

POLITECNICO DI MILANO
Facolt`a di Ingegneria dell’Informazione

POLO REGIONALE DI COMO

Master of Science in Computer Engineering

Association, storage, and retrieval of semantically described
Business Processes using ontology

Supervisor: Prof. MARCO BRAMBILLA

Master Graduation thesis by JALAL UDDIN AHAMMAD

STUDENT ID: 722869

Academic year – 2009/2010

Table of contents

Chapter 1

Introduction ---1

Chapter 2

Background and related work ---3

2.1 About BPM………………………………………………………………..3

2.2 Model repository…………………………………………………………..5

2.3 Model search………………………………………………………………7

Chapter 3

BPM search in semantic Repository--8

3.1 Overview of the approach…………………………...……………………8

3.2 Ontology for describing business process…………………...……………9

3.3 Concepts and relationships………………………………………………11

3.3.1 Content based Similarity………………………………………….11

 3.3.1.1 Content Equivalence among abstract business processes….11

 3.3.1.2 Content Partof relationship among business process………11

 3.3.1.3 Content Overlapping among abstract business processes.....12

 3.3.2 Structural Similarity….…………………………………………..13

 3.3.2.1 Structural Equivalence of business processes……………...15

 3.3.2.2 Structural PartOf similarity between business process…….15

 3.3.2.3 Struct Overlapping similarity between business processes...17

 3.3.3 Complete Similarity……………………………………………….18

 3.3.3.1 Complete equivalence between business processes ………..18

 3.3.3.2 Complete part of association among business processes …..19

3.3.3.3 Complete overlapping among business processes …………20

3.4 Business process matching algorithm ………………………………….21

3.4.1 Content Based match making algorithm …………………………21

 3.4.1.1 Content based ABP match making algorithm ……………...21

 3.4.1.2 Content Based Equivalence Matching Algorithm …………21

 3.4.2 Structural match making Algorithm ……………………………...23

 3.4.2.1 Structural Equivalence Matching Algorithm……………….23

3.4.2.1.1 Algorithm: MatchSturctEquivABPs………………...23

3.4.2.1.2 Sub-Routine struct equivalence matching algorithm...24

3.4.2.1.3 Sub-Routine struct matching two hierarchical tasks ...24

3.4.2.2 Structurally Part of matching algorithm……………...…….26

3.4.2.2.1 Algorithm: MatchStrucPartABPs ……………………26

3.4.2.2.2 Sub-routine structural part of Matching Algorithm …26

3.4.2.3 Structurally Overlapping Algorithm ……………………….28

3.4.2.3.1 Algorithm: MatchStructOverLappedABPs ………….28

3.4.2.3.2. Sub-routine of Structural overlapping Algorithm …..28

3.4.3 Complete match making algorithm ……………………………...29

3.4.3.1 Complete Equivalence Matching Algorithm ……………...29

3.4.3.1.1 Algorithm: MatchCompleteEquivABPs …………….29

3.4.3.1.2 Sub-routine for complete equivalence algorithm ……29

3.4.3.1.3 Sub-routine for matching two hierarchical tasks …….30

3.4.3.2 Completely Part of Matching algorithm ……………….......30

3.4.3.2.1 Algorithm: MatchCompletePartABPs ……………….30

3.4.2.2.2 Sub-routine Completely part of Matching Algorithm..31

3.4.2.3.1 Completely Overlapping Algorithm …………………32

3.4.2.3.2 Sub-routine for Complete overlapping Algorithm …..32

Chapter 4

Implementation ---33

4.1 Technologies ………………………………………………………………...33

4.2 Requirements in UML ...……….. …………………………………………..35

4.2.1 Use case ……………………………………………………………….35

4.2.2 Activity Diagram ……………………………………………………...36

4.3 Design ……………………………………………………………………….37

4.3.1 Class Diagram …………………………………………………………37

4.4 Implementation Details ……………………………………………………...38

4.4.1 Implementation tools ………………………………………………….38

4.4.1.1 Abstract Business Process Extraction ………………………….38

4.4.1.2 Ontology API …………………………………………………...38

4.4.1.3 Ontology reasoner ……………………………………………...38

4.4.2 Key aspects in coding …………………………………………….39

4.4.2.1 Graph construction …………………………………………..39

4.4.2.2 Updating relationships in ontology ………………………….41

Chapter 5

Validation of the work done ---44

5.1 Experiments ………………………………………………………….…..44

5.2 Results …………………………………………………………………...47

5.2.1 Total number similarities for each business process…………………..47

5.2.2 Categorized associations’ overview …………………………………..48

5.2.3 Associations based on each specific type …………………………….49

5.2.3.1 Structural similarities among Business processes ……………...49

5.2.3.2 Content Based similarities among Business processes ………...50

5.2.3.3 Complete similarities in business processes in the ontology …..51

5.2.4 Big Picture at a glance ……………………………………………52

Chapter 6

Conclusion ---53

Chapter 7

 Bibliography --54

List of Figures

Figure 1: BPM Hype Cycle ……………………………………………....3

Figure 2: Generation of the business process ontology ………….……..10

Figure 3: BPMN diagram of Enrolment process …………………….....13

Figure 4: Graph for BPMN process Enrolment ………………………...13

Figure 5: Graph for Enrolment with pre and post flow operators ……...14

Figure 6: Graph for Credit Application with pre-post flow operators16

Figure 7: Association in terms of graph ……………………….……….16

Figure 8: Employee Joining with medical Check-up first ……………...18

Figure 9: Employee Joining with medical check-up last ……………….18

Figure 10: BP Content Similarity ………………………………………22

Figure 11: BP assumed to be Content Equivalent ……………………...22

Figure 12: BP assumed to be Content Part ……………………………..23

Figure 13: BP Credit application sub …………………………………..25

Figure 14: BP assumed to Structural Equivalent ……………………….25

Figure 15: BP Credit card Application …………………………………27

Figure 16: BP assumed as Structurally Part of …………………………27

Figure 17: BP Credit Card Application Sub ……………………………31

Figure 18: Use Case Diagram …………………………………………..35

Figure 19: Activity diagram update concepts’ relationships……………36

Figure 20: Class diagram of Business Process Ontology Management ..37

Figure 21: List of Business processes stored in the ontology ………….44

Figure 22: BPMN diagram of JobPosting ……………………………...45

Figure 23: BPs and number of tasks and flows in ontology ……………46

Figure 24: Total number similarities for business process ……………..47

Figure 25: Number of categorized relationships VS Business Process ...48

Figure 26: Structural similarities among Business processes …………..49

Figure 27: Content Based similarities among Business processes ……..50

Figure 28: Complete similarities among Business processes …………..51

Figure 29: Total associations among business processes at a glance …..52

Abstract

The primary objective of the semantic web technology is to provide knowledge

oriented approach for describing things for machines so that they can communicate

among themselves effectively without human intervention. However, this technology

can be used for storage and retrieval of information semantically in a diversified field

of study. Business processes which are described semantically can be discovered

more effectively than the traditional way [1]. To describe the business process

semantically, the concept of abstract business process has been introduced. Based on

this concept, we implemented a prototype to store the abstract business processes in

the ontology and proposed three different categories of possible associations between

business processes and algorithms for finding them and updating them in the ontology.

We also showed how to discover the business processes from the ontology based on

the associations we proposed.

1

Chapter 1

 Introduction

Process based organization management is not an unprecedented idea. The genesis of

process oriented procedure has been evolved since 1980s and eventually shaped to

Business Process Model (BPM) in the early 2000s. BPM is the current trend of

describing and enacting internal and external procedures of an organization. A

Process is defined as a set of activities connected with a set of flows in order to

achieve a successful task of an organization. Since process modelling is a costly and

time consuming effort, the process reusing concept came into being. Reusing the

process models, those exist in an organization, is an important aspect of business

process management system for constructing new processes i.e. processes exist serve

as building blocks for the new processes. However, success of this paradigm is

depends on how well users can locate the right process which would be relevant and

effective to meet their need.

Reusing artefacts and sharing knowledge are key concepts in software

development field nowadays. A good source of software models and code repositories,

which are the contributions of the skill developers, can sustain a lot in the

development of the further software projects. From the broad point of view, software

project repositories, which serve the storage of code diffusion and design

accumulations from the multifarious sources, can be exploited for further use with

ease and efficiency. Searching of code or design of software project is pretty simple

and unequivocal, since they are stored in the repositories as they are searched for.

Nonetheless, searching high level models -such as business process models- does not

acquiesce the project repository searching mechanism which acts upon source code

level.

Business process reuse is a utile idea in BPM. However, finding process

similarities and discovery of the processes based on these similarities in the process

model repository is a strenuous task to be accomplished with efficiency, found by the

researchers. Consequently, many researchers contributed in inventing methods

applicable to storing process models considering the ease of storage and discovery.

Model repository, though, the concepts of model repository is unequivocal in all

research outcomes, techniques available with different approaches and flavours are

multifarious. RepoX, which developed in METEOR project, introduced XML based

process repository that used query language based on SQL [10]. Liu et al introduced

object oriented approach to store enterprise work-flows in order to manage process

information, run-time information and to cater browse and modification facilities of

enterprise work-flows [9]. Eyal et al proposed a visual query language to retrieve

business processes, which are modelled in BPEL [9]. Similarity metrics were

employed in the development of a framework for discovering work-flows and their

relationships by Goderis et al [10]. Repository for integrated Process Management

(IPM) is a business process models storage that provides functionalities like storing

and retrieving business process, version and configuration management [6].

The above described papers introduced model repositories based on many

approaches to store business processes with the purpose of discovering the processes

later for any opportune use. Business processes which are described semantically can

be discovered more effectively than the traditional way [1]. To describe the business

2

process semantically, the concept of abstract business process has been employed

from the publication too.

With the purpose of discovering the business processes from the repository

with ease and efficiency, we exploit ontological approach, i.e. define business process

in the form of concepts in the ontology, to describe the business process semantically

in the notion of abstract business process. By storing the semantically described

process, we also proof that a set of useful associations between the business processes

can be described in the ontology in conceptual approach.

In our thesis, we use a modeller to describe a set of business processes. Then,

we developed a prototype which can transform the business process files extracted

from the business process modeller into the concepts in the form of ontology class to

store in the ontology. Our application can update the relationships, which are defined

in the publication, among the business processes in the ontology in an automatic

fashion. Nevertheless, we emphasized on three different categories of associations:

structural, content based and complete associations mainly in this thesis.

To update the associations in the form concepts in our business process

ontology, we proposed a set of algorithms to search these three disparate associations

exist among the business processes and immediately can update the ontology with

these relationships. To validate the proposed algorithms, we implement them in our

prototype, and then perform an experiment with twenty five different business

processes; the result of which is explained in chapter five.

The organization of the thesis report is as follows. In chapter 2, the background of

the thesis and works related to it are tersely described. The concepts of Business

Process Management, Process Model Repository and Model searching works are the

key topics in this section. BPM is not based on an unprecedented idea. Though, BPM

did not come into being until early 2000s, the genesis of this idea towards process

based organization came from TQM-Total Quality Management- that appeared in

1980s. To store and to share the process models defined in an organization, model

repositories are used. A brief discussion about ontology models available nowadays

depending on the functionalities and platforms is made under this topic. Since the

searching criteria and mechanism is not standardized due to the incongruity exist

among the business process ontologies in structure and format, we construed briefly

the works done for searching different ontologies with distinctive approaches. In

chapter 3, we presented the core work performed in our thesis work for BPM search

in semantic repository. The overview of the approach for storage and discovery of

abstract business processes from the publication is concisely expressed here, later we

proposed our association categories of the business processes and their storage in the

ontology; and the similarity algorithms for updating the associations in the ontology.

Chapter 4 underscored the implementation aspects of the proposed thesis. In this

section, we described the technology used, requirements of the system in terms of use

case and activity diagram, and finally the design of the system using class diagram

pithily. In order check the conformity of our thesis work and the implementation done,

validation is performed and explained briefly in chapter 5. A handsome number of

business processes have been taken to perform the validation of our work. The results

are illustrated from general to specific point of view with the help of the graphical

presentations.

3

Chapter 2

Background and related work

2.1 About BPM

Towards the process based organizational efficiency, numerous efforts have been done

prior to BPM, acronym of Business Process Management; those led the BPM to coming

into being. It was a cumbersome roadmap from TQM- Total Quality Management – to

BPM that deserved strenuous efforts to make it happen. Total Quality Management (TQM),

which was pioneered in 1980s, overtook by Business Process Reengineering (BPR)

prompted by Hammer and Champy in early 1990s. The mixture of excellent successes and

failures of BPR exited until late 90s. ERP systems were unable to resolve the process

issues after being come into work after late 90s. In early 2000s, CRM systems were

introduced, which were responsible for front office processes rather back office crucial

processes. The next big thing evolved is BPM. To make the BMP sustainable and efficient,

multitudinous works have being performed for several years. The following diagram shows

the BPM Hype cycle, which lasted for the last 20 years, gives a terse scenario of the

process cycle.

Fig-2(1) BPM Hype Cycle

The process awareness was inaugurated by the invention of Six Sigma in 1986.

Business Process Reengineering movement was begun by the article “Don’t Automate,

Obliterate” by Hammer and Champy in 1990. With the publication of the paper: BPM

Third Wave by Smith and Fingar in 2002 the created a potential interest of the business

process later time.

BPM is not simply modelling but it also involves the implementation and execution

4

of the process models with sufficient analysis. “The Objectives of a BPM implementation

range from the strategic goals of the organization through to the individual process goals. It

is about the achieving the business outcomes or objectives”[3].

Generation of benefits for business is the core strategic goal of a business. And the

implementation BPM should comply and substantiate this idea as well. The final product

of a company is the integral outcome -a service, a product- of the sequence of activities

performed. The activities involve actors, flows, rules, place where to execute the activities

and, more complex issues like temporal aspects etc. Hence the organization of these

activities is important. Business process is a tool to organise these activities effectively.

Business process management is the management of business processes with the help of

the information technology and the resources available to accomplish the goal assign for.

For precisely, BPM can be defined as “Business process management include concepts,

methods and techniques to support the design, administration, configuration, enactment,

and analysis of business process”[12].

Coordination of enactments in the business process can be handled manually,

automatically using software system known as Business process management system, or

both. Business process management system is a software system that stores business

process models with the purpose of being enacted with proper coordination of the software

system. The storage or representation of the business processes in the software system can

be textual, however, the flows of activity execution is either difficult to represent or time

consuming to delve through. Hence, the graphical representation of business process is

popular and easy to understand at a glance. Though there are many graphical tools

available today, the aim of them is obviously the same of representing the business process.

It is noticeable that graphical notations are used to represent the business processes and

participants associated with activities regardless of the technical aspects of their

realizations, i.e. the definition of business processes using graphical notations is

independent from implementation strategies and platforms.

A business process can have several instances, and so the activities of the business

process can have activity instances too. A business process a.k.a. business process model,

comprises activities a.k.a. activity model, and constraints associated with each activity.

There are a plethora of BPM applications available nowadays that could be used to

improve business process management of a company. An enterprise BPM application is a

collection of business software that can be integrated in a company that does not have any

BPM tool yet. Process specific BPM application tool is also available for the company

which is reluctant to overheads of managing servers. So this application facilitate the use

of business process with as simple as installing typical apps on the workstations. A

company can also benefit employing hosted BPM application intending to outsource some

of it's business processes like human resource or marketing.

5

2.2 Model repository

The definition of repository by Bernstein and Dayal is “a shared database of information

on engineered artifacts which are produced or used by an enterprise”. According to them, a

repository manager is tool that composed of functionalities like modelling, retrieving, and

managing the objects in its repository. Inferring form the concept of database by Bernstein

and Dayal, Injun Choi, Kwangmyeong Kim and Mookyung Jang defined process

repository as “a repository that stores information of processes and provides functions to

manage them”.

Introducing business process models in a company from the scratch is an onerous

task to pull into functioning. A company can benefit from already developed models. It

will cut off the extra efforts and money required to design new models from the beginning.

It is worth mentioning the boon, when two companies, which have its own business

processes and descriptions, merge into a single enterprise, is received from the existing

models. A handful of researchers contributed in finding methods applicable to storing

process models considering the ease of storage and discovery. Model repository, though,

the concepts of model repository is unequivocal in all research outcomes there are plethora

of techniques available with different approaches and flavours.

BPM model repositories are different from each other depending on the

functionalities they offers [4]. In addition, the author worked with the general repositories

with an extension for storing and managing business process models based on the concept

describes by Bernstein and Dayal. The extended BPM model repository comprises process

data model, process function model and process management model where process data

model describes how model data can be stored internally in the BPM model repository – it

composed of meta model, storage model, and index model- ;process function model

composed of storage functions -functions includes create, update or delete of processes or

part of the processes- , retrieval functions- functions includes navigate, query and search-,

integration functions – function to integrate process repositories so as to communicate with

external applications-;process management functions are process specific management

functions like version management, configuration management, view management; and

general repository management functions like access management, integrity management,

notification management and context management.

The process Handbook project, which was established in 1991 by MIT, was

developed to assist in designing and sharing of business processes. It culled business

processes from several organizations and classified them depending on own criterion,

criteria of the organizations, and compound one. It stores business processes in text format

and does lack of a formal definition language. And therefore, the analysis and searching of

the business process is done on the simple textual business process.

There are a multitude of process repositories based on XML available today. One of

them is RepoX developed in METEOR project[10]. It has a query language based on SQL,

but finding process similarity using this query language is not possible, or even did not

keep in find while designing the query language.

Object oriented principle is introduced for storing enterprise work-flows by Liu et

al in 1996. The aim was to manage process information, run-time information and to

provide browse and editing facilities of enterprise work-flows.

6

Using the concept of software library form where people get help, process library

can be introduced so that people can benefit in the process management area. “We define a

process library as a collection of code assembled to perform a set of related coordinating

and computing tasks”[5]. The main goal of this paper is to define a mechanism to provide

an easier and flexible process management application using codes as building blocks.

Repository for integrated Process Management (IPM) is a business process models

storage that provides functionalities like storing and retrieving business process, version

and configuration management [6]. It is a business process management approach, that can

integrate process using XML and can cater to design and to analyse business processes,

and to manage business process knowledge for the entire process life cycle. Process

analysis and optimization(PAO)-validation and performance estimation of new processes

are carried out by this component using analysis and simulation-, Process knowledge

management(PKM) --,Process modelling and integration(PMI)- component responsible for

integration of process definitions and related data using Extensive mark-up language-,

process automation and control(PAC)-process instantiations and execution are done by

PAC-, and Process-oriented integration(POI), are various life cycle requirements of IPM.

Each of these components interacts with each other to provide life cycle support for BPM.

Moreover, five repositories namely Process Repository, Process Instance Repository,

Process Knowledge Repository, Process Rule Repository, and Process Resource

Repository are introduced in IPM to achieve the desire goal of the project.

7

2.3 Model search

Every major company can have a set invaluable business processes, which they need in its

day to day activities. If a company is big enough, then it has to manage a large set of

processes, which they may prefer to store in the repository with the intension of searching

and reusing with ease and effectively. However, the searching criteria and mechanism is

not standardized due to the incongruity exist among the business process repositories in

structure and format. And therefore, a lot of searching algorithms based on the repositories

are being proposed taking the complexity, approach and usage into account. The following

discussions are about the approaches, we have got while doing our research for this thesis

work.

Injun Choi et al introduced a process query language called IPM-PQL for IPM – an

integrated process management approach for business process management [6]. IPM-PQL

(IPM process query language) is based on XML-based process query language for

effective retrieval of the information regarding processes required in the management of

business processes. It also provides four types of searching options: whether process has

attribute, process contains activity, process has sub processes or process is transitional.

Antoon Goderis et al proposed a query language called BP-QL for searching

business processes [9]. BP-QL is developed to work on the process model constructed in

Business Process Execution Language (BPEL). This paper depicts query language

proposed as well the formal model on which the query processor is based on. They also

presented implementation which is compatible with XML specification and web services.

 Et al describes a workflow discovery tool, which was developed based on graph

matching technique for ranking the workflows and validating them in a real workflow

environment. In the requirement analysis phase, they conducted a survey to understand the

criteria used for discovering workflows. In the workflow discovery process, they found

from the survey that workflow structure would be an invaluable part. Hence they also

proposed a workflow component to support the structural aspect in the discovery process.

Finally they developed the workflow discovery tool to work in Taverna workbench.

8

Chapter 3

BPM search in semantic Repository

3.1 Overview of the approach

An abstract business process (ABP) is a representative of a set of equivalent business
processes [1]. The equivalence of two business processes solely depends on the activities
and the flows they share .Unlike concrete business process which is capable of being
executed, abstract business processes are non executable business processes that composed
of generic tasks -task descriptions shared by one or more concrete business processes,
which can be semantically described and associated in the ontology to provide information
about the concrete process activities such as ability of the processing units’ performing
activities, description of input and output data of the processing units. In order to utilize the
semantic behaviour of these descriptions, concepts from ontology have been employed.
Hence we can annotate the abstract business processes in terms of concepts and activities
as task ontologies. To provide the relationship among activities; among flow operators of
business processes and the concepts of ontologies, task descriptions are encoded in form of
annotation. The concepts can be related in different binary relationships based on the
semantics encoded by the ontology.

After defining the concepts in the ontology, we are able to update the associations
among the concepts in the ontology. For example, if two concepts, which represent two
abstract business processes, in the ontology have relationship such as equivalent, being part
of or overlapped in terms of their task and flow ontologies, then we can update the
ontology depending on the relationship we infer.

However, the relationships that we defined above did not consider all aspects such as
structural point of view. The relationship up to now is defined solely depending on the task
and flow ontologies of the concept in the ontology. So we were in need of looking for the
relationships not only from the contents point of view, but also from the structural and
complete point of view. Therefore, the extension regarding the association among abstract
business processes has been proposed in this thesis.

The extension of the relationship among business processes is done by categorizing the
association among business processes in three different types: i) Content based association
ii) Structural association iii) Complete association. And each of these categories sub-
divided into equivalent, part of, and overlap relationships. Consequently, the ontology, we
are defining now, can update all the mentioned associations among abstract business
processes in terms of concepts, and hence, it is possible to get a comprehensive searching
mechanism for the discovery of the business processes as intended to.

9

3.2 Ontology for describing business process

Business process ontology denoted as θBP is an ontology that describes business
processes. Now the question arises how we can describe business processes in ontology as
we do not have any tool which can translate executable business process into ontology
concepts. From the erudition we gleaned from research done, we exploited the
conceptualization of the ontology to represent the abstract business processes, which is the
non executable form of the business process intending to describe the business processes.
A concept in the ontology is the representative class of the abstract business processes. The
ontology is an explicit specification of a conceptualization [2]. An ontology, denoted by θ,
can be well described by a collection of concepts, literally θ = {c1, c2, c3, .., cn}. The
concepts can be specific or general, i.e. specific concepts are linked to general concepts
and these relationships are constructed using the sub concept relationships. The following
conceptions about the business process ontology in this section are borrowed from the
publication [1] which our thesis is based on.

Since a concept represents the abstract business processes in the ontology, a function

getABP is proposed for a given concept c from the business process ontology θBP
retrieving the abstract business process classified by c. The signature of the getABP is as
follows.

getABP : θBP →ABP

To annotate the activities of a business process semantically, task ontology, denoted by
θtask, has been introduced. This ontology is responsible for acquiring information of the
action carried out by of activities of different business processes with a same interest. In
order to retrieve the task ontology i.e. annotation of the activities within a domain of
interest, a function called task() is defined which takes an ACTIVITY of the business
process as a parameter. The function can be stated as follows.

task: ACTIVITY → θtask, where
ACTIVITY represents the domain of business process activities.

An abstract business process abp is literally represented by the pair of terms within angle
brackets as follows.

<T,CF>, where

T is a collection of tasks comprises an abp : T ⊆ θtask.

CF ⊆ (T x OP) ∪ (OP x T) is the control flow relating the tasks in T.

Mapping of the tasks of the abstract business processes are performed with the help of two
classes of functions, the domain of which are represented by MapEquiv and
MapSpec[Publication]. The functions of MapEquiv are delegated to map the tasks of a
supplied abstract business process to the tasks of another that execute exactly the same or
equivalent tasks. If abp1 and apb2 are two abstract business processes, then the mapping
function which maps the tasks of abp1 to those of abp2 can be expressed as fmap: abp1.T →
abp2.T.

fmap ∈MapEquiv iff:

∀ t ∈ abp1.T; task (fmap (t)) ≡ task (t)

10

The construction of the abstract business processes abp corresponding to a busness
process bp is done by employing a function denoted by abstractBP(). The function
abstractBP can be stated as follows

abstractBP: BP → ABP

BP denotes the domain of business processes and ABP the domain of abstract business
processes.

Creating and populating the business process ontology in an automatic fashion proposed in
[1] is used in this thesis. The idea of semantic annotations, which describe the tasks of
constituent activities of a given set of business processes and definition concepts of the
business process ontology, is also taken from it. The proposed technique of generating
business process ontology given by the publication is as follows.

Fig-3(1): Generation of the business process ontology

The algorithm for generating business process ontology [1] is given below.

Algorithm: GenerateOntology
input : BP
output : θBP
begin

1 for each bp∈BP do

2 abp = abstract(abp)

3 if (∃ c ∈θBP, abp = getAbstractBP(c))

4 then
5 addInstance(bp,c)
6 else
7 c := defineConcept(abp)
8 addInstance(bp,c)
9 deriveAndAssertProperties(c)
end

11

3.3 Concepts and relationships

The concepts, representative classes of abstract business processes, in the process
ontology θBP are associated with each other using binary properties that encode
relationship among abstract business processes. The identified three binary properties to
encode process relationships are equivalence, overlap and part of. A prototype has also
been developed based on these conceptual relationships. But later on, we observed that the
associations could be extended considering other view points. An abstract business process,
that represents the non executable form of concrete business process can be associated with
another abstract business process based on three different approaches namely content
based similarity, structural matching and complete associations. In a nutshell, we
categorized the associations in three different ways and each of these approaches is divided
into equivalence, overlap and part of relationships.

3.3.1 Content based Similarity

 A concept in the ontology can be associated with another concept in terms contents such
as the tasks belong to the abstract business processes and represented by the concept in the
ontology. To update the ontology with this type relationship, an algorithm has been
proposed which is discussed later in the algorithm section.

3.3.1.1 Content Equivalence among abstract business processes

Two abstract business processes are said to be content equivalent if the constituent tasks
of both abstract processes are equivalent disregarding sequence of activities performed in
the corresponding concrete business processes and the bindings of the tasks i.e. which
control flow connects which tasks in abstract business process. If c1 and c2 are two
concepts from the business process ontology θBP, the corresponding two abstract business
processes abp1 and abp2, then, can be found using the function getABP i.e. abp1 =
getABP(c1) and abp2 = getABP(c2) [1]. The concepts c1 and c2 are content equivalent, iff
there exists relationships as follows.

abp1.T – abp2.T = ø and abp2.T – abp1.T = ø, where

abp1.T and abp2.T are the set of tasks of abstract business processes abp1 and abp2
respectively.

3.3.1.2 Content Partof relationship among abstract business processes

Two abstract business processes are associated with one another with the content part of
relationship if the constituent tasks of one abstract process are contained in the another
abstract business process where order, in which the tasks are connected with each other,
and the bindings of the tasks, which control flow connects which tasks in each abstract
business process, are not taken into consideration. For concepts c1 and c2 in the business
process ontology θBP, if there are two corresponding abstract business processes abp1 and
abp2, then the content partof relationship between these two concepts may exist. Concept
c1 is a content part of concept c2, iff there exist relationships as follows.

i) abp1.T ⊂ abp2.T

12

3.3.1.3 Content Overlapping among abstract business processes

Two abstract business processes are associated with one another with the content

overlap relationship if both of the abstract business processes have at least a task in
common. If c1 and c2 are the concepts of the business process ontology θBP, the
corresponding abstract business processes are abp1 and abp2, then the concepts c1 and c2
are said to be content overlapped, iff there exist a relationship as follows.

Abp1.T ∩ abp2.T ≠ Ø

13

3.3.2 Structural Similarity

To find the structural and the complete similarities between abstract business processes,
we introduced hierarchical tasks concept. This concept emerged from the transitional
behaviour of the tasks. For instance, every abstract business process has a certain set of
tasks which are connected in a fashion that every task has a pre control flow -a flow
coming from previous task-, a post control flow- a flow going out of the task-, and one or
more next tasks- tasks those are to be executed next to this task in the concrete business
process. To the best of our ken, the better way to explain the hierarchical structure of tasks
of an abstract business process is graphical presentation of tasks. For better clarification let
us take an abstract business process Enrolment, whose BPMN representation is the below.

Fig-3(2): BPMN diagram of Enrolment process

A hierarchical tree diagram of the tasks of an abstract business process Enrolment can
be shown as follows.

Fig-3(3): Graph for BPMN process Enrolment

14

After representing the abstract business process in hierarchical tree, we are in need of
graph traversal algorithm to visit all the nodes, which represent the tasks of the abstract
business process, to find the pre-control-flow, post-control-flow and the adjacent tasks of
the each task. Since we are avoiding the cyclic nature of the business process, we
introduced breadth first traversal algorithm here to complement our tasks. For the above
ABP Enrolment, the breadth-first traversal begins with the task Receive application. Then
it will add “analyse CV” in the queue to be visited next. A vertex, which represents task, is
only added to the queue -data structure that holds the tasks those are not yet traversed-, if
there exists a path between the previous vertex and the vertex to be added in queue. After
the starting task being traversed, “Analyse CV” task is picked up and add its adjacent tasks
in the queue and so forth. It is important to mention that the task that has been already
traversed or has been added in the queue will not be added in the queue again, hence
preclude the propagation of acyclic nature in the graph. While traversing each node, a
hierarchical task – an object that can represent pre-control-flow, post-control-flow and the
tasks that are in proximity to the task being traversed- is created for each and put in a
linked list to retain the graphical presentation also in the hierarchical tasks list.

In order construct a complete graph to meet our need, every vertex must be traversed
conceptually. While visiting each hierarchical task, each Htask acquires its pre-post flow
operators and the adjacent tasks that are not yet visited. After being traversed all nodes, the
hierarchical tasks’ tree will be conceptually looked like the below.

Fig-3(4): Graph for BPMN process Enrolment with pre and post flow operators

The comparison is done between two abstract business processes in terms of graphical
representation by comparing the tasks and control flows in each level of both graphs. The
level is the each hierarchical step in the abstract business process graph. For instance,
“Receive application” task is in the first level of the Enrolment graph, while “Reject

15

application” and “Accept application” are the tasks available in the last level of the
hierarchical tree.

The maximum number of levels is the maximum number of acyclic transitions an
abstract business process takes to describe the activities’ of a concrete business process
from start event to the end event. It can also be defined as the longest path a business
process instance takes to travel from one activity instance to another towards the
termination of the process instance without considering a cyclic transition in the path.

To get the level, an integer represents the number of transitions available in an abstract

business process, a function getLevelof BP(abp) is introduced. The notation of this
function can be well described as

getLevelofABP(abp) θBP: level

3.3.2.1 Structural Equivalence of abstract business processes

Two abstract business processes are called structurally equivalent if there are an equal
number of tasks in corresponding level of both hierarchical trees of abstract business
processes with the same pre-control-flow(s), post-control-flow(s) and same number of
adjacent tasks. If c1 and c2 are two concepts from the business process ontology θBP and
the corresponding two abstract business processes are abp1 and abp2, hierarchical tasks
tree GraphABP1 and GraphABP2, hence, can be found using the function constructGraph
i.e. GraphABP1 = constructGraph (abp1) and GraphABP2= constructGraph (abp2). We
defined that two abstract business processes are structurally equivalent if the both the
hierarchical trees of the processes are structurally equivalent i.e. regardless of the contents
of each task of the trees. Two hierarchical trees GraphABP1 and GraphABP2 are
equivalent, iff they comply all of the following conditions.

i) The number of levels of GraphABP1 is equal to that of GraphABP2.

ii) There are same number of tasks in each corresponding level of both GraphABP1 and
GraphABP2.

iii) For each level of GraphABP1, there is a mapping function which can map each task to
the task of the corresponding level of the GraphABP2 structurally, i.e. contents of the task
for example, name of the task, role, activity to be performed, are not taken into account.

3.3.2.2 Structural PartOf similarity between abstract business processes

Two abstract business processes are associated with each another with the structurally
part of relationship if the graph of one abstract business process is contained structurally in
the graph of the another abstract business process where the order how the tasks are
connected with each other and the bindings of the tasks, which control flow connects
which tasks, in each hierarchical tree, are taken into consideration, however, the contents
of each task are disregarded. For better understanding the association, let us take two
hierarchical trees created form tow business processes named Credit Application and
Enrolment.

16

Fig-3(5): Graph for BPMN process Credit Application with pre and post flow operators

After being constructed and traversed the graph of Credit Application, we can see a
hierarchical tasks tree as above which represents the acyclic hierarchical organization of
the tasks with their pre-control-flows and post-control-flows. Each node of this graph is an
object called hierarchical task which is capable of storing its pre and post flow; its adjacent
tasks -tasks not yet traversed. Pre-flow is a control flow operator of any type that comes in
from another task while post-flow is a flow operator that go out of the task.

Fig-3(6): Association in terms of graph

From the above diagrams, we observed that the graph of Credit Application has the
similar structure to the sub graph of Enrolment graph without considering the contents,
visibly the names of the tasks. In every level of the Credit application, for every task there

17

exists a corresponding structurally similar task with the same pre-control-flow and post-
control-flow in the same level of the graph of Enrolment.

If c1 and c2 are two concepts from the business process ontology θBP and the
corresponding two abstract business processes are abp1 and abp2, hierarchical tree
GraphABP1 and GraphABP2 can then be retrieved using the function
getConstructedGraph i.e. GraphABP1 = getConstructedGraph (abp1) and GraphABP1 =
getConstructedGraph (abp2). Now we can define the structural part of relationship just
considering the graphs of the abstract business processes. An abstract business process
abp1 is structurally part of abp2 if abp1 is structurally contained in the abp2 i.e. the graph
of abp1 is a sub graph of graphABP2. The graph graphABP1 is a sub graph ,iff they
comply all of the following conditions.

i) GraphABP1.getNumebrOfTask < HTask2.getNumberOfTask

ii) GraphABP1.getMaxLevel() <= HTask2.getMaxLevel

iii) ∃Htask∈GraphABP2 : Htask = Struct GraphABP1.rootTask,
GraphABP2.subGraph(Htask) =Struct GraphABP1

 For any task in GraphABP2, which is structurally similar to the root task of
GraphABP1, there must be any sub graph of GraphABP2 with this task as a root task and
this sub graph is structurally equivalent to GraphABP1.

3.3.2.3 Structural Overlapping similarity between abstract business processes

Two abstract business processes are associated with one another with a structurally
overlap relationship if both of the hierarchical trees of the abstract business processes have
at least a task in common without considering the contents such as task-name, actor, role
etc. However, the pre and post control flows and the number of adjacent tasks of the both
tasks must be taken into account. If c1 and c2 are two concepts from the business process
ontology θBP and the corresponding two abstract business processes are abp1 and abp2,
then hierarchical trees GraphABP1 and GraphABP2 can be constructed using the sub-
routine getConstructedGraph. Two graphs GraphABP1 and GraphABP2 are structurally
overlapped, iff they comply all of the following condition.

GraphABP1.Htask ∩Struct GraphABP2.Htask ≠ Ø

 The intersection operation is not responsible to check the contents of the tasks; it only
confirms the existence of any task in the graph. If two graphs are not empty i.e. each graph
has at least on hierarchical task, does not matter where and what they are, both graphs are
structurally overlapped, and hence the abstract business processes are.

18

3.3.3 Complete Similarity

Two abstract business processes are called completely equivalent if there are an equal
number of hierarchical tasks in corresponding level of both hierarchical trees of abstract
business processes and for each of the task in each level of a hierarchical tree, there must a
hierarchical task in the same level in the other hierarchical tree with the same contents,
same pre-control-flow, post-control-flow and number of adjacent hierarchical tasks. In
other words two abstract business processes are completely equivalent if they are
structurally as well as content equivalent with the same sequence of tasks. From the
definition, a process is composed of a set of activities that are connected in the right way in
a particular sequence to produce the desired outcome.

3.3.3.1 Complete equivalence between business processes

Two abstract business processes may be structurally equivalent as well as equivalent
based on content, but these two similarities do not always guarantee that these processes
are completely equivalent. This is because of the possible dissimilarity in the sequence of
the tasks in the business process. For example, let us consider two BPMN diagrams below
namely Employee Joining with medical Check-up first and Employee Joining with medical
check-up last. For the sake of simplicity, same business process is considered here just
toggling the activity sequence. However, in real case, two processes may have different
domains of execution, means that similar activities such as choose material; create invoice;
stock inventory; may be common in different business process in different manufacturing
process, however, their sequence of execution may vary from one business process to
another.

Fig-3(7): Employee Joining with medical Check-up first

Fig-3(8): Employee Joining with medical check-up last

19

So, the problem arises from the mismatch in the sequence of activities to be performed
in the concrete business processes, which are represented as tasks in our abstract business
processes. The activity Medical check in the business process Employee Joining with
medical Check-up first is executed after providing the office to the employee while in the
business process Employee Joining with medical check-up last, medical Check-up is
performed first before providing the office. Though, both processes have the same set of
activities and same set of control flows, the sequence of the activities in both business
processes are not same. Consequently, despite of being content equivalent and structural
equivalent, both business processes are not completely equivalent.

By the way, we could manage to compare two business processes to find the structural
similarity and the similarity based on contents. But it is impossible to say certainly that two
business processes are completely equivalent, if both business processes are structurally
similar and similar based on contents. So a new algorithm called completely match
algorithm which can compare two abstract business processes considering also the
sequence of the activities of the business process has been proposed. This algorithm is also
designed retaining the idea of hierarchical structure of the business process. The algorithms
for matching complete resemblance among business processes are the algorithms for
structural matching algorithms with some significant modifications.

If abp1 and abp2 are two abstract business processes whose representations in the

ontology are defined by c1 and c2, then we can construct corresponding graphs
GraphABP1 and GraphABP2, using the sub-routine constructGraph(ABP). We defined
that two abstract business processes are completely equivalent if the both the hierarchical
trees of the abstract business processes are completely equivalent. In other words, we can
say that two abstract business processes are completely equivalent if both abstract business
processes are structurally as well as content based equivalent taking the sequence of the
tasks into account. Two hierarchical trees GraphABP1 and GraphABP2 are completely
equivalent, iff they comply all of the following conditions.

1. GraphABP1 is structurally equivalent of GraphABP2.

2. GraphABP1 is content equivalent of GraphABP2.

3. The sequence of tasks in both hierarchical trees is same.

3.3.3.2 Complete part of association among business processes

Two abstract business processes are associated with each another with the completely
part of relationship if the hierarchical tree of one abstract business process is contained
structurally and based on contents in the hierarchical tree of the another abstract business
process where the order how the hierarchical tasks are connected with each other and the
bindings of the tasks, which control flow connects which tasks, in each hierarchical tree,
are also taken into consideration. We defined an abstract business process is completely
part of another if both the hierarchical trees of these abstract business processes are
equivalent. In another way, we can say that an abstract business process, abp1, is
completely part of the other, abp2, if both abstract business processes are structurally as
well as content based equivalent taking the sequence of the tasks into account. GraphABP1
is completely part of GraphABP2, iff the following conditions hold.

20

1. GraphABP1 is structurally part of GraphABP2.

2. GraphABP1 is content part of GraphABP2.

3. The sequence of tasks in both hierarchical trees is same.

3.3.3.3 Complete overlapping association among business processes
Two abstract business processes are associated with one another with the completely

overlap relationship if both of the hierarchical trees of the abstract business processes have
at least a task in common without considering the orders or positions of the tasks. In other
way, we can define completely overlapping relationship as an abstract business process,
abp1, is completely overlapped with another abstract business process, abp2, if abp1 is also
both structurally and content overlapped with abp2. Two hierarchical trees GraphABP1
and GraphABP2 are structurally overlapped, iff the following conditions meet.

1. GraphABP1 is structurally overlapped with GraphABP2.

2. GraphABP1 is content overlapped with GraphABP2.

21

3.4 Business process matching algorithm

3.4.1 Content Based match making algorithm

Content based similarity is the concept of having an idea, how business processes share
contents in the real life, and how to utilize the existing business process model just seeing
the contents that you think are appropriate for your desire task without being started from
the scratch or even not delving through the complete structure of the business process. One
might need a business process which is already exist and functional. Instead of designing
the whole process, it is possible just defining abstract business process to see whether there
is any such process in the ontology to avoid reinventing the wheel.

3.4.1.1 Content based ABP match making algorithm

Content Based ABP match making algorithm is relatively simpler than Structural and
complete match making algorithm for abstract business processes because we have design
the algorithm considering only single dimensional objects, so called tasks of the abstract
business process. Moreover, the algorithm mainly exploits the operations from set theory.
The unique algorithm, we call it ContentBasedABPMatch, to check for three different
content based association similarities of abstract business processes and to update the
corresponding abstract process ontology with matched association(s) is given below in
pseudo code.

3.4.1.2 Content Based Equivalence Matching Algorithm
Algorithm: ContentBasedABPMatch(Abstract Business Process abp1)
BEGIN

1 IF(There is not such concept that represents abp1)
2 Create a new concept that associates abp1
3 END IF
4 tasksOfabp1 = get tasks from abp1
5 FOR each other abstract business process in the ontology
6 tasksOFabp2 = get tasks from otherABP
7 IF (tasksOFabp1- tasksOFabp2 = Ø)
8 set property = contentEquivalence
9 update ontology (property, abp1, apb2)

10 ELSE IF (tasksOFABP1 ⊆ tasksOFabp2 OR tasksOFABP2 ⊆ tasksOFabp1)

11 set property = contentPartOf
12 IF (tasksOFabp1.length < tasksOFabp2.length)
13 updateOntology(property, abp1,abp2)
14 ELSE
15 updateOntology(property, abp2,abp1)
16 END IF
17 END IF
18 IF (tasksOfAbp1 ∩ tasksOfAbp2 != null)
19 set property = contentOverlapped
20 update ontology(property, abp1, apb2)
21 END IF
22 END FOR
END

22

In the next few lines we will construe the Content Equivalence Matching Algorithm.
Since we have defined concepts as the representatives of abstract business processes in the
business process ontology, In line 1, we look for a concept that represent the abstract
business process taken as an input of the algorithm. If no such concept is present in the
ontology, predefined procedure, described in the publication the thesis is based on, should
follow to create a concept. In line 2, taskOfabp1 is a set of type task ontology which
receives and temporarily stores the tasks for further set operation to be carried out. Line 7
expresses explicitly the condition that must be met to say the abstract business processes,
which are being treated currently, are content equivalent. The content equivalence
association update operation is stated in line 9, where property specifies the association
type; abp1 and abp2 are the two currently examined abstract business processes. Line 10
reveals two major criteria of finding content part of relationship among the processes.
Besides, which process is content part of other depends on the size of the tasks each
process has. If both processes have at least one task in common, the condition of which is
specified in line 18, we can say they are content overlapped of each other.

For better understanding, let us illustrate the algorithm with the following BPMN diagrams.

Fig-3(9): BP Content Similarity

Fig-3(10): BP assumed to be Content Equivalent

Both processes above have the same set of tasks- task1, task2, and task3 of figure Fig-

3(9) and of figure Fig-2(10) are assumed similar, therefore, our algorithm can identify
them as content overlapped as well as content equivalent business processes.

23

Fig-3(11): BP assumed to be Content Part

The business process depicted by figure Fig-3(11) is contained in both the processes

portrayed by Fig-3(9) and Fig-3(10), as task1 and task2 both are belong to the subset of the
tasks of both processes.

3.4.2 Structural match making Algorithm

Three algorithms have been proposed to compare the business processes for structural
equivalence, structural part of and structural overlapping associations. Each of which has
one or more sub-routines, most important sub-routines of them are also proposed below.

3.4.2.1 Structural Equivalence Matching Algorithm

3.4.2.1.1 Algorithm: MatchSturctEquivABPs(Abstract Business Process abp1)
BEGIN

1 GraphABP1= constructGraph(abp1)
2 For each abstract business process ontology class stored in the ontology
3 GraphABP2= constructGraph(abp2)
4 IF(GraphABP1.getSize() == GraphABP2.getSize())
5 IF(GraphABP1.levelLength == GraphABP2. levelLength)
6 IF(isStructurallyEquivalent(GraphABP1, GraphABP2))
7 set property = StructurallyEquivalentce
8 update ontology(property, abp1, apb2)
9 END IF
10 END IF
11 END IF
12 END FOR
END

ConstructGraph, which is a subroutine destined to construct a graph of Hierarchical

tasks, tasks are ordered as they are executed in the concrete business process, of a given
abstract business process, is called in the line 1. To ensure that both abstract graphs are
same, so are abstract business processes, the number of nodes and level numbers - each
generation of the graph starting from the root node is defined as level of the graph - are
compared in line 5 and line 6 respectively. Another subroutine named
isStructurallyEquivalent, which takes two graphs as input, is invoked in line 7 in order to
check whether both graphs have the same structure. If the sub-routine returns true, line 8 is
executed to update the structural equivalence association among the abps in the ontology.

24

3.4.2.1.3 Sub-Routine for structural equivalence matching algorithm

FUNCTION: isStructurallyEquivalent(Graph1, Graph2)
1 IF(areTasksStructurallySimilar(Graph1.rootHTask, Graph2.rootHTask))
2 FOR each corresponding next level of both Graph1 and Graph2
3 If(Graph1.getHtask(level).size != Graph2.getHtask(level).size)
4 Return false;
5 END IF
6 taskMatched[HTask] = null;
7 FOR each hierarchical task hTask of Graph1
8 FOR each hierarchical task hTask2 of Graph2
9 IF(hTask2 !ϵ taskMatched)
10 IF(Pre-Fow and Post-flow of hTask and hTask2 are equal)
11 IF(NumberOfDescendents of hTask and hTask2 are equal)
12 taskMatched.add = hTask2;
13 END IF
14 END IF
15 END IF
16 END FOR
17 END FOR
18 IF(taskMatched.size != HTree.Abp1.getHTask(level).size)
19 Return false;
20 END IF
21 END FOR
22 return true;
23 ELSE
24 Return false;
25 END IF
END FUNCTION

This sub-routine is responsible for comparing two graphs supplied by the main routine
of structural equivalence. Before going through all the levels of the graphs, the routine
must check the root tasks of both business processes first. This sub-routine delegates the
job of finding structural similarity of the root hierarchical tasks of both graphs –supplied
from the main routine- to another sub-routine called areTasksStructurallySimilar routine.
The sub-routine areTasksStructurallySimilar return true if both root tasks have same pre-
control-flow, post-control-flow and same number of adjacent hierarchical tasks. Hence we
can proceed with all subsequent level next to search for structural resemblance.

3.4.2.1.3 Sub-Routine for structurally matching two hierarchical tasks

FUNCTION: areTasksStructurallySimilar(hTask1, hTask2)
1 IF(Pre-Fow and Post-flow of hTask1and hTask2 are equal)
2 IF(NumberOfDescendents of hTask1and hTask2 are equal)
3 RETURN true
4 END IF
5 END IF
6 RETURN FALSE
7 END FUNCTION

25

This sub-routine confirms that the both hierarchical tasks, which are represented as
vertices in graph, have same basic pre and post flow operator- for example, ORSplit;
ANDSplit; ORJoin; ANDJoin- specified in line 1, and same number of adjacent vertices
that are still to be traversed in line 2.

For better understanding the action of the algorithm, let us have a look to the business

processes depicted below.

Fig-3(12): BP Credit application sub

Fig-3(13): BP assumed to Structural Equivalent

 To say whether two business processes –process represented by Fig-3(12) and Fig-
3(13)- are equivalent or not, our algorithm checks the presence of tasks and flows in the
same corresponding positions of the business processes. In the processes above, we see
that both processes have the same number of tasks and same set of flows except the name
of the task which represents that the tasks are not similar, and hence, it can find them
structurally similar.

26

3.4.2.2 Structurally Part of matching algorithm

3.4.2.2.1 Algorithm: MatchStrucPartABPs(Abstact Business Process abp1)

BEGIN

1 GraphABP1 = getConstructedGraph(abp1)
 2 For each abstract business process stored in the ontology
3 GraphABP2= getConstructedGraph (abp2)
4 IF(GraphABP1.getSize() > GraphABP2.getSize())
5 IF(isStructurallyPartOf(GraphABP2, GraphABP1))
6 set property = StructurallyPartOf
7 update ontology(property, abp2, apb1) //abp2 is Struct part of abp1
8 END IF
9 ElseIF(GraphABP1.getSize() < GraphABP2.getSize())
10 IF(isStructurallyPartOf(GraphABP1, GraphABP2))
11 set property = StructurallyPartOf
12 update ontology(property, abp1, apb2) //abp1 is Struct part of abp2
13 END IF
14 END IF
15 END FOR
END

 After constructing graph for abstract business process abp1, it iteratively construct
graph for each other abstract business process already exist in the ontology in the form of
concepts defined in line 3. Line 4 and line 9 ensure the difference between the tasks size
which does matter among abstract business processes to decide which graph would be the
sub graph. A sub-routine, which returns true if the graph supplied by first parameter is
structurally part of the graph supplied by the second parameter, is called in line 5. Line 7
updates the ontology as abp2 is structurally part of abp1 while line 12 updates the ontology
as abp1 is structurally part of abp2.

3.4.2.2.2 Sub-routine for structural part of Matching Algorithm

FUNCTION isStructurallyPartOf(Graph1, Graph2)
1 LevelBeingTraversed = 1
2 WHILE(Graph2.levelLength – LevelBeingTraversed >= Graph1.levelLength)
3 FOR each hTask at level LevelBeingTraversed of Graph2
4 IF(areTasksStructurallySimilar(hTask,Graph1.rootHTask))
5 IF(isStructurallyEquivalent(Graph1, Graph2.getSubGraph(hTask)))
6 RETURN TRUE
7 END IF
8 END IF
9 END FOR
10 increment LevelBeingTraversed by 1
11 END WHILE
12 RETURN FALSE
END FUNCTION

27

 As Graph2 has the larger set of vertices known from the main routine
MatchStrucPartABPs, it is probable that Graph1 may contain structurally in any portion,
defined as sub-graph, of the Graph1. So, we have to traverse the second graph staring
from the first generation i.e. from the root of Graph2. To visit the first hierarchical task in
Graph2, the level, LevelBeingTraversed, is set to 1 in the first line of the sub-routine. The
method getSubGraph of the Graph2 is invoked in line 5 to get a complete graph where the
root is hTask which is passed as a parameter. If the structural similarity is found in Graph1
and sub-Graph of Graph2, the subroutine returns true to the main routine, hence to
substantiate the update of the ontology.

Let us consider the following two business processes for structural part of similarity
matching algorithm simulation.

Fig-3(14): BP Credit card Application

Fig-3(15): BP assumed as Structurally Part of

 Our algorithm can identify the association exist between above processes is part of, i.e.
the process depicted by Fig – 3(15) will be found as a part of the process shown by fig –
3(16). If we consider the processes for the following structural overlapping algorithm, we
will see that the later algorithm will find the structural overlapping relationship among the
business processes.

28

3.4.2.3 Structurally Overlapping Algorithm

3.4.2.3.1 Algorithm: MatchStructOverLappedABPs(Abstact Business Process abp1)
BEGIN

1 GraphABP1 = getConstructedGraph(abp1)
2 For each abstract business process in the ontology
3 GraphABP2= getConstructedGraph (abp2)
4 IF(isStructurallyOverlapped(GraphABP1, GraphABP2))
5 set property = StructurallyOverlapped
6 update ontology (property, abp1, apb2)
7 END IF
8 END FOR
END

The method getConstructedGraph invoked in line 1 and line 3 is concurred to retrieve the
graph already constructed for structural equivalence comparison, otherwise create the
graph using the abstract process ontology. The ontology will be updated as abp1 is
structurally overlapped with abp2and vice versa, if the sub-routine which is called in line 4
returns true.

3.4.2.3.2. Sub-routine of Structural overlapping Algorithm

FUNCTION: isStructurallyOverLapped(Graph1, Graph2)
1 FOR each level levelG1 of Graph1
2 FOR each hierarchical task hTask1 at levelG1
3 FOR each level levelG2 of Graph2
4 FOR each hierarchical task hTask2 at levelG2
5 IF(hTask1.getTaskOntology != null & hTask2.getTaskOntology != null)
6 Return true;
7 END IF
8 END FOR
9 END FOR
10 END FOR
11 END FOR
12 RETURN FALSE
END FUNCTION

The delegated task, task from the main routine of structural overlapping, is to check if
there exists at least one task is structurally common in both graphs. It seems to be a
complex situation to overcome, nevertheless, the idea is as simple as to check whether the
graphs are non-empty i.e. both graphs have at least one vertex.

29

3.4.3 Complete match making algorithm

3.4.3.1 Complete Equivalence Matching Algorithm

3.4.3.1.1 Algorithm: MatchCompleteEquivABPs(Abstract Business Process abp1)

BEGIN

1 Graph1 = constructGraph(abp1)
2 For each abstract business process in the ontology
3 GraphABP2= constructGraph(abp2)
4 IF(Graph1.getSize() == GraphABP2.getSize())
5 IF(Graph1.levelLength == GraphABP2. levelLength)
6 IF(isCompletelyEquivalent(Graph1, GraphABP2))
7 Set property = CompletelyEquivalentce
8 update ontology(property, abp1, apb2)
9 END IF
10 END IF
11 END IF
12 END FOR
END

As a hierarchical tree represents vertices in orders starting from the primitive ancestor to
the lowest descendent, we can rely on the graph matching technique to compare two
abstract business processes for complete equivalence which considers not only structural
and content similarity but also the sequence of the activities to be executed in concrete
business processes. Graph construction sub-routine, constructGraph which is invoked in
line 1 and line 3, is responsible to construct a graph for an abstract business process which
is already defined in the process ontology. Sine the order of the abstract business process is
represented in the graph, it is crucial to check whether both graphs have the same number
of generations which is done in line 5. To compare the every detail in the corresponding
vertices of the graphs, the algorithm delegates the duty to another sub-routine known as
isCompletelyEquivalent that takes both graphs as parameters.

3.4.3.1.2 Sub-routine for complete equivalence algorithm

FUNCTION : isCompletelyEquivalent(Graph1, Graph2)
1 IF (areTasksSimilar(Graph1.getRootTask, Graph2. getRootTask))
2 FOR each corresponding next level of both Graph1 and Graph2
3 IF(Graph1.getHtask(level).size ≠ Graph2.getHtask(level).size)
4 Return false
5 END IF
6 taskMatched[HTask] = null;
7 FOR each hierarchical task hTask of Graph1
8 FOR each hierarchical task hTask2 of Graph2

9 IF(hTask.getTask.equals(hTask2.getTask) & hTask2 ∉∉∉∉ taskMatched)

10 IF(Pre-Fow and Post-flow of hTask and hTask2 are equal)
11 IF(NumberOfDescendents of hTask and hTask2 are equal)
12 taskMatched.add = hTask2;
13 END IF
14 END IF
15 END IF
16 END FOR
17 END FOR

30

18 IF(taskMatched.size ≠ HTree.Abp1.getHTask(level).size)
19 Return false;
20 END IF
21 END FOR
22 return true;
23 ELSE
24 Return false;
25 END IF
END FUNCTION

The complete comparison of the vertices is done by comparing the tasks mentioned in

line 9, pre and post control flows of the tasks in line 10 and number of adjacent tasks that
are not yet visited in line 11. It is worth mentioning that the level or generation of the
comparing vertices must be same for both graphs to sustain the order of the activities. If
the number of tasks matched in any level is not congruent, then the sub-routine must return
false to the main routine which is mentioned in line 18 and 19.

3.4.3.1.3 Sub-routine for matching two hierarchical tasks

FUNCTION: areTasksSimilar(hTask1, hTask2)
1 IF(hTask1.getTask().equals(hTask2).getTask())
2 IF(Pre-Fow and Post-flow of hTask1and hTask2 are equal)
3 IF(NumberOfDescendents of hTask1and hTask2 are equal)
4 RETURN true
5 END IF
6 END IF
7 END IF
8 RETURN FALSE
9 END FUNCTION

Since we are considering the vertex of a graph as a task of the business process, hence
the comparison between vertices – names of the task- is not to say the vertices are similar.
Therefore, we have considered here the vertex as a Hierarchical task object having pre-
flow-operator, post-flow-operator, and the number of adjacent which are not yet visited. So,
to say two HTasks are similar, line 1, lin2, and line3 compare tasks, pre and post control
flow and number of descendents not yet traversed respectively.

3.4.3.2 Completely Part of Matching algorithm

3.4.3.2.1 Algorithm: MatchCompletePartABPs(Abstact Business Process abp1)
BEGIN

1 GraphABP1 = getConstructedGraph(abp1)
2 For each abstract business process ontology class stored in the ontology
3 GraphABP2= getConstructedGraph (abp2)
4 IF(GraphABP1 .numberOfNodes > GraphABP2. numberOfNodes)
5 IF(isCompletelyPartOf(GraphABP2, GraphABP1))
6 set property = CompletelyPartOf
7 update ontology(property, abp2, apb1) //abp2 is complete part of abp1
8 END IF
9 ElseIF(GraphABP1 .numberOfNodes <GraphABP2. numberOfNodes)

31

10 IF(isCompletelyPartOf (GraphABP1 , GraphABP2))
11 set property = CompletelyPartOf
12 update ontology(property, abp1, apb2) //abp1 is complete part of abp2
13 END IF
14 END IF
15 END FOR
END

In line 4 and line, the comparison between the abstract processes’ number of nodes are
made, to distinguish the abstract business processes. The distinction is such that one
abstract business process would be part of another and the other business process would
contain another business process. In line 5 and line 10, a sub-routine –
isCompletelyPartOf- is called to compare the passing graphs as parameters. Depending on
the outcome of the sub-routine as true, the ontology is updated with the association type
of CompletelyPartOf.

3.4.2.2.2 Sub-routine for Completely part of Matching Algorithm

FUNCTION CompletelyPartOf (Graph1, Graph2)
1 Set LevelOfFirstMatchedHtask to 1
2 While (Graph2.levelLength – LevelOfFirstMatchedHtask >= Graph1. levelLength)
3 FOR each graph node hTask2 at level LevelOfFirstMatchedHtask of Graph2
4 IF (areTasksSimilar(Graph1.getRootTask, hTask2))
5 IF(isCompletelyEquivalent (Graph1, Graph2.SubGraph(HTaski)))
6 Return true
7 END IF
8 END IF
9 END FOR
10 Increment LevelOfFirstMatchedHtask by 1
11 END WHILE
12 return false;
END FUNCTION

The root task of Graph1, which having the smaller set of vertices, is compared with
each task of Graph2 starting from the root vertex until a match is found. Line 1 set the
level of the root vertex of the graph 2. A condition is set in line 2 to check whether it is still
feasible to get a part of relationship between both processes. Another two sub-routines,
areTasksSimilar and isCompletelyEquivalent, are also invoked from this routine. In line 4,
sub-routine is called to find the similarity between the root task of Graph1 and the task of
Graph2 just being traversed. A subGraph of Graph2 is retrieved to pass as parameter of
second sub-routine in line 5 to exploit the behaviour of the sub-routine
isCompletelyEquivalent here in CompletelyPartOf routine. Let us consider the following
business process, Credit Card Application Sub.

32

 Fig-3(16): BP Credit Card Application Sub

Since the process depicted in Fig-3(16) is content part of and structurally part of the

process shown by Fig-3(14), and sequence is also the same, the algorithm,
MatchCompletePartABPs, will find that Credit card application sub is completely
contained in the Credit Card application process.

3.4.2.3.1 Completely Overlapping Algorithm

Algorithm: MatchCompletelyOverLappedABPs(Abstact Business Process abp1)
BEGIN

1 GraphABP1 = getConstructedGraph(abp1)
2 For each abstract business process in the ontology
3 GraphABP2= getConstructedGraph(abp2

 4 IF(isCompletelyOverLapped ((GraphABP1, GraphABP2))
5 set property = CompletelyOverLapped
6 update ontology(property, abp1, apb2)

 7 END IF
8 END FOR

END

After getting constructed graph for abp1, the algorithm gets constructed graph for every
other abstract business process. Though the complete overlapping association is same as
content overlapping, the aim of this algorithm is to show that content overlapping or
complete overlapping is also possible using the hierarchical tree structure of the business
processes. However, constructing graph for updating complete overlapping is not feasible
and optimistic. If the construction is already made for other complete associations –
complete equivalence and complete part of -, which are completely different approach
from content equivalence and content part of, we can exploit it as well for updating the
complete overlapping association.

3.4.2.3.2 Sub-routine for Complete overlapping Algorithm

FUNCTION: isCompletelyOverLapped(Graph1, Graph2)
1 FOR each level levelG1 of Graph1
1 FOR each hierarchical task hTask at levelG1
3 FOR each level levelG2 of Graph2
4 FOR each hierarchical task hTask2 at levelG2
5 IF(hTask.getTaskOnotolgy.equals.(hTask2.getTaskOnotolgy))
6 Return true;
7 END IF
8 END FOR

33

9 END FOR
10 END FOR
11 END FOR
12 Return false;
END FUNCTION

 33

Chapter 4

Implementation

4.1 Technologies

The Semantic Web vision, which gained high value and praise, was emerged by Sir

Tim Berners-Lee. To transform his vision to reality, many researchers have been

working with multifarious efforts to make semantic web functioning.

The United States Department of Defense (DoD) primarily led the research

work on semantic web with its Defense Advanced Research Products Agency

(DARPA) organization. The first research outcome of DARPA on semantic Web

technology was the DARPA Agent Markup Language (DAML) which fostered

defining the conceptualization of semantic web. EU also showed interest in semantic

representation of the information. Consequently, a EU research product, Ontology

Interface Layer (OIL), had been developed. A later merge of DAML and OIL from

US and EU was made to form a new language called DAML + OIL.

Since, there had been different organizations engaged in research on semantic

technology, uniformity in representing ontology, i.e. meaning of the information and

relationship among them, was required. Eventually, to work on standardization of

semantic web language, W3C begun its activities with the help of web ontology

working group. The group underscored on the standard ontology language elements to

sustain the development of the semantics.

Web Ontology Language known as OWL is designed to foster the use of

machine interoperability. Using OWL, information coded in the documents can be

processed by the applications. So, the intention of OWL is to represent terms with

their meaning and the relationships among them to facilitate the machines to share

information without human intervention. OWL provides the way to define terms and

their relationships, so as to web contents, more comprehensively than others: XML –

syntax without semantic constraints-, RDF-data model with simple semantics

represented in XML syntax-, and RDF-S -vocabulary that describes the properties and

classes of RDF resources. OWL is up-to-the-minute part of the evolving stack of

Semantic Web recommended by w3C recommendation. XML is the most primitive

syntax for making documents.

OWL is a semantic Web standard which is a framework got final approval from

World Wide Web consortium in February 2004, to provide a way of sharing and

reusing information among machines. A set of documents have been introduced by

W3C to explain the OWL language; each of which satisfy a different purpose. For

example, OWL overview document describes brief introduction and language features;

OWL Reference document construe all modelling primitives of OWL; normative

definitions of the language are officially describes in the OWL Semantics and

Abstract Syntax document.

The OWL language is sub classified in three different sublanguages so called

species of OWL -OWL Lite; OWL DL; OWL Full- for satisfying purpose of specific

communities of ontology developers and users. Brief discussion on each of them

regarding the difference between them is as follows.

 34

OWL Lite is the most limited featured OWL language among three. OWL Lite

supports only a limited version of cardinality. The cardinalities that are allowed in

OWL Lite are 0 or 1. OWL Lite is adhered to all restrictions that are also laid on by

OWL DL language.

OWL DL emphasizes two key factors: computation completeness and

decidability of reasoning system that must be ensured while using the language. All

OWL DL constructors are well supported by OWL DL; however, certain restrictions

are imposed on their usage. For instance, a class may become a subclass of one or

more classes, but a class can not be added as an instance of another.

OWL Full belongs both the complete set of constructs of OWL language and

RDF constructs. Class definition from both OWL and RDF, i.e. owl:class and

rdf:class are equivalent, where as owl:class is a proper sub-class of rdf:class in both

OWL Lite and OWL DL. Hence, a class created in OWL Lite and OWL DL is sub

class of RDF by default. A class, which is a sub class of another class, can also act as

an instance of that sub-class. For instance, a class owl: Ferrari, which is a sub-class of

owl:car, can act both as a class as well as individual of the class owl: car.

 35

4.2 Requirements in UML

After being understood the context, the identified problem, and the solution proposed,

it is important to understand the system and user requirements and the relationship

between the model objects before proceeding to the implementation part. Use case

diagram is depicted towards this goal.

4.2.1 Use case

To design the use case diagram, we considered all stakeholders involved in the system

implementation, use and the use cases that are invaluable part for our system design,

the relationships between the stakeholders and the use cases.

Fig- 4(1): Use Case Diagram - Business Process Ontology Management

 The user interacts with the system to retrieve the searching result from the

system using the “Retrieve Abstract Business process” use case. The use case diagram

“create abstract Business process” involves stakeholders: Business Process Modeller,

ABP Management and Parser that includes the parsing operation.

 36

4.2.2 Activity Diagram

The activity diagram, which is useful to construe the flow of operations involved in a

use case diagram, is depicted below for the use case “update concepts’ relationships”

illustrated in the use case diagram. Most of our contributions in this thesis involve the

associations among the business processes and their update operations in the business

process ontology. As the activity diagram depicted below describes the same things,

we are interested only in it.

Fig- 4(2): Activity diagram update concepts’ relationships

 37

4.3 Design

The implementation of the thesis work is based on the object oriented approach. Class

diagram has been introduced for object oriented modelling required for our wok; the

classes, their attributes and methods, and the relationships between the classed are

illustrated well.

4.3.1 Class Diagram

Fig- 4(3): Class diagram of Business Process Ontology Management

 An object of ABP Management class works as an organizer of the whole set of

objects created by other classes in order to make the system functional. The

multiplicity among the classes is important, and hence, can affect the efficiency of the

system to be developed. Note that, for any association that involves the business

process ontology, there is always only one object of the ontology exists.

 38

4.4 Implementation Details

4.4.1 Implementation tools

To make our application function, we had to go through decisive activities to pick the

right tool for the right purpose. Firstly, since we do not have a standard format, which

describes business processes modelled by all disparate modellers, we had to use an

abstract business process extraction technique to import business processes in our

application. Secondly, from manifold APIs available nowadays for Ontology model, it

is important to select a good API for ontology modelling. Finally, we had to select a

reasoner to check the ontology consistency.

4.4.1.1 Abstract Business Process Extraction

The extraction technique for creating abstract business processes, which was

employed in the previous work, is kept the same, as this thesis work is an extension of

the work is to develop more robust system in terms of more comprehensive

associations among the business processes which are based on structural similarity,

content based proximity and completeness. Though extraction technique has been

elaborately described in the preliminary work, we discussed the technique briefly for

the sake of comprehensibility of the thesis.

Since there are multifarious file formats that are used in disparate business

process models, an intermediate XML file has been proposed to create abstract

business processes from this type of file. Moreover, the modeller the thesis work used

is WebRatio. However, the file created from the WebRatio business process model is

not provided by itself, but we surmised the file format with some hopeful conjectures.

The file , so called BPM file , is created using XLST with the hope that if any changes

done in BPM files can be compensated just changing the XLST file. Nevertheless, we

also takes primitive XML file format as input, as it is a well known structured

document format that can be accessed conveniently.

4.4.1.2 Ontology API

To build semantic web applications, there are several APIs available today. Each API

has its own merits and characteristics, though, the general concept is to provide

framework to substantiate the use of ontology for applications. Jena, which was

developed in HP lab, is used for out thesis work. For our application, why we

assimilated Jena API is briefly discussed below.

Jena is java based framework for ontology applications which is an open source

product. It provides APIs for manipulating RDF, RDFS, OWL, SPARQL queries. To

execute SPARQL queries, it has build in SPARQL query engine. It also integrated a

rule based inference engine. Jena framework also included In-memory and persistent

storage.

4.4.1.3 Ontology reasoner

A reasoner is required in our thesis work to check the inconsistency of a set of axioms

stored in the ontology. Pallet – written in java- provides reasoning facilities of OWL-

DL ontology. It is workable with approximately all axioms declared in OWL1 and

OWL2. Since it holds dual-licensed- both for open source and commercial use- and

being OWL-DL compatible, we have chosen it in our academic purpose.

 39

4.4.2 Key aspects in coding

The construction of abstract business process concept, its task ontology and flow

ontology is kept same as the prior thesis work, while the relationship update

mechanism has been changed significantly. Hence, we underscored mainly in

describing the relationship update in the ontology.

To update the content based relationships among business processes, we

proposed a single algorithm. The java implementation of this algorithm is pretty

straight forward and hence, we do not like the same thing in another form, which

could sound monotonous. Therefore, we acquiesced to describe the implementation of

the key aspects of the thesis i.e. the different types of association among the business

processes.

4.4.2.1 Graph construction
An abstract business process is content equivalent with other, if they have the same

number of tasks and same set flows i.e. we may have tasks that describe completely

different activities of the concrete business process, however, they must be connected

using the same set of flows with same order. To do this, we have proposed the notion

of business process graph.

To construct a graph from an abstract business process stored in the ontology in

the form of concept, a method called constructGraph has been developed. This

method takes current context, task and flow ontology classes of the process as input

and returns a graph represented by a concurrent hash map object of java language.

This method finds the start event of the process, and generates the complete

graph taking the first task as a root vertex. The construction of the graph is done with

following java method implementation.

public static ConcurrentHashMap<Integer, ArrayList<HierarchicalTask>>

constructGraph(ABPUpdate context,Set<OntClass> tasks,

Set<OntClass> flows) {

 GraphConstructor.context = context;

 GraphConstructor.tasks = tasks;

 GraphConstructor.flows = flows;

 GraphConstructor.tasksvisited = new HashSet<OntClass>();

OntClass startEvent =

ABPUpdate.ontology_base_model.getOntClass(ABPUpdate.ontology

URI + "#Start");

hierarchicalTasks = new ConcurrentHashMap<Integer,

ArrayList<HierarchicalTask>>();

 if(startEvent == null)

 {

 System.out.println("Start Event not found");

 return null;

 }

 checkRootVertex(startEvent);

 return hierarchicalTasks;

 }

 40

In the checkRootVertex method, a snippet finds the flow operator that is

connected to the start event, is given below.

if(task.equals(FlowOnt.getFlowTask(context, indivualFlow))){

 if(FlowOnt.flowDirection == IN_DEGREE) {

startFlow = FlowOnt.getFlowOperator(context,

indivualFlow);

 break;

 }

 }

After the operator being found, this method finds the root task- first task of the

business process- which is connected to the start event with this flow operator. If such

a root task is found in the business process, then it calls a recursive method,

popualteDescendents, which digs up all descendents of the root task and construct a

graph. The lines of code that perform this operation are as follows.

if(!task.equals(FlowOnt.getFlowTask(context,iflow))

&&FlowOnt.getFlowOperator(context,iflow).equals(startFlow)){

if(FlowOnt.flowDirection == OUT_DEGREE) {

if(!tasksvisited.contains(

 FlowOnt.getFlowTask(context, iflow))){

popualteDescendents(FlowOnt.getFlowTask(con text,

iflow),new Integer(1));

 }

 }

 }

void popualteDescendents(OntClass task, Integer level){

Integer presentLevel = level;

 OntClass startFlow=null;

 OntClass indivualFlow = null;

 HierarchicalTask hierarchicalTask = new HierarchicalTask();

 Set<OntClass> flowsCopy = flows;

for(Iterator<OntClass> flowIterator = flowsCopy.iterator();

flowIterator.hasNext();)

 {

 indivualFlow = flowIterator.next();

 if(task.equals(FlowOnt.getFlowTask(context, indivualFlow)))

 {

 if(FlowOnt.flowDirection == IN_DEGREE){

hierarchicalTask.setTask(task);

hierarchicalTask.setGenericTaskName(presentLevel);

 startFlow = FlowOnt.getFlowOperator(context,

indivualFlow);

 hierarchicalTask.setFlowOperator(startFlow);

 hierarchicalTask.setBasicFlowOperatorName(startFlow.getSuperClass());

 41

 tasksvisited.add(task);

 break;

 }

 }

 }

 if(startFlow== null)

 return;

 for(Iterator<OntClass> i = flowsCopy.iterator(); i.hasNext();){

 OntClass iflow = i.next();

 if(!task.equals(FlowOnt.getFlowTask(context, iflow)) &&

FlowOnt.getFlowOperator(context, iflow).equals(startFlow)){

 if(FlowOnt.flowDirection ==OUT_DEGREE){

 if(!tasksvisited.contains(FlowOnt.getFlowTask(context,

iflow))){

 hierarchicalTask.addTaskNext(FlowOnt.getFlowTask(context, iflow));

 }

 }

 }

 }

 if(hierarchicalTasks.get(presentLevel)==null){

 ArrayList<HierarchicalTask> hierarchicalTaskArray = new

ArrayList<HierarchicalTask>();

 hierarchicalTasks.put(presentLevel, hierarchicalTaskArray);

 }

 hierarchicalTasks.get(presentLevel).add(hierarchicalTask);

 for(OntClass tn : hierarchicalTask.getTasksNext()){

 System.out.println(tn.getLocalName());

 if(tn != null)

 if(tn.getLocalName() !="End"){

 popualteDescendents(tn, presentLevel+1);

 }

 }

 }

4.4.2.2 Updating relationships in ontology

Whenever a new business process is to be populated in the ontology, the system

always compares this business process with each of business processes already

persisted in the ontology other the business process itself to update the associations.

The association may be one of the three types: equivalent, part of and overlapped

under each of three categories: content based, structural, and complete.

 42

For instance, to compare two graphs for structural equivalence, a method,

isStructurallyMatch, is invoked which takes both graphs as inputs and return to the

main function a Boolean value depends on which, the ontology will be updated later.

Up to now, we saw that we can compare the structural relationship between two

business processes using our proposed algorithm. But now how can we update the

business process ontology if we get a structural relationship between two business

processes. Since ontology property is used to represent the relationship between

resources, we adopted this concept of representing relationship in our business

process ontology as well. A set of Java classes provided by Jena is used in our

application to manipulate the ontology properties handily. For instance, to create an

ontology property for structural equivalence relationship, we used the method,

createObjectProperty method of Jena ontology model.

To update the ontology with the structural equivalence relationship between two

business processes abp1 and abp2, a method called addStructuralEquivalence is

invoked, which exploit the java classes of Jena to update the relationship based on

ontology property.

To create an object property of structural equivalence, the following java

statement has been coded.

ObjectProperty isStructEquiv = context.GetOntModel().CreateObject

Property(ABPUpdate.ontologyURI + "#isStructurallyEquivalentOf");

To find the components of all values from restriction on object property isStructEquiv,

we have a snippet of code using Jena API as follows.

 for (ExtendedIterator<OntClass> i = abp1.listSuperClasses(true); i.hasNext();)

{

 OntClass oc = i.next();

 if (oc.isRestriction()) {

 Restriction res = oc.asRestriction();

 if (res.onProperty(isSpecialisation)) {

 ocListSpec =

res.asAllValuesFromRestriction().getAllValuesFrom().as(UnionClass.class);

 }

 }

 }

As the business processes abp1 and abp2 are structurally equivalent, each

instance of the business process abp1 is also equivalent to each of the individual of

the business process abp2. To update the ontology with the structural equivalence

relationships among the individuals of the business process abp1 and abp2, we wrote

a small set of codes as follows.

 43

 for (ExtendedIterator<? extends OntResource> i = abp1.listInstances();

i.hasNext();) {

 Individual indi1 = i.next().asIndividual();

 for (ExtendedIterator<? extends OntResource> i2 =

abp2.listInstances(); i2.hasNext();) {

 Individual indi2 = i2.next().asIndividual();

 indi1.addProperty(isStructEquiv, indi2);

 }

 }

 44

Chapter 5

Validation of the work done

After the prototype implementation, it is important to validate for measuring its

efficiency and rationality. Since we proposed many algorithms and their corresponding

implementations using Java language, multifarious business process examples were

being sought to validate our application. After being found a handsome number of

business processes in BPMN notion, we used our abstract business process extraction

mechanism to make them compatible with our prototype.

5.1 Experiments

Using the file upload interface, we imported all the files, those describes the business

processes in our hand. We did not see any anomalies defining concepts and updating

ontologies with relationship found except some typos. Then, we executed all queries of

every category for each business process stored in the ontology, and obtained the results

for each. Based the experiment done, we illustrated the results using visual tool - math

lab- from the different perspectives for the sake of visual clarification.

Serial

Business Process Name Short name # of tasks in

task ontology

of flows in

flow ontology

1 Procure Article abp1 6 10

2 OnlinePurchase abp2 5 8

3 JobPosting abp3 6 10

4 BookShop abp4 6 10

5 Media selection abp5 6 10

6 EmployeeJoiningFitnessPriority abp6 10 18

7 CreditApplication abp7 7 13

8 Recruitment abp8 7 13

9 SoftwareRequirementChange abp9 7 13

10 BankTransfer abp10 7 13

11 Discussion abp11 7 13

12 DinnerPreparation abp12 8 14

13 BicycleManufatory abp13 8 14

14 Enrollment abp14 8 14

15 AdwordsToSearchEngine abp15 8 15

16 LeaveApplicationFormProcess abp16 8 15

17 Advertisement abp17 9 17

18 TravelBooking abp18 9 17

19 CarRental abp19 10 19

20 EmployeeJoining abp20 10 19

21 ColorectalCancerReferral abp21 10 20

22 LoanSanction abp22 10 22

23 ElearningCenter abp23 11 22

24 BookSub abp24 13 25

25 CreditApplicationSub abp25 15 28

Table - 1 : List of Business processes stored in the ontology

 45

To make the experiment result more comprehensible, let us consider the

following table that describes the list of business processes, known with given short

names, stored in the ontology with the number of task ontologies and the number flow

ontologies for each process. It seems a bit bizarre that the total number of flow ontology

is quite more than that of the task ontology. For example, the total number of tasks

present in the process, JobPosting, is 6, but the number of flows is 10, however the

number flows expressed in the BPMN diagram is 8. Let us explain the cause behind the

scenery with the BPMN diagram of JobPosting.

Fig - 5(1) : BPMN diagram of JobPosting

 The number of flows increases in the ontology due to the sequence operator

defined in our application. If a task is connected directly with another task, then, we

consider that the operator lie between these two tasks is sequence operator. For example,

the task Report job opening and the task Write job posting are connected directly with

each other. So, it seems there is no operator lie in between. But, with our approach, a

hidden sequence diagram is present between these two tasks. Consequently, every other

tasks those are connected directly with each other have the same affect. Beside, we

obviate the cyclic nature of the process, so we cut off the connection lie between tasks

Revise job posting and ORSplit operator. In a nutshell, the number flow ontologies is

more than the flows in a business process due to the presence of hidden sequence

operator between two directly connected tasks represented by the BPMN diagram.

The ratio of the number of task ontology to number of flow ontology could

impose some extra operations in our algorithm, however, the affects we believe is just

from the calculation point of view rather the matching output as a whole. To illustrate

the phenomenon, we kept a list of the processes and did graphical analysis retaining the

list in X axis of the graph. Let us have a look the list graphically to observe how much

increment is there due to the hidden sequence operator present in each business process

of the ontology.

 46

Fig - 5(1) : Business processes and number of tasks and flows in ontology

In the graph above, we observe that the increment of the number of flow

ontologies is remained approximately double of the number of task ontologies of the

each business process in the ontology due to the sequence operator defined my the

application.

 47

5.2 Results

5.2.1 Total number similarities for each business process

The total number of similarities – combining all relationships found for each category

for every business process- of twenty five different business process concepts stored in

the ontology is shown in the following graph. Structural overlapping is the most

common and simple similarity, which is found among business processes, those having

at least an activity to be executed – that has been defined as task ontology in our

business process model. Therefore, it is also common in finding the number of

structural overlapping similarities between the business processes maximum among

other associations.

Fig - 5(2) : Total number similarities for business process

 We can observe from the above graph that every business process, abp#, is

structurally overlapped with every other business process stored in the ontology, and

therefore, the number of structurally overlapped similarities of each business process is

the number of business processes stored available in the ontology minus 1.Hence we set

the base line of the graph 24, which is the number of structurally overlapped

relationships exists in the ontology for the each of the business processes[abp1,

abp2, ….,abp25].

 We can also see form the illustrated graph that total number of relationships

found in the ontology for the disparate business processes, processes with a wide range

of activities and domain, are varied from business process to business process

depending on the similarities found in different categories. For better clarification, let us

see few more graphs those describe the variation in the number of relationships based

on different categories.

 48

5.2.2 Categorized associations’ overview

 We basically underscored the proposed algorithms in this thesis for the

relationships between the business processes in the broad categories: Completeness in

the similarity, content of the business processes present and the structural similarities.

Consequently, we emphasized the experiments to adhering to our aim of the thesis. And

we got the resultant data we concurred to our algorithms proposed. For example, to

show how and to what extend our proposed algorithms can benefit is show by the graph

prepared from the resultant data, we got from our application using a handsome quantity

of business processes.

Fig - 5(3) : Number of categorized relationships VS Business Process

From the domination of the green line in the graph construes that the availability

of the structural similarities in business process ontology is quite high. However, it is

also difficult to overlook the amount of similarities between business processes based

on contents. On the other, complete similarity is quite difficult to match and it is also

inferred to the number of processes found. As the complete similarity is not just only

finding structural and content similarity, it is worth mentioning that the sequence of

tasks defined in the ontology does matter as well. Finding the number of similar

processes is important based on the three different categories, Nevertheless, finding

which sort of relationships with which they are related to is also crucial. For example, a

business process, for which we are looking similar processes, defined can have similar

contents in another business process in the ontology. Obviously, we can exploit the

contents, tasks in the abstract business process, but, it would be fantastically beneficial,

if it also have some sort structural similarities between the processes.

 49

5.2.3 Associations based on each specific type

 After explaining the total overview, now we are interested in more specific look

for each type of associations, we proposed. In order to delve into the relationships- how

and to which extend, business processes may be related - is explained with the

following sub sections.

5.2.3.1 Structural similarities among Business processes

From the structural point of view, each business process is structurally

overlapped with other, if each of them has at least a task to be carried out. Therefore, a

straight green line is seen in the graph, which expresses that each business process has

the same degree of possibility of being structurally overlapped, as there is no empty

business process, process without any task, defined in the ontology.

Fig - 5(4) : Structural similarities among Business processes

There were several structural part of relationships found in the ontology, but

structural equivalence were difficult to find with this limited set of business processes-

collected from disparate sources- available in the ontology. For the sake of the

algorithmic congruency, we defined a structural equivalent process as an experimental

task, to validate our application’s ability to perform structural equivalence comparison.

Complete equivalence is rare to find for its three dimensional search criteria.

Nevertheless, both structural equivalence and content based equivalence together may

serve a great opportunity to employ an existing business process with some

modifications without of being tired of preparing it again. In order see how is it

probable to meet near about similar process to engulf, it is crucial to check also how

contents are similar with each other. To better illustrate it, let’s have a look the

following graph with a bit explanation.

 50

5.2.3.2 Content Based similarities among Business processes

In the following graph, the content overlapping found in the business processes

CreditApplication, LoanSanction are CreditApplicationSub are prominent. Since the

actions involved in theses processes lie under the same domain, i.e. actions related to

banking, it is likely to have similarities among some of actions of these business

processes. It would be more likely to get content based overlapping similarities, if we

could add other processes such as purchase on credit, loan management in our ontology

too. However, the probability is still depends on how the activities are defined in the

business process ontology, i.e. how we defined the activities in XML or BMP files. In

addition, if the same activities carried out in different business processes are defined in

the input file with different name and contents, it would be unfeasible to guaranty the

success of our approach. In this case, convention in defining input files could play a

vital role.

Fig - 5(5) : Content Based similarities among Business processes

Though the theoretical view and simulation accorded with the approach, we

proposed, it should be scrutinized well to define a convention of preparing input files so

that a long range and diversified sources of business processes in the pragmatic usages

could utilize the application with the destined goal precisely.

 51

5.2.3.3 Complete similarities among business processes in the ontology

Before going through the description of the graph drawn below, let us discuss

about the algorithms, we used in our application. Content based algorithm solely

depends on the constituents of the process ontology, while the complete matching is

done taking content similarities, structural similarities as well as sequence of the

activities in the concrete business process. Nevertheless, it is apparent that the graph for

complete similarities and content based similarities are same except two green lines

present on the business process 6 and 20 of content based similarity graph. However,

the fact is that the process which has complete relationship is also has content based

relationship, but the reverse is not true.

Fig - 5(6) : Complete similarities among Business processes

The business processes, denoted by 6 and 20 on the X axis, in the complete

similarity graph have overlapping relationships, and it is also reflected in the content

based overlapping associations. The same business processes are equivalent in the

content based similarity graph, but, they are not equivalent based on completeness due

to the concept defined and implementation done based on different algorithms in our

thesis work.

 52

5.2.4 Big Picture at a glance

In the above description, we tried to clarify how the business process ontology can be

utilized discovering business processes with our application and the amount of

relationship found in the total discovery. Besides, it would be interesting to see how

each process is related in 9 different types of associations with each other process in the

ontology. The following graph, where both axes labelled business processes, illustrates

how the relationships are with different markings.

Fig - 5(7) : Total associations among business processes at a glance

From fig: constant line, we could say that the most number of similarities found

is of structural overlapping. However, for the sake of visual unequivocalness, the graph

is kept clairvoyant avoiding the structural overlapping completely. It is perspicuous in

the graph that, the maximum number of relationships, marked by violet starts, among

business processes obtained is for structural part of. For example, Discussion,11 ticked,

and BookSub, 24 ticked, in the X axes are contained structurally in 4 and 3 processes

respectively shown in the presentation. However, we see other type associations

between business processes in the scatter graph as well. For a better view, another

picture of this graph in different angle is also given below.

 In the graphs above, we can have a better look of the associations lie between

the business processes. In our thesis work, we would be gratified, if we could add some

graphical tools to provide visual presentation of the associations our application can

represent. With these tools, users could manage viewing all associations at a glance with

a pithy compact way without searching through all the searching criteria present in the

current application. Nevertheless, we are looking forward to someone, who can extend

the work we just mentioned so that it could not only make us happy but also made

convenient for the users exploiting the application.

 53

6. Conclusion

In this thesis report, we discussed about the storage of the business processes,

their relationships, and discovery of the processes from the repositories in the

background and the related works section. Then, we briefly illustrate the overview of

the abstract business process and their relationships. Afterward, we paraphrased the

semantic approach of the abstract business process and ontology for storing the

semantically described processes from the publication, on which the thesis is based on.

The extended works on the relationships between the concepts are described and

proceeded to explain our proposed algorithms using pseudo code in two subsequent

sections. Finally the technological aspects and implementation of the proposed work

have been described.

To validate the work done, we used twenty five disparate business processes

in our prototype to get the resultant data for analysis. The conformity of the prototype

has been met after analysing those date, and, hence, the proof of this is illustrated in

chapter 5. From the result we observed, we can infer that a handsome amount of

abstract business processes, business processes described abstractly, stored in the

ontology can provide a useful catalogue of business processes of diversified

knowledge domain from which a users can search business processes of their interest

and associations they prefer to.

Semantically described business processes are more convenient to store

abstractly in the ontology than the traditional approach of storing the concrete one. An

abstract business process represents a class of concrete business processes those have

the same knowledge domain regardless of the execution place of the processes. The

concept of abstract business process, which facilitates the reuse of the business

process by searching the processes semantically, can obviate the onerous task of

implementing the business processes again which already exist in the ontology. Using

the business process searching GUI, users can search the ontology specifying the

association: structural, content based or even complete category type as their

requirements, and consequently get the result of that type.

Future works include optimization of the algorithms proposed for structural

and complete associations, a tool for query results presentable in graphs, and

extension of the work so that cyclic nature of the business process activities can be

taken into account. Since the algorithms for structural and complete association based

on the hierarchical tree that is constructed from semantically described processes in

the ontology, the reduction of the complexity regarding the graph construction and

traversing would be a useful pathway to the optimization of the algorithms. For the

sake of simplicity, the cyclic nature of the business processes is disregarded in our

thesis work. So the consideration of cyclic graph while comparing the business

processes would be an interesting topic for the future work. To have a look at a glance

of the search results and to interact visually, a graphical tool can be developed taking

references from the validation chapter, where graphs are used for validation purpose

for showing various associations among the business processes for analysis.

54

7. Bibliography

1. Marco Brambilla, Khalid Belhajjame. Ontological Description and Similarity-based

Discovery of Business Process Models

2. Business Process management 100 success secretes by Gerard Blokdiijk

3. Business process management: practical guidelines to successful implementation By

John Jeston, Johan Nelis.

4. Zhiqiang Yan, Remco Dijkman, Paul Grefen. Business Process Model Repositories -

Framework and Survey

5. G. Yang. Process library. Data & Knowledge Engineering

6. Injun Choi, Kwangmyeong Kim and Mookyung Jang. An XML-Based Process

Repository and Process Query Language for Integrated Process Management.

7. Catriel Beeri, Anat Eyal, Simon Kamenkovich, and Tova Milo. Querying business

processes.

8. Antoon Goderis, Peter Li, and Carole A. Goble. Workow discovery: the problem, a

case study from e-science and a graph-based solution.

9. Chengfei Liu, Xuemin Lin, Xiaofang Zhou, Maria Orlowska Building a Repository

for Workflow Systems.

10. Song M, Miller JA, Arpinar IB. 2001. REPOX: an XML repository for workflow

designs and specifications.

11. A Translation Approach to Portable Ontology Specifications

12. Business Process Management, concepts, languages and architecture by Mathias

weske, Hasso Plattner Institut an der Universitӓt Postdam.

13. http://www.w3.org/TR/owl-ref/. OWL Web Ontology Language Reference.

14. http://www.webratio.com/

15. http://jena.sourceforge.net/documentation.html. Jena – A Semantic Web Framework

for Java.

16. clarkparsia.com/pellet/. Pellet: The Open Source OWL 2 Reasoner

