
POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione

Corso di Laurea Specialistica in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

OpenStreetMap Recursive Street Extraction

Algorithm

Tutor: Professor Emanuele Della Valle

Student: Hadi Choueiry

ID: 736513

Academic Year: 2009/2010

2 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Table of Contents

Table of Contents .. 2

Table of Figures .. 3

Acknowledgments .. 4

Abstract .. 5

1. Introduction ... 6

Junction nodes and regular nodes .. 6

Links ... 7

Overview ... 8

2. Context ... 10

OpenStreetMap .. 10

Node ... 10

Way ... 10

Relation ... 11

OpenStreetMap API .. 11

RDF (Resource Description Framework) .. 11

RDF-S (RDF Schema) .. 12

An Ontology to describe streets .. 12

3. System Design .. 15

First solution ... 15

Second Solution.. 15

Third Solution ... 15

4. System Implementation 17

Pseudo Code .. 19

OpenStreetMap API Calls ... 20

Functions and Methods .. 21

5. Evaluation .. 24

Example .. 24

RDF response of the example .. 34

6. Conclusion and Future Developments 40

7. References ... 42

3 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Table of Figures

Figure 1: Example of a way .. 7

Figure 2: A Street divided into links .. 8

Figure 3: Simplified Flowchart .. 18

Figure 4: Initial Node .. 24

Figure 5: Initial Node and Bounding Box .. 25

Figure 6: Adding 1st Street (Forest Avenue) .. 25

Figure 7: Adding 2nd Street (S. 17th Street) ... 26

Figure 8: Adding 3rd Street (18th Street) ... 26

Figure 9: Adding 4th Street (N 17th Street) .. 27

Figure 10: Adding 5th Street (Grand Avenue SW) .. 27

Figure 11: Adding 6th Street (Grand Avenue SW) .. 28

Figure 12: Adding 7th Street (Forest Avenue) ... 28

Figure 13: Adding 8th Street (Highland Avenue SW) .. 29

Figure 14: Adding 9th Street (Highland Avenue SW) .. 29

Figure 15: Adding 10th Street (Laurel Avenue) ... 30

Figure 16: Adding 11th Street (Laurel Avenue) ... 30

Figure 17: Adding 12th Street (Clinch Avenue SW) .. 31

Figure 18: Adding 13th Street (Dale Avenue NW) ... 31

Figure 19: Adding 14th Street (N 17th Street) .. 32

Figure 20: Adding 15th Street (16th Street) .. 32

Figure 21: Adding 16th Street (19th Street) .. 33

Figure 22: Final Result all street with at least one node in the bounding box are
selected .. 33

Figure 23: Dale Avenue broken up into links .. 37

Figure 24: All the nodes of Dale Avenue .. 38

Figure 25: Representation of the links in the RDF response 39

4 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Acknowledgments

I would like dedicate this work to my parents Sami Choueiry and Maria Abdo, and my
two brothers Spiro and Walid for being there for me all the way throughout college.
Thank you for always supporting me no matter where I was and for offering me
career advice whenever I needed it. Without you I wouldn’t have made it here.

I would like to thank Professor Emanuele Della Valle for his guidance throughout my
work and for always being helpful.

I would like to thank Maria Antonietta for her constant support and help during those
two years.

And of course a big thank you to all my friends and the people I met in Como for the
good times we had in school and on the lake of Como and for making this
experience an unforgettable one.

5 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Abstract

OpenStreetMap is an open source map containing geographical information. Three
key elements make up the map data for OpenStreetMap namely nodes, ways and
relations. An OpenStreetMap API allows the insertion, retrieval and deletion of
information of data in the map.
The developed application extracts all the streets within a specific bounding box
expressed in terms of latitude and longitude. In this thesis three possible algorithms
to extract the streets are discussed with their advantages and disadvantages. A
recursive algorithm is considered the most appropriate given the requirements of the
application.
The recursive algorithm exploits the functionalities in OpenStreetMap API to extract
all the streets in a specific bounding box. Starting from the initial node streets are
extracted recursively until all the streets with at least one node within the bounding
box are extracted. Streets are broken up into links and rearranged in a way to allow
their reuse by other applications.
The recursive algorithm is explained in detail describing the flow of the execution and
the used methods. A concrete example illustrates step by step the execution of the
application and the resulting RDF output is shown to demonstrate the results.
The application successfully extracts the required data and outputs it as required.
Few suggestions are given in order to improve the application and enhance its
functionality.

6 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

1. Introduction

OpenStreetMap is an open source map containing geographical information. The
information available in OpenStreetMap could be used by anyone for any purpose.

The goal of this work is to use OpenStreetMap to retrieve information about streets
in a specific area defined by its longitude and its latitude. More precisely, given an
initial starting node and the dimension of the area of interest around it, the
application retrieves all the streets and the nodes in the specified area along with
other deemed useful information as the street names, nodes’ longitudes and
latitudes. After the information is retrieved, it will be rearranged in a way to allow its
reuse by other applications for navigational or any other purposes.

The application will return as a result an RDF file listing all the information. RDF is a
file format that allows information sharing and merging between different applications
even if their underlying architectures are different. RDF is meant to be read and
interpreted by computers not by human beings; having said that, the goal of this
application is to produce results that could be utilized by other computer applications
for different purposes. One possible use could be to use of the results for navigation
or for querying geographical data in a specific area and so on and so forth.

In this project, two new concepts are defined junction nodes and links. Below is an
explanation of these terms in the context of this application.

Junction nodes and regular nodes

In OpenStreetMap a street is a relation that ties many nodes. A Street must be made
of at least two nodes. In other words a street is a collection or an interconnection of
many nodes. Nodes could belong to one or more streets.
In this application the terms junction nodes and regular nodes are used to
differentiate nodes that belong to more than one street (intersection nodes) from
nodes that belong to only one street.

7 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Figure 1: Example of a way

Figure 1 illustrates the difference between junction nodes and regular nodes. Nodes
2, 3 and 4 are regular nodes since they belong only to one street. Node 5 is a
junction node since it is at the intersection of two streets so it belongs to two streets.
Note that the first and the last node of a street are an exception; they will always be
considered junction nodes for the purpose of this application. Therefore, node 1 is
considered a junction node assuming it is the first node of the way.

To sum it up, the first node of a street, the last node of a street and any node that
belongs to more than one street are junction nodes. Any node that belongs only to
one street and is not the first or last node of that street is a regular node.

Links

A link, as defined in this application, is a relation that joins two consecutive junction
nodes. Therefore, with this definition of links, streets as defined in OpenStreetMap
are divided into multiple links.
Having said that, the first and the last node of a link are always junction nodes and in
between there could be zero or more regular nodes.

8 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Figure 2: A Street divided into links

Using the definition of links, a street like the one in figure 2 will be divided into 7
links.
The junction nodes are the red dots with the black contour and the regular nodes are
the red dots. For example link 4, has as starting and ending nodes two junction
nodes and in between there are two regular nodes.

Overview

Here is a brief overview of the topics this report will cover:

The context section illustrates some information about the OpenStreetMap project
and the OpenStreetMap API. Focus will be on the data and functions that are
valuable for this application. There is also a brief overview of other technologies
used in the application as RDF and RDF-S.

The System design section discusses three possible algorithms to solve the
problem.
The first possible solution is to use the OSM API call bbox that returns all the nodes
and the streets in a dimension specific bounding box.

9 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

The second possibility is a recursive algorithm that starts from the initial node and
recursively makes new API calls to retrieve information about more nodes as long as
these nodes are within the bounding box.
The third possible solution requires the download of an OpenStreetMap dump file
that has all the information available in the OSM database.
Each solution is discussed in details listing its advantages and disadvantages and
finally the recursive algorithm is chosen to implement the algorithm.

The system implementation section describes in details the chosen algorithm and
the how it is implemented. This section contains a flowchart and a pseudo code that
give a high level overview of the execution of the application. In this section there is
also a description of the exploited OSM API calls used to retrieve the data. In
addition, all the methods that are used in the code are listed here with a brief
description of the functionality of each one of them.

The evaluation section assesses the correctness of the results generated by the
application. An example illustrates with great details and step by step the execution
of the algorithm starting from the initial and adding ways and nodes recursively. A
visual simulation of the execution of the code is also provided to facilitate
understanding the execution. Finally, the resulting RDF file is illustrated showing that
it contains all the required data.

The last section concludes with the overall results of the application and the possible
future works to improve the application and to add more functionalities to it.

10 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

2. Context

OpenStreetMap

OpenStreetMap is an open source map containing geographical information such as
streets, nodes, monuments, practical information and so forth. Anyone can freely
download and use the full information for any purpose they like under an open
source license. Currently the most prominent use of OSM data is to render beautiful,
rich maps such as the examples you can find on www.openstreetmap.org, but there
are plentiful other applications too [1]. In OpenStreetMap any registered user could
modify map information.
OpenStreetMap follows a similar concept as Wikipedia does, but for maps and other
geographic facts. Users registered in OpenStreetMap gather geographical data from
different sources and can upload it to the central database of OpenStreetMap where
it could be seen, corrected and modified by other users.

The project was started because most maps you think of as free actually have legal
or technical restrictions on their use, holding back people from using them in
creative, productive, or unexpected ways. To foster these creative and unexpected
uses, OpenStreetMap also does not limit the type of information people can add into
the database, as long as it is factually correct, verifiable and does not infringe on
anyone else's copyright. You never know for what interesting purposes it can be
used for in future [7].

One could argue that geographical information found in such projects is not
accurate. Here the argument is the same as for Wikipedia. There will be always
users who would intentionally or unintentionally introduce inaccurate data. However,
since the project is open source other users could see the erroneous data and would
hopefully correct the errors.

There are three key elements that make up the map data for OpenStreetMap namely
nodes, ways and relations [1].

Node

A node is the basic element of the OpenStreetMap scheme. Nodes consist of
latitude and longitude (a single geospatial point). Nodes are needed to define a way,
but a node can also be a standalone unconnected point representing something like
a telephone box, a pub, a "place" name label, or all kinds of other points of interest
(POI) [2].

Way

A way is an ordered interconnection of at least 2 and at most 2000 nodes that
describe a linear feature such as a street, or similar. Nodes can be members of
multiple ways.

11 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Relation

A relation can group other elements together, nodes, ways, and maybe even other
relations. Elements are 'members' of the relation, and each membership has a 'role'.
As with other types of elements, a relation may have an arbitrary number of tags.
You may also have duplicate nodes, ways or relations within a single relation.

In this project, the two elements that interest us are ways and nodes.

Given a starting node, latitude and longitude, the goal is to retrieve all the streets
inside the bounding box where the starting node is in the center of the bounding box.

OpenStreetMap API

This API is based on the ideas of the RESTful API.
REST-style architectures consist of clients and servers. Clients initiate requests to
servers; servers process requests and return appropriate responses. Requests and
responses are built around the transfer of "representations" of "resources". A
resource can be essentially any coherent and meaningful concept that may be
addressed. [5]

The API is the server component to which REST requests are addressed. The REST
requests take the form of HTTP GET, PUT, POST, and DELETE messages. The API
is currently accessible using the following URL: http://api.openstreetmap.org/

In this application the client is the java application that initiates requests to the OSM
API. The REST requests take the form of HTTP GET, PUT, POST, and DELETE
messages. Only GET requests are used since the purpose of the application is only
to retrieve information from OpenStreetMap.

RDF (Resource Description Framework)

RDF is a standard model for data interchange on the Web. RDF has features that
facilitate data merging even if the underlying schemas differ, and it specifically
supports the evolution of schemas over time without requiring all the data consumers
to be changed [3]. RDF extends the linking structure of the Web to use URIs to name
the relationship between things as well as the two ends of the link (this is usually
referred to as a “triple”). Using this simple model, it allows structured and semi-
structured data to be mixed, exposed, and shared across different applications.

RDF is designed to be read and understood by computers and not designed to be
displayed to humans [6]. RDF documents are written in XML. The XML language
used by RDF is called RDF/XML. By using XML, RDF information can easily be
exchanged between different types of computers using different types of operating
systems and application languages. RDF identifies things using Web identifiers

12 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

(URIs), and describes resources with properties and property values. A resource is
anything that can have a URI, such as http://www.w3schools.com/rdf or in this
application it could be for example a link. The property describes the resource such
as the name of the link. The property value is the value of a property such as “17th
Street” which is the name of the link.
In this application the end result is an RDF/XML output file containing the information
retrieved by the algorithm.

RDF-S (RDF Schema)

To support the sharing and reuse of formally represented knowledge among Artificial
Intelligence systems, it is useful to define the common vocabulary in which shared
knowledge is represented. A specification of a representational vocabulary for a
shared domain of discourse — definitions of classes, relations, functions, and other
objects — is called ontology[9].
RDF Schema is an extensible knowledge representation language, providing basic
elements for the description of ontologies.
RDF describes resources with classes, properties, and values. In addition, RDF
needs a way to define application-specific classes and properties. Application-
specific classes and properties must be defined using RDF Schema.

An Ontology to describe streets

Below is the ontology that describes the main classes and properties found in the
resulting RDF response of the application.

The class node represents nodes and has two properties gbLat (latitude) and
gbLong (Longitude) which describe the node. The class link represents the links and
it has as properties hasFrom that indicates the starting node of the link, hasTo that
indicates the ending node, hasEdge that indicates the regular nodes in between the
starting and the ending node and finally hasLength that indicates the length of the
link [10].

13 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

@prefix upf: <http://larkc.cefriel.it/ontologies/urbanpathfinding#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

upf:Node a rdfs:Class;
rdfs:label "Node";
rdfs:comment "Conjunction of two or more links".

upf:gbLat a rdf:Property;
rdfs:range xsd:double;
rdfs:label "lat (gauss-boaga)";
rdfs:comment "Latitude of a geographical point expressed in Gauss Boaga
reference system".

upf:gbLong a rdf:Property;
rdfs:range xsd:double;
rdfs:label "long (gauss-boaga)";
rdfs:comment "Longitude of a geographical point expressed in Gauss Boaga
reference system".

upf:Link a rdfs:Class;
rdfs:label "Link";
rdfs:comment "Pieces of roads (oriented according to the direction)".

upf:hasFrom a rdf:Property;
rdfs:label "from";
rdfs:comment "Relation between a link and its start node";
rdfs:domain upf:Link;
rdfs:range upf:Node.

upf:hasTo a rdf:Property;
rdfs:label "to";
rdfs:comment "Relation between a link and its end node";
rdfs:domain upf:Link;
rdfs:range upf:Node.

upf:hasEdge a rdf:Property;
rdfs:label "has edge";
rdfs:comment "Relation between a link and its edge nodes";
rdfs:domain upf:Link;
rdfs:range upf:Node.

upf:hasLength a rdf:Property;
rdfs:label "length";
rdfs:comment "Length of a link";
rdfs:domain upf:Link;
rdfs:range xsd:float.

14 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

upf:hasStart a rdf:Property;
rdfs:label "start";
rdfs:comment "The start point of the path";
rdfs:domain upf:Path;
rdfs:range upf:Node.

upf:Street a rdfs:Class;
rdfs:label "Street";
rdfs:comment "Steets".

upf:streetName a rdf:Property;
rdfs:domain upf:Street;
rdfs:range xsd:string;
rdfs:label "street name";
rdfs:comment "the name of the street".

15 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

3. System Design

Three possible solutions to solve the problem are described.

First solution

One solution is to use the bbox method. It is a function in the OpenStreetMap API
that gets all the elements inside a bounding box defined by the user.
GET /api/0.6/map?bbox=left,bottom,right,top

This function takes 4 arguments. The bottom longitude, the top longitude, the left
latitude and the right latitude and it returns all the nodes and streets in that area.
However, this function does not apply recursively.

In order to use this API function, the coordinates of the area of interest must be
known in advance and this is not the case in this application. Only two inputs are
known a-priori: the starting node and the dimension of the area around the starting
node.

Second Solution

The second possible solution is a recursive algorithm that makes several API calls
recursively and retrieves the elements from inside the box.
The algorithm takes as input the initial node that is at the center of the bounding box
and the dimension of the box. The streets that traverse the initial nodes are retrieved
with all the nodes that make up those streets. Then for each node, if it is inside the
bounding box then it is added to the list of nodes and new API calls are made to
retrieve information about the streets that traverse that node. The algorithm keeps
iterating until all the elements inside the bounding box are retrieved.

Third Solution

Planet.osm is a snapshot of the OpenStreetMap database. It is the latest revision of
the nodes, ways, relations and changesets in the database. This of course includes
all the tags. A new version of planet.osm is released weekly. The current size of a
planet.osm file is over 160 gigabytes (reduced to 7.3GB with bzip2 compression) as
of November 2009. [4]
The third possible solution is to use the planet.osm to retrieve the needed
information.

One advantage of using the planet dump is the reduction of the number of API calls
which are slow and depend heavily on the internet connection. Since the planet

16 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

dump could be locally stored on a machine, then the application could be used
offline since all the data would be retrieved from the dump file.

However, the major drawback is that the planet.osm file needs to be updated weekly
to ensure up to date information. Even if the planet.osm is downloaded each week
some information at the time of use by the application might have become out of
date due to an update that was not captured in the last dump file.
Another disadvantage is the large size of the dump file. Most potential users of the
application wouldn’t be willing to store a 160 Gb file locally on their machine.

Given the system requirements and taking into consideration the advantages and
disadvantages of each possible solution, the second solution (recursive algorithm) is
chosen to extract the streets. This solution will always yield results that are update
since it will make live API calls to retrieve the data, it will not require a lot of disk
usage since no OpenStreetMap data is stored on the client side and finally streets
will be extracted recursively starting from the center of the bounding box and moving
toward the edges.

17 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

4. System Implementation

At a high level, the methods that implement the functionality of the code are divided
into three groups according to their function.
There are the methods that communicate with the OpenStreetMap API, the methods
that perform the recursive calculation, and the methods that rearrange the results
and write them as an RDF file.

In the first group there are the functions that read the input arguments and prepare
the web service calls to be made to the API using the HttpClient library. Once the
webservice calls are made, responses are written to a file to be parsed later on in
order to retrieve the needed information.
Once the first xml response is available, starting from the initial node a recursive
algorithm evaluates the responses and decides accordingly whether more web
service calls shall be made to retrieve new streets and nodes. All the streets and
nodes that are found within the bounding box are added to a list array.
Finally, once the list of all the elements inside the bounding box is populated, a
function performs the division of streets into links and writes the response as an RDF
file according to a specific schema.

18 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Figure 3: Simplified Flowchart

19 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Pseudo Code

The following pseudo code illustrates how the application runs:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Read the starting Node and the dimension of the bounding box in Longitude and
Latitude
Retrieve the streets that pass through the initial node by calling the function
/api/0.6/node/#id/ways

Initialize the list of StreetStructs (street objects). Each StreetStruct contains
information about the street and a list of all the nodes that belong to that street.

Loop through the list of street.
For each street, loop through its list of nodes
If node is not a junction node, skip node.
If node is a junction node
Check whether it is within the bounding box.
If a node is a junction node and the streets that pass through it are not already
in the street list.
Create new StreetStruct and add it to the street list.

For each street in the list
Break up the street into Links
Write the RDF file.
Exit

20 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

OpenStreetMap API Calls

Two OpenStreetMap API calls are used in this application.

GET /api/0.6/node/#id/ways returns all the ways passing through the

specified node.

Example:

 http://api.openstreetmap.org/api/0.6/node/203060671/ways

<osm version="0.6" generator="OpenStreetMap server">
<way id="19546565" visible="true" timestamp="2008-01-02T11:59:12Z" version="1"
changeset="511198" user="DaveHansenTiger" uid="7168">
<nd ref="203060665"/>
<nd ref="203060668"/>
<nd ref="202841203"/>
<nd ref="203060671"/>
<nd ref="202857573"/>
<nd ref="203060673"/>
<nd ref="202925724"/>
<tag k="highway" v="residential"/>
<tag k="name" v="20th St"/>
<tag k="tiger:cfcc" v="A41"/>
<tag k="tiger:county" v="Knox, TN"/>
<tag k="tiger:name_base" v="20th"/>
<tag k="tiger:name_type" v="St"/>
<tag k="tiger:reviewed" v="no"/>
<tag k="tiger:separated" v="no"/>
<tag k="tiger:source" v="tiger_import_dch_v0.6_20070829"/>
<tag k="tiger:tlid" v="42620102:42620104:42620114:42620116:42620072"/>
<tag k="tiger:upload_uuid" v="bulk_upload.pl-f459fb5c-e923-4061-be5e-
82c37c53f049"/>
<tag k="tiger:zip_left" v="37916"/>
<tag k="tiger:zip_right" v="37916"/>
</way>
<way id="19548039" visible="true" timestamp="2008-01-02T12:06:04Z" version="1"
changeset="511198" user="DaveHansenTiger" uid="7168">
…………………
</way>
</osm>

21 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

GET /api/0.6/[node|way|relation]/#id returns an XML representation of

the element containing the longitude and latitude of the node.

Example:

http://api.openstreetmap.org/api/0.6/node/203060671/

<osm version="0.6" generator="OpenStreetMap server">
<node id="203060671" lat="35.9574371" lon="-83.9380504" version="6"
changeset="4514154" user="Rick Presley" uid="182" visible="true"
timestamp="2010-04-24T18:13:35Z"/>
</osm>

Functions and Methods

This section lists all the functions in the code and gives a brief description of their
functionality.

public class NodeStruct

The class NodeStruct is used to store information about nodes. It holds the ID of the
node, its longitude, its latitude, the number of streets that intersects at this node, and
a StreetStruct array of those streets that intersect at the node.

public class StreetStruct

The class StreetStruct is used to store information about streets (ways). Each
StreetStruct holds the ID of the street, the street name, the type of street whether it is
a one way or a two way street, and a NodeStruct array of the nodes that are part of
that street.

public String ReadInputID()

The ReadInput() method reads the ID the starting node from standard input. The
method verifies that the entered starting node contains only numbers and exits in
case letters were found. The method doesn’t check if the node ID exists in the
OpenStreetMap database.

22 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

public double GetInputLongitude()

The GetInputLongitude() reads the longitude of the bounding box from the standard
input. The method doesn’t perform error checking.

public double GetInputLatitude()

The GetInputLatitude() reads the laltitude of the bounding box from the standard
input. The method doesn’t perform error checking.

public String CreateWayURL(String nodeID)

The CreateWayURL(String nodeID) creates a URL of the form

http://api.openstreetmap.org/api/0.6/node/nodeID/ways that will be sent to the
OpenStreetMap API as HTTP GET request and will return the streets that traverse
this node as xml elements <ways> and each street element will contain the nodes
<nd> that make up the street as children of the <way> element.

public String CreateNodeURL(String nodeId)

The CreateNodeURL(String nodeID) creates a URL of the form

http://api.openstreetmap.org/api/0.6/node/nodeID that will be sent to the
OpenStreetMap API as HTTP GET request and will return information about that
specific node. In this application we are mostly interested in the longitude and
latitude of the node.

public String GetResponse(String url)

The GetResponse(String url) takes as arguments the URL created by
CreateNodeURL() or CreateWayURL() functions and uses the java HttpClient library
to query the OpenStreetMap API. The returned xml response is written to a file to be
parsed later on in the application.

public ArrayList ParseXmlResponse(String filename)

The ArrayList ParseXmlResponse(String filename) takes as input the xml response
file returned by the GetResponse() method. The method parses the xml file and
stores ways in an array of StreetStructs, for each way it stores its ID, name and type.

23 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Moreover, it creates an array of NodeStructs, containing all the nodes (with the
information about the node) for that street, which will be inserted in the StreetStrcut.

public NodeStruct getLonLat(String NodeID)

The getLonLat(String NodeID) parses the xml response returned by the API call

http://api.openstreetmap.org/api/0.6/node/nodeID and retrieves the longitude
and the latitude of the node which will be used later to determine whether new nodes
are inside the bounding box.

public NodeStruct getStreetInfo(String nodeID)

The getStreetInfo(String nodeID) is used for the sole purpose of counting the number
of streets that pass through a specific node.

public boolean containsNode(NodeStruct n, ArrayList list)

The containsNode(NodeStruct n, ArrayList list) method takes as arguments a
NodeStruct and an array of NodeStructs and it traverses the array list checking
whether the nodeStruct n is already in the array. This method comes in handy during
the recursive algorithm in order not to enter duplicate nodes when nodes are being
added to the array of nodes.

public boolean containsStreet(StreetStruct S, ArrayList list)

The containsStreet(StreetStruct S, ArrayList list) method is similar to the
ContainsNode(), but in this case, it ensures that no duplicate StreetStructs are
introduced in the array of streets.

public void xmlWriter(ArrayList osmStreetList)

The xmlWriter(ArrayList osmStreetList) is the last method is to be called after the
algorithm finishes its execution. The method takes as argument the final array of
StreetStructs osmStreetList which will at the end of the execution contain information
about all the streets and nodes in the bounding box initially specified.
The function will create the RDF file that will have all those information in it. The
method will evaluate which nodes are junction nodes (nodes where streets
intersect). It will also divide streets into links (A link is a connection between two
junction nodes).

24 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

5. Evaluation

Many tests were performed to evaluate the accuracy of the returned results.
Here an example illustrates in details the execution of the algorithm and the obtained
results.

Example

This example is used to illustrate the accuracy of the results generated by the
algorithm highlighting the recursive retrieval of the streets.

The starting node is 203009666 and the dimension of the bounding box is 0.0066 in
longitude and 0.0066 in latitude.

Figure 4: Initial Node

25 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Figure 5: Initial Node and Bounding Box

Figure 6: Adding 1st Street (Forest Avenue)

26 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Figure 7: Adding 2nd Street (S. 17

th
 Street)

Figure 8: Adding 3rd Street (18

th
 Street)

27 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Figure 9: Adding 4th Street (N 17

th
 Street)

Figure 10: Adding 5th Street (Grand Avenue SW)

28 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Figure 11: Adding 6th Street (Grand Avenue SW)

Figure 12: Adding 7th Street (Forest Avenue)

29 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Figure 13: Adding 8th Street (Highland Avenue SW)

Figure 14: Adding 9th Street (Highland Avenue SW)

30 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Figure 15: Adding 10th Street (Laurel Avenue)

Figure 16: Adding 11th Street (Laurel Avenue)

31 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Figure 17: Adding 12th Street (Clinch Avenue SW)

Figure 18: Adding 13th Street (Dale Avenue NW)

32 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Figure 19: Adding 14th Street (N 17

th
 Street)

Figure 20: Adding 15th Street (16

th
 Street)

33 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

Figure 21: Adding 16th Street (19

th
 Street)

Figure 22: Final Result all street with at least one node in the bounding box are selected

34 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

RDF response of the example

Below is a part of the RDF response returned after the execution of example above.

<?xml version="1.0" encoding="ISO-8859-1"?>
<rdf:RDF xml:base="http://seip.cefriel.it/ama/resource/"
 xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"
 xmlns:lud="http://www.linkingurbandata.org/onto/ama/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#">
 <rdf:Description rdf:about="links/link19548537L1">
 <lud:partOf rdf:resource="street/street19548537"/>
 <rdfs:label>Forest Ave</rdfs:label>
 <lud:lFrom rdf:resource="nodes/node203009666"/>
 <lud:lTo rdf:resource="nodes/node202832303"/>
 <rdf:type rdf:resource="http://www.linkingurbandata.org/onto/ama/"/>
 <rdf:type
rdf:resource="http://www.linkingurbandata.org/onto/ama/TwoWayLink"/>
 <lud:length
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.1</lud:length>
 </rdf:Description>
 <rdf:Description rdf:about="links/link19548537L2">
 <lud:partOf rdf:resource="street/street19548537"/>
 <rdfs:label>Forest Ave</rdfs:label>
 <lud:lFrom rdf:resource="nodes/node202832303"/>
 <lud:lTo rdf:resource="nodes/node202932241"/>
 <rdf:type rdf:resource="http://www.linkingurbandata.org/onto/ama/"/>
 <rdf:type
rdf:resource="http://www.linkingurbandata.org/onto/ama/TwoWayLink"/>
 <lud:length
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.1</lud:length>
 </rdf:Description>
 <rdf:Description rdf:about="links/link19548537L3">
 <lud:partOf rdf:resource="street/street19548537"/>
 <rdfs:label>Forest Ave</rdfs:label>
 <lud:lFrom rdf:resource="nodes/node202932241"/>
 <lud:lTo rdf:resource="nodes/node203060668"/>
 <rdf:type rdf:resource="http://www.linkingurbandata.org/onto/ama/"/>
 <rdf:type
rdf:resource="http://www.linkingurbandata.org/onto/ama/TwoWayLink"/>
 <lud:length
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.1</lud:length>
 </rdf:Description>
 <rdf:Description rdf:about="links/link19548537L4">
 <lud:partOf rdf:resource="street/street19548537"/>
 <rdfs:label>Forest Ave</rdfs:label>
 <lud:lFrom rdf:resource="nodes/node203060668"/>

35 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

 <lud:lTo rdf:resource="nodes/node203046799"/>
 <rdf:type rdf:resource="http://www.linkingurbandata.org/onto/ama/"/>
 <rdf:type
rdf:resource="http://www.linkingurbandata.org/onto/ama/TwoWayLink"/>
 <lud:length
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.1</lud:length>
 </rdf:Description>
 <rdf:Description rdf:about="links/link19548537L5">
 <lud:partOf rdf:resource="street/street19548537"/>
 <rdfs:label>Forest Ave</rdfs:label>
 <lud:lFrom rdf:resource="nodes/node203046799"/>
 <lud:lTo rdf:resource="nodes/node202859448"/>
 <rdf:type rdf:resource="http://www.linkingurbandata.org/onto/ama/"/>
 <rdf:type
rdf:resource="http://www.linkingurbandata.org/onto/ama/TwoWayLink"/>
 <lud:length
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.1</lud:length>
 </rdf:Description>
 <rdf:Description rdf:about="links/link19548537L6">
 <lud:partOf rdf:resource="street/street19548537"/>
 <rdfs:label>Forest Ave</rdfs:label>
 <lud:lFrom rdf:resource="nodes/node202859448"/>
 <lud:lTo rdf:resource="nodes/node202832097"/>
 <rdf:type rdf:resource="http://www.linkingurbandata.org/onto/ama/"/>
 <rdf:type
rdf:resource="http://www.linkingurbandata.org/onto/ama/TwoWayLink"/>
 <lud:length
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.1</lud:length>
 </rdf:Description>
 <rdf:Description rdf:about="links/link19548537L7">
 <lud:partOf rdf:resource="street/street19548537"/>
 <rdfs:label>Forest Ave</rdfs:label>
 <lud:lFrom rdf:resource="nodes/node202832097"/>
 <lud:lTo rdf:resource="nodes/node203077627"/>
 <rdf:type rdf:resource="http://www.linkingurbandata.org/onto/ama/"/>
 <rdf:type
rdf:resource="http://www.linkingurbandata.org/onto/ama/TwoWayLink"/>
 <lud:length
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.1</lud:length>
 </rdf:Description>
 <rdf:Description rdf:about="nodes/node203009666">
 <geo:long rdf:datatype="http://www.w3.org/2001/XMLSchema#double">-
83.9346517</geo:long>
 <geo:lat
rdf:datatype="http://www.w3.org/2001/XMLSchema#double">35.960596</geo:lat>
 <rdf:type rdf:resource="http://www.linkingurbandata.org/onto/ama/Node"/>
 </rdf:Description>
 <rdf:Description rdf:about="nodes/node202832303">

36 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

 <geo:long rdf:datatype="http://www.w3.org/2001/XMLSchema#double">-
83.9361292</geo:long>
 <geo:lat
rdf:datatype="http://www.w3.org/2001/XMLSchema#double">35.9600914</geo:lat>
 <rdf:type rdf:resource="http://www.linkingurbandata.org/onto/ama/Node"/>
 </rdf:Description>
 <rdf:Description rdf:about="nodes/node202932241">
 <geo:long rdf:datatype="http://www.w3.org/2001/XMLSchema#double">-
83.9375462</geo:long>
 <geo:lat
rdf:datatype="http://www.w3.org/2001/XMLSchema#double">35.9596343</geo:lat>
 <rdf:type rdf:resource="http://www.linkingurbandata.org/onto/ama/Node"/>
 </rdf:Description>
 <rdf:Description rdf:about="nodes/node203060668">
 <geo:long rdf:datatype="http://www.w3.org/2001/XMLSchema#double">-
83.9389516</geo:long>
 <geo:lat
rdf:datatype="http://www.w3.org/2001/XMLSchema#double">35.9591784</geo:lat>
 <rdf:type rdf:resource="http://www.linkingurbandata.org/onto/ama/Node"/>
 </rdf:Description>
 <rdf:Description rdf:about="nodes/node203046799">
 <geo:long rdf:datatype="http://www.w3.org/2001/XMLSchema#double">-
83.9401103</geo:long>
 <geo:lat
rdf:datatype="http://www.w3.org/2001/XMLSchema#double">35.9587876</geo:lat>
 <rdf:type rdf:resource="http://www.linkingurbandata.org/onto/ama/Node"/>
 </rdf:Description>
 <rdf:Description rdf:about="nodes/node202859448">
 <geo:long rdf:datatype="http://www.w3.org/2001/XMLSchema#double">-
83.9413603</geo:long>
 <geo:lat
rdf:datatype="http://www.w3.org/2001/XMLSchema#double">35.9583447</geo:lat>
 <rdf:type rdf:resource="http://www.linkingurbandata.org/onto/ama/Node"/>
 </rdf:Description>
 <rdf:Description rdf:about="nodes/node202832097">
 <geo:long rdf:datatype="http://www.w3.org/2001/XMLSchema#double">-
83.9427657</geo:long>
 <geo:lat
rdf:datatype="http://www.w3.org/2001/XMLSchema#double">35.9579061</geo:lat>
 <rdf:type rdf:resource="http://www.linkingurbandata.org/onto/ama/Node"/>
 </rdf:Description>
 <rdf:Description rdf:about="nodes/node203077627">
 <geo:long rdf:datatype="http://www.w3.org/2001/XMLSchema#double">-
83.943785</geo:long>
 <geo:lat
rdf:datatype="http://www.w3.org/2001/XMLSchema#double">35.9575631</geo:lat>
 <rdf:type rdf:resource="http://www.linkingurbandata.org/onto/ama/Node"/>
 </rdf:Description>

37 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

To illustrate how a street is divided into links. The example of Dale Street from the
example above is illustrated in the figure below.

Figure 23: Dale Avenue broken up into links

In figure 23, the highlighted street is made up of sixteen nodes. Eight of these
sixteen nodes are junction nodes because they are intersections of two or more
streets. These junction nodes are the green ticks in the figure. The rest of the nodes
are regular nodes and they are represented as red ticks.

According to the definition of links (A link is a relation that joins two consecutive
junction nodes and all the regular nodes in between) hence this street should be
divided into seven links.

38 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

15. Street ID = 19546326 Dale Ave
 NODE 1 = 633052496
 NODE 2 = 633053184
 NODE 3 = 633053178
 NODE 4 = 633053176
 NODE 5 = 633053174
 NODE 6 = 633053172
 NODE 7 = 633052539
 NODE 8 = 202908928
 NODE 9 = 203058453
 NODE 10 = 633064901
 NODE 11 = 633064897
 NODE 12 = 633064902
 NODE 13 = 633064903
 NODE 14 = 633064904
 NODE 15 = 633064848
 NODE 16 = 633064883

Figure 24: All the nodes of Dale Avenue

RDF Comments

<rdf:Description about="links/link19546326L1">
 <lud:partOf rdf:resource="street/street19546326"/>
 <rdfs:label>Dale Ave</rdfs:label>
 <lud:lFrom rdf:resource="nodes/node633052496"/>
 <lud:lEdge rdf:resource="nodes/node633053184"/>
 <lud:lEdge rdf:resource="nodes/node633053178"/>
 <lud:lEdge rdf:resource="nodes/node633053176"/>
 <lud:lEdge rdf:resource="nodes/node633053174"/>
 <lud:lEdge rdf:resource="nodes/node633053172"/>
 <lud:lTo rdf:resource="nodes/node633052539"/>
 <rdf:type
rdf:resource="http://www.linkingurbandata.org/onto/ama/Link"/>
 </rdf:Description>
 <rdf:Description about="links/link19546326L2 ">
 <lud:partOf rdf:resource="street/street19546326"/>
 <rdfs:label>Dale Ave</rdfs:label>
 <lud:lFrom rdf:resource="nodes/node633052539"/>
 <lud:lTo rdf:resource="nodes/node202908928"/>
 <rdf:type
rdf:resource="http://www.linkingurbandata.org/onto/ama/Link"/>
 </rdf:Description>
 <rdf:Description about="links/link19546326L3">
 <lud:partOf rdf:resource="street/street19546326"/>
 <rdfs:label>Dale Ave</rdfs:label>
 <lud:lFrom rdf:resource="nodes/node202908928"/>
 <lud:lTo rdf:resource="nodes/node203058453"/>

Link 1

Junction Node
Regular Node
Regular Node
Regular Node
Regular Node
Regular Node
Regular Node
Junction Node

Link 2

Link 3

39 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

 <rdf:type
rdf:resource="http://www.linkingurbandata.org/onto/ama/Link"/>
 </rdf:Description>
 <rdf:Description about="links/link19546326L4">
 <lud:partOf rdf:resource="street/street19546326"/>
 <rdfs:label>Dale Ave</rdfs:label>
 <lud:lFrom rdf:resource="nodes/node203058453"/>
 <lud:lEdge rdf:resource="nodes/node633064901"/>
 <lud:lTo rdf:resource="nodes/node633064897"/>
 <rdf:type
rdf:resource="http://www.linkingurbandata.org/onto/ama/Link"/>
 </rdf:Description>
 <rdf:Description about="links/link19546326L5">
 <lud:partOf rdf:resource="street/street19546326"/>
 <rdfs:label>Dale Ave</rdfs:label>
 <lud:lFrom rdf:resource="nodes/node633064897"/>
 <lud:lEdge rdf:resource="nodes/node633064902"/>
 <lud:lEdge rdf:resource="nodes/node633064903"/>
 <lud:lTo rdf:resource="nodes/node633064904"/>
 <rdf:type
rdf:resource="http://www.linkingurbandata.org/onto/ama/Link"/>
 </rdf:Description>
 <rdf:Description about="links/link19546326L6">
 <lud:partOf rdf:resource="street/street19546326"/>
 <rdfs:label>Dale Ave</rdfs:label>
 <lud:lFrom rdf:resource="nodes/node633064904"/>
 <lud:lTo rdf:resource="nodes/node633064848"/>
 <rdf:type
rdf:resource="http://www.linkingurbandata.org/onto/ama/Link"/>
 </rdf:Description>
 <rdf:Description about="links/link19546326L7">
 <lud:partOf rdf:resource="street/street19546326"/>
 <rdfs:label>Dale Ave</rdfs:label>
 <lud:lFrom rdf:resource="nodes/node633064848"/>
 <lud:lTo rdf:resource="nodes/node633064883"/>
 <rdf:type
rdf:resource="http://www.linkingurbandata.org/onto/ama/Link"/>
 </rdf:Description>

Link 4

Link 5

Link 6

Link 7

Figure 25: Representation of the links in the RDF response

40 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

6. Conclusion and Future Developments

The outcome of the algorithm is very promising. The program retrieves accurately all
the streets and nodes within the bounding box as well as other useful information
and the RDF response contains all the information arranged as required in order to
render it useful for other applications.

The execution time of the program is high due to large number of calls to the API as
well as the large number of file read/write operation. API calls are time consuming
since before each call a connection must be established and then closed after the
call. The response time of API calls depends on the speed of the internet connection.
A slow connection will slow down the response time of the API calls and will
eventually affect the execution time of the algorithm. In theory, this application
should run on a server hence the connection speed is usually better which will
reduce the impact on the response time of the algorithm. File read/write operations
are very time consuming and given that the number of these operations is greater or
equal to the number of nodes within the bounding box therefore they will also have a
big impact on the execution time. Other factors that have effects on the execution
time are the density of streets and nodes in one the bounding box. Assuming the
size of the bounding box remains the same, it will take more time to run the algorithm
in area dense with streets and nodes then to run it in a less crowded area.

Since this is the first version of the algorithm, there are still many possibilities to
improve it in the future.
The first improvement that comes to mind is modifying the way files are read and
written. According to Sun MicroSystems the leading cause of poor I/O performance
is failing to buffer I/O operations. Hard disks are very good at reading and writing
sizable chunks of data, but they are much less efficient when working with small
blocks of data. To maximize I/O performance, you should batch read and write
operations [8]. Therefore, I/O operations such as writing OpenStreetMap xml
responses to a file should be buffered. Another alternative could be reading the
response and parsing it without writing it to a file which would eventually lead to a
faster algorithm.
Depending on the final use of the application, if one is interested only in extracting
links from the map therefore interested only in junction nodes then the algorithm
could be modified to skip extracting regular nodes. By ignoring regular nodes, this
means less web service calls to the API as well as file I/O operations thus leading to
an improvement in the response time of the application.

Another possible development/modification could be using the function bbox defined
in OpenStreetMap.

The following command GET /api/0.6/map?bbox=left,bottom,right,top returns:

• All nodes that are inside a given bounding box and any relations that
reference them.

41 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

• All ways that reference at least one node that is inside a given bounding box,
any relations that reference them [the ways], and any nodes outside the
bounding box that the ways may reference.

• All relations that reference one of the nodes or ways included due to the
above rules. (Does not apply recursively.)[1]

Yet another development for this application is to expose it as a web service. Since
the application is meant to reside on the server side, a web service interface would
allow it to be accessible via HTTP. So, the arguments (Initial node and the dimension
of the bounding box) could be sent to the application by a remote user through an
HTTP Get request and they would get the result returned as an xml/RDF response.

42 Politecnico di Milano
OpenStreetMap Recursive Street Extraction Algorithm

7. References

[1] Open Street Map, Wiki Main Page, Available online at
http://wiki.openstreetmap.org/wiki/Main_Page.

[2] Open Street Map, Wiki Main Page, Available online at
http://wiki.openstreetmap.org/wiki/Elements

[3] Manola, F. and Miller, E., 'RDF Primer’, World Wide Web Consortium,
Recommendation, 2004.
Available online at http://www.w3.org/TR/rdf-primer/

[4] Open Street Map, Wiki Main Page, Available online at
http://wiki.openstreetmap.org/wiki/Planet.osm

[5] Richardson, Leonard; Ruby, Sam (2007-05), RESTful Web Services, O'Reilly

[6] G. Klyne and J. Carroll. W3C recommendation, RDFconcepts and abstract
syntax.
http://www.w3.org/TR/rdf-concepts/, February 2004.

[7] Open Street Map, Wiki Main Page, Available online at
http://wiki.openstreetmap.org/wiki/Beginners%27_Guide

[8] Steve Wilson and Jeff Kesselman, Java Platform Performance Strategies and
Tactics, Sun Microsystems 2000. Available online at
 http://java.sun.com/docs/books/performance/1st_edition/html/JPTOC.fm.html

[9] Thomas R. Gruber. A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2):199-220, 1993. Available online at
http://tomgruber.org/writing/ontolingua-kaj-1993.htm

[10] Emanuele Della Valle, Irene Celino and Daniele Dell'Aglio. LarKC Project.
Available online at http://wiki.larkc.eu/LarkcProject/WP6/WorkInProgress/AMAData

