feature, can route the connection in an already used

port by other local IP address. One important constraint of both techniques

is: one IP address connections can be routed through a single port at time.

Because we need this constraint to ensure a unique association between lo-

cal IP addresses and outgoing ports, we need to know how many ports a

local user needs. Two different approaches have been considered in order

CHAPTER 1. INTRODUCTION 4

to provide an efficient solution to the problem. Both techniques focus on

port policy assignment changes in the NAT system. The following points

are an introduction of both techniques:

• Fixed Port Range: assigns a range port to each user inside the network

with a mathematical function;

• Flexible Port Allocation: to provide more flexibility with large net-

works, the technique assigns port based on real users’ needs.

Many data sources have been used to determine the minimum require-

ments for the new system. Two types of experiments have been conducted

for different purposes:

• compute the necessary space to store all data trace for any user;

• analyze the average number of parallel connections a user needs.

The first experiment has been done to compute the possible number of par-

allel connections a user usually performs. The data source is the website:

http://www.crawdad.org [8]. Crawdad provides a wide range of data source

types.

Both implemented approaches evidence two main advantages:

• space saving in order to monitor the users;

• users’ privacy.

Chapter 3 will discuss the details of both techniques, but we can introduce

it with a brief description.

The first technique uses a mathematical function to assign outgoing

ports; with this method we don’t need to store any information (IP address,

port, timestamp) because it is possible to compute the inverse function in

order to retrieve the IP address.

CHAPTER 1. INTRODUCTION 5

The second technique tries to route all possible connections made by a sin-

gle IP address through one outgoing port, while it is possible; with this

method the gateway logs the relation between the IP address and the out-

going port; all possible connections through the same port need one record

within the log file. Considering the privacy, both techniques don’t store pri-

vacy sensitive information, e.g. destination, data exchanged.

Chapter 2 will introduce an overview of the used tools to conduct the

experiment.

Chapter 2

Background and related work

In order to learn more on the topic, this section introduces NAT prin-

ciples and the tools used to simulate a network with a client and a NAT

machine.

2.1 Network Address Translations (NAT)

NAT (Network Address Translation or Network Address Translator) as

a theoretical concept is the translation of an Internet Protocol address (IP

address) used within one network to a different IP address known within

another network.

NAT is also used to refer to the real machine in charge of translating

addresses from one network to another one or to many different networks.

In the entire document we use gateway to refer to the real machine. Using

the NAT is possible, for example, to map many local IP addresses into one

public IP. The NAT machine is often used when only one external IP ad-

dress is available and many different computers need to be connected to

the Internet. This helps ensure security since each outgoing or incoming re-

quest must go through a translation process that also offers the opportunity

to qualify or authenticate the request or match it to a previous request.

6

CHAPTER 2. BACKGROUND AND RELATED WORK 7

The core of a NAT is the NAT table. The NAT table is a map that pro-

vides all possible allowed translations between internal IP addresses and

the available external IP pool.

2.1.1 Port Address Translation (PAT)

An important feature of the NAT is the port address translation PAT. It

allows having many hosts within the private network working with a sin-

gle public IP. This feature is also known as NAT overload. Changes made

by PAT concern both send’s private IP and port number. Different from

NAT, PAT, operating on both port numbers and IP address, works on layer

3 (network) and 4 (transport) of the Open System Interconnection (OSI)

Model.

The PAT works essentially on two protocols (TCP, UDP) because both

contain IP address and port numbers. The PAT uses a PAT table to route in-

coming packets from the public network. The PAT table stores information

to keep track of public and private port pairs. A pair of IP address and port

is named socket.

The address and port translation is transparent to both private and pub-

lic hosts. If a private host want to initiate a connection with an external

host, it sends a packet with the external host as the destination and its own

IP address as the source; the PAT analyzes the packet, it changes the source

address and finds one port from a pool of available ports to change with the

original one in the packet header. It forwards the new packet to the receiver.

Translating fields of the packet, the PAT creates an entry in the translation

table (PAT table) containing many records and each record has: IP address,

original source port, translated source port, original destination port. In this

way it is possible to route many different connections through a single port

with different record fields. When an incoming packet approaches the PAT,

the PAT analyzes packet fields and it retrieves from the table the correct

CHAPTER 2. BACKGROUND AND RELATED WORK 8

Figure 2.1: Full cone NAT, image courtesy of Christoph Sommer (Wikipedia)

IP address and port to forward the packet after replacing the original des-

tination and port [9]. When a NAT uses the PAT feature is also called NAPT.

2.2 Types of NAT

A NAT can be classified in different way based on its own NAT table

behavior:

• Full cone: an internal address and port is mapped to an external ad-

dress and port, any packets from the same internal address and port

will be sent through the same external address and port. Any exter-

nal host can send packets to an internal address and port by sending

packets to external mapped couple Figure 2.1.

• Restricted cone: an internal address and port is mapped to an exter-

nal address and port, any packets from the same internal address and

port will be sent through the same external address and port. An ex-

ternal host can communicate with an internal one only if the internal

one has already initialized the connection with an port of the external

address Figure 2.2.

• Port-Restricted cone: an internal address and port is mapped to an

external address and port, any packets from the same internal address

and port will be sent through the same external address and port.

CHAPTER 2. BACKGROUND AND RELATED WORK 9

Figure 2.2: Restricted cone NAT, image courtesy of Christoph Sommer (Wikipedia)

Figure 2.3: Port Restricted cone NAT, image courtesy of Christoph Sommer (Wikipedia)

A communication from an external host and port can exist only if

an internal address has already sent a packet to the exact external

address and port Figure 2.3.

• Symmetric: Each request from the same internal IP address and port

to a specific destination IP address and port is mapped to a unique

external source IP address and port. If the same internal host sends a

packet even with the same source address and port but to a different

destination, a different mapping is used. An external host can com-

municate only if the internal host has initiliazed the communication

Figure 2.4.

Figure 2.4: Symmetric NAT, image courtesy of Christoph Sommer (Wikipedia)

CHAPTER 2. BACKGROUND AND RELATED WORK 10

Figure 2.5: Netfilter structure components, image courtesy of Jengelh (Wikipedia)

2.3 Netfilter

As implementation of the NAT, the project is focused on Netfilter ap-

plication. Netfilter is a framework able to intercept and manipulate net-

work packets. Netfilter can create a firewall or NAT system within Linux

machine. Netfilter is a modular framework able to extend itself with differ-

ent and custom functions (hook). With this kind of approach it is possible

to handle different protocol with different extended functions. In order to

track connections between internal and external network, the main part of

Netfilter is Connection Tracking [10].

Besides a complete stateful packet filtering, Netfilter can serve as NAT, per-

form port redirection, packet filtering and it can include rate limiting [11].

2.3.1 IPTables

Netfilter is able to handle many different tables from each different

hook (modular function). All loaded tables have different features and serve

different purposes.

Iptbles is a user space application for configuring Netfilter rules and packet

filtering.

CHAPTER 2. BACKGROUND AND RELATED WORK 11

Figure 2.6: Iptables data flow, image courtesy of Guillermo Grandes (Wikipedia)

IpTables can be divided into 4 main modules as follows:

• Raw module: register a hook called from any other hook. It provides

a table to filter packets before reaching Connection tracking;

• Mangle module: register a hook and mangle table after Connection

tracking phase;

• NAT module: register two different modules, Destination and Source

NAT. Destination transformations are applied before filter hook. Source

transformations are applied after filter hook.

2.3.2 Netfilter NAT

Netfilter NAT is divided into two categories [12]:

• Source: NAT system alters the source address of the first packet of a

connection. Source NAT is always performed post-routing, before the

packets go out onto the wire. Special case is Masquerading.

• Destination: NAT system alters the destination address of the first

packet of the connection. Destination NAT is always done before rout-

ing, when the packet first comes off the wire.

CHAPTER 2. BACKGROUND AND RELATED WORK 12

Figure 2.7: Packet flow paths, image courtesy of Martin A. Brown

2.3.3 Connection Tracking

One of the important features built on top of the Netfilter framework is

connection track- ing. Connection tracking allows the kernel to keep track

of all logical network connections or sessions, and thereby relate all of the

packets which may make up that connection. NAT relies on this informa-

tion to translate all related packets in the same way, and iptables can use

this information to act as a stateful firewall.

The connection state however is completely independent of any upper-

level state, such as TCP‚Äôs or SCTP‚Äôs state. Part of the reason for this is

that when merely forwarding packets, i.e. no local delivery, the TCP engine

may not necessarily be invoked at all. Even connectionless-mode transmis-

sions such as UDP, IPsec (AH/ESP), GRE and other tunneling protocols

have an, at least pseudo, connection state. The heuristic for such protocols

is often based upon a preset timeout value for inactivity, after whose expi-

ration a Netfilter connection is dropped.

CHAPTER 2. BACKGROUND AND RELATED WORK 13

2.3.4 Conntrack-Tools

The best way to interact with Netfilter information from userspace is

the Conntrack-tools. This set of tools allows users to read and modify con-

nection tracking entries and tables. The package includes a daemon tool

conntrackd and a command line interface conntrack to handle connection

tracking events. Conntrack-tools has been used to read information from

NAT table and to log connections from internal to external host.

2.4 PRISM Framework

To find a solution to the privacy problem a new kind of framework has

been developed by PRISM Consortium to handle both online and offline

applications. The PRISM framework is two-tier framework architecture.

The framework is the controller between source information and entities

able to read data from network monitoring. Also PRISM provides a seman-

tic model for access control policies able to work in real time and differently

depending on the request type [13].

The access to privacy sensitive data is controlled with different levels of

security. The architecture can handle different types of requests and directly

contacts the data owner or send notifications to authorities. The framework

gives the possibility to the users to be informed about data collection and

processing. With a modular architecture, PRISM allows a high level of pri-

vacy but also a high level of security to access stored data.

2.4.1 Architecture

The main features for privacy-preserving system are the following:

• Real-time data protection (at the same time data is captured, it is pre-

served as well) on the online monitoring probes;

CHAPTER 2. BACKGROUND AND RELATED WORK 14

• Possibility to extend framework features with access and collecting

data tool;

• Monitoring application customization to adapt the system to the en-

tire network architecture;

• Entity separation to build a modular system in order do split data

protection module from monitoring application module.

The architecture of the framework is not monolithic as the previous ones

but is split in three different part as follows:

• Front-end: it captures and encrypts data;

• Back-end: it allows entities to access data;

• Privacy Preserving Controller (PPC): this controller is the Source of

Authority to issue ACs to trusted holders. The PPC controls also the

crypto keys to enforce the protection mechanism on Front-End and

Back-End.

Figure 2.8: PRISM Architecture, image courtesy of Georgios V. Lioudakis

CHAPTER 2. BACKGROUND AND RELATED WORK 15

2.4.2 PRISM Behavior

The Front-end tier captures packets over networks links and the cap-

tured information is forwarded to the back-end tier already encrypted. The

back-end tier provides access to data stored into a database. To access data

each entity needs to submit a X.509 Role-assignment Attribute Certificate

(AC).

The Privacy-Preserving Controller who provides certificates and implement

active roles for different kinds authority controls the entire privilege sys-

tem.

Data access

The Back-End tier provides the data access. It is in charge of controlling

any data access (online and offline). All data is stored into a database to be

available anytime an allowed user needs to read it. The Back-End tier can

store information into the database using data already encrypted by the

Front-end to ensure a high level of privacy.

No one can access directly data; because the data is already encrypted on

the front-end tier it is also impossible for network operators to directly ac-

cess the data.

To access data each entity needs to submit a X.509 Role-assignment At-

tribute Certificate (AC) to be allowed by the Back-end tier to read data [14].

2.4.3 Drawbacks of PRISM framework

PRISM framework is a good solution for users’ privacy, but some fea-

tures are not suitable to fit the goal of the project. We would implement the

new system in a gateway router with a few hundreds of KBs of memory,

CHAPTER 2. BACKGROUND AND RELATED WORK 16

unfortunately the entire system requires a lot of storage space to run and

as other network monitoring systems it requires a database to store a lot

of information. The framework stores all information about users, even if

data is not available to everyone, the privacy is not preserved.

The third section will discuss which kind of analysis has been con-

ducted and the implementation in order to obtain desired goals.

Chapter 3

Methodology and

Implementation

This chapter is focused on the methodology and implementation of the

project. Before discussing the new developed techniques, we will introduce

the basic concepts of the project.

The first basic concept is the outgoing port reuse; using this PAT feature

we try to route all connections made by a single user through a single

port, while it is possible. Unfortunately not all connections can be routed

through a single port, e.g. parallel connections to the same destination (IP

address and port). Because of that problem, one step of the project, the trace

base study, is focused on learning how many parallel connections to the

same host:port a user needs. With this study we can know how many out-

going ports a users needs.

The second basic concept is mapping IP addresses and outgoing ports. Be-

cause the goal of the project is to create a sort of monitoring system able to

retrieve malicious users, we must know exactly which IP address is using

a specific port in every moment. To handle this important requirement we

impose each port has to be owned by a single IP address at a specific time.

The project is split into three parts:

17

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION 18

1. trace-based study;

2. manipulation and evaluation;

3. implementation.

These new techniques will take advantage of the outgoing port reuse fea-

ture of the NAT. Compare the normal NAT behavior, routing many differ-

ent users’ connections to the same port, we route connections from only one

IP address through a single port. This is a trade-off for our techniques but

useful to realize a unique map between IP addresses and outgoing ports.

Regarding these types of constraints it is important to maintain available

ports for each user within the network.

3.1 Environment Setup

To test the new methods, a network with at least one client and the NAT

machine is necessary. To avoid setting a real network with two machines,

we use a virtualization software in order to set up a virtual network.

One of the virtual machines is the private host and the other the gateway

machine. In the last machine IpTables is running in order to simulate the

NAT [12].

3.2 Methodologies

In the project two methods have been implemented. Two different tech-

niques have been used to satisfy different requirements and constraints.

3.2.1 Fixed Port Approach

The first implemented technique has been developed around a new as-

signment outgoing port policy of the NAT system. The main part of the

technique is:

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION 19

• NAT engine assigns a specific range of port per every user into the

internal network.

The assigned range is defined by a mathematical function:

[x ∗ y− 1, (x− 1) ∗ y] (3.1)

x are last IP number digits; y is the range size; to be sure that the range does

not overlap ports from 0 to 1024, an offset has been added to the bounds.

As we introduced before, all possible connections made by an IP address

are routed to a single outgoing port, except for parallel connections to the

same host:port.

Not all ports have been assigned to internal users. The range from 0 to 1024

has been assigned to the NAT itself for communication reasons; an extra

range of available ports, not assigned, has been computed for extra parallel

connections needed by the users.

In such case, each time a port has been assigned within the additional

range, a new record inside a log file has been created.

Retrieving an IP address from the outgoing gateway port needs to compute

the reverse function of the above equation range equation.

The above system doesn’t need to store information in order to retrieve a

typical user, except the rare case that the NAT assigns a port within the ad-

ditional range. The technique is efficient concerning storage space.

However the fixed port range method doesn’t work well for networks with

netmask less than 24 bits.

Given a netmask of 16 bits, it is possible to have 216 different IP addresses

and exactly 216 outgoing available ports on NAT. In that case it is possible

to assign a single port per user. This constraint is much too restrictive and

this technique is useless in this type of network, for that reason we need to

develop a more sophisticated technique.

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION 20

3.2.2 Flexible Port Allocation

We propose a flexible port allocation technique, which handles with no

problem, networks with a netmask smaller then 24 bits. As a consequence

of more flexibility the new technique is somewhat less efficient with respect

to storage space.

Before going through the flexible method explanation, some terminology

must be introduced:

• Connection Triple: source ip - destination - destination port;

• Outgoing Port Attributes: IP address - Timestamp.

The timestamp indicates the last time the port had been used and from

which IP address. This technique, like the previous one, uses the outgoing

port reuse feature of the NAT. The flexible method has been divided into

the following parts:

• Initialization;

• Assigning outgoing ports;

• Port conflict resolution.

To retrieve a user with this technique the systems checks the log file to

match timestamp and NAT port.

Initialization

At initialization time, when the NAT machine is starting, the NAT en-

gine defines a limited outgoing port range. This range is available to inter-

nal IP addresses to create their own connections.

Assigning outgoing port

When a port is assigned to a user, the NAT stores the timestamp within

the port attribute and a new record is created within the log file to track the

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION 21

IP address with the current outgoing port.

Each time an IP address requests a new connection, the system tries to find

a port already mapped with that IP address. If the connection parameters

(connection triple) are different from the current one in that port, the new

session can be routed through the previous port. When the connection is

established through a port that has already been used by the same IP ad-

dress the system doesn’t record any information, because it already has

information about the IP address and port association, but it updates the

timestamp.

Port Conflict Resolution

The initial part of this method is to setup a small outgoing port range

available to all users. The number of parallel connections to the same host

and port or the number of IP addresses within networks can fill the avail-

able ranges. In the case that there aren’t any available ports to route any

new connections within the same triple or connection for a new IP address

then there is a port conflict. There are two possible cases where a port con-

flict can exist:

• the available range size is smaller of the total number of available

ports on the NAT;

• the available range size is equal to the total number of available ports

on the NAT.

The first conflict case is very easy to handle; the NAT system doubles the

range size in order to have additional available ports.

The second case is a little more complicated; if there aren’t any available

ports, the system tries to find the least recently used port. Once the sys-

tem has located the port, it checks if there is a live connection. Netfilter can

check connection status and also modify the status with the XTables struc-

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION 22

ture. The Xtables contains the list of all connections through Netfilter. It is

usually very rare to have a live connection through the least recently used

port, therefore the system updates the port attributes (timestamp and IP

address) and creates a new record within the log file.

Advantages

After complete implementation of a flexible technique, an evaluation

has been conducted in order to understand the potential benefits. The sim-

ulation has been done on a tcpdump header file 010926.000002.packets from

[8] (716.9 MB). This file has been created from the University of Dartmouth

during fall 2001 semester sniffing packets from 4 different building.

The study on the trace file counts how many parallel connections to the

same host:port a user needs. Given that number we can compute how

much space we need to track the user. Different from our system, the net-

working monitoring system of UIC needs to store all users’ connections

with more parameters.

3.1 shows the number of bytes the UIC system needs to store a single user’s

Table 3.1: UIC System requirements

Field Bytes

Source IP 4

Source Port 2

Destination IP 4

Destination Port 2

Timestamps 16

Headers + Payload Bytes 4

Payload Bytes 4

Interfaces (In,Out) 4

connection.

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION 23

In the above file, we found 6055 users’ session. Computing the total num-

ber of bytes to track a single user’s session (40 bytes) times the number of

sessions, the total amount of storage space needed is 337160 bytes;

In our system, the fields needed are: IP address (4 bytes), Port number (2

bytes) and timestamp (4 bytes). With these parameters, the storage space

needed for the same amount of sessions is 920 bytes.

The storage savings for just one day is 99.727%. If we consider more then

one day trace, such that each IP address keeps the same port for a long pe-

riod of time, the outgoing port reuse feature can arise the storage savings

up 99.8%

3.2.3 Privacy

As described both techniques track users without storing sensitive data,

such as destination address, time and payload. Therefore these techniques

ensure a high level of privacy for the users, while preserving the capability

to identify the user responsible for any given packet.

Chapter 4

Experimental Validation

In order to determine how many ports a user needs, we study recorded

traces from crawdad [8].

4.1 Experiments

We use the dataset dartmouth/campus (v. 2009-09-09). The dataset has

been created at University of Dartmouth. All packets have been sniffed in

three different periods: fall 2001 (four buildings), spring 2002 (five build-

ings) and fall 2003 (eighteen buildings). The data has been sanitized to re-

move information as Media Access Control address (MAC addresses). We

study all samples from fall 2001 because more representative with less noise

on the data.

4.1.1 Manipulation and evaluation

The goal of our trace-file analysis, as introduced above, is to learn how

many parallel connections to the same host:port a user needs, such that we

can know how many gateway outgoing ports a user needs.

Before analyze trace-file, we need to clean the data from unrequired fields

and noise. Some of the trace files we got from crawdad were not complete,

24

CHAPTER 4. EXPERIMENTAL VALIDATION 25

e.g. synack with no finack and vice versa.

To clean the data we use t-shark such data we can print interesting packet

header fields and analyze them with bash script.

The technique to count the above connections is the following:

• maintain a counter for each different triple (source ip - destination ip :

destination port);

• each time a SYN ACK with a particular triple is observed, increment

the corresponding counter;

• each time a FIN ACK with a particular triple is observed, decrement

the corresponding counter.

Figures 4,5 and 6 plot the number of parallel connections versus number

of users on different days; we find that most of the users need one or two

ports. This means that a typical user makes one or at most two parallel

connections to the same host and port, so a user needs one or two outgoing

gateway ports.

In all of figures we can see there are internal hosts using more than two

ports, in that case the hosts are internal reachable from the external network

(HTTP server and FTP).

Most of the users need one or two ports. Considering, the outgoing port

usage that means a user makes one or at most two parallel connections to

the same host and port.

CHAPTER 4. EXPERIMENTAL VALIDATION 26

Figure 4.1: Number of users versus parallel connections 09/26/2001

Figure 4.2: Number of users versus parallel connections 10/05/2001

Figure 4.3: Number of users versus parallel connections 10/14/2001

Chapter 5

Conclusions and Future work

5.1 Conclusions

This thesis presented two techniques which allowed the monitoring of

users with a high level of storage space efficiency; also they preserve user

privacy through the network, and preserve a high level of privacy on users.

The most flexible technique (useful with all network sizes) ensures storage

savings at least of 99.727% on our test trace.

Both techniques are transparent to clients within networks and are cheap

to implement, due to the fact that they are simple source code modifica-

tions. It is possible to implement both techniques directly to an access point

and/or a NAT.

5.2 Future work

The techniques have been implemented in Linux Ubuntu. The next step

is the implementation into a real Gateway router box (e.g. OpenWrt). The

software porting should be easy in this case because OpenWrt is a Linux

based system with Netfilter implementation to provide a NAT system.

It is possible to integrate the complete system with the overall Xenonet ar-

27

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 28

chitecture under development at UIC.

Appendix A

Implementation

The Netfilter source code is built to handle either IPV4 and IPV6. The

thesis focused on IPV4.

A.1 Fixed port technique

The nef_nat_range structure has been used in order to implement the

assignment policy. The structure is defined into net/netfilter/nf_nat.h. With

this structure it is possible to define the range in a dynamic way instead of

the static way iptables does. The flags value specifies which type of range

the NAT is dealing with. In order to have a port range with a specified IP

and ports, the application has to set the flags value as follows:

1 flags = IP_NAT_RANGE_MAP_IPS | IP_NAT_RANGE_PROTO_SPECIFIED;

The values min_ip and max_ip is always the same; it is the IP address of the

external NAT box.

The NAT engine has to modify to every user the value of nf_conntrack_man_proto

min, max; these two fields define the minimum and the maximum port

range. Using the equation 3.1, it is possible to determine the two values

29

APPENDIX A. IMPLEMENTATION 30

concerning the IP address making the request.

In order to apply the range to the user, the source code file net/nf_nat_core.c,

located in net/ipv4/netfilter/, has been modified. Focusing on function get_unique_tuple

a new range has been created when the NAT modifies the packet, changing

the source IP address and port.

Considering the client IP address of the internal network client is 192.168.0.2,

the following steps have been added to the function:

• checking if the current packet belongs to TCP or UDP protocol and if

the NAT is in the post-routing step;

• assign to the range the lower and upper port to define the range size.

• modify the range type with element flags assigning the value IP_NAT_RANGE_MAP_IPS

OR (logic) IP_NAT_RANGE_PROTO_SPECIFIED.

The printk functions wasused to debug the program. The above changes

are able to create and setup the range for the user. In order to use the pol-

icy: parallel connections to different hosts in the same port, modifying the

function handling the port assignment is required. The assignment func-

tion is defined inside net/ipv4/netfilter/nf_nat_proto_common.c; the function

name is nf_nat_proto_unique_tuple. The last part of the function is a for

cycle to assign the correct port into the range. An element unsigned *rover

is defined to enumerate all possible ports into the range. The element rover

is a pointer to a static u_int16_t tcp_port_rover;. This value is defined in-

side net/ipv4/netfilter/nf_nat_proto_tcp.c. The rover stores the last offset of

the used port. Instead of storing the last offset in the rover, the system resets

that value every time to 0 such that the NAT routes the maximum number

of possible parallel connections to different host in a single port.

APPENDIX A. IMPLEMENTATION 31

A.2 Flexible port technique

The flexible technique requires to modify many files:

nf_nat_core.h

1 s t r u c t assignment {

2 unsigned i n t timestamp ;

3 __be32 ip ;

4 } ;

5 extern s t r u c t assignment * l i s t P o r t ;

6 extern unsigned a v a i l P o r t s ;

7 extern unsigned o f f s e t ;

8 extern __be32 c u rr e n t _ ip ;

9 extern bool l i m i t ;

The struct assignment contains the port attributes (timestamp and IP port);

the listport is used to handle the different port range during the routing

phase of the NAT; the offset is used to handle to avoid port overlapping

between the port 0 and 1024. The variable limit is used to know when the

number of available ports has reached 216.

nf_nat_core.c

1 /* Manipulate the tuple i n t o the range given . For

NF_INET_POST_ROUTING,

2 * we change the source to map i n t o the range . For

NF_INET_PRE_ROUTING

3 * and NF_INET_LOCAL_OUT, we change the d e s t i n a t i o n to map

i n t o the

4 * range . I t might not be p o s s i b l e to get a unique tuple ,

but we t r y .

5 * At worst (or i f we race) , we w i l l end up with a f i n a l

du pl i ca te in

6 * __ip_conntrack_confirm and drop the packet . */

APPENDIX A. IMPLEMENTATION 32

7 s t a t i c void

8 get_unique_tuple (s t r u c t nf_conntrack_tuple * tuple ,

9 const s t r u c t nf_conntrack_tuple

* or ig_tuple ,

10 const s t r u c t nf_nat_range * range ,

11 s t r u c t nf_conn * ct ,

12 enum nf_nat_manip_type maniptype)

13 {

14 s t r u c t net * net = n f _ c t _ n e t (c t) ;

15 const s t r u c t n f_nat_protoco l * proto ;

16

17 .

18 .

19 .

20

21 bool response = proto−>unique_tuple (tuple , range ,

maniptype , c t) ;

22

23 i f (! response && maniptype == IP_NAT_MANIP_SRC) {

24

25 i f (a v a i l P o r t s <= MAXPORT) {

26 s t r u c t assignment *tmp = kmalloc (s i z e o f (s t r u c t

assignment)

27 * a v a i l P o r t s * 2 , GFP_KERNEL) ;

28 i f (! tmp) {

29 goto out ;

30 }

31 memcpy(tmp , l i s t P o r t , s i z e o f (s t r u c t assignment) *

a v a i l P o r t s) ;

32 l i s t P o r t = tmp ;

33 a v a i l P o r t s *= 2 ;

34 }

35 e l s e {

APPENDIX A. IMPLEMENTATION 33

36 l i m i t = true ;

37

38 }

39 }

In this file the NAT tries to assign the port to the new connection. Input

function parameters:

• tuple: modified tuple (source IP and port : destination IP and port)

after NAT changes;

• orig_tuple: original tuple coming from the internal network;

• range: if defined into IpTables script, this parameter contains infor-

mation about the range the new tuple should routed in.

• ct: this is connection tracking record inside Xtables;

• maniptype: specifies the manipulation type (destination o source ma-

nipulation).

If the value of response is true, the port has been associated, otherwise the

NAT tries to double the available range if the available port number is less

the the total outgoing ports otherwise the gateway tries to find the least

used port always with the function proto->unique_tuple.

nf_nat_proto_common.c

1 i f (l i m i t) {

2 unsigned i n t min ;

3 unsigned i n t index ;

4 min = l i s t P o r t [0] . timestamp ;

5 f o r (i = 1 ; i < a v a i l P o r t s − 1 ; i ++) {

6 i f (l i s t P o r t [i] . timestamp < min) {

APPENDIX A. IMPLEMENTATION 34

7 index = i ;

8 }

9 }

10 * p o r t p t r = htons (min + i) ;

11 i f (nf_nat_used_tuple (tuple , c t)) {

12 re turn f a l s e ;

13 }

14 return true ;

15 }

16 f o r (i = 0 ; i < a v a i l P o r t s ; i ++) {

17 * p o r t p t r = htons (min + i) ;

18 /* Check i f the port i s used by the same user comparing

the ip address */

19 i f (l i s t P o r t [i] . ip == c u rr e n t _ ip || l i s t P o r t [i] . ip == 0) {

20 i f (nf_nat_used_tuple (tuple , c t)) {

21 continue ;

22 }

23 l i s t P o r t [i] . ip = c u rr e n t _ ip ;

24 do_gettimeofday(×tamp64) ;

25 l i s t P o r t [i] . timestamp = timestamp64 . tv_sec ;

26 return true ;

27 }

28 }

In this part the systems check each available port owner, if the owner is the

same current IP or the port is free, the NAT routes the connection through

this port, it set the timestamp and the IP owner of the port and return true;

otherwise if into the available range there is no free port, the system returns

false. If the variable limit is set to true, the system finds the least used port

and route the connection through this.

Appendix B

Scripting

To clean and analyze the trace data set and create charts, the following

script are used:

1 mkdir repor t/AcadBldg16

2 f o r f i l e ‘ l s AcadBldg16 ‘ ; do

3 tshark −nn −r $1 −T f i e l d s −e ip . s r c −e tcp . s r c p o r t −e

ip . dst

4 −e tcp . ds tpor t −e tcp . f l a g s

5 ’ (tcp . f l a g s . syn == 1 and tcp . f l a g s . ack == 1)

6 or (tcp . f l a g s . f i n == 1 and tcp . f l a g s . ack == 1) ’

7 > repor t/AcadBldg16/$1 . t x t

8 awk ’ ! x [$0]++ ’ repor t/AcadBldg16/$1 . t x t >

repor t/AcadBldg16/$1_clean . t x t

9 awk ’

10 /0x12/ {

11 syn_count ++;

12 key=$1 "−" $2 "−" $3 "−" $4 ;

13 syn [key] = 1 ;

14 chiave=$3 "−" $1 "−" $2 ;

15 par_conn [chiave]++;

35

APPENDIX B. SCRIPTING 36

16 p r i n t key "\ tS " chiave " " par_conn [chiave] ;

17 }

18 /0x11/ || /0x19/ {

19 key=$1 "−" $2 "−" $3 "−" $4 ;

20 i f (syn [key] == 1 && f i n [key] == 0) {

21 chiave=$3 "−" $1 "−" $2 ;

22 par_conn [chiave]−−;

23 p r i n t key "\ tF " chiave " " par_conn [chiave] ;

24 f i n [key] = 1 ;

25 }

26 i f (syn [invkey] == 1 && f i n [key] == 0) {

27 chiave=$1 "−" $3 "−" $4 ;

28 par_conn [chiave]−−;

29 p r i n t key "\ tF " chiave " " par_conn [chiave] ;

30 f i n [key] = 1 ;

31 }

32 } ’ c lean . t x t

33 repor t/AcadBldg16/$1_clean . t x t | awk ’ { p r i n t $4 } ’

34 | s o r t −n | uniq −c | awk ’ { p r i n t

$2 "\ t " $1 } ’

35 > repor t/AcadBldg16/$1_graph . t x t

The following is the IpTables script to run a NAT into a Linux machine:

1 #!/ bin/sh

2 PATH=/usr/sbin :/ sbin :/ bin :/ usr/bin

3 # d e l e t e a l l e x i s t i n g r u l e s

4 i p t a b l e s −F

5 i p t a b l e s −t nat −F

6 i p t a b l e s −t mangle −F

7 i p t a b l e s −X

8 #Always accept loopback t r a f f i c

9 i p t a b l e s −A INPUT − i lo − j ACCEPT

10 #Allow e s t a b l i s h e d connections ,

APPENDIX B. SCRIPTING 37

11 #and those not coming from outs ide

12 i p t a b l e s −A INPUT \

13 −m s t a t e \

14 −−s t a t e ESTABLISHED ,RELATED − j ACCEPT

15 i p t a b l e s −A INPUT \

16 −m s t a t e \

17 −−s t a t e NEW − i \

18 ! eth0 − j ACCEPT

19 i p t a b l e s −A FORWARD \

20 − i eth0 −o eth1 \

21 −m s t a t e \

22 −−s t a t e ESTABLISHED ,RELATED − j ACCEPT

23 #Allow outgoing connect ions from the LAN side

24 i p t a b l e s −A FORWARD − i eth1 −o eth0 − j ACCEPT

25 #Masquerade

26 i p t a b l e s −t nat −A POSTROUTING −o eth0 − j MASQUERADE

27 i p t a b l e s −A FORWARD − i eth0 −o eth0 − j ACCEPT

28 # Enable rout ing

29 echo 1 > /proc/sys/net/ipv4/ip_forward

Bibliography

[1] M. Barbaro and T. Zeller Jr. A face is exposed for aol searcher no.

4417749. The New York Times, August 2006.

[2] S. Bellovin. A technique for counting natted hosts. Proceedings of

the 2nd ACM SIGCOMM Workshop on Internet Measurement, November

2002.

[3] D. Antoniades P. Trimintzios D. Koukis, S. Antonatos and E.P.

Markatos. A generic anonymization framework for network traffic.

Proceedings of the 2006 IEEE International Conference on Communications

(IEEE ICC 2006), June 2006.

[4] V. Paxson R. Pang, M. Allman and J. Lee. The devil and packet trace

anonymization. ACM SIGCOMM Computer Communication Review,

36(1):29–38, January 2006.

[5] Wikipedia. Network traffic measurement. http://en.wikipedia.

org/wiki/Network_traffic_measurement, June 2010.

[6] Francesca GAUDINO Lefteris KOUTSOLOUKAS George LI-

OUDAKIS Sathya RAO Fabio RICCIATO Carsten RICCIATO

Felix STROHMEIER Giuseppe BIANCHI, Elisa BOSCHI. Privacy-

preserving network monitoring: Challenges and solutions. 2008.

38

http://en.wikipedia.org/wiki/Network_traffic_measurement
http://en.wikipedia.org/wiki/Network_traffic_measurement

BIBLIOGRAPHY 39

[7] Wikipedia. Comparison of network monitoring systems.

http://en.wikipedia.org/wiki/Comparison_of_network_

monitoring_systems, June 2010.

[8] David Kotz, Tristan Henderson, Ilya Abyzov, and Jihwang Yeo.

CRAWDAD data set dartmouth/campus (v. 2009-09-09). Down-

loaded from http://crawdad.cs.dartmouth.edu/dartmouth/campus,

September 2009.

[9] Wikipedia. Port address translation.

http://crawdad.cs.dartmouth.edu/dartmouth/campus, June 2009.

[10] Harald Welte. Netfilter connection tracking and nat helper mod-

ules. http://ftp.gnumonks.org/pub/doc/conntrack+nat.

html, June 2010.

[11] Wikipedia. Netfilter. http://en.wikipedia.org/wiki/

Netfilter, June 2010.

[12] Rusty Russell and Harald Welte. Linux netfilter hacking

howto. http://www.iptables.org/documentation/HOWTO/

/netfilter-hacking-HOWTO.html, June 2010.

[13] Anna Antonakopoulou Dimitra I. Kaklamani Iakovos S. Venieris

Georgios V. Lioudakis, Fotios Gogoulos. Privacy protection in passive

network monitoring: an access control approach. International Con-

ference on Advanced Information Networking and Applications Workshops,

2009.

[14] International Telecommunication Union (ITU) Telecommunica-

tion Standardization Sector. Information technology – open systems

interconnection – the directory: public-key and attribute certificate frame-

works. ITU, August 2005.

http://en.wikipedia.org/wiki/Comparison_of_network_monitoring_systems
http://en.wikipedia.org/wiki/Comparison_of_network_monitoring_systems
http://ftp.gnumonks.org/pub/doc/conntrack+nat.html
http://ftp.gnumonks.org/pub/doc/conntrack+nat.html
http://en.wikipedia.org/wiki/Netfilter
http://en.wikipedia.org/wiki/Netfilter
http://www.iptables.org/documentation/HOWTO//netfilter-hacking-HOWTO.html
http://www.iptables.org/documentation/HOWTO//netfilter-hacking-HOWTO.html

BIBLIOGRAPHY 40

[15] Georgios V. Lioudakis Aziz S. Mousas Dimitra I. Kaklamani Iakovos

S. Venieris Fotios Gogoulos, Anna Antonakopoulou. Privacy-aware

access control and authorization in passive network monitoring in-

frastructures. 2010 10th IEEE International Conference on Computer and

Information Technology, pages 1114–1121, 2010.

[16] Dirk GRUNWALD Paul OHM, Douglas SICKER. Legal issues sur-

rounding monitoring during network research. ACM SIGCOMM Com-

puter Communication Review, 2007.

[17] Francesca GAUDINO George LIOUDAKIS Dimitra L. KAKLAMANI

Iakovos S. VENIERIS Giuseppe BIANCHI, Elisa BOSCHI. Legislation-

aware privacy protection in passive network monitoring. Information

Communication Technology Law, Protection and Access Rights, pages 363–

383, 2010.

[18] European Parliament. Directive 95/46/ec of the european parliament

and of the council on the protection of individuals with regard to the

processing of personal data and on the free movement of such data.

Official Journal of European Communities, (281):31–50, November 1995.

[19] Wikipedia. Network monitoring. http://en.wikipedia.org/

wiki/Network_monitoring, June 2010.

[20] Wikipedia. Network management. http://en.wikipedia.org/

wiki/Network_management, June 2010.

[21] Wikipedia. Network address translation. http://en.wikipedia.

org/wiki/Network_address_translation, May 2010.

[22] andM.Pomposini G.Bianchi, S.Teofili. New directions in privacy-

preserving anomaly detection for network traffic. Proceedings of the 1st

ACM Workshop on Network Data Anonymization (NDA 2008), October

2008.

http://en.wikipedia.org/wiki/Network_monitoring
http://en.wikipedia.org/wiki/Network_monitoring
http://en.wikipedia.org/wiki/Network_management
http://en.wikipedia.org/wiki/Network_management
http://en.wikipedia.org/wiki/Network_address_translation
http://en.wikipedia.org/wiki/Network_address_translation

BIBLIOGRAPHY 41

[23] D. Sicker P. Ohm and D. Grunwald. Legal issues surrounding moni-

toring during network research. Proceedings of the 7th ACM SIGCOMM

Conference on Internet Measurement (IMC ‘07), October 2007.

[24] Victor Castro. Roll your own firewall with netfilter. Linux Journal,

October 2003.

[25] Nicolas Bouliane. Writing your own netfilter match.

http://www.linuxfocus.org/English/February2005/

article367.shtml, June 2010.

[26] Cisco Systems. How nat works. http://www.cisco.com/

application/pdf/paws/6450/nat-cisco.pdf, June 2010.

[27] Netfilter Core Team. Netfilter. http://www.netfilter.org, June

2010.

http://www.linuxfocus.org/English/February2005/article367.shtml
http://www.linuxfocus.org/English/February2005/article367.shtml
http://www.cisco.com/application/pdf/paws/6450/nat-cisco.pdf
http://www.cisco.com/application/pdf/paws/6450/nat-cisco.pdf
http://www.netfilter.org

	Acknowledgments
	List of Abbreviations
	Introduction
	Background and related work
	Network Address Translations (NAT)
	Port Address Translation (PAT)

	Types of NAT
	Netfilter
	IPTables
	Netfilter NAT
	Connection Tracking
	Conntrack-Tools

	PRISM Framework
	Architecture
	PRISM Behavior
	Drawbacks of PRISM framework

	Methodology and Implementation
	Environment Setup
	Methodologies
	Fixed Port Approach
	Flexible Port Allocation
	Privacy

	Experimental Validation
	Experiments
	Manipulation and evaluation

	Conclusions and Future work
	Conclusions
	Future work

	Implementation
	Fixed port technique
	Flexible port technique

	Scripting

