
 POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione

Polo Regionale di Como

Laurea Specialistica in Ingegneria Informatica

Master thesis

Identification of Initial Test set for Incremental

Diagnosis

Supervisor: Professor Fabio Salice

Assistant Supervisor: Luca Amati

Author: Saeid Ebrahimi Ghasemabadian

Student ID: 722947

Academic year: 2010

Saeid Ebrahimi Page 2

ConteFnts
Abstract .. 4

Abstract .. 6

Chapter 1: Goals ... 8

Chapter 2: Previous Works... 13

2.1. Introduction ... 13

2.2. The Set Cover problem ... 14

2.3. Conclusion .. 20

Chapter 3: Methodology .. 21

3.1. Introduction ... 21

3.2. The Problem ... 22

3.3. Component Test Matrix (CTM) .. 23

3.3.1 iAF2D methodology .. 25

3.4. Binary Integer Programming (BIP) ... 28

3.4.1 Definition .. 28

3.4.2 bintprog Algorithm ... 28

3.4.3 Branching ... 29

3.4.3.1 Deciding whether to Branch ... 29

3.4.4 Bounds ... 30

3.4.4.1 Limits for the Algorithm.. 30

3.5. Methodology Implementation ... 30

3.5.1 Introduction ... 30

3.5.2 Sum Methodology ... 31

3.5.3 Logarithm Methodology ... 33

3.5.4 Example for Sum method .. 35

3.5.5 Example for Logarithm method .. 36

3.6. Further considerations ... 36

3.6.1 Robustness of Methodologies ... 36

3.6.2 Customization of Methodologies ... 37

3.6.3 Timing ... 38

Chapter 4: Results .. 39

4.1 Sum Methodology Results ... 39

4.1.1 Sum Methodology Robust Results ... 42

Saeid Ebrahimi Page 3

4.1.2 Comparing Sum and Robust Results ... 43

4.1.3 Sum and Robust Timing Results .. 46

4.2 Logarithm Methodology Results .. 50

4.2.1 Logarithm Methodology Robust Results .. 51

4.2.2 Comparing Logarithm and Robust Results .. 53

4.2.3 Logarithm and Robust Timing Results .. 56

4.3 Customizing the methodologies .. 59

4.3.1 Customizing the Sum methodology ... 60

4.3.2 Time measuring for customize Sum methodology .. 63

4.3.3 Customizing the Logarithm methodology .. 64

4.3.4 Time measuring for customize logarithm methodology 68

Chapter 5: Conclusion .. 70

Future works .. 71

References.. 72

Saeid Ebrahimi Page 4

Abstract

The MS Thesis Identification of Initial Test set for Incremental Diagnosis is about

analysis and development of a methodology for automatic testing strategy for

complex systems. In other words we solve the problem of finding the best test set for

beginning the tests for finding the faulty component.

We formulate the problem which we are going to solve as a set covering problem

where we need to cover all components of a system (a digital device) with proper

tests, in order to identify the most likely component containing a failure, minimizing

at the same time the number of tests.

By studying different methodologies which work in the field of set covering problem

and analyzing them, we applied a method based on binary optimization.

We introduce first the methodology which have been used to perform test sets called

incremental Automatic Functional Fault Detective, so by using the results obtained

from applying this method we begin to perform our computations.

We present two methods, dubbed as Sum method and Logarithm method, based on

different considerations about the a-posteriori probabilities of test outcomes

(conditional probabilities with respect to component faulty status). The translation of

the concept of minimal test set introduces different types of constraints, producing

different results of optimization solution.

For further considerations we made robustness on both of these methods and run the

computations, both on in the case of equivalent test cost, and in the case where a

custom cost is attributed to each available test. Method efficiency and analysis on

timing complete the results.

The Matlab Optimization framework was used to implement the algorithms. The

results have been collected, we analyze the behavior of the charts draw from the

results and also comparing the results of Sum method and Logarithm method, and

analyzing the robustness on them we make the conclusion on the results which shows

that the implemented methods returns acceptable results.

Saeid Ebrahimi Page 5

By running experiments based on the customization of both methods and collecting

the results and comparing the behavior of the result with previous results obtained

from methods, we have adequate results.

As conclusion we assume that the introduced methods and results of experiments

return satisfying results for performing an automatic testing strategy for complex

systems.

Saeid Ebrahimi Page 6

Abstract

La Tesi “Identificazione del Test set iniziale per Diagnosi Incrementale” si occupa

dell’analisi e lo sviluppo di una metodologia per il controllo automatico di sistemi

complessi. In altre parole affronta il problema di trovare il migliore test-set iniziale

per garantire la stabilità e il corretto comportamento di una metodologia per la

ricerca di componenti guasti in una scheda elettronica.

Il problema che ci accingiamo a risolvere è di tipo “set covering”: al fine di garantire

che un qualsiasi guasto su ogni componente di un sistema venga rilevato; obiettivo è

minimizzare il numero di test che compongono questo inseime test-set.

Attraverso lo studio e l’analisi di differenti metodologie riguardanti il problema del

set-covering, ci si è basati sulla modellizzazione e implementazione di algoritmi

risolutivi attraverso la programmazione binaria intera (Binary Integer Programming).

Per l'inizio degli esperimenti dobbiamo, prima di tutto, definire i test da esegure sulla

scheda elettronica. La metodologia “incremental Automatic Functional Fault

Detective” definisce una strategia ottimale per la scelta dei test da eseguire per

minimizzare il numero totale di test. Il presente lavoro si occupa di identificare un

sottoinsieme minimale di test la cui applicazione garantisca che l’esecuzione della

metodologia iAFD sia in grado di rilevare ogni possibile guasto su un componente.

Due metodi sono stati introdotti, il “Sum method” e il “Logarithm method”. Questi si

differenziano per la formulazione dei vincoli di ottimalità sulla copertura dei singoli

componenti fornita dai test, basata su una differente interpretazione delle probabilità

a posteriori dell’esito dei test stessi.

Oltre al calcolo delle soluzioni ottime su alcuni casi di test, alcune considerazioni

sulla robustezza dei metodi sono state estratte. Inoltre, un costo ad ogni test; in

questo modo possiamo avere, allo stesso tempo, risultati efficienti dal punto di vista

dei costi, supponendo che il tempo medio sia stato misurato in tutti i casi.

Saeid Ebrahimi Page 7

Per eseguire gli esperimenti abbiamo utilizzato l’ambiente di ottimizzazione

numerica di Matlab.

Dopo che sono stati effettuati tutti gli esperimenti con i metodi “Sum method” e

“Logarithm method”, il calcolo robusto è stato applicato ad essi e sono stati raccolti i

risultati, di cui abbiamo analizzato il comportamento.

Abbiamo quindi confrontato i risultati dei due metodi “Sum method” e “Logarithm

method” e analizzato l’effetto del calcolo robusto su di essi; abbiamo quindi tratto

una conclusione riguardo i risultati, che dimostra che i metodi implementati

forniscono risultati accettabili.

Eseguendo esperimenti basati sulla personalizzazione di entrambi i metodi,

raccogliendo i risultati e confrontando il comportamento di essi con i precedenti

risultati ottenuti con i due metodi, abbiamo ottenuto risultati simili.

In conclusione, possiamo affermare che i metodi introdotti forniscono risultati

soddisfacenti per l’implementazione di una strategia di test automatico per sistemi

complessi.

Saeid Ebrahimi Page 8

Chapter 1: Goals

In this thesis we work on the analysis and development of a methodology for

automatic testing strategy for complex systems, and a specific application of the

methodology on a case study based on electronic devices, as it is the case of a

network routing device developed at Cisco.

Testing strategies and methodologies are important as well as the development of the

product itself. Unfortunately not all products will work once they have been

manufactured and it is necessary to test the product before it is shipped in order to

ensure that it is working properly on the best and efficient operational status desired

from the product. Furthermore, in some cases it is necessary to analyze a systematic

approach for the localization of a failure among the different components of a

complex system, both to focus the attention of the test engineer on it (for replacement

purposes) and to shorted repair time.

Present work is based on the proposed project from a collaboration between Cisco

and Politecnico di Milano. Test strategy or testing process needed to be developed

around the products of this company in line with the specific requirements, according

to the most efficient methods and techniques.

The techniques which we are interested mainly have to be used in industry base

products, so it have to be designed in the way that companies test engineers be able

to use it in the test laboratories.

When creating a testing method for electronic circuits it is necessary to take account

of many aspects including the complexity of the boards, the time required to perform

the tests, cost of the tests, and many other factors.

It may be necessary to ensure that elements of the design are changed to enable

testing to be accommodated more easily and in a more cost effective manner. As a

result it is necessary to develop the test strategy from the earliest stages on the

development of the product.

Saeid Ebrahimi Page 9

However, we can see that the issues of testing the products have been under attention

from the time that vendors and industries started to produce goods in batch sizes, and

the products became more complex and including several components. In fact

electronic systems, and now a day electronic devices are widely used by all

organizations and people, it has a big role in societies, in the case if we have fail in

electronic system, it may cause several problems for peoples who are using that

system.

In order to develop test method using intelligent techniques, it is necessary to start at

the beginning of the project study available methods and techniques, then carry out

the development and implementation forward. In order to ensure that the testing

method is carried forward, it is wise to create a test strategy document.

As any other industries there are some standards which have to be taken under

consideration when we are going to develop our project which has direct use in

electronics industry. The widely used and most important standards for electronic

and electrical devices are performed and issued by IEEE organization [1], so for in

this work we try to follow these standards.

There have been developed several methods by researchers and scientists in field of

testing electronic systems using different approaches but the focus of this work is to

introduce specific method and techniques.

The Traditional Approaches, such as using Rule-based diagnostic systems represent

the experience of skilled diagnosticians in the form of rules which generally take the

form “IF symptom(s) THEN fault(s)” [2], trying to find efficient method for testing

electronic systems.

There are several soft computing methods to find the best test strategy, the Fuzzy

method and Neural networks [2] [3], are some of these approaches, as well combining

these two approaches and creating Fuzzy Neural Networks [3] also seems to be

efficient solution for creating a testing strategy.

What we are going to solve in generic term is the set covering problem, in general we

are given several sets as input. But some sets may have some elements in common.

Saeid Ebrahimi Page 10

So we have to select a minimum number of these sets so that the sets which have

been chosen contain all the elements that are contained in any of the sets in the input.

One of the most important aspect in testing electronic boards is that which set of

elements be tested first, in order to get the most efficient test result according to the

parameters such as time consuming, costs and the operational satisfactory. If we

interpret the above statement to mathematical language we need to find the best

initial set for testing by using intelligent techniques. Therefore we need a set of

elements for starting our test which have the most coverage on the board and also the

highest possibility that the guilty component be found by performing the minimum

number of tests.

In order to go ahead in our project successfully and introduce a complete

methodology for testing, by soft computing models we need to divide the work in

three main phase or steps. Therefore the project has been divided in three following

steps.

First of all we need to find the best and most efficient methods in order to be able to

perform the computational experiments. There are several methods in literature that

study the set covering problems in general cases as a theoretical problem, as well

there are several researches and papers that are specified for a special problem

concerning set covering methods.

The set covering methods are very useful in many other industries such as logistics

which was almost the first field of applied using set covering issue, in order to find

and optimize the traveling destinations, recently it is widely used in biomedical

experiments and diagnosis, and also in financial models.

For achieving our goal we need to have a deep study on related methods and analyze

them in order to configure the best possible methods for our specific project, for this

aim several methods such as the classical set covering method using simplex set

covering algorithms which consist of several approaches for solving different set

covering problem and have been widely used between researchers to find the best

covering sets for different purposes, Lagrangian and Lagrangian Relaxation methods,

Saeid Ebrahimi Page 11

and the genetic algorithms are some of the related methods which are used for

computing and analyzing.

The second step, after the best methods are identified and configured for our purpose

we have to do the computational analysis, which is one of the important parts of this

work. Several tests will be performed using at least two methods. The reason that we

have to perform the tests using more than one method is that we need to compare the

results of the methods in order to assure the obtained results.

In order to do the soft computations we need to use computation applications or

software, for this part we look over different computational software, there are

several software such as GLPK (GNU Linear Programming Kit) package is intended

for solving large-scale linear programming (LP), mixed integer programming (MIP)

[4], IBM High-performance mathematical programming engine (IBM ILOG

CPLEX) [5], and MATLAB [6] one of the powerful computing mathematical

applications that is used widely by mathematicians and also have the best

compatibility with windows operating machines [7].

Therefore the MATLAB [6], computing application will be used for our

computational work in this research paper.

The third step, after all when we already configured the methods that we want to use

and also we did the computational experiments with those methods, now in this step

we have several results obtained from our computing. In order to give a valuable

meaning to our result we need to analyze them, which is the goal of this part of work,

as well as it is known for analyzing different results we need to use parameters and

bench marks. Further we need to define our parameters and benchmarks for this

work.

The parameters which we will use in this work are scalability; scalability is a

desirable property of a system, a network, or a process, which indicates its ability to

either handle growing amounts of work in a graceful manner or to be readily

enlarged [9], complexity, it is one the important parameters usually used in computer

science [10], and time, as much as the time consuming by test be less it is better

Saeid Ebrahimi Page 12

because in industry time has cost, so vendors are interested in less consuming time

operations.

All the results obtained from previous steps of this project will be carefully analyzed

in respect to the parameters and standards. This is our goal in this step of the project.

The result of the work is finally satisfying the need of the project which is the best

initial set for testing electronic systems for fault diagnosis using intelligent

techniques in respect to scalability, complexity, and time.

Saeid Ebrahimi Page 13

Chapter 2: Previous Works

2.1. Introduction

One of the most famous problem in optimization is the problem of traveling

salesman, in order to find the shortest way to visit all the cities which he needs to

travel between them to sale his goods, in this problem we are dealing with

optimization of traveling according to mainly two criteria visiting cites and distance

between the cities.

The Set Covering Problem have been widely studied, and a lot of different methods

for solving the problems have been proposed and developed by researchers working

in different fields of science and technology such as bioinformatics, and artificial

intelligence.

By considering that solving very complex approximation algorithms need a very

large set of computational operations to get proper results.

Nowadays intelligent algorithms by help of powerful computing machines are able to

solve more complex approximation algorithms, and have been used by many

researches for high level and very complex approximation problems such as Local

Improvements, Randomized Rounding, Iterated Heuristic, Genetic Algorithm, and

Lagrangian Heuristic [1][11][12].

Particularly the methods and algorithm which are developed to find the best initial

test set or in other word the set covering problem is not limited to the methods named

above, and all the methods will not be studied in this chapter. One can develop his

own methodology in order to find the best method for his specific project by

combining the exciting methods or at all introducing a new method.

Finding the best initial test set using intelligent techniques, identifying the best set,

will lead the whole project further correctly to find the guilty component as soon as

possible with the minimum number of tests.

Saeid Ebrahimi Page 14

The focuses of this chapter is to study the previous works related to the research of

this thesis. Study the methods and algorithms which other researchers used to find

the best initial test set in the electronic circuit industries or in other scientific or

industrial fields. In fact we are only interested in methods and algorithms used for

computations and the way that they prove that their method is doing well.

2.2. The Set Cover problem

In order to find the best initial test set and satisfy the goals of our work, we need first

of all have a clear idea about what are optimization methods and in particular case

optimization of set covering problem. In our work the optimized set cover is the best

test set for beginning of the tests.

In [13] and [14] gives us very clear explanation, in details about the set covering

problem, and the mathematical definition of the set cover problem is also provided

and explained, further there are several different issues which are dealing with this

problem.

For our work we need to implement the set covering problem according to our

specific problem and the general definition cannot be directly used in order to find

the initial test set for the electronic circuits. The electronic circuits are very complex

and the model circuit influence the initial test set, the better method gives us more

information about the potentially fault component.

In general set cover issue is divided in two main parts, scientifically called

unweighted and weighted the difference between this two issue is explained in [8]

and [14]. Regarding to the project which we are working on, we will mainly deal

with the weighted set cover problem, in order to make our computations for finding

the best initial test set.

The unweighted set covering is not useful in our case because if we perform a test

which cover several components on the board, all the components will not be

covered by same degree of the test coverage, means that we need to assign a value or

Saeid Ebrahimi Page 15

weight coverage to each component under the specific test. So we can assume that

the weighted set cover problem is more under attention in this work. The methods

which will be used have to be able to handle weighted set cover problem.

One of the first issues which go in mind by studying [15] is the minimum set cover;

the paper worked on finding the minimum set cover as goal. In fact we also need to

obtain the minimum set cover as result in our work as well. In other words means

that the algorithms which will be used for computing the test sets, should return as

output a set cover of minimum size respect to the coverage degree of each test

performed on the components.

The weighted set covering problem, compute a sub-collection of the subsets with the

minimized cost. The weight of a subset is the sum of the weights of the elements in

the subset, in general a sub-collection of subsets is called a cover [8][16]. Further

consideration on weighted set-cover shows that each subset has at most k elements, it

means that it is also possible to calculate the weighted k-set cover problem.

The greedy algorithm is one of the approximation algorithm for the weighted k-set

cover problem. In [17] we can see the explanation of the unbounded values of k and

the approximation ratio of the greedy algorithm for the unweighted set cover

problem. The definitions of greedy algorithm in [17], are fully explained. In addition

in [18] and [19] several issues about approximation problems have been proved and

the factors that the unweighated set cover cannot be approximated are explained, so

we can see that not always we can have an approximation unweighted set cover.

By reviewing and considering different approaches and problems which are

discussed in previous works and the results obtained by different methods, we can

assume that greedy algorithm is one of the best possible approximation algorithm for

the weighted set cover problem in the most cases, [17][18][19].

As our focus is on weighted set covering problem, so the greedy algorithms can be

one of the potential solutions for our project. By sure we cannot assume in this step

Saeid Ebrahimi Page 16

of the work that for our specific project it will return the best and most efficient

solution, so it is not possible to rely only on this method as it is widely used by other

research projects and if they gain perfect result does not mean the results are the best

possible according to the parameters which we have in our work. In general we are

interested to use different methods and even more reliable ones for achieving the

goals of our project.

In [20] the paper works on both, heuristic and exact approaches, taking in to

consideration the linear programming techniques. It introduces different algorithms

and methods based on lagrangian relaxation, and the computational experiments are

done by CPLEX [6]. It compares the result of different algorithms tested by CPLEX

[6] by the computing time of each algorithm.

If we consider that usage of an algorithm is better only by lower computing time, we

cannot be sure that the results are the most effective ones. Especially in our case the

test should cover the component with a acceptable degree of coverage, not only to

cover.

But lagrangian relaxation methods and the algorithms which are used for the

computations are in interest of our work also. By applying modifications on these

algorithms it is possible to obtain proper solutions for our work as well; the

algorithms of this model are more complex than other minimization algorithms.

Considering the problem of travelling salesman in this century means the fright

forwards, we can see in [21] problem of airfreight forwarders have been solved by

Lagrangian relaxation based heuristic, the paper shows that the algorithm

implemented base on Lagrangian relaxation returns sophisticated results for set

covering problem.

As it was mentioned before in this paper, our focus is on weighted set covering

approaches. Weighted Boolean optimization is one of the powerful optimization

methods that can be used to solve the set covering problem.

Saeid Ebrahimi Page 17

In [22] the Maximum Satisfiability problem have been studied, the paper propose a

new algorithm for Weighted Maximum Satisfiability problem which is one of the

optimization extensions of the Boolean Satisfiability problem. Further the paper

shows that a general algorithm for Weighted Boolean optimization can be as efficient

as other dedicated algorithms.

The Weighted Boolean optimization was one of the initial methods which we were

trying to work on it, by considering a matrix that tests are columns and components

are rows. First of all assign a degree of coverage to each component under test,

further by introducing some composition rules, we would obtain some test sets, we

cannot prove in this paper that this method gives us the most affective result

comparing with other approaches.

To perform fault diagnoses for dynamic systems [3], work on the idea of combining

of the Neural Network and the Fuzzy logic together and introducing the Fuzzy

Neural Network for fault diagnoses. This method is heavily based on prior

knowledge of the system and training data, which is not suitable in our project since

that we are working to find the best initial test set for fault diagnosis and we do not

work in the designing phase of the electronic boards.

However soft computing algorithms based on linear programming such as lagrangian

relaxation methods, and also Weighted Boolean optimization methods such as

Pesudo-Boolean optimization, have been used by many solvers, to solve different

kind of complex optimization problems.

Well known that the soft computing intelligent techniques are not limited to the

methods studied above, there are other intelligent technique such as Genetic

Algorithm and Binary Integer Programming.

Genetic algorithms are recently used to solve large kind of problems such as pattern

recognition, system classification, control systems, and combinatorial optimization.

There are two well known genetic algorithms Sequential or standard genetic

algorithms (SGAs) and Parallel genetic algorithms (PGAs) [23]. In fact the

sequential genetic algorithm is the modified version of the standard genetic

Saeid Ebrahimi Page 18

algorithm, in case each solver according to the kind of the problem for solving

choose one of the methods.

A genetic algorithm mainly reproduces a solution through a simple representation,

look like a bit string, on which transformations are performed in order to find

acceptable solutions and the solutions be efficient for computing time or proximity

[24]. The main reason that Parallel genetic algorithms have been implemented is to

reduce the processing time required in order to achieve an acceptable solution to

explore a solution space. In hard problems, large populations impact seriously on the

processing time [25].

An Indirect genetic algorithm is proposed in [26], it uses external decoder function to

find the solutions, further it shows that the indirect method comparing with direct

methods gives better result according to solution quality, speed, and adaptability to

new types of problems. The advantage of this method that it can be re-used for other

problems unchanged because the genetic algorithm component is almost independent

from the problem specific decoder component.

There are several genetic algorithm models for optimization proposed by different

researchers. For numerical optimization we can see a sort of methods explained and

examined in [27], and computational results have been compared with each other in

order to draw conclusion through computational experiments. The numeric results

which are obtained, and there comparisons which are performed, are not directly

related to our work and we are not trying to prove which method of genetic algorithm

is returning the best solution.

The Binary Integer programming method have been introduced in [29], the method

looks simple but in fact the algorithm behind the method is very power full and can

solve very complex methods. In general we can convert almost any minimization

problem to the Binary Integer programming method. The paper solve some examples

and compute them. The method seems to return reasonable and well minimized

solutions for different examples.

Saeid Ebrahimi Page 19

The Binary Integer programming as it is possible to gain from the name of the

method will only return the binary solutions of 0 and 1. In the case of our problem it

is possible to use this method, because we can convert the inputs of our problem to

the standard inputs which Binary Integer programming method use for its

computations and after computations we will get a set of binary results, so we can

use them for performing the analyzes.

By studying the different papers we can see that mainly the researches use the

MATLAB[6], for running the computations and the results obtained from it is highly

trustable although that is one the most powerful computing software.

For making the computations for the methods in [28] provide a sort of information

on how to use the genetic algorithm tool box in MATLAB [6], and how we can find

the optimization by using MATLAB [6]. This application have been used recently by

many researchers for solving complex mathematical problems.

The most strong part of the MATLAB[6] software which make it very friendly for

using is several ready functions and tools, for example for minimization there is

several predefined tools for example for genetic algorithm there is (GA) tool and for

Binary Integer programming we can use the (bintprog) tool.

For the computational part of our project we will use the Binary Integer

programming (bintprog) tool, according to the papers which we studied in this step

of the work the algorithm which is used in Binary Integer programming can satisfy

the requirements of the computing phases of this project.

In order to be able to use this method first of all we need to model our problem in the

way that it fit the inputs of the Binary Integer programming. As it is well known the

results will be binary. Considering this fact we need to have a strong policy to

analyze the obtained binary results.

Using this predefined tools speed up the computation parts of the project and also

minimize the errors which can appear in the phase of the designing algorithms and

Saeid Ebrahimi Page 20

writing codes because the algorithms are tested before and correct results are

guaranteed to be obtain if the inputs be well defined. We can also use it for our

computations, so we can compute the test sets and therefore analyze the results

obtained from the same computing application but using different methods.

2.3. Conclusion

We realize that for our specific problem the weighted set cover methods are more

reasonable, because of this fact mainly the papers which work on solving the

weighted set cover problem have been more under attention and studied.

When having more precise look in the previous works we can realize that for our

purpose we need a very powerful computing method almost more efficient than all of

the previous works. Our computations are suppose to cover a large amount of entry

data, the reason for large number of entered data is that nowadays the electronic

systems are assembled with a lot of components and they are very complex in

scheme of integration.

In order to be sure that we obtain reasonable results from our work we need to

compare our results. So according to the experience from previous works we will

compute our data parallel by using Binary Integer programming tool but with

different methods of input data.

In order to perform the computations by using computing machine, we planned to

use MATLAB computing application. According to the MATLAB libraries [6], the

bintprog tool is the predefined tool for using the Binary Integer programming

algorithms so we will use this tool mainly for our computations the complete

explanations of how to we use this tool will be given in the next chapter.

Saeid Ebrahimi Page 21

Chapter 3: Methodology

3.1. Introduction

In our paper we will describe the methodologies which have been used for

researching and performing computations, methods and algorithms for this work. As

all scientific works, we started our work with defining the goals of the given project,

clarify the goals and targets in order to have better understanding of the project.

The main goal of this research is to find the best initial test set for electronic circuit

using intelligent techniques. The goal seems to be very general therefore we break it

in three sub goals, in chapter two we studied the previous researches and papers to

get idea about the methods which other researchers used, to get clear idea about the

different possible methods to perform tests, compute and how to analyze the results

obtained from different methods for applying the solutions in different scientific or

industrials fields. We can use the observed ideas from previous papers to introduce

the methods which we are using in our research work for computing results and

finding proper solutions to our specific needs of the project.

Further in this chapter we will see that how the component test matrix (CTM) are

generated, and two computation methods which we will use to perform the

computations on the test sets obtained from the electronic circuits, with Matlab

simulating and computing software. The base of the tool which we are using is the

tool for solving binary integer problems, which is proper to our work according to

the component test matrix design.

After the (CTM)s are generated we apply the first computing method on them, the

first method we directly apply is the binary integer problem solver (bintprog) tools

for computations in Matlab, by running several tests on the initial test sets and

gathering the data results.

Saeid Ebrahimi Page 22

The second method which we use for the computation is again based on same tool in

matlab the binary integer problem solver (bintprog) but with modified inputs in this

case we do apply the log to our inputs.

Therefore we apply the robust on the both methods, by removing the first solution in

any iteration in the initial test set and gathering the results by this way we can have

better idea that the test sets are well designed or not.

After all by gathering the results from both methods and the results from robustness

applied on the both method, in the next chapter of this paper we work on the

analyzing the results in order to show that the according to the obtained results are

the methods which we chose for our work are well defined and in the last chapter we

will write the conclusions observed from this work.

3.2. The Problem

At the beginning we formulate the problem of finding the best initial test set by using

the generated component test matrix (CTM) according to statistical estimates of the

coverage degree of each component for each test which have been performed. To do

so, we assume that by the following terminology t= {t1, . . . , tn} are the set of tests

which are performed to cover the components. Components are sets of parameters

that the test specify for each of them a degree of converge on them, c = {c1, . . . ,

cm} the sets for which statistical coverage exist.

An |c|×|t| matrix, where the (i, j) are entries, and Pij , holds the probability of

coverage of a test tj with a test generated for using the set Ci. We also assume that

Pij are statistically independent for simplification of the problem. Furthermore, at

end by taking in to consideration that these statistical estimates are reliable. The

Initial test set is represented by the vector v = {v1, . . . ,vm}, which specifies an

activation policy, considering that � = ∑ �� the total number of tests derived by the

policy v. In fact we need to solve the equation ��� ∗ 	 ≥ �, x is the solution matrix

which are looking for it. There for by finding the x we have a binary matrix as a

result for each of our CTM, the important part is to analyze the results obtained.

Saeid Ebrahimi Page 23

After identifying the problem further we need to explain how the component test

matrix (CTM)s have been generated. Since the identification of the CTM is a very

important part of electronic circuits tests.

As better component test matrix (CTM) be defined the more better result can be

obtained in further computations because it has direct relation to the physical layer of

the circuit and the affect of tests on the components.

 To solve the main problem which is minimization of the initial test sets, in the

computational part we need to introduce and explain method which we are going to

apply for solving the problem, as it was mentioned before the method which we are

planning to use in this work is Binary Integer Programming. For the computations we use

the Binary integer programming tool (bintprog) in Matlab minimization tools.

3.3. Component Test Matrix (CTM)

The methods of generating the component text matrix (CTM) is not implemented as

a part of this paper, moreover it is not included in the goals of this project, but we

will not be able to find the best initial test set without having the results of the affects

of each test on the components. The component test matrix (CTM) used in this paper

were developed by the previous phase of the project proposed by the CISCO

company therefore the researchers from Politecnico di Milano incorporate of CISCO

Photonics engineers, introduced a strong algorithm based on Bayesian Belief

Network. We will just make a brief introduction about the method and we directly

use the components test matrix (CTM)s generated by this algorithm in this phase of

the work which is finding the best initial test sets according to the test sets performed

by (CTM). As mentioned before the more efficient test set for beginning the tests

leads the tester to obtain and more accurate results in shorter time, which for

complex systems is an essential point for testing. The complete information can be

find in [30].

Saeid Ebrahimi Page 24

As mentioned before, the model of the circuit plays a major role in the whole test and

diagnosis process. The better is the model, the more reliable are the information

about potentially faulty components.

The model is mainly composed by two sections: a first one regarding the physical

structure of the circuit under test (in terms of components or/and functionalities) and

a second one representing the set of relationships between components and tests.

While the first part is objective and available using the design tool which brings from

an high level description to the electrical schema, the second one is not so trivial.

An intervention of the test engineers team is needed in order to identify the tests they

consider representative to verify the board functionality and to define

tests/components relationship.

The output of the test engineers team activity is a table, called Component Test

Matrix (CTM) where each entry represent the coverage level a test provides to a

component, using a qualitative simplified scale (High, Medium, Low). This

simplification has not an huge impact on the whole process, because the probabilistic

engine tolerates imperfectness: moreover, the computation of an accurate value

would have been really difficult.

Illustration 1. An example of (CTM)

Saeid Ebrahimi Page 25

3.3.1 iAF2D methodology

A new approach is needed to fill the limitations of existing diagnosis approaches

described before. The aim of this new approach is to proceed with an incremental

strategy, performing only a subset of the available tests, and, based on the resulting

partial syndrome, to select the next test (or tests) to be executed in order to refine the

search of the candidate faulty component.

The goal is to limit the number of executed tests, using only those that would

actually add information for the diagnosis, saving effort and time. This approach has

been called iAF2D: incremental Auto Functional Fault Detective.

The framework which implements iAF2D methodology takes as inputs the model

(with CTM) an a partial syndrome (the results of an initial set of tests, designed by

the test engineers team). Results are the indication of the next test to be executed

and/or the ranked list of the potentially faulty components. More precisely, iAF2D

uses a Bayesian Belief Network (BBN) as the probabilistic reasoning engine.

A BBN is a DAG (Direct Acyclic Graph) where nodes represents variables and arcs

represents conditional independencies between variables: in general, a BBN models

the conditional dependencies of a set of variables.

By adding semantics to this model it is possible to obtain a casual BBN, where each

node specifies an event which may happen or not, based on the occurrence of its

parents through a conditional probability. In this context, variables are associated to

components, which may be faulty or fault-free. Events are test outcomes, which may

be PASS or FAIL, as depicted in the following picture.

Saeid Ebrahimi Page 26

Illustration 2: The BBN model for the iAF2D diagnosis methodology

This translation from CTM to BBN model is part of the first step of iAF2D, which

implies the identification of the initial set of tests, too. Results of these initial tests

are collected and analyzed in the second step. Further tests are executed if no tests

have failed: in fact, in this case, no information can be used to identify a set of faulty

candidates.

It is necessary to improve the coverage of the board adding one more test at time.

When at least one test fails, the core of iAF2D starts. In this third step the effects of

the execution of each remaining test are simulated using the BBN engine. For each

remaining test both PASS and FAIL outcomes are considered, calculating all the

components' probability to be faulty and the probability for the test to give such an

outcome.

All the components that appears in one of the FAILED tests constitutes the Possible

Faulty Candidates set (PFC set), used together with the calculated probabilities to

compute the indication of the next test to be executed.

A scalar cost function has been defined to take into consideration all these factor,

giving a final value for each not yet executed test. These flow goes on until the whole

Saeid Ebrahimi Page 27

test set has been used (no more available test to perform) or a stop condition is

reached. This condition is when an additional test (the next test suggestion) would

not modify the order of the ranked PFC set.

An algorithm and a framework has been designed to implement the described iAF2D

methodology. A set of experiments has been performed to check the improvements

w.r.t. the classical diagnosis methodologies mentioned before. Results are

encouraging, confirming that a solution (the faulty component identification) is

reachable in a finite number of steps. The complete algorithm is shown in figure 1.

Figure1

Moreover, the incremental approach seems not to reduce the accuracy of the

diagnosis, which is affected mostly by the model (including the CTM) and the test

Saeid Ebrahimi Page 28

design and selection activity. This means that having a consistent CTM is one of the

critical points: that's why the attention is now focused on the identification of an

intermediate model to be used by test engineers team when defining CTM.

3.4. Binary Integer Programming (BIP)

3.4.1 Definition

Binary integer programming as it is possible to drive from the name of it each can take only

the value of 0 or 1. This my refer to the selection or rejection of an option which we assign

the value to it, in general 1 is mentioned as selected and 0 rejected, but not limited to this

options and several other options can be used.

We will study the binary integer programming problem of finding a binary vector x that

minimizes a linear function �
	 subject to linear constraints:

����
	 ���ℎ �ℎ�� �� ∗ 	 ≤ �,	 ������ � (1)

Where the f, b, are vectors in this equation, A is matrices, and the expected

solution of x a binary integer vector, so its entries can only take on the values 0 or 1.

3.4.2 bintprog Algorithm

bintprog uses a linear programming (LP)-based branch-and-bound algorithm to solve binary

integer programming problems. The algorithm searches for an optimal solution to the binary

integer programming problem by solving a series of LP-relaxation problems, in which the

binary integer requirement on the variables is replaced by the weaker constraint 0 ≤ x ≤ 1.

The algorithm

• Searches for a binary integer feasible solution

• Updates the best binary integer feasible point found so far as the search tree grows

Saeid Ebrahimi

• Verifies that no better integer feasible solution is possible by solving a series of

linear programming prob

• The following sections describe the branch

3.4.3 Branching

The algorithm creates a search tree by repeatedly adding constraints to the problem, that is,

"branching." At a branching step, the algorithm chooses

not an integer and adds the constraint

form the other branch. This process can be represented by a binary tree, in which the nodes

represent the added constraints.

for a problem that has three variables,

variables going down the levels in the tree is not the usual order of their subscripts

Illustrati

3.4.3.1 Deciding whether to Branch

At each node, the algorithm solves an LP

node and decides whether to branch or to move to another node depending on the

There are three possibilities:

If the LP-relaxation problem at the current node is infeasible or its optimal value is greater

than that of the best integer point, the algorithm removes the node from the tree, after which

it does not search any bra

according to the method you specify in

If the algorithm finds a new feasible integer point with lower objective value than that of the

best integer point, it updates

Verifies that no better integer feasible solution is possible by solving a series of

linear programming problems

The following sections describe the branch-and-bound method in greater detail.

The algorithm creates a search tree by repeatedly adding constraints to the problem, that is,

At a branching step, the algorithm chooses a variable xj whose current value is

not an integer and adds the constraint xj = 0 to form one branch and the constraint

form the other branch. This process can be represented by a binary tree, in which the nodes

represent the added constraints. The following picture illustrate (3), a complete binary tree

for a problem that has three variables, x1, x2, and x3. Note that, in general, the order of the

variables going down the levels in the tree is not the usual order of their subscripts

Illustration 3: Binary tree with three variables

3.4.3.1 Deciding whether to Branch

At each node, the algorithm solves an LP-relaxation problem using the constraints at that

node and decides whether to branch or to move to another node depending on the

There are three possibilities:

relaxation problem at the current node is infeasible or its optimal value is greater

than that of the best integer point, the algorithm removes the node from the tree, after which

it does not search any branches below that node. The algorithm then moves to a new node

according to the method you specify in Node Search Strategy option.

If the algorithm finds a new feasible integer point with lower objective value than that of the

best integer point, it updates the current best integer point and moves to the next node.

Page 29

Verifies that no better integer feasible solution is possible by solving a series of

bound method in greater detail.

The algorithm creates a search tree by repeatedly adding constraints to the problem, that is,

whose current value is

0 to form one branch and the constraint xj = 1 to

form the other branch. This process can be represented by a binary tree, in which the nodes

a complete binary tree

x3. Note that, in general, the order of the

variables going down the levels in the tree is not the usual order of their subscripts

relaxation problem using the constraints at that

node and decides whether to branch or to move to another node depending on the outcome.

relaxation problem at the current node is infeasible or its optimal value is greater

than that of the best integer point, the algorithm removes the node from the tree, after which

nches below that node. The algorithm then moves to a new node

If the algorithm finds a new feasible integer point with lower objective value than that of the

the current best integer point and moves to the next node.

Saeid Ebrahimi Page 30

If the LP-relaxation problem is optimal but not integer and the optimal objective value of the

LP relaxation problem is less than the best integer point, the algorithm branches according to

the method you specify in the Branch Strategy option.

3.4.4 Bounds

The solution to the LP-relaxation problem provides a lower bound for the binary integer

programming problem. If the solution to the LP-relaxation problem is already a binary

integer vector, it provides an upper bound for the binary integer programming problem.

As the search tree grows more nodes, the algorithm updates the lower and upper bounds on

the objective function, using the bounds obtained in the bounding step. The bound on the

objective value serves as the threshold to cut off unnecessary branches.

3.4.4.1 Limits for the Algorithm

The algorithm for bintprog could potentially search all 2n binary integer vectors, where n is

the number of variables. As a complete search might take a very long time, you can limit the

search using the following options

• MaxNodes — Maximum number of nodes the algorithm searches

• MaxRLPIter — Maximum number of iterations the LP-solver performs at any node

• MaxTime — Maximum amount of time in seconds the algorithm runs

3.5. Methodology Implementation

3.5.1 Introduction

In this section we will implement our problem in order to solve it by using the

bintprog logarithm, explained above. As we mentioned before in the bintprog

equation (1), and according to the bintprog solver, we need first of all to define the f,

b, x vectors and A matrices.

Saeid Ebrahimi Page 31

The f is vector containing the coefficients of the linear objective function; in our case

we use the f as vector of ones. After initial implementations of the method and

obtaining the results of the computation for the customizing part of the methods we

will define f in other way which will be explained well further. General speaking the

f is the cost function in this work f corresponds to the cost of each test.

The b is vector corresponding to the right-hand side of the linear inequality

constraints; in our methods we will assign different values to b vector according to

the method which will be used. For the sum method we will use the b vector starting

from 0.5 and increasing with 0.1 up to 1.5, for any iteration of the algorithm. For the

logarithm method the b starts again from 0.5 but instead of increasing it will decrease

by 0.1 up to 0.1, for any iteration.

The A is a matrix containing the coefficients of the linear inequality constraints; we

define the A as the component test matrix (CTM). The component test matrix was

explained above and the algorithm for generating them. As we mentioned before the

generating of the component test matrix is not the goal of this work we use the

generated component test matrixes for our computations.

The x is the binary results obtained from the solver, the 1 shows the cover on the

corresponding component and the 0 means no cover or not sufficient cover on the

component.

Further we will explain the details of each method we used for the computations, we

used two main method Sum method, and Logarithm method, moreover the robust

and customization have been applied on both methods, and the time have been

measured for all the computations.

3.5.2 Sum Methodology

For applying the Sum methodology first of all we need to define the matrix A

according the equation (1), the matrix A as we mentioned above is equivalent to the

component test matrix (CTM). The component test matrixes in our project have three

coverage degrees high, medium, and low.

Saeid Ebrahimi Page 32

From the numerical point of view A which is (CTM), is a matrix with the coverage

between 0 to 1, assume that if the coverage is equal to 0.1 means low coverage, 0.5

medium coverage, and 0.9 is the high coverage. By this way the highest level of

coverage on a single component can be 0.9 multiply by number of tests, means all

tests cover that specific component by degree of 0.9.

The f, cost function at this phase of computations is equal to vector ones. And b

starts from 0.5 summing by 0.1 up to 1.5,

The result x are the output of the equation (1), matlab solve this equation by using

bintprog(f,A,b), but for our work the problem is that � ∗ 	 ≤ � is not the condition

which we need for our particular work, we need to solve � ∗ 	 ≥ � .

So the equation which we will use is shown as follow:

����
	 ���ℎ �ℎ�� �� ∗ 	 ≥ �,	 ������ � (2)

Where the variables are same as it was explained above, to solve the problem with

the new condition we simply use the bintprog(f,-A,-b) for our computations. As it

has been proved in operation research, the feasibility space is not changing through

multiplying both sides of all constraints by minus one and changing the equation

sign.

The result x which we obtained are binary as we were expecting it, the x is the

selected solution from the component test matrixes (CTM) in our computations.

In fact by solving the equation (2) we are summing up the probabilities of covers,

and we define a threshold which the sum of our probability should be greater than

that, in our case the vector b.

If we have the following matrix(1), as component test matrix (CTM), with

probabilities:

� = # $(�1|�1) ⋯ $(�1|��)⋮ ⋱ ⋮$(��|�1) ⋯ $(��|��))

 Matrix (1),

Saeid Ebrahimi Page 33

and the vector b:

� =
*+
++
+,
�1�2...�./0

00
01

Assume that n=k therefore we are solving a set of equation(3) as follow:

23
4
35$(�1|�1! + $��2|�1! + ⋯ $���|�1! ≥ �$��1|�2! + $��2|�2! + ⋯ $���|�2! ≥ �...$��1|��! + $��2|�2! + ⋯ $���|��! ≥ �

�
Equation (3)

By considering the rules of probabilities we know that p(A and B) = p(A)p(B), if A

and B be mutually exclusive then p(A or B) = p(A)+p(B), we can see the equation (3)

cannot return the exact solution to our problem, so we will modify our method to

have more exact and precise solution. The Logarithm method which we introduce

further will solve this problem.

3.5.3 Logarithm Methodology

In this method same as the Sum method we use the bintprog solver to solve the

problem. But there are several differences between these two methods.

In this method we need to define the variables of the equation (1), we begin from A

which is the component test matrix (CTM). The component test matrixes in this case

also have three degree of coverage high, medium, and low. But in this method we

Saeid Ebrahimi Page 34

replace the coverage on the contrary numeric notation, means that high refer to 0.1

and low refer to 0.9 and the medium will keep its value 0.5.

The f or cost function in this phase of method is equivalent to the vector of ones. The

b which is the coefficient vector begins from 0.5 by taking away 0.1 up to 0.1.

Now we will configure the equation(1) for this method, as we can see from the name

of the method we are going to use the logarithm for this method, we apply the

logarithm operator to component test matrixes (CTM) and to the b vector, so we will

get the equation(4),

����
	 ���ℎ �ℎ�� �789� ∗ 	 ≤ 789�,	 ������ � �4!

By applying the bintprog(f,A,b), we will obtain the binary results x which were

expecting, x is the selected solution from the component test matrix same as sum

method.

The reason we apply logarithm into our method is that according to the equation (3)

sum method sum up the probabilities but we are interested in p(A and B), when we

apply logarithm to the probability rules we will have log p(A)+ log p(B)) = log

(p(A)p(B)), so by this way we will have the equation (5).

23
43
5log>$��1|�1! + $��2|�1! + ⋯ $���|�1!? ≤ 789�log>$��1|�2! + $��2|�2! + ⋯ $���|�2!? ≤ 789�...log>$��1|��! + $��2|�2! + ⋯ $���|��!? ≤ 789�

�

Equation (5)

In fact applying logarithm to the solver will leads us to a more naïve results, and the

behavior of these results are very good bench mark for analyzing the results.

Saeid Ebrahimi Page 35

3.5.4 Example for Sum method

Here we will present an example of sum method, in this example we use matrix (2)

with dimension of 3x4 as a component test matrix. The columns are tests and the

rows are components, We solve this example manually in order to give the clear idea

about the method.

� = #@0B
0�@

BB@
00�)

Matrix(2)

First off all we will replace the H with 0.9, M with 0.5 and L with 0.1 so we will

obtain the following matrix:

� = # 0.900.1
00.50.9

0.10.1 0.9
000.5)

The vector b in our problem we used 0.5 as starting threshold so for solving the

problem we use a vector of 0.5, and the vector x is the result which are selected tests.

So by replacing in the equation (2) we will have

0.900.1

00.50.9
0.10.1 0.9

000.5) E	1	2	3	4G ≥ #0.50.50.5)

by solving the equation we will obtain:

E	1	2	3	4G = E1100G

So we can see that by selecting test one and test two we will cover all the

components with respect to the threshold.

Saeid Ebrahimi Page 36

3.5.5 Example for Logarithm method

The example solved her by logarithm method use the exactly same component test

matrix (2), but as it is described in the method we will replace zeros with ones, H

with 0.1, M with 0.5, and L with 0.9, so we will obtain the following matrix:

� = # 0.110.9
10.50.1

0.90.9 0.1
110.5)

Further we have to apply the equation (4), we use same threshold 0.5 for this

example as well so we will have the following equation:

log �# 0.110.9
10.50.1

0.90.9 0.1
110.5)! E	1	2	3	4G ≥ log �#0.50.50.5)!

by solving the equation we will obtain:

E	1	2	3	4G = E1100G

As we can see the results obtain form both methods are same, the test one and test

two are the best initial test sets for our example.

3.6. Further considerations

3.6.1 Robustness of Methodologies

To have more efficient results in this phase of the work we apply the robust on both

methods, the aim is to robust the minimized initial test sets. Robustness of the results

Saeid Ebrahimi Page 37

gives us a new set of results which can be used for the analyzing the results, and

assure that the obtained results from both methods are well defined or not.

For computing this part of the work we begin from the results obtained from each

method, for Sum method we continue the computations with modification on the

component test matrixes, by removing from the CTM the first solution given by first

time applying the bintprog(f,-A,-b). further we run the test with the new CTM

obtained and the solver bintprog(f, -A, -b) will solve the equation (2) with the new

generated CTM. Further we use the results obtained by this robustness for analyzing

the results of the Sum method.

We apply the robustness of logarithm method as well, in this case the results

obtained from the first time applying bintprog(f,A,b) will be used. The modification

will be applied on the component test matrixes (CTM), so same as previous, we will

remove from the CTM the first solution obtained. Furthermore by applying again the

solver bintprog(f,A,b) with respect to the equation (4) we will obtain a set of naïve

results for the logarithm method, which is presented in the next chapter. We will use

these results for analyzes of the results.

3.6.2 Customization of Methodologies

The customization of the methods is one of the important parts of this work, as we

mentioned before that the project is proposed by the CISCO Company, and the

company would like to apply the results in real production cycle.

For this aim we need to configure the methods to be useful for industrial base work.

As we explained before in the method of obtaining the component test matrixes, we

assumed that the test matrixes are generated by using real electronic circuits, so the

component test matrixes have direct relation to the physical productions.

We can assume from the parameters which we used in this computations for both

method the CTM which in equation (2) and (4) shown with latter A, is already

defined form real production.

Saeid Ebrahimi Page 38

The only parameter used which can affect the usage of the methods we implement in

this work is the cost function of f, for the first part of computations and as well for

robustness we used vector ones, but for customization part of the method we apply

the cost of the tests, and instead of the vector of ones we use the cost.

By this way the results obtained will be compared and analyzed with the theoretical

results so we will have a clear knowledge that the methods are suitable for the

industrial base tests.

3.6.3 Timing

As we mentioned before one of the parameters in our work is the computation time

so for collecting the results of the time, we measure the time of computations by

running twenty times the computations for Sum method and logarithm method, and

as well for the robustness of both methods, and for the customized computations.

then by gathering the data we have average time of computing of each method and

also the robust parts. For measuring the time we use the cpu clock, by applying the

tic toc, in Matlab code.

Saeid Ebrahimi Page 39

Chapter 4: Results

All the results shown in this chapter are performed by the methods explained in the

previous chapter. The tests are run by using Matlab version 2008b, installed on a

personal computer (PC), with the following performance Intel® Core™2 Duo

Processor P8600 (2.4 GHz, 1066 MHz FSB, 3 MB L2 cache).

After the computations have been executed and terminated we copy the result from

Matlab to Microsoft spreadsheet (Excel). In this step we can now analyze the results,

by performing table and drawing proper charts for each part of the results. By using

the charts which are shown in this chapter we can further drive a strong analysis on

them, and also use them to have better view of the results.

The result which are shown here are computed and generated with Matlab by using

initial test set obtained from component test matrix generator and the specific

methodology explained in previous chapter. We used two set of matrixes for our

computations with different dimensions. The first 10 set of matrixes have the

dimension of 20x10 and the second set of matrixes with the dimension of 50x20.

The initial test sets which have been used for the computations will not be showed in

this paper because it is out of focus of this paper, and we are only interested in the

results obtained from those initial test sets or in other words component test matrixes.

4.1 Sum Methodology Results

By applying the sum methodology mentioned before, after computing initial test sets

on Matlab and obtaining the results as it was expected the results are in format of

binary, sets of zero and ones. The one index means that the component

corresponding to the specific test has been covered by that test according to the

coefficient assign to that test.

The test with more ones cover more components, in fact if we choose to start the

tests, which in the specific coefficient are covering a lot of components, means

beginning to find the faulty component among the larger group of components so it

Saeid Ebrahimi Page 40

can increase the time of testing in the next phase of the work, identifying the exact

faulty components in the circuit.

But we have certain cost function, and we compute component test matrixes for the

method one, by the coefficients starting from 0.5 up to 1.5 by adding the value 0.1 to

the coefficient after each iteration, in the algorithm used for computing.

The results shown in the chart (1), shows us for each of assigned coefficients to the

component test matrixes the values obtained, the algebraic sum of the ones. EX_1,

EX_2 and so on are the initial test sets or matrixes which we used as the input to the

system.

As we can see in the chart (1), the results are shown for ten first test matrixes that we

use as initial test sets. We have ten components under test and twenty tests, so far at

the lowest coefficient at least two components are covered, and in the highest

coefficient maximum of nine components are covered by corresponding test. As we

can see in the chart (1) the number of covered components increase by the

increments in the value of the coefficient.

In chart (2) the same methodology as chart(1) has been applied, the only difference

in the chart (2) is that the component text matrixes which we used as input for the

computations in Matlab has the dimension of 50x20, so in this phase of computing

we are dealing with larger matrixes.

It is shown in chart (2), that the minimum numbers of components covered are three

and the maximum numbers of covered components are eight. Same as the chart (1),

the number of covered components are increasing by increasing the value of the

coefficients.

In general the results were expected according to the methodology used for

computations and the obtained results are satisfying the goals we were looking for in

this phase of computations.

Saeid Ebrahimi

Results for first ten initial test sets computed by applying the

Results for second part, ten initial test sets computed by applying the

0

1

2

3

4

5

6

7

8

9

0.5 0.6 0.7

Chart (1),

l test sets computed by applying the sum methodology from EX_1 to EX_10

Chart (2),

Results for second part, ten initial test sets computed by applying the sum methodology from EX_11

to EX_20

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Page 41

methodology from EX_1 to EX_10

methodology from EX_11

1.5

EX_11

EX_12

EX_13

EX_14

EX_15

EX_16

EX_17

EX_18

EX_19

EX_20

Saeid Ebrahimi Page 42

4.1.1 Sum Methodology Robust Results

In this part the results obtained from applying the robust on the sum methodology

will be presented in chart (3) and chart (4). It has been mentioned before that we

remove the cover of the components in first row of the component test matrixes and

run the test sets with the sum method again. Chart (3) is the result for the first ten test

matrixes; we can see the results according to the coefficient, the minimum numbers

of covered components are two and the maximum in this case is ten.

Chart (3),

Results for first ten initial test sets computed by applying the robust on sum methodology from EX_1

to EX_10

Chart (4) displays the results that obtained by applying the robust on sum

methodology, but on the EX_11 to Ex_20, the minimum numbers of covered

components are three and the maximum is eleven.

It is possible to see that using larger component test matrixes necessarily do not

increase the number of covered components; this means that if we have well defined

component test matrixes (CTM), with testing the proper number of the components

0

2

4

6

8

10

12

0.5m 0.6m 0.7m 0.8m 0.9m 1.0m 1.1m 1.2m 1.3m 1.4m 1.5m

EX_1

EX_2

EX_3

EX_4

EX_5

EX_6

EX_7

EX_8

EX_9

EX_10

Saeid Ebrahimi Page 43

we can find the guilty components and we do not need to test very larger number of

components if the circuit become more complex.

Chart (4),

Results for second part, ten initial test sets computed by applying the robust on sum methodology

from EX_11 to EX_20

After obtaining results for the sum methodology and robust it in the next step we will

compare the results and define the differences.

4.1.2 Comparing Sum and Robust Results

In order to have some clear idea about the differences of the sum method and the

robust one we decide to integrate the data obtained from both methods together with

respect to the dimension of the component test matrixes.

In chart (5) we integrate the results obtained from sum method and robust of it for

EX_1 to EX_10, and in chart (6) integrated results for EX_11 to EX_20. The results

0

1

2

3

4

5

6

7

8

9

10

0.5m 0.6m 0.7m 0.8m 0.9m 1.0m 1.1m 1.2m 1.3m 1.4m 1.5m

EX_11

EX_12

EX_13

EX_14

EX_15

EX_16

EX_17

EX_18

EX_19

EX_20

Saeid Ebrahimi Page 44

have been linearly integrated in order that result from same coefficients for sum

method and robust one are just after each other and then for the next coefficient up to

the number 1.5.

In general speaking and according to the results obtained if the component test

matrix be generated in the proper way with respect to the physical layer of the circuit

and be well defined, we will see that several tests has same degree of covering on

components and they cover the reasonable number of components of the circuit.

If we apply the robust method the algebraic sum of the covered components will not

change with very highly difference or in the best case may not change at all, in the

coefficient with low value.

Chart (5),

Results for first ten initial test sets integrating robust and sum methodology from EX_1 to EX_10

In chart (5), following the chart lines we can see the zigzag in the lines, means some

times the line is losing value, we will realize that the drop points are sum method and

0

2

4

6

8

10

12

0
.5

0
.5

m

0
.6

0
.6

m

0
.7

0
.7

m

0
.8

0
.8

m

0
.9

0
.9

m

1
.0

1
.0

m

1
.1

1
.1

m

1
.2

1
.2

m

1
.3

1
.3

m

1
.4

1
.4

m

1
.5

1
.5

m

EX_1

EX_2

EX_3

EX_4

EX_5

EX_6

EX_7

EX_8

EX_9

EX_10

Saeid Ebrahimi Page 45

the pick points are the robust ones, as the value of the coefficient get larger and

larger the zigzag part appears in more examples.

In chart (6), we can see as well the same affect which we explained for chart (5). It is

possible to see that both set of components test matrixes with different dimensions

are displaying same kind of results, so we assume that the tests are performed

correctly and the algorithms designed are working properly.

The reason that the algebraic value of the robust model sometimes increase is that

when we robust the model in fact we removed one of the potential solutions. In some

examples that one can be the critical solution and most efficient one and removing

that set affect the whole covering on the system, but if the component test matrixes

are well defined removing one of the potential solutions will not fail the test results,

just will have affect on the initial test set. In our case the EX_5 is one of the

component test matrixes which is well defined and the sum method and robust

method are giving the same result.

Chart (6),

Results for second part, ten initial test sets integrating robust and sum methodology from EX_11 to

EX_20

0

1

2

3

4

5

6

7

8

9

10

0
.5

0
.5

m

0
.6

0
.6

m

0
.7

0
.7

m

0
.8

0
.8

m

0
.9

0
.9

m

1
.0

1
.0

m

1
.1

1
.1

m

1
.2

1
.2

m

1
.3

1
.3

m

1
.4

1
.4

m

1
.5

1
.5

m

EX_11

EX_12

EX_13

EX_14

EX_15

EX_16

EX_17

EX_18

EX_19

EX_20

Saeid Ebrahimi Page 46

Further we will have some discussions about time for the sum method and in

addition the robust part.

4.1.3 Sum and Robust Timing Results

The time of the execution of the methods in our work is one of the indicators that we

are interested to measure it. In this section the results of measuring the cpu clock of

the system while computing the sum method and the robust part for the sum method

has been measured.

By one time computing and collecting the time, we cannot by sure complain that the

time is proper. For avoiding any technical problem of the system for example

running some automatic updates and unexpected application we measure time by

average of twenty times of running the same algorithm for sum method and as well

when we robust it.

In chart (7), the results of the measuring time for the first set of matrixes are shown

as we can see as the numbers of the coefficients are increasing the time average

increases as well for that point but not necessarily the computation time for all

examples always increase by increasing the value of the coefficient assume that we

expect that, because of the way that the bintprog function work.

By sure having the low time of the computation in any type of computational works

is an advantage as well as in our work it is one of the advantages to find the best

initial test set in the less time as possible.

Saeid Ebrahimi Page 47

Chart (7),

Time measured for the sum methodology from EX_1 to EX_10

When we applying the robust on method we get higher timing for the computations

on that specific coefficient, in generality the increasing of the time are reasonable

because of removing one potential solution and make the result more naïve, time of

computations raise in average, the result shown in the chart (8).

We can see that when we apply the robust method the average times are always

increasing, this time increasing can show us that removing the first test coverage and

make it naïve affects the time of computing and for larger coefficient the time

increases or same as previous phase, so we can assume that the component test

matrixes all well defined that removing one solutions leads to have longer time to

find the best initial test set.

0,0000

0,1000

0,2000

0,3000

0,4000

0,5000

0,6000

0,7000

t0.5 t0.6 t0.7 t0.8 t0.9 t1.0 t1.1 t1.2 t1.3 t1.4 t1.5

EX_1

EX_2

EX_3

EX_4

EX_5

EX_6

EX_7

EX_8

EX_9

EX_10

Saeid Ebrahimi Page 48

Chart (8),

Time measured for the robust sum methodology from EX_1 to EX_10

In chart (9) the measured time for the second set of matrixes are shown, because the

component test matrixes dimensions is greater than the dimension of the first set of

matrixes the computing time is larger.

Chart (9),

Time measured for the sum methodology from EX_11 to EX_20

0,0000

0,5000

1,0000

1,5000

2,0000

2,5000

3,0000

3,5000

4,0000

4,5000

5,0000

t0.5mt0.6mt0.7mt0.8mt0.9mt1.0mt1.1mt1.2mt1.3mt1.4mt1.5m

EX_1

EX_2

EX_3

EX_4

EX_5

EX_6

EX_7

EX_8

EX_9

EX_10

0,0000

2,0000

4,0000

6,0000

8,0000

10,0000

12,0000

14,0000

16,0000

18,0000

20,0000

t0.5 t0.6 t0.7 t0.8 t0.9 t1.0 t1.1 t1.2 t1.3 t1.4 t1.5

EX_11

EX_12

EX_13

EX_14

EX_15

EX_16

EX_17

EX_18

EX_19

EX_20

Saeid Ebrahimi Page 49

The time for the robust on method one is measured too, for the second set of matrixes

as same as for the first set of matrixes, the computing time is greater than the

computing time for first set, because the dimension of this set of matrixes are larger

the results display in chart (10).

Chart (10),

Time measured for the robust sum methodology from EX_11 to EX_20

By having more precise look on the time measured charts for the both sets of

matrixes we can see the same behaviors on the charts obtained from different

dimension, this can assure that the results obtained are proper.

0,0000

5,0000

10,0000

15,0000

20,0000

25,0000

30,0000

35,0000

40,0000

t0.5m t0.6m t0.7m t0.8m t0.9m t1.0m t1.1m t1.2m t1.3m t1.4m t1.5m

EX_11

EX_12

EX_13

EX_14

EX_15

EX_16

EX_17

EX_18

EX_19

EX_20

Saeid Ebrahimi Page 50

4.2 Logarithm Methodology Results

In this section the results of the Logarithm Methodology are presented and analyzed,

as it was mentioned before, for computing the results by this method we apply the

logarithm to the input data for the computing and then collect the results, in this

method we use coefficients from 0.5 but we take away by 0.1 up to the 0.1 instead of

increasing the coefficients.

We have two sets of component test matrices, first set ten matrixes with dimension of

20x10 and second set 10 matrixes with dimension of 50x20, in fact the component

test matrixes are same as the matrixes we used for the sum methodology but because

we assign values to the high, medium, low, and not covered wise verse than previous

method the component test matrixes my look different.

The chart (11) shows us the results obtained from the computing of the first set of

component test matrixes, as we can see in the chart(11) the algebraic sum of the

ones, in the obtained results which indicates the number of components covered with

respect to the coefficient is not always increasing and in some cases after specific

number of coefficient is constant, for example the EX_10 in the chart (11) after the

coefficient 0.4 is always showing same value as well as EX_5.

0

1

2

3

4

5

6

7

8

9

10

0.5 0.4 0.3 0.2 0.1

EX_1

EX_2

EX_3

EX_4

EX_5

EX_6

EX_7

EX_8

EX_9

EX_10

Saeid Ebrahimi Page 51

Chart (11),

Results for first ten initial test sets computed by applying the Logarithm methodology from EX_1 to

EX_10

Same as previous method in this method we also have two sets of component test

matrixes to assure the results by parallel computations, the chart (12) show the result

obtained from the second set of component test matrixes which have the larger

dimension.

Chart (12),

Results for second ten initial test sets computed by applying the Logarithm methodology from EX_11

to EX_20

In the both charts we can see that the number of covered components are increasing

or having same value, when the coefficient number is decreasing, so we have same

model of behavior for two set of matrixes with different dimension.

4.2.1 Logarithm Methodology Robust Results

In this section we present the results collected from applying the robust method on

the Logarithm Methodology and analyze it. Applying robust method on this phase is

same as it was applied on the sum method.

0

1

2

3

4

5

6

7

8

0.5 0.4 0.3 0.2 0.1

EX_11

EX_12

EX_13

EX_14

EX_15

EX_16

EX_17

EX_18

EX_19

EX_20

Saeid Ebrahimi Page 52

 The results displayed in chart (13), are obtained from applying the robust on

computing the first set of ten matrixes, and the chart (14) the results of robust on the

second set of ten matrixes. As we can see the general behavior of both charts all

same as it is desired.

Further we will integrate the results obtained from the logarithm method and robust

method applied on it, with each other, respecting the dimension of the matrixes and

we write some analysis on it.

Chart (13),

Results for first ten initial test sets computed by applying the robust on Logarithm methodology from

EX_1 to EX_10

0

2

4

6

8

10

12

0.5m 0.4m 0.3m 0.2m 0.1m

EX_1

EX_2

EX_3

EX_4

EX_5

EX_6

EX_7

EX_8

EX_9

EX_10

Saeid Ebrahimi Page 53

Chart (14),

Results for second ten initial test sets computed by applying the robust on Logarithm methodology

from EX_11 to EX_20

4.2.2 Comparing Logarithm and Robust Results

Again to have clear idea about the differences of the sum method and the robust one

we integrate the data obtained from both methods together with respect to the

dimension of the component test matrixes.

Integration results obtained from logarithm method and robust of it for first set of

component test matrices are shown in chart (15), integrated results for second set is

shown in chart (16). The results have been integrated using the same principal for the

previous method the only difference is that at this step we have coefficients from 0.5

down to 0.1.

As it was mentioned before the component test matrixes are same as the component

test matrixes used in previous method so we expect the same behavior. The zigzag

form of behavior appears again in this case we can see the common behavior in chart

(15) and chart (16) as well.

0

1

2

3

4

5

6

7

8

9

0.5m 0.4m 0.3m 0.2m 0.1m

EX_11

EX_12

EX_13

EX_14

EX_15

EX_16

EX_17

EX_18

EX_19

EX_20

Saeid Ebrahimi

We can see that by applying the robust method the algebraic sum of the covered

components did not change with very highly difference or in the case of EX_10 did

not change at all, also EX_5 did not change as well.

Results for first ten initial test sets integrating robust and logarithm

We can see that by applying the robust method the algebraic sum of the covered

components did not change with very highly difference or in the case of EX_10 did

EX_5 did not change as well.

Chart (15),

for first ten initial test sets integrating robust and logarithm methodology from EX_1 to

EX_10

Page 54

We can see that by applying the robust method the algebraic sum of the covered

components did not change with very highly difference or in the case of EX_10 did

methodology from EX_1 to

Saeid Ebrahimi Page 55

Chart (16),

Results for second part, ten initial test sets integrating robust and logarithm methodology from EX_11

to EX_20

In chart (16) we can see more drops and pick points in compare with the chart (15).

There can be two potential reasons for this, first of all by having component test

matrices with larger dimension because of the more number of components when we

remove one potential covering set from the component test matrix it influence system

more.

The second reason can be that when generating the component test matrixes, as the

number of the components and tests increase the generated matrix is not as efficient

as generated matrixes with lower number of components and tests.

In fact as much as the physical layer of the circuit be more complex, it reflects all

phases of designing of the test strategies and test methods, the sum effect of it on our

work is that we will have larger component test matrixes.

0

1

2

3

4

5

6

7

8

9

0.5 0.5m 0.4 0.4m 0.3 0.3m 0.2 0.2m 0.1 0.1m

EX_11

EX_12

EX_13

EX_14

EX_15

EX_16

EX_17

EX_18

EX_19

EX_20

Saeid Ebrahimi Page 56

All this will lead us to a higher time of computing and as result longer time spending

to find the proper result, further we are going to present the results of the logarithm

method and the robust part of it in the manner of time.

4.2.3 Logarithm and Robust Timing Results

In this part the results of measuring the cpu clock of the system while computing the

logarithm method and the robust part for the sum method has been measured and

displayed.

Same as previous method measure time by average of twenty times of running the

same algorithm for logarithm method and also when we robust it.

In chart (17), which displays the results of measuring time for the first ten set of

matrixes, we can see that as it was expected from the computations the average time

of computing increases according to the increase of coefficients. As we explained

before this is the natural result of applying the bintprog.

Chart (17),

Time measured for the logarithm methodology from EX_1 to EX_10

0

0,05

0,1

0,15

0,2

0,25

0,3

t0.5 t0.4 t0.3 t0.2 t0.1

EX_1

EX_2

EX_3

EX_4

EX_5

EX_6

EX_7

EX_8

EX_9

EX_10

Saeid Ebrahimi Page 57

The chart(18), results of the robust on logarithm method has been showed, we get

higher total timing for the computations comparing with the logarithm method.

Chart (18),

Time measured for the robust logarithm, methodology from EX_1 to EX_10

The total time needed for obtaining the results shown in chart(17) and the total time

for obtaining the results shown in chart (18) is less than applying the previous

method on same components matrixes, but we have to consider that this is because

the number of coefficients in this method is less than previous method, so if we

assume that the lower time of computing is an advantage we can say that logarithm

method saves some time comparing to the sum method.

In the chart (19) the results of the timing for the second ten sets are shown and the

chart (20) the robust results of the second ten test sets are shown.

0

0,1

0,2

0,3

0,4

0,5

0,6

t0.5m t0.4m t0.3m t0.2m t0.1m

EX_1

EX_2

EX_3

EX_4

EX_5

EX_6

EX_7

EX_8

EX_9

EX_10

Saeid Ebrahimi Page 58

Same as the timing results for the first ten sets and the robust on them, the total time

shown in chart(19) and the total time for obtaining the results shown in chart (20) is

less than applying the previous method on same components matrixes, but as we

explained before the number of coefficients in this method is less than previous

method.

In the next chapter we will make the conclusion about all the works done in this

paper and the future works.

Chart (19),

Time measured for the logarithm methodology from EX_11 to EX_20

0

5

10

15

20

25

t0.5 t0.4 t0.3 t0.2 t0.1

EX_11

EX_12

EX_13

EX_14

EX_15

EX_16

EX_17

EX_18

EX_19

EX_20

Saeid Ebrahimi Page 59

Chart (20),

Time measured for the logarithm methodology from EX_11 to EX_20

4.3 Customizing the methodologies

In this part we present the results of customizing both methods used in this research

work. It is obvious that the results obtained according to the methods used above are

theoretically developed. In this section by adding cost to the tests we run the tests

with both of the methodologies for couple of the component test matrixes.

By comparing the results obtained from the computing methodologies and the

customized version of them we can understand that if we apply the methods in the

real industry, for our case CISCO company apply them as a part of diagnosing

methods to find fault components it have compatibility with real electronically

circuits.

0

5

10

15

20

25

30

35

t0.5m t0.4m t0.3m t0.2m t0.1m

EX_11

EX_12

EX_13

EX_14

EX_15

EX_16

EX_17

EX_18

EX_19

EX_20

Saeid Ebrahimi Page 60

4.3.1 Customizing the Sum methodology

The results shown in chart (21) obtained from applying the sum methodology on the

two components test matrixes chose from the first set of the initial test sets. Chart

(22) uses two components matrixes from the second set of initial test sets.

Chart (21),

Results computed by applying customized sum methodology for EX_1 and EX_3

0

1

2

3

4

5

6

7

8

9

10

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

EX_1 custom

EX_3 custom

Saeid Ebrahimi

Results computed by applying customized sum methodology for EX_11 and EX_13

If we compare results obtained from chart(21) with the chart (1) and chart(22) with

(2) we can see the same behavior from all of them, so we can a

applying the custom cost to the tests we still get the same behavior.

To have more clear results we compute the value fval, which in our case is f*c. the

results shown in chart (23) are computed by using the EX_1 and EX_3, and chart

(24) are computed by using EX_11 and EX_13.

In general the behavior of this charts are also incremental, means that as the value of

the coefficient increase we can see that the values of fval increase as well. The

customized sum method is returning the expected beh

indicator that shows us results obtained are perfectly correct, and the industrial

usage of the method also return the expected results.

Chose of two examples from first ten sets and two examples from second test sets are

randomly but as we get same behavior from all components test matrixes in all

computations done before in this research work, we can be sure that computing the

Chart (22),

computed by applying customized sum methodology for EX_11 and EX_13

If we compare results obtained from chart(21) with the chart (1) and chart(22) with

(2) we can see the same behavior from all of them, so we can a

applying the custom cost to the tests we still get the same behavior.

To have more clear results we compute the value fval, which in our case is f*c. the

results shown in chart (23) are computed by using the EX_1 and EX_3, and chart

computed by using EX_11 and EX_13.

In general the behavior of this charts are also incremental, means that as the value of

the coefficient increase we can see that the values of fval increase as well. The

customized sum method is returning the expected behavior, so fval can be also one

indicator that shows us results obtained are perfectly correct, and the industrial

usage of the method also return the expected results.

Chose of two examples from first ten sets and two examples from second test sets are

ndomly but as we get same behavior from all components test matrixes in all

computations done before in this research work, we can be sure that computing the

Page 61

computed by applying customized sum methodology for EX_11 and EX_13

If we compare results obtained from chart(21) with the chart (1) and chart(22) with

(2) we can see the same behavior from all of them, so we can assume that by

To have more clear results we compute the value fval, which in our case is f*c. the

results shown in chart (23) are computed by using the EX_1 and EX_3, and chart

In general the behavior of this charts are also incremental, means that as the value of

the coefficient increase we can see that the values of fval increase as well. The

avior, so fval can be also one

indicator that shows us results obtained are perfectly correct, and the industrial

Chose of two examples from first ten sets and two examples from second test sets are

ndomly but as we get same behavior from all components test matrixes in all

computations done before in this research work, we can be sure that computing the

Saeid Ebrahimi Page 62

rest of the component test matrixes which we used before do not influence the

results.

Chart (23),

Results fval by applying customized sum methodology for EX_1 and EX_3

0

5

10

15

20

25

30

35

40

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

fval_1

fval_3

0

5

10

15

20

25

30

35

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

fval_11

fval_13

Saeid Ebrahimi Page 63

Chart (24),

Results fval by applying customized sum methodology for EX_11 and EX_13

4.3.2 Time measuring for customize Sum methodology

As the time is one of the critical indicators in this work so we compute the time also

when we apply the customized methods. We use same two components test sets

chose from first ten initial test sets and same two components test set chose from

second ten initial test sets, which we used in previous computations of the

customized method.

Chart (25) and chart (26), shows the time of the computing obtained in this part of

the computation work. The time measured by average of twenty times running the

computation.

Chart (25),

Timing results by applying customized sum methodology for EX_1 and EX_3

0

1

2

3

4

5

6

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

average time_1

average time_3

Saeid Ebrahimi Page 64

As it is possible to see the behaviors of the time charts obtained by the customized

sum method and sum method are same, the time increase by the number of

coefficients increase.

We can see that also by applying the cost the time do not change significantly so the

cost do not affect the timing that much that it influence the results.

Chart (26),

Timing results by applying customized sum methodology for EX_11 and EX_13

4.3.3 Customizing the Logarithm methodology

Same as the customization of the sum methodology we apply the customization on

logarithm method by assigning the cost to the computations, we use the two

component test matrixes form first ten initial test sets and two component test

matrixes from the second ten initial test sets, same which where use above for the

computations in this section.

0

5

10

15

20

25

30

35

40

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

average time_11

average time_13

Saeid Ebrahimi

Charts (27) and chart (28), shows the sum of binary results obtained from applying

the customization on the lo

are same as the chart (11) and chart (12).

As we mentioned before same behavior was expected and we got the results which

we were expecting, the number of components are increasing by decreasing the

number of the coefficient in this case.

Results computed by applying customized logarithm methodology for EX_1 and EX_3

Charts (27) and chart (28), shows the sum of binary results obtained from applying

the customization on the logarithm method, as we can see the behavior of the charts

are same as the chart (11) and chart (12).

As we mentioned before same behavior was expected and we got the results which

we were expecting, the number of components are increasing by decreasing the

number of the coefficient in this case.

Chart (27),

computed by applying customized logarithm methodology for EX_1 and EX_3

Page 65

Charts (27) and chart (28), shows the sum of binary results obtained from applying

garithm method, as we can see the behavior of the charts

As we mentioned before same behavior was expected and we got the results which

we were expecting, the number of components are increasing by decreasing the

computed by applying customized logarithm methodology for EX_1 and EX_3

Saeid Ebrahimi Page 66

Chart (28),

Results computed by applying customized logarithm methodology for EX_11 and EX_13

Same as above we compute the value fval, which in our case is f*c. the results shown

in chart (29) are computed by using the EX_1 and EX_3, and chart (30) are

computed by using EX_11 and EX_13.

As it should be the behavior of this charts are incremental, means that as the value of

the coefficient in this case decrease the values of fval increase. The customized

logarithm method is returning the expected behavior as well as sum method, in fact

as we mentioned before fval can be one indicator which can be used in real industrial

cases.

0

1

2

3

4

5

6

7

8

9

0.5 0.4 0.3 0.2 0.1

EX_11_custom

EX_13_custom

Saeid Ebrahimi Page 67

Chart (29),

Results fval by applying customized logarithm methodology for EX_1 and EX_3

The more precise look on the chart (29) and chart (30), the differences are that the

number of fval when we have the larger dimension matrixes, are larger.

 But the importance for us is the behavior of the charts, the incremental behavior are

the expected, and both set of component test matrixes satisfy the expected result.

0

5

10

15

20

25

30

35

40

0.5 0.4 0.3 0.2 0.1

fval_1

fval_3

Saeid Ebrahimi Page 68

Chart (30),

Results fval by applying customized logarithm methodology for EX_11 and EX_13

4.3.4 Time measuring for customize logarithm methodology

The time indicators have been computed when we apply the customized logarithm

method. We use same two components test sets, which we used in previous

computations of the customized method.

0

5

10

15

20

25

30

35

0.5 0.4 0.3 0.2 0.1

fval_11

fval_13

0

0,5

1

1,5

2

2,5

3

0.5 0.4 0.3 0.2 0.1

average time_1

average time_3

Saeid Ebrahimi Page 69

Chart (31),

Timing results by applying customized logarithm methodology for EX_1 and EX_3

Chart (32),

Timing results by applying customized logarithm methodology for EX_11 and EX_13

Chart (31) and chart(32) displays the measured time for the customized logarithm

method.

0

5

10

15

20

25

0.5 0.4 0.3 0.2 0.1

average time_11

average time_13

Saeid Ebrahimi Page 70

Chapter 5: Conclusion

The Sum method that we introduced and run the computations based on it return us

the set of selected test sets, the results obtained from this method are as we were

expecting.

As the value of threshold get larger the number of selected tests are more, so we can

see an incremental behavior on the selected tests, also the time increase as well. The

robustness on this method shows us that removing one solution from the initial test

set do not influence the behavior of the results so we can assume that the test sets are

well defined and our method is working properly.

Logarithm methodology as it was explained work with vice versa input comparing

with the Sum method and then we apply the logarithm as it was explained before, so

the expected behavior of the results should be same as Sum method, by having a

survey on results we can see that in fact we obtain such behavior, the results have

incremental behavior in this case too.

Applying robustness on the Logarithm method also returns us sustainable results

with the same behavior as Sum method. The time in this method also has incremental

behavior in cases, directly applying logarithm method and robustness on it. So this

method is working well, and the results are acceptable and adequate.

The customization which we applied on both methods as it was explained above, we

assign cost to the tests, the customization on both methods, Sum and Logarithm

returns same behavior as the results obtained from applying directly both methods,

this leads us to the conclusion that the methods are working properly.

By considering all the results obtained from the methods introduced, we can say that

the goal of this project which was finding the best initial test set, for beginning of the

tests on electronic boards to find the guilty component has been satisfied. Hopefully

the outcome of this work can improve the quality of testing and saving time and cost

to find the guilty components on complex systems.

Saeid Ebrahimi Page 71

Future works

The future works conducting our thesis, finding more efficient methods to define the

initial test sets or solving the set covering problem with new methods which can

work faster.

Further steps on this project can be working on finding an automatic strategy to

identify guilty components on complex systems, after defining the test set for

beginning the tests the test engineers need and strong strategy to find the exact guilty

component or components.

After all same as all automatic processes we need to give an stop point to the system,

means that when it is necessary to stop testing and by sure all guilty components are

identified, so defining an stop point on running the tests can be one of the future

works to our work.

Saeid Ebrahimi Page 72

References

1- www.ieee.org

2- Fault Diagnosis of Electronic Systems Using Intelligent Techniques: A

Review. William G. Fenton, Member, IEEE, T. M. McGinnity, Member,

IEEE, and Liam P. Maguire

3- Soft Computing Approaches to Fault Diagnosis for Dynamic Systems: A

Survey. R J Patton, F J Uppal & C J Lopez-Toribio.Control and Intelligent

Systems Engineering, Faculty of Engineering and Mathematics, The

University of Hull, Cottingham Road, Hull Hu6 7RX, United Kingdom.

4- http://www.gnu.org/software/glpk/

5- http://www-01.ibm.com/software/integration/optimization/cplex/

6- http://www.mathworks.com/

7- http://www.microsoft.com

8- A better-than-greedy approximation algorithm for the minimum set cover

problem Refael Hassin1 and Asaf Levin2 February 3, 2005

9- http://en.wikipedia.org/wiki/Scalability

10- http://en.wikipedia.org/wiki/Computational_complexity_theory

11- Rampone S. (1998), “Recognition of Splice-Junctions on DNA Sequences by

BRAIN learning algorithm”, Bioinformatics Journal, 14(8), 676-684.

12- Probability-driven Greedy Algorithms for Set Cover, Salvatore Rampone

13- Greedy Approximations: Set Cover and Min Makespan, Date: 1/30/06.

14- A Generalization of the Weighted Set Covering Problem Jian Yang,1 Joseph

Y-T. Leung2, Department of Industrial and Manufacturing Engineering, New

Jersey Institute of Technology, Newark, New Jersey 07102.

15- A Greedy Heuristic for the Set-Covering Problem. V. Chvatal Mathematics

of Operations Research, Vol. 4, No. 3 (Aug., 1979), pp. 233-235 Published

by: INFORMS

16- R. Bar-Yehuda and S. Even, "A linear time approximation algorithm for the

weighted vertex cover problem," Journal of Algorithms, 2, 1981.

17- A Tight Analysis of the Greedy Algorithm for Set Cover, Journal of

Algorithms, Slavìk P. (1997), 25(9), 237-254.

18- A Threshold of ln n for Approximating Set Cover. In J. ACM 45(4), Uriel

Feige. pp 634-652. (1998).

19- A sub-constant error-probability low-degree test, and sub-constant error

probability PCP characterization of NP", R. Raz and S. Safra, Proc. STOC

1997, 475- 484, 1997.

20- Algorithms for set covering problem, Alberto Caprara, Matteo Fischetti,

Paolo Toth. University of Bologna, University of Padova, Italy.

21- A Lagrangian relaxation based heuristic for the consolidation problem of

airfreight forwarders. Kuancheng Huang a, Wenhou Chi b,Department of

Saeid Ebrahimi Page 73

Transportation Technology and Management, National Chiao Tung

University, accepted 28 August 2006

22- Algorithms for Weighted Boolean Optimization. Vasco Manquinho1, Joao

Marques-Silva2, Jordi Planes, University College Dublin, Universitat de

Lleida, March 6, 2009

23- Holland J. Adaptation in natural and artificial systems. Cambridge:

University of Michigan, MIT Press, 1992.

24- Goldberg DE. Genetic algorithms in search, optimization & machine

learning. Publishing Company, USA: Addison-Wesley, 1989.

25- A parallel genetic algorithm to solve the set-covering problem, Mauricio

Solar, VmHctor Parada, Rodrigo Urrutia Departamento de Ingenierna&

Informatica, Universidad de Santiago de Chile, Av. Ecuador 3659, Santiago,

Chile

26- An Indirect Genetic Algorithm for Set Covering Problems. Journal of the

Operational Research Society, 53 (10): 1118-1126, Dr Uwe Aickelin, School

of Computer Science, University of Nottingham, NG8 1BB UK,

27- Genetic Algorithms, Numerical Optimization, and Constraints. Zbigniew

Michalewicz, Department of Computer Science, University of North

Carolina, Charlotte, NC 28223

28- Genetic Algorithm and Direct Search ,Toolbox, MATLAB user guide.

29- Multiproject Scheduling with Limited Resources: A Zero–One Programming

Approach,’’ Management Science 1969, by A. A. B. Pritsken, L. J. Watters, and P.

M. Wolfe.

30- An Incremental approach to functional diagnosis. F.Salice, L.Amati, Departmet of

electrical and informatics politecnico di Milano.

