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A ma famille. Cette thèse est grâce à vous, elle est pour vous, elle est à vous. 
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ABSTRACT 

Forecasting a stock price has been regarded as one of the most challenging 

applications of modern time series forecasting for many reasons: to yield 

significant profits for stock exchange investments on the one hand, and to refute 

the Efficient Market Hypothesis on the other hand. This work has for goal to 

compare different models for financial time series forecasting in the more 

specific field of high frequency data taken from the intraday French stock 

market “CAC 40”. Ten various companies stocks were used to match the 

prediction performances of linear time series models, non-linear time series 

models and the neural networks as a machine learning. 

 

Keywords: stock price forecasting, high frequency time series, ARIMA, 

ARFIMA, exponential smoothing, STAR, ARMA-GARCH, artificial neural 

networks, intraday data, one-step-ahead prediction, forecasting performances, 

non-linearity. 
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SOMMARIO 

Prevedere il valore di un titolo azionario è diventato una delle più grandi 

applicazioni nell‟ambito della previsione delle serie storiche moderne per 

numerose ragioni: ottenere importanti profitti in primo luogo e rifiutare l‟ipotesi 

dell‟efficienza del mercato finanziario in secondo luogo. Questa tesi di laurea ha 

per obiettivo il confronto di diversi modelli per la previsione di serie storiche 

finanziarie e in particolare nell‟ambito di dati ad alta frequenza relativi al 

mercato francese “CAC 40”. Dieci diversi titoli di aziende sono stati usati per 

confrontare le previsioni di modelli lineari, di modelli non lineari e di reti 

neurali usati come apprendimento automatico supervisionato, valutandone le 

performance. 

 

Parole chiave: previsione di titoli azionari, dati ad alta frequenza, ARIMA, 

ARFIMA, exponential smoothing, STAR, ARMA-GARCH, reti neurali 

artificiali, dati intraday, previsione un passo avanti, performance di previsioni, 

non linearità. 
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INTRODUCTION 

Time series are a special form of data where past values in the series may 

influence future values, depending on the presence of underlying deterministic 

forces. These forces may be characterised by trends, cycles and nonstationary 

behaviour in the time series and predictive models attempt to recognise the 

recurring patterns and more particularly potential linear or nonlinear 

relationships between past and actual values, or with other exogenous variables 

which may be linked to the variable studied. 

Time series forecasting is the use of a model to forecast future time series values 

based on known past events: to predict data points before they are measured. 

Forecasting is an important and recurrent issue in business world since good 

forecasting models can lead to a major position in the market. Indeed a firm can 

anticipate the temporal evolution of a given data in order to implement solutions 

before its competitors. Forecasting problems find their applications in many 

fields: for example sales in marketing, production volume in operations and 

logistics, economic variable like GDP in macroeconomic studies or financial 

variables like stock prices in the finance field and more particularly in 

worldwide exchange. 

Stock market prediction is the act of trying to determine the future value of a 

company stock or other financial instrument traded on a financial exchange like 

also tax of interest. Stock movement prediction has been at focus for years since 

it can potentially yield significant profits by intelligent investments: we can 

mention for this the work of Yao et al. Neural networks for technical analysis: a 

study on KLCI in 1998 [32].  
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There are two approaches of investing in stock exchange. Some investors are 

interested in long terms and they look at the prospected future value of a firm. 

The others, many market actors like traders and market makers, use the market 

to mostly invest in the short term to also benefit from market inefficiencies or to 

use the possible goodness of forecasters as a finder of hidden information, in 

simple words to exploit trading opportunities. Evidently “short term” is 

subjective and one can be interested in daily stock value or in the highest 

frequency with tick by tick data. Data tick refers to any market data which 

shows the price and volume of every print. Studying and forecasting time series 

can be done for daily, monthly values or intraday values like for every minute 

and in this case we use the term high frequency data and high frequency time 

series since the time between two values is very short. Intraday stock market 

becomes interesting fields for many researchers; we can cite the recent works of 

Mills in 2001, Statistical analysis of high frequency data from the Athens stock 

exchange and in 2010 with Wang et al. Nonlinearity and intraday efficiency 

tests on energy futures markets [24]. These time series studied are thus called 

high frequency financial time series. 

The successful prediction of a stock's future price could yield significant profit. 

Some believe that stock price movements are governed by the random walk 

hypothesis and thus are unpredictable. Others disagree and those with this 

viewpoint possess a myriad of methods and technologies which purportedly 

allow them to gain future price information. And this conflict can be easily 

linked with the Efficient Market Hypothesis, a field of so much interest and 

which is still discussed now by different analysts and researchers with different 

points of view like we can see in the work in 2004 of Timmermann et al. 

Efficient market hypothesis and forecasting [12]. Indeed if a forecaster can 

effectively forecast a stock market, the veracity of the efficiency of the market 

in question could be altered.  
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Fundamental and technical analyses describe the two different methods for the 

two different “term-concerned” approaches we told above.  They were the first 

two methods used to forecast stock prices. The first one is commonly long-term-

oriented; at the contrary the second one is mostly short-term-oriented: 

Fundamental analysis is a method of evaluating a security that entails attempting 

to measure its intrinsic value by examining related economic, financial and other 

qualitative and quantitative factors. Fundamental analysts attempt to study 

everything that can affect the security's value, including macroeconomic factors 

(like the overall economy and industry conditions) and company-specific factors 

(like financial conditions and management). The end goal of performing 

fundamental analysis is to produce a value that an investor can compare with the 

security's current price, with the aim of figuring out what sort of position to take 

with that security (under-priced = buy the stock or take a long position, 

overpriced = sell the stock or take a short position).  

On the other hand technical analysis is a method of evaluating securities by 

analysing statistics generated by market activity, such as past prices, 

transactions volume, high and low prices of a given period: which means 

studying the market activity. Technical analysts do not attempt to measure a 

security's intrinsic value, but instead use charts and other tools like indicators 

and signals to identify patterns that can suggest future activity. Technical 

analysts believe that the historical performance of stocks and markets are 

indications of future performance.  

In a shopping mall, a fundamental analyst would go to each store, study the 

product that was being sold, and then decide whether to buy it or not. By 

contrast, a technical analyst would sit on a bench in the mall and watch people 

go into the stores. Disregarding the intrinsic value of the products in the store, 
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the technical analyst's decision would be based on the patterns or activity of 

people going into each store.  

A new method appeared more recently, the technological analysis, where 

computers are used as a tool to predict the stock movements. Technological 

analysis tries to model and simulate as accurately as possible the behaviour of 

the stock prices by different techniques; some of them can be more appropriate 

to study financial time series and to forecast them and more particularly to study 

high frequency financial time series. 

In this thesis we will discuss different time series models to fit and forecast our 

different stock prices and we will compare them according to their forecasting 

performances. We will also try to conclude what could be the best one to yield 

potential significant profits. Our stock prices will be taken from high frequency 

data, so we will focus on the short term predictability of these different models 

and their possible applications on high frequency trading which means keeping 

buying and selling different stocks. We will discuss the models with a logical 

and progressive view by explaining the possible benefits from one model to 

another. Each model takes into account the possible importance of past values, 

so financial time series forecasting is linked to the technical analysis hypothesis. 

We will increase the degree of model complexity along the diverse chapters, 

beginning with typical time series models to evolve to machine learning which 

has a greater predictability power according to some works like Perez-

Rodriguez et al. STAR and ANN models: forecasting performance on the 

Spanish ”Ibex-35” stock index [25] in 2005. This thesis will also put emphasis 

on the importance of linearity or nonlinearity in financial time series, which may 

show the suitable characteristic of non-linear models. All the chapters of this 

work will retake the different fields to be explored that we have introduced since 

now: 
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In Chapter I, we will expose some hypotheses, issues and problems about stock 

market forecasting and we will present an overview of financial modelling: a 

state of art about financial time series forecasting. Then the Chapter II will be 

dedicated to the overall description, to the statistical behaviour, to the different 

tests of our high frequency financial data and to the possible presence of non-

linearity. The next logical step will be discussed in Chapter III with a 

presentation of our forecasting methodologies. Chapter IV will contain the 

theory about linear models, the first way used to forecast. Chapter V will take 

into account another type of models: non-linear models, which have to be 

concerned here to improve perhaps forecasting. Chapter VI will describe a 

more evolved model: machine learning and more particularly neural networks. 

Last but not least, we will finish this thesis and this final graduating work by the 

empirical results and their analysis in Chapter VII. 

 

 

 

 

 

 

Warren Buffet, third worldwide capital property, who has beaten during many 

years the Dow Jones, would not introduce this work better than anyone: 

“If markets were efficient, I would be a beggar”  
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HIGH FREQUENCY FINANCIAL 

FORECASTING 

Stock price forecasting can be linked with the technical analysis since their 

goals are the same. Technical analysis is more a chart pattern recognition than 

mathematical models with detecting signals of buying or selling based on past 

experiences and some hypotheses that “technicians” assume:  

 Market action discounts everything: based on the premise that all 

relevant information is already reflected by prices, pure technical 

analysts believe it is redundant to do fundamental analysis. 

 Prices move in trend: technical analysts believe that prices trend 

directionally, i.e., up, down, or sideways (flat) or some combination. 

 History tends to repeat itself: technical analysts believe that investors 

collectively repeat the behaviour of the investors that preceded them and 

with that the market psychology enters in action. 

These hypotheses should not be so far from the ones of a mathematical 

modelling forecaster. 

I. About stock price forecasting 

Like we said before in the global introduction, financial time series and stock 

price time series are not a usual and typical time series to study. Indeed the 

predictability power is intrinsically linked to the Efficient Market Hypothesis. 

This means to understand the behaviour of stock market: do stock prices evolve 

as random walk and thus unpredictable? Or are they correlated to one or more 
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variables, endogenous or exogenous? The answer can revolutionize the stock 

market understanding. That is why anyone cannot try to model and forecast 

financial time series without discussing about this intrinsic issue. But before 

discussing it we can describe the fluctuations mechanisms of stock price. 

1. Stock price fluctuations 

The price of a stock fluctuates fundamentally due to the theory of supply and 

demand. Like all commodities in the market, the price of a stock is sensitive to 

demand. It simply means that when a stock is demanded more than offered the 

price increases, at the contrary when it tends to be sold more than demanded the 

price decreases. If anyone car predict the future trend, the next trend of a stock, 

up or down, then this speculator or we can say predictor could obtain profit by 

buying it before it increases and selling it after, or selling it before it decreases 

and buying it after. This is the dynamics of offer and demand and with the term 

“dynamics” we can imagine non-linear behaviour. Mostly this dynamic has 

effects on a short-term viewpoint. 

Furthermore, there are many factors that influence the demand for a particular 

stock: the good intrinsic results of the company, the profitable perspective 

results, the selling of a non-profitable business unit or not linked with the core 

business, share buy-back by the society or its managers and when the company 

is targeted by a tender offer; we can also mention macroeconomic factors like 

the favourable economic climate, company‟s sector perspectives, the decrease of 

interest rate, macroeconomic variables like inflation or unemployment, the 

rating credit of a rating agency, the exchange rate between two currencies, the 

gas or oil prices. Most of the time, these factors have a long term effect. 
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The stock price dynamic mechanism is essentially due to the offer and demand 

dynamics and it points out the field of market microstructure: this is a branch of 

finance concerned with the details of how exchange occurs in markets. While 

the theory of market microstructure applies to the exchange of real or financial 

assets, more evidence is available on the microstructure of financial markets due 

to the availability of transactions data from them. The major thrust of market 

microstructure research examines the ways in which the working processes of a 

market affects determinants of transaction costs, prices, quotes, volume, and 

trading behaviour. We can mention for this the work of Madhavan in 2000 

Market microstructure: a survey [38] related to price formation. 

2. Behavioural finance 

There is another important field explored to understand the markets dynamics - 

and maybe inefficiencies - and more particularly the behaviour of market actors: 

the behavioural finance. The central issue in behavioural finance is explaining 

why market participants make systematic errors. Such errors affect prices and 

returns, creating market inefficiencies. It also investigates how other participants 

arbitrage such market inefficiencies. Behavioural finance highlights 

inefficiencies such as under - or over - reactions to information as causes of 

market trends and in extreme cases of bubbles and crashes. Such reactions have 

been attributed to limited investor attention, overconfidence, over-optimism, 

mimicry (herding instinct) and noise trading. Technical analysts consider 

behavioural economics' academic cousin, behavioural finance, to be the 

theoretical basis for technical analysis. A paper from Stracca in 2002 

Behavioural finance and asset prices: Where do we stand?[39] contains a 

survey of the anomalies identified in the behavioural finance literature, with a 

particular focus on those which might affect market prices, like mimetic 
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behaviour and emotional decisions; a large part of psychology is linked with 

market finance. 

3. The Efficient Market Hypothesis (EMH) 

Critics of the behavioural finance such as Eugene Fama typically support the 

efficient market hypothesis. In the 1970s Eugene Fama defined an efficient 

financial market as “one in which prices always fully reflect available 

information” and his PhD "Random Walks In Stock Market Prices" concluded 

that stock prices are unpredictable. 

The EMH is an investment theory that states it is impossible to "beat the 

market" because stock market efficiency causes existing share prices to always 

incorporate and reflect all relevant information. In other words, the actual stock 

price instantly includes all information given to the market and we cannot find a 

useful factor to predict what the next value could be, so the most accurate 

prediction is the actual value. According to the EMH, stocks always trade at 

their fair value on stock exchanges, making it impossible for investors to either 

purchase undervalued stocks or sell stocks for inflated prices. As such, it should 

be impossible to outperform the overall market through expert stock selection or 

market timing, and the only way an investor could possibly obtain higher returns 

is by purchasing riskier investments and so not-surely-profitable. And it takes 

into account the impossibility of stock markets‟ predictable capacities. Since 

information is taken by stock price value, no information could be useful to 

predict the next stock price. So the best prediction of the next value is the actual 

value because even if a price could be predictable, this information should be 

directly incorporated in the stock price without possibility to make profit. 
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Although it is a cornerstone of modern financial theory, the EMH is highly 

controversial and often disputed. Believers argue it is pointless to search for 

undervalued stocks or to try to predict trends in the market through either 

fundamental or technical analysis. The others like Professors Andrew W. Lo and 

Archie Craig MacKinlay, professors of Finance at the MIT Sloan School of 

Management and the University of Pennsylvania, respectively, have also tried to 

prove that the random walk theory is wrong. They wrote the book A Non-

Random Walk Down Wall Street, which goes through a number of tests and 

studies that try to prove there are trends in the stock market and that they are 

somewhat predictable. Meanwhile, while academics point to a large body of 

evidence in support of EMH, an equal amount of dissension also exists. For 

example, investors, such as Warren Buffett have consistently beaten the market 

over long periods of time, which by definition is impossible according to the 

EMH. Detractors of the EMH also point to events, such as the 1987 stock 

market crash when the Dow Jones Industrial Average (DJIA) fell by over 20% 

in a single day, as evidence that stock prices can seriously deviate from their fair 

values and overall even in the short term. Even financial crises are mentioned 

arguments against the EMH.  

We will also see in the following section of this chapter (I.5) some works and 

papers done in the field of research regarding stock price forecasting that could - 

or not - contradict the EMH. 

There are actually different forms of market efficiency defined by Fama: 

 In weak-form efficiency, future prices cannot be predicted by 

analysing prices from the past. 

 In semi-strong-form efficiency, it is implied that share prices adjust to 

publicly available new information very rapidly and in an unbiased 
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fashion, such that no excess returns can be earned by trading on that 

information. 

 In strong-form efficiency, share prices reflect all information, public 

and private, and no one can earn excess returns. 

In our case we will try to model and forecast stock prices using past values for a 

short-term point of view so this is the weak form efficiency that is to be 

considered. If the forecasting methods are accurate and exploitable then the 

weak-form efficiency could be in contradiction and thus may be false.  

In weak-form efficiency excess returns cannot be earned in the long run by 

using investment strategies based on historical share prices or other historical 

data. Technical analysis techniques will not be able to consistently produce 

excess returns, though some forms of fundamental analysis may still provide 

excess returns. Share prices exhibit no serial dependencies, meaning that there 

are no "patterns" to asset prices. This implies that future price movements are 

determined entirely by information not contained in the price series. Hence, 

prices must follow a random walk. 

4. The benchmark:  Random Walk theory 

Another theory related to the efficient market hypothesis created by Louis 

Bachelier is the random walk theory, which states that the prices in the financial 

markets evolve randomly and are not connected to their past values: they are 

independent from each other. The random walk hypothesis is a financial theory 

stating that stock market prices evolve according to a random walk and thus the 

prices of the stock market cannot be predicted. This theory was also introduced 

by Fama. Therefore, identifying trends or patterns of price changes in a market 
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could not be used to predict the future value of financial instruments. Thus the 

price would evolve like this: 

       (I.1) 

Where Xt is the price of the stock at time t, μ is an arbitrary drift parameter, εt is 

a random disturbance term (white noise). The following figure shows the 

evolution of different random walks starting at time zero. This graphical view is 

quite similar to stock prices‟ graphs. We can see that in this case a stock price 

could not be predicted because his progress is totally random. 

 

Figure 1: Random walks starting at the same point 

So our goal is to beat the random walk, to find existing and recurrent patterns in 

past values in order to predict the next value. The random walk is thus our 

benchmark to compare our forecasting models according to adequate indicators 
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we will exhibit later. The formula (I.1) also means that returns (difference 

between two successive stock prices) evolve like a white noise. 

5. State of art: financial modelling and stock market 

forecasting 

Many papers have been studied before writing this thesis as a documentation of 

what have been done in this field most recently and of the current way of 

research. We did in this part a literature overview regarding it. These works 

show that stock price forecasting have really been of great interest for many 

years and still nowadays. Different models to fit and predict stock market were 

used either to compare one model to another or to go against or to accept the 

weak form of the EMH. These forecasting methods were applied in most 

cases to daily data. So high frequency forecasting is a current field of 

research, still in amelioration.  

The most part of these articles go against the random walk and the weak form of 

the EMH for stock market prices since they implemented models that could 

forecast stock prices better than random walk. The papers were mostly found on 

the website directscience.com taken from, also for the majority of cases, The 

International Journal of Forecasting. At the moment of the thesis writing, our 

work is studied to be published on this journal, I am working on it. 

- In 2005 Pai et al. evaluated the usefulness of support vector machines 

(SVM) for a hybrid ARIMA-SVM model to forecast one-step-ahead stock 

price using ten daily stocks. This study demonstrated that a simple 

combination of the two best individual models does not necessarily produce 
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the best results and is presented in A hybrid ARIMA and support vector 

machines model in stock price forecasting [3].  

- Again in 2005, Bhardwaj et al. in An empirical investigation of the 

usefulness of ARFIMA models for predicting macroeconomic and financial 

time series [4] investigated the power of different models like ARMA, 

GARCH and ARFIMA to forecast daily returns at short, medium and long 

term. The conclusion was the outperformance of ARFIMA against random 

walk and the others models.  

- More recently in 2009 Lu et al. in their paper Financial time series 

forecasting using independent component analysis and support vector 

regression [14] investigated the performance of the support vector 

regression using independent component analysis for the inputs as a 

forecaster of the daily NIKKEI 225. Experimental results showed that the 

proposed model can produce lower prediction error and higher prediction 

accuracy and outperformed the SVR and random walk models. 

- Kim in 2003 also studied SVM in Financial time series forecasting using 

support vector machines [15]. This study used SVM to predict future 

direction of stock price index. In addition, this study compared SVM with 

Back Propagation Network. The experimental results showed that SVM 

outperformed BPN in the daily Korea composite stock price index (KOSPI). 

- Tang et al. in 2003 in Finite Mixture of ARMA-GARCH Model for Stock 

Price Prediction [16] analyses the ARMA-GARCH to forecast HSBC stock 

price for a one-step-ahead prediction. 

- Clements et al. in 2004 with their paper Forecasting economic and financial 

time-series with non-linear models [17] discuss the current state-of-the-art 

in estimating, evaluating, and selecting among non-linear forecasting 

models for economic and financial time series. 

- Moreno et al. worked on the economical usefulness of stock market 

predictability studying the impact of cost transactions and comparing linear 
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models with non-linear models neural networks, in 2007 with Is the 

predictability of emerging and developed stock markets really exploitable? 

[19]. Their conclusions suggest that, in contrast to some previous studies, if 

we consider total trading costs both the emerging as well as the developed 

stock returns are clearly non-predictable. Finally, they find that Artificial 

Neural Networks do not provide superior performance than the linear 

models. They studied daily and weekly data for a one-step-ahead prediction. 

- Thomakos et al. compared in their work subtitled Naïve, ARIMA, 

nonparametric, transfer function and VAR models: A comparison of 

forecasting performance [20] the forecasting performance of ARIMA, VAR 

models (multivariate models) and other models mentioned in the title of the 

paper. They find that the performance of these models is better than that of 

the naïve, no-change model. They used quarterly data for a one-step and 

multi-step ahead prediction. 

- McMillan in 2007 with his paper Non-linear forecasting of stock returns: 

Does volume help? [22] compared, for financial daily data index, different 

models for a one-step-ahead prediction. He used a LSTAR model with the 

volume as the threshold variable to be compared with an AR and the 

random walk. This LSTAR outperformed the two last models. He 

emphasized the superiority of non-linear models against linear models. He 

also pointed out the importance of transaction costs for an economical 

usefulness. 

- Nonlinearities, cyclical behaviour and predictability in stock markets: 

international evidence [23] by Sarantis in 2001 pointed out the non-linearity 

characteristic in stock index. Tests reject linearity for all stock markets. 

Their evidence on out-of-sample forecasting suggests that forecast gains can 

be made by exploiting the nonlinear structure of STAR models and that 

these models outperformed linear autoregressive models and random walks 

at both short term and medium term horizons. 
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- Nonlinearity and intraday efficiency tests on energy futures markets written 

by Wang et al. [24] tested the intraday market efficiency using high 

frequency data. The paper employs various nonlinear models and several 

model evaluation criteria to examine market efficiency in an out-of-sample 

forecasting context. Overall, there is evidence for intraday market 

inefficiency of two of the four energy future markets (heating oil and 

natural gas), which exists particularly during the bull market condition but 

not during the bear market condition. The data used consists of 30-minute 

intraday prices and returns. Using high frequency data, this paper first time 

comprehensively examines the intraday predictability of four major energy 

(crude oil, heating oil, gasoline, natural gas) futures markets. The paper 

employs various nonlinear models (neural network, semi-parametric 

functional coefficient model, nonparametric kernel regression, GARCH), in 

addition to a linear model, and several evaluation criteria based on both 

statistical and economic accuracy to examine market efficiency in an out-of-

sample forecasting context. Overall, more thorough allowance for 

nonlinearity and market conditions (bear and bull markets) still only 

suggests somewhat limited evidence for intraday market inefficiency of 

energy future prices. 

- In 2005, Pérez-Rodìguez et al. compared AR, STAR and Neural Networks 

models to forecast daily returns for the Ibex-35 index in STAR and ANN 

models: forecasting performance on the Spanish Ibex-35Q stock index [25]. 

This comparison was carried out on the basis of various statistical criteria 

and by assessing the economic value of the predictors. In both cases, they 

used different forecasting methods (one-step and multi-step-ahead 

predictions) and forecast horizons to analyse the robustness of the results. 

The results obtained put into question the hypothesis of Efficient Markets, 

because the random walk model is not a reasonable description of Ibex-35 

stock index returns and the ANN technique may be an appropriate way to 
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improve forecasts. In the light of the results obtained, the statistical criteria 

suggest that the out-of-sample ANN forecasts are more accurate, they 

provide a better fit and provide slightly improved predictions than do the 

AR and STAR models. 

- Atsalakis did a really great job in his recent paper in 2009: Surveying stock 

market forecasting techniques – Part II: Soft computing methods [27]. He 

reviewed a large number of papers (around one hundred) which were 

dedicated to implement model to forecast daily stock prices and were 

written from 1993 to 2006. These models were mostly different neural 

networks. He described the different data set used, the input variables for 

the networks, the different performance measures used and the different 

benchmarks like the random walk and the ARMA models. More 

specifications about neural networks were mentioned: sample size, transfer 

function, data pre-processing, number of hidden neurons and validation set. 

Given stock market model uncertainty, soft computing techniques are viable 

candidates to capture stock market nonlinear relations returning significant 

forecasting results with not necessarily prior knowledge of input data 

statistical distributions. Through the surveyed papers, it is shown that soft 

computing techniques are widely accepted to studying and evaluating stock 

market behaviour. The input variables mostly come from technical 

indicators, fundamental indicators and past values. 

- Hassan et al. studied a non-typical model in 2007: A fusion model of HMM, 

ANN and GA for stock market forecasting [40] to forecast a one-step-ahead 

daily price. In this paper they described a novel time series forecasting tool. 

The fusion model combines a Hidden Markov Model (HMM), Artificial 

Neural Networks (ANN) and Genetic Algorithms (GA) to forecast financial 

market behaviour. As a result they find that the performance of the fusion 

tool is better than that of the basic model (Hassan & Nath, 2005) where only 

a single HMM is used in a novel approach to forecast stock price. To 
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evaluate the efficacy of the fusion model they compare the obtained forecast 

accuracy with that of a popular statistical forecasting tool (MAPE). The 

comparison shows the forecasting ability of the fusion model is as good as 

that of ARIMA model. 

- Ellis et al. in 2004 and Another look at the forecast performance of 

ARFIMA models [41] studied the performance of ARFIMA models to 

forecast stock market prices. Using a variety of different measures of 

forecast performance, the ARFIMA specification fails to outperform 

forecasts derived from both the simple average and AR(1) models, and 

performs only as good as a forecast based on the last observed value or a 

random walk model. 

- Chen et al. studied the Application of neural networks to an emerging 

financial market: forecasting and trading the Taiwan Stock Index [42] for 

forecasting monthly data. The good performance of the Probalistic Neural 

Network suggests that the neural network models are useful in predicting 

the direction of index returns. Furthermore, PNN has demonstrated a 

stronger predictive power than both the GMM–Kalman filter and the 

random walk forecasting models. 

- Hauser et al. worked on a hybrid ARFIMA-ARCH model to forecast high 

frequency financial time series: Forecasting High-frequency Financial Data 

with the ARFIMA–ARCH model [43]. 

- Mostafa studied the forecasting performance of neural networks on 

financial time series with Forecasting stock exchange movements using 

neural networks: Empirical evidence from Kuwait [44]. His results confirm 

the theoretical work by Hecht-Nielson (1989) who has shown that NNs can 

learn input–output relationships to the point of making perfect forecasts 

with the data on which the network is trained. The good performance of the 

NN models in predicting KSE closing price movements can be traced to its 

inherent non-linearity. This makes an NN ideal for dealing with non-linear 
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relations that may exist in the data. Thus, neuro-computational models are 

needed to better understand the inner dynamics of stock markets. His results 

are also in line with the findings of other researchers who have investigated 

the performance of NN compared to other traditional statistical techniques, 

such as regression analysis, discriminant analysis, and logistic regression 

analysis. 

- Huang et al. worked on Forecasting stock market movement direction with 

support vector machine [45]: in this paper, they studied the use of support 

vector machines to predict financial movement direction. According to their 

work, SVM is a promising type of tool for financial forecasting. As 

demonstrated in their empirical analysis, SVM is superior to the other 

individual classification methods in forecasting weekly movement direction 

of NIKKEI 225 Index, like a neural network and the random walk. 

- A neuro-fuzzy adaptive control system has been developed by Atsalakis et 

al. to forecast next day‟s stock price trends. The proposed system has been 

presented and described from conceptual and technical perspectives, 

justifying its modelling aspects. Obtained results challenge the weak form 

of the EMH, by demonstrating that when using historical data, accurate 

predictions of stock price trends are achievable. This statement has been 

supported by several case studies of different stocks from the ASE (an 

emerging market) and the NYSE (a well-developed market). The proposed 

system has performed very well in trading simulations, returning results 

superior to the Buy and Hold (B&H) strategy. This paper Forecasting stock 

market short-term trends using a neuro-fuzzy based methodology [46] used 

daily data and one-step-ahead predictions. 

- Molgedey et al. studied the Intraday patterns and local predictability of 

high-frequency financial time series [47]. Their results show that local 

analysis is an appropriate tool for studying the predictability of financial 

time series. Of particular interest are local studies of the continuations and 
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predictabilities of certain local histories. Local correlations are of specific 

interest since they improve the local predictability. Hence, one can, in 

principle, improve the predictions at certain time instants by basing the 

predictions on local history observations. Further, they concluded that there 

are specific substrings which rarely occur and for which the uncertainty is 

noticeably less than 1; the local predictability is better than 10%. In other 

words, there are specific situations where the predictability is better than the 

average predictability. However, the effect is quite small and shows that the 

discussed financial time series is nearly random, but not fully random and 

shows some order at specific sub-trajectories. 

- Strozzi et al. wrote a paper on Non-linear forecasting in high-frequency 

financial time series [48]. In a general way but applied to foreign exchange 

time series, a new methodology based on state space reconstruction 

techniques has been developed for trading in financial markets. The 

methodology has been tested using 18 high-frequency foreign exchange 

time series. The results are in apparent contradiction with the efficient 

market hypothesis which states that no profitable information about future 

movements can be obtained by studying the past prices series. In their 

analysis positive gain may be obtained in all those series. 

- Sazuka used Non-linear logit models for high-frequency data analysis [49]. 

In this paper, they have analysed tick-by-tick data, the most high-frequency 

data available, of yen–dollar exchange market with focus on up down price 

movements. The proposed non-liner logit model has been able to capture 

the non-trivial probability structure in the binary tick-by-tick data, which 

was impossible using the conventional methods such as AR models or 

normal logit models. This model is a good model to forecast the probability 

of up or down trends conditionally to the up or down trends arrived before. 

- Predicting the Brazilian stock market through neural networks and adaptive 

exponential smoothing methods written by de Faria et al. [50] in 2009 
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compared two models the first one non-linear and the second one linear to 

forecast one-step-ahead stock markets. In this work the daily principal index 

of the Brazilian stock market was studied through artificial neural networks 

and also by using the adaptive exponential smoothing method. It is shown 

that the neural networks have a superior performance to predict the correct 

sign of the index return. The AES method did not contribute to predict the 

correct sign of the return, in spite that both methods, NN and AES, 

produced almost the same RMSE in the prediction of the return values. 

- Resta in his 2009 paper Seize the (intra)day: Features selection and rules 

extraction for tradings on high-frequency data [51] showed that the results 

obtained are quite promising, since they give evidence that a trading system 

which combines rules and unsupervised neural networks can work well to 

discover intraday patterns, and to employ such retrieved information to 

perform market tradings. 

- Enke et al. studied The use of data mining and neural networks for 

forecasting stock market returns in 2005, [52]. The results showed that the 

trading strategies guided by the neural network classification models 

generate higher profits under the same risk exposure than those suggested 

by the other strategies, including the buy-and-hold strategy, as well as the 

level estimation forecasts of neural network and linear regression models. 

Much of these researches and also implicitly mine have attempted to answer two 

questions:  

 Is the most accurate forecast of tomorrow‟s price simply today‟s price 

plus an estimate of the long-run average daily price change? 

 Can profits be made by frequently changing a market position, buying 

and selling the same goods many times? 
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6. High frequency trading:  the application 

High-frequency trading is the execution of computerized trading strategies 

characterized by extremely short position-holding periods. In high-frequency 

trading, programs running on high-speed computers analyse market data, using 

algorithms to utilize trading opportunities that may open up for only a fraction 

of a second to several hours. High-frequency trading, often abbreviated HFT, 

uses quantitative investment computer programs to hold short-term positions in 

equities, options, futures, currencies, and all other financial instruments that 

possess electronic trading capability. High frequency traders compete on a basis 

of speed with other high frequency traders, not long term investors (who 

typically look for opportunities over a period of weeks, months, or years with , 

like we said before, fundamental analysis), and compete with each other for very 

small, and very consistent profits. As a result, high-frequency trading has been 

shown to have a potential Sharpe ratio thousands of times higher than the 

traditional buy-and-hold strategies [9]. A Sharpe ratio measures return per unit 

of risk; a Sharpe ratio of 2 means that the average annualized return on the 

strategy twice exceeds the annualized standard deviation of strategy returns: if 

the annualized return of a strategy is 12%, the standard deviation of returns is 

6%.  The Sharpe ratio further implies the distribution of returns: statistically, in 

95% of cases, the annual returns are likely stay within 2 standard deviations 

from the average.  In other words, in any given year, the strategy of Sharpe ratio 

of 2 and annualized return of 12% is expected to generate returns from 0% to 

24% with 95% statistical confidence, or 95% of time. Table 1 compares the 

maximum Sharpe Ratios that could be attained at 10-second, 1-minute, 10-

minute, 1-hour and 1-day frequencies in EUR/USD.  
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Table 1: Performance limits for trading strategies running at different 

frequencies 

 

As Table 1 shows, the theorical maximum profitability of trading strategies 

measured using Sharpe ratios increases with increases in trading frequencies. 

From March 11, 2009, through March 22, 2009, the maximum possible 

annualized Sharpe ratio for EUR/USD trading strategies with daily position 

rebalancing was 37.3, while EUR/USD trading strategies that held positions for 

10 seconds could potentially score Sharpe ratios well over 5,000 (five thousand) 

mark. 

The Sharp Ratio is defined as following: 

      (I.2) 

Where R is the asset return, Rf is the return on a benchmark asset, such as the 

risk free rate of return, E[R − Rf] is the expected value of the excess of the asset 

return over the benchmark return, and σ is the standard deviation of the asset. 

This ratio has to be positive in order to conclude that the portfolio is more 

profitable than average. 
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II. High frequency financial data: description 

Statistical finance, sometimes called econophysics, is an empirical attempt to 

shift finance from its normative roots to a positivist framework using exemplars 

from statistical physics with an emphasis on emergent or collective properties of 

financial markets. The starting points for this approach to the understanding of 

financial markets are the empirically observed stylized facts. In financial 

econometrics, a stylized fact is a structural observation that is believed to hold 

for a diverse collection of instruments, markets, and time periods. They are 

many stylised facts for financial time series that have been found in many 

research works, we can mention for this the paper of Cont in 2001 Empirical 

properties for asset returns: stylised facts and statistical issues [53]. Cont 

described some important facts about asset returns. Here are the most common 

which we can also find in [6]:  

1. Absence of autocorrelations: (linear) autocorrelations of asset returns are 

often insignificant, except for very small intraday time scales (20 minutes) 

for which microstructure effects come into play. We can see this in figure 30 

and the others from the appendix 1. 

2. Heavy tails for the probability distribution like we can in figure 29 and the 

others from the appendix 1. 

3. Variance clustering: variance often changes over time, with alternating 

phases of high and low volatility. Such behaviour is well captured by ARCH 

or GARCH models. Different measures of volatility display a positive 

autocorrelation over several days, which quantify the fact that high-volatility 

events tend to cluster in time. The white test can confirm it. 

4. Financial time series are very complex and dynamic as they are characterized 

by extreme volatility. 
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5. Empirical evidence strongly suggest that the probability distribution 

functions found in financial time series exhibits a fat-tailed distribution which 

is in disagreement with the Gaussian distribution and the random walk 

model.  

6. Aggregational Gaussianity: as one increases the time scale t over which 

returns are calculated, their distribution looks more and more like a normal 

distribution. In particular, the shape of the distribution is not the same at 

different time scales. 

7. Slow decay of autocorrelation in absolute returns like we can see on the 

following figure. The ACF of the squared returns are quite identical. 

 

Figure 2: ACF of absolute returns 

8. Leverage effect: most measures of volatility of an asset are negatively 

correlated with the returns of that asset. Confirmed by the use of R. 
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9. Volume/Volatility correlation: trading volume is correlated with all measures 

of volatility. Also confirmed by the use of R. 

In this second section we will describe more particularly high-frequency 

financial data and our typical stocks used. 

1. High frequency data 

Stylised facts have also been exhibited for high-frequency financial data and we 

can see them on [5]: 

- A significant negative autocorrelation within 4 minutes of trading is found 

in HF data, first reported by Goodhart and Figlioli (1991). They explain it 

with microstructure effects, as well as by formulating the hypothesis of 

diverging opinions of traders about the impact of news on the direction of 

prices. 

- The estimate of the tail index indicates fat non-Gaussian tails of the 

distributions.  

- Scaling properties indicate fractal behaviour of stock prices, and thus the 

possibility of extending HF findings to lower frequencies as well. 

- Volatility autocorrelations decay at a hyperbolic (rather than exponential) 

rate. This indicates the presence of a „„heat wave effect‟‟: We may not know 

when a stone falls in the lake, but we can predict its waves. Volatility also 

leaves a memory effect. This is not interpreted as a delay in price 

adjustment that signals inefficiency in reflecting information. Rather, the 

empirical findings indicate that volatility is the footprint of market presence, 

activity, and volume. We can understand with the following figure: 
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Figure 3: ACF for volatility 

2. Our dataset 

To do this study we chose ten diverse stocks taken from the French stock 

exchange CAC 40. The stocks were chosen in order to have companies working 

on diverse areas, in order to make the dataset as various as possible to be able 

generalize the results. The data were chosen as high frequency with time interval 

between two values equals to 15 minutes. Our dataset takes its values from the 

09/10/2009 at 09:00 to the 11/12/2009 at 14:15, so two months and 1600 values. 

We divided the dataset into a training set and a validation set: 1500 values for 

the training set and 100 values for the validation set (or test set). 
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For each time t of the period studied, the set of values is composed by an open 

value and a close value for the time at t+15 (normally, the close price for the 

period t: t+15 is equivalent to the open price of the period t+15: t+30). Between 

theses times (like t and t+15, and we call this the high frequency trading period), 

there are a high price and a low price of the period, corresponding to the highest 

and lowest price of the trading period in question. We have also the transaction 

volume of the period corresponding to the number of stocks that have been sold 

and bought. 

Each company will be called with its number like for company 1 is [1] and 

company 2 is [2]. 

- The company 1 is, working on 

- The company 2 is, working on 

- The company 3 is, working on 

- The company 4 is, working on 

- The company 5 is, working on 

- The company 6 is, working on 

- The company 7 is, working on 

- The company 8 is, working on 

- The company 9 is, working on 

- The company 10 is, working on 

3. Basic statistics  

First of all, before making any forecasting we have to statistically study our 

dataset with a statistical description and basic statistics. We can first of all see 

all the graphics from the appendix 1: 
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- The plot of the stocks to see how they evolve and if they are stationary 

(some of them can have a significant trend) 

- The histogram of the stocks to see their distribution and that there is a 

significant asymmetry for mostly stocks. 

- The boxplots of the stocks show that there are noteworthy outliers. 

- The qq-plots of the stocks show a tendency to be normal but there are fat 

tails. 

We can also see these statistics for the returns (difference between two 

consecutive stock values). We can see that there are more outliers for returns 

and less asymmetry for the distribution. The return distribution is narrower than 

the stock distribution. The returns seem to have a zero mean. 

We can also describe the autocorrelation diagram and the partial autocorrelation 

diagram. For the stocks there is a slow decay for the ACF and for the returns not 

evident correlations can be found but only for the precedent value. 

The graphical description is necessary to have a first view of the data studied. 

Then we can deepen on this way with statistical indicators. Here are the tables 

with the principal statistics indicators of each time series (for stocks): 

Table 2: basic stats for [1] to [5] 

Basic stats. [1] [2] [3] [4] [5] 

Minimum 31.955000 12.650000 73.120000 46.500000 2.178000 

Maximum 38.400000 15.620000 82.070000 52.790000 3.375000 
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1
th

 quartile 34.848750 13.650000 77.480000 48.088750 2.342750 

3
rd

 quartile 37.091250 14.826250 79.392500 49.711250 3.005000 

Mean 35.799853 14.227747 78.253163 49.057681 2.670885 

Median 36.042500 14.340000 78.555000 48.900000 2.588000 

Variance 2.442702 0.443587 3.005088 1.770254 0.116689 

Stand. dev. 1.562914 0.666023 1.733519 1.330509 0.341597 

Skewness -0.588705 -0.219842 -0.632047 0.603640 0.575114 

Kurtosis -0.397300 -1.073876 0.272573 0.012136 -1.003767 

Table 3: basic stats for [6] to [10] 

Basic stats. [6] [7] [8] [9] [10] 

Minimum 39.555000 50.800000 29.045000 29.975000 15.600000 

Maximum 44.020000 58.540000 33.840000 36.945000 19.351100 

1
th

 quartile 40.870000 54.320000 30.660000 30.998750 16.346200 
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3
rd

 quartile 41.851250 56.655000 32.386250 33.663750 17.868350 

Mean 41.376572 55.314450 31.438800 32.387728 17.091106 

Median 41.220000 55.290000 31.380000 31.432500 16.748600 

Variance 0.647039 2.994156 1.305531 3.781693 1.035828 

Stand. dev. 0.804387 1.730363 1.142599 1.944658 1.017756 

Skewness 0.872820 -0.318824 0.114416 1.010679 0.794798 

Kurtosis 0.958059 -0.502973 -0.889888 -0.446801 -0.698521 

We can first say that we can heterogeneous data since they have diverse mean, 

variance, Skewness and Kurtosis, so a different distribution. This is an essential 

criterion in order to assume general results. Like we can see on the skewness, 

each time series is asymmetric, either on the left or on the right. The kurtosis 

shows the gap with the normality distribution. Like we can see on the indicators, 

the distribution of the stock time series are not so much normal and more hypo-

normal than hyper-normal (at the contrary like we can see on the statistical 

graphs for the returns, the returns tend to be very hyper-normal; the kurtosis is 

for each return superior to 8) with values not so high (inferior to abs(1)). We can 

see that the stock [4] has a normal distribution with a kurtosis value of 0.01. 
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We can also see the graph of correlation between the closing price and the 

volume with is typical and show non-linearity but two parts of linearity (low 

volume and high volume, with a discontinuity between the two parts) 

 

Figure 4: Correlation between stock and volume 

4. Statistical Tests 

We also did some tests with R to better understand our time series. These tests 

are concerning stationarity, normality and linearity. First we tried to find 

periodical parts in our time series and with the decompose() function on R, the 

result was no period part for each time series. 
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a. Stationarity  

With tests of stationarity like the kpss test or the adf test (unit root test) we 

found that no stock is stationary and the return are at the contrary stationary. 

b. Normality 

We also tested the normality with the Shapiro test and this one confirmed that 

no stock or return is normal. 

c. Linearity 

We tested the linearity of our time series because like we can see on the 

previous researches, financial time series seem to be non-linear and non-linear 

models seem to better fit the data. With adequate tests (like White test or 

Teräsvirta test) we found that [1], [3], [7] and [10] are said to be non-linear, the 

others are found to be non-linear. 

d. Independence 

Tests for independence and identically distributed (i.i.d.) time series for the 

stocks and the returns show that that the i.i.d. was wrong. (see bds test for 

example) 
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III. Forecasting methodologies 

We will present in this chapter the different forecasting methodologies we used 

to do this work. This is our bases of study. To remind to the reader, our goal is 

to compare different models forecasting performances in the field of high 

frequency stock market time series. 

For each analysis we used the open-source software of statistics R. 

1. Models 

A model for prices (or returns) is a detailed description of how successive prices 

(or returns) are determined. A good model must describe all the potentially 

existing and known properties of recorded prices. 

The sections following the current one will describe in a more detailed way the 

models we used. They can be divided into three parts: linear models, non-linear 

models and machine learning. Linear models include the basic exponential 

smoothing, the famous ARIMA time series models and an evolution of them the 

ARFIMA models. The non-linear models are characterized by an assumption of 

a non-linear function to forecast values from past values at the contrary to linear 

models which evidently assume a linear function to fit the values. We used an 

autoregressive non-linear model, generalization of AR models: the STAR 

models. The second non-linear model is a hybrid model taking into account the 

importance of volatility in finance: it‟s the ARMA-GARCH models. Finally 

more complex models are used and maybe the more accurate: machine learning. 

We used two different neural networks since they have found some 

predictability capacities in detecting recurrent non-linearity patterns. The first 
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neural network used as inputs five past values, so this one is an evolution of the 

former models. The second one tried to implement the market dynamics with 

open, high, low, close prices and volume of the current period. 

2. Data pre-processing 

In order to forecast stock prices there are different ways to begin. Direct 

statistical analysis of financial prices is difficult, because consecutive prices are 

highly correlated and the variances of prices increase with time as we have seen 

in section II. Prices are not stationary, a concept also introduced in the same 

section. Consequently, it is more convenient to analyse changes in prices. 

Results for changes, for example a forecast, can easily be used to give 

appropriate results for prices. Suppose the price is recorded once on each 

intraday time (each 15 minutes), always at the same time of days. We used for 

the most part of the models the closing prices, only machine learning used other 

prices. Let zt be the price on trading t and let dt be the dividend (if any) paid 

during day t; dt will only be non-zero for stocks and then only on a few days 

every year. Three types of price changes have been used in previous research: 

Xt
*
 = zt + dt – zt-1        (III.1) 

Xt = log (zt+dt) – log (zt-1)        (III.2) 

Xt‟ = (zt + dt –zt-1) / zt-1       (III.3) 

In our case, as we use high frequency stock prices and as we want to reduce the 

non-pertinent complexity, dt equals zero. The first difference xt
*
 depend on the 

price units, so comparisons between series are difficult. They have the further 
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disadvantage that their variances are proportional to the price level. For these 

reasons, either the xt or the xt
‟
 are nearly always studied in modern research. In 

our case, we used the three different returns and chose the model with which the 

forecasting performances were the best. 

We also tried a standard/mean scaling (z-index). While linear scaling strictly 

preserves the uniformity of the distribution, mean scaling helps in creating a 

more uniform distribution, which can be desired if most of the extreme values of 

the original distribution are considered to be noisy and that is our case like we 

can see in the box plots of our times series. 

3. One-step-ahead predictions 

To evaluate the different forecasting performances of our models we used one-

step-ahead predictions. It means that we only forecast the just-next value of one 

present value that is in our case the value at +15 minutes. One-step-ahead 

forecasting can prevent problems associated with cumulative errors from the 

previous period for out-of-estimation sample forecasting. This is the advantage 

that also justifies our choice. Furthermore, since we use high frequency data, the 

possible application of our study is high-frequency trading, so short term trading 

and predictions: from this point of view, one-step-ahead predictions seem 

adequate. Moreover, some models we use not seem appropriate to multiple-step 

predictions like ARIMA models. 
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4. Training and validation sets 

To use our models we first have to train them, which means calculate and 

determine the different parameters and the different coefficients of the models, 

so that they could learn the rules which could determine the future value from 

past values. For this first part of training we have to use a training set. This is 

our in-sample set. After this procedure, a validation of the model is used, to 

avoid overfitting. Overfitting is a characteristic of a model that implies a too 

high importance for the training data, which means that the model is too 

specialized and it cannot generalize to new data. The new data are the validation 

set: the out-sample set which validates a model, prefers a model to another. To 

avoid over-accuracy the in-sample and out-sample have to be disjoined. 

The out-sample set is also used to evaluate the forecasting performances of the 

different types of models. 

Our whole dataset is composed of 1600 data that is 1600 open, high, low prices, 

transaction volume and above all close prices. The training set is composed of 

1500 data and the validation set of 100 data which means a percentage of 6% for 

the validation set.  

5. Recursive loop and output for machine learning  

As we decided to focus on a one-step-prediction, a good idea is to use a loop 

which can allow us to use all data we can have: some recursive loops have been 

implemented in the code of our models. For the linear and non-linear models the 

training set was added by the first value of the validation set and so on: the 

training phase was thus done 100 times. The coefficients were so calculated at 
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each step of the validation set: we used the best model at time t to improve our 

forecasting performances. 

For the machine learning, using a loop is too time-expensive versus a gain of 

forecasting accuracy. The machine learning actually learns well and it is enough 

to use as output the price at t+1 to determine it and to use the entire validation set 

during the test phase, without training the model again. At this time, the 

determination of the coefficients of the model was done once. 

6. Modelling benchmark 

To evaluate the forecasting ability of our models, we use the random walk 

model (RW) as a benchmark for comparison. RW is a one-step-ahead 

forecasting method, since it uses the current actual value to predict the future 

value as follows: 

ft+1 = yt          (III.4) 

Where yt is the actual value in the current period t and ft+1 is the predicted value 

in the next period.  
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7. Forecasting evaluation and accuracy measures 

After choosing and determining the models with the training set, we used them 

to make forecasts. The 100 one-step-ahead forecasts were calculated (with the 

methods we saw below) and we compared them to the real values from the 

validation set to evaluate the forecasting performances of one model. To do this 

we use statistical indicators of good fit and an economic indicator. 

e. Statistical Indicators of good fit 

The statistical indicators use the forecasting values and the real values to 

calculate a function of them which determine the error term. Evidently the best 

model will be the one with the lowest statistical indicators to minimize the errors 

terms from the forecasting values and the real values. The next table shows the 

forecasting indicators mostly used. The value et is the error term (difference 

between forecasting value ft and real value yt: ft - yt). All of these indicators 

calculate a mean of the error term along the validation set. The most common is 

the MSE. In statistics, the mean square error or MSE of an estimator is one of 

many ways to quantify the difference between an estimator and the true value of 

the quantity being estimated. MSE is a risk function, corresponding to the 

expected value of the squared error loss or quadratic loss. MSE measures the 

average of the square of the "error." The error is the amount by which the 

estimator differs from the quantity to be estimated. The difference occurs 

because of randomness or because the estimator doesn't account for information 

that could produce a more accurate estimate. 
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Table 4: Performance indicators 

- A low value of the ME may conceal forecasting inaccuracy due to the 

offsetting effect of large positive and negative forecast errors.  However, 

despite the unbiasedness of the forecasts, their inaccuracy becomes apparent 

from inspection of subsequent forecast evaluation statistics. 

- The MSE and MAE may overcome the “cancellation of positive and 

negative errors” limitation of the ME, but they fail to provide information 

on forecasting accuracy relative to the scale of the series examined:  

Consideration in this case of the scaled measures (MPE, MAPE, U1, and 

U2). 

- The MSE places a greater penalty on large forecast errors than the MAE. 

We can also use the RSME taking the root of the MSE to diminish this 
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characteristic. In an analogy to standard deviation, taking the square root of 

MSE yields the root mean squared error or RMSE, which has the same units 

as the quantity being estimated. The root mean square deviation (RMSD) or 

root mean square error (RMSE) is a frequently-used measure of the 

differences between values predicted by a model or an estimator and the 

values actually observed from the thing being modelled or estimated. 

RMSD is a good measure of precision. These individual differences are also 

called residuals, and the RMSD serves to aggregate them into a single 

measure of predictive power. 

- The more accurate the forecasts, the lower the value of the U1 

statistic. The U1 statistic is bounded between 0 and 1, with values closer to 0 

indicating greater forecasting accuracy. This is an indicator of distance 

between forecast and target values. 

- The U2 statistic will take the value 1 under the naive forecasting method 

(see III.6 with the Random Walk modelling benchmark). Values less than 1 

indicate greater forecasting accuracy than the naive forecasting method; 

values greater than 1 indicate the opposite.  

- Even the simplest forecast evaluation statistic provides useful 

information. While the more sophisticated forecast evaluation statistics 

provide information on the properties of the alternative forecasts, the mean 

error provides useful information on the bias of the actual forecast errors.  
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U2 is also called Theil‟s U. This is the one we used here to compare the 

forecasting performances of our models. The Theil‟s U indicator has to be 

minimized. Indeed this indicator has two advantages: 

 Its numerator takes into account a “percentage” root mean squared error 

(like a RPMSE) with the advantages of the “percentage”, “squared” and 

“root” peculiarities we saw earlier. A minimal Theil‟s U will be linked 

with a minimal RMSE. 

 By its definition, it can be easily used to compare it with our benchmark, 

the naïve prediction, and to see which model can outperform at best the 

random walk. The traditional indicators are indicators of fitting and since 

our goal in the financial field is to beat the random walk and the naïve 

prediction, this indicator is the most appropriate in finance. 
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f. An economic indicator: HIT rate 

A statistical indicator is not enough in the field of financial forecasting and 

particularly in one-step-ahead predictions. Indeed, since our possible application 

is high-frequency trading, our great interest is if the next price value will 

increase or decrease in order to buy it or sell it. So what we are interesting in is 

the sign of the predicted return. A good model predicts the positive or negative 

sign better than a naïve model so better than 50% (since with the law of large 

numbers, if you predict the sign of returns randomly you will arrive at a 

percentage of 50) 

This indicator is called HIT which is the percentage of good price movements 

(good signs of return) predictions, it is defined as follows: 

HIT = (number of signs predicted) / (length of validation set) * 100  (III.5) 

The HIT indicator is an important indicator for a one-step-ahead prediction since 

we cannot validate a model with a good Theil‟s U and with a bad HIT; because 

no profit could be made with a HIT<50. Actually the HIT and the Theil‟s U are 

complementary indicators since we cannot make profits with a high HIT and a 

high Theil‟s U since the possible loss could be too great and the potential gain 

could be biased. Without implementing a trading strategy, the validation of the 

model is a trade-off between the statistical Theil‟s U indicator of fitting and the 

economic profitable indicator HIT rate.  
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IV. Linear Models 

Time series, of whatever type they are – financial, economic or from historical 

sales – have to be first modelled by the “simplest”, but not the worst, models 

existing for the fitting and for the prediction: the linear models. Linear models 

try to fit at best the present value of a given time series, given its past values, 

with a linear function. In this part of the thesis we will discuss three models. As 

we said before, the financial time series are known to be non-stationary, so there 

can be a trend, up or down, depending on if we are in a bull market or in a bear 

market. That‟s why the models used here have to take into account this 

characteristic.  We thus assume in this part that financial time series can be 

explained and forecasted linearly by their past values. 

The three models studied here will be: the exponential smoothing with or 

without trend correction, which is the Holt-Winters model without the 

seasonality component because, as we have seen, there is no seasonal 

component; then the autoregressive integrated moving average (ARIMA) and 

the autoregressive fractionally moving average (ARFIMA). The “integrated” 

part for the two last models is essential to capture and eliminate the non-

stationary characteristic.  
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1. Holt-Winters model 

Despite their simplicity, exponential smoothing models constitute very 

polyvalent and accurate predictive methods for time series analysis, and they 

were showed as very suitable methods to economic phenomenon, we can motion 

for this the work of De Gooijer et al. in 2006 25 years of time series forecasting 

[1]. Firstly formulated on empirical and intuitive bases, they have found 

theorical justifications. They were named as Holt-Winters for the two scientists 

Holt and Winters who have developed these models. 

Exponential smoothing is a technique that can be applied to time series data, 

either to produce smoothed data for presentation, or to make forecasts. The time 

series data themselves are a sequence of observations. The observed 

phenomenon may be an essentially random process, or it may be an orderly, but 

noisy, process. Whereas in the simple moving average the past observations are 

weighted equally, exponential smoothing assigns exponentially decreasing 

weights over time. And it is particularly suitable and interesting for our case 

since we can easily imagine that most recent values have more effects and are 

more useful for the prediction of the next stock value. 

a. Basic exponential smoothing 

Exponential smoothing is commonly applied to financial market and economic 

data, but it can be used with any discrete set of repeated measurements. The raw 

data sequence is often represented by {xt}, and the output of the exponential 

smoothing algorithm is commonly written as {st} which may be regarded as our 

best estimate of what the next value of x will be. When the sequence of 

observations begins at time t = 0, the simplest form of exponential smoothing is 

given by the formulas: 
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     (IV.1) 

Where α is the smoothing factor, and 0 < α < 1. In other words, the smoothed 

statistic st is a simple weighted average of the previous observation xt-1 and the 

previous smoothed statistic st−1. If α coefficient is close to one then the model 

gives a major weight to most recent observations otherwise the model is a little 

“inert”, indeed it actually gives a uniform weight to all past values. The 

prediction for the next value of x, xt, is st. 

The simple exponential smoothing model is not suitable for non-stationary 

process with trend component because it is still late compared to the real time 

series values and produce biased predictions. The book Business Intelligence 

[28] of Carlo Vercellis insists on this characteristic. 

b. Exponential smoothing with trend adjustment  

To take into account the non-stationary characteristic with trend, so to suit at 

best a smoothing model to a financial time series with trend, we have to use the 

extended model which can correct it. In such situations, double exponential 

smoothing can be used. 

Again, the raw data sequence of observations is represented by {xt}, beginning 

at time t = 0. We use {st} to represent the smoothed value for time t, and {bt}, 

newly introduced sequence, is our best estimate of the trend at time t. The output 

of the algorithm is now written as Ft+m, an estimate of the value of x at time t+m, 

m>0 based on the raw data up to time t. In our case, m is equal to one according 

to our forecasting methodologies described in the third chapter. Double 

exponential smoothing is given by the formulas: 
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    (IV.2) 

Where α is the data smoothing factor, 0 < α < 1, like before and β, a new 

parameter, is the trend smoothing factor, 0 < β < 1. 

If α coefficient is close to one then the model gives a major weight to most 

recent observations. When β coefficient is close to zero the model gives an 

almost uniform weight to trends. On the other hand when it is close to one the 

most recent trend is dominant.  

Unknown parameters α and β (for the second model) are determined by 

minimizing the squared prediction error. 

c. Forecasting method and R implementation 

The way to choose the best Holt-Winters models is described here: 

Step 1:  

Data pre-processing; for this model the time series used were the stock prices 

themselves without using the returns, it was actually more accurate. 
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Step 2:  

The best Holt-Winters model fitting our financial time series was chosen by 

minimizing the squared errors using the training set. Then the two parameters α 

and β of the model were determined.  

Step 3:  

It was then applied to predict the one-step-ahead value. The training set was 

added by the next value (taken in the validation test) and the best model was 

again fitted like in step 2 to go then to step 3. This procedure was used until the 

validation set was completely used. 

Step 4:  

For one time series, we chose the best model between the simple exponential 

smoothing and the double exponential smoothing, using the indicators of fitting 

goodness for the validation set. 

This calculation was done for the entire validation set to give, as output, 100 

one-step-ahead predictions. The R function HoltWinters() was used to determine 

the two parameters of the model. 

Regarding our study, the simple exponential smoothing outperforms the double 

exponential smoothing for almost cases. 
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2. ARIMA model 

In statistics and econometrics, and in particular in time series analysis, an 

autoregressive integrated moving average (ARIMA) model is a generalization of 

an autoregressive moving average (ARMA) model, well used for non-stationary 

time series thanks to, as we said, the time series values differentiation.  

We will try here to fit and forecast our financial time series with an ARIMA 

model. We will describe the general model, and then the way used to choose the 

best model and to finish with the implementation in R. Whereas exponential 

smoothing is, we can say, a data extrapolation, the ARIMA model try to find a 

sort of best regression between past values and the actual values. Past values 

could be thus explicative variables to the future value using a linear function. 

We can expect that the ARIMA models are more accurate than exponential 

smoothing since they try to find the best adaptive linear function whereas the 

functional form is imposed in Holt-Winters model; there is more flexibility on 

the parameters for the ARIMA models. This model is at the centre of Box and 

Jenkins time series modelling methodology. 

a. Model description 

As an ARMA(p, q), an ARIMA(p, d, q) process has an autoregressive part with 

order p (on the left side of the following formula) and a moving average part 

with order q (on the right side), the parameter d is for the integrated part. The 

parameters p, d and q are integer values greater than or equal to zero for this 

type of model. The values of the parameters depend on the model we want to 

use. 
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Given a time series of data Xt where t is an integer index and the Xt are real 

numbers, an ARIMA(p, d, q) is given by: 

    (IV.3) 

Where L is the lag operator for time series differentiation, the ϕ i are the 

coefficients of the autoregressive part of the model, thus the regression part with 

time series past values, the θi are the coefficients of the moving average part 

thus the regression part between the actual value and passed error terms εt-i: the 

error terms are valued from the difference between the fitting values and the real 

values. εt is a white noise, and is generally assumed to be independent, 

identically distributed variables sampled from a normal distribution with zero 

mean. In our case, the time series Xt will be of course the stock market closing 

price. 

ARIMA models are used for observable non-stationary processes Xt that have 

some clearly identifiable trends: 

- constant trend (i.e. a non-zero average) leads to d = 1 

- linear trend (i.e. a linear growth behaviour) leads to d = 2 

- quadratic trend (i.e. a quadratic growth behaviour) leads to d = 3 

In our cases, some financial time series can have a significant trend so d=2 is 

sometimes appropriate. Since the financial times series studied here are for all of 

them non stationary, a d parameter equal to one is necessary. 

The ARIMA models with stock prices outperformed the ARMA models using 

returns. So it is this way we looked into. 
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b. Steps to the best model 

The method to choose the best ARIMA model for one time series was here a 

mix between different approaches. We also tried the Box and Jenkins 

methodology based on the autocorrelogram and the partial autocorrelogram to 

determine the model parameters but our method outperformed this method. 

Indeed sometimes the Box and Jenkins gave equivalent results to the ones with 

the method we used but sometimes not. There are also some functions in R 

which can automatically find p and q, like auto.arima() but these methods were 

less accurate than the one we use. 

 Step 1: 

The first step was to choose with the training sample, different models with 

essential characteristics which we will see below. The θi and ϕ i coefficients of 

the fitting model were determined with the Maximum Likelihood. Different 

models, with different parameters p, d and q, were tested. The d parameter was 

selected to make the time series stationary. Usually d was equal to one. Then we 

tried several models with different p and q parameters, we tried even so only 

autoregressive models (q=0) or only moving-average models (p=0). 

Nevertheless the models tested had to be the simplest to avoid overfitting, so we 

restricted a maximum value of 4 for each p and q. We chose the models with a 

p-value for the fitted coefficients inferior to 0.05 to accept the null hypothesis 

test that the coefficients were significantly different from zero. 

Step 2: 

Then we compare the AIC criterion, the Akaike information criterion: 
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       (IV.4) 

Where k is the number of parameters in the statistical model which is the sum of 

p and q for an ARIMA and L is the maximized value of the likelihood function 

for the estimated model. This criterion has to be minimized, so the models with 

an AIC sufficiently low were selected. 

Step 3: 

During these steps, the errors terms were analysed. We analysed their 

autocorrelation diagrams (ACF), their standardized plots and their p-values of 

Ljung-Box test; all of this is to check if the error terms were a white noise with 

zero mean: essential characteristic to select a model. Here follows the typical 

white noise graphics: 

 

Figure 5: Standardized error terms as white noise 
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We can see on this first plot the first characteristic of standardized error terms as 

a white noise: mean equal to 0 and constant variance. 

 

Figure 6: Autocorrelation diagram (ACF) for a white noise 

The different values of autocorrelations have to be inferior to 0.05, maximum 

value in order to consider errors terms not correlated. The figure 6 shows it. 
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Figure 7: Ljung-Box test for white noise 

The Ljung–Box test is a type of statistical test of whether any of a group of 

autocorrelations of a time series is different from zero. Instead of testing 

randomness at each distinct lag, it tests the "overall" randomness based on a 

number of lags. The Ljung–Box test can be defined as follows.   

H0: The data is random. 

Ha: The data is not random. 

For a p-value sufficiently high (>0.05), we accept the null hypothesis: errors 

terms are random so independent. The test statistic is: 

      (IV.5) 
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Where n is the sample size,      is the sample autocorrelation at lag k, and h is the 

number of lags being tested. For significance level α, the critical region for 

rejection of the hypothesis of randomness is: 

        (IV.6) 

Where:                   is the α-quantile of the chi-square distribution with h degrees 

of freedom. In our case, h is equal to one. 

The error terms must also have a normal distribution. To verify this condition, a 

qqplot was done to compare the distribution of the errors to the normal 

distribution. 

 

Figure 8: Normal qqplot for error terms 
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The errors terms can be considered as normal but we have very big tails. This is 

due to the highest and lowest returns we have which can be considered as 

outliers. This is typical from financial time series as we can see in the work of 

Dacorogna et al. in 2003 An Introduction to High Frequency Finance [5]. 

All of these verifications are essential for the validity of the model.  

Step 4: 

After selecting the models satisfying these conditions, one-step-ahead 

predictions were done for the whole validation set. The best model chosen and 

selected was then the one with the best accuracy indicators: this is our ARIMA 

model with its parameters p, d and q. In each case, p and q were superior or 

equal to one. 

c. Implementation in R 

The R code for the ARMA modelling used the command armaFit() from the 

package fArma to fit the coefficients for a given model after selecting the 

parameters with our different steps. After specifying the model with the training 

set, the predictions were done one-step-ahead with the validation set thanks to 

the package forecast. The training set was added at every step by the next value 

from the validation set. 
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3. ARFIMA Model 

The ARFIMA model is an extension and generalization of the ARIMA model 

since it allows the d parameter for the differentiation to be non-integer and 

irrational or even non-positive. The acronym ARFIMA stands for 

Autoregressive Fractionally Integrated Moving Average. They are useful in 

modelling time series with long memory. Long memory may cause a slower 

decay of the autocorrelation function than would be implied by ARMA models.  

In other words, long-range dependency (abbreviated as LRD) is a phenomenon 

that may arise in the analysis of spatial or time series data. It relates to the rate 

of decay of statistical dependence, with the implication that this decays more 

slowly than an exponential decay like we can see if the figure 9 above: 

 

Figure 9: Long rate of decay for ACF 
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a. Model description 

Fractional integration first appears in literature in the studies of Granger and 

Joyeux (1980) and Hosking (1981). The model, known as Autoregressive 

Fractionally Integrated Moving Average (ARFIMA), allows for increased 

flexibility in modelling high-frequency dynamics. ARFIMA model is written as 

follows: 

  (IV.7) 

Where the d parameter is fractional integration parameter as a real number, B is 

lag operator and εt is white noise residual, as before. Polynomial structures of 

this equation lie outside the unit circle, satisfying the stationarity and 

invariability conditions. The fractional differencing lag operator (1− B)
d
 is 

defined by the binomial expansion as follows: 

     (IV.8) 

ARFIMA process is nonstationary when |d| ≥ 0.5. Stationarity and invertibility 

conditions require that the value of the fractional differencing parameter, d, is 

such that |d|< 0.5. For the values 0 < d < 0.5, the process ARFIMA is stationary 

and long term dependent, which means that is said to exhibit long memory. The 

process exhibits short memory for d = 0 (and is as an ARMA model) and 

intermediate memory for d < 0. 
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b. Determination of the d parameter 

The difference between an ARIMA model and an ARFIMA can be viewed as 

conceptual. Indeed the d coefficient adds one parameter in the model and has to 

be determined. Since d can be a real value we cannot find it alone like we did 

for the parameters of the ARIMA, we must use an optimization algorithm. 

The d parameter can be determined by different algorithms. We can mention the 

method of Geweke and Porter-Hudak (GPH) or the Whittle estimator (WHI), 

which both use the spectral density. Concerning our study we use the fracdiff 

function from the package fracdiff in R which finds the different parameters of 

the model which are p, d and q by maximizing the log Likelihood function and 

also its coefficients ϕ i and θi. 

c. Implementation in R 

Step 1: Data pre-processing: data set used here were either the returns either the 

stock prices themselves. We chose the model which was the most accurate. 

Sometimes returns also showed long decay for the autocorrelations. 

Step 2: Like we described in the forecasting methodologies, we implement here 

an algorithm to find at every step on the validation set the best ARFIMA model. 

We use for this the arfima() function from the forecast package in R to fit the 

time series, so to determine the parameters (p, d and q) and the coefficients (ϕ i 

and θi) and then do a one-step prediction.  

Step 3: The training set was then added by the first value of the validation set 

and so on to have 100 one-step-ahead predictions.  
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V. Non Linear Models 

Financial time series prediction deals with the task of modelling the underlying 

data generation process using past observations and using the model to 

extrapolate the time series into the future. Due to its intrinsic difficulty and 

widespread applications, much effort was devoted in the past few decades to the 

development and refining of financial forecasting models. In the literature, two 

major classes of models were studied by econometricians for the purpose of 

forecasting. They are the statistical time series models and structural 

econometric models. Linear time series models such as the Box-Jenkins 

autoregressive integrated moving average (ARIMA) models were among the 

first to be developed and subsequently widely studied and we studied them in 

the previous chapter. Despite its simplicity and versatility in modelling several 

types of linear relationship such as pure autoregressive, pure moving average 

and autoregressive moving average (ARMA) series, such type of models was 

constrained by its linear scope. As we have seen in section II, non-linearities in 

financial time series can be present and as a result models have to adapt 

themselves to this characteristic. That is why it is a good opportunity to try non-

linear models which can detect and learn these particularities in time series. 

Machine learnings are good models to detect non-linearities as a result of their 

intrinsic methodology. 

There can be different approaches about implementing non-linear models. We 

can try a non-linear model which could generalize the linear models: it will the 

STAR model or a machine learning which has as inputs past values. Non-linear 

particularities can be surely explained by market dynamics which characterize 

its running: the offer and demand dynamics. We can implement it by using 
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machine learning with input the open, high, low, close prices of an instant t and 

the transaction volume. 

A well-known non-linear market characteristic concerns its volatility: this can 

be well-described by a GARCH model which can predict the volatility of a stock 

or of the market. To forecast a stock value we have to use a hybrid model using 

a GARCH for the volatility part and an ARMA for the price value part. It is the 

ARMA-GARCH and we will begin this section by a description of this model to 

follow with the STAR model. Machine learning will be seen on the next section. 

Many papers have also shown that financial markets were characterized by a 

non-linear behaviour like we have seen it in the state of art in section I, and that 

is auspicious for this current section. 

1. An hybrid ARMA model with volatility: the ARMA-

GARCH 

a. Motivation: volatility clustering 

In finance, volatility most frequently refers to the standard deviation of the 

continuously compounded returns of a financial instrument within a specific 

time horizon. It is used to quantify the risk of the financial instrument over the 

specified time period. When volatility is high, the risk is high too. 

It's common knowledge that types of assets experience periods of high and low 

volatility. That is, during some periods prices go up and down quickly, while 

during other times they might not seem to move at all. 



 

75 |  

 

Periods when prices fall quickly (a crash) are often followed by prices going 

down even more, or going up by an unusual amount. Also, a time when prices 

rise quickly (a bubble) may often be followed by prices going up even more, or 

going down by an unusual amount. 

The converse behaviour, “doldrums” can last for a long time as well. Most 

typically, extreme movements do not appear “out of nowhere”; they are 

presaged by larger movements than usual. This is termed autoregressive 

conditional heteroskedasticity. Of course, whether such large movements have 

the same direction, or the opposite, is more difficult to say. And an increase in 

volatility does not always presage a further increase - the volatility may simply 

go back down again. This characteristic is well modelled by ARCH and 

GARCH models for the volatility in finance. In finance, volatility clustering 

refers to the observation, as noted by Mandelbrot (1963), that "large changes 

tend to be followed by large changes, of either sign, and small changes tend to 

be followed by small changes". A quantitative manifestation of this fact is that, 

while returns themselves are uncorrelated, absolute returns |rt| or their squares 

display a positive, significant and slowly decaying autocorrelation function: 

cor(|rt|, |rt+τ|) > 0 for τ ranging from a few minutes to a several weeks. 

Observations of this type in financial time series have led to the use of GARCH 

models in financial forecasting and derivatives pricing. The ARCH (Engle, 

1982) and GARCH (Bollerslev, 1986) models aim to more accurately describe 

the phenomenon of volatility clustering and related effects such as kurtosis. The 

main idea behind these two widely-used models is that volatility is dependent 

upon past realizations of the asset process and related volatility process. This is 

a more precise formulation of the intuition that asset volatility tends to revert to 

some mean rather than remaining constant or moving in monotonic fashion over 

time. 
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Autoregressive Conditional Heteroskedasticity (ARCH) models are used to 

characterize and model observed time series. They are used whenever there is 

reason to believe that, at any point in a series, the terms will have a 

characteristic size, or variance. In particular ARCH models assume the variance 

of the current error term or innovation to be a function of the actual sizes of the 

previous time periods' error terms: often the variance is related to the squares of 

the previous innovations. ARCH models are employed commonly in modelling 

financial time series that exhibit time-varying volatility clustering, i.e. periods of 

swings followed by periods of relative calm like we said before. In statistics, a 

sequence of random variables is heteroscedastic, or heteroskedastic, if the 

random variables have different variances. The term means "differing variance" 

and comes from the Greek "hetero" (“different”) and "skedasis" (“dispersion”). 

In contrast, a sequence of random variables is called homoscedastic if it has 

constant variance. Here follows the typical ARCH (q) model: 

    (V.1) 

Where εt can be the returns themselves (for an ARCH to predict the volatility of 

a stock return) or the errors terms taken from an ARMA model for the returns. 

The αi coefficients are the coefficients of the model. 

The GARCH model, like its name said, generalize the ARCH model allowing 

the process to be linked with the previous variances like an autoregressive 

model. It is similar between ARMA and MA models. Here follows the 

description of a GARCH (p, q) model (V.2): 
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Where εt can be the returns themselves (for a GARCH to predict the volatility of 

stock return) or the errors terms taken from an ARMA model for the returns. 

The αi coefficients are the coefficients of the model for the ARCH part. As we 

can see on this formula we added an autoregressive part with the past variances; 

the βi are the coefficients of this part. The non-linearity characteristic is 

evidently apparent with the squares to form the variances and used on the errors 

terms 

b. Description 

The mix ARMA-GARCH can be used to improve the simple ARMA model 

when the error terms show heteroskedasticity. Indeed the White test or 

Teräsvirta test can help that one should or not neglect non-linearity in a given 

time series, like we saw on section two. 

The ARMA (p, q) – GARCH (p, q) can be described as follows. Specifically, 

each component of the mixture model can be denoted as a normal ARMA(p,q) 

series: 

    (V.3) 

Furthermore, each residual term εt is assumed Gaussian white noise with 

variance denoted by the GARCH (p, q) model with this formula (V.4): 

 

For a theorical view about the optimization algorithm to determine the 

coefficients of the models and so the one-step-ahead prediction value, the lector 
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could refer to [16]: see derivation of the Generalized Expectation-Maximization 

(GEM) algorithm for implementation. 

c. Implementation in R 

For this model we used the recursive loop like we did for the previous models. 

The garchFit() from the fGarch package was able to implement the ARMA-

GARCH, calculating the coefficients and forecasting one-step-ahead. 

Step 1:  

Testing the residuals of the ARMA models found on section II with the white 

test to test the heteroskedasticity and to see previously if the ARMA-GARCH 

could be appropriate. The ARMA-GARCH was by the way implemented for 

each stock. 

Step 2:  

Determination of the parameters of the model that is the different p and q of the 

ARMA part and GARCH part. For this step we tried different models training 

them. We chose the one which had the best forecasting performances for the 

validation set. 

Step 3:  

We verified that the coefficients of the models were for the major part 

significantly different from zero, that the AIC criterion was sufficiently low and 

the residuals satisfied a white noise characteristic as for the ARMA model in 

section IV. 



 

79 |  

 

d. Heteroskedasticity of ARIMA error terms 

We tested the error terms of the ARIMA to show or not the presence of 

heteroskedasticity with the white test. Here are our results with the p-value: 

Table 5: p-values of heteroskedasticity of errors terms 

 [1] [2] [3] [4] [5] 

p-value 0.3295 0.6191 0.2876 0.0334 0.0492 

 

 [6] [7] [8] [9] [10] 

p-value 0.0117 0.3038 0.8210 0.0011 0.3956 

We can see that not each error term shows heteroskedasticity (the null 

hypothesis of the white test is linearity in mean). But when heteroskedasticity is 

found in the ARIMA error terms, you will see that the ARMA-GARCH model 

can improve the forecasting performances of the ARIMA. 
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2. STAR model as extension of ARIMA: a non-linear 

autoregressive model  

a. Motivation 

To exploit non-linearities possibly present in our high frequency financial time 

series we can use a novel model, an evolution of the linear autoregressive 

model. These non-linearities were presented on section two. We saw thanks to 

appropriate tests that some time series could be defined as non-linear, 

sometimes for stock prices themselves, sometimes for returns. So this model 

would have either data pre-processing or no one. To capture these non-

linearities one way to begin is to use a non-linear model for forecasting. 

Smooth Transition Autoregressive (STAR) models are typically applied to time 

series data as an extension of autoregressive models, in order to allow for higher 

degree of flexibility in model parameters through a smooth transition. 

Given a time series of data xt, the STAR model is a tool for understanding and, 

perhaps, predicting future values in this series, assuming that the behaviour of 

the series changes depending on the value of the transition variable. The 

transition might depend on the past values of the x series, or exogenous 

variables. In our case, only past values are in the study. 

The model consists of 2 autoregressive (AR) parts linked by the transition 

function. The model is usually referred to as the STAR(p) models proceeded by 

the letter describing the transition function (see below) and p is the order of the 

autoregressive part. Most popular transition functions include exponential 

function and first and second-order logistic functions. They give rise to Logistic 

STAR (LSTAR) and Exponential STAR (ESTAR) models. The advantage of 
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these models in R is the previous test of non-linearity they assume. This type of 

model is also called regime switching model because of the switch transition 

function. The two AR parts implies that there are two regimes. These models 

imply the existence of regimes with potentially different dynamic properties, but 

with a smooth transition between regimes (e.g., Granger and Teräsvirta, 1993; 

Teräsvirta et al., 1994). 

b. Model description 

Consider a simple AR(p) model for a time series yt where        for i=1, 2, ..., p 

are autoregressive coefficients, assumed to be constant over time. 

 stands for white-noise error term with constant 

variance. Written in a following vector form: 

       (V.5) 

Where:        is a column vector of variables γ            

is the vector of coefficients:              and                                        

stands for white-noise error term with unit constant variance. 

STAR models were introduced and developed by Kung-sik Chan and Howell 

Tong in 1986, in which the same acronym was used. It originally stands for 

Smooth Threshold Autoregressive. The models can be thought of in terms of 

extension of autoregressive models, allowing for changes in the model 

parameters according to the value of weakly exogenous transition variable zt. 

Defined in this way, STAR model can be presented as follows: 
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  (V.6) 

As we can see it is a sort of non-linear autoregressive model where: 

yt are the returns or stock prices, γ
(1)

 and γ
(2) 

(for i=0,1,2…p and j=0,1,2,. . ., p) 

are the unknown coefficients that correspond to each of the two regimes, so each 

of the AR parts and                           . 

G(zt, δ, c) is the transition function, assumed to be twice differentiable and 

bounded between 0 and 1, δ is the transition rate or smoothness parameter, c is 

the threshold value which represents the change from one regime to another and 

d is the number of lags of the transition variable. This function introduces 

regime switching and nonlinearity into the parameters of the model. The 

transition variable, zt, is usually (but not always) defined as a linear combination 

of the lagged values of yt which means that the transition variable uses the 

information taken from the past values until a lag of d. Regarding the choice of 

transition function, the two most widely used in the literature are the first-order 

logistic function G(zt, δ, c) = (1 + exp( − δ(zt − c)) 
– 1 

δ > 0 in which case the 

model is called logistic STAR or LSTAR(p ; d) and the first-order exponential 

function, for which G(zt, δ ,c) = 1 − exp( − δ(zt − c)
2
) δ > 0 and in this case, the 

model is called exponential STAR or ESTAR(p ; d). Such models are estimated 

by quasi-maximum likelihood estimations (QMLE) to determine linear 

parameters γ
(1)

, γ
(2)

, and non-linear parameters δ and c. 

In our cases, we used the exponential transition function with two regimes for 

the model. Parameter p of the AR parts was equal to the one of the equivalent 

ARIMA found in our study and the d parameter for the transition variable was 

equal to one. 
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c. Implementation in R 

For the computation on our statistical software, we used the function star() from 

the package tsDyn. This function calculates the different parameters for the 

model given the training set. We did the same steps as before: one-step-ahead 

predictions with value from validation set added to the training set until 

obtaining 100 predictions.  
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VI. Machine learning: Neural Networks 

Machine learning is a scientific discipline that is concerned with the design and 

development of algorithms that allow computers to evolve behaviours based on 

empirical data. Whilst linear models have been the basis of traditional statistical 

forecasting models, their drawbacks have led to increase activity in non-linear 

modelling 

To capture the possible non-linear recurrent patterns existing in our financial 

time series, good machine learning has to be used: the neural networks. Indeed 

many papers presented in section I. have shown that neural networks are well 

fitted for financial time series and stock market predictions. Modern neural 

networks are non-linear statistical data modelling tools. They are usually used to 

model complex relationships between inputs and outputs or to find patterns in 

data. Neural networks are non-linear models that can be trained to map past and 

future values of a time series and thereby extract hidden structure and 

relationships governing the data. That could be thus a considerable help in the 

financial field in order to find patterns and relationships between the next value 

of a stock and its past values. Neural networks, also called artificial or simulated 

neural networks, are composed by computing units (artificial neurons) 

interconnected so that each neuron can send and receive signals to or from 

others. Neural networks are a good answer for the modelling of distributed 

nonlinear systems as financial market. As their design is based on the human 

brain, they were made to acquire knowledge through learning. The process of 

learning for a neural network consists in adjusting the weights of each of its 

nodes considering the input of the neural network and its expected output. This 

process requires the availability of a set of input data, stock quotes or related 

variables like volume in our case. In our specific case we used supervised 
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learning and the Multilayer Perceptron (MLP) as a neural network. The layout 

of this model is just described in the next figure: 

 

Figure 10: Layout of an MLP 

The interconnected lines indicate that the value output by a cell is passed along 

that line to the next neuron‟s input stream. These are the weight values. 

1. General overview 

a. Supervised learning 

In supervised learning, we are given a set of example pairs and the aim is to find 

a function in the allowed class of functions that matches the examples. In other 

words, we wish to infer the mapping implied by the data; the cost function is 
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related to the mismatch between our mapping and the data and it implicitly 

contains prior knowledge about the problem domain. 

A commonly used cost is the mean-squared error (MSE) which tries to minimize 

the average squared error between the network's output, f(x), and the target value 

y over all the example pairs. When one tries to minimize this cost using gradient 

descent for the class of neural networks called Multi-Layer Perceptron, one 

obtains the common and well-known backpropagation algorithm for training 

neural networks. The MSE is the “cost function” we used here. For further 

details about the backpropagation algorithm the reader can see [30] (page 15-18 

section 2.2.). 

Mathematically, with N as the length of th training sample the cost function can 

be defined like:  

        (VI.1) 

b. Multilayer perceptron 

A multilayer perceptron (MLP) is a feed-forward artificial neural network model 

that maps sets of input data onto a set of appropriate output. Feed-forward 

means that connections between the units do not form a directed cycle but only a 

“one way”. This is different from recurrent neural networks. An MLP consists 

of multiple layers of nodes in a directed graph which is fully connected from 

one layer to the next.  

The multilayer perceptron is a supervised neural network, by which is meant 

that the data used for training and testing the network is available paired with 

the desired response of the network, known as the target, or possibly targets for 
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more than one output neuron. In our case we want to predict the one-step-ahead 

value so the output will be a single neuron and it will be the successive next 

price (formally output neuron = pt+1). However, even for a multi-step ahead 

prediction, the output can take the value “pt+s” 

Knowledge of the desired response provides a starting point for iteratively 

modifying the network, by comparing the observed response with the targets 

and using the error MSE to drive the network‟s free parameters (the weights of 

the different nodes, between each input neuron and each hidden neuron and 

between each hidden neuron and each output neuron showing by arrows on the 

figure 10) in a direction that will minimise the error for repeated presentations of 

the training input data. This is the essence of the backpropagation method, 

which back-propagates the errors through the network, adjusting the weights, 

which are free, modifiable parameters. This minimization uses an optimization 

algorithm to find a global minimum for the cost function. A problem that could 

arrive is when the optimization algorithm falls into local minima. Several 

training phases can be used to avoid local minima.  

The training input data is assembled in the form of vectors or patterns, a 

collection of discrete values (also elements or variables). For each element in an 

input vector a corresponding input node is provided in the network input layer. 

For time series the input vectors will be produced by rolling a window, of some 

fixed length, along the series. If the task is to forecast one element ahead, like 

we do, then for a window of length n elements, the target will always be the 

(n+1)
th

 element like we said before. 

Since the network is being trained by examples, the more example input vectors 

available, covering the whole range of possible input data behaviour, the more 

accurate will be the resulting network performance. In our study for a cost-time 
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justification, we limited the number of data in inputs that is the length of our 

time series. To compare with a fair value the different models we chose the 

same length of training set either for neural networks or previous models. The 

available data is divided, by an appropriate scheme discussed in detail in section 

III, into a training and a validation set of vectors. Like we said before, the 

training set is the in-sample set and the test set is the out-of-sample set. 

The multi-layer perceptron neural network, in a very compact design example, is 

shown in the layout figure 10. The network comprises three layers of cells, with 

interconnections between all combinations of cell layers (adjacent cells in the 

same layer are not linked and connections existing only with adjacent layers). 

c. Processing 

The processing performed in the artificial neuron may be divided into four steps. 

- The first step is maybe the most important since it could yield to 

different accuracy performances: the initial weights have to be 

determined randomly. And one can have to repeat the training in case of 

poor results. 

- Data passing along input lines to a neuron are multiplied by the line 

weights: the process of attenuation. 

- All the attenuated data inputs fanning into the hidden or output neuron 

are summed. 

- The summation value is put through a transfer function (activation 

function), whose output represents the neuron‟s output value. 

Initially assigned random values from a pre-set range, centred on zero, the 

weights are incrementally adjusted during the training phase so as to achieve the 
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desired output result for given input data. Typical weight initialisations are in 

the range [-1;1] or less. 

For the output neuron, the transfer function was the linear function and for the 

hidden neurons we chose the common hyperbolic tangent sigmoid transfer 

function. The non-linear characteristic of the neural networks come from the 

hidden neurons and their non-linear activation function since from an input 

value in the neuron it gives a non-linearly associated value in the output. We can 

the plot of the sigmoid function just here: 

 

Figure 11: Sigmoid function 

By plotting the qq-plot of the return and the volume we can see that they seem 

approximately linked by a sigmoid function which confirms our good choice : 
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Figure 12: QQ-plot of return and volume 

Mathematically, the network function f(x) (as output of a neuron) is defined as a 

composition of other functions gi(x) (as inputs values arriving at a neuron), 

which can further be defined as a composition of other functions (with a hidden 

layer). This can be conveniently represented as a network structure, with arrows 

depicting the dependencies between variables. A widely used type of 

composition is the nonlinear weighted sum, given a neuron, where 

        (VI.2) 

Where K (commonly referred to as the activation function) is some predefined 

function, such as the hyperbolic tangent in our case and the wi are of course the 

weights of each line coming to the neuron. The sum takes into account the 
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whole input in front of the given neuron like we explicitly see on the following 

figure: 

 

Figure 13: Processing in neural network 

d. Overfitting 

When one decides to use neural network, one must be careful about overfitting. 

Overfitting is a modelling problem when the model is too specialised and does 

not manage to generalise when new data come in input. With neural networks, 

this could happen when too many neurons are in input or/and too many neurons 

are in a hidden layer, or with also too many hidden layers. The designing phase 

has to take into account this characteristic. In other words this happens when 

there are too many neurons in the network. 

e. Critics about neural networks 

To continue with other problems, different from overfitting: 

The backpropagation process can suffer of one problem: There is no know 

configuration for this algorithm which enables it to always find the best solution, 
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so a process of trial and error must be developed. This is generally done by 

redoing the descent a sufficient number of times, ensuring that the reached 

minimum is really the global one (although it cannot be proved). 

This other intrinsic problem is that a neural network is a black box that is they 

can find patterns and relationship between inputs and output but they cannot 

exhibit them. So even if we can predict well the next value of a stock price, it is 

difficult to explicit the mechanism that yield to it. 

2. Designing and neural paradigms 

a. Variable selection as inputs 

The first layer is the input representation, theses nodes take on the value of the 

input data. The selection of input variables is fundamental to accurately forecast 

the stock movements. It primarily depends on a clear understanding of the 

economic background of the stock price to forecast. The choice of input data 

influence the number of input neurons, so it have to be well chosen or reduced 

to avoid overfitting and to avoid non pertinent variables: this generally happens 

when a variable is highly correlated with another. The inputs can directly be the 

past values of a time series, or technical indicators, or fundamental indicators. 

The volume can be considered as a fundamental variable since it is an economic 

indicator (transactions amount). 

b. Data preprocessing: Normalisation 

Before the data is analysed by the neural network, it has to be pre-processed in 

order to increase the accuracy of the output and to facilitate the learning process 
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of the neural network. This is a critical operation since neural networks are 

pattern matchers, thus the way data are represented directly influence their 

behaviour. Normalisation is useful to remove noisy data by creating more 

uniform distribution if needed. Indeed, such distribution tend to help the neural 

network forecasting process. 

The input data in the majority of cases will thus require normalising, a process 

of standardising the possible numerical range that the input vector elements can 

take. The exception is for data that is already in a sense normalised, such as 

binary data, or data that is all composed from the same time series and presented 

in the same form. Even in this latter case, normalisation is advisable since the 

network training parameters can be tuned for a given range of input data, and 

can be carried over similar tasks. Given that normalisation is advisable, the 

method adopted requires consideration to the nature of the input data, there is no 

“correct” normalisation as such, the ultimate measure is whether the network is 

successful. The R function monmlp.fit() training a multi-layer perceptron 

standardizes the data. Along channel normalization was used: this method 

normalizes each input variable individually. We did a standard/mean scaling. 

While linear scaling strictly preserves the uniformity of the distribution, mean 

scaling helps in creating a more uniform distribution, which can be desired if 

most of the extreme values of the original distribution are considered to be 

noisy. And this is the case of financial time series. 

Although the necessity of preprocessing data is not agreed by every researcher, 

there have been significant demonstrations showing that it can greatly improve 

the forecasting performance [27]. 

The target values of the output neuron also have to be normalized. In the same 

way as input data, the target has been standardised before training. For the target 
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value in itself, different approaches can be made: we can use the price itself or 

the return etc.; in our case we tried both and as expected using the return is more 

appropriate. 

c. Hidden Layer and Hidden Neurons 

The second layer, and all subsequent layers, contains processing nodes, known 

as artificial neurons. Any layers between the input and output layers are called 

hidden layers. In general, network designs may contain typically one or two 

hidden layers with many neurons per layer. The hidden layers are composed by 

the set of all neurons between the input and the output neurons. The number of 

hidden layer that should be used cannot be clearly defined as it really depends 

on the amount of input neurons and the properties of the data. Formulas were 

developed which tried to take into account those parameters, but due to the 

nature of the stock movements, it cannot be predicted easily. However, it is 

commonly admitted that one or two hidden layers are enough, and that 

increasing the amount of those layers also increases the danger of overfitting 

and the computation time. 

The most common technique used today to determine the appropriate number of 

hidden neuron to include in the model is experimentation. It is a part of the 

training phase of the neural network development and might require a lot of 

computations. The only rule to keep in mind while selecting the most 

appropriate number of hidden neurons is to always select the network that 

performs best on the testing set with the least number of hidden neurons. This 

was the way used to choose the number of hidden layers and the number of 

hidden neurons. 
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In our case the second hidden layer was usefulness. The number of hidden 

neurons was in most cases inferior to the number of input neurons. 

d. Implementation in R 

To implement the neural networks in our study we used the CRAN package 

monmlp which implements the multi-layer perceptron. 

Step 1: 

Choice of the input variables, the number of hidden layer, the number of hidden 

neurons.  

Like we said before regarding the target value (next price), the cost function 

(MSE) and the activation functions (hyperbolic tangent function for hidden 

neurons and linear function for the output neuron), it is already determined and 

their values were constant during the study. 

Step 2: 

The function monmlp.fit() was used to train the network, so to determine with 

the error backpropagation and the training set, the different weights of the 

network. 

Step 3: 

We used the function monmlp.predict() to do the validation phase with the 

validation set that is one-step-ahead predictions. We tried different neural 

network structure (see step 1) and compare them with forecasting performances. 
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We selected the one which outperformed the others. To avoid overfitting the 

structure of hidden layers did not have to be so complex. 

3. First NN with past values as inputs 

The first neural network we tried is in continuity with our previous models. 

Indeed we used as inputs five past values of our time series to predict the next 

successive value. This type of neural network can also be viewed like a 

generalization of an autoregressive model since it is like a non-linear 

autoregressive model trying to find a non-linear function between past values 

and future values. We chose 5 inputs because like we have seen with the linear 

models a coefficient of four for the autoregressive parts was sufficiently enough. 

Furthermore to be able to compare this model with the second neural network 

we have to choose the same number of input. 

Like we said before, we actually used the returns to proceed in our neural 

network for both inputs and output. 

This model is quite similar to the STAR in its definitions: it is a non-linear 

autoregressive model. 

4. Second NN with inputs capturing the market dynamics  

The second one begin to exploit the great flexibility of neural networks since 

inputs can be chosen as various as possible. 
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To capture the market dynamics, that is to implement the real stock price 

mechanism, a good way to choose neural network inputs is to use the open, 

high, low and close prices and the volume of an instant t. 

In our study we used intraday data at a frequency equals to 15 minutes. The 

open price is the price at t, the close price is the price at t+15 minutes (if we 

consider t in minutes), the high price is the highest price of the period between t 

and t+15 and at the contrary the low price is the lowest price of the period 

between t and t+15. The volume is the transactions amount at the time during 

the given period. 

So we have five inputs as before. We used the same pre-processing as the 

previous NN since we found that we obtained better forecasting results using 

returns instead of the price themselves (only for closing prices and output). 

5. Other models studied 

We also tried different neural networks with diverse structures. Nevertheless the 

models we will briefly describe here were not performing so we did not describe 

the results in the following section. 

We tried to implement as inputs technical indicators. We put around 60 

technical indicators in a neural network. Technical indicators are computing 

using the volume and the low, high, open, close prices. There can be indicators 

of trends, of volume, of volatility or momentum (empirically observed tendency 

for rising asset prices to rise further). the most common indicators are the 

relative strength index RSI, (A technical momentum indicator that compares the 

magnitude of recent gains to recent losses in an attempt to determine overbought 
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and oversold conditions of an asset), the Money Flow Index (MFI): this one 

measures the strength of money in and out of a security, or the Stochastic 

Oscillator (SO): This function compares a security‟s closing price to its price 

range over a given time period. 

To avoid overfitting and computing time we had to reduce the number of inputs. 

This is also necessary to only select the pertinent variables (eliminate those 

which are correlated to others, the ones which thus do not have an impact on the 

target value) 

There were two different approaches to do this: 

- The sensitivity analysis: The sensitivity analysis is the process which 

determines whether an input variable influence the output of the neural 

network or not. There are several ways to find this. The most common 

approach is to run the neural network with and without each input 

variable, and to check the variations of the input. If there are no noticeable 

changes, it surely means that the input variable can be omitted. This 

generally happens when a variable is highly correlated with another. 

Because those variables where chosen for being related to the current 

stock to forecast, such a situation is likely to happen. The other approach 

we actually used is to analyse the correlation matrix of the inputs and to 

eliminate those which were correlated to others (with a correlation 

coefficient > abs (0.5) ). So we select with dichotomy the pertinent inputs. 

This work was necessary since we can see that many technical indicators 

are correlated and this work could lead us to reduce the inputs from 60 to 

around 15. 

- The component principal analysis: the PCA involves a mathematical 

procedure that transforms a number of possibly correlated variables into a 
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smaller number of uncorrelated variables called principal components. 

The first principal component accounts for as much of the variability in 

the data as possible, and each succeeding component accounts for as much 

of the remaining variability as possible. So we chose as totally 

uncorrelated inputs in the neural networks the first PC which explained at 

least 90% of the variance. 

To conclude this part and a little anticipate the results: neural networks are good 

forecasters and outperformed the previous models. Nevertheless, they are the 

ones which demand the most computing time since with the problems we talked 

about earlier: 

- Problem of initial weights: several computations have to be made. 

- Problem of alchemy with the hidden layers and hidden neurons: time to 

find the best model. 

- Problem of the backpropagation algorithm and the possible evidence of 

local minima: computations have to be redone. 

With this we have to add the intrinsic computing time linked with the 

determination of weights.  
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VII. Out-of-sample forecasting performance results  

Last but not least, after presenting some generalities in this field, our 

methodologies and the models we used, here are the fruits of our work: the 

results after the R computing. We will present the forecasting performances of 

the different models and discuss them in a global view after it.  

1. Presentation of the results 

a. Considerations 

Here are following the different tables for the forecasting results based on 

statistical accuracy (Theil‟s U) and forecasting results based on an economical 

accuracy (HIT) for the different models used in our study (linear, non-linear and 

machine learning models) for the ten companies.  

In bold is the best model chosen for each company which can be easily chosen 

if it has the best HIT and the best Theil‟s U otherwise you have to consider a 

trade-off between a best HIT and a best Theil‟s U depending on the case in 

consideration. Nevertheless the Theil‟s U was preferred to the HIT rate since it 

is more accurate (HIT rate includes a part of “chance” of the model because 

there is probability of 0.5 to be right). The HIT rate was used to prefer a model 

with a really great HIT and a lower - but not bad - Theil‟s U than the one of the 

best model (Theil‟s U speaking). Actually in most cases the one which had the 

best Theil‟s U indicator was the one with the best HIT rate either or at least one 

of the best and its HIT rate was also by the way superior to the 50% value and 

thus to the one from the random walk. 
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We can also see in the tables, statistical accuracy indicators like RMSE, MAE 

and MAPE as information.  

We added, to the performance indicators‟ tables, one graph, the evolution of 

Theil‟s U for the diverse models to see well how they outperform the random 

walk for each company. 

So for each company stock, we present the forecasting performances of the 

random walk (naïve prediction), the ARIMA, ARFIMA, Holts Winters, ARMA-

GARCH, STAR, Neural Network 1, Neural Network 2 by a numerical table and 

by a visual indication graph. 

Some companies do not have forecasting indicators for the STAR model since 

the linearity test was accepted by the procedure (4 companies out of 10).  

Finally we added two graphs as a conclusion; the first one is the evolution of the 

mean of Theil‟s U for a given model, mean computing for the ten companies 

and the other one is the HIT rate medium computing in the same way. 

Only for the first company (otherwise it could have not-usefully over-increased 

the number of pages), we added a table with the coefficients of the best model 

(ARIMA), a qq-plot of target prices vs. predicted prices, a plot of the evolution 

of the target values and of the predicted values for the ARIMA (for stocks) and 

for the NN1 (for returns). 
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b. Results: tables and graphs 

Table 6: Forecasting performances for company 1 

Company[1] RMSE MAE MAPE Theil’s U HIT 

Random Walk - naive 0.125593 0.093450 0.248398 1.000000 50 

ARIMA(2,1,1) 0.119701 0.090143 0.239580 0.950617 62 

ARFIMA 0.121618 0.091312 0.242693 0.967869 56 

HOLT-WINTERS 0.121590 0.091391 0.242896 0.967660 54 

STAR ----- ----- ----- ----- ----- 

ARMA(2,2)-GARCH(1,1) 0.120390 0.090549 0.240658 0.955995 63 

Neural Network 1 (5,2,1) 0.121111 0.092019 0.244581 0.961853 60 

Neural Network 2 (5,4,1) 0.120630 0.091516 0.243192 0.960240 58 

Analysis: For the first company, we had a great predictability since the Theil‟s 

U was under 0.97 for each model and every model outperforms the 50% value 

for the HIT rate. The linearity test was accepted and the ARIMA model justifies 

it since it is the best model for this stock with a good forecasting (U<0.96). We 

can see on the next table the coefficients for this best model and their p-value: it 

is well accepted. The ARMA-GARCH is at the second place. 
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Table 7: Coefficients of the ARIMA[1]: the best model 

ARIMA(2,1,1) Estimate Standard Error t value p value 

Ar1 -1.05242 0.03843 -27.39 < 2e-16 

Ar2 -0.12672 0.02509 -5.05 4.42e-07 

Ma1 0.94856 0.03028 31.32 < 2e-16 

AIC -1853.28    

The next graph shows a QQ-plot between the target values and the predicted 

values for this ARIMA(2,1). Even if this graph is not accurate for a prediction 

performance it can easily show if the predictions are biased. In our case the 

results can be promising. 
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Figure 14: QQplot of target prices vs. predicted prices [1] 

 

Figure 15: Theil’s U [1] 

0,945

0,955

0,965

0,975

0,985

0,995

1,005



 

105 |  

 

 

Figure 16 & 17: Evolution of the target values and of the predicted values 

for stocks of the ARIMA[1] (up) and for the returns of NN1 (down) 
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Table 8: Forecasting performances for company 2 

Company[2] RMSE MAE MAPE Theil’s U HIT 

Random Walk - naive 0.050032 0.037550 0.280275 1.000000 50 

ARIMA(4,1,2) 0.049447 0.036829 0.274880 0.990597 55 

ARFIMA 0.049932 0.037379 0.278986 0.999251 50 

HOLT-WINTERS 0.049853 0.037378 0.278997 0.997093 52 

STAR 0.049705 0.037527 0.280143 0.992543 50 

ARMA(1,1)-GARCH(1,1) 0.049834 0.037456 0.279622 0.995326 52 

Neural Network 1 (5,1,1) 0.049978 0.037511 0.279964 0.999912 51 

Neural Network 2 (5,2,1) 0.049040 0.037757 0.281920 0.979254 53 
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Figure 18: Theil’s U [2] 

Analysis: for this company the neural network 2 outperformed the forecasting 

performances against the other models. The ARIMA takes the second place. For 

this first non-linear time series, the STAR takes the next place. 
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Table 9: Forecasting performances for company 3 

Company[3] RMSE MAE MAPE Theil’s U HIT 

Random Walk - naive  0.179359 0.144400 0.181310 1.000000 50 

ARIMA(3,1,2) 0.179007 0.143690 0.180411 0.996499 50 

ARFIMA 0.179289 0.144378 0.181286 0.999532 52 

HOLT-WINTERS 0.179621 0.144311 0.181196 1.001451 53 

STAR ----- ----- ----- ----- ----- 

ARMA(2,2)-GARCH(1,1) 0.179155 0.143585 0.180284 0.996961 53 

Neural Network 1 (5,3,1) 0.180572 0.144567 0.181621 0.996563 56 

Neural Network 2 (5,5,1) 0.175789 0.141369 0.177492 0.980513 54 
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Figure 19: Theil’s U [3] 

Analysis: for this stock it is the first time that a model does not outperform the 

random walk (see the Holt-Winters model). As previously the NN2 

outperformed the models followed by the NN1. 
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Table 10: Forecasting performances for company 4 

Company[4] RMSE MAE MAPE Theil’s U HIT 

Random Walk - naive 0.131225 0.094650 0.196255 1.000000 50 

ARIMA(2,1,1) 0.131012 0.094740 0.196455 0.999020 55 

ARFIMA 0.130972 0.094690 0.196361 0.997488 48 

HOLT-WINTERS 0.131207 0.094648 0.196253 0.999845 47 

STAR 0.131670 0.095349 0.197720 1.003734 48 

ARMA(2,2)-GARCH(1,1) 0.130625 0.094406 0.195774 0.996397 53 

Neural Network 1 (5,3,1) 0.129785 0.093536 0.193965 0.989751 56 

Neural Network 2 (5,3,1) 0.122884 0.085059 0.187146 0.974100 54 
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Figure 20: Theil’s U [4] 

Analysis: even if the non-linearity test was accepted the STAR did not 

outperform the random walk. The two neural networks were the best with at the 

first place again the NN2. We can see that three non-linear models are at the 

three first places as expected with the white test. 
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Table 11: Forecasting performances for company 5 

Company[5] RMSE MAE MAPE Theil’s U HIT 

Random Walk - naive 0.006682 0.005050 0.217277 1.000000 50 

ARIMA(3,2,2) 0.006674 0.005084 0.218730 1.000459 51 

ARFIMA 0.006689 0.005087 0.218866 1.002561 52 

HOLT-WINTERS 0.006698 0.005080 0.218578 1.002851 44 

STAR 0.006695 0.005061 0.217754 1.003790 53 

ARMA(1,0)-GARCH(1,1) 0.006693 0.005089 0.218964 1.003103 53 

Neural Network 1 (5,3,1) 0.006600 0.005064 0.217870 0.988938 52 

Neural Network 2 (5,3,1) 0.006487 0.005006 0.215386 0.971391 53 
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Figure 21: Theil’s U [5] 

Analysis: This company was quite difficult to forecast. Actually, like we can 

see, only two models outperformed the random walk: the two neural networks 

with the same ranking as before. 
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Table 12: Forecasting performances for company 6 

Company[6] RMSE MAE MAPE Theil’s U HIT 

Random Walk - naive 0.081084 0.059950 0.146206 1.000000 50 

ARIMA(1,1,1) 0.081053 0.059933 0.146170 0.999696 51 

ARFIMA 0.080647 0.059679 0.145561 0.994482 53 

HOLT-WINTERS 0.080998 0.059923 0.146143 0.998954 50 

STAR 0.080884 0.060529 0.147634 0.997501 48 

ARMA(1,0)-GARCH(1,1) 0.080519 0.059979 0.146291 0.993011 47 

Neural Network 1 (5,3,1) 0.079724 0.058445 0.142551 0.983063 59 

Neural Network 2 (5,5,1) 0.080574 0.059641 0.145477 0.993115 47 
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Figure 22: Theil’s U [6] 

Analysis: at this time the neural network 1 outperformed the forecasting 

performances with a great HIT rate quite superior to the others. For this non-

linear time series (see non-linearity test) the three last non-linear models 

outperformed the linear models. 
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Table 13: Forecasting performances for company 7 

Company[7] RMSE MAE MAPE Theil’s U HIT 

Random Walk 0.181562 0.126900 0.231841 1.000000 50 

ARIMA(3,2,2) 0.180941 0.126083 0.230336 0.996485 49 

ARFIMA 0.180848 0.125876 0.229960 0.995607 52 

HOLT-WINTERS 0.181350 0.126618 0.231309 0.998610 46 

STAR ----- ----- ----- ----- ----- 

ARMA(1,1)-GARCH(1,1) 0.180974 0.125615 0.229484 0.995995 51 

Neural Network 1 (5,3,1) 0.180079 0.125264 0.228841 0.990505 51 

Neural Network 2 (5,7,1) 0.176916 0.127658 0.233171 0.973871 53 
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Figure 23: Theil’s U [7] 

Analysis: As usual now the neural networks outperformed the forecasting 

accuracy with the second NN at the first place. 
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Table 14: Forecasting performances for company 8 

Company[8] RMSE MAE MAPE Theil’s U HIT 

Random Walk 0.061607 0.046700 0.141885 1.000000 50 

ARIMA(1,1,0) 0.061586 0.046444 0.141108 0.999274 55 

ARFIMA 0.061465 0.046586 0.141533 0.997100 49 

HOLT-WINTERS 0.061590 0.046435 0.141080 0.999340 55 

STAR 0.061966 0.046438 0.141094 1.005543 48 

ARMA(2,2)-GARCH(1,1) 0.061752 0.046456 0.141150 1.001997 54 

Neural Network 1 (5,3,1) 0.061532 0.047197 0.143361 0.993686 50 

Neural Network 2 (5,3,1) 0.058446 0.045398 0.137879 0.957580 56 
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Figure 24: Theil’s U [8] 

Analysis: this graph is similar to the previous ones since neural networks 

outperformed the other models. The NN2 was in this case a really good 

forecaster with a Theil‟s U under the 0.96 and a HIT rate of 56. 
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Table 15: Forecasting performances for company 9 

Company[9] RMSE MAE MAPE Theil’s U HIT 

Random Walk 0.083144 0.064800 0.209425 1.000000 50 

ARIMA(2,1,1) 0.082468 0.063497 0.205177 0.991312 57 

ARFIMA 0.082628 0.063665 0.205763 0.993530 58 

HOLT-WINTERS 0.083031 0.063972 0.206733 0.998785 55 

STAR 0.083490 0.064369 0.207977 1.004228 56 

ARMA(2,2)-GARCH(1,1) 0.082729 0.064116 0.207176 0.994469 53 

Neural Network 1 (5,3,1) 0.082527 0.063342 0.204690 0.991985 58 

Neural Network 2 (5,3,1) 0.082772 0.064259 0.207695 0.995299 57 
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Figure 25: Theil’s U [9] 

Analysis: Quite surprising for this non-linear time series, the ARIMA was the 

best. Near-followed by the NN1. 

 

 

 

 

 

0,99

0,992

0,994

0,996

0,998

1

1,002

1,004



 

122 |  

 

Table 16: Forecasting performances for company 10 

Company[10] RMSE MAE MAPE Theil’s U HIT 

Random Walk 0.055486 0.041150 0.259050 1.000000 50 

ARIMA(1,2,1) 0.055372 0.040671 0.256022 0.998139 58 

ARFIMA 0.055372 0.040670 0.256015 0.998148 58 

HOLT-WINTERS 0.055640 0.040878 0.257352 1.002538 53 

STAR ----- ----- ----- ----- ----- 

ARMA(1,0)-GARCH(1,1) 0.055441 0.040709 0.256265 0.999217 56 

Neural Network 1 (5,3,1) 0.053529 0.039217 0.246878 0.967185 67 

Neural Network 2 (5,6,1) 0.054786 0.041555 0.261700 0.986499 50 
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Figure 26: Theil’s U [10] 

Analysis: Maybe our best hope for next researches, this company stock was 

very well forecasted by the NN1 with a good Theil‟s U and a great HIT rate 

equalling to 67%. 
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Figure 27: Mean of Theil’s U indicators 

This figure shows that neural networks outperformed the other model with the 

statistical indicator. At the first place far from the others the NN2 followed by 

the NN1. The ARIMA took the third place. 
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Figure 28: Mean of HIT 

 

As far as the HIT economic indicator is concerned, the ARIMA and NN1 are at 

the first places. We can see that even if the NN2 outperformed the models with 

the statistical indicator, the NN1 was the best “economic” model with an HIT 

rate of 56%. 

Considering a trade-off between these two forecasting performance indicators, 

the NN1 seems to be the best model of our study, since it outperforms the NN2 

for the economic indicator (56 against 53.5) and it is as the second place with 

the Theil‟s U indicator. 
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Anyway, the both neural networks showed that for each indicator they 

outperformed the linear models and the non-linear models. It also shows the 

great forecasting capacity of machine learning.  
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CONCLUSION AND PERSPECTIVES 

We have seen that high-frequency financial time series can be forecasted since 

we obtained good results (HIT>50% and around 60% for the best models) and 

that the random walk and the naïve prediction were beaten (Theil‟s U < 1). 

Neural Networks showed their great predictability power since they 

outperformed the forecasting performances regarding the other models. 

However, to test correctly the EMH, the forecasting should be done in real-time 

since in real markets investors‟ current and future forecast of payoffs affect their 

current and future trades which in turns affect returns, i.e., there is a feedback 

mechanism which has not been considered. Furthermore, if investors start to 

apply this forecasting methodology the temporary forecasting ability that exists 

according to the EMH will quickly disappear and, hence, the EMH will hold. In 

this sense, by applying more sophisticated trading strategies the financial 

markets will become more efficient. 

Moreover, the weak form of the EMH does not hold in this financial market and 

there are trading opportunities like we have seen but the gain is maybe too small 

when compared with the transaction costs to take full advantage. Indeed no 

transaction costs were taking into account. 

So to go on this study, trading strategies must be added with absolutely taking 

into account transaction costs. 
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APPENDIX 

1. Statistical descriptions 

In this first appendix, we put some graphs regarding our data. For each company 

we can first find the plot of the stock, the histogram of the stock, its box plot and 

its qq-plot. 

We see then the diagrams of autocorrelation and partial autocorrelation of the 

stock and the return for each company too. 

Finally there are the plots of the returns themselves and their statistical graphs as 

for stocks (histogram, qq-plot and boxplot) 

All these graphics were done with the whole dataset. 

Theses graphics were more described and analysed in section II. 
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Figure 29 & 30: Statistical graphs for [1]  
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Figure 31 & 32: Statistical graphs for [2] 
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Figure 33 & 34: Statistical graphs for [3] 
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Figure 35 & 36: Statistical graphs for [4]  
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Figure 37 & 38: Statistical graphs for [5] 
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Figure 39 & 40: Statistical graphs for [6] 



 

135 |  

 

 

 

Figure 41 & 42: Statistical graphs for [7] 
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Figure 43 & 44: Statistical graphs for [8] 
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Figure 45 & 46: Statistical graphs for [9] 
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Figure 47 & 48: Statistical graphs for [10] 
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Figure 49 & 50: Returns [1] to [8] 
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 Figure 51: Returns [9] and [10] 
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Figure 52 & 53: Statistical graphs for return [1] to [4] 
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Figure 54 & 55: Statistical graphs for returns [5] to [8] 
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Figure 56: Statistical graphs for returns [9] & [10] 

2. R codes 

In this second appendix, we put the R codes of our experimentation regarding 

the data description, the training and the forecasting performances of the 

models. 

a. Statistical descriptions 

rm(list = ls(all = TRUE)) 

library(fNonlinear) 

library(stats) 

library(tseries) 

op<-par(mfrow=c(3,4)) 

data<-read.delim2("C:/data_tesi/1.txt") 

price<-ts(data[,4]) 

white.test(diff(price)) 
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terasvirta.test(price) 

terasvirta.test(diff(price)) 

white.test(price) 

predict(star(price)) 

predict(star(diff(price))) 

high<-ts(data[,2]) 

low<-ts(data[,3]) 

tick<-ts(data[,5]) 

volume<-ts(data[,6]) 

return<-diff(price) 

plot(price) 

hist(price) 

boxplot(price) 

qqnorm(price) 

qqline(price) 

acf(price) 

pacf(price) 

qqplot(volume,price) 

basicStats(price) 

shapiro.test(price) 

decompose(price) 

Box.test(price) 

adf.test(price) 

kpss.test(price) 

acf(return) 

qqplot(price,high) 

qqplot(price,low) 

qqplot(volume,price) 

qqplot(tick,price) 

adf.test(return) 

kpss.test(return) 

b. Time series models 

rm(list = ls(all = TRUE)) 

library(forecast) 

library(fArma) 

library(fGarch) 

library(tsDyn) 

op<-par(mfrow=c(1,1)) 

data<-read.delim2("C:/data_tesi/1.txt") 

Price<-ts(data[1501:1600,4]) 

price<-ts(data[,4]) 

return<-diff(price) 

target_price<-price[1500:1600] 

training_price<-price[1:1500] 

training_return<-return[1:1499] 

target_return<-return[1499:1599] 

pred_price=c(1:100) 
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for(i in 1:100) 

{ 

#fit_price<-HoltWinters(training_return,gamma=FALSE,beta=FALSE) 

#fit_price<-star(training_return,noRegimes=2,sig=0.15) 

fit_price<-armaFit(formula~arima(1,1,1),data=training_price) 

#fit_price<-arfima(training_return) 

#fit_price<-garchFit(~arma(1,1)+garch(2,1),data=training_return) 

 

#s<-predict(fit_price)[1] 

#pp<-predict(fit_price,n.ahead=2) 

#p<-predict(fit_price) 

#ppp<-predict(fit_price) 

g<-predict(fit_price)[1,1] 

 

training_price=c(training_price,target_price[i+1]) 

#training_return=c(training_return,target_return[i+1]) 

 

#pred_price[i]<-s 

pred_price[i]<-pp$pred[1] 

#pred_price[i]<-p[2]$mean[1] 

#pred_price[i]<-ppp 

#pred_price[i]<-g 

} 

accuracy(fitted.values(fit_price)[,1],return[3:1598]) 

#accuracy(fitted.values(fit_price)[3:1598],training_return[3:1598]) 

#accuracy(fitted.values(fit_price),training_return[1:1598]) 

#accuracy(fitted.values(fit_price),training_price[1:1599]) 

#accuracy(fitted.values(fit_price)[,1],training_price[3:1599]) 

pred_price<-ts(pred_price) 

ts.plot(pred_price,target_price[2:101],gpars=list(ylab="predict(blue)_vs_target(green)",col=4:1) 

#ts.plot(pred_price,target_return[2:101],gpars= 

list(ylab="predict(blue)_vs_target(green)",col=4:1)) 

hit_p<-0 

for(i in 1:100) 

{if( 

sign(target_price[i+1]-target_price[i])==sign(pred_price[i]-target_price[i]) 

#sign(target_price[i+1]-target_price[i])==sign(price[i+1500]-target_price[i]) 

#sign((target_return)[i+1])==sign(pred_price[i])) 

{hit_p<-hit_p+1}} 

hit_p<-hit_p/(length(pred_price))*100 

hit_p 

#accuracy(pred_price,target_return[2:101]) 

#accuracy(pred_price,diff(target_price)) 

accuracy(pred_price,target_price[2:101]) 

 

#price[1501:1600]<-price[1500:1599]+pred_price 

#accuracy(price[1501:1600],Price) 
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c. NN1 

rm(list = ls(all = TRUE)) 

library(forecast) 

library(monmlp) 

data<-read.delim2("C:/data_tesi/1.txt")  

price<-data[,4] 

return<-diff(price) 

op<-par(mfrow=c(1,1)) 

r5<-return[5:1498] 

r4<-return[4:1497] 

r3<-return[3:1496] 

r2<-return[2:1495] 

r1<-return[1:1494] 

input_NN_training<-cbind(r1,r2,r3,r4,r5) 

input_NN_test<cbind(return[1495:1594],return[1496:1595], 

return[1497:1596],return[1498:1597],return[1499:1598]) 

target_training<-data.matrix(return[6:1499]) 

target_test<-data.matrix(return[1499:1599]) 

MLP_price<-monmlp.fit(input_NN_training,target_training,hidden1=3) 

accuracy(attr(MLP_price,"y.pred"),target_training) 

pred_price<-ts(monmlp.predict(input_NN_test,MLP_price)) 

ts.plot(ts(pred_price),ts(target_test[2:101]), 

gpars=list(ylab="predict(blue)_vs_target(green)",col=4:1)) 

hit<-0 

#Price<-ts(data[1500:1600,4]) 

for(i in 1:100) 

{if( 

#sign(Price[i+1]-Price[i])==sign(price[i+1500]-Price[i]) 

sign(return[i+1499])==sign(pred_price[i])) 

{hit<-hit+1}} 

hit<-hit/(length(pred_price))*100 

hit 

accuracy(pred_price,target_test[2:101]) 

Price<-ts(data[1501:1600,4]) 

price[1501:1600]<-price[1500:1599]+pred_price 

accuracy(price[1501:1600],Price) 

d. NN2 

rm(list = ls(all = TRUE)) 

library(forecast) 

library(monmlp) 

data<-read.delim2("C:/data_tesi/1.txt") 

op<-par(mfrow=c(1,1)) 

price<-data[,4] 

return<-diff(price) 

high<-data[3:1499,2] 
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low<-data[3:1499,3] 

open<-data[3:1499,4] 

volume<-data[3:1499,6] 

high_test<-data[1500:1599,2] 

low_test<-data[1500:1599,3] 

open_test<-data[1500:1599,4] 

volume_test<-data[1500:1599,6] 

r2_test<-return[1499:1598] 

r1_test<-return[1498:1597] 

input_NN_training<-cbind(high,low,volume,return[2:1498],open) 

input_NN_test<-cbind(high_test,low_test,volume_test,r2_test,open_test) 

target_training<-data.matrix(return[3:1499]) 

MLP_price<-monmlp.fit(input_NN_training,target_training,hidden1=3,n.trials=2) 

accuracy(attr(MLP_price,"y.pred"),target_training) 

target_test<-return[1499:1599] 

predict_price<-ts(monmlp.predict(input_NN_test,MLP_price)) 

ts.plot(ts(predict_price),ts(target_test[2:101]),gpars= 

list(ylab="predict(blue)_vs_target(green)",col=4:1)) 

hit<-0 

Price<-ts(data[1500:1600,4]) 

for(i in 1:100) 

{if( 

#sign(Price[i+1]-Price[i])==sign(price[i+1500]-Price[i]) 

sign(return[i+1499])==sign(predict_price[i])) 

{hit<-hit+1} 

} 

hit<-hit/(length(predict_price))*100 

hit 

accuracy(predict_price,target_test[2:101]) 

Price<-ts(data[1501:1600,4]) 

price[1501:1600]<-price[1500:1599]+predict_price 

accuracy(price[1501:1600],Price) 
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