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“Prediction is very difficult, especially about the future.”
Niels Bohr
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Abstract

Questo lavoro si prefigge un duplice obiettivo: da una parte quello di effettuare uno studio
metodologico sui modelli ad effetti casuali in ambito bayesiano non parametrico, dall’altro
di utilizzare questi modelli in un problema di affidabilità. Dopo una breve introduzione
all’approccio bayesiano non parametrico, segue la costruzione del processo gamma gen-
eralizzato normalizzato (NGG) a partire da misure di probabilità aleatorie a incrementi
indipendenti, e una descrizione delle principali proprietà. Tale processo sarà utilizzato
come ingrediente nei modelli presentati in seguito. I test di rottura accelerata (ALT)
sono test di affidabilità in cui si accelera il processo di rottura di un pezzo meccanico con
l’obiettivo di estrapolare quale sarà la vita del componente a condizioni di stress normali.
I dati relativi a un ALT possono essere analizzati con un modello accelerated failure time
(AFT) in cui si cerca di comprendere il legame tra il logaritmo del tempo di rottura e
alcune variabili esplicative. In questo lavoro analizziamo un ALT effettuato dalla NASA
su alcuni recipienti in pressione dello Space Shuttle. I recipienti sono rivestiti con Kevlar
proviente da diversi rocchetti e trattiamo l’effetto del rocchetto come casuale. I tempi di
rottura sono rappresentati con due modelli AFT bayesiani semiparametrici, con l’obiettivo
di fornire intervalli di credibilità per determinati quantili della distribuzione del tempo di
vita di un recipiente rivestito con Kevlar proveniente da un nuovo rocchetto. Nel primo
modello, l’errore è rappresentato da una mistura di distribuzioni parametriche in cui la
misturante è un processo NGG. Nel secondo modello, gli effetti casuali vengono considerati
in modo non parametrico, utlizzando una prior di tipo NGG. Per entrambi i modelli ab-
biamo calcolato analiticamente le espressioni delle full-conditional necessarie per poter
costruire un algoritmo MCMC che permetta di campionare dalla distribuzione a posteri-
ori; quindi abbiamo implementato gli algoritmi in C ed eseguito simulazioni numeriche. In
particolare, nel primo modello ad ogni iterazione dell’algoritmo simuliamo una traiettoria
dal processo NGG, mentre nel secondo usiamo un algoritmo di tipo Polya-urn.



Abstract

In this work we provide a methodological study about Bayesian nonparametric random-
effects models, and an application of these models in reliability. After a brief introduction
to the nonparametric Bayesian approach, the construction of the normalized generalized
gamma process (NGG) by normalization of a completely random measure is provided.
This process is an ingredient of the models we will introduce later. Accelerated life testing
(ALT) involves acceleration of failure times with the purpose of predicting the life-time of
the product at normal use conditions. Data from an ALT can be analyzed by a so-called
Accelerated Failure Time (AFT) model, where the dependence between the logarithm
of the failure time is related to some explanatory variables. We analyze an AFT made
by NASA on some pressure vessels, which are critical components of the Space Shuttle,
via two semi-parametric Bayesian AFT models. The pressure vessels are wrapped with
Kevlar from different spools and we treated the spool effect as random. In particular, we
provide credibility intervals of some given quantiles of the failure-time distribution for a
pressure vessel wrapped with fiber from a new random spool. In the first model the error is
represented by a mixture of parametric distribution with a NGG mixing measure, while in
the second one the random effects have a NGG process prior. For both models, we derived
the analytical expressions of the full-conditional distributions needed to make a MCMC
algorithm to sample from the posterior distribution; then we coded the algorithms in C
and we made numerical simulations. In particular, at each iteration of the first models
algorithm, we sample a trajectory of the NGG process; while in the second model, we
implemented a Polya-urn scheme algorithm.



Introduzione

Questo lavoro si prefigge un duplice obiettivo: da una parte quello di effettuare uno studio
metodologico sui modelli ad effetti casuali in ambito bayesiano non parametrico, dall’altro
di utilizzare questi modelli in un problema di ingegneria dell’affidibilità.

I modelli ad effetti casuali sono modelli che separano la variabilità tra diverse unità
statistiche (gruppi) dalla variabilità all’interno di ogni singola unità. Questi modelli ven-
gono anche chiamati modelli gerarchici in quanto permettono appunto di definire due o più
livelli di variabilità. Vengono spesso applicati in ambito clinico, ad esempio, dove vengono
ripetute diverse osservazioni (misurazioni) per ogni paziente con l’obiettivo di cogliere sia
eventuali differenze tra i pazienti sia variazioni a livello del singolo soggetto; in questo caso
il fattore di raggruppamento è il paziente. Questi modelli vengono utilizzati anche in altri
ambiti, tra i quali citiamo l’analisi di affidabilità di cui ci occuperemo più tardi. Un’ampia
classe di modelli ad effetti casuali è quella dei modelli lineari generalizzati a effetti misti
(GLMM) in cui gli effetti sono sia fissi che casuali, e in cui si assume che le risposte abbi-
amo distribuzione appartenente alla famiglia esponenziale. Secondo Gelman [13], diremo
che un effetto è fisso se è identico per tutti gruppi, e casuale se varia da gruppo a gruppo.

L’approccio bayesiano agli effetti casuali ha diversi vantaggi rispetto a quello frequen-
tista. Prima di tutto l’inferenza frequentista si basa su stime asintotiche, mentre in ambito
bayesiano è sempre possibile fare inferenza esatta anche per data-set di piccola dimensione,
utilizzando metodi di integrazione numerica Markov Chain Monte Carlo (MCMC). Inoltre,
in statistica classica gli effetti casuali tipicamente sono assunti tra loro indipendenti; men-
tre in statistica bayesiana vengono assunti scambiabili e questo legame tra gli effetti rende
le stime più accurate. In particolare, si ottengono stime ragionevoli anche per quelle unità
statistiche, rappresentate dagli effetti casuali, che contengono pochi soggetti. Ricordiamo
che l’assunzione di scambiabilità è ragionevole in quanto le unità statistiche possono essere
interpretate come un campione senza rimpiazzo dalla popolazione delle unità statistiche.

Spesso non è ragionevole fare specifiche assunzioni sulla distribuzione degli effetti casu-
ali e quindi, in questi casi, l’utilizzo di un modello parametrico porterebbe a stime distorte
dei parametri del modello. L’approccio non parametrico rilassa l’ipotesi di appartenenza
di una distribuzione ad una classe parametrica, permettendo di superare la dipendenza da
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assunzioni parametriche. Inoltre una prior non parametrica risulta più flessibile e permette
un’inferenza più robusta.

Il limite dei modelli bayesiani non parametrici è il grande sforzo computazionale
richiesto, anche se la crescente disponibilità delle capacità di calcolo degli ultimi anni
ha reso molto popolare l’inferenza bayesiana non parametrica e ha portato ad una grossa
produzione di modelli bayesiani non parametrici in letteratura. Nonostante ciò l’onere
computazionale è tuttora un problema di primaria importanza e quindi la ricerca di al-
goritmi sempre più efficienti resta attuale. Per una presentazione delle più comuni classi
di prior non parametriche e dei principali tecniche di inferenza non parametrica si veda
Müller e Quintana [29]. Di recente, l’approccio bayesiano non parametrico ha riscontrato
successo soprattutto in biostatistica; si veda Dunson [7] per una descrizione esaustiva dei
più recenti modelli bayesiani non parametrici utilizzati in questo ambito. In questo la-
voro concentriamo la nostra attenzione sulla prior nonparametrica Normalized Generalized
Gamma Process (processo NGG). Questo processo, introdotto da Brix [3] nella versione
non normalizzata e studiato per la prima volta come prior da Regazzini et al. [35], si
costruisce come normalizzazione di una misura completamente aleatoria e comprende il
processo di Dirichlet come caso particolare. Cos̀ı come il processo di Dirichlet, il pro-
cesso NGG seleziona distribuzioni discrete con probabilità uno, e induce una partizione
aleatoria sugli interi positivi; in particolare, questo vuol dire che se consideriamo un cam-
pione aleatorio di ampiezza n da questo processo, tra le n realizzazioni ci potranno essere
dei valori ripetuti e questi valori ripetuti definiscono una partizione degli interi 1, . . . , n.
Questa partizione aleatoria è governata da due parametri nel caso dell’NGG, a differenza
del processo di Dirichlet in cui il clustering è governato da un solo parametro. Questo
ulteriore grado di libertà rende il clustering più ricco e quindi la prior più flessibile.

I test di rottura accelerata (ALT) hanno grande importanza in affidabilità. Si tratta di
test in cui si accelera il processo di rottura di un pezzo meccanico con l’obiettivo di estrap-
olare quale sarà la vita del componente a condizioni di stress normali. I dati relativi ad
un ALT posso essere analizzati con i cosiddetti modelli ”accelerated failure time” (AFT)
in cui si cerca di comprendere il legame fra il logaritmo del tempo di rottura (o tempo di
vita) e alcune variabili esplicative come ad esempio la pressione o la temperatura; si tratta
dunque, in scala logaritmica, di un modello di regressione lineare. Spesso è ragionevole
assumere che il tempo di rottura abbia distribuzione Weibull: visto che la distribuzione
Weibull non appartiene alla famiglia esponenziale, il corrispondente modello AFT non è un
modello lineare generalizzato ma una sua naturale estensione. In questo lavoro analizzer-
emo un ALT effettuato dalla NASA su alcuni recipienti in pressione dello Space-Shuttle.
Il data-set consiste di 108 tempi di rottura di questi particolari recipienti in pressione
ricoperti in fibra di Kevlar, soggetti a 4 livelli di stress, e con fibra proveniente da 8 diversi
rocchetti. Il problema dell’affidabilità di questi recipienti è ancora di attualità, infatti nel
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2009 la NASA ha organizzato il Composite Pressure Vessel and Structure Summit [5] per
discutere i progressi in questo ambito.

In questo lavoro i tempi di rottura vengono modellati attraverso un modello AFT
bayesiano semiparametrico, con l’obiettivo di fornire intervalli di credibilità per determi-
nati quantili della distribuzione del tempo di vita di un nuovo recipiente ricoperto con fibra
di Kevlar proveniente da un nuovo rocchetto. Dal momento che abbiamo diverse osser-
vazioni per ogni rocchetto, risulta naturale considerare l’effetto del rocchetto come casuale;
mentre trattiamo l’effetto della pressione come effetto fisso. Questo data-set è stato studi-
ato da diversi autori con approcci frequentisti, in cui sia rocchetto che pressione venivano
trattati come effetti fissi; più recentemente Leon et al. [24] invece hanno proposto un mod-
ello AFT bayesiano parametrico ad effetti misti. Riteniamo che le stime ottenute siano
insoddisfacenti e che alcune scelte degli iperparametri delle prior di quest’ultimo modello
siano poco ragionevoli. In particolare, riteniamo che gli intervalli di credibilità per de-
terminati quantili della distribuzione del tempo di vita siano troppo larghi, e che alcune
prior siano eccessivamente informative. Quindi abbiamo deciso di formulare dei modelli
più flessibili per ottenere delle stime dei quantili di interesse più robuste e più accurate.
Due sono i modelli bayesiani semiparametrici considerati. Nel primo l’errore (di regres-
sione) rappresentato da una mistura di distribuzioni parametriche in cui la misturante
un processo NGG; la distribuzione degli effetti casuali parametrica, come in Leon et al.
[24]. Nel secondo modello l’errore è stato trattato parametricamente come in Leon et al.
[24], mentre gli effetti casuali sono stati considerati in modo non parametrico, utilizzando
sempre una prior di tipo NGG. Infine abbiamo validato i risultati ottenuti utilizzando la
funzione DPglmm nel pacchetto DPpackage del software R. Si tratta di un pacchetto che
permette di fare inferenza bayesiana su modelli semi-parametrici; in particolare con la
funzione DPglmm si può fare inferenza per modelli GLMM in cui gli effetti casuali hanno
una distribuzione iniziale di tipo processo di Dirichlet. Abbiamo utilizzato errori di tipo
Gamma, dato che la Weibull non appartiene alla famiglia esponenziale e non è contem-
plata in questo pacchetto; ma sottolineiamo che abbiamo usato questo package solo per
fare un’analisi comparativa.

I modelli che abbiamo qui sviluppato non solo sono nuovi perchè mai applicati a
questo specifico data-set, ma risultano originali anche nel contesto più generale di af-
fidabilità bayesiana non parametrica. Infatti, a differenza dell’ambito biostatistico, la
letteratura bayesiana nonparametrica in affidabilità non è molto estesa. Inoltre nella
parte applicativa della tesi, abbiamo autonomamente calcolato analiticamente le espres-
sioni delle full-conditional necessarie per poter costruire un algoritmo MCMC che permetta
di campionare dalla distribuzione a posteriori; successivamente abbiamo implementato gli
algoritmi nel linguaggio C ed eseguito molte simulazioni numeriche. Per quanto riguarda il
primo modello, ad ogni iterazione dell’algoritmo simuliamo traiettorie dal processo NGG.
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Gli algoritmi che simulano intere traiettorie di misure di probabilità aleatorie sono stati
proposti recentemente in letteratura; sono in generale molto onerosi dal punto di vista
computazionale e di difficile implementazione, ma forniscono un’informazione decisamente
più ricca sul modello. Nello specifico per simulare le traiettorie del processo NGG è stato
necessario invertire la funzione gamma troncata, che è nota per le sue instabilità nu-
meriche; per fare ciò in maniera efficace abbiamo utilizzato la libreria di C chiamata pari.
Nel secondo modello abbiamo utilizzato un algoritmo di tipo Polya-Urn che marginalizza
rispetto al processo NGG, e che quindi risulta computazionalmente meno pesante.

Nel Capitolo 1, dopo una breve introduzione all’approccio bayesiano non parametrico,
vengono presentate le principali proprietà del processo di Dirichlet. Segue la costruzione
del processo NGG a partire da misure di probabilità aleatorie a incrementi indipendenti.
In ultimo vengono descritte le proprietà del processo NGG.

Nel Capitolo 2 vengono introdotti i GLMM. Questa classe di modelli nasce dall’unione
dei modelli lineari ad effetti misti in cui la risposta ha distribuzione gaussiana e gli effetti
sono sia fissi che casuali, e i modelli lineari generalizzati che hanno risposta appartenente
alla classe della famiglia esponenziale ed effetti fissi. Ci concentriamo in particolare sui
modelli lineari generalizzati a effetti misti in ambito bayesiano: partiamo dal caso para-
metrico proposto da Zeger e Karim [38]; per poi giungere a quello semi-parametrico di
Kleinmann e Ibrahim [23], in cui gli effetti casuali hanno prior nonparametrica di tipo
processo di Dirichlet.

Nel Capitolo 3 viene introdotta qualche nozione relativa all’analisi di sopravvivenza
(ricordiamo che in ambito ingegneristico questa prende il nome di analisi di affidabilità),
e poi viene presentato il data-set relativo ai recipienti in pressione dello Space-Shuttle. In
ultimo vengono introdotti i modelli AFT bayesiani menzionati in questa Introduzione: il
modello parametrico di Leon et al. [24], il modello con errori nonparametrici, il modello
con effetti casuali non parametrici e quello con errori gamma del pacchetto DPpackage.

Nel Capitolo 4 presentiamo e confrontiamo i risultati ottenuti dai vari modelli. Per
ogni modello discutiamo la scelta degli iperparametri della prior, forniamo gli intervalli
di credibilità dei quantili di interesse della distribuzione del tempo di vita per un nuovo
recipiente in pressione, le stime a posteriori dei parametri del modello e l’analisi dei residui.

Le Appendici A e B riportano le espressioni analitiche delle full-conditional rispet-
tivamente del modello con errori non parametrici e del modello con effetti casuali non
parametrici.
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Introduction

In this work we provide a methodological study about Bayesian nonparametric random-
effects models, and an application of these models in reliability.

Random-effects models separate the variability among different statistical units (or
groups) from the variability inside each statistical unit. These models are also called
hierarchical models since they define two or more levels of variability. For instance, they
are often used in clinical trials where several observations (measurements) for each patient
are taken to estimate differences among patients and the variability within each patient;
in this case the grouping factor is the patient himself. These modeling techniques have
application in several fields, reliability analysis among others. A wide class of random-
effects models is that of the generalized linear mixed-effects models (GLMMs), where
the effects are both fixed and random, and the outcome belongs to the exponential family.
There are several, and often conflicting, definitions of fixed and random-effects. By Gelman
[13], fixed-effects are identical for all groups in a population, while random-effects are
allowed to differ from group to group.

The Bayesian approach to random effects have several advantages with respect to
the frequentist one. First, frequentist inference is often based on asymptotic assumptions,
while in the Bayesian framework it is always possible to make exact inference using Markov
Chain Monte Carlo (MCMC) numerical integration methods, for data-set of any dimen-
sion. Moreover, in classical statistics the random-effects parameters are generally consid-
ered mutually independent; on the other hand in Bayesian statistics they are assumed
exchangeable and this dependence among the effects brings to more accurate estimates.
In particular, exchangeability enables to borrow strength across random-effects and so
we obtain reasonable estimates also for the statistical units with few observations. We
recall that the exchangeability assumption is reasonable here, since the statistical units,
represented by the random-effects, could be considered as a sample without replacement
from the population of statistical units.

Often it is not reasonable to make any parametric assumption about the random-
effects’ distribution and so, in these cases, a parametric model could bring to biased esti-
mates of the parameters. The nonparametric approach relaxes the parametric hypothesis
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for the random-effects and leads to a more robust inference.
The drawback of the Bayesian nonparametric approach consists in its computational

heaviness, but the increasing computational power of the last years has made Bayesian
nonparametric inference feasible and more popular in literature. However, the computa-
tional efforts required for the inference is still one limitation of Bayesian nonparametrics
and hence the research of efficient algorithms is always up-to-date. See Müller and Quin-
tana [29] for a presentation of the most common classes of nonparametric priors and of the
main Bayesian nonparametric inference’s techniques. Recently, Bayesian nonparametrics
has become particularly popular in biostatistics; see Dunson [7] for an exhaustive descrip-
tion of the latest Bayesian nonparametric models in this field. In this work we focus on
the Normalized Generalized Gamma (NGG) process prior. This process was introduced
by Brix [3] in its unnormalized version, while Regazzini et al. [35] studied it as a prior
for the first time. The NGG process can be constructed by normalization of a completely
random measure, and the Dirichlet process is recovered as a particular case. Like the
Dirichlet process, the NGG process selects discrete distributions with probability one, and
induces a random partition on the positive integers; in particular, this means that, given
a sample of size n from this process, among the n observations there could be repeated
values, and these repeated values define a partition of {1, . . . , n}. This random partition
is ruled by two parameters in the NGG case, while the grouping of the Dirichlet process
is ruled by only one parameter. This additional degree of freedom makes the clustering of
the NGG process prior more flexible.

The accelerated life tests (ALTs) are very important in reliability. ALT testing involves
acceleration of failure times with the purpose of predicting the life-time of the product
at normal use conditions. Data from an ALT can be analyzed by a so-called Accelerated
Failure Time (AFT) model, where the dependence between the logarithm of the failure
time is related to some explanatory variables like pressure and temperature, among others.
Notice that in log-scale this is a regression model. A common choice in AFT models
is the Weibull distribution for the life-time, because it has a natural interpretation of
the shape and scale parameters. The AFT model is not exactly a GLMM, since the
Weibull distribution does not belong to the exponential family, but it can be considered
a straightforward generalization. Here, we will analyze an AFT made by NASA on some
pressure vessels, which are critical components of the Space-Shuttle. The data-set consists
of 108 lifetimes of pressure vessels wrapped with Kevlar yarn. The fiber of Kevlar comes
from 8 different spools and 4 levels of pressure stress are used. The reliability of the
pressure vessels is still relevant: in 2009 NASA organized the Composite Pressure Vessel
and Structure Summit [5] to discuss the state of the art on this subjet.

In this work, we model the failure times via semi-parametric Bayesian AFT models,
and provide posterior estimates of the regression parameters and credibility intervals of
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some given quantiles of the failure-time distribution for pressure vessel wrapped with fiber
from a new random spool. We consider the spool effect as random, since several observa-
tions for each spool are provided, while the pressure stress level is treated as a fixed effect.
Several authors studied this data-set with a frequentist approach, where both spool and
pressure are considered as fixed effects; more recently Leon et al. [24] fitted a Bayesian
parametric AFT model with mixed-effects. Their estimates are not completely reliable
and some of their prior assumptions are questionable. According to our opinion, some of
their interval estimates of given quantiles of the failure-time distribution are too large, the
hyperparameters of the prior are too much informative, and their posterior estimates are
affected by a large Monte Carlo error. Hence, we assumed more flexible models with the
purpose of getting more accurate and more robust estimates. We studied two different
Bayesian semiparametric models. In the first model, the regression error is represented by
a mixture of parametric distribution with a NGG mixing measure, while the distribution
of the random-effects is parametric as in Leon et al. [24]. In the second model, the error
is treated parametrically as in Leon et al. [24], while we consider nonparametric random-
effects, using a NGG process prior. Finally, we validated our results using the function
DPglmm of the package DPpackage in the statistical software R. This package offers
several functions to fit Bayesian nonparametric and semiparametric models; in particular
the function DPglmm fits GLMMs, where the random-effects have Dirichlet process prior
distribution. The outcome is assumed here Gamma-distributed, since the Weibull distri-
bution does not belong to the exponential family and it is not available in this package.
We underline that we used DPpackage only for comparative purposes only.

Not only these models are new for this given data-set, but also in the more general
framework of reliability under a Bayesian approach. In fact, despite biostatistics, relia-
bility nonparametric Bayesian literature is not particularly wide. Moreover, we derived
the analytical expressions of the full-conditional distributions needed to make a MCMC
algorithm to sample from the posterior distribution; then we coded the algorithms in the
programming language C and we made several numerical simulations. At each iteration of
the first model’s algorithm, we sample a trajectory of the NGG process. The algorithms
that simulate complete trajectories of random probability measures are quite recent in
literature; they are particularly time consuming and hard to implement, but they provide
much information on the model. In particular, to sample a trajectory of the NGG process,
we must invert the truncated gamma function, which is well-know for its numerical insta-
bility(we used a C library called pari). In the second model, we implemented a Polya-urn
scheme algorithm, which integrates out the NGG process, and so it is computationally
less heavy.

In Chapter 1, after a brief introduction to nonparametric Bayesian approach, we
present the main properties of the Dirichlet process. Then a construction of the NGG
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process by normalization of a completely random measure is provided. Finally, we intro-
duce the main properties of the NGG process.

In Chapter 2 we present the GLMM. This class of models can be seen as the gen-
eralization of mixed-effects linear models and generalized linear models. We will focus
on the Bayesian approach to GLMM: first, we introduce the parametric model of Zeger
and Karim [38]; then the semi-parametric one of Kleinmann and Ibrahim [23], where the
random effects have Dirichlet process prior.

In Chapter 3 we provide basic notions of survival analysis (or reliability analysis in
engineering), and then we introduce the data-set of the NASA pressure vessels. Finally, we
present the Bayesian AFT models mentioned before: Leon et al.[24]’s parametric model,
the model with nonparametric error, the model with nonparametric random-effects, and
the model with Gamma-distributed error of DPpackage.

In Chapter 4 we present and compare the results of the different models. For each of
them, we discuss the prior hyperparameter’s choice, and we provide the interval estimates
of given quantiles of the failure time distribution for a new pressure vessel wrapped with
fiber from a new random spool, the posterior estimates of the parameters and the analysis
of the residuals.

In Appendix A and B we provide the analytic expressions of the full-conditionals of
the model with nonparametric error and those of the model with nonparametric random-
effects, respectively.
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Chapter 1

Bayesian Nonparametrics

1.1 Exchangeability assumption

Classical statistics is based on a framework where observations X1, X2 . . . are assumed
independent and identical distributed (i.i.d.) from a unknown probability distribution P .
We say that we are considering a parametric framework when P belongs to a parametric
family, otherwise we are considering a nonparametric framework when P lies in the space
of probability distributions P(R).

It is possible to distinguish the two cases also in the Bayesian setting. In the parametric
case we have a prior Π on a finite dimensional space Θ and, given θ, the observations are
assumed i.i.d. from Pθ. In the nonparametric case, we have a prior Π on the space P(R)
of all probability distributions on (R,B(R)) and, given P , the observations are assumed
i.i.d. from P .

Under the assumption of exchangeability, de Finetti’s Representation Theorem gives
a validation of the Bayesian setting.

Let consider an infinite sequence of observations (Xn)n≥1 defined on some probability
space (Ω,F ,P), with each Xi taking values on R endowed with the Borel σ-algebra B(R).
This last hypothesis can be relaxed and we could consider observations which take values
in a complete metric and separable space X. In this work it is enough to consider X = R.

Definition 1. A sequence (Xn)n≥1 is exchangeable when, for any finite permutation π

of (1, 2, . . . , n), the random vectors (X1, . . . , Xn) and (Xπ(1), . . . , Xπ(n)) have the same
probability distribution.

There are several types of dependence among a sequence of observations (Xn)n≥1.
Under the exchangeability assumption, the information that the observations Xis provide
is independent of the order in which they are collected. For instance, if we sample without
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replacement from an urn with infinite marbles of different colors, the sequence of colors
that we obtain is exchangeable.

A random element defined on (Ω,F ,P), with values in P(R), is called random proba-
bility measure (r.p.m.).

With a view to our utilization of r.p.m.s in statistics, the two main desirable properties
for the class of r.p.m. are a large support, and a posterior distribution that is analytically
tractable. A prior with a large support is an obvious requirement, and a tractable pos-
terior reduces the computational complexity. In fact computational heaviness is still one
limitation of Bayesian nonparametrics.

The most popular r.p.m.s in literature are Dirichlet Processes, Polya Trees and Bern-
stein Polynomials. A recent review of the main r.p.m. classes appears in Müller and
Quintana [29].

Now we give formal definitions of the Borel σ-algebra on P(R) introducing the topol-
ogy of weak convergence. The space P(R) is equipped with the topology of the weak
convergence which makes it a complete and separable metric space. We will write that
Pn

w−→ P (Pn converges weakly to P ), if
∫

R
fdPn →

∫

R
fdP, as n→ +∞

for all bounded continuous function f on R. For any P0 a neighborhood base consists of
sets of the form

∩ki=1{P : |
∫
fidP0 −

∫
fidP | < ε}

where fi, i = 1, . . . , k are bounded continuous function on R, k ≥ 1 and ε > 0.
The Borel σ-algebra on P(R) is the smallest σ-algebra generated by the open sets in

the weak topology.

Theorem 1 (de Finetti). The sequence (Xn)n≥1 is exchangeable if, and only if, there
exists a unique probability measure q on P(R) such that, for any n ≥ 1 and any Borel sets
B1, B2, . . . , Bn,

P(X1 ∈ B1, X2 ∈ B2, . . . , Xn ∈ Bn) =
∫

P(R)

n∏

i=1

p(Bi)q(dp).

Equivalently,

X1, . . . , Xn|P iid∼ P

P ∼ q(·).
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In the parametric case q is concentrated on a parametric family

X1, . . . , Xn|θ iid∼ fθ(·)
θ ∼ π(·),

where Xi|θ and θ are absolutely continuous (with respect to the Lebesgue measure) or
discrete probability distributions, for i = 1, . . . , n. fθ(·) and π(·) are the probability
density functions of Xi|θ and θ respectively.

By Bayes’ Theorem, the posterior probability distribution of θ, i.e. the conditional
probability distribution of θ given X1, . . . , Xn, has probability density function

π(θ|X1 = x1, . . . , Xn = xn) =
∏n
i=1 fθ(xi)π(θ)∫

Θ

∏n
i=1 fθ(xi)π(dθ)

.

The predictive distribution of a new observation Xn+1 has probability density function

fθ(x|X1 = x1, . . . , Xn = xn) =
∫

Θ
fθ(x)π(dθ|X1 = x1, . . . , Xn = xn)

Similarly we can make inference and prediction in the nonparametric setting. In this
case q is a probability measure on P(R), the posterior distribution can be derived by

L(dP |X1, . . . , Xn) =
∏n
i=1 L(Xi|P )L(dP )∫

P(R)

∏n
i=1 L(Xi|P )L(dP )

and the predictive distribution of a new observation Xn+1 is

L(Xn+1|X1, . . . , Xn) =
∫

P(R)
L(Xn+1|P )L(dP |X1, . . . , Xn).

1.2 Dirichlet processes

The Dirichlet process is a useful family of prior distributions on P(R) introduced by
Ferguson [11]. The Dirichlet prior is easy to elicit, has a manageable posterior and other
nice properties. It can be viewed as an infinite-dimensional generalization of the finite-
dimensional Dirichlet distribution.

Definition 2. Let α = (α1, α2, . . . , αk) with αi > 0 for i = 1, 2, . . . , k. The random
vector P = (P1, P2, . . . , Pk),

∑k
i=1 Pi = 1, has Dirichlet distribution with parameter α, if

(P1, . . . , Pk−1) is absolutely continuous with respect to the Lebesgue measure on Rk−1 with
density

f(p1, p2, . . . , pk−1) =
Γ(

∑k
i=1 αi)

Γ(α1)Γ(α2) . . .Γ(αk)
pα1−1
1 pα2−1

2 . . . p
αk−1−1
k−1 (1−

k−1∑

i=1

pi)αk−1,

where 0 ≤ pi ≤ 1 ∀i, 0 ≤ p1 + . . .+ pk−1 ≤ 1, 0 otherwise.
We will write P ∼ D(α).
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Definition 3. Let α a finite measure on R, a =: α(R); let α0(·) = α(·)/a. A r.p.m.
P with values in P(R) is a Dirichlet process on R with parameter α if, for any finite
measurable partition B1, . . . , Bk of R,

(P (B1), . . . , P (Bk)) ∼ D(α(B1), . . . , α(Bk)).

We will write P ∼ DP (α) for short. It can be proved that such a process exists (see
Ferguson [11]). If P ∼ DP (α), it follows that E[P (A)] = α0(A) for any Borel set A, and
thus we can say that α0 is the prior expectation of P .

The Dirichlet prior is a conjugate prior on P(R); in fact, let (X1, X2, . . . , Xn) be a
sample from a Dirichlet process P , i.e.

X1, X2, . . . , Xn|P iid∼ P

P ∼ DP (α).

Then the posterior distribution of P , given X1, X2, . . . , Xn, is

P |X1, X2, . . . , Xn ∼ DP (α+
n∑

i=1

δXi).

In this case, it can be proved that the distribution of Xn+1 can be described as follows:

X1 ∼ α0 (1.1)

Xn+1|X1, . . . , Xn ∼ a

a+ n
α0 +

n

a+ n
(
∑n

i=1 δXi

n
) (1.2)

Notice that the predictive distribution in (1.1), called Blackwell-MacQueen Urn Scheme,
is a mixture of the base-line measure α0 and the previous observations. This means that
there is a positive probability of coincident values for any finite and positive a. Moreover
if α0 is an absolutely continuous probability measure, then Xn+1 will assume a different,
distinct value with probability a

a+n . Formula (1.1) allows us to sample (marginally) from
P without simulating any trajectory of the Dirichlet process.

Let (X1, X2, . . . , Xn) be a sample from P , where P ∼ DP (α). If Kn denotes the
random variable representing the number of distinct values among (X1, X2, . . . , Xn). An-
toniak (1974) proved that the distribution of Kn is the following

P(Kn = k) = cn(k)n!ak
Γ(a)

Γ(a+ n)
, k = 1, 2, . . . , n, (1.3)

where cn(k) is the absolute value of Stirling number of the first kind, which can be tabu-
lated or computed by a software. From (1.3) it is clear that the mass parameter a influ-
ences the prior on the number of clusters. Larger a gives rise to a higher prior number of
components. .

12



Sethuraman (1994) provided a useful representation of the Dirichlet process. Its con-
struction gives an insight on the structure of the process and provides an easy way to
simulate its trajectories.

Let consider two independent sequences of random variables (θi)i≥1 and (τi)i≥1 such
that θi

iid∼ beta(1, a) and τi
iid∼ α0 (defined on some probability space (Ω,F ,P)), and define

the following weights {
p1 = θ1

pn = θn
∏n−1
i=1 (1− θi), n ≥ 2

It is straightforward to see that 0 ≤ pn ≤ 1 n = 1, 2, . . . and
∑∞

n=1 pn = 1 a.s..
This construction is called stick-breaking. In fact p1 represents a piece of a unit-length

stick, p2 represents a piece of the remainder of the stick and so on, where each piece is
independently modeled as a beta(1, a) random variable scaled down to the length of the
remainder of the stick.

Now we can define a random variable P on P(R)

P (A) =
∞∑

n=1

pnδτn(A), A ∈ B(R).

Sethuraman (1994) proved that P has Dirichlet prior distribution, i.e. P is a Dirichlet
process with parameter α. From this construction it is clear that a Dirichlet process has
discrete trajectories, i.e. if P ∼ DP (α), P({ω : P (ω) is discrete}) = 1.

As mentioned in Section 1.1, P(R) is a complete separable metric space, and hence
any probability measure Π on P(R) has a support (the smallest closed set of measure
1). Let E be the support of the finite measure α on R. Then it can be shown that
Mα = {P : support of P ⊂ E} is the weak support of DP (α), i.e. the set of all the
probability distributions with support contained in the support of the measure α is the
weak support of DP (α) .

1.3 Normalized random measures with independent incre-

ments

The class of the normalized random measures with independent increments (NRMIs) gen-
eralizes the Dirichlet process. The NRMIs are defined as normalization of completely ran-
dom measures, that can be constructed from Poisson processes. A nonparametric Bayesian
analysis of NRMI is developed in James et al. [18] and for a comprehensive introduction
to Poisson processes and completely random measures we refer to Kingman [22].

Before constructing the NRMIs we introduce some preliminary concepts. First we give
the definition of a Poisson process on a general space S, then we provide the definition
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of a completely random measure and finally we show how construct a completely random
measure from a specific Poisson process.

Definition 4. Let (Ω,F ,P) be some probability space, S be complete separable metric
space, and ν a non-atomic measure on S. A Poisson Process N , with state space S and
intensity measure ν, defined on (Ω,F ,P), is a stochastic process such that:

1. for any disjoint measurable subset A1, A2, . . . , An of S, the random variables
N(A1), N(A2), . . . , N(An) are mutually independent;

2. for any A in S, N(A) ∼ Poisson(ν(A)).

A completely random measure Φ on R is a random measure such that, for any col-
lection of disjoint measurable subsets A1, A2, . . . of R, the random variables Φ(Ai) are
independent. Hence a Poisson process is a completely random measure with Poisson’s
finite dimensional distribution.

Now let us consider S = R+×R and take a measure ν such that
∫∞
0 min(s, 1)ν(ds,R) <

+∞. We can construct a completely random measure Φ as a linear functional of the
Poisson random measure N , with space state S and intensity ν, as

Φ(B) =
∫

R+×B
sN(ds, dx), B ∈ B(R). (1.4)

It can be proved that Φ is a completely random measure on R (see Kingman [22]).
Moreover Φ is a purely atomic measure and in fact its atoms correspond to the points of
N : if (s, x) is a point of N , then Φ has an atom of weight s at x.

By Campbell’s theorem, the moment generating function of Φ(B) for any measurable
B is

E[e−tΦ(B)] = exp{
∫ ∞

0
(e−ts − 1)ν(ds,B)}, t > 0.

Any completely random measure Φ so defined is identified by its corresponding in-
tensity measure ν. A random probability measure is called homogeneous if its intensity
measure ν can be decomposed in ν(ds, dx) = ρ(ds)γ(dx), where ρ and γ are measures on
R+ and R, respectively.

In formula (1.4) we imposed that
∫∞
0 min(s, 1)ν(ds,R) < +∞; adding the condition

that ν(S) = +∞, Regazzini et al. [35] showed that P(0 < T := Φ(R) < +∞) = 1.
Therefore we define a r.p.m. process P as

P (B) =
Φ(B)
T

, B ∈ B(R).

P is called normalized random measure with independent increments (NRMI) on R. By
the discreteness of Φ, it follows that the NRMI P selects discrete distributions almost
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surely. Moreover it admits a series representation of the kind

P =
∞∑

i=1

piδτi .

If the underlying intensity measure is homogeneous, pi and τi reciprocally independent.

The Dirichlet process DP (α) can be obtained by normalization of a gamma random
measure, where the underlying intensity measure is ν(A,B) = α(B)

∫
A s

−1e−sds, A ∈
B(R+) and B ∈ B(R).

Other examples of NRMI are normalized inverse-gaussian processes and normalized
generalized gamma processes. We will present the latter in the Subsection 1.4 with more
details.

1.4 Normalized generalized gamma processes

The normalized generalized gamma process (NGG) is a random probability measure with
values in P(R) constructed via normalization of a generalized gamma random measure.

As presented in Subsection 1.2, the clustering behavior of the Dirichlet process is
controlled by the parameter a. The NGG process has an additional parameter σ belonging
to [0, 1] that reinforces the clustering mechanism, and includes the Dirichlet process as a
particular case (σ = 0).

The generalized gamma random measure has been introduced by Brix [3], while an
introduction to the NGG process can be found in Lijoi and Prünster [27], see Lijoi et al.
[26] and Argiento et al. [1] for applications of NGG processes in Bayesian nonparametric
mixture models.

Let consider a Poisson process N with space state S = R+ × R and mean measure

ν(A,B) = κ(B)
∫

A
ρ(ds), A ∈ B(R+), B ∈ B(R),

where κ(·) is an absolutely continuous finite measure on R and

ρ(ds) =
1

Γ(1− σ)
s−σ−1e−ωsds, s > 0 , where ω ≥ 0, 0 < σ ≤ 1. (1.5)

With this choice of ν and σ, define the completely random measure Φ as in (1.4). For
any measurable B, the moment generating function of Φ(B) is

E[e−tΦ(B)] = exp{−κ(B)
σ

[(ω + t)σ − ωσ]}, t > 0.

Since
∫∞
0 min(s, 1), ν(ds,R) < +∞ and ν(S) = +∞, we define a normalized generalized

gamma process P via normalization of the completely random measure Φ defined above.
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Hence a NGG process P is characterized by the set of parameters (σ, κ(·), ω), when
0 < σ ≤ 1. It can be showed that this parameterization is not unique, since (σ, κ(·), ω)
and (σ, sσκ(·), ω/s) yield the same distribution for P , for any s > 0 (see Pitman [32]). For
short we will write P ∼ NGG(σ, ω, κ, P0), where κ := κ(R+) and P0 = κ(·)/κ(R+), ω > 0,
and κ is an absolutely continuous (with respect to the Lebesgue measure) finite measure
on R.

As mentioned in Subsection 1.3, the NGG process P admits a series representation:

P =
∞∑

i=1

piδτi =
∞∑

i=1

Ji
T
δτi , (1.6)

where the sequences (pi)i≥1 and (τi)i≥1 are independent. Moreover pi := Ji
T , where

(Ji)i≥1 are the ranked points of a Poisson process on R+ with mean intensity ρ(ds),
T =

∑∞
i=1 Ji, and τi are i.i.d. from P0. Since the Ji are ranked points, P1 ≥ P2 ≥ . . ., and

we notice that P(
∑n

i=1 pi = 1) = 1 by definition.

Unlike the Dirichlet process, the NGG does not admit any analytic expression of its
finite dimensional distributions. Nonetheless the mean, the variance of P (B), for any
measurable B, are

E[P (B)] = P0(B),
Var[P (B)] = P0(B)(1− P0(B))I(σ, κ),

(1.7)

and, for any measurable B1 and B2,

Cov(P (B1), P (B2)) = (P0(B1 ∩B2)− P0(B1)P0(B2))I(σ, κ),

where
I(σ, κ) := (

1
σ
− 1)(

κ

σ
)1/σe

κ
σ Γ(

1
σ
,
κ

σ
) = (

1
σ
− 1)

∫ ∞

1
e

κ
σ

(y−1)y−
1
σ
−1dy

and Γ(α, x) :=
∫∞
x ettα−1dt is the incomplete gamma function. It can be proved that

P (B) w−→ P0(B) if σ → 1 or κ→ +∞; and that P (B) w−→ δτ (B) if σ → 0 and κ→ 0, where
τ ∼ P0.

If we fix σ = 0 and κ > 0, the underlying intensity measure is ν(A,B) = κ(B)
∫
A s

−1e−sds
for any measurable A and B, and we recover the Dirichlet process DP (κP0).

Since the NGG selects discrete distributions a.s., sampling from P induces a random
partitions Π on the positive integers and thus can be considered as a particular case of
the so-called species sampling model. This class of r.p.m. was introduced by Pitman [31].

We recall that a partition of a set X is a set of nonempty subsets of X such that each
element X ∈ X is in exactly one of these subsets. Therefore a random partition of a set X
is a random variable with values in the space of the partitions of X. Let X1, X2, . . ., given
P , be i.i.d. from P , and X = {X1, X2, . . . Xn}, for any n ≥ 1; Xi and Xj belong to the
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same subset of the partition if, and only if, Xi = Xj , where i, j = 1, 2, . . .. Since (Xi)i≥1

is exchangeable, the probability of a partition of (X1, . . . , Xn) depends only on n and on
the cardinalities of its subsets, for any n ≥ 1.

Let consider, for any n, (X1, X2, . . . , Xn) a sample from a NGG process P , and define
ψ = (ψ1, ψ2, . . . , ψk) the vector of the distinct values among {X1, X2, . . . , Xn}; then the
marginal prior distribution of (X1, X2, . . . , Xn) is identified by the joint distribution of the
random partition Πn of (1, 2, . . . , n), and ψ. Indeed,

P(Πn = πn, ψ1 = B1, ψ2 = B2, . . . , ψk = Bk) = P(Πn = πn)
k∏

l=1

P0(Bl)

= p(e1, e2, . . . , ek)
k∏

l=1

P0(Bl),

(1.8)

where el = #{Xi : Xi = ψl, 1 ≤ i ≤ n} and
∑k

l=1 el = n. The symmetric and non-
negative function p in (1.8) is called exchangeable partition probability function (EPPF)
and it can be proved that has the following expression in the general frame of the species
sampling models:

p(e1, e2, . . . , ek) = Vn,k

k∏

l=1

(1− σ)el−1, k = 1, . . . , n, n = 1, 2, . . . .

where (a)n = a(a + 1) . . . (a + n − 1) with the convention (a)0 = 1. In the NGG specific
case Vn,k is

Vn,k =
σk−1eκ/σ

Γ(n)

n−1∑

i=0

(
n− 1
i

)
(−1)i(

κ

σ
)i/σΓ(k − i

σ
;
κ

σ
). (1.9)

The term Vn,k rules the prior distribution of the number of clusters, while
∏k
l=1(1 −

σ)el−1 is responsable for the size of the clusters. We notice that the latter depends only
on σ and that for a large value of σ most of the cluster will have small size. To stress the
dependence on σ and κ we will write p(e1, e2, . . . , ek;σ, κ).

It can be showed that the law of the random variable representing the number of
distinct values among (X1, X2, . . . , Xn) has the following expression

P(Kn = k) =
Vn,k
σk

G(n, k, σ) k = 1, 2, . . . , n,

where G(n, k, σ) = 1
k!

∑k
l=0(−1l)

(
k
l

)
(−lσ)n is the generalized Stirling number and Vn,k as

in (1.9).

Let (X1, X2, . . . , Xn) be a sample from a NGG process P , i.e.

X1, X2, . . . , Xn|P iid∼ P

P ∼ NGG(σ, ω, κ, P0).
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Then the predictive distribution of Xn+1, given X1, X2, . . . , Xn, can be represented as
follow

P(Xn+1 ∈ B|X1, X2, . . . , Xn) = w0(n, k;σ, κ)P0(B) + w1(n, k;σ, κ)
k∑

l=1

(el − σ)δψl
(B),

(1.10)
where

w0(n, k;σ, κ) =
p(e1, . . . , ek, 1;σ, κ)
p(e1, . . . , ek;σ, κ)

(1.11)

w1(n, k;σ, κ)(el − σ) =
p(e1, . . . , el + 1, . . . , ek;σ, κ)

p(e1, . . . , ek;σ, κ)
, (1.12)

for any k = 1, . . . , n (see Pitman [31]). We notice that w0(n, k;σ, κ)+w1(n, k;σ, κ)
∑k

l=1(el−
σ) = 1 and that (1.11) has a mixture structure similar to (1.1). In fact with probabil-
ity w0(n, k;σ, κ) Xn+1 will be different from the previous ones, while with probability
w1(n, k;σ, κ)(el − σ) coincides with ψl, for 1 ≤ l ≤ k.

Unlike the Dirichlet prior, the NGG prior is not conjugate on P(R). However James
et al. [18] provided a posterior characterization of the NGG in the form of a mixture
representation. In fact, let consider a sample X1, X2, . . . , Xn from a NGG process P =
Φ/T , and define a latent variable U := Γn/T , where Γn ∼ Γ(n, 1); then it is possible to
describe the distribution of Φ, given X1, X2, . . . , Xn and the latent variable U = u, as
follows

Φ|(X1, X2, . . . , Xn, U = u) ∼ Φu +
k∑

l=1

Llδψl
,

where Φu is a generalized gamma process with parameters (σ, κ, ω + u, P0), and each Ll,
conditionally on X1, X2, . . . , Xn and the latent variable U = u, is independent of Φu, and
distributed as gamma(el − σ, ω + u), for 1 ≤ l ≤ k. Thus the posterior distribution of P ,
given u, is

P |(X1, X2, . . . , Xn, U = u) ∼ 1

Tu +
∑k

l=1 Ll

∞∑

l=1

Jl,uδτl +
1

Tu +
∑k

l=1 Ll

k∑

l=1

Llδψl
, (1.13)

where Tu := Φu(R) and Jl,u are the jumps of a NGG(σ, κ, ω + u, P0) process. We notice
that (1.13) is a mixture of a NGG(σ, κ, ω+ u, P0) process and a discrete r.p.m. with fixed
points equal to the observed distinct values ψ1, ψ2, . . . , ψk.
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Chapter 2

Generalized Linear Mixed Models

The generalized linear mixed model (GLMM) unifies two classes of regression models: the
linear mixed models and the generalized linear models.

A linear mixed model contains both fixed and random effects, and can be used when the
data have normal errors (the difference between fixed and random effects will be explained
later in this section). This model is useful when repeated measurements are made on the
same statistical units. In fact it takes into account the variability between statistical units
and the variability within each unit. In a generalized linear model the outcomes can be
generated from any probability distribution in the exponential family, but it is usually
used for uncorrelated data. We remind that the exponential family includes a wide range
of both discrete and continuous probability distributions (for instance normal, gamma,
Poisson, binomial). The GLMM gets through the limitations of those two models. Indeed
it admits both fixed and random effects, and can be used when the data are correlated
and generated from any probability distribution in the exponential family.

While GLMM frequentist inference relies on asymptotic assumptions, Zeger and Karim
[38] proposed a parametric Bayesian approach and showed that exact inference for any
sample size can be obtained through a MCMC method. Kleinman and Ibrahim [23] con-
sidered a Bayesian semi-parametric approach to GLMM, where the parametric (Gaussian)
assumption on the distribution of the random effects is relaxed, adapting a Dirichlet pro-
cess prior. They argue that a ”wrong” distribution assumption on the random effects can
bias the results obtained.

Recent developments of computational schemes make nonparametric Bayesian infer-
ence feasible, even if computational complexity is still a limitation in the case of a large
dataset.
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2.1 Linear mixed models

Let consider N statistical units, with ni repeated measurements for any unit i, p fixed
effects and v random effects. For example repeated measurements on the same patient, or
several patients from the same hospital. The simplest linear mixed model for the outcome
yi = (yi1, yi2, . . . , yini) is

yi = Xiβ + Ziαi + εi, 1 ≤ i ≤ N, (2.1)

where εi
iid∼ Nni(0, σ

2Ini), αi
iid∼ Nv(0,Λ), and (ε1, . . . , εn) and (α1, . . . ,αn) are in-

dependent. Moreover β and αi are parameter vectors (or effects) of dimension p and
v, respectively, and Xi and Zi are the design matrices of dimension (ni, p) and (ni, v),
respectively.

Thus we can write that

yi|β,αi ind∼ Nni(Xiβ + Ziαi, σ
2Ini)

and
yi|β, σ2,Λ ∼ Nni(Xiβ, ZiΛZ ′i + σ2Ini)

The coefficient β represents the population-mean effects, while αi represents the effect of
unit i. We notice also that each unit i has its own covariance structure ZiΛ−1Z ′i + σ2Ini .
Hence a mixed-effects model is nothing else but a multilevel model, where there are the
units at the first level, and the repeated measurements at a second one.

2.2 Generalized linear mixed models

Before adding random effects into a generalized linear model, we provide some details
about the exponential family.

A probability distribution belongs to the univariate exponential family if its density
can be written as follow

f(y|θ, τ) = exp{[yθ − a(θ)]/τ + c(y, τ)},

where
E[Y |θ, τ ] =

da(θ)
dθ

and

Var[Y |θ, τ ] = τ
d2a(θ)
dθ2

,

where θ ∈ R is called canonical parameter and τ > 0 is the dispersion parameter. It is
possible to provide a multivariate definition, but in this work it is enough to consider the
one-dimensional case.
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Example 1. A random variable Y ∼ gamma(α, β) (gamma-distributed with shape α and
rate β) has density function

f(y|α, β) =
βα

Γ(α)
yα−1e−βy, y ≥ 0,

where α, β > 0. It can be easily proved that it belongs to the exponential family, with
τ = 1/α, θ = −β/α and a(θ) = ln(−1/θ) = ln(α/β).

Now assume
Yij |θij , τ iid∼ p(yij |θij , τ), where j = 1, 2, . . . , ni, (2.2)

so that each observation has its own canonical parameter θij and all observations share
the same dispersion parameter τ .

In the generalized linear models θij is linked to the covariates by

h(θij) = ηij = x′ijβ,

where h(·) is monotone and is called θ-link, ηij is named linear predictor, and xij is the
row j of the matrix Xi.

In a GLMM we consider the random effects αi ∼ Nv(0,Λ) in addition to the fixed
ones

h(θij) = ηij = x′ijβ + z′ijαi,

where zij is the row j of the matrix Zi, to capture extra-variability of the unit i.
Now we can write f(yij |θij , τ) as a function of β,αi, τ :

f(yij |β,αi, τ) = exp{τ [yijh−1(ηij)− a(h−1(ηij))] + c(yij , τ)} (2.3)

Notice that, given αi, the repeated observations of the unit i are independent thanks
to (2.2). Thus, the likelihood for N statistical units is

L(y;β,α, τ) =
N∏

i=1

ni∏

j=1

f(yij |β,αi, τ), (2.4)

where y′ = (y11, . . . , y1n1 , . . . , yN1, . . . , yNnN
) and α′ = (α′1,α

′
2, . . . ,α

′
N ).

Hence the vector of the parameters is (β,α, τ, σ2,Λ).

2.3 Bayesian approaches to the generalized linear mixed

models

In a Bayesian parametric framework the parameters β and Λ are random. In this work
we will consider a model with just one-dimensional random effects, i.e. v = 1, and so, in
place of the multivariate Λ, we will consider the univariate λ.
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In this case, the likelihood is as in (2.4), with f(yij |β,αi, τ) as in (2.3). The ”standard”
parametric prior for (β,α, τ, σ2, λ) is as in Zeger and Karim [38]

β ∼ Np(ν0,Σ0)

α1, α2, . . . , αN |λ iid∼ N(0, λ)

λ ∼ InvGamma(
τ1
2
,
τ2
2

),

where α and β are independent, and τ, σ2 are fixed.
We recall that a random variable Y ∼ InvGamma(α, β) (Inverse-gamma-distributed

with shape α > 0 and scale β > 0) has density function

f(y|α, β) =
βα

Γ(α)
y−α−1exp

(− β

y

)
, y ≥ 0

Hence α1, . . . , αN are exchangeable for Theorem 1. The exchangeability assumption
for the random effects is appropriate since the N statistical units can be seen as a finite
sample without replacement from a larger population of units. Moreover, exchangeability
enables to ”borrow strength” across random effects by linking observations through a
covariance model, and so it improves individual random effect estimates.

Kleinman and Ibrahim [23] relaxed the normality assumption and considered
α1, α2, . . . , αN |P iid∼ P and P ∼ DP (α). Moreover they introduce a prior Gamma to the
dispersion parameter τ . The prior specifications for the parameters are

β ∼ Np(ν0,Σ0)

α1, α2, . . . , αN |P iid∼ P

P ∼ DP (aN(0, λ))

λ ∼ InvGamma(
τ1
2
,
τ2
2

)

τ ∼ Gamma(a0, b0)

Relaxing the normality assumption may better express our uncertainty about the true
distribution of the random effects. We recall that the random effects describe a latent and
unknown structure between the statistical units, and hence in general we have little prior
information about their distribution.

Of course it is important to accurately model the distribution of the random effects in
particular when we are interested in the prediction for a future observation from a given
subject, since the posterior distribution of the random effects can be affected by its prior
distribution. For example the normal random effects model can perform poorly when the
random effects have a multi-modal distribution.

Moreover it is desirable to relax the assumption of normality when we are interested
in doing inference about the distribution of the random effects itself.
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Chapter 3

Application to accelerated failure

time models

3.1 Survival analysis

Survival analysis is a branch of statistics focused on analyzing time-to-event data. These
modeling techniques have application in engineering, medicine, public health, economics
among others. We mention Kalbfleisch and Prentice [20] for a comprehensive presentation
of the main models and methods in survival analysis.

The target of a survival regression study is to understand the dependence between
time-to-event (often called failure time) and some explanatory variables. For example, the
time to recovery of a patient can be related to the age, the sex or a specific treatment.

A difficulty that frequently arises in trials having time-to-event endpoints is that a
fraction of the subjects could not ”fail” at the end of the study. For these subjects it is
only known that the true time-to-event is to the right of the conclusion of the trial. These
times are called right-censored data.

Often the interest in survival analysis lies in the survival function and the hazard
function. Let T be an absolutely continuous random variable representing the failure time
of a subject and let f(·) denotes the probability density of T .

The survival function S(t) represents the probability that the individual time-to-event
is greater than t:

S(t) := P(T > t), t > 0,

while the hazard function h(t) is the instantaneous rate of failure upon time t:

h(t) := lim
∆t→0

P(t ≤ T ≤ t+ ∆t|T ≥ t)
∆t

=
f(t)
S(t)

, t > 0.

Frequentist techniques in survival analysis are based on the estimation of the survival
function or the hazard function. In particular we mention the Kaplan Meier estimator,

23



that estimates the survival function S(·) through a nonparametric likelihood approach, and
the Cox proportional hazard model. Under the latter model different subjects have hazard
functions that are proportional to one another, and the covariates have a multiplicative
effect on the hazard function h(·).

In a more recent model called accelerated failure time model (AFT) the covariates
influence the survival time T through the following relationship

log(T ) = Xβ +W

or equivalently
T = exp(Xβ)V, V = eW > 0,

where X denotes the matrix of covariates, and β is the vector of regression parameters.
Observe that the covariates X may accelerate or decelerate the time to failure. The AFT
models can be framed as generalized linear models for the survival time T , where T can
assume a variety of distributions on R+ (Weibull, log-normal, gamma, . . .).

3.2 Accelerated life test on NASA pressure vessels

The analysis of accelerated life tests (ALTs) is very important in reliability. We recall that
in engineering applications survival analysis is generally called reliability. ALT testing
involves acceleration of failures with the purpose of predicting the life characteristics of
the product at normal use conditions.

Here we analyze an ALT test on NASA pressure vessels, which are critical components
of the Space Shuttle. In particular we model the failure times via a semi-parametric
Bayesian AFT model, and provide posterior estimates of the regression parameters and
credibility intervals of some given quantiles of the failure-time distribution as well.

The application is based on a dataset of 154 lifetimes of pressure vessels wrapped with
Kevlar yarn. The fiber comes from 8 different spools and 5 levels of pressure stress are
used. All the vessels at the lowest level of stress of 17.2MPa and 11 vessels out of 21 at
stress level 23.4MPa are censored at 41000 hours. Further details on the pressure vessels
are given in Section 3.2.1. Several authors made a statistical analysis of this dataset, but
nobody included the 46 vessels at lowest level of stress in his own analysis. Although we
think that the 46 vessels should be included in the analysis via a hierarchical model, we
decide to omit them in order to compare our results to those of other authors; therefore
we will consider 108 times (97 failure-times and 11 right-censored), from 8 different spools
and under 4 levels of pressure (the data-set is provided in Appendix C).

Glaser (1983) [16], Gerstle and Kunz (1984) [14] and Crowder et al. (1991) [6] used
frequentist approaches to the problem and considered the spool effect as fixed. Feiveson
and Kulkarni (2000) [10] (who omitted the spool 7 from their analysis, see Section 3.2.1)
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emphasize the necessity of treating the spool effect as random. Leon et al. (2006) [24]
considered a Bayesian Weibull regression with random effects, and Argiento et al. (2010)
[2] proposed a semiparametric Bayesian Weibull regression model.

The results of those authors are quite sensible to the modeling assumptions: the au-
thors that considered the spool effect as fixed concluded that the risk was minimal; while
the authors that treated the spool as a random-effect concluded that there is not enough
information in the data-set to make statements about the reliability of the pressure vessels.

In our point of view, a model with spool effect treated as fixed can be used only to
make prediction about the life-time of a new pressure vessel wrapped with Kevlar from
either one of the 8 known spools or from an ”avarage” of them. Unfortunately, we do not
know which spool is used to wrap the pressure vessels of the Space Shuttle; in fact, the
vessels may be wound from one of the 8 known spool, or from a spool selected at random
from the population of spools. Hence, we will treat the spool affect as random to predict
properly the failure-time of a new pressure vessel wrapped with Kevlar from an unkown
spool.

3.2.1 NASA pressure vessels and Kevlar fibres

A pressure vessel is a closed container designed to hold gases or liquids at high pressure.
Pressure vessels wrapped with composite materials have been largely used. In fact, in
applications with one short pressure cycle, such as rocket motors, composite vessels offer
considerable weight savings over steel or titanium alternatives.

The short-term static-burst behavior of such vessels is quite predictable. On the con-
trary the response of composite vessels to cyclic or sustained pressurization is not pre-
dictable. A study was undertaken in 1976 to determine what constitutes a safe design
stress level for Kevlar 49 Epoxy under constant load for a specified time. The data comes
from Kevlar 49 Epoxy creep-rupture experiments conducted during five years at U.S. De-
partment of Energy Lawrence Livermore National Laboratories on scaled-down replicates
of NASA pressure vessels.

Each vessel consisted of a 112mm internal diameter aluminum liner, 1mm thick, over-
wrapped with 1.1mm of Kevlar 49 yarn wetted during winding with epoxy (see Figure
3.1). The liner is made principally from aluminum hemispheres, electron-beam welded at
the equator. Although the liner is nearly as thick as the composite, it is much weaker and
therefore contributes little to the burst strength of the vessel.

Moreover, we have further information about the microscopic characteristics of a single
fiber and a single yarn of spool 2 and 7, respectively. In Table 3.1 we report the results of
mechanical tests that were made on both a single fiber and a single yarn of these spools.
In our analysis in Sections 4.1.1 and 4.2.1, we will conclude that spool 7 performs worse
that spool 2. From Table 3.1, the low performance of Spool 7 can be explained by the
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Figure 3.1: Photos of the NASA pressure vessels from the 2009 Composite Pressure Vessel
and Structure Summit [5].

microscopic characteristics of the yarn; in fact it has only 127 filaments instead of the
nominal 267 and the diameter of the fiber is 17mm (instead of 11mm). We guess that the
Spool 2 has better performance since its properties are closer to the nominal ones. While
Feiveson and Kulkarni [10] omitted Spool 7 from their analysis since it does not respect
the nominal properties, we decided to keep it here for two reasons. First, we are interested
in the identification of other spools with performace similar to Spool 7. Secondly, since
the fibers and the yarns of spools are not tested one-by-one, we will over-estimate the
performance of a new pressure vessel from an unknown spool if we exclude the ”bad”
spools.

Nominal Spool 2 Spool 7

Fiber strength (GPa) 2.86 3.33 3.31
Yarn failure load (Kg) 7.3 6.6 6.0
Fiber diameter (µm) 11.0 11.5 17.0
Fibers per strand of yarn 267 263 127
Yarn strength (GPa) 2.76 2.59 2.02

Table 3.1: Mechanical properties of a single fiber and a single yarn of Kevlar

3.3 Accelerated life models for Kevlar fiber failure times

First we introduce the parametric AFT model considered in Leon et al. [24], then we
propose two different semi-parametric AFT models that generalize the parametric one. In
the former the linear predictor is handled parametrically and the errors are modelled as a
Weibull mixture of a NGG process. In the latter the random effects normality assumption
is relaxed and they are treated non-parametrically, while the error is parametric.
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Finally we briefly present a semi-parametric AFT model with non-parametric random
effects and with gamma-distributed errors. We will fit this model using DPpackage package
[19] for Bayesian nonparametric modelling in the programming software R [33].

3.3.1 Parametric model

Leon et al. [24] fitted a parametric Bayesian AFT mixed model assuming Weibull survival
times. They considered the stress as a fixed effect, and the spool as a random one. As
mentioned in Section 3.1, we can write the model in addictive form as

log T = β0 + β1log(xs) +α′x+
W

θ

W ∼ Gumbel(0, 1)
(3.1)

or, equivalently, in multiplicative form

T = exp{β0 + β1log(xs) +α′x}V
V ∼Weibull(θ, 1),

(3.2)

where xs = stress, x = (x1, . . . , xJ), xj is a binary covariate to identify the spool j,
α = (α1, . . . , αJ), j = 1, . . . , J , and J = 8 is the number of spools.

In both model representations the error has a standard distribution. In the additive
model (3.1) θ is a scale parameter, while in the multiplicative model (3.2) is a shape
parameter. We recall that the probability density function of the standard Gumbel r.v.
W is

f(w) = exp{w − exp(w)},
with its survival function

S(w) = exp{−exp(w)}.
While the probability density function of the Weibull r.v. V is

f(v) =
θ

λ

(
v

λ

)θ−1

exp
{
−

(
v

λ

)θ}
, v ≥ 0,

with its survival function

S(v) = exp
{
−

(
v

λ

)θ}
, v ≥ 0,

where θ > 0 is the shape parameter and λ > 0 is the scale one. We recall that the Weibull
r.v. has the following scaling property:

V ∼Weibull(θ, λ) ⇔ cV ∼Weibull(θ, cλ), (3.3)

where c > 0.
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We also notice that neither the Weibull nor the Gumbel distribution belong to the
exponential family and so (3.1) and (3.2) are not exactly GLMMs. However, they can be
considered as straightforward generalizations.

Leon et al. [24] assumes the following model

Vi|θ iid∼ Weibull(θ, 1), i = 1, . . . , n, (3.4)

with priors

β0 ∼ N(0, σ2
0)

β1 ∼ N(0, σ2
1)

α1, . . . , αJ |λ iid∼ N(0, λ)

λ ∼ InvGamma(
τ1
2
,
τ2
2

)

θ ∼ gamma(a0, b0),

β0, β1, α, θ independent.

(3.5)

Here we have n = 108 observations, wherem = 11 right censored times Tcens and (n−m) =
97 failure times.

From (3.4), (3.5) and the scaling property (3.3) it follows that

Ti|β0, β1, xs,i,xi,α, θ
ind∼ Weibull(θ, exp{β0 + β1log(xs,i) +α′xi}).

This is an AFT model and, as we mentioned in Section 3.1, the linear predictor

ηi := exp{β0 + β1log(xs,i) +α′xi} (3.6)

accelerates or decelerates the failure time Ti. Instead of α′xi, we will generally use αk[i],
where k[i] = 1, . . . , J , to identify the spool of observation i.

3.3.2 Nonparametric error model

In (3.4) and (3.5), all observations share the same shape parameter θ. We relax this
hypothesis by letting the error distribution to be a shape mixture of Weibull densities,
where the mixing measure is a NGG. Since we think that all observations could not
necessarily share the same shape parameter. In particular, we suspect that the spools that
do not respect the nominal conditions like Spool 7 (see Table 3.1) may have a different
shape parameter.

Now the model is
Vi|θi ind∼ Weibull(θi, 1), i = 1, . . . , n, (3.7)

under the prior
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β0 ∼ N(0, σ2
0)

β1 ∼ N(0, σ2
1)

α1, . . . , αJ |λ iid∼ N(0, λ)

λ ∼ InvGamma(
τ1
2
,
τ2
2

)

θ1, . . . , θn|P ∼ P

P ∼ NGG(σ, ω, κ, P0)

P0 ∼ Gamma(a0, b0),

β0, β1, α, θ independent.

(3.8)

Here we have m right-censored times and (n−m) failure times. This means that

Ti|β0, β1, xs,i, αk[i], θi
ind∼ Weibull(θi, exp{β0 + β1log(xs,i) + αk[i]}). (3.9)

Observe that, conditionally on the r.p.m. P , the error terms are i.i.d. according to
the nonparametric mixture, which represents a generalization of the well known Dirichlet
mixture process model (see Lo [28] and Ferguson [11]).

We notice that the grouping of θi is random and inferred a posteriori from the data.
Moreover, conditionally on the mixing measure P , the error terms are such that

Vi|P iid∼
∫

R+

k(v; θ, 1)P (dθ) i = 1, . . . , n,

where k(·; θ, 1) denotes the kernel density of a Weibull distribution with shape parameter
θ and scale equal to 1.

We are mainly interested in the predictive distribution of the life time Tn+1,new of a new
pressure vessel wrapped with Kevlar fiber from a random unknown spool αnew and subject
to a given stress level xs. The predictive probability density distribution fTn+1,new(·|T ) is

fTn+1,new(t|T ) = E[
∫

R+

k(t; θ, exp{β0 + β1log(xs) + αnew})P (dθ)|T ]

=
∫ { ∫

R+

k(t; θ, exp{β0 + β1log(xs) + αnew})P (dθ)
}
×

L(dβ0, dβ1, dα, dαnew, dλ, dP |T ),

(3.10)

where t > 0 and T = (T1, . . . , Tn).
The posterior distribution

L(dβ0, dβ1, dα, dαnew, dλ, dP |T ) (3.11)

in (3.10) does not have any tractable analytic expression. So the predictive distribution
(3.10) must be computed by Markov Chain Monte Carlo integration. If we sample a large
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enough Markov sequence {β(b)
0 , β

(b)
1 , α

(b)
new, P (b)}Bb=1 whose limit distribution is (3.11), we

will estimate fTn+1,new(·|T ) by the ergodic mean

1
B

B∑

b=1

∫

R+

k(t; θ, exp{β(b)
0 + β

(b)
1 log(xs) + α(b)

new})P (b)(dθ).

By (1.6), the MCMC estimate of the predictive distribution is

1
B

B∑

b=1

∞∑

i=1

k(t; τ (b)
i , exp{β(b)

0 + β
(b)
1 log(xs) + α(b)

new})p(b)
i .

Of course, the predictive distribution of the life Tn+1,j of a new pressure vessel with
Kevlar fiber from a given spool j can be computed as

fTn+1,j (t|T ) =
∫ {∫

R+

k(t; θ, exp{β0 + β1log(xs) + αj})P (dθ)
}
×

L(dβ0, dβ1, dα, dαnew, dλ, dP |T ),

and it can be estimated by

1
B

B∑

b=1

∞∑

i=1

k(t; τ (b)
i , exp{β(b)

0 + β
(b)
1 log(xs) + α

(b)
j })p(b)

i .

To sample from the posterior distribution (3.11) we build a Gibbs sampler with limit
distribution equal to the posterior. We augment the state space with an auxiliary variable
U to be able to sample from all the full-conditional posterior distributions. We have
introduced this latent variable in (1.13) to provide a tractable expression of the posterior
distribution of a NGG: now it will be used to sample from the full-conditional of P .

The posterior distribution (3.11) is a function of T = (T1, . . . , Tn), while we are given
only T1, . . . , Tn−m failure times and m right-censored times Tcens. Hence we must impute
Tn−m+1, . . . , Tn and include them into the state space of the Markov Chain. The imputed
times Ti, for i = n − m + 1, . . . , n, can be obtained easily from the following truncated
Weibull distribution

P(Ti > t|Ti > Tcens, xs,i, β0, β1, αk[i], θi) =





P(Ti > t|xs,i, β0, β1, αk[i], θi)
P(Ti > Tcens|xs,i, β0, β1, αk[i], θi)

if t > Tcens

1 if t ≤ Tcens
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In conclusion, we will sequentially draw from the following full-conditionals

L(dβ0|β1,α, αnew, λ, P, U,T )

L(dβ1|β0,α, αnew, λ, P, U,T )

L(dαj |β0, β1,α−j , αnew, λ, P, U,T ), j = 1, . . . , J

L(dαnew|β0β1,α, λ, P, U,T )

L(dλ|β0, β1,α, αnew, P, U,T )

L(dP |β0, β1,α, αnew, λ, U,T )

L(dU |β0, β1,α, αnew, λ, P,T )

L(dTi|β0, β1,α, αnew, λ, P, U,T−i), i = n−m+ 1, n−m+ 2, . . . , n.

(3.12)

As usual, α−j indicates the vector α without the j-th component , i.e.
α−j = (α1, . . . , αj−1, αj+1, . . . , αJ). Similarly T−i is the vector T without Ti.

Observe that at each iteration of the algorithm we simulate a trajectory from the
posterior distribution of P . We need complete trajectories of P to provide credibility
intervals of any given quantiles of the failure-time distribution. In fact, if we sampled only
from the full-conditionals of θi’s and not from that of P , we would loose one level of the
hierarchy, and hence we would underestimate the variability of the marginal error V .

The algorithms that simulate complete trajectories from the posterior distribution
of P are very recent in the literature and were introduced by [17]; of course, they are
more difficult to implement and more time consuming with respect to the popular Polya
Urn Scheme algorithms that integrate out the process P and sample only from the full-
conditionals of θi’s. However they provide more information on the structure of the model.
We recall that the Polya Urn Scheme algorithms are based on the idea of the Blackwell-
MacQueen urn scheme (1.1) and were introduced by Escobar [8], and Escobar and West
[9] for Bayesian density estimation.

It can be proved that the full-conditional of P in (3.12) is independent of T and of the
linear predictor ηi (3.6), and so

L(dP |β0, β1,α, αnew, λ,θ, U,T ) = L(dP |θ, U) (3.13)

By (1.13), we know that (3.13) is a mixture of a NGG process and a discrete r.p.m. with
finite fixed points. Hence the posterior law of P admits an infinite series representation,
but we will sample only a finite series using a stopping criterion as in Argiento et al.
[1]. Although in this way we obtain only approximated trajectories of P , this stopping
criterion guarantees the convergence for functionals of P . We mention that Walker [37]
and Kalli et al. [21] recently proposed methods to sample exactly from the posterior of P
by introducing a latent variable.

The explicit expressions of all full-conditionals and further information on the algo-
rithm are provided in Appendix A.
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3.3.3 Nonparametric random effects model

As we will see in the results Chapter 4, treating the error distribution as a shape mixture of
Weibull densities does not improve remarkably the predictive capability of the parametric
model (3.4)-(3.5). Therefore we tried to generalize it in a different manner, i.e. relaxing
the normality assumption for the random-effects parameters; in fact, we allow now the
distribution for the spool effect to be multi-modal, in order to not over-estimate its variance
as before. Here we handle the random effects nonparametrically, while the shape parameter
of the error is parametrically distributed as in Leon et al. (3.4). The model we propose
in this Section is similar to those in Kleinmann and Ibrahim [23], where the authors used
a Dirichlet prior for the random effects, while here we use a NGG prior. As mentioned in
Section 1.4, the NGG process prior is ruled by two parameters (instead of one) controlling
the clustering mechanism; so the NGG is more flexible than the Dirichlet process. The

model is
Vi|θ iid∼ Weibull(θ, 1) i = 1, . . . , n, (3.14)

and the prior specifications for the parameters are

θ ∼ Gamma(a0, b0)

β1 ∼ N(0, σ2
1)

α1, . . . , αJ |P iid∼ P

P ∼ NGG(σ, ω, κ, P0)

P0|µ, λ ∼ N(µ, λ)

λ ∼ InvGamma(
τ1
2
,
τ2
2

)

µ ∼ N(0, σ2
0),

β1, α, θ independent.

(3.15)

For (3.14), (3.15) and the scaling property (3.3), it follows that the failure time Ti has
conditional distribution

Ti|β1, xs,i, αk[i], θ
ind∼ Weibull(θ, exp{β1log(xs,i) + αk[i]}).

In (3.9) we consider the mean effect β0 and the random effects αj separately, for j =
1, . . . , J . However, in the corresponding Markov Chain trajectories we observed a strong
correlation between the mean effect β0 and each random effect αj , and so we needed a long
Gibbs Sampler to converge to the limit distribution. Here we change parameterization to
speed convergence: we eliminate the mean effect and we add a prior on the mean of the
base-line P0 of the random effects. We cannot distinguish the difference between the mean
effect and the spool effect anymore, but this is not a limitation since we are interested
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in the predictive distribution rather than the posterior estimates. Recently Li et al. [25]
proposed a posterior technique to separate the mean effect from the random one when a
Dirichlet process prior is used.

As already mentioned in Section 3.3.2, we are interested in the predictive distribution of
the life time Tn+1,new of a new pressure vessel wrapped with Kevlar fiber from a random
unknown spool αnew and subject to a given stress level xs. The predictive probability
density distribution fTn+1,new(·|T ) is

fTn+1,new(t|T ) =
∫
k(t; θ, exp{β1log(xs) + αnew})L(dβ1, dα, dαnew, dθ, dµ, dλ|T ), (3.16)

where t > 0 and T = (T1, . . . , Tn). If we were interested in the predictive distribution of
the life-time Tn+1,j of a new pressure vessel with Kevlar from a given spool j, we could
simply replace αnew with αj in the linear predictor in (3.16).

Since there is no manageable analytic formula for the posterior distribution

L(dβ1, dα, dαnew, dθ, dµ, dλ|T ), (3.17)

we build a Gibbs sampler that converges to it. Then we will estimate the predictive
probability density distribution fTn+1,new(·|T ) by the ergodic mean

1
B

B∑

b=1

k(t; θ(b), exp{β(b)
1 log(xs) + α(b)

new}),

where {βb1, α(b)
new, θ(b)}Bb=1 is a Markov sequence from the Gibbs sampler whose limit distri-

bution is (3.17).
As in the previous Section, we must impute the m right-censored times Tcens and

include them into the Markov Chain. It can be easily proved that they have truncated
Weibull distribution (see 3.3.2).

The full-conditionals of the Gibbs sampler are

L(dβ1|α, αnew, µ, λ, θ,T )

L(dαj |β1,α−j , αnew, µ, λ, θ,T ), j = 1, . . . , J

L(dαnew|β1,α, µ, λ, θ,T )

L(dµ|β1,α, αnew, λ, θ,T )

L(dλ|β1,α, αnew, µ, θ,T )

L(dθ|β1,α, αnew, µ, λ,T )

L(dTi|β1,α, αnew, µ, λ, θ,T−i), i = n−m+ 1, n−m+ 2, . . . , n.

(3.18)

Observe that we do not need to sample any trajectory of P to provide credibility inter-
vals of some given quantiles of the failure-time distribution for a new spool or a given spool

33



j. In fact αjs and αnew are part of the linear predictor, and the linear predictor has only a
multiplicative effect as showed in (3.6). Hence, here we do not simulate trajectories of the
process P , but we will use a Polya-urn scheme algorithm to sample the full-conditionals
of αj ’s.

This Gibbs sampler in (3.18) is computationally less heavy than (3.12), since it provides
single values α(b)

j s and α
(b)
new, and not a complete trajectories P (b), at each iteration b.

However it is not trivial to sample from all the full-conditionals. In particular to sample
from the full-conditionals of αjs we implement the so-called Algorithm 2 of Neal [30] for
non-conjugate priors; while the full-conditionals of β1 and θ are log-concave and so we use
an adaptive rejection sampling method [36]. In Appendix B we provide further information
about the sampling methods used for each full-conditional of the Gibbs sampler for (3.14)-
(3.15).

3.3.4 DPpackage: gamma-distributed error model

DPpackage [19] is a package for the modelling programming software R [33] that offers
several functions to fit Bayesian nonparametric and semiparametric models. In particular
the function DPglmm fits GLMMs with nonparametric random effects as in Kleinmann
and Ibrahim [23] (see Section 2.2 to a brief introduction to GLMM).

As mentioned in Section 3.3.1, the Weibull distribution does not belong to the ex-
ponential family, and so (3.2) is not exactly a GLMM. Since the function DPglmm fits
models with error from the exponential family, we replaced the Weibull with a Gamma
distribution and used the package to ”explore” the data-set. We recall that the Weibull
distribution is popular in AFT models since it has a natural interpretation of the shape and
scale parameters. The Gamma distribution has a similar density function, and hence we
expect that our results will not be too much biased by this error distribution choice. Since
the function DPglmm does not take into account right-censored data, we must discard the
m right-censored times. The model we fit using DPglmm has the following likelihood

Vi|θ iid∼ Gamma(
1
θ
,
1
θ
) i = 1, . . . , (n−m), (3.19)
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and the these prior specifications for the parameters

θ ∼ Gamma(a0, b0)

β1 ∼ N(0, σ2
1)

α1, . . . , αJ |P iid∼ P

P ∼ DP (aP0)

a ∼ Gamma(a1, b1)

P0|µ, λ ∼ N(µ, λ)

λ ∼ InvGamma(
τ1
2
,
τ2
2

)

µ ∼ N(0, σ2
0),

β1, α, θ independent.

(3.20)

We recall that the Gamma r.v. also has the scaling property:

V ∼ Gamma(θ, λ) ⇔ cV ∼ Gamma(θ, λc ), (3.21)

where c > 0.
Hence, for (3.19), (3.20) and the scaling property (3.21), it follows that the failure time

Ti has distribution

Ti|β1, xs,i, αk[i], θ
ind∼ Gamma(

1
θ
,
1
θ
exp{−β1log(xs,i)− αk[i]}).

Notice that E[V |θ] = 1 and Var[V |θ] = θ, and hence θ is the dispersion parameter, while
the linear predictor

ηi := exp{β1log(xs,i) + αk[i]}
is a multiplicative factor that accelerates or decelerates the failure time Ti.

Observe that in (3.20), we assume a Dirichlet process prior in each of the random-
effects parameters α1, . . . , αJ , and the mass parameter a of the Dirichlet process is given
a Gamma prior.

The function DPglmm provides a sample from the posterior distribution

L(dβ1, dα, dαnew, dθ, da, dµ, dλ|T ),

using a Polya-Urn scheme algorithm. In Section 4.3.3, we give further information on the
input arguments and output elements of DPglmm.
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Chapter 4

Results

In this chapter we analyze the results of our semi-parametric models, and compare them
to those obtained by Leon et al. [24]. We report interval estimates of the quantiles of the
predictive distributions for a new spool, and for Spool 2 and 7. It is interesting to consider
these latter spools, since we have information about the microscopic characteristics of the
yarn and the fiber of these spools. In particular we provide interval estimates for the first
percentile of the failure time distribution at stress level 23.4MPa, the lowest value in the
dataset, and for the median time when stress is 22.5MPa (extrapolated). Leon et al. [24]
chose the latter stress level because it is lower than those in the experiment, but close
enough to provide reasonable estimate. We recall that in ALT tests, the stress levels are
higher than normal use condition to accelerate the failure times.

Before presenting our results, we report the numerical values of the priors’ hyper-
parameters in the parametric model of Leon et al. (3.4)-(3.5), and a summary of their
results.

The priors specifications are

β0 ∼ N(0, σ2
0 = 0.001)

β1 ∼ N(0, σ2
1 = 0.001)

α1, . . . , αJ |λ iid∼ N(0, λ)

λ ∼ InvGamma(
τ1
2

= 0.001,
τ2
2

= 0.001)

θ ∼ Gamma(a0 = 1, b0 = 0.2).

(4.1)

Notice that, if τ := τ1 = τ2, each αj has a marginal t-student prior with τ degrees of
freedom. Leon et al. [24] consider λ in (4.1) to have a vague prior, since a t-student with
τ = 0.002 degrees of freedom has heavy tails. On the contrary we think that such a prior
is greatly informative, since it puts most of its mass in neighborhood of zero and infinity.
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Moreover they chose the hyperparameters of θ on the basis of some engineering ar-
guments about the shape parameter of the Weibull distribution. Indeed, if θ > 1 the
failure rate increases with time, otherwise, if θ < 1 it decreases over time. Although those
prior beliefs are reasonable, we think that they should also take into account the marginal
distribution of the error V . Marginally, there are no analytic expressions of the density
distribution function of the error; but we can provide numerical estimation of its density
function (see Figure 4.1a), and analytic expressions of the first to moments of log(V ). By
(3.1) and (3.2), it follows that

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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(a) a0 = 1, b0 = 0.2
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1.
5

2.
0

(b) a0 = 1.5, b0 = 5

Figure 4.1: Marginal error distribution density functions for different hyperparameters of
the gamma prior for the shape parameter θ. (a) Marginal error of Leon et al.’s parametric
model, and (b) marginal error used in our semiparametric models.

E[log(V )] = E
[
E[log(V |θ)]] = E

[
E[
W

θ
|θ]]

= E
[1
θ
E[W ]

]
= E[−γ

θ
] = −γ b0

a0 − 1
, a0 > 1,

and

E[(log(V ))2] = E
[
E[(log(V |θ))2]] = E

[
E[

(W
θ

)2|θ]] = E
[ 1
θ2
E[W 2]

]

= E[
1
θ2

(
1
6
π2 + γ2)] = (

1
6
π2 + γ2)

b20
(a0 − 1)(a0 − 2)

, a0 > 2,

where γ = 0.577 . . . is the Euler constant. Hence we think that their prior on θ is too
much informative (see the peak around v = 1 in Figure 4.1a), and has too heavy tails
since it does not even admit the first log-moment. The marginal error distribution density
function with parameters a0 = 1.5 and b0 = 5 in Figure 4.1b is less informative and has
lighter tails. It can be proved that the asymptote at zero is present for any choices of the
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hyperparameters. To avoid the asymptote we could take into account priors with limited
support, for instance a uniform prior between a and b, where a, b > 0; but the drawback
is that the posterior is forced to have this limited support.

In Table 4.1 we provide their credibility intervals of the quantiles of the predictive
distributions for a new spool, and for Spool 2 and 7. Notice that the intervals for Spool
2 and 7 are quite different, and those of a new random spool are much larger. We guess
that this gap between Spool 2 and 7 is due to the microscopic differences between the two
spools (see Table 3.1). We fitted the parametric model using the code provided in their
article and observed that the results are very strongly affected by Monte Carlo errors; so
we will consider only the order of magnitude and not the exact values of their interval
estimates.

Table 4.1: Interval estimates of the quantiles of the predictive distributions for the para-
metric model

Spool 2.5% 50% 97.5%

2 153.2 362.4 732.6
7 56 131 305

new 22.0 671 19290

(a) 1st percentile failure time in hours

at 23.4MPa.

Spool 2.5% 50% 97.5%

2 17.4 28.56 46.42
7 4.72 9.19 17.9

new 1.9 53.7 1479

(b) Median failure time in thousands

of hours at 22.5MPa.

4.1 Nonparametric error model

We have considered the model (3.7) under the following prior

β0 ∼ N(0, σ2
0 = 0.001)

β1 ∼ N(0, σ2
1 = 0.001)

α1, . . . , αJ |λ iid∼ N(0, λ)

λ ∼ InvGamma(
τ1
2

= 0.1,
τ2
2

= 0.1)

θ1, . . . , θn|P ∼ P

P ∼ NGG(σ, ω = 1, κ, P0)

P0 ∼ Gamma(a0 = 1.5, b0 = 5).

(4.2)

In this Section we will use those hyperparameters if not otherwise specified, while the
NGG processes prior hyperparameters σ and κ will be specified each time. Observe that
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the variance of the fixed effects priors are as in the parametric model (4.1), while we take
τ := τ1 = τ2 = 0.2 to have a priori random effects with less heavy tails. P0 is the base-line
measure of the NGG process prior and we fix it to obtain a marginal error as in in Figure
4.1b.

4.1.1 Interval estimates for a new random spool and for given ones

First we carry out a sensibility analysis with respect to the nonparametric prior hyperpa-
rameters σ and κ, providing the credibility intervals of the first percentile of the failure
time distribution at stress level 23.4MPa, and of the median failure time when stress is
22.5MPa for a new random spool. We also provide the credibility intervals at the two
stress levels for Spool 2 and 7.

In Table 4.1.1, we provide credibility intervals of the quantiles of the predictive distri-
bution for different choices of the NGG process hyperparameters σ and κ. We fixed them
in order to have an expected number of clusters of θi’s between 2 and 8 to reflect our a pri-
ori knowledge. We fixed the expected number of cluster equal to 2 because we know that
there are at least two groups of spools, those that are close to the nominal characteristics
like Spool 2, and those that do not respect the nominal conditions like Spool 7; we chose
the other ”extreme” 8, since this is exactly the information we have from the data (i.e.
the data come exactly from 8 spools). We recall that in this model the number of groups
of θi’s belongs to {1, . . . , n} and does not necessarily represent the number of spools, but
the components of the error. Finally we tested the robustness of the model fixing σ and
κ such that the expected number of clusters is higher (20.6). We did not use values for σ
higher than 0.3 because the number of relevant components of P increases too much and
consequently the computing time explodes. We also noticed numerical problems in the
evaluation of the weights of P .

From Table 4.1.1 it is clear that the median quantile at 22.5MPa is more robust than
the 1st percentile at 23.4MPa. We observe a monotone trend as a function of I(σ, κ). In
fact, if I(σ, κ) gets smaller, the credibility intervals moves to the left and gets narrower.
As showed in (1.7), I(σ, κ) has a multiplicative effect on the variance of the base-line
measure P0, and so, if I(σ, κ) is small, we have little variability around P0. Moreover, we
recall that if I(σ, κ) → 1, we obtain the parametric model (3.4), while if I(σ, κ) → 0, we
obtain the following parametric model

Vi|θi iid∼ Weibull(θi, 1), i = 1, . . . , n,

θi
iid∼ Gamma(a0, b0).

This is confirmed by our numerical results; in fact, when I(σ, κ) is close to one, we obtain
results comparable to those of Leon et al. (see Table 4.1), while, when I(σ, κ) is close to
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Table 4.2: Interval estimates of the quantiles of the predictive distributions for the model
with nonparametric error for different hyperparameters of the NGG process prior.

σ κ I(σ, κ) E[Kn] E[Kn|T ] 2.5% 50% 97.5%

0.01 0.2 0.82 2.9 1.3 10.7 557.1 16992.8
0.1 0.1 0.81 2.3 1.2 13.1 583.3 17723.1
0.3 0.03 0.67 4.9 1.2 15.8 609.3 19023.5
0.3 0.3 0.51 7.4 2.0 1.4 329.5 10509.8
0.1 1 0.43 6.9 2.5 0.1 248.1 10220.5
0.01 2 0.33 8.7 3.2 0.0 129.5 6903.5
0.3 3 0.17 20.9 6.6 0.0 0.4 306.0

(a) 1st percentile failure time in hours at 23.4MPa.

σ κ I(σ, κ) E[Kn] E[Kn|T ] 2.5% 50% 97.5%

0.01 0.2 0.82 2.9 1.3 1.9 62.0 1685.7
0.1 0.1 0.81 2.3 1.2 2.2 64.6 1895.3
0.3 0.03 0.67 4.9 1.2 2.5 65.3 1821.8
0.3 0.3 0.51 7.4 2.0 2.0 62.5 1603.4
0.1 1 0.43 6.9 2.5 2.0 64.4 1634.9
0.01 2 0.33 8.7 3.2 2.2 63.8 1797.0
0.3 3 0.17 20.9 6.6 2.5 63.6 1918.6

(b) Median failure time in thousands of hours at 22.5MPa.

zero, the process P has a very small variance, and so the prior is too strong and the data
do not wash out the prior information.

Additionally, we notice that the posterior expected number of clusters of {θi}ni=1 is
always smaller than the prior one, and this reduction of number of clusters is more evident
for higher values of σ. In fact, as we can see in Figure 4.2, for a given prior expected number
of clusters, we have a larger dispersion for higher values of σ.

If the expected number of components E[Kn] is much higher than one, the data do not
overwhelm the prior information; while if the expected number of components E[Kn] is
close to one, we obtain similar results to the parametric model of Leon et al.. In short, we
think that the nonparametric shape mixture does not improve substantially the predictive
capability of the parametric model; therefore a single parametric θ as in Leon et al. is
enough.

In Table 4.3 we report the interval estimates of the two quantiles of interest for Spool 2
and 7, with σ = 0.3 and κ = 0.3. We recall that we are mainly interested in the prediction
for a new random spool, but we consider that is interesting as well to compare our results
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to those of the parametric model proposed by Leon et al..
Notice that the credibility intervals of the 1st percentile at 23.4MPa are narrower and

centered to smaller values respect to the parametric model’s ones; while intervals of the
median at 22.5MPa are slightly wider and more to the right. We recall that the results
of Leon et al. are affected by a large Montecarlo error and hence the differences for the
median at 22.MPa are not significant. As we mentioned in Section 3.2.1, Spool 7 does
not respect the nominal conditions, while Spool 2 does. We observe a big differences
between the two spools in particular at stress level 22.5MPa, and we can guess that the
bad behavior of Spool 7 is due to to the fact that it has fewer yarns per fiber than a
nominal Kevlar fiber.

Table 4.3: Interval estimates of the quantiles of the predictive distributions for the model
with nonparametric error (σ = 0.3, κ = 0.3)

Spool 2.5% 50% 97.5%

2 1.9 204.2 530.8
7 0.6 61.9 183.5

new 1.4 329.5 10509.8

(a) 1st percentile failure time in hours

at 23.4MPa.

Spool 2.5% 50% 97.5%

2 19.2 32.4 59.8
7 4.9 9.8 22.6

new 2.0 62.5 1603.4

(b) Median failure time in thousands

of hours at 22.5MPa.
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Figure 4.2: Prior and posterior number of mixture components for the model with non-
parametric error
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4.1.2 Posterior estimates

In Table 4.4 we provide the posterior estimates of the fixed effects β0 and β1, the random
effects α1, . . . , α8, and the new random effect αnew. Observe that the stress effect β1

is negative, since it is expected, because high pressure levels reduce the life-time of the
Kevlar fiber; and Spool 1,4, and 8 have the best performances, while Spool 3 and 7 the
worst ones. The differences between the spools and the new random spool can be seen in
the plot of the posterior kernel density (see Figure 4.3). Moreover, all αj ’s have almost
the same standard deviation around 0.60, while the new random effect αnew has a larger
standard deviation (1.58). The high variability of the new random spool is due to the fact
that we do not know if it will have good (or even better) performance as Spool 4, mean
one, or bad (or even worse) as Spool 7.

Table 4.4: Posterior mean and standard deviation (SD) of the effects for the model with
nonparametric error (σ = 0.3 and κ = 0.3)

β0 β1

Mean -1.04 -23.26
SD 0.59 1.17

α1 α2 α3 α4 α5 α6 α7 α8 αnew

Mean 1.41 -0.67 -1.38 1.89 -0.03 -0.24 -1.86 0.85 -0.04
SD 0.60 0.59 0.61 0.61 0.62 0.61 0.62 0.60 1.58

In Figure 4.4, we provide the posterior marginal density distribution function of the
error for σ = 0.3 and κ = 0.03, 0.3, 3. Notice that for κ = 3 the posterior is similar to
the base-line measure P0; while in the other two cases, the data moved the mass of the
distribution to the right. This phenomenon is more evident for κ = 0.03. For all these three
density functions the 95% credible bounds are very wide at zero and particularly narrow
around 0.3. This happens because the posterior marginal density function is a mixture of
the prior function with asymptote at zero and a density function without asymptote, and
those two density distribution functions cross each other around 0.3.
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Figure 4.3: Posterior kernel density estimation of the random effects for the model with
nonparametric error (σ = 0.3 and κ = 0.3)
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(c) σ = 0.3 and κ = 3

Figure 4.4: Posterior marginal density distribution functions of the error in the model
with nonparametric error
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4.1.3 Predicted survival functions

In Figure 4.5, we plot the predicted survival functions for a new random spool at stress
level 22.5MPa with σ = 0.3 and κ = 0.03, 0.3, 3.
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(c) σ = 0.3 and κ = 3

Figure 4.5: Survival functions for a new random spool at 22.5MPa for the model with
nonparametric error

In Figure 4.6, we report the predicted survival function for a new random spool at
stress level 23.4MPa (σ = 0.3, κ = 0.3), and the Kaplan-Meier estimator. Notice that the
Kaplan-Meier point estimator for given quantiles of the failure time is in general higher
and its 95% bounds are narrower compared to those of the model with nonparametric
error. This big difference in the width of the bounds is due to the fact that the Kaplan-
Meier estimator does not treat the spool effects as random, and so it underestimates the
variability of a new random spool.
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Figure 4.6: Predicted survival functions for a new random spool at 23.4MPa for the model
with nonparametric error (σ = 0.3, κ = 0.3), and for Kaplan-Meier estimator
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4.1.4 Residuals

We computed the Bayesian residuals to evaluate the goodness of fit as in Chaloner [4]. If
we write the semiparametric model (3.7) in the addictive form as in Section 3.3.1, we have

log Ti = β0 + β1 log(xs,i) + αk[i] +
Wi

θi
i = 1, . . . , n, (4.3)

where, given the parameters and the covariates, Wi are a priori independent, identical
distributed from the standard Gumbel distribution. The Bayesian residuals for the un-
censored failure times are defined as

ei = E
[
θi

(
log ti − (β0 + β1 log(xs,i) + αk[i])

)|T ]
, i = 1, . . . , n−m.

Each ei can be estimated through MCMC simulation. The following ergodic mean is an
estimate of ei

1
B

B∑

b=1

θ
(b)
i

(
log ti − (β(b)

0 + β
(b)
1 log(xs,i) + α

(b)
k[i])

)
,

where
{
θ(b), β

(b)
0 , β

(b)
1 ,α(b)

}B
b=1

is a sample from the posterior distribution (3.11). In Figure
4.7, we plot the residuals for the uncensored observations with the fitted log failure times
on the x-axis. The fitted log failure times are defined as

l̂og ti = E
[
β0 + β1 log(xs,i) + αk[i] +

Wi

θi
|T ]

, i = 1, . . . , n

and can be estimated by ergodic means as follow

1
B

B∑

b=1

(
β

(b)
0 + β

(b)
1 log(xs,i) + α

(b)
k[i] −

γ

θ
(b)
i

)
, i = 1, . . . , n,

where γ = 0.577 . . . is the Euler constant. The dashed lines indicate the 95% bounds of the
standard Gumbel distribution, and 95% interval estimates is provided for each residual ei.
Observe that all but one residuals are in the 95% region of the standard Gumbel.
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Figure 4.7: Bayesian residuals for the uncensored failure times under the model with
nonparametric error (σ = 0.3, κ = 0.3).
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4.1.5 Computation details

Posterior and predictive estimates are computed via the Gibbs sampler algorithm pre-
sented in Section 3.3.2. We run the algorithm for 350, 000 iterations, while the first
100, 000 iterations were discarded and we used a thinning of 50 to reduce the autocorre-
lation of the Markov chain. The final sample size was 5, 000. We run longer chains but
we do not obtain any relevant reduction of the Monte-Carlo error, and some diagnostic
convergence tests were done. In Figures 4.8a and 4.8b, we report traces and estimated
autocorrelation functions of β0 and β1, respectively.

0 1000 2000 3000 4000 5000

−
3

−
2

−
1

0
1

2

Index

da
ta

$B
et

a_
0

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series  data$Beta_0

(a) Traces and estimated autocorrelation func-

tions of β0

0 1000 2000 3000 4000 5000

−
28

−
26

−
24

−
22

−
20

Index

da
ta

$B
et

a_
1

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series  data$Beta_1

(b) Traces and estimated autocorrelation func-

tions of β1

−3 −2 −1 0 1 2

−
1

0
1

2
3

4

data$Beta_0

da
ta

$A
lp

ha
_1

(c) Scatterplot of β0 and α1

Figure 4.8: Markov chain sample of β0, β1 and α1

As already mentioned in Section 3.3.3, we notice a strong correlation between β0 and
each αj (see Figure 4.8c representing the scatterplot of β0 and α1).

To estimate the cumulative distribution function of the survival time, first we sample
the cumulative distribution function of the survival time on a grid and then we make a
linear interpolation to fit the curve. Once we have the fitted curve, we estimate any given
quantiles of the failure time distribution or plot the survival function. The local error
of this approximation depends on the distance between two consecutive sampling points
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and the second derivative of the approximated function. We observed that the cumulative
distribution function is quite irregular around zero and so we used an anisotropic grid with
more points around zero to control the error. In particular, for the stress level 23.4MPa
we make a grid with 800 points between 0 and 5 milion hours, imposing an exponentially
increasing distance between the points; while for the stress level 22.5MPa we make a
similar grid with extremes 0 and 10 milion hours. For example, in Table 4.5 we report
the interval estimate obtained for grids with different number of sampling points, with
σ = 0.3 and κ = 0.1. Notice that the results for 800 and 8000 are similar.

Table 4.5: Interval estimates of the quantiles of the predictive distributions for different
number of grid points for the model with nonparametric error (σ = 0.3, κ = 0.1).

Points 2.5% 50% 97.5%

80 15.8 609.1 19021.5
800 15.8 609.3 19023.5
8000 15.8 609.3 19023.6

(a) 1st percentile failure time in hours at

23.4MPa.

Points 2.5% 50% 97.5%

80 2.5 65.4 1823.2
800 2.5 65.3 1821.8
8000 2.5 65.3 1821.8

(b) Median failure time in thousands

of hours at 22.5MPa.
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4.2 Nonparametric random effects model

In this section we present the results obtained for the model with nonparametric random
effects (3.14)- (3.15). We will use the following hyperparameters if not indicated

θ ∼ Gamma(a0 = 1.5, b0 = 5)

β1 ∼ N(0, σ2
1 = 1000)

α1, . . . , αJ |P iid∼ P

P ∼ NGG(σ, ω = 1, κ, P0)

P0|µ, λ ∼ N(µ, λ)

λ ∼ InvGamma(
τ1
2

= 0.1,
τ2
2

= 0.1)

µ ∼ N(0, σ2
0 = 1000),

(4.4)

while the process prior hyperparameters σ and κ will be specified each time. We recall
that the mean effect β0 was eliminated in the parameterization, but a prior on the mean
µ of the base-line measure P0 of the random effects was introduced. Since µ has the same
role of β0, here µ has the same hyperparameters of β0 in the model with nonparametric
error (4.2). The priors on θ and on λ are as in (4.2) (see Section 4.1 for an explanation
about the hyperparameters choices).

4.2.1 Interval estimates for a new random spool and for given ones

First, we make a sensitivity analysis with respect to the nonparametric prior’s hyperpa-
rameters σ and κ. We provide the 95% intervals estimates of the first percentile of the
failure time distribution at stress level 23.4MPa, and of the median when stress is 22.5MPa
for a new random spool. Then we give credibility intervals for Spool 2 and 7.

In Table 4.7, we provide the credibility intervals of the quantiles of the predictive
distribution for different choices of the hyperparameters of the process σ and κ. We recall
that KJ , the number of clusters of αj ’s, is random variable with support {1, . . . , J = 8}.
We chose σ and κ in order to have an expected number of clusters around 1, 2 and 4. We
take 2 because we know that there are at least two groups of spools, those that are close
to the nominal characteristics like Spool 2, and those that do not respect the nominal
conditions like Spool 7; then we take 1 and 4 to test the robustness of the prior. Finally
we fixed σ = 0.1 and κ = 100 to get close to the parametric model of Leon et al.. In fact,
with fixed σ and κ→ +∞, we obtain the following parametric model

α1, . . . , αJ |λ iid∼ N(0, λ)

λ ∼ InvGamma(
τ1
2

= 0.1,
τ2
2

= 0.1).
(4.5)
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Both quantiles are sensitive to the values of the hyperparameters: in particular the
intervals get larger and the medians get higher under a larger a priori expected number
of clusters. The intervals obtained are narrower than those obtained by the parametric
model formula and by the semiparametric model with nonparametric error (3.14)- (3.15).
As we expected, for σ = 0.1 and κ = 100, we obtain results similar to those of Leon et
al.. Moreover, we observe that in all cases the posterior mean number of clusters is bigger
than the prior one, and this effect is more relevant with high values of σ.
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Figure 4.9: Scatterplot of the log-survival times against the log-stress for the two semi-
parametric models.

In Figure 4.9 a scatterplot of the log-survival-time against the log-stress is shown
together with the estimates of the median survival time at different log-stress levels. In
particular, at log-stress equal to log(22.5)=3.11 and log(23.4)=3.15, we provide the credible
intervals of the predictive survival median time. In the dashed black line corresponds to
the estimates under the model with nonparametric random effects (σ = 0.3, κ = 1.2),
and in the dashed grey line corresponds to the model with nonparametric error (σ = 0.3,
κ = 0.3). The horizontal line identifies the censoring time, and the colored points are
the failure times, where each color is associated to a given spool as in Figure 4.4. In
the log-scale we notice the additive effect of the log-stress on the failure time. Moreover,
since each spool has a different color we notice the differences between them: for instance
Spool 3 (bluesky) and 7 (blue) are generally the lowest dots, while Spool 1 (dark green)
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and 4 (brilliant green) are the highest. Finally, observe that the credible intervals of the
predictive survival median time at both stress levels for the model with nonparametric
error are larger than those of the model with nonparametric random effects.

In Table 4.6 we report the interval estimates of the two quantiles of interest for Spool
2 and 7, where we fixed σ = 0.3 and κ = 1.2. The results for Spool 2 and 7 are similar to
those of Leon et al. (see Table 4.1), while both the interval estimates for a new random
spool are narrower and with higher median.

Table 4.6: Interval estimates of the quantiles of the predictive distributions for the model
with nonparametric random effects (σ = 0.3, κ = 1.2)

Spool 2.5% 50% 97.5%

2 130.6 364.4 818.8
7 40.6 116.9 289.6

new 41.0 572.6 10027.7

(a) 1st percentile failure time in hours at

23.4MPa.

Spool 2.5% 50% 97.5%

2 19.2 36.0 64.5
7 5.5 11.5 24.8

new 5.1 55.4 901.3

(b) Median failure time in thousands

of hours at 22.5MPa.
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Table 4.7: Interval estimates of the quantiles of the predictive distributions for the model
with nonparametric random effects for different hyperparameters of the NGG process
prior.

σ κ I(σ, κ) E[KJ ] E[KJ |T ] 2.5% 50% 97.5%

0.01 0.01 0.98 1.0 2.8 57.48 358.8 4330.9
0.01 0.5 0.66 2.0 4.0 49.1 473.7 5867.0
0.1 0.3 0.68 2.0 4.1 53.7 465.9 6620.2
0.3 0.09 0.62 2.0 5.0 45.2 524.4 7285.3
0.5 0.1 0.43 3.5 6.1 42.8 556.1 9625.8
0.01 2.5 0.28 4.0 5.4 44.9 576.7 8430.6
0.1 2 0.29 4.0 5.4 46.1 556.5 8506.7
0.3 1.2 0.30 4.1 5.7 41.0 572.6 10027.7
0.5 0.3 0.32 4.1 6.2 42.3 587.4 10314.9
0.7 0.01 0.29 4.7 7.0 33.2 642.4 13593.7
0.1 100 0.009 7.8 7.8 23.5 676.7 18575.1

(a) 1st percentile failure time in hours at 23.4MPa.

σ κ I(σ, κ) E[KJ ] E[KJ |T ] 2.5% 50% 97.5%

0.01 0.01 0.98 1.1 2.8 8.6 44.5 505.1
0.01 0.5 0.66 2.0 4.0 7.2 49.3 576.1
0.1 0.3 0.68 2.0 4.1 7.7 48.3 644.2
0.3 0.09 0.62 2.0 5.0 6.5 51.2 673.5
0.5 0.1 0.43 3.5 6.1 4.9 53.2 906.8
0.01 2.5 0.28 4.0 5.4 5.5 54.2 763.3
0.1 2 0.29 4.0 5.4 5.9 53.3 790.3
0.3 1.2 0.30 4.1 5.7 5.1 55.4 901.3
0.5 0.3 0.32 4.1 6.2 5.0 55.2 905.1
0.7 0.01 0.29 4.7 7.0 3.6 59.6 1202.0
0.1 100 0.009 7.8 7.8 2.3 61.4 1708.3

(b) Median failure time in thousands of hours at 22.5MPa.
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4.2.2 Posterior estimates

In Table 4.8 we provide the posterior estimates of the fixed effects β1, the random effects
α1, . . . , α8, and the new random effect αnew. Notice that all αjs have almost the same
standard deviation around 0.3, while the new random effect αnew has a larger standard
deviation (1.68). Moreover, we can compare these posterior estimates to those of the
model with nonparametric error of Table 4.4. Observe that the log-stress effect β1 has
similar mean and SD of that of the model with nonparametric error. Even if the random
effects in the two models have been modeled differently, the standard deviations of the
random effects are smaller here than those in Table 4.4 corresponding to the model with
nonparametric error. This shrinkage effect may be a consequence of the increased flexibility
due to the nonparametric random effects.

Table 4.8: Posterior mean and standard deviation (SD) of the effects for the model with
nonparametric random effects (σ = 0.3 and κ = 1.2)

β1 α1 α2 α3 α4 α5 α6 α7 α8 αnew

Mean -23.42 0.46 -1.62 -2.47 0.77 -1.18 -1.34 -2.75 -0.05 -1.01
SD 1.17 0.35 0.28 0.37 0.36 0.36 0.29 0.36 0.37 1.68

In Figure 4.10 we plot the kernel density estimation of the posterior distribution of the
random-effects parameters. Roughly, we identify 3 groups of spools and consequently the
posterior density estimation of the new random spool has 3 local maxima. Notice that the
posterior expected number of clusters is higher then 3, but we recall that often in Bayesian
mixture models several components make each cluster.

Figure 4.11 displays the kernel density estimation of the posterior of the shape param-
eter θ and the marginal posterior density distribution function of the error for σ = 0.3
and κ = 1.2. Figure 4.11a shows that the data overwhelm the prior information on θ. The
95% interval estimates for the shape parameter θ is [0.95, 1.32] and so the failure rate is
constant or slightly increasing with time. As we noticed in the model with nonparametric
error (see Figure 4.4), the interval estimates of the posterior marginal density distribution
of the error are particularly large at zero, and narrow around 0.3.
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Figure 4.10: Posterior kernel density estimation of the random effects for the model with
nonparametric random effects (σ = 0.3 and κ = 1.2)
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Figure 4.11: (a) Posterior kernel density estimation of the shape parameter θ and (b) pos-
terior marginal density distribution function of the error for the model with nonparametric
error, where σ = 0.3 and κ = 1.2.

57



4.2.3 Predicted survival functions

In Figure 4.2.3, we plot the predicted survival functions for a new random spool at stress
level 22.5MPa and 23.4MPa with σ = 0.3 and κ = 1.2. Notice that the 2.5% quantile of
the survival distribution at stress level 23.4MPa decreases faster than those at stress level
22.5MPa.
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(a) Stress level 22.5MPa
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Figure 4.12: Predicted survival functions for a new random spool for the model with
nonparametric random effects (σ = 0.3 and κ = 1.2)
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4.2.4 Residuals

We computed the Bayesian residuals to evaluate the goodness-of-fit of (3.14)-(3.15) as we
did in Sections 4.1.4. In Figure 4.13 we plot the residuals of uncensored times against the
fitted log failure times, and we do not notice relevant differences between the two semi-
parametric models (compare to Figure 4.7). The dashed lines indicate the 95% credible
intervals of the standard Gumbel distribution, and for each residual ei a 95% interval es-
timates is provided. We observe that only 2 of the 97 residuals are outside the 95% region
of the standard Gumbel. We do not see any obvious pattern in the residuals.

Figure 4.14 displays the residuals against the expected quantiles of the standard Gum-
bel at all stress levels. Notice that the residuals’ distribution at stress level 25.5MPa
is skewed to the left, while the residuals at stress level 23.4MPa have lighter tails than
expected, and so a posteriori the Gumbel assumption is violated.
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Figure 4.13: Bayesian residuals against the fitted log failure times
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Figure 4.14: Bayesian residuals against the quantiles of the Gumbel standard at the four
stress levels

4.2.5 Computation details

Posterior and predictive estimates are computed by the MCMC scheme presented in Sec-
tion 3.3.3. We run the algorithm for 57, 000 iterations, with a burn-in of 7, 000 iterations
and a thinning of 10 to reduce the autocorrelation of the Markov chain. The final sample
of size was 5, 000. We run longer chains without obtaining any relevant reduction of the
Monte-Carlo error, and some diagnostic convergence tests were done. Notice that the
Markov chain is less autocorrelated than the one corresponding to the model with non-
parametric error (see Figure 4.8c); this is the reason why we reduced the thinning to 10.
In Figures 4.15a and 4.15b , we report traces plots and autocorrelation functions of β1

and α1, respectively.
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Figure 4.15: Markov chain sample of β1 and α1

4.3 DPpackage: gamma-distributed error model

Here we present the results obtained using DPpackage for the model with gamma-distributed
error 3.19. We used the following hyperparameters

θ ∼ Gamma(a0, b0)

β1 ∼ N(0, σ2
1 = 1000)

α1, . . . , αJ |P iid∼ P

P ∼ DP (aP0)

a ∼ Gamma(a1, b1)

P0|µ, λ ∼ N(µ, λ)

λ ∼ InvGamma(
τ1
2

= 0.1,
τ2
2

= 0.1)

µ ∼ N(0, σ2
0 = 1000).

(4.6)

The prior for β1, λ and µ are as in (4.4); while for the priors θ and a we will make a
sensitivity analysis.

We do not have analytical expression of density distribution function of the marginal
error V , but we know its mean and variance,

E[V ] = E
[
E[V |θ]] = E[1] = 1

Var[V ] = E
[
Var[V |θ]] + Var

[
E[V |θ]] = E[θ] + Var[1] =

a0

b0
.

(4.7)

Additionally, we can evaluate its density distribution function by numerical integration.
In Figure 4.3, we plot four different density distribution functions of the marginal error.
The two functions on the right are similar to the marginal error that we used for the
two semiparametric models (see Figure 4.1b), while those on the left have a pick as the
marginal error in the parametric model proposed by Leon et. al. (see Figure 4.1a).
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Figure 4.16: Density distribution function of the marginal error V for different choices of
the hyperparameters a0 and b0

4.3.1 Interval estimates for a new random spool and for given ones

First we give the 95% interval estimates of the two quantiles of interest for a new random
spool, for different choices of the hyperparameters, and then for Spool 2 and 7.

In Table 4.9, we fix a ∼ Gamma(a1 = 1, b1 = 1) and we vary the hyperparameters
of the dispersion parameter θ as in Figure 4.3. Notice that the results obtained are
comparable with those of the model with nonparametric random effects (see Table 4.7).
The interval estimates of median at 22.5MPa are more robust than the 1st percentile
at 23.4MPa, and the results for a0 = 1 and b0 = 10 are effected by the strong prior
information.

In Figure 4.10 we report the results of the robustness analysis on the mass parameter
a, where we fix θ ∼ Gamma(a0 = 1, b0 = 1). Observe that both the median of the two
quantiles are robust to the choice of the hyperparameters.
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Table 4.9: Interval estimates of the quantiles of the predictive distributions for the
model with gamma error for different hyperparameters of the dispersion parameter θ
(a ∼ Gamma(a1 = 1, b1 = 1)).

a0 b0 E[θ] Var[θ] 2.5% 50% 97.5%

10 1 10 10 74.4 885.6 13005.4
1 1 1 1 43.2 583.0 8316.0
10 10 1 0.1 42.0 525.2 8130.3
1 10 1 0.01 21.7 295.6 4908.3

(a) 1st percentile failure time in hours at 23.4MPa.

a0 b0 E[θ] Var[θ] 2.5% 50% 97.5%

10 1 10 10 5.2 47.8 675.7
1 1 1 1 5.0 47.7 601.5
10 10 1 0.1 5.1 47.2 688.7
1 10 1 0.01 4.5 43.6 587.2

(b) Median failure time in thousands of hours at

22.5MPa.

Table 4.10: Interval estimates of the quantiles of the predictive distributions for the
model with gamma error for different hyperparameters of the mass parameter a (θ ∼
Gamma(a0 = 1, b0 = 1)).

a1 b1 E[a] Var[a] 2.5% 50% 97.5%

10 1 10 10 27.2 629.3 13593.5
1 1 1 1 43.2 583.0 8316.0
10 10 1 0.1 43.9 530.8 7498.9

(a) 1st percentile failure time in hours at 23.4MPa.

a1 b1 E[a] Var[a] 2.5% 50% 97.5%

10 1 10 10 2.7 49.8 1048.2
1 1 1 1 5.0 47.7 601.5
10 10 1 0.1 5.7 44.0 578.3

(b) Median failure time in thousands of hours at 22.5MPa.

In Table 4.11 we provide the same credible intervals for a new random spool, and for
Spool 2 and 7; where we fixed the dispersion parameter θ ∼ Gamma(a0 = 2, b0 = 2) and
the mass parameter a ∼ Gamma(a1 = 1, b1 = 1). Notice that the results obtained are
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comparable to those of the model with nonparametric random effect (see Table 4.6).

Table 4.11: Interval estimates of the quantiles of the predictive distributions for the model
with gamma error (θ ∼ Gamma(a0 = 1, b0 = 1) and a ∼ Gamma(a1 = 1, b1 = 1))

Spool 2.5% 50% 97.5%

2 113.9 366.2 936.7
7 34.1 113.4 300.5

new 43.2 583.0 8316.0

(a) 1st percentile failure time in hours

at 23.4MPa.

Spool 2.5% 50% 97.5%

2 16.6 32.6 58.6
7 4.5 9.9 20.7

new 5.0 47.7 601.5

(b) Median failure time in thousands

of hours at 22.5MPa.

4.3.2 Posterior estimates

In Table 4.12 we provide the posterior estimates of the fixed effect β1, the random effects
α1, . . . , αJ and the new random effect αnew. The random effects has standard deviation
around 0.35, while the new random effects has larger variability (1.53). Notice that we
obtain estimates similar to those of the model with nonparametric random effects (see
Table 4.8).

Table 4.12: Posterior mean and standard deviation (SD) of the effects for the model with
gamma error (θ ∼ Gamma(a0 = 1, b0 = 1) and a ∼ Gamma(a1 = 1, b1 = 1))

β1 α1 α2 α3 α4 α5 α6 α7 α8 αnew

Mean -22.76 0.25 -1.74 -2.65 0.52 -1.32 -1.47 -2.91 -0.29 -1.19
SD 1.23 0.37 0.29 0.38 0.37 0.38 0.30 0.35 0.42 1.53
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4.3.3 Computation details

DPglmm computes a sample from the posterior distribution through a Polya-urn scheme
algorithm. In input we provide the data (the response variables and the design matrix),
some parameters on the MCMC (the initial state, the number of iterations and the thin-
ning), the hyperparameters of the priors and the model (the fixed and the random effects,
the error distribution and the link-function). Here, it is a script:

### DPPackage: DPglmm ###

library(DPpackage)

### DATA

data <- data.frame(times=times,stress=stress,spool=spool)

### INITIAL STATE

state <- NULL

### MCMC PARAMETERS

mcmc <- list(nburn=nburn, nsave=nsave, nskip=nskip, ndisplay=ndisplay)

### PRIOR INFORMATION

prior <- list(a0=a0, b0=b0, nu0=nu0, tinv=tinv ,tau1=tau1, tau2=tau2,

mub=mub, Sb=Sb, beta0=beta0, Sbeta0=Sbeta0)

### FIT THE MODEL

fit <- DPglmm(fixed=times ~ stress, random=~1|spool, family=Gamma(log),

prior=prior, mcmc=mcmc, state=state, status=TRUE, data=data)

We run the algorithm for 57, 000 iterations, where the first nburn = 7, 000 iterations
are discarded and we use a thinning of nskip = 10 to reduce the autocorrelation of the
Markov chain. In short, we have a final sample of size nsave = 5, 000.

We can obtain statistics of the posterior estimates and diagnostic tests on the model
with the command

### SUMMARY

summary(fit)

While we plot the trace and the posterior kernel density estimation of a given parameter
of the model (see Figure 4.3.3) with the following command-line:

### PLOT

plot(fit,ask=FALSE,nfigr=1,nfigc=2,param="stress")

plot(fit,ask=FALSE,nfigr=1,nfigc=2,param="ncluster")
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Figure 4.17: Markov chain sample of β1 and of the number of clusters KJ

4.4 Conclusions

We briefly summarize and compare the results obtained for the different models.
The first model with nonparametric error does not improve remarkably the estimates

with respect to the parametric model of Leon et al. [24]. We recall that Leon et al.
[24]’s estimates are affected by a large Monte Carlo error and so they are not reliable.
The interval estimates of the median failure time at stress level 22.5MPa are robust and
comparable to those of the parametric model; while the interval estimates of the 1st
percentile of the failure time distribution at stress level 23.4MPa are less robust.

The interval estimates of the quantiles of interest under the second model (with non-
parametric random-effect) are narrower with respect to those of the first model. The
nonparametric prior distribution of the random-effects is more flexible with respect to the
parametric one of the first model, and so we better estimate the spool-effects. Nonetheless,
both the credibility intervals are quite sensitive to the choice of the hyperparameters of
the NGG process prior.

The results for the model with Gamma-distributed error, that we fitted with DPpack-
age, support those of the second model. Also in this case, the estimates of the quantiles
of interest are sensitive to the choice of the hyperparameters of the prior.

Summing up, the model with nonparametric random-effect improves the predictive
estimates with respect to the benchmark model of Leon et al. [24], but the interval
estimates are still too wide to make statements about the reliability of the pressure vessels
of the Space Shuttle. We believe that this uncertainty is due to the remarkable variability
among the samples spools and to the small sample size (only 8 spools) from the potentially
infinte population of spools.
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Appendix A

Full-conditionals of the

nonparametric error model

Here we compute the full-conditionals of the Gibb-sampler of the model with nonpara-
metric error. First, we compute the full-conditionals of the parametric part of the model.
In particular, we show that the full-conditionals of β0, β1 and αj , for j = 1, . . . , J , have
log-concave density distribution functions; while the full-conditionals of λ and αnew are
conjugate. Then, we provide the full-conditionals of the nonparametric part of the model.

A.1 Parametric full-conditionals

The full-conditionals of β0, β1 and αj , for j = 1, . . . , J are log-concave and hence we can
sample from them using an acceptance rejection sampling method. The full-conditional

of β0 has the following expression:

L(dβ0|β1,α, αnew, λ, P,θ, U,T = t)

=
L(T = t|β0, β1,α, αnew, λ, P,θ, , U)L(dβ0, β1,α, αnew, λ, P,θ, , U)∫ L(T = t|β0, β1,α, αnew, λ, P,θ, U)L(dβ0, β1,α, αnew, λ, P,θ, U)

=
L(T = t|β0, β1,α,θ)L(dβ0, β1,α, αnew, λ, P,θ, U)∫ L(T = t|β0, β1,α,θ)L(dβ0, β1,α, αnew, λ, P,θ, U)

=
L(T = t|β0, β1,α,θ)L(dβ0)L(β1)L(α, αnew, λ)L(P,θ, U)∫ L(T = t|β0, β1,α,θ)L(dβ0)L(β1)L(α, αnew, λ)L(P,θ, U)

∝ L(T = t|β0, β1,α,θ)L(dβ0)

∝
n∏

i=1

{
f(ti|β0, β1, αk[i], θi)

}L(dβ0)

∝ 1√
2πσ2

0

exp
(− β2

0

2σ2
0

) n∏

i=1

exp
{
− ( ti

ηi

)θi

}
θi
ηi

( ti
ηi

)θi−1
dβ0,
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where ηi = exp{β0 + β1log(xi) +αk[i]} is the linear predictor, k[i] = 1, . . . , J identifies the
spool of observation i, and i = 1, . . . , n.

After some algebra we obtain

L(dβ0|β1,α, αnew, λ, P,θ, U,T = t)

∝ exp
{
− β2

0

2σ2
0

−
n∑

i=1

[
tiexp{−β0 − β1 log(xs,i)− αk[i]}

]θi − β0

n∑

i=1

θi

}
dβ0.

Similarly, we find the expression of the full-conditional of β1

L(dβ1|β0,α, αnew, λ, P,θ, U,T = t)

=
L(T = t|β0, β1,α, αnew, λ, P,θ, U)L(β0, dβ1,α, αnew, λ, P,θ, U)∫ L(T = t|β0, β1,α, αnew, λ, P,θ, U)L(β0, dβ1,α, αnew, λ, P,θ, U)

=
L(T = t|β0, β1,α,θ)L(β0, dβ1,α, αnew, λ, P,θ, U)∫ L(T = t|β0, β1,α,θ)L(β0, dβ1,α, αnew, λ, P,θ, U)

=
L(T = t|β0, β1,α,θ)L(β0)L(dβ1)L(α, αnew, λ)L(P,θ, U)∫ L(T = t|β0, β1,α,θ)L(β0)L(dβ1)L(α, αnew, λ)L(P,θ, U)

∝ L(T = t|β0, β1,α,θ)L(dβ1)

∝
n∏

i=1

{
f(ti|β0, β1, αk[i], θi)

}L(dβ1)

∝ 1√
2πσ2

1

exp
(− β2

1

2σ2
1

) n∏

i=1

exp
{
− ( ti

ηi

)θi

}
θi
ηi

( ti
ηi

)θi−1
dβ1

∝ exp
{
− β2

1

2σ2
1

−
n∑

i=1

[
tiexp{−β0 − β1 log(xs,i)− αk[i]}

]θi − β1

n∑

i=1

log(xs,i)θi

}
dβ1.

For j = 1, . . . , J , the full-conditional of αj has the following density distribution func-
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tion

L(dαj |β0, β1,α−j , αnew, λ, P,θ, U,T = t)

=
L(T = t|β0, β1,α, αnew, λ, P,θ, U)L(β0, β1, dαj ,α−j , αnew, λ, P,θ, U)∫ L(T = t|β0, β1,α, αnew, λ, P,θ, U)L(β0, β1, dαj ,α−j , αnew, λ, P,θ, U)

=
L(T = t|β0, β1,α,θ)L(β0)L(β1)L(dαj ,α−j , αnew, λ)L(P,θ, U)∫ L(T = t|β0, β1,α,θ)L(β0)L(β1)L(dαj ,α−j , αnew, λ)L(P,θ, U)

=
L(T = t|β0, β1,α,θ)L(dαj ,α−j , αnew, λ)∫ L(T = t|β0, β1,α,θ)L(dαj ,α−j , αnew, λ)

=
L(T = t|β0, β1,α,θ)L(dαj ,α−j , αnew|λ)L(λ)∫ L(T = t|β0, β1,α,θ)L(dαj ,α−j , αnew|λ)L(λ)

=
L(T = t|β0, β1,α,θ)L(dαj |λ)L(α−j , αnew|λ)L(λ)∫ L(T = t|β0, β1,α,θ)L(dαj |λ)L(α−j , αnew|λ)L(λ)

=
L(T = t|β0, β1,α,θ)L(dαj |λ)∫ L(T = t|β0, β1,α,θ)L(dαj |λ)

∝ L(T = t|β0, β1,α,θ)L(dαj |λ)

∝
n∏

i=1

{
f(ti|β0, β1, αk[i], θi)

}L(dαj |λ)

∝
∏

i:k[i]=j

{
f(ti|β0, β1, αj , θi)

}L(dαj |λ)

∝ 1√
2πλ

exp
(− α2

j

2λ
) ∏

i:k[i]=j

exp
{
− ( ti

ηi

)θi

}
θi
ηi

( ti
ηi

)θi−1
dαj ,

∝ exp
{
− α2

j

2λ
−

∑

i:k[i]=j

[
tiexp{−β0 − β1 log(xs,i)− αj}

]θi − αj
∑

i:k[i]=j

θi

}
dαj .

Now we show that the full-conditional of λ has Inverse Gamma distribution:

L(dλ|β0, β1,α, αnew, P,θ, U,T = t)

=
L(T = t|β0, β1,α, αnew, λ, P,θ, U)L(β0, β1,α, αnew, dλ, P,θ, U)∫ L(T = t|β0, β1,α, αnew, λ, P,θ, U)L(β0, β1,α, αnew, dλ, P,θ, U)

=
L(T = t|β0, β1,α,θ)L(β0)L(β1)L(α, αnew, dλ)L(P,θ, U)∫ L(T = t|β0, β1,α,θ)L(β0)L(β1)L(α, αnew, dλ)L(P,θ, U)

=
L(α, αnew, dλ)∫ L(α, αnew, dλ)

=
L(α, αnew|λ)L(dλ)∫ L(α, αnew|λ)L(dλ)

∝ L(α, αnew|λ)L(dλ)

We recall that L(αj |λ) iid∼ N(0, λ), for j = 1, . . . , J, (J + 1 = new), and L(λ) ∼

69



InvGamma(a0, b0). And so,

L(dλ|β0, β1,α, P, U,T = t)

∝
J+1∏

j=1

L(αj |λ)L(dλ).

∝ ba0
0

Γ(a0)
λ−a0−1exp

{− b0
λ

} J+1∏

j=1

1√
2πλ

exp
{− α2

j

2λ
}
dλ

∝ λ−a0−J/2−1exp
{− 1

λ
(
1
2

J+1∑

j=1

α2
j + b0)

}
dλ,

if λ > 0, 0 otherwise. It follows that

L(dλ|β0, β1,α, P, U,T = t) ∼ InvGamma(a0 +
J + 1

2
, b0 +

∑J
j=1 α

2
j + α2

new

2
)

Finally, we show that also the full-conditional of αnew is conjugate:

L(dαnew|β0, β1,α, λ, P,θ, U,T = t)

=
L(T = t|β0, β1,α, αnew, λ, P,θ, U)L(β0, β1,α, dαnew, λ, P,θ, U)∫ L(T = t|β0, β1,α, αnew, λ, P,θ, U)L(β0, β1,α, dαnew, λ, P,θ, U)

=
L(T = t|β0, β1,α,θ)L(β0)L(β1)L(α, dαnew, λ)L(P,θ, U)∫ L(T = t|β0, β1,α,θ)L(β0)L(β1)L(α, dαnew, λ)L(P,θ, U)

=
L(α, dαnew, λ)∫ L(α, dαnew, λ)

=
L(α, dαnew|λ)L(λ)∫ L(α, dαnew|λ)L(λ)

=
L(α|λ)L(dαnew|λ)∫ L(α|λ)L(dαnew|λ)

= L(dαnew|λ) ∼ N(0, λ).

A.2 Full-conditionals of the error

Here we provide the full-conditionals of P , θ and U . As we mentioned in (3.13), the

full-conditional of P depends only by θ and U . By (1.13), we know that

L(P |θ, U = u) =
1∑∞

l=1 Jl,u +
∑k

l=1 Ll

∞∑

l=1

Jl,uδτl +
1∑∞

l=1 Jl,u +
∑k

l=1 Ll

k∑

l=1

Llδψl
,

where (Jl,u)l≥1 are the ranked points of a Poisson process on R+ with mean intensity ρ(ds)
(see (1.5) for the definition of the mean intensity measure); τl

iid∼ P0; Ll ∼ Gamma(el −
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σ, ω + u); ψ1, ψ2, . . . , ψk are the observed distinct values among θ; el = #{Xi : Xi =
ψl, 1 ≤ i ≤ n}; and l = 1, . . . , k.

As we mentioned in Section 3.3.2, we will sample only a finite number of jumps Jl,u
and locations τl. So, we compute the integer L such that the finite series stopped at L
guarantees a good approximation of the infinite series through the criterion proposed by
Argiento et al. [1].

It is trivial to sample the jumps τl, while to sample the jumps Jl,u we use the method
proposed by Ferguson and Klass [12]. Let (ϕl)l≥1 be a sequence of points from a homoge-
neous Poisson process with intensity equal to one, and R(x) =

∫ +∞
x ρ(ds) = (κωσ/Γ(1 −

σ))Γ(−σ;ωx). It can proved that

Jl,u = R−1(ϕl) =
1
ω

Γ−1
(− σ;

ϕlΓ(1− σ)
ωσκ

)
, l = 1, 2, . . . ,

where Γ−1 is the inverse of the function x 7−→ Γ(−σ, x). Notice that (ϕl)l≥1 can be
obtained by the cumulative sum of i.i.d. exponential random variables with intensity
equal to one.

We compute the full-conditional of θ in two successive steps applying the idea of
Algorithm 2 of Neal [30]. First, we update the random partition πn of θ, then, given the
new partition, we update the distinct values ψ1, ψ2, . . . , ψk with the so-called acceleration
step. This second steps speeds up the mixing of the Markov chain.

L(dθ|β0, β1,α, P, U,T = t)

=
L(T = t|β0, β1,α, λ, P,θ, U)L(β0, β1,α, λ, P, dθ, U)∫ L(T = t|β0, β1,α, λ, P,θ, U)L(β0, β1,α, λ, P, dθ, U)

=
L(T = t|β0, β1,α,θ)L(β0)L(β1)L(α, λ)L(P, dθ, U)∫ L(T = t|β0, β1,α,θ)L(β0)L(β1)L(α, λ)L(P, dθ, U)

=
L(T = t|β0, β1,α,θ)L(P, dθ, U)∫ L(T = t|β0, β1,α,θ)L(P, dθ, U)

=
L(T = t|β0, β1,α,θ)L(dθ|P )L(P,U)∫ L(T = t|β0, β1,α,θ)L(dθ|P )L(P,U)

=
L(T = t|β0, β1,α,θ)L(dθ|P )∫ L(T = t|β0, β1,α,θ)L(dθ|P )

∝ L(T = t|β0, β1,α,θ)L(dθ|P )

∝
n∏

i=1

L(Ti = ti|β0, β1, αk[i], θi)L(dθi|P ).

(A.1)
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By (A.1), θ1, . . . , θn are independent, given β0, β1, α and P .

L(dθ|β0, β1,α, P, U,T = t)

∝
n∏

i=1

L(dθi|β0, β1,α, P ).

Hence, we can update the n elements of the partition πn one by one. Notice that

L(dθi|P ) ∼ P

P '
L∑

l=1

pl,uδτl +
k∑

l=1

plδψl
,

for i = 1, . . . , n, where pl,u := Jl,u/(
∑L

l=1 Jl,u +
∑k

l=1 Ll) and pl := Ll/(
∑L

l=1 Jl,u +∑k
l=1 Ll).
Hence the conditional law of θi has the following discrete distribution

L(dθi|β0, β1,α, P ) ∝
{ L∑

l=1

pl,uδτl +
k∑

l=1

plδψl

}
f(ti|β0, β1, αk[i], θi)L(dθi).

Observe that we are only interested in the new configuration πn, i.e. the new grouping
among θi’s, and not in the θi’s values.

Now, given the new configuration πn and the other parameters, we update the distinct
values ψ1, ψ2, . . . , ψk. Using (1.8), it can be proved that the full-conditionals of ψ has the
following expression:

L(ψ|πn, β0, β1,α, αnew, λ, P, U,T = t) =
k∏

l=1

∏

i:πn(i)=l

f(ti|β0, β1, αk[i], ψl)P0(dψl),

where P0 ∼ Gamma(a0, b0) and the notation i : πn(i) = l represents the set of the ob-
servations which have θi = ψl. Therefore the ψl’s are reciprocally independent and each
full-conditional of ψl has the following density distribution function

L(ψl|πn, β0, β1,α, αnew, λ, P, U,T = t) =
∏

i:πn(i)=l

f(ti|β0, β1, αk[i], ψl)P0(dψl), (A.2)

To sample from (A.2), we use a step of Metropolis-Hastings.

Finally, James et al. [18] proved that the full-conditional of the nuisance parameter U
depends only by θ and has the following density distribution function

f(u|θ) = (u+ w)kσ−nun−1exp
[− κ

σ
(u+ w)σ

]
, u > 0.
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Appendix B

Full-conditionals of the

nonparametric random effects

model

Here we provide a factorization of the posterior distribution of the nonparametric random
effects model, and then we derive the full-conditionals of the Gibb-sampler.

L(β1,α,αnew, µ, λ, θ|T = t)

=
L(β1,α, αnew, µ, λ, θ,T = t)

L(T = t)

=
L(T = t|β1,α, αnew, µ, λ, θ)L(β1,α, αnew, µ, λ, θ)

L(T = t)

=
L(T = t|β1,α, θ)L(β1,α, αnew, µ, λ, θ)

L(T = t)

=
L(T = t|β1,α, θ)L(β1)L(θ)L(α, αnew, µ, λ)L(θ)

L(T = t)

=
L(T = t|β1,α, θ)L(β1)L(θ)L(αnew|α, µ, λ)L(α, µ, λ)L(θ)

L(T = t)

= L(αnew|α, µ, λ)
L(T = t|β1,α, θ)L(β1)L(θ)L(α, µ, λ)L(θ)

L(T = t)

= L(αnew|α, µ, λ)L(β1,α, µ, λ, θ|T = t)

First, we compute the full-conditionals of the parametric part of the model. In partic-
ular, we show that the full-conditionals of β1 and θ have log-concave density distribution
functions. Then, we provide the full-conditionals of the nonparametric part of the model:
the full-conditionals of µ and λ are conjugate; while we use the Polya-urn scheme to sample
from the full-conditionals of α1, . . . , αJ . Finally we provide the expression of αnew|α, µ, λ.
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B.1 Parametric full-conditionals

The full-conditionals of β1 and θ are log-concave and hence we can sample from them using
an acceptance rejection sampling method. The full-conditional of β1 has the following

expression:

L(dβ1|α, λ, µ, θ,T = t)

=
L(T = t|β1,α, λ, µ, θ)L(dβ1,α, λ, µ, θ)∫ L(T = t|β1,α, λ, µ, θ)L(dβ1,α, λ, µ, θ)

=
L(T = t|β1,α, θ)L(dβ1,α, λ, µ, θ)∫ L(T = t|β1,α, θ)L(dβ1,α, λ, µ, θ)

=
L(T = t|β1,α, θ)L(dβ1)L(α, λ, µ)L(θ)∫ L(T = t|β1,α, θ)L(dβ1)L(α, λ, µ)L(θ)

∝ L(T = t|β1,α, θ)L(dβ1)

∝
n∏

i=1

{
f(ti|β1, αk[i], θ)

}L(dβ1)

∝ 1√
2πσ2

1

exp
(− β2

1

2σ2
1

) n∏

i=1

exp
{
− ( ti

ηi

)θ} θ

ηi

( ti
ηi

)θ−1
dβ1

∝ exp
{
− β2

1

2σ2
1

−
n∑

i=1

[
tiexp{−β1 log(xs,i)− αk[i]}

]θ − β1

n∑

i=1

log(xs,i)θ
}
dβ1,

where ηi = exp{β0 + β1log(xi) +αk[i]} is the linear predictor, k[i] = 1, . . . , J identifies the
spool of observation i, and i = 1, . . . , n.
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The full-conditional of θ has the following density distribution function:

L(dθ|β1,α, λ, µ,T = t)

=
L(T = t|β1,α, λ, µ, θ)L(β1,α, λ, µ, dθ)∫ L(T = t|β1,α, λ, µ, θ)L(β1,α, λ, µ, dθ)

=
L(T = t|β1,α, θ)L(β1,α, λ, µ, dθ)∫ L(T = t|β1,α, θ)L(β1,α, λ, µ, dθ)

=
L(T = t|β1,α, θ)L(β1)L(α, λ, µ)L(θ)∫ L(T = t|β1,α, θ)L(dβ1)L(α, λ, µ)L(θ)

∝ L(T = t|β1,α, θ)L(dθ)

∝
n∏

i=1

{
f(ti|β1, αk[i], θ)

}L(dθ)

∝ θa0−1exp(−b0θ)
n∏

i=1

exp
{
− ( ti

ηi

)θ} θ

ηi

( ti
ηi

)θ−1
dθ

∝ exp
{

(a0 + n− 1) log(θ) + θ
[ n∑

i=1

(log(ti)− β1 log(xs,i)− αk[i])− b0
]−

−
n∑

i=1

[
tiexp{−β1 log(xs,i)− αk[i]}

]θ}
dθ,

if θ > 0, 0 otherwise.

B.2 Full-conditionals of the random effects

First we show that the full-conditionals of µ and λ are conjugate; then we provide the
Polya-urn scheme of the full-conditionals of αj ’s, where j = 1, . . . , J . Finally, we derive
the expression of αnew|α, µ, λ. .

Notice that both the full-conditionals do not depend directly on the failure times T ,
since

L(T = t|β1,α, λ, µ, θ) = L(T = t|β1,α, θ).

Let start with the full-conditional of µ:

L(dµ|β1,α, θ, λ,T = t) = L(dµ|β1,α, θ, λ)

=
L(dµ, β1,α, θ, λ)∫ L(dµ, β1,α, θ, λ)

=
L(dµ,α, λ)L(β1, θ)∫ L(dµ,α, λ)L(β1, θ)

=
L(dµ,α, λ)∫ L(dµ,α, λ)

=
L(α|µ, λ)L(dµ)L(λ)∫ L(α|µ, λ)L(dµ)L(λ)

∝ L(α|µ, λ)L(dµ).
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By (1.8), we know that

L(α|µ, λ) = p(e1, . . . , ek)
k∏

l=1

P0(ψl|µ, λ),

where P0(·|µ, λ) ∼ N(µ, λ) and ψ1, . . . , ψk are the distinct values among α1, . . . , αJ . Hence

L(dµ|β1,α, θ, λ,T = t)

∝ p(e1, . . . , ek)
k∏

l=1

P0(ψl|µ, λ)L(dµ)

∝
k∏

l=1

P0(ψl|µ, λ)L(dµ)

∝ 1√
2πσ2

0

exp
[− µ2

2σ2
0

] k∏

l=1

{
1√
2λ

exp
[− (ψl − µ)2

2λ
]}
dµ

∝ exp
{
− µ2

( k
2λ

+
1

2σ2
0

)
+ µ

∑k
l=1 ψl
λ

−
∑k

l=1 ψ
2
l

2λ

}
dµ.

After some algebra, we obtain that

L(dµ|β1,α, θ, λ,T = t) ∼ N

(∑k
l=1 ψl
λ

(k
λ

+
1
σ2

0

)−1
,
(k
λ

+
1
σ2

0

)−1
)
.

Similarly, we can compute the full-conditional of λ:

L(dλ|β1,α, θ, µ,T = t) = L(dλ|β1,α, θ, µ)

=
L(dλ, β1,α, θ, µ)∫ L(dλ, β1,α, θ, µ)

=
L(dλ,α, µ)L(β1, θ)∫ L(dλ,α, µ)L(β1, θ)

=
L(dλ,α, µ)∫ L(dλ,α, µ)

=
L(α|µ, λ)L(dλ)L(µ)∫ L(α|µ, λ)L(dλ)L(µ)

∝ L(α|µ, λ)L(dλ)

∝ p(e1, . . . , ek)
k∏

l=1

P0(ψl|µ, λ)L(dλ)

∝
k∏

l=1

P0(ψl|µ, λ)L(dλ)

∝ (τ2/2)(τ1/2)
Γ(τ1/2)

λ−τ1/2−1exp
[− τ2

2λ
] k∏

l=1

{
1√
2λ

exp
[− (ψl − µ)2

2λ
]}
dλ

∝ λ−τ1/2−k/2−1exp
[−

∑k
l=1(ψl − µ)2 − τ2

2λ
]
dλ,

(B.1)
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if λ > 0, 0 otherwise. Notice the kernel of the Inverse Gamma in the last line of (B.1), so

L(dλ|β1,α, θ, µ,T = t) ∼ InvGamma
(τ1 + k

2
,

∑k
l=1(ψl − µ)2 + τ2

2
)
.

For j = 1, . . . , J , the full-conditional of αj has the following density distribution func-
tion

L(dαj |β1,α−j , λ, µ, θ,T = t)

=
L(T = t|β1,α, λ, µ, θ)L(β1, dαj ,α−j , λ, µ, θ)∫ L(T = t|β1,α, λ, µ, θ)L(β1, dαj ,α−j , λ, µ, θ)

=
L(T = t|β1,α, θ)L(β1)L(dαj ,α−j , λ, µ)L(θ)∫ L(T = t|β1,α, θ)L(β1)L(dαj ,α−j , λ, µ)L(θ)

=
L(T = t|β1,α, θ)L(dαj ,α−j , λ, µ)∫ L(T = t|β1,α, θ)L(dαj ,α−j , λ, µ)

=
L(T = t|β1,α, θ)L(dαj |α−j , λ, µ)L(α−j , λ, µ)∫ L(T = t|β1,α, θ)L(dαj |α−j , λ, µ)L(α−j , λ, µ)

=
L(T = t|β1,α, θ)L(dαj |α−j , λ, µ)∫ L(T = t|β1,α, θ)L(dαj |α−j , λ, µ)

∝ L(T = t|β1,α, θ)L(dαj |α−j , λ, µ)

∝
n∏

i=1

{
f(ti|β1, αk[i], θ)

}L(dαj |α−j , λ, µ)

∝
∏

i:k[i]=j

{
f(ti|β1, αj , θ)

}L(dαj |α−j , λ, µ).

By (1.10), we know that

L(dαj |α−j , λ, µ) = w0(J − 1, k−j ;σ, κ)P0(dαj) +w1(J − 1, k−j ;σ, κ)
k−j∑

l=1

(e−jl − σ)δψl
(dαj),

where w0(J−1, k−j ;σ, κ) and w1(J−1, k−j ;σ, κ) are defined in (1.11), while k−j represents
the number of distinct values among α−j . Hence

L(dαj |β1,α−j , λ, µ, θ,T = t) =
w̃0(αj)P0(dαj) +

∑k−j

l=1 ω̃l(ψl)δψl
(dαj)∫

w̃0(αj)P0(dαj) +
∑k−j

l=1 ω̃l(ψl)
(B.2)

where w̃0(αj) := w0(J − 1, k−j ;σ, κ)
∏
i:k[i]=j f(ti|β1, αj , θ) and

w̃l(ψl) := w1(J − 1, k−j ;σ, κ)(e−jl − σ)
∏
i:k[i]=j f(ti|β1, ψl, θ), for l = 1, . . . , k−j .

We do not have any analytic expression of the integral
∫
ω̃0(αj)P0(dαj) in (B.2). To

get over the evaluation of this integral, we compute the full-conditionals of αj ’s in two
successive steps using Algorithm 8 of Neal [30] for non-conjugated priors. First, we update
the random partition πJ of α with the support of a nuisance variable, then, given the
new random partition, we update the distinct values ψ1, ψ2, . . . , ψk with the so-called
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acceleration step. This second step of the algorithm speeds up the mixing of the Markov
chain.

We introduce some notation before providing the steps of the algorithm. To a given
random partition πJ there exists one and only one configuration vector c = (c1, . . . , cJ),
where cj ∈ {1, . . . , k}, k is the number of distinct values ψ1, ψ2, . . . , ψk and cj identifies
the value of αj , for j = 1, . . . , J . For instance, c2 = 3 iff α2 = ψ3. While c−j represents
the vector c not including the j-th component, and C−j := {c1, . . . , cj−1, cj+1, . . . , cJ}.

Here we update the configuration vector c.

For j = 1, . . . , J

� if cj = c, for some c ∈ C−j

– draw ψk+1 ∼ P0

– draw a new value for cj from {1, . . . , k+ 1} using the following probability dis-
tribution
P(cj = c|c−j ,ψ, ψk+1, µ, λ, β1, θ,T = t)

=

{
ω1(J, k + 1)(e−jc − σ)

∏
i:k[i]=j f(ti|β1, ψc, θ) 1 ≤ c ≤ k

ω0(J, k + 1)
∏
i:k[i]=j f(ti|β1, ψc, θ) c = k + 1

� if cj 6= c, for any c ∈ C−j

– draw a new value for cj from {1, . . . , k} using the following probability distri-
bution
P(cj = c|c−j ,ψ, µ, λ, β1, θ,T = t)

=

{
ω1(J, k)(e

−j
c − σ)

∏
i:k[i]=j f(ti|β1, ψc, θ) c 6= cj

ω0(J, k)
∏
i:k[i]=j f(ti|β1, ψc, θ) c = cj

Observe that we are only interested in the new configuration c, i.e. the new grouping
among αj ’s, and not in the αj ’s values.

Now we sample the new distinct values ψ1, . . . , ψk, given the new configuration c and
the other parameters. Using (1.8), it can be proved that the full-conditionals of ψ has the
following expression:

L(ψ|c, β1,α, µ, λ,T = t) =
k∏

l=1

∏

i:c(k[i])=l

f(ti|β1, αk[i], ψl)P0(dψl),

where P0 ∼ N(µ, λ). Therefore the ψl’s are reciprocally independent and each full-
conditional of ψl has the following density distribution function
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L(ψl|c, β1,α, µ, λ,T = t)

=
∏

i:c(k[i])=l

f(ti|β1, ψl, θ)P0(dψl)

∝ exp
{
− (ψl − µ)2

2λ
−

∑

i:c(k[i])=l

ψlθ −
∑

i:c(k[i])=l

[
tiexp(−β1 log(xs,i) + ψl)

]θ}

Notice that the full-conditional of ψl has log-concave density distribution function, and so
we can sample from it by an acceptance rejection sampling method.

Finally, the expression of αnew|α, µ, λ is trivial. In fact, by (1.10), we know that

L(dαnew|α, λ, µ) = w0(J, k;σ, κ)P0(dαj) + w1(J, k;σ, κ)
k∑

l=1

(el − σ)δψl
(dαnew),

where w0(J, k;σ, κ) and w1(J, k;σ, κ) are defined in (1.11).
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Appendix C

Data-set

Table C.1: Failure-times of NASA pressure vessels wrapped with Kevlar. Right-censored
observations are indicated with an asterisk *.

Stress (MPa) Spool F-time (hours) Stress (MPa) Spool F-time (hours)

29.7 2 2.2 29.7 5 243.9
29.7 7 4.0 29.7 4 254.1
29.7 7 4.0 29.7 1 444.4
29.7 7 4.6 29.7 8 590.4
29.7 7 6.1 29.7 8 638.2
29.7 6 6.7 29.7 1 755.2
29.7 7 7.9 29.7 1 952.2
29.7 5 8.3 29.7 1 1108.2
29.7 2 8.5 29.7 4 1148.5
29.7 2 9.1 29.7 4 1569.3
29.7 2 10.2 29.7 4 1750.6
29.7 3 12.5 29.7 4 1802.1
29.7 5 13.3 27.6 3 19.1
29.7 7 14.0 27.6 3 24.3
29.7 3 14.6 27.6 3 69.8
29.7 6 15.0 27.6 2 71.2
29.7 3 18.7 27.6 3 136.0
29.7 2 22.1 27.6 2 199.1
29.7 7 45.9 27.6 2 403.7
29.7 2 55.4 27.6 2 432.2
29.7 7 61.2 27.6 1 453.4

Continued on next page
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Table C.1 – continued from previous page

Stress (MPa) Spool F-time (hours) Stress (MPa) Spool F-time (hours)

29.7 5 87.5 27.6 2 514.1
29.7 8 98.2 27.6 6 514.2
29.7 3 101.0 27.6 6 541.6
29.7 2 111.4 27.6 2 544.9
29.7 6 144.0 27.6 8 554.2
29.7 2 158.7 27.6 1 664.5
27.6 2 694.1 25.5 1 11487.3
27.6 4 876.7 25.5 5 11727.1
27.6 1 930.4 25.5 4 13501.3
27.6 6 1254.9 25.5 1 14032.0
27.6 4 1275.6 25.5 4 29808.0
27.6 4 1536.8 25.5 1 31008.0
27.6 1 1755.5 23.4 7 4000.0
27.6 8 2046.2 23.4 7 5376.0
27.6 4 6177.5 23.4 6 7320.0
25.5 6 225.2 23.4 3 86161.0
25.5 7 503.6 23.4 5 9120.0
25.5 3 1087.7 23.4 2 14440.0
25.5 2 1134.3 23.4 6 16104.0
25.5 2 1824.3 23.4 5 20231.0
25.5 2 1920.1 23.4 6 20233.0
25.5 2 2383.0 23.4 5 35880.0
25.5 3 2442.5 23.4 1 41000.0*
25.5 8 2974.6 23.4 1 41000.0*
25.5 2 3708.9 23.4 1 41000.0*
25.5 8 4908.9 23.4 1 41000.0*
25.5 2 5556.0 23.4 4 41000.0*
25.5 6 6271.1 23.4 4 41000.0*
25.5 8 7332.0 23.4 4 41000.0*
25.5 8 7918.7 23.4 4 41000.0*
25.5 6 7996.0 23.4 8 41000.0*
25.5 8 9240.3 23.4 8 41000.0*
25.5 8 9973.0 23.4 8 41000.0*
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