
 

 1 / 122 

 

POLITECNICO DI MILANO 

  Corso di Laurea specialistica in Ingegneria Informatica 

   Dipartimento di Elettronica e Informazione 

 

An environment of continuous 

integration & software metrics for a DB   

programming language 

 

Relatore:  Prof.  Giuseppe Pozzi 

Corelatore: Doct.  Massimo Rosin 

Tesi di Laurea di: 

Xu Shaojie, matricola 73808 

2010/2011 



 

 2 / 122 

 

Ringraziamenti 

All'inizio del presente lavoro desidero ringraziare ed esprimere la mia 

riconoscenza nei confronti di tutte le persone che, in modi diversi, mi  sono 

state vicine ed hanno permesso e incoraggiato sia i miei studi che  la 

realizzazione e stesura di questa tesi. 

Desidero innanzitutto ringraziare il Professore Giuseppe Pozzi per la continua 

disponibilità e prontezza durante tutte le fasi del mio lavoro  ed avermi 

prontamente aiutato nei momenti di difficoltà. 

Ringrazio anche il dottor Massimo Rosin per aver contribuito alla mia 

formazione e crescita nel campo professionale. Non scorderò la sua continua 

disponibilità e pazienza che mi ha dedicato durante l‘intera esperienza di 

stage nella azienda Reply Technology, gli incoraggiamenti, i consigli e al 

tempo stesso gli apprezzamenti per quanto realizzato. Senza i suoi aiuti, il 

mio lavoro non avrebbe potuto raggiungere il livello che ha raggiunto. 

Inoltre ringrazio sinceramente il miei colleghi Matteo Galli e Mauro Lucchini 

per avermi fornito materiale utile per la realizzazione della mia tesi e per 

essere sempre stati disponibili a dare consigli preziosi e dirimere i miei dubbi 

durante la stesura di questo lavoro. 

Ringrazio anche l‘azienda Reply S.p.A per avermi offerto la possibilità di 

svolgere uno stage su nuove tematiche, ambienti e strumenti all‘avanguardia. 

Rivolgo un ringraziamento speciale ai miei genitori, per avermi dato la 

possibilità di studiare, per aver sostenuto le mie scelte e per i consigli 

importanti che mi hanno sempre dato. 

  

 



 

 3 / 122 

 

Abstract 

Continuous integration (CI), a term used as one of the practices of XP 

(Extreme Programming), has been widely recognized and employed by many 

software companies. There is no denying there are benefits resulting from the 

introduction of tools and practices of continuous integration for the software 

development. Nowadays, an enterprise which carries on any activity 

associated with code generation does not use repository is rare. Software 

metrics, those qualitative and quantitative measurements on purpose of 

improving the software product and the process has also been applied for 

year.  

Software metrics, which is the measurement of the software product quality 

and process, has been becoming increasingly important to software 

development. It emphasize that how good the product is designed (quality of 

design) and how well the software product conforms to that specification. To 

have more accurate schedule and cost estimates, better quality products, and 

higher productivity. It is highly advised to employ software metric to the 

development process as well as the product.  

Given that software development is becoming more and more extremely 

complex, especially for Oracle PL/SQL, in the current software market, there 

are few well-defined, reliable measures of either the process or the product to 

guide and evaluate development. Furthermore, only employing a simple way 

of monitoring the software development process or product is far away from 

satisfaction. Setting up a multi-environment of checking, building, controlling 

and monitoring for a software development is going to be a tendency. 

My thesis investigates on the practice of continuous integration, which is a 

technique of agile software development methods, and its impact on software 

quality in terms of both developing process and the product. Meanwhile, to 

ensure a good analysis and evolution of software quality, it‘s inevitable to 

investigate the software metrics, which deals with the measurement of the 

software product and the process by which it is developed.  At last, a real 

case will be presented. It is an implementation of two plug-ins both in the 

server side (SONAR) and client site (Eclipse) aiming to do the analysis of 

Oracle database programming language PL/SQL. 



 

 4 / 122 

 

Sommario 

La presente tesi riguarda la pratica della integrazione continua(continuous 

integration), che è una tecnica di sviluppo software che impatta sensibilmente 

sulla qualità del software sia in termini di processo di sviluppo che di 

prodotto finale. 

Per garantire una buona analisi ed il conseguente sviluppo del software, è 

necessario utilizzare alcune metriche del software, con l'obiettivo di misurare 

il prodotto software ed il processo attraverso il quale esso si sviluppa. 

La tesi considera inoltre un caso reale riguardante la realizzazione di due 

plug-in: il primo e' lato server (SONAR),  il secondo e' lato client (Eclipse), 

con l'obiettivo di effettuare l'analisi dei comandi nel linguaggio di 

programmazione PL / SQL del DBMS Oracle. 

  

  



 

 5 / 122 

 

Table of Content 

Ringraziamenti ...................................................................................................................... 2 

Abstract ................................................................................................................................ 3 

Sommario ............................................................................................................................. 4 

List of Figures ........................................................................................................................ 9 

List of Tables ....................................................................................................................... 13 

1. Introduction ................................................................................................................ 14 

1.1 The Topic .............................................................................................................. 14 

1.2 Why is it relevant .................................................................................................. 14 

1.2.1 The need of continuous integration ................................................................ 15 

1.2.2 The need of software metrics ......................................................................... 19 

1.2.3 Customer requirement analysis ...................................................................... 20 

1.3 Paper outline ........................................................................................................ 21 

2. Continuous Integration ................................................................................................ 23 

2.1 Introduction ......................................................................................................... 23 

2.2 Typical practices of CI ........................................................................................... 24 

2.3 CI in classical software process ............................................................................. 27 

2.3.1 “Traditional” process problems ..................................................................... 27 

2.3.2 Problems solved through continuous integration .......................................... 28 

2.4 Continuous Integration in the real world .............................................................. 28 

2.5 Chapter Summary ................................................................................................. 30 



 

 6 / 122 

 

3. Software Quality Metrics ............................................................................................. 31 

3.1 Introduction ......................................................................................................... 31 

3.2 Software quality ................................................................................................... 31 

3.2.1 Software quality definitions........................................................................... 32 

3.2.2 Quality classifications .................................................................................... 34 

3.2.3 Quality models .............................................................................................. 35 

3.2.4 Quality factors ............................................................................................... 38 

3.3 Software metrics .................................................................................................. 41 

3.3.1 Software metrics definition ........................................................................... 42 

3.3.2 Metrics classification ..................................................................................... 42 

3.4 Software metrics selected for the PL/SQL ............................................................. 44 

3.4.1 Product Metrics............................................................................................. 44 

3.4.2 Metrics chosen for PL/SQL ............................................................................ 50 

3.5 Software quality control tools ............................................................................... 53 

3.6 Chapter summary ................................................................................................. 56 

4. Metrics Plug-in design and implementation on the Client-side: Eclipse ........................ 57 

4.1 Eclipse Plug-in Infrastructure ................................................................................ 57 

4.1.1 Eclipse platform architecture ......................................................................... 57 

4.1.2 Plug-in Structure ........................................................................................... 59 

4.2 PL/SQL plug-in development ................................................................................. 64 

4.2.1 Plug-in interface implementation with SWT/JFace ........................................ 64 

4.2.2 Plug-in logic implementation ......................................................................... 68 



 

 7 / 122 

 

4.3 Chapter Summary ................................................................................................. 72 

5. Metrics Plug-in design and implementation on the Server-side: Sonar ......................... 73 

5.1 Introduction of SonarSource ................................................................................. 73 

5.2 The structure of SONAR ........................................................................................ 75 

5.3 Maven .................................................................................................................. 77 

5.3.1 Maven Introduction ...................................................................................... 77 

5.3.2 Maven POM.xml ........................................................................................... 78 

5.3.3 Using of Maven ............................................................................................. 80 

5.3.4 Using of Sonar based on Maven .................................................................... 83 

5.4 Sonar Web Application & ROR .............................................................................. 84 

5.4.1 Sonar Plug-in ................................................................................................. 84 

5.4.2 ROR (Ruby on Rails): the future of web application framework ...................... 87 

5.4.3 MVC Structure: the web design pattern......................................................... 90 

5.5 Sonar Plug-in for programming language Pl/SQL ................................................... 93 

5.5.1 Getting started .............................................................................................. 94 

5.5.2 Code the plug-in in Client side (Java) ............................................................. 94 

5.5.3 Code the plug-in in Server Side (Ruby on Rails) .............................................. 99 

5.5.4 Installation .................................................................................................. 104 

5.6 Chapter Summary ............................................................................................... 105 

6. Experimental Results ................................................................................................. 106 

6.1 Plug-in test results and analysis on Eclipse .......................................................... 106 

6.2 Plug-in test results and analysis on Sonar............................................................ 111 



 

 8 / 122 

 

6.3 Chapter summary ............................................................................................... 116 

7. Conclusion ................................................................................................................. 117 

7.1 Thesis contribution ............................................................................................. 117 

7.2 Lessons learnt ..................................................................................................... 118 

7.3 Future research directions ................................................................................... 119 

8. Bibliography .............................................................................................................. 120 

 

  



 

 9 / 122 

 

List of Figures 

Figure 2-1 Continuous Integration practice ...................................................... 25 

Figure 2-2 Continuous Integration Schemas ..................................................... 26 

Figure 3-1 A control flow graph of a simple program ....................................... 46 

Figure 3-2 Checkstyle Eclipse Plug-in ............................................................. 54 

Figure 3-3 Eclipse show view of Checkstyle plug-in ........................................ 55 

Figure 3-4 ClearSQL ....................................................................................... 56 

Figure 4-1 Eclipse platform architecture .......................................................... 58 

Figure 4-2 Eclipse plug-in structures ................................................................ 59 

Figure 4-3 Manifest.mf file .............................................................................. 60 

Figure 4-4 Plugin.xml ...................................................................................... 62 

Figure 4-5 Two actions of PL/SQL plug-in ...................................................... 63 

Figure 4-6 structure and relationship of SWT ................................................... 64 

Figure 4-7 Two tables to show the analysis result ............................................. 66 

Figure 4-8 Menu Oracle ................................................................................... 66 

Figure 4-9 Menu File ....................................................................................... 67 



 

 10 / 122 

 

Figure 4-10 Directory dialogue to select a project ............................................ 68 

Figure 4-11 Analysis with default value zeros .................................................. 71 

Figure 5-1 Axes of Sonar ................................................................................. 73 

Figure 5-2 The homepage of sonar ................................................................... 74 

Figure 5-3 The homepage of a specific project ................................................. 74 

Figure 5-4 Drilldown to see the code ............................................................... 76 

Figure 5-5 Steps of doing a code analysis in sonar ........................................... 77 

Figure 5-6 Standard directory of maven project ............................................... 82 

Figure 5-7 Maven command to launch an analysis ........................................... 83 

Figure 5-8 Successful Build ............................................................................. 84 

Figure 5-9 MVC schema .................................................................................. 91 

Figure 5-10 Schematic views of Ruby and the Rails framework [19] ............... 93 

Figure 5-11 Successful creating a Maven project ............................................. 94 

Figure 5-12 Plug-in-Classes ............................................................................. 95 

Figure 5-13 Dependencies of sonar plug-in ...................................................... 95 

Figure 5-14 Oracle Pl/SQL Plug-in .................................................................. 97 



 

 11 / 122 

 

Figure 5-15 list of all the extension points ........................................................ 98 

Figure 5-16 PL/SQL Dashboard Widget ........................................................... 98 

Figure 5-17 Sonar web application standard directory .....................................100 

Figure 5-18 Url_plsql_drilldown class ............................................................103 

Figure 5-19 NCSS measurement details ..........................................................103 

Figure 5-20 Added method plsql_details .........................................................104 

Figure 6-1 Launch new analyses .....................................................................106 

Figure 6-2 Oracle Project Selections ...............................................................107 

Figure 6-3 Analyses results .............................................................................107 

Figure 6-4 Launch another new analyses.........................................................108 

Figure 6-5HTML report ..................................................................................109 

Figure 6-6 Comparison of two projects ........................................................... 110 

Figure 6-7 Launch a Sonar analysis ................................................................ 111 

Figure 6-8 Successful analysis ........................................................................ 112 

Figure 6-9 A project only has PL/SQL ............................................................ 112 

Figure 6-10 A project has both JAVA and PL/SQL .......................................... 113 



 

 12 / 122 

 

Figure 6-11 NCSS details................................................................................ 114 

Fgiure 6-12 V(G) < 10 details ......................................................................... 115 

 

 

 

  



 

 13 / 122 

 

List of Tables 

Table 5-1 Project builds lifecycle ..................................................................... 81 

Table 5-2 Sonar Plug-ins .................................................................................. 87 

Table 5-3 A summary of the default Sonar Rails directory structure ................101 

 

  



 

 14 / 122 

 

1. Introduction 

1.1 The Topic 

Software Quality activities are conducted throughout the project life cycle to 

provide objective insight into the maturity and quality of the software 

processes and associated work products.  

Up to now, there are plenty amount of solutions for the assurance of the 

software quality. What we are going to address is the software quality 

improvement and assurance through the CI (continuous integration) as well 

as the specific software metrics investigation.   

1.2 Why is it relevant 

The fundamental nature of software development is changing dramatically, 

and quality professionals must change with it. Therefore, modern software 

processes have changed to classical and traditional models into processes 

which are evolutionary, iterative, and incremental. And continuous integration 

(CI) as one solution of agile way of software development, implements 

continuous processes of applying quality control - small pieces of effort, 

applied frequently. Improving the software quality, reducing the developing 

time is the main purpose and practice of continuous integration. It replaces 

the traditional practice of applying quality control after completing all 

development.  

Moreover, to obtain a better control of software quality both in the 

development process and the work product, we need to have several software 

source oriented metrics to measure the software or the source code 

quantitatively.  As for our project, the target software source is the Oracle 

database programming language – PL/SQL.  

The goal of both Continuous Integration and software metrics are both to 



 

 15 / 122 

 

improve the quality of software produce and its corresponding process. 

Nevertheless, they have distinctive behavior of improving software quality. 

By combining them together properly, it is possible to obtain a better 

performance than only using them separately. For Continuous Integration, it 

increases the quality of software through the assurance of the code being free 

of bugs and buildable by frequently, automatically, continuously checking 

every change of code submitted into repository. As long as there is any error 

or break of building, all the tasks need to stop and the priority is to fix that 

problem before any proceed. Instead, for software metrics, or to be specific in 

our project, software code metrics, it guarantees the quality of the software by 

analyzing the code at times and let the team members be aware of the status 

of current software development status. For example, in last build, the 

number of views are 50, and the number of cyclomatic complexity V(G) 

which are larger than 10 (research reveals that a piece of code with 

cyclomatic complexity greater than 10 is not easily testable, and so it is not 

easily maintainable than that less than 10, it is highly suggested to limit 

program with cyclomatic complexity less than 10, the lower the better) is 40. 

And those greater than 10 is zero which is good status. However, after next 

building, the number of views are 60 (program increased) and the number of 

program with cyclomatic complexity becomes 3 instead of 0 which is not 

advisable. Actions need to be taken to fix the 3 pieces of code so as to make 

their value of V(G) less than 10. Thus the good testability and maintainability 

are guaranteed. And the details about this will be explained in the following 

of my thesis.  

Next, let us have an inside view of the importance of applying continuous 

integration and software metrics in modern software development, and the 

meaningfulness of employing both of them. After that I will present why it is 

necessary to develop our project based on the analysis of customer 

requirements.  

1.2.1 The need of continuous integration 

Normally, improving software quality, increasing productivity and reducing 

risk are the purposes of using Continuous Integration (CI) as a best 

development practice for any organization that produces software.  



 

 16 / 122 

 

Nowadays, Continuous integration has been heralded as a best practice of 

software development. It is widely acknowledged that software built 

frequently with the automated regression test suits run after each build, 

results in higher developer productivity and shorter release cycles. As we all 

know that the earlier we detect the bugs, the less cost to fix them. Normally, 

if a bug is detected in the end, or just before the releasing period, huge 

amount of resource and capital would be wasted. It is really quite easy to see 

why this is generally true: building your software and running your unit test 

libraries shortly after code changes are committed to the SCM repository will 

allow your developers to produce higher quality code quicker as they will be 

able to quickly fix any integration build errors or software defects they 

introduced shortly after committing their changes while the changes are still 

fresh in their memory. Every time after the build of the source, if any of the 

tests fail, all effort is directed at fixing the problem in order to obtain a 

working version of the system. As Martin Fowler states:‖The whole point of 

Continuous Integration is to provide rapid feedback.‖ It is really much less 

expensive to troubleshoot and fix a bug within minutes or hours of checking 

in the code than within days or weeks when lots of other, inter-related, code 

changes are committed to the repository. Failing builds, of course, are the 

main impediment to such rapid feedback if they are not fixed timely. 

Continuous integration has therefore been called the ―heartbeat of software‖. 

If it stops, you can‘t ship. [1] 

The key of continuous integration is: [41] 

 Fully automated integration  

What is integration? Making different modules work together is 

integration. Of course all the modules have to work together and they 

must be integrated. And there are two ways of integration, manual 

integration and automated integration. It is the fully automated integration 

that makes CI so popular in software development application.  

If it is manual integration, you need to do the build, test, deployment and 

so forth manually. What‘s worse is that it is impossible to do all these 

work in short time, normally a few hours or days which would lead to let 

check-ins. As we have discussed above, the less you check you code, 

check the status, the more the bugs would appear in the end. The bugs are 

delayed to be detected owing to the postponed, time-consuming, 

non-automated integration. If developers are running build scripts 

manually (either from their machines, or on a server somewhere), that 



 

 17 / 122 

 

doesn‘t quality as CI. The act of checking-in the code will be a trigger of 

the CI build. This feature makes the possibility of realization of higher 

frequency, shorter duration (a few hours or even less) of continuous 

integration. 

The automation feature of the continuous integration is guaranteed by 

several tools: 

 

 Checkout or update of source code by a version control tool 

 Compilation of project source code by a build tool 

 Execution of source code checking by a static analysis tool 

 Unit test execution by a unit test harness or runner 

 

Automation of integration makes the software development task in a way 

that is deterministic and repeatable so that it can be executed during 

process. The purpose is to minimize the interaction of human so as to 

remove the human error and have the tasks being run in background.  

 

 Compilation of latest source code  

To emphasize again: The earlier you can detect problems, the easier it is 

to resolve them. As long as the code is being checked in, we have to 

ensure that the code is run able, functional, and free of bugs and 

complying with the specification.  

 

 From source control 

Typically developers download source code from the SCM repository into 

their local work area and do their coding using an IDE tool such as 

Eclipse or VS.NET. Let‘s assume that there are 10 developers doing the 

development in parallel and there is no rule of committing the code into 

SCM repository. They build and unit test their changes in the local work 

areas. It is possible to have the situation that the committed code might 

conflict with the code that has already committed to the repository. Under 

this situation, it would be the best practice for the developer to resolve the 

conflicts in the local work area build and test the changes and then 

synchronize the code with the repository if and only if the changes cause 

no merger conflict. [42] 

As we mentioned at the beginning of this section, the three purpose of 

continuous integration is to improve quality, increase productivity, and 

reduce risk.  



 

 18 / 122 

 

It is obvious that the quality of software product and its corresponding 

process would be improved by employing CI from what we have stated above. 

All the practices are all in aim of improving the quality. But what‘s the 

connection of CI with the higher productivity?  Is there any direct impact of 

CI on the software development productivity? I say yes.  

For one thing, using a fully automated build process, definitely, should have a 

rather positive effect on the increasing of productivity. With a fully 

automation of integration, developer are spending less time doing the 

buildings. More efforts are exerted to the generation of code to fulfill the 

functions. For another, by strictly employing CI, we have the advantage that 

all the code in the SCM repository is buildable and free of bugs. There is no 

more situation of full of bugs before the releasing period. The release 

lifecycle is reduced. Thirdly, the satisfaction and confidence of being 

successfully is obtained to the team by executing the successful building each 

time thanks to the CI. So team members are more motivated to work on that 

project. This is an indirect of positive impact on the productivity.  Last but 

not least, checking a project with the team members spread all over the world 

with different time zone would be a big problem. Unfortunately, this case is 

quite normal currently like a team member in the US checked in the latest 

code on Friday nightly, shortly before leaving work, and fixed all the bugs. 

On Sunday, another team member in China check out the code and resume to 

work based on the code of the team member from USA. 

Any time a developer checks in their code without properly checking whether 

the committed code is buildable and free of bugs. That would be a huge 

problem for continuous integration. It might probability break the 

development process. Assuming what the Chinese developer in the morning 

found that the code committed the day before by the USA team member is 

unbuildable and full of bugs? For him, either fixes the problems by himself or 

wake up the team in the USA. Both of them can be a disaster to the whole 

team.  

Regarding reducing risk, a few reasons stated above can be applied here 

either. Fully automation of integration is aiming at reducing or eliminating 

the human error during the building process. After each CI process, if there is 

any problem occurs, the responsible person would be noticed. This person 

would stop the work at hand and turn to fix the problem before any advance 



 

 19 / 122 

 

which ensures the whole project is on-track.  

Taking all the facts above into consideration, we are naturally going the 

conclusion that by using the CI, a team would have more time on producing 

good, commercial-quality code and spend less time manually running 

low-value tasks. A team is able to achieve value to the business market. All 

of that clearly and deeply explains the CI important.  

1.2.2 The need of software metrics 

Software metrics are measures of the attributes of software products and 

processes.  They are increasingly playing a central role in the planning and 

control of software development projects.   

Software Metrics can be divided into product metrics and process metrics. 

Product metrics measure the software at a certain development phase. Product 

metrics may measure the complexity, the size of the final program (either 

source or object code), or the number of pages of documentation produced. 

Process metrics, are measures of the software development process, such as 

overall development time, type of methodology used, or the average level of 

experience of the programming staff. [5] 

But why on earth do we need the software metrics to measure the software 

process and product?  

There is one sentence saying: ―Developing software is more of a business or a 

process than an art form… a business or process needs to be managed 

through the use of various control functions.‖ There is another saying: ―The 

key to successful risk management is in the ability to measure. In order to be 

successful a rigorous and well-thought path to managing these [risk] issues 

must be continuously developed. At the heart of it all is the notion of having 

key business measures. Industry gurus have told us for years that we need to 

measure what we manage.‖ These are some key points I took from the book 

measuring the Software Process: A practical guide to functional 

measurements by David Garmus and David Herron.  



 

 20 / 122 

 

There is no denying that project productivity is increased as the quality 

increase. In order to increase quality and productivity, weaknesses must be 

identified in the methods being currently used and actions taken to strengthen 

these areas of software development process. So, if we really want to know 

whether or not we are improving our effectiveness and efficiency then we 

should really spend some time understanding why measures are important, 

and define critical software metrics. And it is the exact content will be 

covered in my thesis.  

Given that software development is extremely complex, especially for Oracle 

PL/SQL, in the current software market, there are few well-defined, reliable 

measures of either the process or the product to guide and evaluate 

development. Thus, accurate and effective estimating, planning, and control 

are nearly impossible to achieve. This is the goal of software metrics-the 

identification and measurement of the essential parameters that affect 

software development. [5] 

1.2.3 Customer requirement analysis  

As an Oracle partner, Software Factory Reply Technology is especially 

committed in working with Oracle products and tools. Among these, the 

database is probably the most used and stressed: near all applications need at 

least one database where to store data and vital information. The database is 

also a development environment: Oracle RDBMS, just as other databases, 

provides a specific language for scripting development, the Pl/SQL language. 

Developers can write Pl/SQL code to manipulate data, often with higher 

performance and ease with respect to Java or other development 

environments. In this sense, Pl/SQL code is an important part of the source 

code for the average software project in our Factory, just as well as Java. 

Thus, it becomes of the utmost importance to guarantee at least the same 

quality we can obtain for the Java part of our work. 

Sonar and Checkstyle were the leading tools for Java code review and 

software metrics at the time the Factory needed specific tools for such tasks, 

but nothing seemed to satisfy the same needs for Pl/SQL. Quest Software's 



 

 21 / 122 

 

TOAD had a module, called CodeXpert, which was able to perform some 

measurement about complexity on Pl/SQL code, but had some flaws: first 

release was somehow buggy, reports were giving results only if the code was 

showing measures over a certain threshold (not customizable) and, ultimately, 

it was a client-side tool, with expensive license costs. 

Therefore, having no other alternative, we decided to develop a Pl/SQL 

software metrics tool of our own. The tool was written in Java and was 

integrated in a pluggable architecture which also hosted a Checkstyle 

implementation, in order to collect measures for projects based on both Java 

and Pl/SQL. 

As soon as Sonar becomes a mature platform, we switched from Checkstyle 

to Sonar, but since Sonar had no Pl/SQL module, we did not abandon our 

software metrics tool. Also, we used the same tool at some Customers' sites, 

in order to provide quality measurements on applications under maintenance, 

both ours and third-parties, so we needed to continue supporting it. 

Quest Software today offers a Sonar commercial plug-in for Pl/SQL metrics. 

Such plug-in is not free of charge and, moreover, it requires TOAD as 

server-side metrics engine, thus requiring the use of a TOAD instance 

specifically for this task, and one additional TOAD license to be purchased. 

That's why we continued the effort of development on our tool, and we 

decided to provide plug-ins for Sonar (server side) and Eclipse (client side), 

which are core parts in software life cycle within our Factory. 

1.3 Paper outline 

The paper will be organized as follows:  

Chapter 2 discusses the Continuous Integration as well as the agile software 

development and software life cycle. After that Continuous Integration 

practices in real world will be explained. 

In chapter 3, software quality and its models and classification will be 



 

 22 / 122 

 

introduced firstly. And then software code metrics will be covered generally, 

the definition of various software metrics and its application to improve the 

quality. At last I will explain the selected software metrics applied to our 

project in real practice in our project.  

In chapter 4 we focus on explaining the design and implementation of both 

the PL/SQL core analyzer and the plug-in to be installed in Eclipse. The 

PL/SQL analyzer is the core analyzer of both for Eclipse and Sonar. It is 

mostly developed by Reply Technology senior consultant Massimo Rosin and 

I will give a brief introduction on it. After that I will explain in details about 

the Eclipse structure especially the architecture of Eclipse plug-in based on 

which Eclipse to be extended. To develop the plug-in of Eclipse, SWT/JFace 

is very important and it will be explained as well. The related work done by 

us will be presented in the end of this chapter. 

In chapter 5 the server side Sonar plug-in will be shown. Firstly, the Sonar 

itself will be introduced briefly as well as Maven, based on which Sonar 

software code analysis is run. Secondly, Sonar plug-in research and 

development will be discussed. How the plug-in is organized and how to 

develop the plug-in from the Eclipse side to the server service side? I will 

explain these in detail. To develop the plug-in in the server service side, it is 

essential to have a good command of ROR (Ruby on Rails), which is deem as 

the future of agile web application development.  

Chapter 6 you will see the tests and experimental results, and then analysis 

will be done based on the result.  

Chapter 7 summarizes the contribution of this thesis, the lesson learnt, and 

outlines of the further research directions.  

 

 

 



 

 23 / 122 

 

2. Continuous Integration  

2.1 Introduction 

Continuous Integration is emerged in the Extreme Programming (XP) 

community, and XP advocates Martin Fowler and Kent Beck first wrote 

about continuous integration around 1999. [25] 

But what is exactly Continuous Integration? What is the difference between 

the other XP practices? If in a software company, members or developers of a 

team integrate their work frequently, usually each person integrates at least 

daily - leading to multiple integrations per day, and we can say that this 

company is using continuous integration, one the best practice of XP 

programming.  

Every time, when the developer submits the code into the repository, that part 

of code would be verified by an automated build (including test) to detect 

integration errors as quickly as possible. The results of the build and testing 

are reported to the entire team. This tightens team-wide communication about 

the quality of the committed changes. Continuous integration leads to 

significant reduction of integration problems and enable to speed up the 

software development cycle.  

The goal of continuous integration is to know the global effects of local 

changes as soon as possible. Integration bugs are hard to track down because 

they originate from the interaction between (changes to) different subsystems, 

so they are hard to test for on a subsystem level. Postponing integration 

makes things even worse: the interaction between changes increases very fast 

making integration bugs exponentially harder to find. It is therefore important 

that integration builds are executed quickly enough. [2]  

In multiple ways, an agile developing team would benefit from such a system. 

For one thing, the system can provide an immediate feedback to all parties 

shortly after a problem is occurred. For another, valuable deployment 

artifacts would be created and different audiences would be reported within 

http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Martin_Fowler
http://en.wikipedia.org/wiki/Kent_Beck


 

 24 / 122 

 

the agile team. 

It has many advantages: [25] 

 When unit tests fail or a bug emerges, developers might revert the 

codebase back to a bug-free state, without wasting time debugging 

 Developers detect and fix integration problems continuously - avoiding 

last-minute chaos at release dates, (when everyone tries to check in their 

slightly incompatible versions). 

 early warning of broken/incompatible code 

 early warning of conflicting changes 

 immediate unit testing of all changes constant availability of a "current" 

build for testing, demo, or release purposes 

 immediate feedback to developers on the quality, functionality, or 

system-wide impact of code they are writing 

 frequent code check-in pushes developers to create modular, less 

complex code 

 Metrics generated from automated testing and CI (such as metrics for 

code coverage, code complexity, and features complete) focus developers 

on developing functional, quality code, and help develop momentum in a 

team. 

2.2 Typical practices of CI 

A typical CI (figure 2.1) practice starts with the compilation of the 

application. If there is any problem, which will fail the CI cycle and the 

system; the whole team would be notified and to fix that. The CI server will 

recompile and go on executing as long as the problem is fixed. After this 

http://en.wikipedia.org/wiki/Software_bug
http://en.wikipedia.org/wiki/Debugging


 

 25 / 122 

 

stage, the CI system is ensured that the database will be up to date. 

Nevertheless, the CI cycle would not be failed. It depends on the server 

configuration unit test. And then in the next two steps the CI server will 

package and deploy the application. After all functional tests successfully 

pass; the CI system will generate a report of the integration cycle and notify 

them to a certain set of developers.  

 

Figure 2-1 Continuous Integration practice 

To make each CI stage more clear, we list the following steps which are 

typical in a CI system: 

1. Building the software on the local PC and then runs unit tests.  

2. Checking the source into a repository as long as the submitted code passes 

all the unit tests. 

3. CI Server detects the changes in the repository and gets a copy of the code 



 

 26 / 122 

 

to its local system.  

4. The CI Server builds and runs unit tests.  

5. The results of the build and unit tests are automatically posted to a web site, 

such as the Hudson web server, from where all team members can be 

informed the current state of the software.  

A classic workflow of a CI system is as the following figure shows: 

 

Figure 2-2 Continuous Integration Schemas 

Apart from the above minimum steps that you do under your CI system, other 

things that can be done include:  

 Produce developer documentation of the system. This can be in the form 

of help files, UML diagrams, and more.  

 Run code metrics on the source that indicate code coverage, adherence to 

standards, amount of duplicated code, cyclomatic complexity, NCSS and 



 

 27 / 122 

 

so forth. 

 Produce an install set by calling programs such as Install Shield.  

 Call external, sophisticated testing applications to do functional testing  

 Burn a CD or DVD that contains the release bits of the application  

2.3 CI in classical software process  

2.3.1 “Traditional” process problems 

In the traditional software development there exist problems which would be 

solved by using continuous integration. In waterfall model, there are many 

strict phases and after each phase is finished. Before moving to the next phase, 

review is necessary to ensure that the phase is indeed complete; it is like 

passing through a ―gate‖ from the current phase to the next. Once finished, it 

is highly unadvisable to revisit or rectify the previous.  This kind of 

"inflexibility" has been a source of criticism by other more "flexible" models. 

[26]  

To make a summary of discussed above, it has the following disadvantages: 

[27] 

● Testing may not be done efficiently 

● Integration is long and difficult 

● Poor visibility on development progress 

● Functional tests are done too late 

● Raised issues are harder to fix 

● the client gets a sub-optimal product 



 

 28 / 122 

 

2.3.2 Problems solved through continuous integration 

By automatically ―integrating‖ and compiling source code from different 

developers on a central build server, researches have proven that the 

corresponding problems can be solved: [27] 

● Smoother integration 

● Automatic regression testing 

● Regular working releases 

● Earlier functional testing 

● Faster and easier bug fixes 

● Better visibility 

2.4 Continuous Integration in the real world 

As have been discussed above, in real business cases continuous integration 

has several advantages over classical development cycle. In combination 

with software metrics and automatic unit testing, it helps developers write 

better code, more readable, more maintainable, and because of more easily 

tested, it becomes more stable. Continuous integration, by building the 

software automatically at a high frequency, allows discovering problems very 

early during the development phase. Developers are pressed to commit source 

code only in case of stable release: the CI environment immediately reports 

cases of code not compiling, not installing or test-failing and sends a 

notification message (e.g. an e-mail) to an Administrator or a Technical Lead. 

Typical tasks requested in real-world (e.g. Reply Technology company) CI 

environments (e.g.: Hudson, CruiseControl) are as follows. They are 

presented by Massimo Rosin, a senior software consultant and project 

manager from Reply Technology, which is famous IT Consultancy Company 

in Italy. 



 

 29 / 122 

 

 check-out code from source repository (e.g.: CVS, Subversion) 

 compilation 

 assemble: artifacts (executables, libraries, etc.) are created, for testing 

purposes 

 automatic unit test: software is tested against unit testing suites (e.g.: 

JUnit) 

 Reporting: an unit test execution report is created. 

In parallel, a code review tool takes the source code and/or the artifacts as its 

input to perform a static and/or dynamic code analysis (software metrics, 

common vulnerabilities, code coverage, etc.).  

As a practice in the Software Factory, they embraced such scenario, and 

somehow extended it, in order to be more compliant to Customer's needs. 

Customer is always, and obviously, interested in having stable, eventually 

bug-free software, correctly installed and integrated in his own runtime 

environment, while keeping maintenance costs as low as possible. 

This ideal-world picture declines in a real-world, Hudson-based CI 

environment in which the main steps are the following: 

 check-out code from a Subversion source repository located either 

in-house or on the Customer's side or in a third-party repository or a 

combination of these 

 compile the code: our software is Java and Pl/SQL; the two pieces of 

code related to the different languages are treated separately; most of the 

times, Java is "master" and Pl/SQL is "slave", in the sense that Java uses 

Pl/SQL and not vice-versa, so that by starting all CI tasks from Java we 

cover 99% of the work 

 assemble: executables and libraries are created, most often they are EAR 



 

 30 / 122 

 

o WAR files aimed to implement web applications and/or web services as 

well 

 automatic unit test: JUnit is used in our case 

 reporting: test execution report is created and, in case of successful 

building, a release note document is produced, showing the list of 

changes brought in the software since last release 

 deploy: software packages are installed in a test runtime environment 

which emulates, as best as possible, Customer's runtime environment; in 

this sense, stubs may be provided to simulate third-party systems or 

endpoints for web services 

 Software metrics: a synthetic static-analysis report is generated through a 

custom, Checkstyle-based metrics tool; Sonar is used as well in order to 

have more details, but our synthetic report is yet important because we 

can provide it to the Customer, after having shared with him some 

threshold values for critical metrics, such as complexity. 

2.5 Chapter Summary 

This chapter mainly describes what continuous integration is, the benefits of 

using continuous integration in modern software developing process, 

especially focused on the application of continuous integration in classical 

development model, as well as the typical steps of adopting CI. At last we 

present its practices in a real software consultancy company.  

To put the continuous integration in a simple way, a build (no matter it is 

successful or not) is always better than no build. If there are changes to a 

component, the system should find a way to integrate them, even if builds of 

certain dependencies may have failed. It involves integrating early and often, 

so as to avoid the pitfalls of "integration hell". The practice aims to reduce 

timely rework and thus reduce cost and time. 



 

 31 / 122 

 

3. Software Quality Metrics 

3.1 Introduction 

Software metric is a way of measuring some properties of software or its 

specification. There is one saying goes: You can‘t control what you can't 

measure. Researchers have proven that metrics have made a big difference in 

modern software development and is becoming an integral part of the 

software development process. The difficulty is in determining which metrics 

matter, and what they mean.  

In my dissertation, I will present the collection, analysis and applying of 

software metrics so as to improve the software development process and the 

product.  

To have an effective management of software development process, it 

requires quantification and measurement. And software metrics provide a 

quantitative basis for the development and validation of models of the 

software development process. It can be used to improve software 

productivity and quality. [5] 

Software Metrics can be divided into product metrics pr process metrics. 

Product metrics measure the software at a certain development phase. Product 

metrics may measure the complexity, the size of the final program (either 

source or object code), or the number of pages of documentation produced.  

Process metrics, are measures of the software development process, such as 

overall development time, type of methodology used, or the average level of 

experience of the programming staff. [5] 

3.2 Software quality 

Software quality is a measurement of the software product and process. It 

http://en.wikipedia.org/wiki/Software


 

 32 / 122 

 

emphasize that how good the product is designed (quality of design) and how 

well the software product conforms to that specification (quality of 

conformance), although there are several different definitions. It is often 

described as the 'fitness for purpose' of a piece of software.  

3.2.1 Software quality definitions 

There are many different definitions proposed by international organizations 

or by computer professionals: 

 "Quality comprises all characteristics and significant features of a 

product or an activity which relate to the satisfying of given 

requirements". 

German Industry Standard DIN 55350 Part 11 

 "Quality is the totality of features and characteristics of a product or a 

service that bears on its ability to satisfy the given needs". 

ANSI Standard (ANSI/ASQC A3/1978) 

 The totality of features and characteristics of a software product that bear 

on its ability to satisfy given needs: for example, conform to 

specifications. 

 The degree to which software possesses a desired combination of 

attributes. 

 The degree to which a customer or user perceives that software meets his 

or her composite expectations. 

 The composite characteristics of software that determine the degree to 

which the software in use will meet the expectations of the customer". 

IEEE Standard (IEEE Std 729-1983) 

 External quality characteristics are those parts of a product that face its 

users, where internal quality characteristics are those that do not. 

Steve McConnell's Code Complete 



 

 33 / 122 

 

 Conformance to requirements 

Crosby, 1984, p80 

 The composite product characteristics of engineering and manufacture 

determine the degree to which the product in use will meet the 

expectations of the customer 

Fergenbaum, 1981, p13 

 Quality is product performance, quality is freedom from defects, quality 

is fitness for use 

Juran, 1988, p11  

 Meeting customer‘s requirements 

Oakland, 1993, p4 

 Zero defects 

Shigo, 1986, p11 

 Product quality is determined by the economics loss imposed upon 

society from the time a product is released for shipment 

Taguchi,1987 

All the definitions above are useful, contributive, constructive, and give us 

different views of what is software quality. However, neither of them is clear, 

completed and well defined. 

So we need a more accurate and considerate definitions which is proposed by 

Ince (1994). It describes the modern view of quality: 

"A high quality product is one which has associated with it a number of 

quality factors. These could be described in the requirements specification; 

they could be cultured, in that they are normally associated with the artifact 

through familiarity of use and through the shared experience of users; or they 



 

 34 / 122 

 

could be quality factors which the developer regards as important but are not 

considered by the customer and hence not included in the requirements 

specification". 

3.2.2 Quality classifications  

Software quality can be divided into product quality and code quality. 

1. Software product quality 

It measures the conformance to requirements or specifications, there are: 

 Reliability 

 Scalability 

 Correctness 

 Completeness 

 Absence of bugs 

 Fault-tolerance  

 Extensibility 

 Maintainability 

 Documentation 

 

2. Source code quality 

 Readability 

 Maintainability 

 Testability 

 Portability 

 Complexity 

http://en.wikipedia.org/wiki/Requirements_analysis
http://en.wikipedia.org/wiki/Program_specification
http://en.wikipedia.org/wiki/Software_reliability
http://en.wikipedia.org/wiki/Scalability
http://en.wikipedia.org/wiki/Correctness_%28computer_science%29
http://en.wikipedia.org/wiki/Completeness
http://en.wikipedia.org/wiki/Computer_bug
http://en.wikipedia.org/wiki/Fault-tolerance
http://en.wikipedia.org/wiki/Extensibility
http://en.wikipedia.org/wiki/Maintainability
http://en.wikipedia.org/wiki/Documentation
http://en.wikipedia.org/wiki/Readability
http://en.wikipedia.org/wiki/Complexity


 

 35 / 122 

 

 Low resource consumption: memory, CPU 

 Number of compilation or lint warnings 

 Robustness 

Computer itself does not have the awareness whether the code is well-written 

or not. So the code quality is discussed from a human point of view. Source 

code can be written in a way that has an effect on the effort needed to 

comprehend its behavior. There are many source code programming style 

guides, which often stress readability and usually language-specific 

conventions are aimed at reducing the cost of source code maintenance. And 

in the following part of my dissertation, I will focus on the code quality stated 

above instead of the software qualities.  

3.2.3 Quality models 

There are various quality models that have been developed over the years.  

One of the oldest and most frequently applied software quality models is that 

of McCall et al. presented in 1979. McCall's model is used in the United 

States for very large projects in the military, space and public domain. It was 

developed in 1976-7 by the US Air force Electronic System Division (ESD), 

the Rome Air Development Centre (RADC) and General Electric (GE) with 

the aim of improving the quality of software products. One explicit aim was 

to make quality measurable. [4] 

McCall model stated 55 quality characteristics and it is the first time to refer 

those software quality characteristics as ―factors‖. The model organizes 

quality around three uses of software: product revision, product operations, 

and product transition. Each of these uses is associated with a set of quality 

characteristics. Product revision includes maintainability, flexibility, and 

testability. Product transition includes portability, reusability, and 

interoperability. Product operations include correctness, reliability, efficiency, 

integrity, and usability. And it reduced the 55 factors into the following 

eleven for sake of simplicity: 

http://en.wikipedia.org/wiki/Computer_storage
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Lint_programming_tool
http://en.wikipedia.org/wiki/Programming_style


 

 36 / 122 

 

 McCall et al model 

 Integrity 

 efficiency 

 reliability 

 usability 

 accuracy 

 maintainability 

 testability 

 flexibility 

 interface facility 

 re-usability 

 transferability 

Barry Boëhm (Boëhm, as cited in DeGrace, 1993) presented another similar 

model that was composed of 19 essential quality attributes. The Boëhm 

model shares a common subset with the McCall model and identifies 

additional quality attributes. 

 Boëhm Model 

 Usability 

 clarity 

 efficiency 

 reliability 

 modifiability 

 re-usability 

 modularity 

 documentation 

 resilience 

https://www.hasustorm.com/books/English/John.Wiley.And.Sons.The.Art.Of.Software.Architecture.eBook-LiB.chm/6020final/LiB0085.html#663


 

 37 / 122 

 

 correctness 

 maintainability 

 portability 

 interoperability 

 understandability 

 integrity 

 validity 

 flexibility 

 generality 

 economy 

By using a quality model and the standardized approach, many benefits can 

be obtained, and let's consider some of the benefits before going into the 

details of quality factors. [5] 

 Validate the completeness of a requirements definition 

 Identify software requirements 

 Identify software design objectives 

 Identify software testing objectives 

 Identify user acceptance criteria for a completed software product 

A quality model that specifies usable and practical metrics can improve the 

quality of design models. We can address many of the issues associated with 

achieving quality after using quality model. It improves communications 

between acquirers, architects, and developers and results in quality 

requirements being specified more precisely and more frequently.  



 

 38 / 122 

 

3.2.4 Quality factors 

Till now we have been talking software quality in general. What it means to 

be a quality product. We also looked at quality models in brief. We need to 

know various quality factors upon which quality of software produced is 

evaluated. These factors are given below. 

The various factors, which influence the software, are termed as software 

factors. To apply software metrics, having a good understanding of quality 

factors is very crucial. Many metrics are based on the measure of quality 

factors either quantitatively or qualitatively. There are some factors are still as 

fresh as they were in the 1977. Also some factors have been seen as 

redundant and have been integrated into other factors to better reflect modern 

practice. Next we will list all the most significant and widely applied quality 

factors. 

 Performance (Efficiency) 

Performance represents the responsiveness of the system, which can be 

measured by the time required to respond to events (stimuli) or by the number 

of events that are processed in a period of time. Typically, performance 

quality attributes are expressed as the number of transactions per unit of time 

or the length of time required completing a single transaction.  

DeGrace and Stahl refer to this quality as efficiency. Code execution 

efficiency is the economy required by the customer, such as the run time, 

response time, and memory used. The characterization presented by DeGrace 

and Stahl focuses on the implementation (non-architectural) practices such as 

taking advantage of various compiler optimizations, keeping loop constructs 

free of unnecessary computations, grouping data for efficient processing, 

indexing data, and using virtual storage facilities (relational databases) to 

optimize data storage efficiency. 

Performance has typically been a driving factor in system architecture and 

frequently compromises the achievement of all other qualities.  



 

 39 / 122 

 

 Modifiability 

A modifiable architecture is one that can be added, extended or grown over 

time, possibly by other developers or customers in a straightforward way. In 

other words, it is more cost effective to add features to the existing 

application than to build a new application. Modifiability is sometimes called 

maintainability. A modifiable application can have new features added 

without requiring architectural rework, such as changes to how functions are 

distributed across components. The measure of modifiability is the cost and 

effort required to make a change to an application. 

The types of stimuli related to modifiability are change requests for functions, 

platforms, quality attributes, or operating environment. Function change 

requests are probably the most common event. The architectural response to 

modification change requests may be the addition, modification, or deletion 

of components, connectors, or interfaces, as well as a cost and effort measure. 

 Usability 

Usability typically refers to the usability with respect to the end user. 

However, usability also addresses other system users such as system 

maintainers, operators, and porting engineers.. End users (modeled as actors) 

are concerned with functionality, reliability, usability, and efficiency. 

Maintainers (often not modeled) are concerned with maintainability. Quality 

in use is the overall subjective quality of the system as influenced by multiple 

quality attributes. Quality in use is measured using scenarios. 

 Portability 

Portability is the ability to reuse a component in a different application or 

operating environment such as hardware, operating systems, databases, and 

application servers. Portability can be considered a specialized type of 

modifiability. The measure of the portability of a system is based on how 

localized the changes are.  

Another word for portability is extensibility. If it has a higher extensibility, it 



 

 40 / 122 

 

is more easily to be extended. For example, Eclipse, which is typical IDE for 

java application. Owing to its plug-in structure, it is quite easily to be 

extended. In Eclipse, expect the kernel platform; anything else in Eclipse is a 

plug-in.  

Portability is often associated with porting the source code of an application 

from one operating system, such as Windows, to another operating system, 

such as Linux. Modifying a system or application so that users can access it 

from a Web interface is an example of extensibility. The change might not 

introduce new functionality into the system; rather, its operating environment 

has changed. Best says extensibility is "important because application 

designers can never foresee all the changes that will occur in an 

organization's operating environment."  

 Testability 

In the McCall et al model, it is defined as the cost of program testing for the 

purpose of safeguarding that the specific requirements are met. 

Because of its traditional position in development models like the Waterfall 

or Boehm's spiral, testing is easily identified as a quality factor. The testing 

process is well matured at this stage. A substantial amount of item or unit 

testing is completed by programmers as part of their normal role. Testing 

interacts with all other quality factors. For example, to check accuracy a test 

plan is needed. To test reliability a test plan is needed. To test efficiency a test 

plan is needed and so on. So all testing must be performed in accordance with 

pre-defined plans, using pre-defined tests data to achieve pre-determined 

results. Numerous test strategies are used. They include functional or black 

box testing, structural or white box testing and finally residual defect 

estimation. These strategies can be employed using difference techniques. [4] 

 Maintainability 

It is defined as the cost of localizing and correcting errors by McCall. 

We can say that maintainability has connection with testability and the 



 

 41 / 122 

 

following reliability. If easily tested, it is going to be comparatively easier 

maintained. As long as it has higher maintainability, the localization and 

correction of errors are easier and to be more reliable. Finding and correcting 

errors is just one aspect of maintenance. Ghezzi et al. (1991) divide 

maintenance into three categories: corrective, adaptive and perfective and 

only corrective is concerned with correcting errors as suggested by McCall. 

 Reliability 

It is defined as the extent to which a program can be maintained so that it can 

fulfill its specific function by McCall 

Reliability in engineering terms is the ability of a product or component to 

continue to perform its intended role over a period of time to pre-defined 

conditions. And the same applies to the systems environment where reliability 

is measured in terms of the mean time between failures, the mean time to 

repair, the mean time to recover, the probability of failure and the general 

availability of the system. [4] 

3.3 Software metrics  

To have more accurate schedule and cost estimates, better quality products, 

and higher productivity. We defined the above software quality factors. Now 

as we consider the above-mentioned factors it becomes very obvious that the 

measurements of all of them to some discrete value are quite an impossible 

task. Therefore, another method was evolved to measure out the quality. And 

these can be achieved through more effective software management, which 

can be facilitated by the usage of software metrics. Given that software 

development is extremely complex, especially for Oracle PL/SQL, in the 

current software market, there are few well-defined, reliable measures of 

either the process or the product to guide and evaluate development. Thus, 

accurate and effective estimating, planning, and control are nearly impossible 

to achieve. This is the goal of software metrics-the identification and 

measurement of the essential parameters that affect software development. 

[5] 



 

 42 / 122 

 

3.3.1 Software metrics definition 

The first definition of software metrics is proposed by Norman Fenton 

(...)software metrics is a collective term used to describe the very wide range 

of activities concerned with measurement in software engineering. These 

activities range from producing numbers that characterize properties of 

software code (these are the classic software ‘metrics‘)  through to models 

that help predict software resource requirement and software quality. The 

subject also includes the quantitative aspects of quality control and assurance 

- and this covers activities like recording and monitoring defects during 

development and testing. 

Another definition of software metrics is done by Paul Goodman 

The continuous application of measurement-based techniques to the software 

development process and its products to supply meaningful and timely 

management  information, together with the use of those techniques to 

improve that process and its products". Applied To Engineering & 

Management Processes, Products & To Supply 

Essentially, software metrics deals with the measurement of the software 

product and the process by which it is developed. These metrics are used to 

estimate/predict product costs and schedules and most importantly, they 

measure the productivity and product quality. The measured information 

gained can be used to control, develop and lead to improved results. [5] 

3.3.2 Metrics classification 

Normally, software metrics can be classified into process metrics and product 

metrics. Process metrics measure the software development process, such as 

the total development time, the method that the developer used, the effort 

associated with process or activity, the number of incidents of a specified type 

arising during process or activity, and the average experience level of all the 



 

 43 / 122 

 

developers. While as the product metrics are measurements of the software 

product itself. They measure the software product at any certain stage of 

development, from the very beginning requirement analysis stage to the end 

product releasing. We can say that all the artifacts, documents and prototypes 

produced during the process are considered as products. All these process 

outputs can be measured in term of quality, size or complexity.  

Of course apart from the process and product metrics, there are other ways of 

classifying them. For instance, objective metrics and subjective metrics can 

be another type of classification of software metrics. Generally, object 

metrics shall have the identical results by measuring the same product or 

process. On the other hand, subjective metrics would lead to variant results 

even with qualified observers since the subjective judgment is involved in 

arriving at the measured values. [5] Take the product metrics as an example, 

the size of the product measured in lines of code (LOC) is an objective 

measure, for any observer, the same LOC should be obtained for a given 

program. For the subjective process metrics, we can consider the average 

experience level of the development group. Although most programs can be 

easily measure, those on the borderline between categories might be 

classified in different ways by different observers.  

Software metrics can be also categorized into primitive metrics and computed 

metrics. Those can be directly observed and calculated are categorized as 

primitive metrics. For example, the programs size (in LOC or KLOC), 

number of defects, number of bugs. For the PL/SQL programming source, the 

number of tables, number of views, number of packages, and number of 

procedures are all primitive metrics. While as the computed metrics are those 

that cannot be directly observed but are computed in a certain manner from 

other metrics. In my project, the most used computed product metric is the 

Cyclomatic complexity. Cyclomatic complexity is computed using the control 

flow graph of the program: the nodes of the graph correspond to indivisible 

groups of commands of a program, and a directed edge connects two nodes if 

the second command might be executed immediately after the first command. 

In the following, I will describe the cyclomatic complexity in detail. Other 

examples can be the number of defects per thousand line of code 

(defects/KLOC). We can see that the number of defects and KLOC 

themselves are primitive metrics. 

http://en.wikipedia.org/wiki/Control_flow_graph
http://en.wikipedia.org/wiki/Control_flow_graph
http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Directed_graph


 

 44 / 122 

 

3.4 Software metrics selected for the PL/SQL 

3.4.1 Product Metrics 

In my dissertation, a number of product metrics are chosen and discussed 

given that they are more widely used and applied. At the beginning of most 

software development, more concerns are about the product metrics and the 

measurement of the characteristics of the source code.  

 Lines of Code 

The simplest way to measure the size of a program is to count the lines. This 

is the oldest and most widely used size metric. Lines of code, or LOC, dose 

look like a simple concept. However, it's not. There are several ways to count 

the lines. Depending on what you count, you get a low or a high line count. 

These differences involve the treatment of blank lines and comment lines, 

non-executable statements, multiple statements per line, and multiple lines 

per statement. Moreover, how to count the reused lines of code is a big issue.  

The physical lines count (LINES) is a simple but not a perfect way to 

measure code size. Since a logical line can expand over several lines, the 

physical line count exaggerates code size. A common problem in line counts 

is also that empty (or whitespace) lines, as well as comments, are included in 

the count. With improper line counts, you can appear really productive by 

hitting the Enter key, or alternatively, pretend that you are writing tighter 

code by deleting all comments.  

The logical lines of code metric (LLOC) has both advantages and 

disadvantages. It is a simple measure, easy to understand, and widely used. 

You can use it to measure productivity, although you need to be cautious, 

because programming style can have an impact on the values. You can also 

estimate the number of defects per 1000 LLOC.  [28] 

Nevertheless, LOC has been studied to be a useful metric as a predictor of 



 

 45 / 122 

 

program size and complexity. But the problem is that for different 

programming language, same LOC absolutely does not mean same or even 

similar program size and complexity. For example, according to my previous 

experience, 1000 physical lines of code of Matlab could be enough to do the 

simple vehicle plate extraction from a .jpg image while as to implement the 

same function, C needs 5000 lines of code or much more. In a study, Levitin 

concludes that LOC is a poorer measure of size than Halstead‘s program 

length, N. It will be discussed below.  

 Function Points 

Function points were defined in 1979 in A New Way of Looking at Tools by 

Allan Albrecht at IBM.[2] The functional user requirements of the software 

are identified and each one is categorized into one of five types: outputs, 

inquiries, inputs, internal files, and external interfaces. Once the function is 

identified and categorized into a type, it is then assessed for complexity and 

assigned a number of function points. Each of these functional user 

requirements maps to an end-user business function, such as a data entry for 

an Input or a user query for an Inquiry. [6] 

Function points are intended to be a measure of program size and thus effort 

required for development.  

 Cyclomatic Complexity – V(G) 

The above two metrics are developed specially for measuring the size of the 

software program. When considering the measurement of software 

complexity. The first metric I present here is the cyclomatic complexity.  

Cyclomatic complexity (or conditional complexity) is a software metrics 

(measurement). It was developed by Thomas J. McCabe, Sr. in 1976 and is 

used to indicate the complexity of a program. It directly measures the number 

of linearly independent paths through a program's source code. The concept, 

although not the method, is somewhat similar to that of general text 

complexity measured by the Flesch-Kincaid Readability Test. [8] 

http://en.wikipedia.org/wiki/1979
http://en.wikipedia.org/w/index.php?title=Allan_Albrecht&action=edit&redlink=1
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Function_point#cite_note-1
http://en.wikipedia.org/wiki/Functional_requirements
http://en.wikipedia.org/wiki/Software_metric
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Flesch-Kincaid_Readability_Test


 

 46 / 122 

 

Cyclomatic complexity is computed using the control flow graph (see figure 

3.1) of the program: the nodes of the graph correspond to indivisible groups 

of commands of a program, and a directed edge connects two nodes if the 

second command might be executed immediately after the first command. 

Cyclomatic complexity may also be applied to individual functions, modules, 

methods or classes within a program. 

 

Figure 3-1 A control flow graph of a simple program 

For any software program, a control flow graph, G, can be drawn as we the 

graph above. In which each node corresponds to a block of sequential code 

and each arc corresponds to a branch or decision point of the program. And 

then the cyclomatic complexity can be computed from such a graph by a 

simple formula: 

In the formula, E is the number of edges, N is the number of nodes, and P is 

V(G) = E − N + 2P 3.1 

http://en.wikipedia.org/wiki/Control_flow_graph
http://en.wikipedia.org/wiki/Graph_%28mathematics%29
http://en.wikipedia.org/wiki/Directed_graph
http://en.wikipedia.org/wiki/Function_%28computer_science%29
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Method_%28computer_science%29
http://en.wikipedia.org/wiki/Class_%28computer_science%29


 

 47 / 122 

 

the number of connected components in the graph. For a single program (or 

subroutine or method), P is always equal to 1. Cyclomatic complexity may, 

however, be applied to several such programs or subprograms at the same 

time (e.g., to all of the methods in a class), and in these cases P will be equal 

to the number of programs in question, as each subprogram will appear as a 

disconnected subset of the graph. So normally, we have the formula as follow: 

[8] 

A number of studies have shown the correlation between cyclomatic 

complexity and the number of defects contained in a module. Those modules 

having the higher complexity tend to also contain the more defects.  

For example, a 2008 study by metric-monitoring software supplier Enerjy 

analyzed classes of open-source Java applications and divided them into two 

sets based on how commonly faults were found in them. They found strong 

correlation between cyclomatic complexity and their faultiness, with classes 

with a combined complexity of 11 having a probability of being fault-prone 

of just 0.28, rising to 0.98 for classes with a complexity of 74. [7] 

Overly complex modules are more prone to error, are harder to understand, 

are harder to test, and are harder to modify. So it is advisable to limit the 

value of the cyclomatic complexity.  

It is been widely applied in many companies to set the limit of cyclomatic 

complexity. But it is controversial regarding the limit. The original limit of 10 

as proposed by McCabe has significant supporting evidence, but limits as 

high as 15 have been used successfully as well. 

In my project, for the sake of tracking and assurance the quality of the 

PL/SQL program, I divide the thresholds of cyclomatic complexity into four.  

 N. of objects with V(G) between 0 and 10 (good) 

 N. of objects with V(G) between 11 and 20 (acceptable) 

V(G) = E − N + 2 3.2 

http://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29


 

 48 / 122 

 

 N. of objects with V(G) between 21 and 50 (to be reengineered) 

 N. of objects with V(G) higher than 50 (untestable) 

 

 Information Flow 

The information flow within a program structure may also be used as a metric 

for program complexity. It is proposed by Kafura and Henry. It counts the 

number of local information flows entering (fan-in) and exiting (fan-out) each 

procedure. The procedure‘s complexity is defined as: 

Researches‘ have shown that such metric is a useful measure of software 

program maintainability.   

 Halstead‘s Software Metrics 

Halstead distinguished software science from computer science. The premise 

of software science is that any programming task consists of selecting and 

arranging a finite number of program ―tokens‖, which are basic syntactic 

units distinguishable by compiler. In Halstead‘s software metrics, a computer 

program is considered as a collection of tokens that can be classified as either 

operators or operands. The primitive measures of Halstead‘s software science 

are:  

 n1 = the number of distinct operators 

 n2 = the number of distinct operands 

 N1 = the total number of operators 

 N2 = the total number of operands 

Based on these primitive measures, Halstead developed a system of equations 

expressing the total vocabulary, the overall program length, potential volume 

C = [procedure length] * [fan-in * fan-out] 3.3 



 

 49 / 122 

 

for an algorithm, the actual volume, program difficulty, and other features 

such as development effort and the projected number of faults in the software. 

They are express as follows: [8] 

 Program length:   

 Program vocabulary:  

 Volume:  

 Difficulty :  

 Effort:  

Although Halstead‘s metrics has had a great impact on software measurement, 

it also has been criticized for many years. Empirical studies provided little 

support to the equations except for the estimation of program length. It is 

criticized that to predict program length, data on N1 and N2 must be available, 

and meanwhile, they must be determined, the program should be completed 

or near completion. Therefore, the productiveness of the equation is limited.  

 Reliability Metrics 

It is also very important to have an idea of the probability of software failure, 

or the rate at which software errors would occur. Software Reliability is an 

important factor affecting the reliability of the whole system.  

It differs from hardware reliability in that it reflects the design perfection, 

rather than manufacturing perfection. The high complexity of software is the 

major contributing factor of Software Reliability problems. No good 

quantitative methods have been developed to represent Software Reliability 

without excessive limitations. Various approaches can be used to improve the 

reliability of software, however, it is hard to balance development time and 

budget with software reliability. [29] 



 

 50 / 122 

 

But until now, there is no clear definition to what aspects are related to 

software reliability. We cannot find a suitable way to measure software 

reliability, and most of the aspects, such as mean time to failure (MTTF) 

related to software reliability. Even the most obvious product metrics such as 

software size have not uniform definition. As we have discussed before.  

 Maintainability Metrics 

Numbers of efforts have been exerted to figure out the definition of metrics 

that can be used to measure or predict the maintainability of the software 

product. As the early study directed by Curtis, Etal shows that the Halstead‘s 

metrics, cyclomatic complexity which used for the prediction of 

psychological complexity of software could be profitably used as a measure 

of the maintainability.  From the maintainability definition: Propensity to 

facilitate updates to satisfy new requirements. Thus the software product that 

is maintainable should be well-documented, should not be complex, and 

should have spare capacity for memory, storage and processor utilization and 

other resources. We see that a lot of aspects should been concerned in the 

maintainability metrics.  

3.4.2 Metrics chosen for PL/SQL 

Numerous evidences have been shown both from university academic 

research and from industry experience that the conscientious application of 

software metrics can significantly improve our understanding and 

management of the software development. Many software quality metric 

models have been developed and applied for the estimating, planning and 

controlling of project. However, great care must be taken in selecting the 

metrics and recalibrating them, if necessary, making them source code 

oriented. Which means a specific model and set of metrics is selected based 

upon the objectives defined and cost considerations identified.  

Metrics and models available should be compared with respect to their 

apparent ability to meet the objectives (goals) requested. Plenty of papers 

have dealt with the size and complexity of the software product and they are 

also the most widely recognized and used in the practical application of 



 

 51 / 122 

 

software quality improvement and assurance.  

In our project, the set of metrics chosen and implemented are as follows: 

 Table Count: It counts the total number of tables of a Oracle database 

source 

 View Count: It counts the total number of views of a Oracle database 

source 

 Package Count: It counts the total number of packages of a Oracle 

database source 

 Procedure Count: It counts the total number of procedures of a Oracle 

database source 

 Function Count: It counts the total number of functions of a Oracle 

database source 

 NCSS: It counts the total number of Non Commented Source 

Statements of a Oracle database source. It counts only statements.  

 Cyclomatic Complexity V(G) 

 N. of objects with V(G) between 0 and 10 (good): low complexity 

 N. of objects with V(G) between 11 and 20 (acceptable): medium 

complexity 

 N. of objects with V(G) between 21 and 50 (to be reengineered): 

high complexity 

 N. of objects with V(G) higher than 50 (untestable): high 

complexity 

 Overall % of objects with high complexity (21+): the overall 

percentage of objects with cyclomatic complexity higher than 20. 



 

 52 / 122 

 

The reason that we did not choose the LOC as the metric is given by Bill 

Gates: 

―Measuring programming progress by lines of code is like measuring aircraft 

building progress by weight.‖ By only examine the line of code or logic line 

of code, we cannot actually discover anything meaningful. From the business 

point of view, it is not worthy of doing so because in the software metrics 

market, there already exits software which supply the measurement of line of 

code for programming language PL/SQL. It is ClearSQL. ClearSQL is a code 

review and quality control tool for Oracle PL/SQL. Furthermore, our purpose 

is to exam and ensures the quality of whole Oracle software, not just a 

measures metrics on a per-subroutine basis.  

And that‘s why we have chosen the number of tables, views, packages, 

function and procedures as the very basic and fundamental metrics. Have a 

broad perspective of the whole software project can be more beneficial.  

It is generally accepted that more complex procedures are more difficult to 

understand and have a higher probability of defects than less complex 

procedures. As a result, complexity has a direct impact on overall quality and, 

more importantly, on maintainability. While there are many different types of 

complexity measurements, the one used by us is Cyclomatic Complexity 

(v(G)), which is the amount of decision logic in a single software module. It 

gives the number of linearly independent tests and is used to predict the test 

and maintenance effort. Although ClearSQL has the function of calculating 

cyclomatic complexity as a metrics, it would not make our project redundant 

since what we have is not just the value of cyclomatic complexity, we have 

divided the cyclomatic complexity into four levels according to Original 

McCabe theory. It makes us possible to have a more specific control of the 

Oracle database development and the final product.  

The more paths the software module can take, the higher the complexity it 

has. Overly complex modules are prone to error, and are harder to understand, 

test and modify. Limiting complexity at all phases of the development life 

cycle helps avoid the pitfalls associated with high complexity software.  



 

 53 / 122 

 

3.5 Software quality control tools 

There are several tools to measure the code quality.  

1. FindBugs– uses static analysis to look for bugs in Java code. It is free 

software, distributed under the terms of the Lesser GNU Public License. It 

discovers possible NullPointerExceptions and a lot more complicated bugs in 

projects.  

2. PMD– scans Java source code and looks for potential problems like: 

 Possible bugs - empty try/catch/finally/switch statements 

 Dead code - unused local variables, parameters and private methods 

 Suboptimal code - wasteful String/String Buffer usage 

 Overcomplicated expressions - unnecessary if statements, for loops that 

could be while loops 

 Duplicate code - copied/pasted code means copied/pasted bugs 

With the maven plugin you can do: mvn pmd:pmd 

3. Checkstyle- It is a development tool to help programmers write Java code 

that adheres to a coding standard. It automates the process of checking Java 

code to spare humans of this boring (but important) task. This makes it ideal 

for projects that want to enforce a coding standard.  

Checkstyle is highly configurable and can be made to support almost any 

coding standard. An example configuration file is supplied supporting the Sun 

Code Conventions. As well, other sample configuration files are supplied for 

other well known conventions. [43] 

Checkstyle can check many aspects of your source code. Historically its main 

functionality has been to check code layout issues, but since the internal 

http://java-source.net/open-source/code-analyzers
http://findbugs.sourceforge.net/
http://www.gnu.org/licenses/lgpl.html
http://pmd.sourceforge.net/
http://maven.apache.org/plugins/maven-pmd-plugin/
http://java.sun.com/docs/codeconv/
http://java.sun.com/docs/codeconv/


 

 54 / 122 

 

architecture was changed in version 3, more and more checks for other 

purposes have been added. Now Checkstyle provides checks that find class 

design problems, duplicate code, or bug patterns like double checked locking.  

The very popular IDE Eclipse has a Checkstyle plug-in. With the Checkstyle 

Eclipse plug-in (figure 3-2) your code is constantly inspected for problems. 

Within the Eclipse workbench you are notified of problems via the Eclipse 

Problems View (figure 3-3) and source code annotations just as you would 

see with compiler errors or warnings. 

 

Figure 3-2 Checkstyle Eclipse Plug-in 



 

 55 / 122 

 

 

Figure 3-3 Eclipse show view of Checkstyle plug-in 

4. JarAnalyzer – Is a dependency management utility for jar files. Its primary 

purpose is to traverse through a directory, parse each of the jar files in that 

directory, and identify the dependencies between the jar files. 

5. HammurAPI – a code quality governance platform 

6. ClearSQL- is a code review and quality control tool for Oracle PL/SQL. It 

generates a series of industry standard quality control metrics about PL/SQL 

source code to identify potential problems in the development and 

maintenance of your software and to fine-tune your software development 

process. [44] 

ClearSQL creates and visualizes ―clickable‖ flowcharts and call tree diagrams 

and CRUD matrices of PL/SQL code that help you find the point of possible 

code refactoring or module restructuring, discover data flows between 

subroutines and dataset objects due to DML statement execution, and analyze 

http://www.kirkk.com/main/Main/JarAnalyzer
http://www.hammurapi.biz/hammurapi-biz/ef/xmenu/hammurapi-group/products/hammurapi/index.html


 

 56 / 122 

 

the consistency of functional requirements and to identify performance 

problems.  

 

Figure 3-4 ClearSQL 

7. Sonar- another interesting approach to use several code quality tools at a 

time. With Sonar it is possible to see the violations or possible bugs. So you 

are looking at the improvements and you will not get lost in the mass of bugs 

at the beginning. In our project, in order to use sonar as a platform to improve 

the quality of software development process and product, we developed a 

plug-in of sonar. In default sonar is for the analysis of the Java code, with our 

plug-in, we could have the analysis also for the PL/SQL. In next chapter, we 

will present of design and development of this plug-in in detail.  

3.6 Chapter summary 

In this chapter, we have made an introduction of software quality, the 

definition, the classification and the software quality model and factors, as 

well as the benefits of considering the quality control in software 

development. Afterward, based on the quality, we explained the software 

metrics and its classification and application to improve software quality. And 

then we presented the metrics that have been chosen and implemented in our 

PL/SQL analyzer. At last, a variety of most commonly used software quality 

control tools are discussed. 

  

http://sonar.codehaus.org/


 

 57 / 122 

 

4. Metrics Plug-in design and 

implementation on the 

Client-side: Eclipse 

4.1 Eclipse Plug-in Infrastructure  

Eclipse is a multi-language software development environment comprising an 

integrated development environment (IDE) and an extensible plug-in system. 

[21] 

It is an extensible platform for tool integration. To the thousands of students 

and researchers, Eclipse represents a stable platform to innovation, freedom, 

and experimentation. Meanwhile to all those individuals, groups and 

organizations, Eclipse is a vendor-neutral platform to tool integration 

supported by a diverse Eclipse Ecosystem. [22] For example, it has been well 

integrated with Maven 2 for project building and management and 

Checkstyle for static code inspection, as well as Hudson for continuous 

integration.  

Before elaborating the Eclipse Plug-in and its development, I would like to 

present the whole architecture of the Eclipse and its plug-in structure.  

4.1.1 Eclipse platform architecture 

The Eclipse Platform (see figure) is a framework with a powerful set of 

services that support plug-ins, such as JDT and the Plug-in Development 

Environment. It consists of several major components: the Platform runtime, 

Workspace, Workbench, Team Support, and Help. The primary purpose of the 

Platform subproject is to enable other tool developers to easily build and 

deliver integrated tools. [23] 

http://en.wikipedia.org/wiki/Software_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Plug-in_%28computing%29


 

 58 / 122 

 

 

Figure 4-1 Eclipse platform architecture 

 Platform Runtime - The Platform runtime is the kernel that discovers at 

startup what plug-ins are installed and creates a registry of information 

about them. It only loads the plug-ins when they are necessary.  Apart 

this kernel, anything else is plug-in. 

 Workbench – Eclipse workbench provide the UI (User Interface) service 

for Eclipse. It is built by Eclipse SWT (standard widget tools), which is 

an alternative for Java AWT/Swing, and JFace which is a higher level 

tool for UI design.  

 Workspace – It is a logical collection of projects, a directory on your hard 

drive where Eclipse stores the projects that you have created. The 

Workspace is also responsible for notifying other interested plug-ins 

about resource changes, such as files that are created, deleted, or changed. 

The first time you start a Eclipse, you will be required to specify the 

directory of workspace, that the place where your Eclipse project locate.   

These are the most important three components of Eclipse platform. Besides, 

to develop a Eclipse project, we also need JDT and PDE. 

 JDT - JDT (java development tools) is the tools to provide Eclipse to 

develop Java applications. It adds a Java project nature and Java 

perspective to the Eclipse Workbench as well as a number of views, 

editors, wizards, builders, and code merging and refactoring tools.  



 

 59 / 122 

 

 PDE – Plug-in development environment provides a comprehensive set 

of tools centered around OSGi bundle development. It provides tools to 

create, develop, test, debug, build and deploy Eclipse plug-ins, fragments, 

features, update sites and RCP (Rich Client Platform) products. 

From the figure above, we see that tools of different parts are all plugged into 

the Eclipse platform and coordinate to run as a whole. This is how the Eclipse 

works. The platform is like a aircraft carrier. The fighters, military helicopters, 

and Cruise ships will participate the war all based on that aircraft carrier.  

4.1.2 Plug-in Structure 

Eclipse is not a single, monolithic program, but rather a small kernel 

surrounded by hundreds of plug-ins. 

 

Figure 4-2 Eclipse plug-in structures 



 

 60 / 122 

 

In the figure above, we assume that the top left plug-in is newly developed. It 

is depended on another two plug-ins which refer to jdtcore.jar and jface.jar. 

And the jdtcore.jar plug-in relies on services provided by plug-in resource.jar 

while as the jface.jar plug-in relies on the ui.jar plug-in. This is how Eclipse 

works while it is running. Each plug-in may rely on the service provided by 

another plug-in, and may in turn provide services on which other plug-in may 

reply. This plug-in mechanism is a lightweight software component 

framework. In addition it allows Eclipse to be extended using other 

programming languages such as C and Python.  

From the figure above we can also see that the dependency arrow lines all 

start from a MANIFEST.MF file and point to another plug-in Jar file. So what 

is exactly the MANIFEST.MF file? 

In fact, each plug-in has two manifest files, META-INF/ MANIFEST.MF and 

plugin.xml (see figure 4-3), which define how the plug-in related to external 

resources of the system.  

 

Figure 4-3 Manifest.mf file 

http://en.wikipedia.org/wiki/Software_componentry
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/Python_%28programming_language%29


 

 61 / 122 

 

The behavior, dependencies and services of a plug-in are all declared in the 

special XML file named Plugin.xml. But in the newer versions of Eclipse that 

use OSGi, dependency information has been broken out into the manifest.mf 

file, leaving the plugin.xml file containing only XML definitions of 

extensions and extension points. 

It is worthy take a look at the manifest.mf file. There are many options 

specified in this file: 

 Export-Package: This property specifies all the packages to publicly 

expose to other plug-ins. 

 

 Bundle-Name: It specifies the name of this plug-in application 

 

 Bundle-Version: This property specifies the version number of the bundle. 

Package imports and required bundle specifications may include a bundle 

version number. 

 

 Bundle-Activator: This class is used to start and stop the bundle. In the 

example above, the bundle-activator class is plsqleclipseplugin.Activator, 

which extends org.eclipse.ui.plugin.AbstractUIPlugin.  

 

 Required-Bundle: This property specifies which bundles and their 

exported packages to import for use in the given bundle. The required 

bundle or required plug-ins org.eclipse.ui, org.eclipse.core.runtime is two 

of the most widely used plug-ins imported. 

 

 Bundle-ClassPath: This property specifies the CLASSPATH to use for 

the bundle. The property may contain references to directories or jar files 

inside the bundle jar file. This property is very important to ensure the 

good behavior of the plug-in. If not well specified, basically, the plug-in 

does not work after installation.  



 

 62 / 122 

 

 

Figure 4-4 Plugin.xml 

As we have discussed above, this XML file only defines the extension points 

of each plug-in. When the facilities of a plug-in are to be made directly 

available to the user, one or more user interface elements have to be added to 

the base Eclipse workbench. For example, Checkstyle has the Eclipse plug-in 

to enable it execute the static code analysis. To make this plug-in available to 

users, a menu is added into the Eclipse workbench. 

The process of adding some processing element or elements to a plug-in is 

known as an extension. This process is not restricted to UI elements, however. 

Any plug-in may allow other plug-ins to extend it by adding processing 

elements. [24] 

Extension and extension-point are standard Eclipse plug-in terminology. Host 



 

 63 / 122 

 

plug-in, extender plug-in, and callback object are terms which are commonly 

used to describe the relationship between the plug-ins.  

To be simple, an extension is defined by an extender plug-in which adds the 

host plug-in a function. For example, our PL/SQL analysis plug-in enables 

the Eclipse to do PL/SQL code analysis and report, in this case, the host 

plug-in is the Eclipse kernel. To make this function available to users, a 

simple menu or menu item is added to the Eclipse workbench, and this menu 

or menu item is the so called callback object, through which the host and 

extender plug-ins communicate. A single act of extension can also add more 

than one callback object to the environment. For example, Eclipse allows a 

set of menus to be added to its user interface via a single extension. 

Take our plug-in as a vivid example. In the Plugin.xml file only one plug-in 

extension point is defined which is org.eclipse.ui.actionSets. Inside this 

extension, there is one menu labeled name Oracle which has two actions, 

which are labeled as Last analysis and Launch new analysis (see figure 4-5).  

 

Figure 4-5 Two actions of PL/SQL plug-in 

One more point we should notice about the plugin.xml is the action class. It 

refers to the class which defines the behavior of the action. And I will 

elaborate this in the next chapter.  



 

 64 / 122 

 

4.2 PL/SQL plug-in development 

4.2.1 Plug-in interface implementation with SWT/JFace 

There have already existed plenty of papers and resources addressing this 

topic. What I will do is describing how I have adopted the SWT/JFace to 

develop my PL/SQL Eclipse plug-in. 

The Standard Widget Toolkit (SWT) is a thin layer on top of the platform‘s 

native controls. SWT provides the foundation for the entire Eclipse user 

interface (UI). It provides a rich set of widgets that can be used to create 

either standalone Java applications or Eclipse plug-ins. [22] 

Widgets, Shell and Display are the basic blocks for a Eclipse plug-in. Display 

is responsible for managing the event loops and controlling communication 

between UI threads and non-UI threads. Every SWT should have at least one 

Display; otherwise this application won‘t be visible. Shell is the window for 

user interface managed by the operation system. Each SWT could have 

several Shells. Based on each Shell, man Widgets can be defined, such as 

button, text, label, menu, menu option, list, table as so on. These widgets 

have plenty of attributes can be specified while being defined. The structure 

can be seen as follow.  

 

Figure 4-6 structure and relationship of SWT 



 

 65 / 122 

 

This figure shows the SWT from two perspectives. 1) It is from the 

inheritance point of view. 2) It relates the exact block or widget to the real 

object.  

In our PL/SQL plug-in, since we want to see the static analysis of the PL/SQL 

code, it would be better to show them with tables. Table is able to specify the 

metric name, the measurement description, and the results clearer. Next I list 

all the steps I have done to create an Eclipse plug-in with SWT/JFace. 

1. Create a Display 

To create a Display, we need to define an action which should be specified in 

the Plugin.xml file as I have mentioned before. In the Plugin.xml file, there is 

extension point and several actions which is also called call back object can 

be defined as much as we want. 

We will define two actions, one action for displaying the previous analysis 

result. Another is for initializing new code analysis.  

2. Create Shells 

Two actions correspond to two shells. The result action needs a shell with 

tables to display the general information and the details of PL/SQL. The 

action for launching new analysis needs a wizard or directory dialogue to 

enable the user to navigate to select the project to be analyzed.  

3. Set the layout format 

To show the analysis result clearly, we set the shell layout as vertical. The 

above table shows the general information about each Measurement and the 

lower table shows the detail information as long as we double click on one of 

the measurements. (See figure 4-7) 

There are two tables in this figure. The upper table shows the index, 

measurement name, description, and the value while as the lower shows the 



 

 66 / 122 

 

details of a certain measurement. For example, if we double click the 7
th
 

measure, cyclomatic complexity from 0 to 10 with the result vale of 149, we 

can see the corresponding source name, line, column, and value. 

      

  Figure 4-7 Two tables to show the analysis result 

4. Create widgets  

The widgets we have defined are tables, menus and menu items.  

 

Figure 4-8 Menu Oracle 



 

 67 / 122 

 

 

Figure 4-9 Menu File 

The above two figures show the menus and menu items created. By clicking 

ORACLE menu, we have two menu items, launch new analysis and last 

analysis. By clicking the File menu, we have three menu items, select projects, 

create html report and exit.  

To launch a new analysis, we implemented a directory dialogue to let user 

navigate between the files to select an Oracle project. (See figure 4-10) 



 

 68 / 122 

 

 

Figure 4-10 Directory dialogue to select a project 

5. Code the logic part. 

After creating the framework for the plugin, it‘s time to enable the plugin to 

execute analysis. This part is essential and crucial. It is core of the PL/SQL 

plugin not only in the client side Eclipse, but also in the server side Sonar. 

Both analyzers are based on it. We will split one chapter to describe it.  

4.2.2 Plug-in logic implementation 

The main function of logic part is executing the analysis on a given piece of 

code, getting analysis results and displaying them to the right place.  

Both the plug-in of client side and server side are based on a core PL/SQL 

Analyzer. Pl/SQL Analyzer is a custom Java tool which computes software 

metrics for Oracle Pl/SQL database scripting language. Pl/SQL Analyzer was 



 

 69 / 122 

 

developed by Technology Reply‘s internal Software Factory. 

Before explaining the PL/SQL Analyzer, I would like have a brief 

introduction of Codemeter which is the provider of the PL/SQL Analyzer.  

CodeMeter‘s purpose is to collect data (statistics, measures) and aggregate 

them by means of functions, in order to generate a quality report. CodeMeter 

was developed by Technology Reply‘s internal Software Factory as well. 

A provider is a module able to take measures on a given piece of source code, 

written in a specific programming language, given a list of software metrics; 

providers are Java classes which implements the MeasureProvider interface 

and implement the necessary logic to collect measures over defined software 

metrics for that specific language; this way, also third-party analyzers can be 

used (e.g.: Checkstyle for Java language), just building up a suitable wrapper 

class which implements the named interface. 

CodeMeter receives information from the different providers and applies the 

configured function logic to all the data at once. Configuration is maintained 

in a XML file, in which providers, statistics, functions and thresholds are 

defined; after a measurement session, a new XML file with the same structure 

and elements is saved, enriched with detailed results; the file can then be 

transformed in other formats, such as HTML or PDF, to create a 

human-readable document.  For example, in our project, the plug-in of client 

side is able to produce a HTML report based on the result XML file. And it is 

done by using XSLT and XPATH.  

CodeMeter, by default, has two main providers: 

1. Java Provider, based on the open source tool Checkstyle: this is used to 

collect measures for the Java language; the tool has been marginally 

adapted in order to implement the MeasureProvider interface and 

expose some new methods needed for embedding in CodeMeter; 

2. Pl/SQL Provider, based on Technology Reply‘s Pl/SQL Analyzer 

custom tool: this is used to collect measures for the Oracle Pl/SQL 

database scripting language. 



 

 70 / 122 

 

Pl/SQL Analyzer takes as input a XML configuration file and some database 

schemas coordinates and produce a textual report containing measures on 

those database schemas; the output file is used mainly for debug purposes, 

since Pl/SQL Analyzer is intended for use within CodeMeter as a provider. 

Pl/SQL Analyzer core engine is made up of a connector and a number of 

checks: the connector creates the data sources according to the given input 

configuration, reads the Pl/SQL source code, and tokenize it in smaller pieces 

(statements, keywords) in order to model source code‘s structure; then the 

connector notifies the available checks with tokens and checks compute the 

configured metrics, each applying its own check logic (e.g.: number of tables, 

cyclomatic complexity). 

Database schema objects taken into account by the tool are: 

 Stored procedures: FUNCTIONs, PROCEDUREs and PACKAGEs 

 TABLEs, VIEWs, SEQUENCEs, TRIGGERs, SYNONYMs and 

DBLINKs. 

Currently, only the former objects are considered when looking at Pl/SQL 

source code, whereas the others are used only for counting purposes. 

Out plug-in of Eclipse is based on the above mentioned PL/SQL Analyzer; it 

takes the result XML with details as an input and extracts the data of XML 

for displaying.  

Have a look of the following figure; this is the user interface of the plug-in 

before the implementation of logic part. In the forth column which is ―Value‖, 

the data are all zero because these are the default data.  

      



 

 71 / 122 

 

 

Figure 4-11 Analysis with default value zeros 

And the logic part of our plug-in is to filling out this column with correct 

numbers. Moreover, it should have one more function of displaying the 

details of each measurement. As the figure 4.7 shows, when clicking on the 

fifth measure ―function count‖, the second table below will show the details 

of this measure.  

As we explained before, after executing the PL/SQL Analyzer, we will have 

an xml file named cm_codemeter-results.xml which includes all the 

information of the analysis result. So what we should do is extracting the 

document objects from the XML file.  

To realize this function, two libraries are used in my code: 1) org.w3c.dom 2) 

javax.xml.parsers. The first one is the API which provides the interfaces for 

the Document Object Model (DOM) which is a component API of the Java 

API for XML Processing. And the second one defines the API to obtain DOM 

Document instances from an XML document. Using this class, an application 

programmer can obtain a Document from XML. 

With these two API we can freely navigate in the XML document and extract 

all the necessary information as I want.  

http://java.sun.com/xml
http://java.sun.com/xml
http://download.oracle.com/javase/1.4.2/docs/api/org/w3c/dom/Document.html


 

 72 / 122 

 

4.3 Chapter Summary 

This chapter mainly explains the design and development process of the 

PL/SQL analyzer plug-in in the client side Eclipse. 

Based on the implemented PL/SQL analyzer, we developed the 

corresponding plug-in in Eclipse. Firstly, we introduced the Eclipse platform 

and its composition. Thanks to the flexible structure kernel structure. We can 

extend Eclipse and enable it more functionalities with Eclipse plug-ins, just 

like our PL/SQL plug-in. We then illustrated the structure of plug-in of 

Eclipse and its development steps as well as SWT/JFace which are the most 

essential tools of plug-in development. In the end, we briefly explained the 

methods and steps of developing our plug-in.  

With this PL/SQL analyzer plug-in installed in the Client side Eclipse, 

developers are able to monitor the Oracle project developing process at local 

with higher freedom and faster feedback.   

 

 

 

  



 

 73 / 122 

 

5. Metrics Plug-in design and 

implementation on the 

Server-side: Sonar 

5.1 Introduction of SonarSource 

Sonar is a open source software quality platform. It is a web based 

application which uses a variety of static code analysis tools such as Clover, 

FingBugs, PMD, Checkstyle to implement the software metrics extraction. 

Sonar is designed to improve software code quality in 7 axes: [11] 

 

Figure 5-1 Axes of Sonar 

Many language are covered by sonar between which java is default built in. 

There are other commercial plugins which enable sonar to analyze other 

languages, such as Flex, PHP, Cobol, Visual Basic 6 as well as PL/SQL.   

Like the Sonar company‘s slogan says: Put your technical debt under control. 

Confess your source code to clean it up.  As a continuous inspection engine 

to manage the technical debt, Sonar is the perfect reporting tool as it is 

accessible to everybody and centralizes the information through its web 

server as can be seen as follow: 



 

 74 / 122 

 

 

Figure 5-2 The homepage of sonar 

 

Figure 5-3 The homepage of a specific project 



 

 75 / 122 

 

5.2 The structure of SONAR 

Basically, Sonar can be categorized into two parts:  

1. Server side 

As the above figure shows, it works as a web application. It collects the data 

generated from client part and centralizes all the measurements in one web 

page.  

The main page shows all the information briefly. If necessary, more details of 

a certain measurement can be seen by clicking it. As the following figure 

shows, if clicked on the comment lines and navigate to another web page 

which presents not only the values of comment lines, but also the number of 

comment lines of each java source package. For example in the package of 

it.reply.technology.commons.adudit.error, there are 30 comment lines and 

inside this package, there are two .java file, they have 14 and 16 comment 

lines respectively. And next is the attribute that makes sonar an attractive 

software quality platform. When clicking the specific java file, it drills down 

and shows the code java. This figure shows the code of java file AuditError. 



 

 76 / 122 

 

 

Figure 5-4 Drilldown to see the code 

2. Client side 

It analyzes the code and generates the data which will be collected by the 

server part. Client part is mounted as a plug-in of Maven, which is an open 

source software build tool. When initializing the quality analysis, the quality 

information could be acquired by calling the diagnostic tools such as 

Checkstyle, PMD, Findbus through Maven. And the results would be 

feedback to sonar server side. Finally, the combination of all the diagnosed 

quality data are generated and presented. The whole structure is described as 

the figure 5.5 shows: 



 

 77 / 122 

 

 

Figure 5-5 Steps of doing a code analysis in sonar 

5.3 Maven  

5.3.1 Maven Introduction 

To have a good understanding and operation of Sonar, it is inevitable to learn 

about Maven, based one which sonar is run.  

The maven, what we are talking about now is referring to Maven 2. Apache 

describes Maven as: ―Apache Maven is a software project management and 

comprehension tool. Based on the concept of a project object model (POM), 

Maven can manage a project's build, reporting and documentation from a 

central piece of information.‖ 

Maven is a popular open source build tool for enterprise Java projects, 



 

 78 / 122 

 

designed to take much of the hard work out of the build process. The goal of 

Maven is to standardize the software build process with all aspects and to 

provide easy-to-use tool to perform these processes.  

5.3.2 Maven POM.xml 

Maven uses templates archetypes to define how to build a project and uses an 

XML file to describe the project. Maven‘s Project Object Model (POM) file, 

which is a xml file, declares all the information about the project and 

configuration details that are need to build a project, such as build directory, 

source directory, test source directory, project dependencies, the plugins or 

goals that can be executed, the build profiles. Other information such as the 

project version, description, developers, mailing lists and such can also be 

specified. The POM file was named project.xml in Maven 1 and now in 

Maven 2 it is pom.xml file. When executing a task or goal, Maven looks for 

the POM in the current directory. It reads the POM, gets the needed 

configuration information, then executes the goal. A example of the project 

POM file is as follows: 

<?xml version="1.0" encoding="UTF-8"?> 

<project xmlns="http://maven.apache.org/POM/4.0.0" 

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance 

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 

http://maven.apache.org/maven-v4_0_0.xsd"> 

<modelVersion>4.0.0</modelVersion> 

<groupId>it.reply.technology.sonar</groupId> 

<artifactId>sonar-plsql-plugin</artifactId> 

<packaging>jar</packaging> 

<version>0.1-SNAPSHOT</version> 

<name>Sonar PL/SQL plugin</name> 

<properties> 

     

http://www.w3.org/2001/XMLSchema-instance


 

 79 / 122 

 

<sonar.plugin.class>it.reply.technology.sonar.plsqlplugin.PlSqlPlugin</

sonar.plugin.class> 

     <sonar.version>0.1-SNAPSHOT</sonar.version> 

</properties> 

<dependencies> 

     <dependency> 

         <groupId>org.codehaus.sonar</groupId> 

         <artifactId>sonar-plugin-api</artifactId> 

         <version>2.1</version> 

     </dependency> 

</dependencies> 

<build> 

    <plugins> 

      <plugin> 

          <groupId>org.apache.maven.plugins</groupId> 

          <artifactId>maven-compiler-plugin</artifactId> 

         <configuration> 

            <source>1.5</source> 

            <target>1.5</target> 

         </configuration> 

     </plugin> 

   </plugins> 

</build> 

</project> 

From preceding xml source illustrating a typical POM file of one Maven 

project, we can see that the version of this Maven is 4.0.0, and the project 

belongs to a Italian company Reply Technology from the tag ―groupId‖. The 



 

 80 / 122 

 

―artifactId‖ defines the unique artifact identification for this project which is 

sonar-plsql-plugin. The name tag specified the name of this project ―Sonar 

PL/SQL plugin‖. Between tag properties, there are the classes specified. The 

dependencies defined the dependency which is the ―sonar-plugin-api‖ with 

version 2.1. In the build tag, we can see that this project needs a plug-in 

―maven-compiler-plugin‖ from the company Apach Maven. Of course we can 

define as much dependencies and plug-ins as needed all in one POM file. 

5.3.3 Using of Maven  

One powerful characteristic of Maven is its standardization. Once you have 

the experience of working in one Maven project, time won‘t waste much for 

you to start being familiar with another new one. According to my experience, 

two attributes of Maven made the standardization possible. The Project builds 

lifecycle and standard Maven project directory.  

When Maven is run, it progresses the first lifecycle phase to the specified one. 

And all the lifecycle are as follows: 

validate 

initialize 

generate-sources 

process-sources 

generate-resources 

process-resources 

compile 

process-classes 

generate-test-sources 

process-test-sources 

generate-test-resources 



 

 81 / 122 

 

process-test-resources 

test-compile 

process-test-classes 

test 

prepare-package 

package 

pre-integration-test 

integration-test 

post-integration-test 

verify 

install 

deploy 

Table 5-1 Project builds lifecycle 

Those phases with bold font are the build phase used frequently in Maven. 

• Initialize: Initialize the build state, for example it will create directories.  

• Compile: Compile the source code  

• Test: Run tests with a certain type of test framework  

• Package: Package the code into a distributable form such as Jar or War.  

• Install: Install the package into the local repository 

• Deploy: Copy the final package to the remote repository for sharing with 

other developers and projects.  

And the Maven standard Maven project directory is another power that 



 

 82 / 122 

 

enables Maven to be so popular like it is today. Having a common directory 

layout would allow users familiar with one Maven project to immediately feel 

at home in another Maven project. 

The following figure 5.6 shows a good example of Maven convention, 

depicting the folder structure for a standard Maven web application project. 

There are just two subdirectories of this structure: src and target. The only 

other directories that would be expected here are metadata like CVS or .svn. 

The target directory is used to house all output of the build. The src directory 

contains all of the source material for building the project, its site and so on. 

It contains a subdirectory for each type: main for the main build artifact, test 

for the unit test code and resources, site and so on. [9] 

And the first pom.xml file is the Project Object Model (POM) file we 

discussed above. Without that POM file, the project cannot be a Maven 

project since no configuration information can be obtained for building the 

project. 

 

Figure 5-6 Standard directory of maven project 



 

 83 / 122 

 

5.3.4 Using of Sonar based on Maven 

If the Maven is well installed in your computer, as well as the Sonar, the Java 

environment， then the using of Sonar is becoming quite easy.  

Every time when you need so start an analysis of your project code with 

Sonar, what need to be done is initialize the Sonar web services, and the local 

host http://0.0.0.0:9000/ is ready. Then you launch the Maven goal as ―mvn 

sonar: sonar‖ under the root directory of the project to be analyzed in the 

command prompt.  

The following image illustrates the initialization of one Sonar analysis of the 

Maven project ―PlSqlSonarPlugIn‖. And the root of this project is 

―C:\Documents and Settings\s.xu\PlSqlSonarPlugIn‖. 

 

Figure 5-7 Maven command to launch an analysis 

If the POM.xml file is well specified, you will get a successful build result as 

figure 5-.8 shows: 

http://0.0.0.0:9000/


 

 84 / 122 

 

 

Figure 5-8 Successful Build 

5.4 Sonar Web Application & ROR 

5.4.1 Sonar Plug-in  

Sonar is an open source software quality management platform. On this 

platform, we can build into many other plug-ins to enable Sonar more 

functional. Amongst all the strengths, the built-in extensibility is really worth 

mention.  

As is known to all, it is the extensibility of software or a tool that makes it 

widely adopted, such as the Java IDE Eclipse. Sonar itself is a very light core, 

and we can build into it with the plug-ins which would meet our specific 

requirements. Everything else in Sonar is a plug-in.  

Sonar has an abundant number of plug-ins to fulfill distinctive purposes. 

These plug-ins functionalities have covered the areas of software metrics, 

software quality, IDE built-in, additional language analysis, visualization, and 

Software integration. The details can be seen from the following table [11].  



 

 85 / 122 

 

Plug-in Types Plug-in examples 

Additional 

Metrics 

Artifact Size - Reports on the size of 

the artifact generated by projects. 

Build Stability - Reports on stability of 

project build using Continuous 

Integration engine data. 

Clirr - Checks Java libraries for binary 

and source compatibility with older 

releases. 

Security Rules - Enables to zoom on 

security rules violations to keep them 

under control. 

Quality 

Governance 

Quality Index - Calculates a global 

Quality Index based on coding rules, 

Style, Complexity and Coverage by 

unit tests. 

Sqale (Quality Model) (Commercial) - 

An implementation of the SQALE 

Methodology, which supports the 

evaluation of a software application‘s 

source code in the most objective, 

accurate, reproducible and automated 

way possible. 

Views - Portfolio Management 

(Commercial) - Enables aggregation of 

projects. Projects can be grouped into 

applications, applications into teams, 

teams into departments... 

IDE plug-in 

Eclipse - See defects gathered by Sonar 

directly in Eclipse and fix them on the 

spot. 

IntelliJ IDEA - See defects gathered 

by Sonar directly in IntelliJ IDEA and 

fix them on the spot. 

http://docs.codehaus.org/display/SONAR/Artifact+Size+Plugin
http://docs.codehaus.org/display/SONAR/Build+Stability+Plugin
http://docs.codehaus.org/display/SONAR/Clirr+Plugin
http://docs.codehaus.org/display/SONAR/Security+Rules+Plugin
http://docs.codehaus.org/display/SONAR/Quality+Index+Plugin
http://www.sonarsource.com/plugins/plugin-sqale/overview/
http://www.sonarsource.com/plugins/plugin-views/
http://docs.codehaus.org/display/SONAR/Eclipse+Plugin
http://eclipse.org/
http://docs.codehaus.org/display/SONAR/IntelliJ+IDEA+Plugin
http://www.jetbrains.com/idea/


 

 86 / 122 

 

Additional 

Languages 

C - The C plugin associated to its set of 

rules enables to perform objective and 

automated C code reviews against 

pre-defined or homemade coding best 

practices. 

Flex / Action Script - Enables analysis 

of Action Script projects into Sonar. 

PL/SQL (Commercial) - Enables 

analysis and reporting on PL/SQL 

projects. As an option, the plug-in can 

extract PL/SQL code from Oracle 

Forms. 

Visual Basic 6 (commercial) - Enables 

to perform objective and automated 

Visual Basic 6 reviews against coding 

best practices. 

Cobol (Commercial) - Enables to 

perform objective and automated Cobol 

code reviews against pre-defined or 

homemade coding best practices. 

Visualization / 

Reporting 

PDF Report - Generates a PDF report 

with the results of projects analysis. 

Radiator - Displays measures using a 

big tree map that can then be explored. 

Timeline - Displays measures history 

using a Google Timeline Chart to 

replay the past. 

Integration 

Bamboo - Enables to configure and 

launch Sonar analysis from Bamboo, 

the Atlassian CI engine. 

Hudson - Enables to configure and 

launch Sonar analysis from Hudson CI 

engine. 

http://www.sonarsource.com/plugins/plugin-c/overview/
http://docs.codehaus.org/display/SONAR/C-rules+plugin
http://docs.codehaus.org/display/SONAR/C-rules+plugin
http://docs.codehaus.org/display/SONAR/Sonar+Flex+Plugin
http://www.sonarsource.com/plugins/plugin-plsql/
http://www.sonarsource.com/plugins/visualbasic-6-plugin/
http://www.sonarsource.com/plugins/plugin-cobol/
http://docs.codehaus.org/display/SONAR/Sonar+PDF+Plugin
http://docs.codehaus.org/display/SONAR/Radiator+Plugin
http://docs.codehaus.org/display/SONAR/Timeline+Plugin
http://docs.codehaus.org/display/SONAR/Bamboo+Plugin
http://www.atlassian.com/software/bamboo/
http://docs.codehaus.org/display/SONAR/Hudson+Plugin
http://hudson.gotdns.com/wiki/display/HUDSON/Home


 

 87 / 122 

 

 

 

 

 

From this table, we can see the great extensibility of Sonar with so many 

plug-ins.  

5.4.2 ROR (Ruby on Rails): the future of web application 

framework 

To develop the plug-in of Sonar, it is necessary to know Ruby and the agile 

web development new tool ROR, which is Ruby on Rails.  

Ruby is a dynamic, reflective, general purpose object-oriented programming 

language that combines syntax inspired by Perl with Smalltalk-like features. 

Ruby originated in Japan during the mid-1990s and was first developed and 

designed by Yukihiro "Matz" Matsumoto. It was influenced primarily by Perl, 

Smalltalk, Eiffel, and Lisp.  

Ruby supports multiple programming paradigms, including functional, object 

oriented, imperative and reflective. It also has a dynamic type system and 

automatic memory management; it is therefore similar in varying respects to 

Python, Perl, Lisp, Dylan, Pike, and CLU. [12] 

At first glance of ruby, I was thinking, it is nothing, just another type of OOP 

language like Java. However, as the creator of ruby says: ―Ruby is simple in 

appearance, but is very complex inside, just like our human body, I‘m trying 

to make Ruby natural, not simple.‖ 

The more learn about Ruby, the more I found it attractive, powerful and even 

complex inside, especially while I am dealing with the ROR. However, while 

we are talking about Ruby itself, really, it is a absolutely special from any 

Twitter - Creates tweet, when project 

analyzed by Sonar. 

Table 5-2 Sonar Plug-ins 

http://en.wikipedia.org/wiki/Dynamic_programming_language
http://en.wikipedia.org/wiki/Reflection_%28computer_science%29
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/Smalltalk
http://en.wikipedia.org/wiki/Japan
http://en.wikipedia.org/wiki/Yukihiro_Matsumoto
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/Smalltalk
http://en.wikipedia.org/wiki/Eiffel_%28programming_language%29
http://en.wikipedia.org/wiki/Lisp_%28programming_language%29
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Reflection_%28computer_science%29
http://en.wikipedia.org/wiki/Dynamic_type
http://en.wikipedia.org/wiki/Memory_management
http://en.wikipedia.org/wiki/Python_%28programming_language%29
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/Lisp_%28programming_language%29
http://en.wikipedia.org/wiki/Dylan_%28programming_language%29
http://en.wikipedia.org/wiki/Pike_%28programming_language%29
http://en.wikipedia.org/wiki/CLU_%28programming_language%29
http://docs.codehaus.org/display/SONAR/Twitter+Plugin


 

 88 / 122 

 

other existing language. Let me try to define the ‗special‘ qualities of Ruby. 

And I bet this special quality can be found from other single language, but 

you are never able to find any language can combine these special qualities in 

one: 

1. A terse language 

Is it possible to find any other language can be simpler than this to output 

―hello world‖ like this? 

puts "hello" 

2. Clear  

 

until i == arr.length  

      puts(arr[i]) 

       i +=1 

end 

It‘s quite easy to understand what this part of code to do. 

3. Totally object oriented programming language 

Ruby sees everything is an object, even a number. In ruby a simple and basic 

number has its method.  

In many languages, numbers and other primitive types are not objects. Ruby 

follows the influence of the Smalltalk language by giving methods and 

instance variables to all of its types. This eases one‘s use of Ruby, since rules 

applying to objects apply to all of Ruby. For example, what do you think the 

following formula result? 5.*6 =? 30? Not exactly in ruby, be alert. Because we 

have this 



 

 89 / 122 

 

class Numeric 

  def (x) 

    self.+(x) 

  end 

end 

y=5.*6 

So here y equals 11, not 30 since we defined the method *. Inside this method 

we specified the add operation and it even applies to a number.  

4. Ruby‘s Mixin 

Like Java, Ruby features single inheritance only, on purpose. But Ruby 

knows the concept of modules (called Categories in Objective-C). Modules 

are collections of methods. 

Classes can mixin a module and receive all its methods for free. For example, 

any class which implements the each method can mixin the Enumerable 

module, which adds a pile of methods that use each for looping. [13] 

class MyArray 

    include Enumerable 

  end 

Ruby has a wealth of other features, among which are the following: 

• Ruby has exception handling features, like Java or Python, to make it 

easy to handle errors. 

• Ruby features a true mark-and-sweep garbage collector for all Ruby 

objects. No need to maintain reference counts in extension libraries. As 

Matz says, ―This is better for your health.‖ 

• Writing C extensions in Ruby is easier than in Perl or Python, with a very 



 

 90 / 122 

 

elegant API for calling Ruby from C. This includes calls for embedding 

Ruby in software, for use as a scripting language. A SWIG interface is 

also available. 

• Ruby can load extension libraries dynamically if an OS allows. 

• Ruby features OS independent threading. Thus, for all platforms on 

which Ruby runs, you also have multithreading, regardless of if the OS 

supports it or not, even on MS-DOS! 

• Ruby is highly portable: it is developed mostly on GNU/Linux, but 

works on many types of UNIX, Mac OS X, Windows 

95/98/Me/NT/2000/XP, DOS, BeOS, OS/2, etc. [14] 

The web server side of Sonar is totally written in Ruby combined with HTML 

and JavaScript. While we embedding these three elements into one file, 

basically this file is the ERB file or embedded ruby. Like many web 

frameworks, Ruby on Rails uses the Model-View-Controller (MVC) 

architecture pattern to organize application programming.  

Ruby on Rails includes tools that make common development tasks easier 

"out of the box", such as scaffolding that can automatically construct some of 

the models and views needed for a basic website. Also included are WEBrick, 

a simple Ruby web server that is distributed with Ruby, and Rake, a build 

system, distributed as a gem. Together with Ruby on Rails these tools provide 

a basic development environment. [17] 

5.4.3 MVC Structure: the web design pattern 

While doing the web application, it is common to think of an application as 

having three main layers: presentation (UI), application logic, and resource 

management. And MVC (Model–View–Controller) pattern, which applies to 

ROR, isolates the application logic for the user, from the user interface, 

permitting independent development, testing and maintenance of each. 

http://en.wikipedia.org/wiki/Model-View-Controller
http://en.wikipedia.org/wiki/Scaffold_%28programming%29
http://en.wikipedia.org/wiki/Website
http://en.wikipedia.org/wiki/WEBrick
http://en.wikipedia.org/wiki/Rake_%28software%29
http://en.wikipedia.org/wiki/User_interface


 

 91 / 122 

 

Model: the model part is in charge of the controlling of data. The model is 

another name for the application logic layer (sometimes also called the 

domain layer). It manages the behavior and data of the application domain, 

responds to requests for information about its state (usually from the view), 

and responds to instructions to change state (usually from the controller). 

View: The view part is for the presentation only, renders the model into a 

form suitable for interaction, typically for a user interface element. 

Sometimes a single model could have several different views for different 

purpose. While as a view has only one way of rendering. MVC is often seen 

in web applications where the view is the HTML or XHTML generated by 

the app. 

Controller: Processes and responds to events, typically user actions, and may 

invoke changes on the model and view. It receives a input from the user and 

initializes an response and performs an action according to that input. 

A simple figure 5-9 as follows makes a well illustration on the coordination 

of MVC. The solid line represents a direct association, the dashed an 

indirect association. [18] 

 

Figure 5-9 MVC schema 

What I have covered above is just a general description of a MVC framework. 

Regarding different programming language, there can be different way of 

practices of MVC. Different flavors can be .NET, J2EE, and ROR.  

http://en.wikipedia.org/wiki/Association_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Association_%28object-oriented_programming%29


 

 92 / 122 

 

Ruby on Roils MVC framework: 

• Model (ActiveRecord) 

The part defines the entities which play a role in the universe of the 

application. In Sonar, model part defines the entities such as project, metrics, 

user, user role, project measure as so on.  

This subsystem is implemented in ActiveRecord library. Active Record 

connects business objects and database tables to create a persistent domain 

model where logic and data are presented in one wrapping.  

• View (ActionView) 

It is a presentation of data in a particular format. This part we normally script 

based system, such as JSP, ASP, PHP. This subsystem is implemented in 

ActionView library which is an Embedded Ruby (Erb) based system, which 

we have mentioned before, for defining presentation templates for data 

presentation.  

• Controller (ActionController):  

This subsystem is implemented in ActionController. Action Controllers are 

the core of a web request in Rails. They are made up of one or more actions 

that are executed on request and then either render a template or redirect to 

another action. It is a data broker sitting between ActiveRecord (the database 

interface) and ActionView (the presentation engine). 



 

 93 / 122 

 

 

Figure 5-10 Schematic views of Ruby and the Rails framework [19] 

5.5 Sonar Plug-in for programming language 

Pl/SQL 

All the theories described above are the basis for developing Sonar Plug-in 

for the analysis Oracle database programming language.  

Given that the customer‘s requirements specified that they need to have a 

view of the measurement results of both Java and PL/SQL in one web page, a 

plug-in which would initialize the analysis, collect the analyzed data and 

display them on the web page are needed.  



 

 94 / 122 

 

5.5.1 Getting started 

To develop a plug-in of sonar, the best practice is creating a new Maven 

project. In the command prompt, we type in the command like this. 

And by following the hits (See figure 5.11), we will create a Maven project 

with a POM.xml in which all the need the parameters can be set.  

 

Figure 5-11 Successful creating a Maven project 

5.5.2 Code the plug-in in Client side (Java) 

After the creation of a simple Maven project, we can start to code this project 

with Java. Because a Sonar plug-in is a set of Java objects that implement 

extension points. These extension points are interfaces or abstract classes 

mvn archetype:generate 



 

 95 / 122 

 

which model an aspect of the system and define contracts of what needs to be 

implemented. They can be for example pages in the web application or 

sensors generating measures. 

The extensions implemented in the plug-in must be declared in a Java class 

extending org.sonar.api.Plugin. This class must then be declared in the POM 

with the property <Plugin-Class> : 

 

Figure 5-12 Plug-in-Classes 

The highlight line is the class which defines the Plug-in-Class which extends 

the class org.sonar.api.Plugin.  

The dependencies of this plug-in are specified like this. 

 

Figure 5-13 Dependencies of sonar plug-in 

Then we have defined a simple plug-in which can be installed in the web 



 

 96 / 122 

 

server side. One more Erb file (See source code below) needs to be defined 

which specified how and what to display on the web page. It is like a 

template or dashboard for displaying the plug-in executing results.   

<div class="dashbox"> 

 <h3>Oracle Pl/SQL</h3> 

 <p><span class="big"><%= format_measure('tableCount.1',:url => 

url_plsql_drilldown('tableCount.1')) -%></span> tables</p> 

 <p><%= format_measure('viewCount.1',:url => url_plsql_drilldown('viewCount.1')) 

-%> views</p> 

 <p><%= format_measure('packageCount.1',:url => 

url_plsql_drilldown('packageCount.1')) -%> packages</p> 

 <p><%= format_measure('procedureCount.1',:url => 

url_plsql_drilldown('procedureCount.1')) -%> procedures</p> 

 <p><%= format_measure('functionCount.1',:url => 

url_plsql_drilldown('functionCount.1')) -%> functions</p> 

 <p><span class="big"><%= format_measure('NCSS.1',:url => 

url_plsql_drilldown('NCSS.1')) -%></span> lines of code (NCSS)</p> 

 <p><%= format_measure('V(G).1',:url => url_plsql_drilldown('V(G).1')) -%> objects 

with V(G) between 0 and 10 (good)</p> 

 <p><%= format_measure('V(G).2',:url => url_plsql_drilldown('V(G).2')) -%> objects 

with V(G) between 11 and 20 (acceptable)</p> 

 <p><%= format_measure('V(G).3',:url => url_plsql_drilldown('V(G).3')) -%> objects 

with V(G) between 21 and 50 (to be reengineered)</p> 

 <p><span class="big"><%= format_measure('V(G).4',:url => 

url_plsql_drilldown('V(G).4')) -%></span> objects with V(G) higher than 50 

(untestable)</p> 

</div> 



 

 97 / 122 

 

This table is the dashboard widget Erb file of my Sonar plug-in for PL/SQL. 

Every time an project analysis is launched, Sonar will load this Erb file and 

generate a dashboard on the Sonar webpage as is shown below:  

 

Figure 5-14 Oracle Pl/SQL Plug-in 

In the right bottom part of the above image, we see a dashboard named 

―Oracle PL/SQL‖. All the information we see here are already defined in the 

dashboard widget Erb file.  

Next I will illustrate how to make Sonar execute the analysis.  

Firstly, we have to define the software code metrics which will execute the 

measures of PL/SQL. These code metrics are that we have chosen before. We 

defined that class as PlSqlMetrics which should implement the interface of 

org.sonar.api.measures.Metrics. 

Then we need a class which is PlSqlMetricSensor, it implements 

org.sonar.api.batch.Sensor which would be invoked once during the analysis 

of a project. The sensor can invoke a maven plugin, parse a flat file, and 

connect to a web server. Every class implementing org.sonar.api.batch.Sensor 

should realize the method analyse. As long as an analysis is initialized, this 



 

 98 / 122 

 

class would be invoked and the method analyse is called. This is where the 

execution begins and this is the method which initializes the code analyzer. 

And then we should define a class which implements the interface 

org.sonar.api.Plugin, inside which the name, key, description as well as the 

list of all the extension points are defined.  

 

Figure 5-15 list of all the extension points 

In the end, another very important class need to be defined is 

PlSqlDashboardWidget which extends the abstract class 

AbstractDashboardWidget. It is the class which tells Sonar the place where to 

find the Erb file for displaying.  

 

Figure 5-16 PL/SQL Dashboard Widget 

We can see that class PlSqlDashboardWidget return a path as a string type 

which specifies the relative path of the Erb file.  

All the classes described above are the main composition of Sonar plug-in of 



 

 99 / 122 

 

client side which is coded in Java. These classes job is to define the metrics, 

analyze the project, get the results and pass them to Sonar server part through 

the Erb file. Apart from these java classes, there are several others which are 

generated automatically as long as we generate Sonar plug-in and not need to 

be recoded.    

After finishing the coding, we need to install the plug-in. For Sonar, it is very 

easy step, we just need to use Maven to package the plug-in into a Jar file and 

deploy it under the directory of ―sonar-2.1.2\extensions\plugins‖ and then 

restart Sonar server. Once the server is launched, hit the homepage 

(http://localhost:9000) to see the installed plug-in. But there must be 

something wrong since the analysis result cannot be transferred to server side 

yet. And it is the next step to code the server side of Sonar.  

5.5.3 Code the plug-in in Server Side (Ruby on Rails) 

We have described the ROR above, it is MVC structure based. So let‘s take a 

look at the directory structure of the Sonar web application. ROR has a 

standard directory and this standard directory and file structure (Figure below) 

is one of the many advantages of Rails; it immediately gets you from zero to 

a functional (if minimal) application. Moreover, since the structure is 

common to all Rails apps, as well as Sonar, you can immediately get your 

bearings when looking at someone else‘s code. A summary of the default 

Rails files appears in the following table. 

http://localhost:9000/


 

 100 / 122 

 

 

Figure 5-17 Sonar web application standard directory 

File/Dir

ectory 

Purpose 

App 

Core application (app) code, including models, 

views, controllers, and helpers 

Web.xml 

It describes how to deploy a web application in 

a servlet container.  

Config 

Application configuration. This directory 

contains the small amount of configuration 

code that the application will need, including 

database configuration (in database.yml), Rails 

environment structure (environment.rb), and 

routing of incoming web requests (routes.rb). 



 

 101 / 122 

 

Our developing task focus on operation in the App file in which there are four 

folders: controllers, views, models and helpers. We have generally illustrated 

the working schema of the first three as a MVC structure except the last one 

helpers. Before introducing the helpers, I would like to mention one thing.  

As has been discussed before, views folder have the ERb html or rhtml files 

which define the display template. All in all, these are just html files and to 

make the web page dynamic, the ruby codes are embedded. So it‘s okay to 

put ruby code in the template, however, it is not advisable to put larger 

amount of code into the temples.  

There are three reasons not to put a bunch of ruby code into the view side. 

For one thing, the more code you put in the view side of your application, the 

easier it is to let discipline slip and start adding application-level functionality 

to the template code. So I dare to ask: what the meaning of MVC. So this is 

definitely poor form. For another, Rhtml is basically HTML. When you edit it, 

Db 

Files to manipulate the database. Usually, the  

Rails application will have model objects that 

access relational database tables. You can 

manage the relational database with scripts you 

create and place in this directory. 

Gems 

Gem requirements for this app 

Lib 

Library modules 

Vendor 

Third-party code such as plugins and gems 

Rakefile  

This file helps with building, packaging and 

testing the Rails code. 

Table 5-3 A summary of the default Sonar Rails directory structure 



 

 102 / 122 

 

you‘re editing an HTML file. Nowadays, there are companies employ 

professional designers create the layouts, dealing with the HTML, CSS and 

so on. Putting a bunch of Ruby code in there just makes them hard to work 

with. Lastly, it is more difficult to test the code in the views, while as code 

split into helpers can be isolated and more easily tested. And that‘s why we 

have helpers here. A helper is simply a module containing methods that assist 

a view. Helper methods are output-centric. They exist to generate HTML (or 

XML, or JavaScript)—a helper extends the behavior of a template. [20] 

As we mentioned before, Sonar in the server part may not properly display 

the analyzing information. This is mainly because in the Erb file of the server 

side, there is method url_plsql_drilldown (figure below) which the default 

Sonar does not recognize. It is the method defined by us in the 

application_helper.rb which is in the helpers module. Defining this method is 

to make the user be able to drilldown the details of each measurement. For 

example, we have the analysis result as below, and we need to have a look at 

detail information of the 4737 NCSS. By clicking the number 4737.0, it 

navigates to another page which lists all the corresponding details as the next 

figure shows.  



 

 103 / 122 

 

 

Figure 5-18 Url_plsql_drilldown class 

 

Figure 5-19 NCSS measurement details 

The above web page is defined by the plsql_details.html.erb file by us which 



 

 104 / 122 

 

is added in the drilldown folder under the views part.  

Then you may ask how Sonar gets the information from the server part? It is 

the controllers; we add one controller class in the file drilldown_controller.rb 

which is under the controllers module.  

 

Figure 5-20 Added method plsql_details 

5.5.4 Installation  

In the end, we install the plug-in into Sonar by simply putting it under the 

directory of ―sonar-2.1.2\extensions\plug-ins‖ and then restart Sonar server. 

There is one thing to take care is that it is necessary to put all the 

dependencies of this plug-in into the directory as well. Otherwise, the plug-in 

could not work.  



 

 105 / 122 

 

5.6 Chapter Summary 

In the chapter, we firstly introduced what is Sonar. We explained the structure 

and composition of Sonar as multi code examination open source software.  

And then we introduced Maven 2 based on which Sonar is run as well as we 

explained its characteristics and usage. Afterward, the structure of Sonar 

plug-in is explained in detail which is very important to know to develop a 

plug-in of Sonar.  

Ruby on Rails which is normally call ROR is the key technology for 

developing Sonar plug-in. It is explained as well. Module-View-Controller 

(MVC) structure based on which ROR is organized is also covered as an 

important aspect of my project. Furthermore we did some customer analysis 

explaining why we are determined to develop Sonar Pl/SQL plug-in by 

ourselves instead of purchasing the commercial PL/SQL from Sonar 

Company. At last, we showed how we have done the design and development 

of this plug-in from the client side Eclipse to server side Sonar.  

 

 

 

  



 

 106 / 122 

 

6. Experimental Results 

In this chapter, we will show the tests results of the PL/SQL plug-in both on 

client side Eclipse and the server side Sonar. And analysis will be done based 

on these test results.  

6.1 Plug-in test results and analysis on Eclipse 

Plug-in one client server will be executed firstly to launch a new analysis by 

choosing one project which should have Oracle database. See figure 6.1, 6.2.  

 

Figure 6-1 Launch new analyses 



 

 107 / 122 

 

 

Figure 6-2 Oracle Project Selections 

After clicking and confirming, analyses on project ―TRK‖ will be executed. 

Actually the plug-in is doing the checking of the code under the ―database‖ 

directory.  And we will have a user interface as figure 6-3  

 

Figure 6-3 Analyses results 



 

 108 / 122 

 

After finishing this analysis, we could execute another analysis based on this 

user interface by clicking the menu ―File‖ and menu item ―Select Project‖, or 

just using shortcut key ―Ctrl+S‖.  See figure 6-4 

 

Figure 6-4 Launch another new analyses 

After launching another new analysis, the next moves are the same from 

figure 6-1.  Besides, there are another two menu items ―Create Html Report‖, 

―Exit‖ 

Menu item ―Create Html Report‖ will generate a HTML report (Figure 6-5) 

at local computer in order to make the customer have more freedom to make 

a record of the project development process and the code changing status.  

You can choose the directory under which to create the HTML report. After 

creating the report, the location of the report will be informed. While as menu 

―Exit‖ is simply used for exit the analysis and closes the table.  



 

 109 / 122 

 

6-5 



 

 110 / 122 

 

The HTML report generated locally can be open using any web browser such 

as IE7 or Firefox. The above figure is the report opened by Firefox. We can 

see that the analysis data are integrated into one web page. All the 

information are included. You can click on ―See detail‖ to drilldown the 

details of the specific measure and then click on ―Hide detail‖ to close the 

detail drilldown. This is the realized by using XSLT and XPATH techs to 

navigate in the XML files and show them in a web page.  

If you remember well, at the beginning of the analysis, there is another menu 

item under the menu of ―ORACLE‖ which is ―last analysis‖ (See figure 6-1). 

It is used to show the previous analyzed project result.   

The last test I will show is the parallel comparison of two results which is a 

good characteristic of our plug-in. (See figure 6-6) 

 

Figure 6-6 Comparison of two projects 



 

 111 / 122 

 

By performing parallel comparison of two projects or comparison of the 

project in different time instance, developers are able to see the changes of 

the software development process more clearly. That‘s the purpose we 

implement this function.  

Up to now, we have finished the functional test of plug-in in client side 

Eclipse, and it works well regarding the functions which have been 

implemented. However, we don‘t think it is enough. As you can see that there 

are only 10 metrics employed to do code analysis, and they are mainly focus 

on the program size and software cyclomatic complexity.   

So for plug-in on Eclipse, we hope to add more metrics to enrich the analysis 

capability of our PL/SQL plug-in. And this expectation will be covered in 7
th

 

chapter as a conclusion.  

6.2 Plug-in test results and analysis on Sonar  

To test the plug-in on Sonar, we should firstly open the local web service of 

Sonar.  And then we begin to analyze an oracle project. 

As long as the http://localhost:9000 port is ready, we chose one project and 

launched the Sonar analysis in the command prompt by executing mvn sonar: 

sonar. (Figure 6-7) If it successes in executing the analysis, we will see the 

information in command prompt as figure 6-8 shows. 

 

Figure 6-7 Launch a Sonar analysis 

http://localhost:9000/


 

 112 / 122 

 

 

Figure 6-8 Successful analysis 

Then hitting the http://localhost:9000 we see the Sonar PL/SQL plug-in row 

which is the project we just analyzed. Then clicking the project analyzed, we 

will navigate to the index page of that project. We have both the Java analysis 

result and PL/SQL analysis result if the project has both JAVA source code 

and PL/SQL code. However, our TRK project has only PL/SQL source code 

and we will have the result as figure 6-9 shows. And figure 6.10 shows the 

analysis result of a project Codemeter has both JAVA and PL/SQL. 

 

Figure 6-9 A project only has PL/SQL 

To test the details display function, we click the NCSS of project Codemeter 

to see the details of NCSS and we have the result as figure 6-11 shows. From 

the result, we can see the source file name of the PL/SQL as well as the 

corresponding value which stands for the number of NCSS. Another test on 

cyclomatic complexity between 0 to 10 is shown in figure 6-12, from which 

http://localhost:9000/


 

 113 / 122 

 

we see the source name, line, column and corresponding V(G) value.  Since 

the limitation of page size, we cannot display all the details of V(G). 

One thing we should mention here is that in figure 6-11, the ―Line‖ and 

―Column‖ are all zeros instead in figure 6-12 under cyclomatic complexity 

situation, we have non-zero values.  

Actually, "line, column" they are the coordinates at which the measure is 

taken.  

In case they are 0, 0 it means the whole piece of code (function, procedure, 

table, etc.) is taken for the measurement. There are two situations here: 

1. In the case of "V(G)", single functions/procedures are considered for the 

measure: in this case, "line, column" are the coordinates of the 

function/procedure inside a package; in case of single function/procedure, 

they should be 0,0  

2. In the case of "number of tables", a single table is counted as a whole, so 

0, 0 is taken (meaning "start of the CREATE TABLE script"). The same 

situation for NCSS. In NCSS, the single function/procedure is measured 

as a whole. 

 

Figure 6-10 A project has both JAVA and PL/SQL 



 

 114 / 122 

 

6-11 



 

 115 / 122 

 

6-12 



 

 116 / 122 

 

6.3 Chapter summary 

In this chapter, we mainly presented the test results of the plug-in both in the 

client side and server side as well as some analysis on those results. Based on 

these results, we also pointed out some pros and cons of the plug-in.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 117 / 122 

 

7. Conclusion 

This chapter is organized as follows. Section 7.1 below summarizes the 

contributions made by my work and thesis. Section 7.2 outlines the lessons 

learnt from this project. Section 7.3 gives a future expectation of my work 

that has been done so far regarding on two aspects, the plug-in core PL/SQL 

analyzer and the server side Sonar.  

7.1 Thesis contribution 

My thesis proposed one idea that under the environment of continuous 

integration and software or code metrics, it is possible to achieve a further 

quality improvement of software development product and process.  

Continuous integration has been already employed in software development 

process especially for open source software development; and studies have 

proven its positive impact on the software process quality and the product. By 

adopting a higher frequency of checking in the code, building the change, 

detecting the potential problems and reporting the failure, developers obtain a 

better control of the process of the development as well as the current 

situation.  

And this can be further enhanced by employing the software/code quality 

metrics. To have a monitor on the quantitative analysis of the current 

software/code, in particularly, by making the analysis programming language 

oriented, developers are able to gain a software trend, which stands for where 

is development is going, better or worse. And proper actions can be taken 

according to the analysis. For instance, if after the code analysis, developers 

found that the cyclomatic complexity of a certain procedure is too high like 

89, which is meaning a bad maintainability, they could go and check that 

procedure to fix the problem.  

Moreover our work, the PL/SQL plug-in which is working well both on the 

client side Eclipse and server side Sonar made the above theory in real 

partially; and future works need to be carried on to this plug-in.  



 

 118 / 122 

 

7.2 Lessons learnt 

After a half year of working on this project in Reply Technology, which is a 

famous Italian software consultancy company originated from Turin and a 

global silver partner of Oracle, I have learnt a lot of things.  

The first obstacle of working on this project is to get familiar with all of these 

concepts that I had not touched before in university. I should say that as a 

fresh man, new graduate, everything is new. To initialize my work, reading a 

lot of materials and papers are necessary. Even thought plenty of theories 

have been learnt in university, it does not necessary mean I have already good 

command on them. Because in industry application, solo understating of 

theory means nothing if you don‘t know how to apply them into practices. It 

is the know-how that rocks.   

Regarding continuous integration, a number of theories can be related, such 

as software development process or life cycle, agile developing mode, XP 

(extreme programming) practice, and so forth. For software quality and 

software/code metrics, there are even more theories can be learnt. Thanks to 

the cooperation of my colleague Rosin Massimo, who is also my thesis 

supervisor in the company, this implementation part of work is done very 

well by him. And I am in charge of partial development of the PL/SQL core 

analyzer as well as realizing the function of PL/SQL analysis for Eclipse and 

Sonar based on that core analyzer. 

Maven, Hudson, Ant, Sonar, Eclipse, Subversion, and so forth are those tools 

that essential to the project development. After these days of working with 

these tools, I have already obtained a much better command on them.  

Regarding the technologies that have been using in this project, most of them 

have been explained in this dissertation, nevertheless, there are much more. 

The most important techs that I have learnt are Ruby, Ruby on Rails, XSLT, 

XPATH, SWT/JFace, Eclipse plug-in structure, Java. Although java is learnt 

in university, it is definitely different respect to its usage in industry purpose. 

In industry companies, J2SE (Java 2 standard edition) is not enough; J2EE 

enjoys a much wider and broader application.  



 

 119 / 122 

 

7.3 Future research directions 

There are two further directions that we will carry on: 

1. Add more metrics, after comparison with other plug-ins and investigating 

the existing metrics which best fit in Pl/SQL.  

• Halstead complexity: we have discussed this type of metrics in 

chapter 3. Although many critics have been made on it, still at least 

two of the Halstead metrics worthy of implementation, Program 

length and Halstead volume.  

• DAC among packages: in a clean and correct construction of Pl/SQL 

code, all stored procedures are grouped into packages; if a package is 

considered as a "class" (in an OOP sense); we could compute DAC for 

a package and analyze how a package is coupled with others.  

• More Oracle-specific size metrics, e.g.: number of indexes, number of 

triggers.  

• More Oracle-specific complexity metrics, e.g.: cyclomatic complexity 

of triggers. 

 

2. Add a parser and a lexicographical analyzer to the plug-in core: language 

syntax check and modeling of the source code as an AST (Abstract 

Syntax Tree) would improve the source tree reconstruction, thus 

increasing the confidence in the interpretation of statements, and also 

would allow to write more readable checks; tools like ANTLR 

(www.antlr.org) could be integrated to perform such tasks. 

  

http://www.antlr.org/


 

 120 / 122 

 

8. Bibliography  

[1] Software configuration Management Best practices for continuous 

integration, Accurev.  

[2] Tijs van der Storm, Backtracking Incremental Continuous Integration  

[3] The Art of Software Architecture: Design Methods and Techniques, 

Stephen T. Albin, 2003  

[4] Software Quality: Definitions and Strategic Issues, Ronan Fitzpatrick  

[5] Software Metrics SEI Curriculum Module SEI-CM-12-1.1, Everald E. Mills, 

Seattle University, 1988  

[6] http://en.wikipedia.org/wiki/Function_point  

[7] Rich Sharpe. "McCabe Cyclomatic Complexity: the proof in the pudding"  

[8] http://en.wikipedia.org/wiki/Cyclomatic_complexity  

[9] Apache Maven Current version User Guide, The Apache Software 

Foundation 2010-09-05  

[10] Software metrics an overview, Simon Alexandre, University of Namur, 

Software Quality Lab ,Belgium, July 2002 

[11] http://www.sonarsource.org/  

[12] http://en.wikipedia.org/wiki/Ruby_%28programming_language%29  

[13] http://www.ruby-lang.org/en/  

[14] Matz, in Blocks and Closures in Ruby, December 22nd, 2003. 

[15] Matz, speaking on the Ruby-Talk mailing list, May 12th, 2000. 

[16] Matz, in An Interview with the Creator of Ruby, Nov. 29th, 2001. 

[17] http://en.wikipedia.org/wiki/Ruby_on_Rails 

[18] http://en.wikipedia.org/wiki/Model%E2%80%93View%E2%80%93Contr

oller  

http://en.wikipedia.org/wiki/Function_point
http://www.enerjy.com/blog/?p=198
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://www.sonarsource.org/
http://en.wikipedia.org/wiki/Ruby_%28programming_language%29
http://www.ruby-lang.org/en/
http://www.artima.com/intv/closures2.html
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/2773
http://www.linuxdevcenter.com/pub/a/linux/2001/11/29/ruby.html
http://en.wikipedia.org/wiki/Ruby_on_Rails
http://en.wikipedia.org/wiki/Model%E2%80%93View%E2%80%93Controller
http://en.wikipedia.org/wiki/Model%E2%80%93View%E2%80%93Controller


 

 121 / 122 

 

[19] David A.Black, Ruby for Rails 

[20] Dave Thomas and David Heinemeier Hansson, with Leon Breedt, Mike 

Clark, James Duncan Davidson, Justin Gehtland, and Andreas Schwarz, 

Agile web development with Rails. 

[21] http://en.wikipedia.org/wiki/Eclipse_%28software%29  

[22] Eric Clayberg, Dan Rubel, Eclipse building commercial quality plug-ins 

[23] http://www.ibm.com/developerworks/opensource/library/os-ecov/  

[24] http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_archi

tecture.html 

[25] http://en.wikipedia.org/wiki/Continuous_integration  

http://en.wikipedia.org/wiki/Software_development_process  

[27]  John Ferguson Smart, upping the game improving your software 

development process.  

[28] http://www.aivosto.com/project/help/pm-loc.html 

[29] http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability/  

[30] Jon Bowyer, Janet Hughes, Assessing Undergraduate Experience of 

Continuous Integration and Test-Driven Development 

[31] Tijs van der Storm, Backtracking Incremental Continuous Integration 

[32] Jesper holck, CONTINUOUS INTEGRATION AND QUALITY ASSURANCE: A 

CASE STUDY OF TWO OPEN SOURCE PROJECTS, 2004 

[33] Amit Deshpande, Dirk Riehle, Continuous Integration in Open Source 

Software Development 

[34] Dr.B.R Sastry, M.V.Vijaya Saradhi, Impact of Software Metrics on 

Object-Oriented Software Development Life Cycle, 2010 

[35] Tabinda Aftab, Improved Software Quality with Agile Process 

http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://www.ibm.com/developerworks/opensource/library/os-ecov/
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_process
http://www.aivosto.com/project/help/pm-loc.html
http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability/


 

 122 / 122 

 

[36] Cem Kaner, Walter P. Bond, Software Engineering Metrics: What Do They 

Measure and How Do We Know? 

[37] Simon Alexander, Software Metrics An Overview Version 1.0, July 2002 

[38] Wakalio Consulting, Java Software Quality Tools and techniques, 2008 

[39] Thomas Haug, Using software metrics to detect refactorings, 2009 

[40] Georg Fleischer, Continuous Integration: what companies expect and 

solutions provide, 2009 

[41] http://codedcomplex.com/2010/05/the-importance-of-continuous-integrat

ion-for-software-development/ 

[42] http://community.serena.com/posts/775495a210  

[43] http://checkstyle.sourceforge.net/  

[44] http://www.conquestsoftwaresolutions.com/page/clearsql_at_a_glance  

 

http://codedcomplex.com/2010/05/the-importance-of-continuous-integration-for-software-development/
http://codedcomplex.com/2010/05/the-importance-of-continuous-integration-for-software-development/
http://community.serena.com/posts/775495a210
http://checkstyle.sourceforge.net/
http://www.conquestsoftwaresolutions.com/page/clearsql_at_a_glance

