
POLITECNICO DI MILANO

Facoltà di Ingegneria dell'Informazione

Corso di Laurea Specialistica in Ingegneria Informatica

An XML representation of DAE
systems obtained from continuous-time

Modelica models

Relatore:

Prof. Francesco Casella

Correlatore:

Johan Åkesson

Tesi di laurea di:

Roberto Parrotto
matr.720436

Anno Accademico : 2010/2011



Ai miei genitori, poichè non vi è alcun modo di costruire

castelli se non si hanno solide fondamenta.

Roberto



Sommario

I linguaggi per la modellistica orientata agli oggetti basati su equazioni sono

diventati sempre più popolari, negli ultimi 15 anni, come strumento di sup-

porto alla progettazione in di�erenti aree dell'ingegneria. Questi linguaggi

permettono di descrivere i sistemi �sici modellizzati da equazioni algebrico-

di�erenziali in modo conveniente, promuovendo un approccio modulare ed il

riuso dei modelli.

I sistemi DAE possono essere usati per scopi diversi: simulazione, analisi,

riduzione dell'ordine, ottimizzazione, trasformazione di modelli, sintesi di

sistemi di controllo, applicazioni real-time, e così via. Ciascuna di queste

attività coinvolge un trattamento speci�co delle equazioni, tramite algoritmi

sia numerici che simbolici. Inoltre, software specializzati che implementano

particolari algoritmi potrebbero già esistere e richiedere solamente che le

equazioni vengano fornite come input in modo opportuno.

L'obiettivo della tesi è quello di de�nire una rappresentazione basata su

XML dei sistemi DAE a tempo continuo ottenuti da modelli scritti in Mod-

elica, che possa essere facilmente trasformata nell'input di di�erenti tool, ad

esempio tramite XSLT. Il primo requisito di questa rappresentazione è quello

di essere il più possibile vicino alla formulazione matematica delle equazioni

scalari. Aggregazione gerarchica, ereditarietà, e tutti i tipi di strutture dati

complesse sono inessenziali per la descrizione matematica cercata ed essi

dovranno dunque essere eliminati dal compilatore Modelica nel processo di

�attening, prima della generazione della rappresentazione XML. La seman-

i



tica di molti modelli Modelica è però in parte de�nita da funzioni descritte

da algoritmi operanti su strutture dati complesse. Risulta necessario quindi

descrivere le funzioni Modelica in modo adeguato.

Il secondo requisito è che la rappresentazione sia la più generale possibile

rispetto al possibile utilizzo delle equazioni, che non dovrebbe essere limitato

alla simulazione. Da questo punto di vista, la rappresentazione XML pro-

posta può essere vista come un'interfaccia standard tra compilatori Modelica

e i vari tool simbolici e/o numerici specializzati in elaborazioni speci�che.

Inoltre, la rappresentazione XML potrebbe essere utile per trattare altre in-

formazioni riguardanti il modello, dando la possibilità di estendere lo schema

facilmente.

In tutti questi casi uno standard accettato potrebbe fornire grandi bene�ci

in termini di operatibilità per un largo spettro di possibili applicazioni.

ii



Acknowledgments

This thesis has been developed during an amazing experience in Lund, Swe-

den, where I have been guest at Modelon AB and at the Dept. of Automatic

Control of Lund University. I will never thank enough the people who helped

me to organize this adventure.

First, I would like to thank my advisor, Professor Francesco Casella, who

proposed me the project, Johan Åkesson, who has been my tutor during

the whole period in Sweden and Professor Gianni Ferretti for suggesting my

name for the project and transmitting me the interest for the topic.

I would like to thank all the guys at Modelon for the nice time, and ex-

pecially Hubertus Tummescheit for the interesting talks, Tove Bergdahl and

Jesper Mattson for the kind help with the JModelica.org platform. Thanks

also to Joel Andersson of K.U. Leuven for the help with the test case and

the ACADO platform.

I absolutely need to thank all the friends I have met during these 8

months, who made the experience unforgettable: Aarti, Carol, Ester, Fe-

lix, Jaha, Leslie, Magda, Mariana, Reena, Ranko,Yina and I am sorry if I

don't have space enough to list all of you.

Last, but by no means least, since the thesis is just the last e�ort of a 5

years journey, I would like to thank all the people, you know who I am talking

about, who stayed at my side during the years in Cremona and Milano and

expecially during the �rst two di�cult years of this period.

Roberto

iii



Contents

1 Introduction 1

2 Introduction to DAE systems 4

2.1 De�nition of DAE system . . . . . . . . . . . . . . . . . . . . 4

2.2 Index of a DAE system . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Index reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Acausal approach to modeling . . . . . . . . . . . . . . . . . . 8

3 The Modelica language 10

3.1 Introduction to the Modelica language . . . . . . . . . . . . . 10

3.2 The Modelica translation process . . . . . . . . . . . . . . . . 11

3.3 Overview of the language . . . . . . . . . . . . . . . . . . . . . 12

4 An XML representation of DAE systems 16

4.1 Mathematical formulation of �at DAE models for an XML

representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 XML Schema representation . . . . . . . . . . . . . . . . . . . 19

4.2.1 General design issues . . . . . . . . . . . . . . . . . . . 19

4.2.2 FMI Schema and variables representation . . . . . . . . 20

4.2.3 Quali�ed names . . . . . . . . . . . . . . . . . . . . . . 29

4.2.4 Expressions . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.5 Records de�nition . . . . . . . . . . . . . . . . . . . . . 38

4.2.6 Functions . . . . . . . . . . . . . . . . . . . . . . . . . 42

iv



4.2.7 Equations . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Possible applications . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 An extension example: DAE optimization problem . . . . . . 60

4.4.1 Mathematical formulation of optimization problems . . 60

4.4.2 XML schema extension . . . . . . . . . . . . . . . . . 61

5 XML representation of DAE systems obtained by continuous-

time Modelica models 65

5.1 Preliminary handling of the model . . . . . . . . . . . . . . . . 65

5.2 Mapping Modelica models to the XML schema . . . . . . . . . 69

6 Implementation and test case 71

6.1 The JModelica.org platform . . . . . . . . . . . . . . . . . . . 71

6.2 JModelica.org Abstract Syntax Tree (AST) . . . . . . . . . . . 73

6.3 Exporting models as XML documents . . . . . . . . . . . . . . 74

6.4 The ACADO Toolkit . . . . . . . . . . . . . . . . . . . . . . . 79

6.5 Importing and reusing XML models in ACADO . . . . . . . . 80

7 Conclusions and future perspectives 84

A Introduction to the XML Schema language 86

B Test case code 90

Bibliography 97

v



List of Figures

3.1 Modelica translation process . . . . . . . . . . . . . . . . . . . 11

4.1 Overall resulting schema . . . . . . . . . . . . . . . . . . . . . 21

4.2 Overall of the original FMI schema . . . . . . . . . . . . . . . 22

4.3 Scalar Variables representation in the original FMI schema . . 26

4.4 Attributes of �Real� element . . . . . . . . . . . . . . . . . . . 27

4.5 Quali�edName complex type . . . . . . . . . . . . . . . . . . . 30

4.6 fmiExtendedScalarVariable . . . . . . . . . . . . . . . . . . . . 31

4.7 Expression complex types . . . . . . . . . . . . . . . . . . . . 33

4.8 Range expression . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.9 Array element de�nition . . . . . . . . . . . . . . . . . . . . . 37

4.10 RecordConstructor de�nition . . . . . . . . . . . . . . . . . . . 37

4.11 RecordList and records de�nition . . . . . . . . . . . . . . . . 38

4.12 FunctionVariable complex type . . . . . . . . . . . . . . . . . . 40

4.13 Function de�nition . . . . . . . . . . . . . . . . . . . . . . . . 46

4.14 Complex types for algorithms representation . . . . . . . . . . 50

4.15 Assign element . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.16 If statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.17 Loops de�nition: While and For elements . . . . . . . . . . . . 52

4.18 FunctionCallStatement de�nition . . . . . . . . . . . . . . . . 53

4.19 Assertion element . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.20 Binding Equations . . . . . . . . . . . . . . . . . . . . . . . . 56

4.21 AbstractEquation complex type . . . . . . . . . . . . . . . . . 57

vi



4.22 Initial Equations . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.23 FunctionCallEquation complex type . . . . . . . . . . . . . . . 58

4.24 DynamicEquations element . . . . . . . . . . . . . . . . . . . 58

4.25 TimedVariable element de�nition . . . . . . . . . . . . . . . . 62

4.26 Optimization problem extension . . . . . . . . . . . . . . . . . 63

4.27 Overall of the schema extended by the optimization module . 64

5.1 Matching a Modelica model with the XML schema . . . . . . 70

6.1 JModelica.org architecture . . . . . . . . . . . . . . . . . . . 72

6.2 Results returned by ACADO . . . . . . . . . . . . . . . . . . . 83

vii



List of Tables

4.2 FMI XML Schema: top level elements . . . . . . . . . . . . . 22

4.3 �fmiScalarVariable� attributes . . . . . . . . . . . . . . . . . . 23

4.5 �Real� element attributes . . . . . . . . . . . . . . . . . . . . . 28

4.8 �exp� namespace complex types . . . . . . . . . . . . . . . . . 32

4.9 Expression elements . . . . . . . . . . . . . . . . . . . . . . . . 34

4.12 �fun� namespace complex types . . . . . . . . . . . . . . . . . 49

viii



Chapter 1

Introduction

Equation-based, object-oriented modeling languages have become increas-

ingly popular in the last 15 years as a design tool in many areas of systems

engineering. These languages allow to describe physical systems described by

di�erential algebraic equations (DAE) in a convenient way, promoting re-use

of modeling knowledge and a truly modular approach. The corresponding

DAEs can be used for di�erent purposes: simulation, analysis, model reduc-

tion, optimization, model transformation, control system synthesis, real-time

applications, and so forth. Each one of these activities involves a speci�c han-

dling of the corresponding di�erential algebraic equations, by both numerical

and symbolic algorithms. Moreover, specialized software tools which imple-

ment these algorithms may already exist, and only require the equations of

the model to be input in a suitable way.

The goal of this work is to de�ne an XML-based representation of DAE

systems obtained from object-oriented models written in Modelica [35], which

can then be easily transformed into the input of such tools, e.g. by means of

XSLT transformations.

The �rst requirement of this system representation is to be as close as

possible to a set of scalar mathematical equations. Hierarchical aggregation,

inheritance, replaceable models, and all kinds of complex data structures are

1



a convenient means for end-users to build and manage models of complex,

heterogenous physical systems, but they are inessential for the mathematical

description of its behaviour. They will therefore be eliminated by the Model-

ica compiler in the �attening process before the generation of the sought-after

XML representation. However, the semantics of many Modelica models is

in part de�ned by user-de�ned functions described by algorithms working

on complex data structures. It is therefore necessary to describe Modelica

functions conveniently in this context.

The second requirement of the representation is to be as general as pos-

sible with respect to the possible usage of the equations, which should not

be limited to simulation. A few representative examples include:

• o�-line batch simulation;

• on-line real-time simulation;

• dynamic optimization [8];

• transformation of dynamic model with nonlinearities and/or uncertain

parameters into Linear Fractional Representation formalism [12];

• linearization of models and computation of transfer functions for con-

trol design purposes;

• model order reduction, i.e., obtaining models with a smaller number

of equations and variables, which approximate the input-output be-

haviour around a set of reference trajectories[13];

• automatic derivation of direct/invers kinematics and advanced com-

puted torque and inverse dynamics controllers in robotic systems [11].

From this point of view, the proposed XML representation could also be

viewed as a standardized interface between multiple Modelica front-end com-

pilers and multiple symbolic/numerical back-ends, each specialized for a spe-

ci�c purpose.

2



In addition, the XML representation could also be very useful for treating

other information concerning the model, for example using an XML schema

(DTD or XSD) for representing the simulation results, or the parameter

settings. In those cases, using a well accepted standard will result in great

bene�ts in terms of interoperability for a very wide spectrum of applications.

Previous e�orts have been registered to de�ne standard XML-based rep-

resentations of Modelica models. One idea, explored in [29, 23], is to encode

the original Modelica model using an XML-based representation of the ab-

stract syntax tree, and then process the model through, e.g., XSLT transfor-

mations. Another idea is to use XML database for scalable and database-

friendly parametrization of libraries of Modelica models [36, 31].

The goal of this thesis is instead to use XML to represent the system

equations at the lowest possible level for further processing, leaving the task

of handling aggregated models, reusable libraries etc. to the object-oriented

tool that will eventually generate the XML representation of the system.

In particular, this thesis extends and complements ideas and concepts �rst

presented in [10]. A similar approach has been followed earlier by [9], but has

apparently remained limited to the area of chemical engineering applications.

The report is structured as follows: in Chapter 2 a short introduction

to the DAEs theory is given. Chapter 3 introduces the Modelica language.

In Chapter 4 the de�nition of the XML schema describing a DAE system is

discussed. Chapter 5 describes how to map the de�ned schema to Modelica

models. Chapter 6 presents a test case in which a model is exported from

JModelica.org platform and imported in the tool ACADO in order to solve

an optimization problem, while Chapter 7 ends the report with concluding

remarks and future perspectives.

3



Chapter 2

Introduction to DAE systems

2.1 De�nition of DAE system

The behaviour of physical dynamical processes is usually modeled via di�er-

ential equations (ODE), but in many cases constraints exist on the states of

the physical system, as for example Kirchho�'s laws in electrical networks.

Systems consisting of both di�erential and algebraic equations are called

di�erential-algebraic equations systems (DAE) or singular systems.

The most general form of a DAEs system is given by

F(t,x,y′) = 0 (2.1)

where δF/δy' may be singular. Each component of y′ may contain a mix of

dynamical and algebraic components, leading to a hard problem for �nding

the numerical solution. An important special case of (2.1) is the semi-explicit

DAE (or ODE with constraints) :

x′ = f(t,x, z)

0 = g(t,x, z)
(2.2)

where δg/δz is supposed to be nonsingular. In this case it is possible to

4



decouple the di�erential variables x(t) and algebraic variables z(t) and for

each instant a solution can be found by calculating z(t,x) from g(t,x, z) = 0

, replacing it in x′ = f(t,x, z) and integrating the resulting ODE system.

DAE theory is much more recent than ODE theory and there are many

di�erences that complicate the research of a numerical solution for DAE

compared to ODE's one. First of all, a generally valid theorem for exis-

tence, uniqueness and continuous dependence on the data exists for ODE's

solution but not for DAE's. Furthermore it is not possible to arbitrarily

set the initial conditions for a DAE system, but they must satisfy the ex-

plicit constraints and the hidden constraints resulting from the derivative

of the explicit constraints. Those initial conditions that hold this property

are called consistent conditions. On the numerical point of view, the class

of DAEs includes all ODEs, but also problems where both di�erentiation

and integration are intertwinned in order to �nd the solution and the e�ects

of the former complicates the numerical integration process. Since in the

present work we are more interested in the representation of DAE systems,

the problem of numerical integration is beyond our scope, but an interesting

exposition can be found on [20].

2.2 Index of a DAE system

If the problem is not singular, it is possible to apply analytical di�erentiations

to a given DAE system, repeatedly if necessary, to transform the problem

to an explicit ODE system. The number of di�erentiations needed to obtain

the ODE system is called the index of the DAE. According to the previous

de�nition an ODE is a DAE having index 0 and the semi-explicit DAE system

(2.2) is clearly index 1. DAEs with index greater than 1 are called higher

index DAEs. As already explained, initial conditions must be consistent also

with the hidden constraints introduced by the di�erentiations. It is important

to note that the local linearization depends on the solution, therefore also

5



the index depends not only on the form of the DAE, but also on the solution.

Hence, we can give a more precise de�nition of index.

De�nition. For the general DAE system (2.1), the index along a solution

y(t) is the minimum number of di�erentiations of the system which would be

required to solve for y' uniquely in terms of y and t (i.e. to de�ne an ODE

for y). Thus, the index is de�ned in terms of the overdetermined system

F(t,y,y′) = 0
dF
dt

(t,y,y′,y′′) = 0

.

.

.
dpF
dtp

(t,y,y′,y′′, ...,y(p+1)) = 0

(2.3)

to be the smallest integer p so that y' in (2.3) can be solved for in terms of

y and t.

The index previously de�ned is also named di�erentiation index, but it

is possible to �nd other di�erent de�nitions in the literature, for example as

a measure of sensitivity of the solutions with respect to pertubations for a

given problem (perturbation index, [19]) or as the size of the largest Jordan

block to an in�nite eigenvalue in the associated Kronecker canonical form

(algebraic index) [22, par.1.2] , which is useful in the analysis of DAE with

constant coe�cients.

2.3 Index reduction

Direct discretization methods are limited in their usefulness to index-1 and

semi-explicit index-2 DAE systems. Even though there are some results on

the convergence of some methods for case of higher order DAEs, there are

practical di�culties in writing robust codes that don't involve a substantial

6



user intervention. In order to use general purpose solvers an order reduction

process is usually performed. In fact the solution of index-1 DAE (and of

other special DAE forms called of Hessenberg [7, par.9.1.1]) is not much

more di�cult than that of sti� ordinary di�erential equations and fortunately

many DAEs in practical applications are either index-1 or can be seen as a

composition Hessenberg systems [7, ch.10] .

In order to reduce the index it is possible to di�erentiate the algebraic

constraints, repeating the process until the problem will be index-1. Perform-

ing the index reduction by di�erentiations, the introduced numerical errors

should be controlled in order to preserve the constraints, because of the well

know drift-o� phenomenon of the operation. The process leads to an over-

determined system, that can be solved by the dummy derivative method, that

it is explained in the classical paper by Mattsson and Söderlind [24]. There

are many other numerical methods to solve the index reduction problem and

more explanations can be found in [20, cap.VII.2] and [22, ch.6].

Many simulation tools use a graph-based algorithm to perform the in-

dex reduction of the DAE system [28]. This iterative procedure, known as

Pantelides algorithm, establishes a minimum set of equations which must be

di�erentiated in order to remove a structural singularity. Each time equations

are di�erentiated, a path �nding process is applied to the bi-partite graph of

equations and variables to attempt to �nd a mapping which uniquely assigns

each unknown variable in the system to an equation which can be used to

calculate that variable. The algorithm will go on di�erentiating the system

of equations until a complete assignment has been found. It is interesting to

note that if the algorithm doesn't reach a solution, it is possible to prove that

it is not possible to �nd consistent initial conditions for the given DAE sys-

tem, which therefore can't be solved. This result is also known as Pantelides

theorem.

7



2.4 Acausal approach to modeling

In order to design complex mathematical models it is useful to proceed by

aggregation of smaller components. In the case of causal models described

by ODEs it is simple to simulate aggregated models, but the topology of the

resulting system usually doesn't correspond to the structure of the physical

one. As a result the readability and reusability of the model will be heavily

a�ected. Therefore, although causal models are a straightforward solution

for describing control systems, an acausal approach, using DAEs, best suits

the problem of designing physical models. The key idea is to describe the

behaviour of every elementary physical component, or speci�c phenomena,

by equations and to design an interface in order to connect them, always

according to physical principles: when two or more components are mutu-

ally connected the e�ort variables are equalized and the �ow variables are

balanced. The complete system model, including the component equations

and the connection equations, thus corresponds to a DAE system, usually

called �attened model.

Example. Connection of two simple models in an electrical network.

Let's consider a simple network involving the following two components :

where the e�ort variable is the potential Vi, while the �ow variable is the

current Ii.The equations describing each component are the following:

8



Finally, when the two components are connected to each other and to the

ground, the following four equations are added to the model:

hence, the �nal model is described by 8 unknowns and 8 equations.

9



Chapter 3

The Modelica language

3.1 Introduction to the Modelica language

Modelica is an object-oriented, declarative, multi-domain modeling language

for component-oriented modeling of complex systems.

The Modelica language is widely used in industry for modeling and simu-

lation of physical systems [34]. Example application areas include industrial

robotics, automotive applications and power plants. Typical for models of

such systems is that they are of large scale, commonly up to 100.000 equa-

tions. There are also extensive standard libraries for e.g., mechanical, elec-

trical, and thermal models. The �rst version of Modelica was published in

September 1997. The e�ort was targeted at creating a new general-purpose

modeling language, applicable to a wide range of application domains. While

several other modeling languages were available, many of them were domain-

speci�c, which made simulation of complex multi-domain systems di�cult.

Based on experience obtained from designing other modeling languages, no-

tably Dymola, [15], and Omola, [6], the fundamental concepts of object-

orientation and declarative programming were adopted. The work presented

in this thesis, however, is based on the latest available speci�cation, version

3.2 [35], which was released in April 2010.

10



Figure 3.1: Modelica translation process

Mathematical modeling of complex physical systems requires appropriate

high level languages. In particular, it is essential that a modeling language

for such systems o�ers abstractions for structuring of models. A particularly

successful paradigm has been that of object-oriented modeling. In the Mod-

elica context, the structural concepts of object-orientation, such as classes,

components and inheritance, are emphasized, rather than dynamic creation

of objects and message passing.

Modelica is designed with multi-domain modeling in mind. Accordingly,

the language is particularly useful for applications which involve modeling

of physical phenomena from di�erent domains. For example, in automotive

applications, it is desirable to have sub-models for the combustion, the me-

chanical systems, the electronics and the interaction with the road. In this

type of applications, Modelica serves as a unifying language in which all these

sub-systems can be modeled. The primary objective of formulating a model

of a complex physical system is most often simulation. That is, prediction

of the response of a model, given a speci�ed input stimuli, and the state of

the model. If the model is su�ciently accurate, the simulation results may

be used to draw conclusions about the behavior of the true physical system.

3.2 The Modelica translation process

The process of translating Modelica source code into a format suitable for

numerical simulation/optimization algorithms can be divided into a number

of steps, see Figure3.1. In the �rst step, the Modelica code is �attened. This

11



means that all component and inheritance structures are eliminated. The re-

sulting model contains essentially a set of variables and a set of equations in-

cluding both component and connection equations. The only property of the

�at model that indicates its hierarchical origin is that a variable name is usu-

ally expressed as a quali�ed name, indicating the path of the corresponding

variable. In the next step, the equations are sorted using graph-theoretical

methods such as the BLT transformation, [32]. Sorting of equations are done

in order to explore the structure of the model. The equations are then an-

alyzed further and manipulated so that they can be more e�ciently solved

by numerical software. The output of this step is referred to as a di�erential

algebraic equation (DAE). The DAE also represents a generic mathematical

description of the original Modelica model, and may be used for di�erent

purposes. The commonest application is to generate C code, which is com-

piled and linked with an algorithm for numerical integration. The behavior

of the system can then be simulated by executing the resulting application.

3.3 Overview of the language

Modelica is �a uni�ed object-oriented language for physical systems model-

ing�, [35]. As such, its most important feature are:

• Modelica supports equation-based acausal modeling, as opposed to as-

signment statements. Using equations, the modeler can state relations

on their most natural form, without the need to solve for a particular

variable. As a consequence, the data-�ow direction is not determined

a priori, but rather by the context of a particular component.

• Modelica can be used to express models from di�erent domains, en-

abling modeling of heterogeneous systems

• Modelica is an object-oriented language. This feature enables the mod-

eler to use powerful structuring concepts such as classes, components,

12



inheritance and generics.

• Modelica has strong support for component-based models, including

means to connect components. This feature enables modelers to cre-

ate modular models, as well as interfaces through which they can be

connected.

These properties make Modelica particularly well suited for modeling of large

and complex systems. For example, a well known limitation of block-based

modeling is the need to solve for a particular set of variables. Even though the

equations for each component in a composite model are simple and straight-

forward to derive, the modeler has to transform, usually by hand, the origi-

nal model component equations into the standard ODE representation. For

many physical systems, this transformation is often global, in the sense that

all model components have to be considered simultaneously. In addition,

the original structure of the model is often destroyed in the transformation.

Modelica overcomes this di�culty by allowing acausal connection of model

components. This approach leaves to the tool to transform the model equa-

tions into a format suitable for, for example, numerical integration. The

structuring constructs of Modelica, such as classes, inheritance, generics and

packages promote model reuse and development of model libraries. This, in

turn, enable domain experts to encapsulate knowledge in an accessible and

structured way.

The class concept is fundamental in Modelica. Apart from the built-in

classes �Real�, �Integer�, �Boolean� and �String�, classes can also be de�ned

by the user. A Modelica class may contain local class de�nitions, component

declarations (these two entities are referred to as elements), equations and

algorithms. A component declaration corresponds to an instance of a class,

which can be either a user-de�ned class or a built-in class, such as Real. In the

latter case, the component declaration is sometimes referred to as a variable

declaration. The variability of a variable can be speci�ed. For example, a

variable of type Real can be speci�ed to be a parameter, which means that

13



it is constant during simulation. Elements can also be speci�ed to be either

public or protected. In the latter case, such elements are only accessible from

within the class itself. In addition, Modelica supports multiple inheritance.

Equations and algorithms are used to de�ne behavior. Physical phenom-

ena are often modeled by mathematical equations. Equations in turn de�ne

relationships between physical variables, such as pressure, temperature, cur-

rent or voltage. In addition, many physical phenomena are described by

di�erential equations, where the variables as well as their derivatives with

respect to time or space appear. Typical origins of equations are the laws

of nature, e.g. the law of conservation of energy or Ohm's law. By stating

equations declaratively, the need to solve for a certain variable determined

by the model context, and possibly simulation environment, is eliminated.

Consider e.g., Ohm's law, valid for an ideal resistor: v = Ri, where v is

the di�erence in potential between the terminals, R is the resistance and i

is the current. This equation can be stated in three di�erent ways. Apart

from the standard form, assuming R 6= 0,i = v/R and R = v/i also have

the same mathematical meaning. This example illustrates what is a well

known problem when formulating simulation models: it is often necessary to

have several versions of the same model depending on how it is connected to

its environment. Modelica solves this problem by enabling the user to state

equations on their natural form and then leave it to the tool to transform the

model into simulation code. Most realistic systems exhibit discontinuous be-

havior. For example, the gear box of a car have a limited number of discrete

gears. Also, equipment that is controlled by switching it on and o� results

in models with discrete behavior. Systems containing both continuous and

discrete dynamics are referred to as hybrid systems. Since many engineering

problems are hybrid in this sense, Modelica o�ers support for expressing hy-

brid models. There are two constructs available in Modelica for introducing

hybrid behavior. if-clauses are used to express conditional equations, i.e.,

based on one or many conditions, a corresponding set of equations are active

14



in the model. It is also possible to express instantaneous events, i.e., when a

speci�ed condition evaluates to true, some actions should be taken.

While physical phenomena are conveniently expressed by equations, there

are other types of behavior that are expressed in a more natural way using

algorithms. One such example is discrete-time control systems. Since it

is often desirable to model not only the actual physical system, but also

the associated control system, the ability to express algorithms in Modelica

is important. Algorithms in Modelica can be used to express sequences of

assignment statements, conditional statements and iteration.

Physical systems can often be decomposed into distinct subsystems, which

are connected. By using a top-down approach, models for the subsystems can

be combined to form more complex composite models. This methodology is

strongly supported in Modelica. Speci�cally, the specialized class connector

and the built-in function connect can be used to formulate structured models

composed of interacting components. A connector class serves as an interface

between components. If two components both have a connector of the same

type, they may be connected. The interface de�ned by a connector class

consists of a set of variables, which are either of potential type or �ow type.

The semantics of a connection operation is the following: When a connection

is formed, the potential variables of all connected connector components are

set equal, while the sum of the �ow variables is set to zero. During translation

of a Modelica model, equations are generated from connection statements.

For a comprehensive description of the Modelica language and its usage,

see [18].

15



Chapter 4

An XML representation of DAE

systems

4.1 Mathematical formulation of �at DAEmod-

els for an XML representation

The goal of the present work is to de�ne a representation of a DAE system

obtained from continuous-time Modelica models, which can be easily trans-

formed into the input format of di�erent purpose tools and then reused. A

representation as close as possible to the mathematical formulation of equa-

tions is a solution general enough to be imported from the largest set of the

tools and neutral with respect of the possible usage. For this reason concepts

as aggregation and inheritance, which are proper of equation based object-

oriented models, should be avoided in the representation. Furthermore, the

designed representation may be used to represent acausal declarative models

written in di�erent languages, but this possibility has not been explored at

the time of this thesis and it is proposed as a future perspective in Chapter

7.

A DAE system consists of a system of di�erential algebraic equations and

16



it can be expressed as:

F (ẋ, x, u, w, t, p) = 0 (4.1)

where ẋ is vector of derivatives of the state, x is vector of the state, u is

vector of the inputs, w is vector of the algebraic variables, t is the time and

p is vector of the parameters.

The schema does not enforce the represented DAEs to have index-1, but

this would be the preferable case, so that the x variables can have the meaning

of states and it is possible to arbitrarily select their initial values. Preferring

the representation of models having index 1 is acceptable considering that

most of the applications for DAE models require an index-1 DAE as input.

In addition, in case the equations of the original model have higher index,

usually index-1 DAE can be obtained by index reduction, so the represen-

tation of index-1 DAEs doesn't drastically restrict the possible applications

range.

The formulation provided in equation (4.1) is very general and useful

for viewing the problem as one could see it written on the paper, but it is

not directly usable for inter-tools exchange of models. It is then necessary

to provide a standardized mathematical representation of the DAE systems

that relies on a standard technology: this justi�es the choice of the XML

standard as a base for our representation. Hence, a formulation that better

suits with our goal is proposed.

Given the sets of the involved variables

• x ∈ Rn: vector of time-varying state variables

• u ∈ Rm: vector of time-varying input variables

• w ∈ Rr: vector of time-varying algebraic variables

• p ∈ Rk: vector of bound time invariant variables (parameters and

constants)

17



• q ∈ Rl: vector of unknown time invariant variables (unknown parame-

ters)

• t ∈ R: time variable

it is possible to de�ne the three following di�erent subsets for the equations

composing the system.

Fi(x, ẋ, u, w, p, q, t) = 0, i = 1...n+m (4.2)

is the set of dynamic equations. Each function Fi(x, ẋ, u, w, p, q, t) denotes

a valid scalar expression in the scalar elements of its arguments, giving the

scalar residual of the i-th equation. These equations determine the values of

all algebraic variables w and state variable derivatives ẋ, given the states x,

the inputs u, the parameters p and q, and the time t.

pi = Gi(p), i = 1...k (4.3)

is the set of parameter binding equations. Each functionGi(p) denotes a valid

expression in the scalar elements of its argument. The system of parameter

binding equations is assumed to be acyclic, so that it is possible to compute

all the parameters by suitably re-ordering these equation into a sequence of

assignments, e.g. via Tarjan's algorithm [32].

Hi(x, ẋ, u, w, p, q) = 0, i = 1...n+ l (4.4)

is the set of initial equations. Each function Hi(x, ẋ, u, w, p, q) denotes a valid

expression in the scalar elements of its arguments. The system formed by

the dynamic equations (4.2), the parameter binding equations (4.3) and the

initial equations (4.4), which has 2n + m + k + l equations, determines the

values of the states, state derivatives, algebraic variables and parameters at

some initial time t0.

18



4.2 XML Schema representation

An XML document [38] is an XML �le that represents an instance of a data

structure. An XML Schema [39] de�nes the rules that an XML document

should hold to be valid for a certain application. Plenty of tools and libraries

are available to verify that a certain XML document is valid with respect

of an XML schema. In our case the XML schema will then describe the

structure of a DAE system's valid representation while the instances, i.e.

the XML documents, contain the actual equations of a model exported from

a certain tool. In this section a description of the XML schema is given,

while a short documentation of the key concepts of XML Schema language

is available in Appendix A.

4.2.1 General design issues

The main goal is to have a schema:

• neutral with respect of the model usage;

• easy to use, read and maintain;

• easy to extend.

To achieve the �rst goal a representation as close as possible to the mathe-

matical one of the DAE is required, as discussed in the previous paragraph.

To achieve the other required properties a design based on modularity guar-

antees a result easier to read and extend. The proposed design provides one

di�erent vocabulary (namespace) for every section of the schema. In this

way, if a new section will be required, for example to represent information

useful for a special purpose, a new module can be added without modifying

the base schema. An example of this usage is given in section 4.4.

The Functional Mock-up Interface for Model Exchange 1.0 (FMI 1.0)[25]

has been choosen as a starting point for the schema, with the main advantage

19



of basing the work on an already accepted standard for model exchange. The

FMI 1.0 already provides a schema containing a representation of the scalar

variables involved in the system. This schema has been extended according

to our goals, by adding a quali�ed names representation for the variable

identi�ers, and by appending a speci�cation of the DAE system.

The new modules composing the schema with the corresponding names-

pace pre�xes are:

• the expressions module (exp)

• the equations module (equ)

• the functions module (fun)

• the algorithms module (fun)

All these modules, whose detailed description is given in the next paragraphs,

are imported in the FMI schema, to obtain the overall result shown in Figure

4.1

4.2.2 FMI Schema and variables representation

The Functional Mockup Interface de�nition is one result of the ITEA2 project

MODELISAR [25]. The intention is that dynamic system models of di�erent

software systems can be used together for simulation. The FMI (Functional

Mock-up Interface) de�nes an interface to be implemented by an executable

called FMU (Functional Mock-up Unit). The FMI functions are called by

a simulator to create one or more instances of the FMU, called models,

and to run these models, typically together with other models. An FMU

may either be self-integrating (co-simulation) or require the simulator to

perform numerical integration. Alternatively, tools shall be coupled via co-

simulation with network communication. The intention is that a modelling

environment can generate C-code of a dynamic system model that can be

20



Figure 4.1: Overall resulting schema

utilized by other modelling and simulation environments. The model is then

distribuited in packages containing the C-code of the dynamic system and

an xml-�le containing the de�nition of all variables in the model and other

model information.

For the sake of the present work the XML Schema is the interesting part

of the FMI project to take into account. At the root-level the base FMI

schema is so de�ned:

21



Figure 4.2: Overall of the original FMI schema

At the top level the FMI schema consists of:

element description

attributes Global properties of the model, such as the model
name, author and generating tool

UnitDe�nitions A global list of de�nitions to convert display
units into the units used in the model equations.
These de�nitions are used in the xml-element

�ModelVariables�
TypeDe�nitions A global list of type de�nitions that are utilized

in �ModelVariables�.
DefaultExperiment Providing default settings for the integrator, such

as stop time and relative tolerance.
VendorAnnotations Additional data that a vendor might want to

store and that other vendors might ignore.
ModelVariables The central FMI data structure de�ning all

variables of the model that are visible/accessible
via the model functions

Table 4.2: FMI XML Schema: top level elements

22



A full description of every section the FMI schema is available in the o�-

cial documentation [25]. The optional attribute �variableNamingConvention�

can be omitted in the exported XML documents, since the FMI schema is

extended to support quali�ed names as explained further on. The optional

element �DefaultExperiment� contains information oriented to simulation ap-

plications and can also be ignored for our goal. �UnitDe�nitions� and �Type-

De�nitions� can be considered as optional and neutral with respect of our

goal, i.e. the choice of generating these information in the XML documents

will not change the meaning of the DAE representation, but it can just be

useful to further document the role of the variables. �VendorAnnotations� is

optional and can store information on the tool exporting the model.

More interesting for our target is the representation of the variables.

�ModelVariables� element consists of a set of �ScalarVariable� elements de-

�ned as �fmiScalarVariable� complex type (Figure 4.3). A �fmiScalarVari-

able� represents one primitive type, like a real or integer variable. Only

scalar variables are supported in the FMI schema and structured entities

(like arrays or records) have to be mapped to scalars.

A description of the attributes of �fmiScalarVariable� is given in the fol-

lowing table:

Table 4.3: �fmiScalarVariable� attributes

attribute description

name The full, unique name of the variable.

valueReference A handle of the variable to e�ciently identify the

variable value in the model interface. It is used

by the C-functions of the FMU

description An optional description string describing the

meaning of the variable

23



variability Allowed variables are:

• �constant�: the value of the variable is �xed

and does not change.

• �parameter�: The value of the variable does

not change after initialization

• �discrete�: The value of the variable only

changes during initialization and at event in-

stants.

• �continuous�: No restrictions on value

changes. Only a variable of type = �Real�

can be �continuous�.

The default is �continuous�.

causality De�nes how the variable is visible from the

outside of the model. It can have one the

following values:

�input�,�output�,�internal�,�none� and the default

is �internal�

24



alias Enumeration that de�nes whether the respective

variable is an alias variable. An alias variable is

the result of an equation �a := b� or �a := �b�

(this situation occurs very often in models

built-up by connecting physical components

together). In order to retrieve the value of �a�

from the value of �b�, the alias property is

de�ned with this attribute and the valueIdenti�er

is the one from �b�. Allowed enumeration values:

• �noAlias�: It is not an alias variable (this is

the default).

• �alias�: The variable is an alias variable. The

actual value can be set/get via the valueRef-

erence handle.

• �negatedAlias�: The variable is an alias vari-

able where the variable value retrieved via

the valueReference handle must be negated

The alias property can be used for e�ciency

optimizations.

In addition to the described attributes, the �fmiScalarVariable� complex

type provides elements to collect the attributes speci�c to the type of the

variable. From Figure 4.3 it is possible to notice that the FMI schema allows

�Real�, �Integer�, �Boolean�, �String� and �Enumeration� types. An optional

element �DirectDependency� can be used if the causality of the variable is

set to �output�.

After the previous general documentation, it is important to point out

25



Figure 4.3: Scalar Variables representation in the original FMI schema

26



how to correctly use the description of scalar variables in our DAE represen-

tation. According to the formulated mathematical representation in Section

4.1, no discrete variables are allowed, so the �discrete� choice of �variability�

attribute should never be used. The only allowed type for the state vari-

ables is �Real�, while parameters could also be �Boolean� or �Integer�. Only

the attributes of �Real� element will now be described (Figure 4.4), but the

representation of the types is almost identical.

Figure 4.4: Attributes of �Real� element

27



The �Real� element holds the following attributes:

Table 4.5: �Real� element attributes

attribute description

declaredType If present, name of type de�ned with

TypeDe�nitions.

quantity Physical quantity of the variable, e.g., �Angle�, or

�Energy�

unit Unit of the variable that is used for the model

equations, e.g., �N�.

displayUnit Default display unit. The conversion to the

�unit� is de�ned with the element

�fmiModelDescription / UnitDe�nitions�.

relativeQuantity If this attribute is true, then the �o�set� of

�displayUnit� must be ignored (e.g. 10 degree

Celsius = 10 Kelvin if �relativeQuantity = true�

and not 283 Kelvin).

min Minimum value of variable (variable ≥ min). If

not de�ned, the minimum is the largest negative

number that can be represented on the machine.

max Maximum value of variable (variable ≤ max). If

not de�ned, the maximum is the largest positive

number that can be represented on the machine.

nominal Nominal value of variable. If not de�ned and no

other information about the nominal value is

available, then nominal = 1 is assumed.

start Initial value of variable.All constants and

independent parameters must have a start value

in the xml-�le.

28



�xed De�nes the meaning of attribute "start". This

attribute is only allowed if "start" is also present:

• = true: "start" is an initial value of a vari-

able. This is the default.

• = false: "start" is a guess value. The vari-

able is used as iteration variable during ini-

tialization. After initialization, the variable

can have a di�erent value as �start�.

4.2.3 Quali�ed names

The proposed representation should be neutral with respect of the application

context. This also means that variable identi�ers should be represented in

a general way. It may happen that the tool exporting the model accepts

identi�ers with special characters that the importing tool does not allow.

Furthermore, in the de�nition of user-de�ned functions (detailed discussion

in Section 4.2.6) more complex types than scalar variables, such as array and

records, are allowed. The index of an array can be a general expression, and

representating the array's element by a string, e.g. �x[3*1]�, would require to

write an ad-hoc parsing module in the importing tools. In the same manner

the exporting tool can support a notation to describe array subscripts or

record �elds that is di�erent from the one used by the importing tool.

For all these reasons a structured representation for quali�ed names, that

includes only the necessary information and avoid language dependent nota-

tions is introduced. The complex type �Quali�edName� is then de�ned as in

Figure 4.5 and it will be used as a standard representation for names in all

the schema. The �Quali�edName� complex type expects that the identi�er is

broken in a list of parts. �Quali�edNamePart� holds a string attribute �name�

29



Figure 4.5: Quali�edName complex type

and an optional element �ArraySubscripts�, to represent the indeces of the

array element. �ArraySubscripts� elements provide a list of elements, one for

each index of the array (e.g. a matrix has an �ArraySubscripts� element with

two children). Each index is generally an expression, represented by �Index-

Expression�, but usually languages support de�nition of array variables with

unde�ned dimensions, represented by �Unde�nedIndex�. Conventionally, the

�rst element of an array has index 1. In our representation, array variable

de�nitions are allowed in user-de�ned functions only.

Example 1. Representation of a quali�ed name.

Given a record variable R, and its �eld x of array type, we would like to

represent the name that refers to the second element of the array x in the

record R (e.g., �R.x[2]� in Modelica language). The resulting XML represen-

tation valid with respect of the XML schema is:

<exp:Qual i f iedName>

<exp:Qual i f iedNamePart name="R"/>

<exp:Qual i f iedNamePart name="x">

<exp :ArraySubscr ipt s>

<exp: IndexExpress ion>

<exp : I n t e g e r L i t e r a l>2

</ e xp : I n t e g e r L i t e r a l>

</ exp: IndexExpress ion>

</ exp :ArraySubscr ip t s>

30



</exp:Qual i f iedNamePart>

</exp:Qual i f iedName>

Hence, the original representation of scalar variables provided by the FMI

XML schema is extended in order to support the de�nition of variable names

as quali�ed names, that will be the standard representation of identi�ers in

the whole schema: �fmiScalarVariable� complex type is therefore extended

to �fmiExtendedScalarVariable� complex type, that will be the only one used

in the �nal schema, including a �Quali�edName� element as in Figure 4.6.

Figure 4.6: fmiExtendedScalarVariable

4.2.4 Expressions

All the expressions are collected in the �exp� namespace. The elements in

the �exp� namespace represent all the mathematical scalar expressions of the

system: basic arithmetical and logical operators; trigonometric, exponential,

logarithmic, hyperbolic and other mathematical functions; function calls re-

ferring to user-de�ned functions; variable identi�ers and literals.

31



Whenever a valid element is supposed to be a general expression, a wild-

card element on the �exp� namespace is used, in order to simplify the schema's

extensibility. As a result, when a new expression is needed, it is su�cient to

create a new element in the �exp� vocabulary and it will be automatically

available in all the rest of the schema.

The �exp� namespace includes the following complex types (Figure 4.7):

complex type description

Exp A general expression. An element de�ned as
�Exp� type can have any expression de�ned in the

�exp� namespace as possible value
UnaryOperation Operation having one operand
BinaryOperation Operation having two operands
BuiltInFunct Prede�ned function that requires only one

argument as input
BuiltIn2Funct Prede�ned function that requires two arguments

as input
BuiltIn1or2Funct Prede�ned function that can accept either one or

two arguments as input
FunctionCall Function call referring to user-de�ned function.

The function should return one output argument.
The arguments should match in type and order

the called function interface.
Array Constructor of an array data structure

RecordConstructor Constructor of a record data structure
Quali�edName Structured name representation (see Section

4.2.3)

Table 4.8: �exp� namespace complex types

32



Figure 4.7: Expression complex types

33



The following table collect all the allowed basic expressions elements, with

their corresponding de�nition:

Table 4.9: Expression elements

elements Type Description

Add, Sub, Mul,

Div,Pow

BinaryOperation Basic algebraic operations: addition,

subtraction, multiplication, division,

exponentiation

Neg UnaryOperation Negation operand for numeric

argument

And, Or BinaryOperation Logical operations conjunction and

disjunction

Not UnaryOperation Logical operation negation. The

argument should be a boolean

expression.

LogLt, LogLeq,

LogGt, LogGeq

LogEq, LogNeq

BinaryOperation Basic logical comparison operations:

less than, less or equal than, greater

than, greater or equal than, equal

than, not equal than. The arguments

should be boolean expressions.

Der BuiltInFunct Derivative function

Sin, Cos, Tan,

Asin, Acos,Atan

BuiltInFunct Basic trigonometrical functions

Sinh, Cosh,

Tanh

BuiltInFunct Basic hyperbolic functions

Exp, Log, Log10 BuiltInFunct Exponential and logarithmic functions

Abs BuiltInFunct Absolute value function. Given a

scalar expression argument x, it

returns x if x>=0 or -x if x<0

34



Sign BuiltInFunct Returns 1 if the argument is a positive

expression, -1 if the argument is a

negative expression

Sqrt BuiltInFunct Square root of the argument. The

argument is supposed to be a positive

real expression.

Atan2 BuiltIn2Funct four quadrant inverse tangent function

Min, Max BuiltIn1or2Funct If the arguments are two scalar

expression, the minimum and

maximum expression are respectively

returned. If the argument is one array

of scalar expressions, the minimum

and maximum expression are

respectively returned

FunctionCall FunctionCall Function call referring to user-de�ned

function. The function should return

one output argument.

Identi�er Quali�edName Variable identi�er

RealLiteral real Real literal expression

IntegerLiteral integer Integer literal expression

BooleanLiteral boolean Boolean literal expression

StringLiteral String String literal expression

Time none Time variable

Example 2. Expressions representation

Given the expression der(x) + 3.5 ∗ sin(x)2, an XML representation that

is valid according to the de�ned schema is:

<exp:Add>

<exp:Der>

<e x p : I d e n t i f i e r>

35



<exp:Qual i f iedNamePart name='x ' />

</ e x p : I d e n t i f i e r>

</exp:Der>

<exp:Mul>

<exp :Rea lL i t e r a l>3 .5</ exp :Rea lL i t e r a l>

<exp:Pow>

<exp :S in>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name='x ' />

</ e x p : I d e n t i f i e r>

</ exp :S in>

<exp : I n t e g e r L i t e r a l>2</ e xp : I n t e g e r L i t e r a l>

</exp:Pow>

</exp:Mul>

</exp:Add>

In addition to the previous basic expressions, some special non-scalar

expressions are included in the �exp� namespace: �Range�, �Array�, �Unde-

�nedDimension� and �RecordConstructor�.

The �Range� element de�nes an interval of values and it can be used only

in for loops de�nition, inside algorithms of user-de�ned functions or as an

argument of array constructors. A �Range� element is composed by either

two or three scalar expressions. In case there are two expressions, they are

considered to be the lower and upper bounds of the range, while by default

the step of the loop is 1. If there are three expressions in the �Range� element,

then the second one de�nes the step size of the loop.

Figure 4.8: Range expression

Array variable de�nitions and uses are allowed only in user-de�ned func-

36



tions (Section 4.2.6). The element �Unde�nedDimension� can be used in

array variables de�nitions when the dimension is not known a priori. The

�Array� element can be used as a constructor of an array of scalar variables

in the left hand side of user-de�ned function call equations. Multidimen-

sional arrays can be built by iteratively applying the one-dimensional array

constructor.

Figure 4.9: Array element de�nition

As for arrays, also record variables can be de�ned and used only in user-

de�ned functions. A �RecordConstructor� element can be used in the left

hand side of user-de�ned function calls, where it should be seen as a col-

lection of scalar elements. The detailed explanation of how to use �Array�

and �RecordConstructor� in the left hand side of a user-de�ned function call

equations is postponed to Section 4.2.6.

Figure 4.10: RecordConstructor de�nition

37



Figure 4.11: RecordList and records de�nition

4.2.5 Records de�nition

A record (also called tuple or struct) is one of the simplest data structures,

consisting of two or more values or variables stored in consecutive memory

positions, so that each component (called a �eld or member of the record)

can be accessed by applying di�erent o�sets to the starting address.

All the elements and complex types relevant to record de�nitions are

stored in the �fun� namespace, since they are mostly related with the use of

functions. Both record variables used in functions and record constructors

used in the left hand side of equations should be compatible with a given

de�nition of record type. The �RecordsList� element, that is referenced in

the main schema (Figure 4.1), should contain the de�nition of all the records

used in the XML document, each one stored in a di�erent �Record� element.

38



The �Record� elements are declared as �RecordVariable� complex type (as

in Figure 4.11) and are de�ned by a �Name� element and by a list of �Field�

elements, one for each �eld of the record. �Field� elements are declared

as �FunctionVariable� complex type, so they hold two attributes: �type�

and �variability�, which both can accept a value in a given enumeration.

The �type� attribute can assume values within �Real�, �Integer�, �Boolean�,

�String� and �Record�. The attribute �variability� is optional and should be

used if the given variable is de�ned as a constant or a parameter. Valid val-

ues for �variability� are �constant�, �parameter� and �continuous� (default).

In addition to the mandatory element �Name� (of type �Quali�edName�)

there are three optional elements: �Record�, �Size� and �BindingExpression�.

A �Record� element should be used when �type='Record� ' and in this case

should include the quali�ed name of the variable record type. If the variable

is an array, the element �Size� should include a list of expressions, one for each

size de�ning the variable, possibly of �Unde�nedDimension� expression. The

�BindingExpression� element de�nes the initial value of the de�ned variable.

39



Figure 4.12: FunctionVariable complex type

Example 3. Records de�nition

In a model two di�erent types of records are used: �ComplexNumber�

and �A�. Their de�nition, in Modelica language is:

r ecord ComplexNumber

Real im ;

Real re ;

end ComplexNumber ;

r ecord A

ComplexNumber c ;

constant Real p i = 3 . 1 4 ;

Real x [ 2 ] = { 1 . 2 , 5 . 5 } ;

end A;

40



According to the de�ned XML schema, a valid representation is:

<fun :Reco rd sL i s t>

<fun:Record>

<fun:Name>

<exp:Qual i f iedNamePart name='ComplexNumber '>

</fun:Name>

<fun :F i e l d type=' Real '>

<fun:Name>

<exp:Qual i f iedNamePart name=' im '>

</fun:Name>

</ fun :F i e l d>

<fun :F i e l d type=' Real '>

<fun:Name>

<exp:Qual i f iedNamePart name=' re '>

</fun:Name>

</ fun :F i e l d>

</ fun:Record>

<fun:Record>

<fun:Name>

<exp:Qual i f iedNamePart name='A '>

</fun:Name>

<fun :F i e l d type=' Record '>

<fun:Name>

<exp:Qual i f iedNamePart name=' c '>

</fun:Name>

<fun:Record>

<exp:Qual i f iedNamePart name='ComplexNumber '>

</ fun:Record>

</ fun :F i e l d>

<fun :F i e l d type=' Real ' v a r i a b i l i t y=' constant '>

<fun:Name>

<exp:Qual i f iedNamePart name=' p i '>

</fun:Name>

<fun :Bind ingExpres s ion>

<exp :Rea lL i t e r a l>3 .14</ exp :Rea lL i t e r a l>

41



</ fun :Bind ingExpres s ion>

</ fun :F i e l d>

<fun :F i e l d type=' Real '>

<fun:Name>

<exp:Qual i f iedNamePart name='x '>

</fun:Name>

<fun : S i z e>

<exp : I n t e g e r L i t e r a l>2</ e xp : I n t e g e r L i t e r a l>

</ f un : S i z e>

<fun :Bind ingExpres s ion>

<exp:Array>

<exp :Rea lL i t e r a l>1 .2</ exp :Rea lL i t e r a l>

<exp :Rea lL i t e r a l>5 .5</ exp :Rea lL i t e r a l>

</exp:Array>

</ fun :Bind ingExpres s ion>

</ fun :F i e l d>

</ fun:Record>

</ fun :Reco rd sL i s t>

4.2.6 Functions

A function is a portion of code which performs a speci�c computation and is

relatively independent from the remaining model. A function is de�ned by:

• input variables, possibly with default values;

• output variables;

• protected variables (i.e. variables visible only within the context of the

function)

• an algorithm that computes outputs from the given inputs, possibly

using protected variables.

Di�erently from the variables used in equations, input, output and protected

variables of a function can be scalars, but also arrays or records. In this way

algorithms can keep the original structure of the variables.

42



Whereas in the formulation of the equations de�ned in 4.1 only scalar

variables are involved, a detailed discussion on the use of calls for any possible

cases in which the function is not scalar is required.

Function calls with non-scalar inputs

If an input of a function is not a scalar, its call will be represented by keeping

its structure, possibly using array or record constructors, but populating it

with its scalar elements, which are the (scalar) variables of the DAE model.

In this way, it is possible to keep track of the structure of the arguments,

which can then be mapped to e�cient data structures in the target code,

performing the computation required by the function.

Example 4. Function calls with non-scalar inputs

Given the following de�nition of a record R and a function F:

r ecord R

Real X;

Real Y [ 3 ] ;

end R;

func t i on F

Input R X;

Output Real Y;

end F ;

A correct function call for F in an equation is the following

F(R(x , { y [ 1 ] , y [ 2 ] , y [ 3 ] } ) ) − 3 = 0

where x, y[1], y[2], y[3] are real scalar variables, R(args) denotes a con-

structor for a R record type, and {var1, var2,...,varN} represents an array

constructor.

43



Function calls with single non-scalar output

Auxiliary variables can be introduced to handle this case, making it possible

to always have scalar equations and at the same time avoiding unnecessarily

duplicated function calls.

Example 5. Function calls with non-scalar output

Considering the following de�nition of the function f

f unc t i on f

Input Real X;

Output Real Y [ 3 ] ;

end f ;

then equation x+ f(y) ∗ f(z) = 0 (a scalar product) is mapped into:

({ aux1 , aux2 , aux3 }) = f (y ) ;

({ aux4 , aux5 , aux6 }) = f ( z ) ;

x + aux1∗aux4 + aux2∗aux5 + aux3∗aux6 = 0

where x and z are real scalar variables.

Similarly the equation y + f(x) − f(−3 ∗ x) = 0, where y is an array of

three real elements is mapped to:

({ aux1 , aux2 , aux3 }) = f (x ) ;

({ aux4 , aux5 , aux6 }) = f (−3∗x ) ;
y [ 1 ] + aux1 − aux4 = 0 ;

y [ 2 ] + aux2 − aux5 = 0 ;

y [ 3 ] + aux3 − aux6 = 0 ;

This strategy also applies to arguments using records, or combinations of

arrays and records.

Auxiliary variables should be treated as all the other scalar variables, thus

also their de�nition is required as explained in Section 4.2.2.

Function calls with multiple outputs

In this case, the function calls can be invoked in the following form only:

44



(out1, out2, ..., outN) = f(in1, in2, ...inM) (4.5)

where out1, out2, ..., outN can be scalar variable identi�ers, array or

record constructors populated with scalar variables identi�ers, empty argu-

ments, or any possible combination of these elements. So, it is not possible

to write any expression on the left-hand side, nor even to put the equation

in residual form.

Example 6. Function calls with multiple outputs

Given the following de�nition of a record type R1 and a function F1:

r ecord R1

Real X;

Real Y[ 2 , 2 ] ;

end R1 ;

func t i on F1

input Real x ;

output Real y [ 2 ] ;

output R r ;

end F1 ;

a correct call for the function F1 can be

({ var1 , var2 } , R1( var3 , { {var4 , var5 } , {var6 , var7 } }) ) = F1(x )

where x, var1,var2, var3, var4, var5, var6, var7 are real scalar variables.

The proposed representation of function calls is preferable to a full scalar-

ization of the arguments,which does not preserve any structure, and thus

would require multiple implementations for the same function, e.g. if it is

called in many places with di�erent sizes of the inputs. This solution would

lead to less e�cient implementations in most target languages.

45



Figure 4.13: Function de�nition

Concerning the XML schema implementation, all the elements and com-

plex types regarding user-de�ned function are collected in the �fun� names-

pace.

The main element of the �fun� namespace is �Function�, that contains

the whole de�nition of the function, including the name, three lists of vari-

ables (respectively outputs, inputs and protected variables), the algorithm

and, optionally, the de�nition of inverse and derivative functions. �Output-

Variable�, �InputVariable� and �ProtectedVariable� elements are de�ned as

�FunctionVariable� complex type (Figure 4.12).

Example 7. Functions interface de�nition

Given two complex numbers according to the de�nition of �ComplexNum-

ber� record as in example 3, a function �getGreatestReal� compares the real

part of the two numbers and returns the greatest one, as in the following

Modelica language de�nition:

46



f unc t i on getGreates tRea l

input ComplexNumber c1 ;

input ComplexNumber c2 ;

output Real y ;

a lgor i thm

i f ( c1 . re>=c2 . re ) then

y:=c1 . re ;

else

y:=c2 . re ;

return ;

end getGreates tRea l ;

According to the de�ned schema, a valid XML representation for �get-

GreatestReal� function (without algorithm de�nition) is:

<fun:Funct ion>

<fun:Name>

<exp:Qual i f iedNamePart name='mulComplexNumbers ' />

</fun:Name>

<fun:OutputVar iable type=' Real '>

<fun:Name>

<exp:Qual i f iedNamePart name=' r e s u l t ' />

</fun:Name>

</ fun:OutputVar iable>

<fun : InputVar i ab l e type=' Record '>

<fun:Name>

<exp:Qual i f iedNamePart name=' c1 ' />

</fun:Name>

<fun:Record>

<exp:Qual i f iedNamePart name='ComplexNumber '>

</ fun:Record>

</ fun : InputVar i ab l e>

<fun : InputVar i ab l e type=' Record '>

<fun:Name>

<exp:Qual i f iedNamePart name=' c2 ' />

</fun:Name>

47



<fun:Record>

<exp:Qual i f iedNamePart name='ComplexNumber '>

</ fun:Record>

</ fun : InputVar i ab l e>

<fun:Algor i thm>

. . . s e e next example . . .

</ fun:Algor i thm>

</ fun:Funct ion>

It is allowed, but not mandatory, to embed the de�nition of possible

inverse and derivative functions in the �InverseFunction� and �Derivative-

Function� elements of a function de�nition. The information stored in these

two elements could be used for optimization purposes by the importing tool.

Every function with only one output argument may have one or more

inverse function de�nitions. The XML structure of the �InverseFunction� el-

ement is very similar to the one of �Function� element with a few restrictions:

the only output variable of the inverse should be declared as an input of the

original function and the output of the original function should be an input

of the inverse function. The order of the arguments in the function de�nition

could be permuted.

The de�nition of �DerivativeFunction� element is slighty extended from

the one of �Function�, adding an optional integer attribute �order� (default is

1) and two new optional boolean attributes, �derived� and �zeroDerivative�

to the input variable de�nition. The derivative function should have at least

one output and one real input. An input variable has �derived=true� if

the function is di�erentiated with respect of the variable. Only real input

variables can have �derived=true�. The function should be di�erentiated

with respect of the variables in order (from the �rst to the last). At least one

input must be real and have �derived=true�. The derivative function is only

valid if variables with �zeroDerivative=true� are independent of the variables

48



the function is di�erentiated with respect to (i.e. the derivative of the input

variable is "zero").

The elements and complex types useful for the description of the algo-

rithm are de�ned in a di�erent schema module than the �Function� element,

but always under the �fun� namespace. This module includes the complex

types:

complex type description

Statement Wildcard that can be matched with any possible
statement de�ned in the schema

ConditionalStatement A conditional statement, de�ned by a boolean
condition expression and a list of statements that
should be executed if the condition is satis�ed.

IterationIndex Index for use in loop de�nitions. It requires a
variable to iterate inside a set of possible values.

This set can either be a Range or an Array
expression.

FunctionCallLeft It represents the left hand side of a function call
statement. �FunctionCallLeft� can be an
identi�er of variable, an array or record

constructor populated with variable identi�ers,
empty arguments or any possible combination of
these elements. The FunctionCallLeft de�nition
should match the output variables of the called

function, in order and type.
Algorithm An algorithm is de�ned as a list of statements,

possibly empty.

Table 4.12: �fun� namespace complex types

An algorithm is de�ned by a list of statements, possibly empty. A state-

ment can be an assignment, a conditional statement or a loop statement.

An assignment is represented by the element �Assign�, that has two chil-

dren element: the �rst one should be an identi�er of variable, while the

second one is the expression that represents the new assigned value to the

49



Figure 4.14: Complex types for algorithms representation

50



given variable.

Figure 4.15: Assign element

The �If� element is designed as an extension of �ConditionalStatement�.

In fact, in addition to the �rst conditional branch, the �If� element provides

optional �Else� elements, de�ned as �ConditionalStatement� complex type,

and �ElseIf� branch. In case the condition of the �If� element is not satis�ed,

�Else� elements are taken into account in document order: when a condition

of an �Else� element is satis�ed, then the corresponding statements should

be executed. If none of the conditions both of �If� element and of any �Else�

element is satis�ed, then the statements de�ned as children of the �ElseIf�

element should be executed.

Figure 4.16: If statement

Two possible loops elements are de�ned in the schema: �While� for con-

51



ditional loops and �For� for iteration loops.

The �While� element is de�ned as �ConditionalStatement� complex type,

so it has a condition and a list of statements to be executed if the condition

is satis�ed.

The �For� statement is de�ned by an iteration index and a list of state-

ments. The iteration index (element �Index�) de�nes in which set (�Itera-

tionSet�) a given variable (�IterationVariable�) should iterate. The �Itera-

tionSet� expression should be an �Array� or a �Range� element (see Section

4.2.4) and the list of statements should be executed for every value of �Iter-

ationVariable� within the �IterationSet�. The iteration variable should be of

the same type as the type of the elements in the iteration set and it should

not be assigned inside by the statements of the loop.

The empty �Break� element can only be used in the statement list of a

�While� or �For� element in order to ask to end the execution of a loop at a

given point.

Figure 4.17: Loops de�nition: While and For elements

�FunctionCallStatement� de�nes a special assignment where the right

hand side is a call to an user-de�ned function, possibly returning complex ar-

guments. The left hand side contains the output arguments, i.e. the variables

that accept the values returned from the function. The variables of the left

52



hand side of �FunctionCallStatement� can be variable identi�ers, construc-

tor of arrays and records �lled with variable identi�ers or empty arguments,

represented by the �EmptyOutputArgument� element. The variables in the

left hand side of the function call statement should be compatible, in order

and type, with the values returned by the function of the right hand side.

The �EmptyOutputArgument� placed in the left hand side means that no

assignment is needed for the returned value of the function at corresponding

position.

Figure 4.18: FunctionCallStatement de�nition

�Return� element indicates that the execution of the algorithm should be

ended at the given point and the output variables should be returned with

their current values.

To conclude, in the algorithms is possible to represent assertions using

the �Assertion� statement element. An assertion is de�ned by an optional

�Message� string element, a �Condition� element that should be a boolean

expression and an optional attribute �level� that can assumes value �error�

(default value) or �warning�. If the condition is false, then nothing happens,

else if the condition is satis�ed then the message should be returned and the

53



Figure 4.19: Assertion element

execution aborted in case �level=error�.

Example 8. Algorithms representation

In order to complete the representation of �getGreatestReal� de�ned in

example 7, the algorithm representation should be included.

The corresponding XML mapping is:

<fun:Algor i thm>

<f u n : I f>

<fun :Cond i t i on>

<exp:LogGeq>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name=' c1 '>

<exp:Qual i f iedNamePart name=' re '>

</ e x p : I d e n t i f i e r>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name=' c2 '>

<exp:Qual i f iedNamePart name=' re '>

</ e x p : I d e n t i f i e r>

</exp:LogGeq>

</ fun :Cond i t i on>

<fun:Statements>

<fun :Ass i gn>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name=' r e s u l t '>

54



</ e x p : I d e n t i f i e r>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name=' c1 '>

<exp:Qual i f iedNamePart name=' re '>

</ e x p : I d e n t i f i e r>

</ fun :Ass i gn>

</ fun:Statements>

<fun :E l s e>

<fun :Ass i gn>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name=' r e s u l t '>

</ e x p : I d e n t i f i e r>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name=' c2 '>

<exp:Qual i f iedNamePart name=' re '>

</ e x p : I d e n t i f i e r>

</ fun :Ass i gn>

</ fun :E l s e>

</ f u n : I f>

<fun:Return />

</ fun:Algor i thm>

55



4.2.7 Equations

Complex types and elements regarding the equations of the DAE system are

collected under the �equ� namespace.

Once de�ned the expressions, mapping the mathematical formulation of

the binding equations (4.3) to the XML schema is straightforward. In the

�equ� namespace a complex type �BindingEquation� is de�ned. It provides an

element �Parameter� of �Quali�edName� type that represents the left hand

side of the equation, and a �BindingExp� element that represents the right

hand side of the equation. An element �BindingEquations� represents the

set of all the binding equations and it accepts a list, possibly empty, of

�BindingEquation� elements de�ned as �BindingEquation� complex type, as

in Figure 4.20.

Figure 4.20: Binding Equations

Equations in residual form are represented by the complex type �Ab-

stractEquation�. This type of equations provide a subtraction node to rep-

resents an equation in exp1− exp2 = 0 form.

56



Figure 4.21: AbstractEquation complex type

The initial equations set (4.4) is represented by the element �InitialEqua-

tions�, that collects a list, possibly empty, of �Equation� elements de�ned as

�AbstractEquation� complex type.

Figure 4.22: Initial Equations

The set of dynamic equations (4.2) is mapped to the �DynamicEquations�

element. According to the considerations expressed in paragraph 4.2.6, equa-

tions resulting from the call of functions with multiple outputs are not suit-

able for a representation in residual form. Thus a complex type for mapping

the equation form (4.5) is given by the complex type �FunctionCallEquation�.

The left hand side of the equation (4.5) is represented by the a set of �Out-

putArgument� elements, de�ned as �FunctionCallLeft� complex type, that

can have as children scalar variable identi�ers, array or record constructors

populated with scalar variables identi�ers, empty arguments, or any possible

combination of these elements. The right hand side is a �FunctionCall� (see

4.2.4). It is important to notice that this element represents a set of scalar

equations, one for each scalar variable in the left hand side (except for empty

arguments).

57



Figure 4.23: FunctionCallEquation complex type

Hence, the �DynamicEquations� elements contains a list of �Equation�

elements of �AbstractEquation� type, which represent equations in residual

form, and �FunctionCallEquation� elements, which represent the equations

(4.5).

Figure 4.24: DynamicEquations element

The elements �BindingEquations�, �DynamicEquations� and �InitialEqua-

tions� are directly referenced and used in the main schema (see Figure4.1).

58



4.3 Possible applications

Depending on the speci�c application, di�erent subsets of the equation sys-

tem (4.2)-(4.4) are needed.

For o�-line simulation, the parameters and constants within each equation

are �rstly numerically evaluated, for example by solving all the three equation

subsets (4.2)-(4.4) together or after ordering the equations by the Tarjan's

algorithm [32], to determine all the initial values. Once �xed to the numerical

values of each parameter, the dynamic equations can be used to compute

derivatives and algebraic variables at each step of the integration algorithm.

Real-time simulation code can obtained by suitable transformation of the

set (4.2) only, e.g. by in-lining the discretization method within the equations

of the XML �le using forward or backward Euler's method.

LFT is a widely used description formalism used in control and system

identi�cation theory. The transformation of dynamic models with uncertain

parameters and nonlinearities into LFT formalism requires the system (4.2)-

(4.3) to be considered as a whole. The procedure for obtaining the LFT

representation can be found on [12].

In robotics, subsets of (4.2)-(4.3) can be suitably solved in order to obtain

direct/inverse kinematics, computed torque controllers, and inverse dynamics

controllers.

More advanced applications would require to linearize the equations (4.2)-

(4.3) to obtain the generalize impedance of the structure in certain con�gu-

rations, possibly representing it as an LPV/LFT system.

Model order reduction algorithms would �rst require to solve one or more

simulation problems to obtain reference scenario(s), and then apply symbol-

ic/numeric approximations to (4.2) in order to obtain a more compact and

simple model, which is able to replicate the reference scenario(s) within spec-

i�ed error bounds. For parameter sensitivity studies, this procedure could

be applied to the set (4.2)-(4.3).

59



4.4 An extension example: DAE optimization

problem

4.4.1 Mathematical formulation of optimization prob-

lems

Consider the following formulation of a dynamic optimization problem:

minu(t),p Ψ(x(ti), y(ti), u(ti), p), i ∈ 1 . . . Ncost (4.6)

subject to the dynamic of the system

Fi(x(t), ẋ(t), u(t), v(t), p, t) = 0, t ∈ [t0, tf ] (4.7)

and the constraints

cineq(x(t), y(t), u(t), p)≤0 t ∈ [t0, tf ] (4.8)

ceq(x(t), y(t), u(t), p)=0 t ∈ [t0, tf ] (4.9)

cpineq(x(tj), y(tj), u(tj), p)≤0 j ∈ 1...Nineq, tj ∈ [t0, tf ] (4.10)

cpeq(x(tk), y(tk), u(tk), p)=0 j ∈ 1...Neq, tk ∈ [t0, tf ] (4.11)

where x(t) ∈ Rnx are the dynamic variables, y(t) ∈ Rnyare the algebraic vari-

ables, u(t) ∈ Rnuare the control inputs, and p ∈ Rnp are parameters which

are free in the optimization. In addition, the optimization is performed on

the interval t ∈ [t0, tf ], where t0 and tf can be �xed or free, respectively.

In addition, the initial values of the dynamic and algebraic variables may

be �xed or free in the optimization. The constraints include inequality and

equality path constraints, (4.8)-(4.9). In addition, inequality and equality

60



point constraints, (4.10)-(4.11), are supported. Point constraints are typi-

cally used to express initial or terminal constraints, but can also be used

to specify constraints for time points in the interior of the interval. The

cost function (4.6) is a generalization of a terminal cost function, f(tf ), in

that it admits inclusion of variable values at other time instants. This form

includes some of the most commonly used cost function formulations. Obvi-

ously, terminal as well as initial costs are included. A Lagrange cost function

can be obtained by introducing an additional state variable,xL(t), with the

associated di�erential equation ẋL(t) = L(x(t), u(t)), and the cost function

Ψ(tf ) = xL(tf ). The need to include variable values at discrete points in the

interior of the optimization interval in the cost function arises for example in

parameter estimation problems. In such cases, a sequence of measurements,

yd(ti), obtained at the sampling instants ti, i ∈ 1 . . . Nd is typically available.

4.4.2 XML schema extension

The extension of the schema for the representation of optimization problems

has been designed in a di�erent module having namespace �opt�.

The �rst step in the design of the extension has been to extend the set of

possible expressions, including the de�nition of timed variable. The �Timed-

Variable� element is composed by two elements: �Identi�er�, de�ned as qual-

i�ed name, and �Instant�, that should hold a numerical value. The �Instant�

value indicates that the �TimedVariable� element refers to the value of the

variable in the given time instant. The value of �Instant� should be included

in the optimization time interval.

The extension for optimization problems provides elements for the rep-

resentation of the objective function, the interval of time on which the op-

timization is performed and the constraints. The boundary values of the

optimization interval, t0 and tf , can either be �xed or free. The constraints

include inequality and equality path constraints, but also point constraints

are supported. Point constraints are typically used to express initial or ter-

61



Figure 4.25: TimedVariable element de�nition

minal constraints, but can also be used to specify constraints for time points

in the interior of the interval.

The �ObjectiveFunction� element is represented by an expression. The el-

ements �IntervalStartTime� and �IntervalFinalTime� represent boundary val-

ues of the optimization interval. These two elements are de�ned as �TimeVari-

able� complex type, which allows to de�ne if the value is either free or not,

using the boolean element �Free� (default �false�) and a value, in case the

variable is �xed, or optionally an initial guess if the variable is free. The

�TimePoints� element allows to de�ne a list of point constraints, with rel-

ative index and value. Finally the element �Constraints� contains a list of

constraints, which can be of equality (�ConstraintEq�), or inequality (�Con-

straintGeq� for greater-equal constraints and �ConstraintLeq� for less-equal

constraints). Each constraint element accepts as children two expressions,

on which the constraint is applied. An overall of the extension is given in

Figure 4.26.

The �opt� namespace is then imported in the main DAE XML schema

and the root element �Optimization� is directly referenced, as in Figure 4.27.

62



Figure 4.26: Optimization problem extension

63



Figure 4.27: Overall of the schema extended by the optimization module

64



Chapter 5

XML representation of DAE

systems obtained by

continuous-time Modelica models

5.1 Preliminary handling of the model

The proposed schema allows to represent continuous-time DAE only, so con-

ditional and discrete event models are not currently supported.

Before mapping the Modelica model, it should be �rstly �attened. The

resulting model should contain the system of equations of every component

of the system and the connection equations. Also for-clauses in the equation

section of the model (e.g. the loop in the next example model) should be

solved in order to obtain the �nal corresponding set of equations. Every

variable involved in the equations can only be a scalar, so more complex data

structures needed to be �attened. Quali�ed names can help to maintain the

relation between the �attened scalar variable and the original data structure

and original model component. In the same way, scalar functions applied

to array arguments should be handled to have the resulting set of scalar

functions applied to scalar arguments (see [35, Section 12.4.5]).

65



Example 9. Given the following simple Modelica model

c l a s s FiveEquations

Real [ 5 ] x ;

equat ion

f o r i in 1 :5 loop

x [ i ] = i +1;

end f o r ;

end FiveEquations ;

an equivalent model suitable for the XML representation is

c l a s s FiveEquations

Real x1 ;

Real x2 ;

Real x3 ;

Real x4 ;

Real x5 ;

equat ion

x1 = 2 ;

x2 = 3 ;

x3 = 4 ;

x4 = 5 ;

x5 = 6 ;

end FiveEquations ;

Functions can keep array and record data structures in their de�nition,

while function calls used by equations can use array and record constructors

to handle the relation between scalar variables and complex data arguments.

Additional scalar variables could be added in the �attened model to man-

age operations using function calls with one complex data argument. The

detailed explanation on how to handle functions has been given in Section

4.2.6.

It is important to notice that the majority of the controls on the correct-

66



ness of the model, such as type checking and structural analysis, can only be

performed by the compiler and should be done before exporting the model

in XML format.

Example 10. The following Modelica model contains array variables, a func-

tion applied to an array input argument and returning an array output ar-

gument and equations performing operations involving the de�ned function.

c l a s s Example

Real [ 3 ] u = {1 ,2 , 3} ;

Real [ 3 ] v = {3 ,4 , 5} ;

Real z ;

equat ion

z = F(u) ∗ F(v ) ;

f unc t i on F

input Real [ 3 ] x ;

output Real [ 3 ] y ;

a lgor i thm

y := x ;

re turn ;

end F ;

end Example ;

The model should be processed in order to:

• unroll the array variables involved in the equation section, rede�ning

as a set of scalar variables ;

• move the equations in the variable de�nitions section to the �equation�

section, together with all the other dynamic equations. Notice that only

binding equations involving parameter with ��xed=true� attribute are

not treated as all the other equations by the schema (see Section 4.2.7);

67



• add scalar auxiliary variables and the relative equations that assign

them to the output argument of the function F (see Section 4.2.7);

• make quali�ed names explicit.

The resulting �attened model is obtained

f c l a s s FExample

Real u [ 1 ] ;

Real u [ 2 ] ;

Real u [ 3 ] ;

Real v [ 1 ] ;

Real v [ 2 ] ;

Real v [ 3 ] ;

Real z ;

Real temp_1 [ 1 ] ;

Real temp_1 [ 2 ] ;

Real temp_1 [ 3 ] ;

Real temp_2 [ 1 ] ;

Real temp_2 [ 2 ] ;

Real temp_2 [ 3 ] ;

equat ion

u [ 1 ] = 1 ;

u [ 2 ] = 2 ;

u [ 3 ] = 3 ;

v [ 1 ] = 3 ;

v [ 2 ] = 4 ;

v [ 3 ] = 5 ;

({temp_1 [ 1 ] , temp_1 [ 2 ] , temp_1 [ 3 ] } ) = FExample .F({u [ 1 ] , u [ 2 ] , u [ 3 ] } ) ;

({temp_2 [ 1 ] , temp_2 [ 2 ] , temp_2 [ 3 ] } ) = FExample .F({v [ 1 ] , v [ 2 ] , v [ 3 ] } ) ;

z = (temp_1 [ 1 ] ) ∗ ( temp_2 [ 1 ] )+( temp_1 [ 2 ] ) ∗ ( temp_2 [ 2 ] )+( temp_1 [ 3 ] ) ∗ ( temp_2 [ 3 ] ) ;

f unc t i on FExample .F

input Real [ 3 ] x ;

output Real [ 3 ] y ;

68



a lgor i thm

y [ 1 ] := x [ 1 ] ;

y [ 2 ] := x [ 2 ] ;

y [ 3 ] := x [ 3 ] ;

r e turn ;

end FExample .F ;

end FExample ;

5.2 Mapping Modelica models to the XML schema

Once the model has been pre-processed the mapping to schema is conceptu-

ally straightforward:

• the variables declared in the �rst section of the model should match

the elements of �ModelVariables� (see Section 4.2.2);

• binding equations involving parameters with attribute ��xed=true� should

match the �equ:BindingEquations� element;

• the element �equ:DynamicEquations� represents the �equation� part of

the Modelica model. These equations can be represented either in resid-

ual form (�equ:Equation� element) or in the form 4.5 (�equ:FunctionCallEquation�

element) as explained in Section 4.2.7;

• the equations in the section �initial equation� of the Modelica model

should match the �equ:InitialEquations� element de�nition;

• every function de�nition should be included in the element �fun:FunctionsList�.

Annotations on derivative and inverse functions can optionally be used

to represents them using �fun:DerivateFunction� and �fun:InverseFunction�

(see Section 4.2.6);

• record de�nitions should match the element �RecordsList�.

69



Figure 5.1: Matching a Modelica model with the XML schema

Figure 5.1 graphically shows how every section of the Modelica model is

matched to the XML schema sections.

From a practical point of view, the best way to export Modelica models to

XML documents valid with respect of the proposed schema is to implement

in the compiler a code generation module that traverses the syntax tree of

the language, encoding every node with the respective XML representation.

In fact the structure of an XML document can easily be mapped to a tree

data structure, as well as the syntax of a language. In the next section it is

shown how the code generation has been implemented in the JModelica.org

compiler.

70



Chapter 6

Implementation and test case

6.1 The JModelica.org platform

JModelica.org [27, 4] is an extensible Modelica-based open source platform

for optimization, simulation and analysis of complex dynamic systems. The

main objective of the project is to create an industrially viable open source

platform for optimization of Modelica models, while o�ering a �exible plat-

form serving as a virtual lab for algorithm development and research. As

such, JModelica.org is intended to provide a platform for technology transfer

where industrially relevant problems can inspire new research and where state

of the art algorithms can be propagated form academia into industrial use.

JModelica.org is a result of research at the Department of Automatic Con-

trol, Lund University, [1] and is now maintained and developed by Modelon

AB [26] in collaboration with academia.

A unique feature of JModelica.org is the support for the innovative exten-

sion Optimica [2]. Optimica enables to conveniently formulate optimization

problems based on Modelica models using simple but powerful constructs for

encoding of optimization interval, cost function and constraints. Optimica

also features annotations for choosing and tailoring the underlying numerical

optimization algorithm to a particular optimization problem.

71



Figure 6.1: JModelica.org architecture

The JModelica.org compilers are developed in the compiler construction

framework JastAdd. JastAdd is based on established concepts, including

object orientation, aspect orientation and reference attributed grammars.

Compilers developed in JastAdd are speci�ed in terms of declarative at-

tributes and equations which together forms an executable speci�cation of

the language semantics. In addition, JastAdd targets extensible compiler

development which makes it easy to experiment with language extensions. A

full documentation of the JastAdd framework is available in [33].

For user interaction JModelica.org relies on the Python language [30].

Python o�ers an interactive environment suitable for scripting, development

of custom applications and prototype algorithm integration. The Python

packages Numpy and Scipy provide support for numerical computation, in-

cluding matrix and vector operations, basic linear algebra and plotting. The

JModelica.org compilers as well as the model executables/dlls integrate seem-

lessly with Python and Numpy.

An overview of JModelica.org platform in given in [3].

72



6.2 JModelica.org Abstract Syntax Tree (AST)

A fundamental data structure in most compilers is the Abstract Syntax Tree

(AST). An AST serves as an abstract representation of a computer program

and is often used in a compiler to perform analyses (e.g., binding names to

declarations and checking type correctness of a program) and as a basis for

code generation.

Three di�erent ASTs are used in the JModelica.org front-ends.

• The source AST results from parsing of the Modelica or Optimica

source code. This AST shares the structure of the source code, and

consists of a hierarchy consisting of Java objects corresponding to class

and component declarations, equations and algorithms. The source

AST can also be used for unparsing, i.e., pretty printing of the source

code.

• The instance AST represents a particular model instance. Typically,

the user selects a class to instantiate, and the compiler then computes

the corresponding instance AST. The instance AST di�ers from the

source AST in that in the former case, all components are expanded

down to variables of primitive type. An important feature of the in-

stance AST is that it is used to represent modi�cation environments;

merging of modi�cations takes place in the instance AST. As a con-

sequence, all analysis, such as name and type analysis takes is done

based on the instance AST.

• The �at AST represents the �at Modelica model. Once the instance

AST has been computed, the �at AST is computed simply by travers-

ing the instance AST and collecting all variables of primitive type, all

equations and all algorithms. The �at AST is then used, after some

transformations, as a basis for code generation.

73



For more information on how the JModelica.org compiler transforms these

ASTs, see the paper [5].

6.3 Exporting models as XML documents

The XML code generation has been implemented by exploiting the aspect-

oriented design allowed by the JastAdd framework. Aspects allow to add

features to AST classes without having to syntactically edit those classes.

For example, when implementing type checking, it is just needed to add

some speci�c behavior to most of the AST classes. This behavior can be

grouped together into an aspect. In the same manner, to extend the system

with XML code generation, a new aspect module has been added for the

purpose. When the compiler is built, JastAdd waves the methods de�ned

into the aspect modules to the correct Java classes (i.e. to the correct node

type of the AST).

JastAdd also supports attributes in the sense of attribute grammars: at-

tributes are declared in AST classes, and their values are de�ned by equa-

tions. As in attribute grammars, an attribute is either synthesized or in-

herited depending on if it is used for propagating information upwards or

downwards in the AST. This feature has been used to de�ne an attribute

�ASTNode.xmlTag()� that returns the correct XML for a given tree node

with respect of the proposed XML schema.

Example 11. XML tag attributes.

The following code is a portion of the �XMLTagBinding� aspect mod-

ule and de�nes the attribute �xmlTag� for the AST nodes involved in the

representation of function in the JModelica.org compiler.

aspect XMLTagBinding{

// f unc t i on s

syn St r ing FFunctionDecl . xmlTag ( ) ;

eq FFunctionDecl . xmlTag ( ) = "Function" ;

74



syn St r ing FAlgorithmBlock . xmlTag ( ) ;

eq FAlgorithmBlock . xmlTag ( ) = "Algorithm" ;

syn St r ing FStatement . xmlTag ( ) ;

eq FBreakStmt . xmlTag ( ) = "Break" ;

eq FReturnStmt . xmlTag ( ) = "Return" ;

eq FAssignStmt . xmlTag ( ) = "Assign " ;

eq FFunctionCallStmt . xmlTag ( ) = "FunctionCal lStatement " ;

eq FIfStmt . xmlTag ( ) = " I f " ;

eq FForStmt . xmlTag ( ) = "For" ;

eq FWhileStmt . xmlTag ( ) = "While" ;

}

The keyword �syn� allows to de�ne a synthesized attribute. As an ex-

ample, �FStatement� is an abstract node of the AST used as a base for the

de�nition of every statement allowed in user-de�ned function algorithms, and

�syn String FStatement.xmlTag()� creates a new attribute for the class, re-

quiring that every node type extending �FStatement� should have a value

for the �xmlTag� attribute. Hence, the keyword �eq� is used to de�ne an

equation that binds the value of the tag that matches the de�nition of the

XML schema. In the same manner attributes have been de�ned for every

kind of node of the JModelica.org abstract syntax tree.

JModelica.org compiler provides a module �XMLGenerator� which takes

a model, described by a tree with �FClass� root element, and uses a template

for the static general structure of the XML document. The template has been

designed by matching the same structure of the proposed XML schema.

<fmiExtendedModelDescr ipt ion $XML_namespaces$ $XML_rootAttributes$>

$XML_unitDefinitions$

$XML_typeDefinitions$

$XML_defaultExperiment$

$XML_vendorAnnotations$

<ModelVariables>$XML_variables$</ModelVariables>

75



$XML_bindingEquations$

$XML_Equations$

$XML_initialEquations$

$XML_Optimization$

$XML_Functions$

</fmiExtendedModelDescription>

The value of each portion of the template denoted by �$XML_variable$�

name is given in the �XMLGenerator� module.

Example 12. XML code generation for the function de�nitions section

The following code de�nes the values of �$XML_Functions$� variable

and then it starts the XML code generation for user-de�ned functions.

class DAETag_XML_functions extends DAETag {

public DAETag_XML_functions ( AbstractGenerator myGenerator , FClass f c l a s s ) {

super ( "XML_Functions" , "Functions  Dec la ra t i on " , myGenerator , f c l a s s ) ;

}

public void generate ( PrintStream genPr inte r ) {

Boolean generateEqu =

f c l a s s . root ( ) . opt ions . getBooleanOption ( "generate_xml_equations " ) ;

i f ( generateEqu ) {

genPr inte r . p r i n t l n ( "<fun : Funct ionsLis t>" ) ;

for ( FFunctionDecl f : f c l a s s . getFFunct ionDec lL is t ( ) )

f . prettyPrint_XML( genPrinter , "\ t \ t " , f ) ;

genPr inte r . p r i n t l n ( "\t</fun : Funct ionsLis t>" ) ;

}

}

}

The �generate_xml_equations� boolean attribute can be set by the user

and its values is �true� if the user requests the generation of the XML rep-

resentation for the given model (i.e., �fclass� argument). If this is the case,

76



the previous code generates the root tag �<fun:FunctionsList>� and calls the

�prettyPrint_XML()� method for every function de�nition in the AST (i.e.

�FFunctionDecl� nodes), matching the de�nition given in Section 4.2.6.

The portions of the XML documents relative to the FMI schema part,

variable de�nitions, equations, optimization problem (for Optimica models

only) are generated in the same manner. The de�nition of records is missing,

since the record support was only partially implemented in the JModelica.org

platform at the time the present work was being developed.

Once the structure of the XML document has been de�ned, the last step

is to implement a method that given every node in the tree representing

a model generates the corresponding XML tags. This method is �ASTN-

ode.prettyPrint_XML()�, also used in the previous example, and it is de�ned

for every possible node in the �XMLCodeGen� aspect, trying to exploit in the

most e�cient way as possible the inheritance of the AST tree de�nition. e.g.,

the �prettyPrint_XML()� method has been de�ned only once for the node

type �FMathematicalFunctionCall� node, which is extended by every built-in

mathematical function, since the XML representation of these elements has

the same structure. The �prettyPrint_XML()� method iteratively calls itself

for every children node, in order to traverse the AST and generates the XML

representation until the leaves are reached.

Example 13. Quali�ed names XML code generation.

The following code generates the XML code corresponding to quali�ed

names (see Section 4.2.3). Since the quali�ed names structure can be seen

as a tree, the example is representative of how the XML code is generated

for the whole model.

public void FQName. prettyPrint_XML(

Pr in t e r p , PrintStream str , S t r ing indent , Object o ){

for (FQNamePart np : this . getFQNamePartList ( ) )

np . prettyPrint_XML( st r , p . indent ( indent ) ) ;

}

77



public void FQNamePart . prettyPrint_XML(

Pr in t e r p , PrintStream str , S t r ing indent , Object o ){

St r ing namespace = "exp" ;

S t r ing tag = this . xmlTag ( ) ;

S t r ing nameAttr = " name=\"" + this . getName ( ) + "\"" ;

i f ( this . hasFArraySubscr ipts ( ) ) {

s t r . p r i n t l n ( indent + "<" + namespace + " : " + tag + nameAttr + ">" ) ;

this . getFArraySubscr ipts ( ) . prettyPrint_XML( st r , p . indent ( indent ) ) ;

s t r . p r i n t l n ( indent + "</" + namespace + " : " + tag + ">" ) ;

} else {

s t r . p r i n t l n ( indent + "<" + namespace + " : " + tag + nameAttr + "/>" ) ;

}

}

}

public void FArraySubscr ipts . prettyPrint_XML(

Pr in t e r p , PrintStream str , S t r ing indent , Object o ){

St r ing namespace = "exp" ;

S t r ing tag = this . xmlTag ( ) ;

s t r . p r i n t l n ( indent + "<" + namespace + " : " + tag + ">" ) ;

for ( FSubscr ipt s : this . g e tFSubsc r ip tL i s t ( ) )

s . prettyPrint_XML( st r , p . indent ( indent+"\ t " ) ) ;

s t r . p r i n t l n ( indent + "</" + namespace + " : " + tag + ">" ) ;

}

public void FColonSubscript . prettyPrint_XML(

Pr in t e r p , PrintStream str , S t r ing indent , Object o ){

St r ing namespace = "exp" ;

S t r ing tag = this . xmlTag ( ) ;

s t r . p r i n t l n ( indent + "<" + namespace + " : " + tag + "/>" ) ;

}

public void FExpSubscript . prettyPrint_XML(

Pr in t e r p , PrintStream str , S t r ing indent , Object o ){

St r ing namespace = "exp" ;

S t r ing tag = this . xmlTag ( ) ;

s t r . p r i n t l n ( indent + "<" + namespace + " : " + tag + ">" ) ;

this . getFExp ( ) . prettyPrint_XML( st r , p . indent ( indent ) ) ;

s t r . p r i n t l n ( indent + "</" + namespace + " : " + tag + ">" ) ;

}

78



The code generation starts from the �FQName.prettyPrint_XML()� method,

which calls the �prettyPrint_XML()� method for every quali�ed name part,

i.e. for every �FQNamePart� node. Hence, the �FQNamePart� node calls the

�prettyPrint_XML()� method for every subscript of the quali�ed name part,

if any.

6.4 The ACADO Toolkit

The ACADO Toolkit [21] is a software environment and algorithm collection

for automatic control and dynamic optimization. It provides a general frame-

work for using a great variety of algorithms for direct optimal control, in-

cluding model predictive control, state and parameter estimation and robust

optimization. ACADO Toolkit is implemented as self-contained C++ code

and comes along with user-friendly Matlab interfaces. The object-oriented

design allows for convenient coupling of existing optimization packages and

for extending it with user-written optimization routines.

One of the basic problem classes which can be solved with ACADO toolkit

are standard optimal control problems. These problems typically consist of

a dynamic system with di�erential states and possibly also algebraic states,

the objective can usually be written as a sum of a Lagrange and a Mayer

term. Moreover, ACADO toolkit tackles several types of constraints, such

as control and state bounds, terminal constraints, general nonlinear path

constraints, periodic boundary conditions, etc

As an extension, ACADO toolkit o�ers systematic and advanced tools for

solving general optimal control problems with multiple and con�icting objec-

tives. Pareto frontiers (or trade-o� surfaces) can automatically and e�ciently

be generated by several scalarization approaches, which convert the original

multi-objective optimal control problem into a series of parametric single

objective optimal control problems. The available scalarization approaches

involve the classic convex Weighted Sum as well as recent techniques as Nor-

79



mal Boundary Intersection and Normalized Normal Boundary Intersection.

Typical algorithmic features include smart re-initialization strategies for com-

putational speed-ups and post-processing tools as Pareto �lter algorithms.

An important class of optimal control problems, which obtains a special

attention within the ACADO toolkit, are state and parameter estimation

problems. This subclass of optimal control problems can theoretically also

be transformed into a standard nonlinear optimal control problem. How-

ever, state and parameter estimation problems have often a certain structure,

which can be used by the algorithms. In the ACADO Toolkit Gauss-Newton

algorithms are implemented to deal with the least-squares terms, which typi-

cally occur within this class of optimization problems. Moreover, a-posteriori

analysis tools are available such as a variance-covariance computation for the

estimated states and parameters.

Finally, another highlight of the ACADO toolkit are its model based

feedback control algorithms. The corresponding problems can be divided into

two kinds of online dynamic optimization problems: the Model Predictive

Control (MPC) problem of �nding (approximately) optimal control actions

to be fed back to the controlled process, and the Moving Horizon Estimation

(MHE) problem of estimating the current process states using measurements

of its outputs.

User manual and further documentation is available on ACADO Toolkit

website [21].

6.5 Importing and reusing XMLmodels in ACADO

The goal of the test case presented in this paragraph is to export a model

from the JModelica.org platform and reuse it by the ACADO Toolkit. In

particular an Optimica model is exported in XML format, in order to exploit

also the feature of the extension presented in Section 4.4. The same results

can be obtained by exporting a pure Modelica model and then manually

80



adding the information of the optimization problem by the ACADO Toolkit

interface.

As a test an optimal control problem on the Van der Pol oscillator model

has been taken into account. It requires to minimize the �nal time with

respect of a constraint on the input signal. The optimization problem is

described by the following Optimica code, available on the JModelica.org

website [27].

package VDP_pack

opt imiza t i on VDP_Opt ( ob j e c t i v e = cos t ( f ina lTime ) ,

startTime = 0 , f ina lTime = 20)

// Parameters

parameter Real p1 = 1 ; // Parameter 1

parameter Real p2 = 1 ; // Parameter 2

parameter Real p3 = 2 ; // Parameter 3

// The s t a t e s

Real x1 ( s t a r t =0);

Real x2 ( s t a r t =1);

// The con t r o l s i g n a l

input Real u ;

Real co s t ( s t a r t =0);

equat ion

der ( x1 ) = (1 − x2^2) ∗ x1 − x2 + u ;

der ( x2 ) = p1 ∗ x1 ;

der ( co s t ) = exp ( p3 ∗ 1/∗ time ∗/) ∗ ( x1^2 + x2^2 + u^2) ;

c on s t r a i n t u<=0.75;

end VDP_Opt;

end VDP_pack ;

The raw Optimica model is then �attened into the following model.

opt imiza t i on VDP_pack .VDP_Opt( ob j e c t i v e = cos t ( f ina lTime ) ,

startTime = 0 , f ina lTime = 20)

81



parameter Real p1 = 1 /∗ 1 .0 ∗/ ;
parameter Real p2 = 1 /∗ 1 .0 ∗/ ;
parameter Real p3 = 2 /∗ 2 .0 ∗/ ;
Real x1 ( s t a r t = 0 , f i x e d = true ) ;

Real x2 ( s t a r t = 1 , f i x e d = true ) ;

input Real u ;

Real co s t ( s t a r t = 0 , f i x ed = true ) ;

Real der ( x1 ) ;

Real der ( x2 ) ;

Real der ( co s t ) ;

i n i t i a l equat ion

x1 = 0 ;

x2 = 1 ;

co s t = 0 ;

equat ion

der ( x1 ) = (1−(x2 ^2))∗ ( x1)−(x2)+u ;

der ( x2 ) = ( p1 ) ∗ ( x1 ) ;

der ( co s t ) = ( exp ( p3 ) )∗ ( x1^2+x2^2+u^2) ;

c on s t r a i n t u <= 0 . 7 5 ;

end VDP_pack .VDP_Opt;

Finally an XML document representing the model is exported from the

JModelica.org platform. The full XML document is given in Appendix B.

A simple XML parser has been implemented in the ACADO Toolkit plat-

form. It directly transforms the XML code into the internal representation

of the model used by ACADO Toolkit. Then the following code is used as

input to import and solve the optimization problem.

OCPv2 get_fmi_OCP( const s t r i n g& mode l f i l e ){

// A l l o ca t e a parser

FMIParser pa r s e r ;

// Load the xml model

par s e r . l o adF i l e ( mode l f i l e ) ;

// Dump repre s en ta t i on to screen

par s e r . dump ( ) ;

82



Figure 6.2: Results returned by ACADO

// Create an opt imal con t ro l problem

OCPv2 ocp ;

// Get model from the xml f i l e

par s e r . exportOCP( ocp ) ;

// Print the ocp to screen

cout << ocp ;

return ocp ;

}

The optimal control problem has been parametrized as an non-linear

problem using direct multiple shooting (with condensing) and solved by an

SQP method (sequential quadratic programming) using qpOASES [16] as a

QP solver. The results are given in Figure 6.2. The same results can be

obtained by solving the problem by means of a collocation method available

in JModelica.org.

83



Chapter 7

Conclusions and future

perspectives

In this thesis, an XML representation of continuous time DAEs obtained from

continuous-time Modelica models has been proposed. The test implementa-

tion on the JModelica platform has shown the possibility to use the XML

representation to export Modelica models and then reuse them in another

non-Modelica tool. In the same manner, many other possible applications

could be considered [11].

A future version of the schema could extend the representation to hybrid

DAE systems. In this case the concept of discontinuous expressions, discrete

variables, discrete equations and events should be introduced.

An interesting perspective could be to explore to which extent the pro-

posed DAE representation could be used to describe �attened models written

using other equation-based, object-oriented languages, possibly by introduc-

ing additional features that are not needed to handle models obtained from

Modelica, in the same spirit of the CapeML initiative [9].

Finally, it would also be interesting to investigate the possibility to ag-

gregate models represented by di�erent XML documents. In this case every

XML document would represent a sub-model and an interface to allow more

84



submodels to be connected should be designed.

85



Appendix A

Introduction to the XML Schema

language

The intention of this appendix is to give a short summary on the key elements

of the XML Schema language, that could be useful while reading the present

report. A full and discursive presentation on the XML Schema language is

given instead in [37].

XML Schema and XML document

An XML document is an XML �le that represents an instance of a data

structure. An XML Schema de�nes the rules that an XML document should

hold to be valid for a certain application.Tools and libraries are available to

verify that a certain XML document is valid respect to an XML schema.

Types and elements

Both types and elements de�ne a portion of the schema. The main di�erence

is that elements can be instantiated, while it is not possible to instantiate

types. It is possible to assign a type to an element. Using more or less

type de�nitions is a matter of design style and the main advantage is that

86



the maintenance of the schema is improved when many elements have a

similar de�nition. As an example, in the expression module of the schema

(see Section 4.2.4), BinaryOperation is the complex type representing binary

operations, while addition, subtraction, etc, are elements of type BinaryOp-

eration.

Namespaces

An XML namespace is a collection of XML elements and attributes identi�ed

by a standard URI name (�http://sampleaddress.com�). This collection is

often referred to as an XML "vocabulary" and it works similarly as the

packages in Java, allowing the elements and attributes to be reused and

extended.

As an example, the schema module relative to expressions is de�ned in

the following way:

<xs:schema

xmlns:exp=" h t t p s : // svn . jmode l i ca . org / trunk/XML/daeExpress ions . xsd"

xmlns :xs=" ht tp : //www.w3 . org /2001/XMLSchema"

targetNamespace=" h t tp s : // svn . jmode l i ca . org / trunk/XML/daeExpress ions . xsd"

elementFormDefault=" q u a l i f i e d " attr ibuteFormDefau l t=" unqua l i f i e d "

>

It is possible to distinguish two sections in this tag: the declaration of the

vocabularies used in the schema and the de�nition of a target namespace.

The �targetNamespace� attribute is the real de�nition of the namespace's

URI. With xmlns:<pre�x>=�URI� it's possible to recall a vocabulary that

will be used. naming it with a pre�x. In this case two vocabularies are used:

the one in the schema itself, referred with the pre�x �exp� and the standard

one (that it's used in every XML schema).

Note that the URI name is just a hint and there is no need that the schema

is really located in the URI place (the address might even not exist...).

87



Wildcard elements

Wildcards are elements that can be replaced by every element de�ned into a

speci�ed namespace.

For example, the de�nition of the binary operation complex type (Bina-

ryOperation) given in Section 4.2.4 is the following.

<xs:complexType name="BinaryOperation ">

<xs : annota t i on>

<xs:documentat ion>

Binary opera t i on complex type

</xs:documentat ion>

</ xs : annota t i on>

<xs : s equence>

<xs:any namespace="##targetNamespace "/>

<xs:any namespace="##targetNamespace "/>

</ xs : s equence>

</xs:complexType>

�BinaryOperation� complex type is composed by the sequence of two wild-

card elements (the operands), that can be replaced by any element de�ned

into the �targetNamespace�, that is the �exp� namespace itself. If a new kind

of operand (expression) will be needed, it will be necessary just to de�ne

it into the exp vocabulary and it will be automatically available as possible

operand for every binary operations.

Composition of the schema: include, import and rede�ne

XML Schema language o�ers three possibilities to compose XML schemas:

• include : it is used to join schemas with the same target namespace;

• import: it is used to join schemas with di�erent target namespace;

88



• rede�ne: it used to join schemas and the namespace of one schema is

rede�ned as the target namespace of the including schema.

For example the expressions module is imported by the equations one by the

following code:

<xs : import

namespace=" h t tp s : // svn . jmode l i ca . org / trunk/XML/daeExpress ions . xsd"

schemaLocation=" daeExpress ions . xsd"

/>

The result is that the elements de�ned into the imported schema can be

referred by their own namespace pre�x (�exp�) and the equations by their

own di�erent one (�equ�).

89



Appendix B

Test case code

<fmiExtendedModelDescr iption

xmlns:exp=" h t t p s : // svn . jmode l i ca . org / trunk/XML/daeExpress ions . xsd"

xmlns:equ=" h t t p s : // svn . jmode l i ca . org / trunk/XML/daeEquations . xsd"

xmlns : fun=" h t tp s : // svn . jmode l i ca . org / trunk/XML/daeFunctions . xsd"

xmlns:opt=" h t t p s : // svn . jmode l i ca . org / trunk/XML/daeOptimizat ion . xsd"

xmlns :x s i=" ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance "
fmiVers ion=" 1 .0 " modelName="VDP_pack .VDP_Opt"

mode l I d en t i f i e r="VDP_pack_VDP_Opt"

guid="unsupported"

generationDateAndTime="2010−05−13T11:28:48 "

variableNamingConvention=" f l a t "

numberOfContinuousStates="3"

numberOfEventIndicators="0">

<ModelVariables>

<Sca l a rVar i ab l e name="p1" va lueRe fe rence="0" v a r i a b i l i t y="parameter "

c au s a l i t y=" i n t e r n a l " a l i a s=" noAl ias ">

<Real r e l a t i v eQuant i t y=" f a l s e " s t a r t=" 0 .0 " />

</ Sca l a rVar i ab l e>

<Sca l a rVar i ab l e name="p2" va lueRe fe rence="1" v a r i a b i l i t y="parameter "

c au s a l i t y=" i n t e r n a l " a l i a s=" noAl ias ">

<Real r e l a t i v eQuant i t y=" f a l s e " s t a r t=" 0 .0 "/>

</ Sca l a rVar i ab l e>

<Sca l a rVar i ab l e name="p3" va lueRe fe rence="2" v a r i a b i l i t y="parameter "

c au s a l i t y=" i n t e r n a l " a l i a s=" noAl ias ">

<Real r e l a t i v eQuant i t y=" f a l s e " s t a r t=" 0 .0 "/>

</ Sca l a rVar i ab l e>

90



<Sca l a rVar i ab l e name="x1" va lueRe fe rence="6" v a r i a b i l i t y=" cont inuous "

c au s a l i t y=" i n t e r n a l " a l i a s=" noAl ias ">

<Real r e l a t i v eQuant i t y=" f a l s e " s t a r t=" 0 .0 " />

</ Sca l a rVar i ab l e>

<Sca l a rVar i ab l e name="x2" va lueRe fe rence="7" v a r i a b i l i t y=" cont inuous "

c au s a l i t y=" i n t e r n a l " a l i a s=" noAl ias ">

<Real r e l a t i v eQuant i t y=" f a l s e "/>

</ Sca l a rVar i ab l e>

<Sca l a rVar i ab l e name="u" va lueRe fe rence="9" v a r i a b i l i t y=" cont inuous "

c au s a l i t y=" input " a l i a s=" noAl ias ">

<Real r e l a t i v eQuant i t y=" f a l s e " />

</ Sca l a rVar i ab l e>

<Sca l a rVar i ab l e name=" cos t " va lueRe fe rence="8" v a r i a b i l i t y=" cont inuous "

c au s a l i t y=" i n t e r n a l " a l i a s=" noAl ias ">

<Real r e l a t i v eQuant i t y=" f a l s e " s t a r t=" 0 .0 " />

</ Sca l a rVar i ab l e>

<Sca l a rVar i ab l e name="der ( x1 ) " va lueRe fe rence="3" v a r i a b i l i t y=" cont inuous "

c au s a l i t y=" i n t e r n a l " a l i a s=" noAl ias ">

<Real r e l a t i v eQuant i t y=" f a l s e " s t a r t=" 0 .0 "/>

</ Sca l a rVar i ab l e>

<Sca l a rVar i ab l e name="der ( x2 ) " va lueRe fe rence="4" v a r i a b i l i t y=" cont inuous "

c au s a l i t y=" i n t e r n a l " a l i a s=" noAl ias ">

<Real r e l a t i v eQuant i t y=" f a l s e " s t a r t=" 0 .0 "/>

</ Sca l a rVar i ab l e>

<Sca l a rVar i ab l e name="der ( co s t ) " va lueRe fe rence="5" v a r i a b i l i t y=" cont inuous "

c au s a l i t y=" i n t e r n a l " a l i a s=" noAl ias ">

<Real r e l a t i v eQuant i t y=" f a l s e " s t a r t=" 0 .0 "/>

</ Sca l a rVar i ab l e>

</ModelVariables>

<equ:BindingEquat ions>

<equ:BindingEquation>

<equ:Parameter>

<exp:Qual i f iedNamePart name="p1"/>

</equ:Parameter>

<equ:BindingExp>

<exp : I n t e g e r L i t e r a l>1</ e xp : I n t e g e r L i t e r a l>

</equ:BindingExp>

</ equ:BindingEquation>

91



<equ:BindingEquation>

<equ:Parameter>

<exp:Qual i f iedNamePart name="p2"/>

</equ:Parameter>

<equ:BindingExp>

<exp : I n t e g e r L i t e r a l>1</ e xp : I n t e g e r L i t e r a l>

</equ:BindingExp>

</ equ:BindingEquation>

<equ:BindingEquation>

<equ:Parameter>

<exp:Qual i f iedNamePart name="p3"/>

</equ:Parameter>

<equ:BindingExp>

<exp : I n t e g e r L i t e r a l>2</ e xp : I n t e g e r L i t e r a l>

</equ:BindingExp>

</ equ:BindingEquation>

</ equ:BindingEquat ions>

<equ:DynamicEquations>

<equ:Equation>

<exp:Sub>

<exp:Der>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name="x1"/>

</ e x p : I d e n t i f i e r>

</exp:Der>

<exp:Add>

<exp:Sub>

<exp:Mul>

<exp:Sub>

<exp : I n t e g e r L i t e r a l>1</ e xp : I n t e g e r L i t e r a l>

<exp:Pow>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name="x2"/>

</ e x p : I d e n t i f i e r>

<exp : I n t e g e r L i t e r a l>2</ e xp : I n t e g e r L i t e r a l>

</exp:Pow>

</exp:Sub>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name="x1"/>

</ e x p : I d e n t i f i e r>

</exp:Mul>

<e x p : I d e n t i f i e r>

92



<exp:Qual i f iedNamePart name="x2"/>

</ e x p : I d e n t i f i e r>

</exp:Sub>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name="u"/>

</ e x p : I d e n t i f i e r>

</exp:Add>

</exp:Sub>

</ equ:Equation>

<equ:Equation>

<exp:Sub>

<exp:Der>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name="x2"/>

</ e x p : I d e n t i f i e r>

</exp:Der>

<exp:Mul>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name="p1"/>

</ e x p : I d e n t i f i e r>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name="x1"/>

</ e x p : I d e n t i f i e r>

</exp:Mul>

</exp:Sub>

</ equ:Equation>

<equ:Equation>

<exp:Sub>

<exp:Der>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name=" cos t "/>

</ e x p : I d e n t i f i e r>

</exp:Der>

<exp:Mul>

<exp:Exp>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name="p3"/>

</ e x p : I d e n t i f i e r>

</exp:Exp>

<exp:Add>

<exp:Add>

<exp:Pow>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart

93



name="x1"/>

</ e x p : I d e n t i f i e r>

<exp : I n t e g e r L i t e r a l>2

</ e xp : I n t e g e r L i t e r a l>

</exp:Pow>

<exp:Pow>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart

name="x2"/>

</ e x p : I d e n t i f i e r>

<exp : I n t e g e r L i t e r a l>2

</ e xp : I n t e g e r L i t e r a l>

</exp:Pow>

</exp:Add>

<exp:Pow>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name="u"/>

</ e x p : I d e n t i f i e r>

<exp : I n t e g e r L i t e r a l>2</ e xp : I n t e g e r L i t e r a l>

</exp:Pow>

</exp:Add>

</exp:Mul>

</exp:Sub>

</ equ:Equation>

</equ:DynamicEquations>

<equ : I n i t i a lEqua t i o n s>

<equ:Equation>

<exp:Sub>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name="x1">

<exp :ArraySubscr ipt s>

</ exp :ArraySubscr ipt s>

</ exp:Qual i f iedNamePart>

</ e x p : I d e n t i f i e r>

<exp : I n t e g e r L i t e r a l>0</ e xp : I n t e g e r L i t e r a l>

</exp:Sub>

</ equ:Equation>

<equ:Equation>

<exp:Sub>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name="x2">

<exp :ArraySubscr ipt s>

</ exp :ArraySubscr ipt s>

</ exp:Qual i f iedNamePart>

94



</ e x p : I d e n t i f i e r>

<exp : I n t e g e r L i t e r a l>1</ e xp : I n t e g e r L i t e r a l>

</exp:Sub>

</ equ:Equation>

<equ:Equation>

<exp:Sub>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name=" cos t ">

<exp :ArraySubscr ipt s>

</ exp :ArraySubscr ipt s>

</ exp:Qual i f iedNamePart>

</ e x p : I d e n t i f i e r>

<exp : I n t e g e r L i t e r a l>0</ e xp : I n t e g e r L i t e r a l>

</exp:Sub>

</ equ:Equation>

</ equ : I n i t i a lEqua t i o n s>

<opt :Opt imizat ion>

<opt :Objec t iveFunct ion>

<exp:TimedVariable>

<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name=" cos t "/>

</ e x p : I d e n t i f i e r>

<exp : In s t an t>20 .0</ exp : In s t an t>

</exp:TimedVariable>

</ opt :Objec t iveFunct ion>

<opt : In t e rva lS ta r tT ime>

<opt :Value>0 .0</ opt :Value>

<opt :Free>f a l s e</ opt :Free>

<op t : I n i t i a lGu e s s>0 .0</ op t : I n i t i a lGu e s s>

</ opt : In t e rva lS ta r tT ime>

<opt : In t e rva lF ina lT ime>

<opt :Value>20 .0</ opt :Value>

<opt :Free>f a l s e</ opt :Free>

<op t : I n i t i a lGu e s s>1 .0</ op t : I n i t i a lGu e s s>

</ opt : In t e rva lF ina lT ime>

<opt:TimePoints>

<opt : Index>0</ opt : Index>

<opt :Value>20 .0</ opt :Value>

</opt:TimePoints>

<opt :Cons t r a i n t s>

<opt :Constra intLeq>

95



<e x p : I d e n t i f i e r>

<exp:Qual i f iedNamePart name="u"/>

</ e x p : I d e n t i f i e r>

<exp :Rea lL i t e r a l>0 .75</ exp :Rea lL i t e r a l>

</ opt :Constra intLeq>

</ opt :Cons t r a i n t s>

</ opt :Opt imizat ion>

<fun :Func t i on sL i s t></ fun :Func t i on sL i s t>

</ fmiExtendedModelDescription>

96



Bibliography

[1] Johan Åkesson. Languages and Tools for Optimization of Large-Scale

Systems. PhD thesis, Department of Automatic Control, Lund Univer-

sity, Sweden, November 2007.

[2] Johan Åkesson. Optimica�an extension of Modelica supporting dy-

namic optimization. In In 6th International Modelica Conference 2008.

Modelica Association, March 2008.

[3] Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove Bergdahl, and

Hubertus Tummescheit. Modeling and optimization with Optimica and

JModelica.org�languages and tools for solving large-scale dynamic opti-

mization problem. Computers and Chemical Engineering, January 2010.

Doi:10.1016/j.compchemeng.2009.11.011.

[4] Johan Åkesson, Tove Bergdahl, Magnus Gafvert, and Hubertus

Tummescheit. The JModelica.org Open Source Platform. In 7th In-

ternational Modelica Conference 2009. Modelica Association, 2009.

[5] Johan Åkesson, Torbjörn Ekman, and Görel Hedin. Implemen-

tation of a Modelica compiler using JastAdd attribute grammars.

Science of Computer Programming, 75(1-2):21�38, January 2010.

doi:10.1016/j.scico.2009.07.003.

97



[6] Mats Andersson. Object-Oriented Modeling and Simulation of Hybrid

Systems. PhD thesis, Department of Automatic Control, Lund Institute

of Technology, Sweden, December 1994.

[7] U.M. Ascher and L.R. Petzold. Computer methods for Ordinary Di�er-

ential Equations and Di�erential Algebraic Equations. SIAM, 1997.

[8] L.T. Biegler, A.M. Cervantes, and A. Wachter. Advances in simultane-

ous strategies for dynamic process optimization. Chemical Engineering

Science, 57(4):575�593, 2002.

[9] Christian H. Bischof, H. Martin Bücker, Wolfgang Marquardt, Monika

Petera, and Jutta Wyes. Transforming equation-based models in pro-

cess engineering. In H. M. Bücker, G. Corliss, P. Hovland, U. Naumann,

and B. Norris, editors, Automatic Di�erentiation: Applications, The-

ory, and Implementations, Lecture Notes in Computational Science and

Engineering, pages 189�198. Springer, 2005.

[10] F. Casella, F. Donida, and Åkesson. An XML representation of DAE

systems obtained from Modelica models. In 7th Modelica conference,

September, 20-22 2009.

[11] F. Casella, F. Donida, and M. Lovera. Beyond simulation: Computer

aided control system design using equation-based object oriented mod-

elling for the next decade. In 2nd International Workshop on Equation-

Based Object-Oriented Languages and Tools, July, 8 2008.

[12] F. Casella, F. Donida, and M. Lovera. Automatic generation of LFTs

from object-oriented non-linear models with uncertain parameters. In

6th Vienna International Conference on Mathematical Modeling, Febru-

ary, 11-13 2009.

[13] Francesco Casella, Filippo Donida, and Gianni Ferretti. Model order

reduction for object-oriented models: a control systems perspective. In

98



Proceedings MATHMOD 09 Vienna, pages 70�80, Vienna, Austria, Feb.

11�13 2009.

[14] L.R. Petzold C.W. Gear. ODE methods for the solution of di�eren-

tial/algebraic systems. SIAM journal on numerical analysis, 21:716�728,

1984.

[15] Hilding Elmqvist. A Structured Model Language for Large Continuous

Systems. Phd thesis, Department of Automatic Control, Lund Univer-

sity, 1978.

[16] H.J. Ferreau, H.G. Bock, and M. Diehl. An online active set strategy

to overcome the limitations of explicit MPC. International Journal of

Robust and Nonlinear Control, 18(8):816�830, 2008.

[17] P. A. Fishwick. Using XML for simulation modeling. In Winter simu-

lation conference, December, 8-11 2002.

[18] P. Friztson. Principles of Object-Oriented Modeling and Simulation with

Modelica 2.1. John Wiley & Sons, 2004.

[19] E. Hairer, Ch. Lubich, and M. Roche. The numerical solution of

di�erential-algebraic systems by Runge-Kutta methods. Springer, 1989.

[20] E. Hairer and G. Wanner. Solving Ordinary Di�erential Equations II:

Sti� and Di�erential-Algebraic Problems. Springer, 1996.

[21] KU Leuven. ACADO toolkit Home Page.

http://www.acadotoolkit.org/.

[22] P. Kunkel and V. Mehrmann. Di�erential-Algebraic Equations: Analysis

and Numerical Solution. European Mathematical Society, 2006.

[23] J. Larsson. A framework for simultion-independent simulation models.

Simulation, 82(9):563�379, 2006.

99



[24] S. E. Mattsson and G. Söderlind. Index reduction in di�erential-

algebraic equations using dummy derivatives. SIAM Journal on Sci-

enti�c Computing, 14(3):677�692, 1993.

[25] Modelisar. Functional Mock-up Interface for Model Exchange, 2010.

http://www.functional-mockup-interface.org.

[26] Modelon AB. Modelon AB Homepage. http://www.modelon.se.

[27] Modelon AB. JModelica Home Page, 2009. http://www.jmodelica.org.

[28] Constantinos C. Pantelides. The Consistent Initialization of Di�erential-

Algebraic Systems. SIAM Journal on Scienti�c and Statistical Comput-

ing, 9(2):213�231, 1988.

[29] A. Pop and P. Fritzson. ModelicaXML: A Modelica XML representation

with applications. In 3rd Modelica conference, November, 3-4 2003.

[30] Python Software Foundation. Python Homepage.

http://www.python.org.

[31] U. Reisenbichler, H. Kapeller, A. Haumer, C. Kral, F. Pirker, and

G. Pascoli. If we only had used XML... In 5th Modelica conference,

September, 4-5 2006.

[32] Robert Tarjan. Depth-�rst search and linear graph algorithms. SIAM

Journal on Computing, 1(2):146�160, 1972.

[33] T. Ekman, G. Hedin. JASTAdd Homepage. http://www.jastadd.org.

[34] The Modelica Association. Modelica Association Home Page.

http://www.modelica.org.

[35] The Modelica Association. Modelica - a uni�ed object-

oriented language for physical systems modeling, 2009.

http://www.modelica.org/documents/ModelicaSpec32.pdf.

100



[36] M. Tiller. Implementation of a generic data retrieval API for Modelica.

In 4th Modelica conference, March, 7-8 2005.

[37] Priscilla Walmsley. De�nitive XML Schema. Pearson Education (US),

2001.

[38] World Wide Web Consortium (W3C) . Extensible Markup Language

(XML). http://www.w3.org/XML/.

[39] World Wide Web Consortium (W3C) . XML Schema (XSchema).

http://www.w3.org/XML/Schema.

101


