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Abstract

Il presente lavoro di tesi propone una metodologia di progetto, integrata nella

sintesi ad alto livello, per la costruzione di un controllore parallelo che affronti

il problema dell’estrazione del parallelismo. Il controllore parallelo proposto

è in grado di identificare autonomamente e a run-time le condizioni che vin-

colano l’esecuzione delle istruzioni e abilitarne l’esecuzione il prima possibile,

ovvero non appena le dipendenze e i vincoli sulle risorse sono soddisfatti. Tali

condizioni vengono ricavate tramite l’analisi di una nuova rappresentazione,

appositamente definita per rappresentare il parallelismo. Questo controllore

non è composto da un insieme di macchine a stati locali comunicanti, ma è

più simile ad una descrizione comportamentale della specifica, composto da

diversi moduli, che interagiscono secondo uno schema basato su token, che

rappresenta un paradigma di comunicazione molto semplice. Questa scelta

permette di evitare il problema dell’overhead di comunicazione. Il controllore

parallelo, inoltre, è ottenuto tramite un approccio dal basso verso l’alto. In

tal modo non è necessaria la costruzione dell’intera macchina a stati, evi-

tando i problemi legati alle tecniche di decomposizione. Infine, l’aver dotato

il controllore della capacità di identificare autonomamente le suddette con-

dizioni ha portato a dover affrontare il problema della formalizzazione del

parallelismo. Tale problema consiste nel trovare un modo per formalizzare

l’informazione sul parallelismo in modo tale che il controllore possa capirla e

7



ABSTRACT

gestirla automaticamente. Poiché il controllore è in grado di gestire segnali,

tale informazione è stata formalizzata come una composizione di segnali, che

indica il momento in cui un’istruzione può essere eseguita, ovvero quando le

suddette condizioni sono soddisfatte. Tale composizione di segnali definisce

una funzione associata a ciascuna istruzione. Le affinità con l’algebra di Boole

rendono tali funzioni facili da ottimizzare per mezzo di tecniche standard.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

This thesis work proposes a design methodology to build a parallel controller

in high-level synthesis, able to handle with the parallelism problem. The

proposed controller is able to automatically identify the conditions that en-

able the execution of an instruction as soon as the dependencies and the

resource constraints are satisfied. Such conditions are obtained through a

parallelism identification phase, performed by means of the analysis of a

novel intermediate representation, properly defined to represent the inherent

parallelism. In the proposed architecture, the task of assign a control step in

which each instruction will be executed is implicitly performed at run-time

by the parallel controller. The proposed controller structure is not composed

of a set of communicating local finite state machines. It is instead closer to

a behavioral description of the specification composed of several modules,

interacting according to a token-based scheme, which is a very simple com-

munication paradigm. This choice prevents to incur in the communication

overhead problem. Moreover, it is obtained through a bottom-up approach.

In this way, the entire finite state machine construction is not needed, avoid-

ing also the problems related to decomposition techniques. Finally, making

8
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the controller able to identify by itself the conditions that enable instruc-

tions execution led to face another aspect of the parallelism issue, that is the

parallelism formalization. Such problem consists in how to formalize the in-

formation about the parallelism, obtained from the analysis of the proposed

IR, in such a way to make the controller able to understand and automati-

cally manage this information. Since the controller is able to manage signals,

such information has been formalized as a composition of signals, indicating

when the execution can start, i.e. when the above mentioned conditions are

satisfied. Such composition of signals defines a function associated with each

instruction. Similarities with Boolean Algebra makes such functions easily

manageable and optimizable by means of standard techniques.
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Estratto in lingua italiana

Con il passare degli anni, le metodologie proposte per il progetto dei cir-

cuiti digitali hanno subito una migrazione verso livelli di astrazione sempre

più alti. Questo processo ha portato all’introduzione delle tecniche di sin-

tesi ad alto livello (HLS). A tali tecniche viene attribuito il termine “alto

livello” a sottolineare il fatto che una specifica viene implementata in hard-

ware sfruttando direttamente una sua descrizione comportamentale, senza

alcuna informazione circa la sua descrizione strutturale. Solitamente, il mod-

ello architetturale risultante dal processo di sintesi ad alto livello consiste di

due parti: un datapath, che include un insieme di moduli RTL opportuna-

mente connessi, utilizzati per eseguire le operazioni presenti nella specifica,

ed un controllore, che fornisce la logica per attivare l’esecuzione di tali oper-

azioni.

La sintesi ad alto livello fu concepita nel 1974 da M. Barbacci. Da allora sono

passati decenni di miglioramenti, riguardo per esempio il linguaggio utilizza-

to per descrivere la specifica, l’architettura finale proposta o il supporto alla

sintesi di applicazioni appartenenti a diversi domini applicativi. Tuttavia,

nonostante i vari miglioramenti, il register-transfer level (RTL) rimane anco-

ra il livello di sintesi e di specifica dominante. Le ragioni di ciò possono essere

trovate nel fatto che esistono ancora molti aspetti da definire e formalizzare

nell’HLS. Ad esempio, i primi lavori proposti per la sintesi ad alto livello era-

11
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no puramente legati ad uno specifico dominio applicativo, tipicamente quello

del Digital Signal Processing (DSP) e delle applicazioni orientate al flusso di

dati. A partire dalla metà degli anni novanta vari gruppi di ricercatori in-

iziarono a concentrarsi anche su domini applicativi diversi. Tuttavia, ancora

oggigiorno, il limitato grado di accettazione dell’HLS da parte degli utenti

dimostra la necessità di una metodologia generale che supporti la sintesi nei

vari domini applicativi.

Tra i vari aspetti dell’HLS che necessitano miglioramenti, in questo lavoro di

tesi ci si concentra sul problema dell’estrazione del parallelismo, e sugli as-

petti ad esso connessi. Nel seguito verranno presentate alcune considerazioni

per chiarire lo scenario attuale circa i suddetti problemi.

A partire dai primi anni duemila, i linguaggi di programmazione ad alto

livello come C e simili sono diventati lo standard per la descrizione di una

specifica in HLS. L’adozione di questi linguaggi ha permesso di sfruttare

trasformazioni ed ottimizzazioni a livello di compilatore, portando enormi

vantaggi in termini di qualità dei risultati della sintesi. Tuttavia, questi

linguaggi sono caratterizzati da una natura sequenziale, che non permette

di rappresentare esplicitamente il parallelismo presente in un’applicazione.

Quindi l’adozione dei linguaggi simili al C per la descrizione della specifica

ha introdotto il problema dell’identificazione del parallelismo. Per risolvere

questo problema sono state proposte alcune estensioni a tali linguaggi, come

ad esempio Handel-C [2]. Handel-C fornisce delle istruzioni non standard

per controllare l’instanziazione dell’hardware, con particolare enfasi sul par-

allelismo. Questo tipo di estensioni, tuttavia, non è supportato dalla presen-

za di metodologie per l’inserimento automatico delle istruzioni non standard.

Infatti, l’inserimento di tali istruzioni rientra tra i compiti del progettista,

aumentando di conseguenza i costi di progetto. Un approccio più generale

12
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per risolvere il problema dell’identificazione del parallelismo potrebbe basar-

si sulla produzione di un’opportuna descrizione della specifica, più adatta a

mostrare il parallelismo disponibile. Tuttavia, questo tipo di soluzioni porta

ad un altro problema, ovvero quello della rappresentazione del parallelismo.

Solitamente si costruisce una rappresentazione intermedia (IR) sotto forma

di grafo, in quanto queste strutture risultano un buon mezzo per l’analisi del-

la specifica, mostrandone chiaramente le proprietà. Quindi, riepilogando, il

problema dell’identificazione del parallelismo può essere affrontato tramite la

costruzione di un’opportuna IR capace di mostrare il parallelismo presente,

ovvero cercando di risolvere il problema della rappresentazione del paral-

lelismo. Questi due problemi, ovvero identificazione e rappresentazione del

parallelismo, possono essere aggravati dalla scelta di un’architettura finale

inadeguata. Infatti, anche se fosse possibile costruire una IR che permetta di

identificare tutto il parallelismo presente, l’architettura finale potrebbe non

essere in grado di sfruttare tale parallelismo, o potrebbe risultare troppo cos-

tosa in termini di area. Si consideri, per esempio, una specifica composta da

due costrutti ciclici parallelizzabili. Scegliendo un’architettura finale com-

posta da un datapath e da una FSM centralizzata come controllore, esistono

diverse soluzioni per l’implementazione della specifica. Una prima soluzione

potrebbe essere quella di sequenzializzare l’esecuzione dei cicli, non sfruttan-

do quindi il potenziale parallelismo. Un’altra possibile soluzione potrebbe

essere quella di realizzare una FSM in cui gli stati sono ottenuti dalla com-

binazione delle operazioni che possono essere eseguite contemporaneamente.

Quest’ultima soluzione non limita lo sfruttamento del parallelismo, ma risul-

ta in un’esplosione del numero di stati della FSM, diventando quindi troppo

costosa in termini di area. Sulla base di queste considerazioni è possibile iden-

tificare un terzo aspetto legato all’estrazione del parallelismo, ovvero quello
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dello sfruttamento del parallelismo.

La sintesi ad alto livello è di solito svolta attraverso diverse fasi, come lo

scheluling delle istruzioni, il binding delle risorse, e la sintesi di datapath

e controllore. Ciascuno di questi compiti rappresenta un problema NP-

completo. Lo scheduling definisce una relazione d’ordine sull’insieme delle

istruzioni associando un livello di priorità a ciascuna operazione. Dopodiché,

sfrutta le priorità precedentemente calcolate per assegnare a ciascuna oper-

azione il passo di controllo in cui verrà eseguita. Il binding associa ciascuna

istruzione con una particolare istanza di una risorsa su cui l’operazione verrà

eseguita. Le decisioni prese in queste fasi influiscono sulle performance e

possono limitare lo sfruttamento del parallelismo. Ad esempio, quando più

istruzioni indipendenti vengono associate alla stessa risorsa, la loro esecuzione

deve essere necessariamente sequenzializzata. Dall’altro lato, quando più

istruzioni indipendenti vengono associate a risorse diverse, la loro esecuzione

viene forzatamente sequenzializzata se sono state schedulate in passi di con-

trollo differenti. Uno scheduler efficiente dovrebbe permettere l’esecuzione di

ciascuna istruzione il più presto possibile, ovvero non appena la risorsa a cui

l’istruzione è associata diventa disponibile e non appena le istruzioni da cui

essa dipende terminano la loro esecuzione. Tuttavia, non è sempre possibile

stabilire in anticipo l’esatto ciclo di clock in cui questi vincoli saranno sod-

disfatti. Infatti esistono diversi fattori che non possono essere noti a tempo

di compilazione, come ad esempio l’esito della valutazione delle condizioni

per le istruzioni condizionali. Inoltre, non vincolare le istruzioni ad essere es-

eguite in un determinato passo di controllo porta spesso ad un’esplosione del

numero degli stati della FSM. Infatti in una FSM siffatta ciascuna istruzione

potrebbe trovarsi all’interno di più stati, ogni volta associata ad una diversa

combinazione di istruzioni concorrenti.
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Come precedentemente accennato, l’architettura finale è generalmente com-

posta da un datapath ed un controllore. Il modello più comune per il con-

trollore è quello della FSM centralizzata. Questo però non è l’unico modello

esistente. Sono stati infatti proposti diversi modelli architetturali basati sul-

la FSM, come ad esempio FSM distribuite, parallele e/o gerarchiche. Tra le

varie proposte, quella delle FSM parallele affronta il problema del parallelis-

mo implementando una struttura di controllori comunicanti. Queste architet-

ture sono guidate dagli eventi. I controllori comunicano tramite scambio di

messaggi, supportati da opportuni protocolli di comunicazione e sincroniz-

zazione. La peculiarità dei controllori paralleli è legata alla loro capacità di

schedulare dinamicamente le istruzioni. Spostando la fase di scheduling a

run-time essi riescono a sfruttare il parallelismo intrinseco nell’applicazione.

Tuttavia, queste architetture sono affette da un overhead significativo dovuto

a comunicazione e sincronizzazione. Inoltre, dato che sono ottenute general-

mente tramite tecniche di decomposizione delle FSM, l’area totale risulta

aumentata. La decomposizione delle FSM è una tecnica che divide una FSM

monolitica in un certo numero di sotto-elementi, seguendo un approccio top-

down. Spesso risulta impossibile effettuare una decomposizione esatta di una

FSM. In queste situazioni, porzioni di circuito devono essere duplicate per

essere incluse in diversi sotto-elementi.

Sulla base delle considerazioni fatte è possibile ricavare alcune conclusioni.

Innanzitutto, il problema dell’estrazione del parallelismo nell’HLS è compos-

to da tre sotto-problemi: identificazione, rappresentazione e sfruttamento.

Per risolvere il problema nella sua interezza devono essere considerati di-

versi aspetti. Ad esempio, la definizione dell’architettura finale rappresenta

un aspetto cruciale per lo sfruttamento del parallelismo. Le soluzioni ar-

chitetturali proposte ad oggi per risolvere questo problema risultano troppo
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costose. Inoltre, il progettista dovrebbe tenere in considerazione il fatto che

i compiti del controllore e dello scheduler sono fortemente legati. Infatti,

lo scheduler deve stabilire quando ciascuna istruzione deve essere eseguita,

mentre il controllore abilita fisicamente l’esecuzione delle istruzioni in base

alle decisioni prese dallo scheduler. Inoltre, in modelli architetturali quali i

controllori paralleli, controllore e scheduler vengono fusi in un’unica entità.

Infine, l’adozione di linguaggi di specifica simili al C porta alla necessità

di definire opportunamente una IR capace di rappresentare il parallelismo.

Questa IR deve essere attentamente definita anche in base alla particolare

architettura finale scelta.

Il presente lavoro di tesi propone una metodologia di progetto, integrata nella

sintesi ad alto livello, per la costruzione di un controllore parallelo capace di

gestire automaticamente il parallelismo presente nell’applicazione. Il linguag-

gio di specifica utilizzato è simili al C. Quindi, verrà definita una nuova IR per

supportare la rappresentazione del parallelismo. L’idea alla base di questo

lavoro consiste nella costruzione del controllore attraverso un approccio dal

basso verso l’alto. In questo modo, la costruzione della FSM centralizzata

non è più necessaria, evitando quindi i problemi legati alle tecniche di decom-

posizione. Il controllore parallelo proposto è in grado di abilitare l’esecuzione

di ciascuna istruzione non appena le operazioni da cui essa dipende sono state

eseguite e non appena i vincoli sulle risorse lo permettono. Tale controllore è

inoltre in grado di identificare autonomamente le condizioni da rispettare per

abilitare correttamente l’esecuzione delle istruzioni, senza l’ausilio di alcuna

decisione dello scheduler. Tali condizioni vengono ricavate tramite un’analisi

della IR proposta. Questo significa che parte dei compiti dello scheduler è

stata spostata nei compiti del controllore. In particolare, generalmente lo

scheduler prima calcola le priorità per le istruzioni, indotte dalla suddetta
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relazione d’ordine; dopodiché assegna un passo di controllo per l’esecuzione

di ciascuna istruzione. Nell’architettura proposta, invece, quest’ultimo com-

pito viene effettuato a run-time dal controllore, mentre lo scheduler continua

a svolgere staticamente solo il primo. Quindi, lo scheduler associa le prior-

ità alle istruzioni a compile-time, mentre il controllore attiva dinamicamente

l’esecuzione delle operazioni sulla base delle informazioni ottenute tramite

l’analisi della IR proposta. Dato che il binding delle risorse viene effettua-

to staticamente, può succedere che diverse istruzioni indipendenti vengano

associate alla stessa risorsa. In queste situazioni le priorità calcolate statica-

mente vengono sfruttate per implementare un meccanismo di risoluzione dei

conflitti.

Il controllore proposto non è formato da una serie di macchine a stati finiti

comunicanti. Esso è invece più vicino ad una descrizione comportamentale

della specifica, composta da diversi moduli che interagiscono secondo uno

schema basato su token, che rappresenta un paradigma di comunicazione

molto semplice. Questa scelta evita di ricadere nel problema dell’overhead

di comunicazione. Infine, per poter rendere il controllore in grado di iden-

tificare autonomamente ed automaticamente le condizioni per la corretta

abilitazione delle operazioni ha portato a dover affrontare un altro problema,

quello della formalizzazione del parallelismo. È infatti necessario capire come

l’informazione sul parallelismo, ottenuta dall’analisi della IR proposta, possa

essere formalizzata in modo tale da poter essere compresa e gestita in modo

automatico dal controllore.

I principali contributi offerti dal presente lavoro di tesi possono essere rias-

sunti in:

� è stata proposta una nuova IR, chiamata Parallel Controller Graph

(PCG), per risolvere il problema della rappresentazione del parallelis-
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mo. Il PCG è stato ottenuto tramite l’analisi di un’altra ben nota IR,

ovvero il Program Dependence Graph (PDG) [22]. Il PDG è stato scel-

to come punto di partenza in quanto mostra le cosiddette dipendenze

minime di un programma. Il PCG estende il PDG tramite l’aggiunta

dell’informazione minima sul flusso di controllo.

� è stata svolta una analisi del PCG per risolvere il problema del-

l’identificazione del parallelismo. Tale analisi è stata condotta con lo

scopo di individuare l’insieme minimo delle condizioni da soddisfare per

abilitare correttamente l’esecuzione di una istruzione.

� sono state formalizzate le informazioni ottenute dall’analisi del PCG,

risolvendo il problema della formalizzazione del parallelismo. In parti-

colare, dato che il controllore è in grado di gestire segnali, l’informazione

circa le suddette condizioni è stata formalizzata per ciascuna istruzione

come composizione di segnali. Tale composizione di segnali prende il

nome di Funzione di Attivazione (AF). La funzione di attivazione

associata ad una determinata istruzione indica quando essa può essere

eseguita, ovvero quando le suddette condizioni sono rispettate.

� è stato proposto un controllore parallelo per risolvere il problema

dello sfruttamento del parallelismo. La definizione di questa innovativa

architettura è stata effettuata introducendo una serie di moduli intera-

genti, che sono stati definiti. Dopodiché, il controllore parallelo è stato

ricavato tramite un approccio dal basso verso l’alto.

� sono state proposte diverse ottimizzazioni per ridurre la logica allo-

cata per l’implementazione delle funzioni di attivazione.

Il lavoro di tesi è organizzato nel modo seguente. Nel Capitolo 1 viene in-

trodotto il problema della sintesi ad alto livello e vengono descritti i modelli

architetturali più comuni. Il Capitolo 2 fornisce una panoramica sul corrente

stato dell’arte circa le tecniche di sintesi ad alto livello, focalizzando l’atten-

zione su tre principali aspetti: linguaggio adottato per la descrizione della
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specifica, dominio applicativo ed architettura finale. Nel Capitolo 3 viene

presentato il controllore parallelo proposto. In particolare, viene introdotto

il Parallel Controller Graph proposto come IR, vengono formalizzate le fun-

zioni di attivazione, ed infine vengono proposte una serie di ottimizzazioni

applicabili al controllore parallelo. I risultati sperimentali sono riportati nel

Capitolo 4. Infine, il Capitolo 5 riporta le conclusioni e fornisce suggerimenti

per possibili lavori futuri che estendano le capacità del controllore parallelo.

Risultati Sperimentali e Conclusioni

La metodologia proposta per la creazione del controllore parallelo è stata im-

plementata in C++ all’interno del framework PandA [5]. Dopodiché, sono

state effettuate una serie di simulazioni utilizzando diversi benchmark per

valutare le performance in termini di cicli di clock. In particolare, tramite

la sintesi ad alto livello di tali benchmark, effettuata utilizzando il control-

lore parallelo come architettura obbiettivo, si è ottenuta la descrizione RTL

delle specifiche. La sintesi è stata poi ripetuta utilizzando come architettura

obbiettivo una FSM monolitica. Le descrizioni RTL ottenute sono state sim-

ulate tramite Icarus Verilog [4] ver. 9.3. I risultati delle simulazioni hanno

mostrato che il controllore parallelo riesce a sfruttare il parallelismo stabilen-

do dinamicamente quali istruzioni mandare in esecuzione. Si è potuto notare

che per le specifiche puramente dataflow, in cui tutto il parallelismo è iden-

tificabile staticamente, le performance ottenute con le due architetture sono

identiche. Questo dimostra che il meccanismo di comunicazione basato su

token non comporta un overhead di comunicazione. I risultati ottenuti invece

per le applicazioni con potenziale parallelismo hanno mostrato un evidente

miglioramento delle prestazioni, anche per quelle applicazioni contenenti re-

gioni parallele di dimensioni sbilanciate, e dunque del tutto ingestibili statica-
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mente. Oltre all’analisi delle performance, è stata effettuata una valutazione

dell’area occupata attraverso la sintesi RTL effettuata tramite Xilinx ISE [6]

ver. 11.1 su una FPGA Virtex-5 XC5VLX330T. I risultati hanno mostrato in

questo caso un incremento dell’area occupata. Tuttavia, le ragioni di questi

risultati possono essere facilmente spiegate. Infatti, il principale limite di

questa prima versione del controllore parallelo è quella di non poter contare

sulle ottimizzazioni circa l’allocazione dei registri, come invece accade per la

FSM.

In conclusione, il controllore parallelo ha mostrato risultati soddisfacenti nel-

l’estrazione del parallelismo. Tuttavia, è possibile suggerire una serie di ot-

timizzazioni che possono ulteriormente migliorare tale architettura ed esten-

derne le capacità. Tali suggerimenti possono essere schematizzati nel modo

seguente:

� le ottimizzazioni descritte nel Capitolo 3, ovvero trasformazione in for-

ma Static Single Assignment (SSA), semplificazione algebrica, riduzione

tramite analisi del flusso e trasformazione in forma Prodotto di Somme

(POS), potrebbero essere formalizzate ed implementate. Questo por-

terebbe ad una riduzione della logica necessaria per implementare le

funzioni di attivazione, riducendo di conseguenza il numero di registri

richiesti.

� l’allocazione dei registri può essere migliorata applicando delle tecniche

di ottimizzazione. Tuttavia, le tecniche di ottimizzazione standard

potrebbero risultare inadeguate per il controllore parallelo, in quanto

l’esecuzione concorrente delle istruzioni stabilita a run-time complica

l’analisi per il riuso dei registri. Quindi, potrebbe essere necessario

proporre nuove tecniche di ottimizzazione.
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� l’allocazione ed il binding delle risorse sono attualmente effettuati nello

stesso modo per la FSM e per il controllore parallelo. In particolare, il

controllore parallelo sfrutta gli algoritmi di allocazione e binding svilup-

pati per l’FSM. Tali algoritmi sono svolti a partire dalle informazioni

contenute nel Control Flow Graph (CFG). Poichè il CFG fallisce nel

riconoscere tutto il parallelismo, potrebbe succedere che venga allocato

un numero di risorse di un certo tipo inferiore al numero di istruzioni

indipendenti che hanno bisogno di quel tipo di risorsa per essere es-

eguite, limitando lo sfruttamento del parallelismo. Inoltre, diverse

istruzioni indipendenti potrebbero essere riconosciute come dipendenti

nel CFG, e dunque associate alla stessa unità funzionale. Per queste

ragioni, dovrebbero essere sviluppati degli algoritmi per l’allocazione

ed il binding delle risorse basati sull’analisi del PCG.

21



ESTRATTO IN LINGUA ITALIANA

22



Introduction

Over the years, the proposed methodologies for the design of digital circuits

moved to higher and higher abstraction levels, leading to High-Level Syn-

thesis (HLS). The term “high-level” is attributed to that class of synthesis

techniques implementing a behavioral specification directly into hardware,

pointing out the absence of any information about the structural description

of the specification. Usually, the architectural model resulting from such

process is composed of two parts: a datapath, that includes a set of Register-

Transfer Level (RTL) modules, properly connected to each other, to perform

the operations, and a controller, that provides the logic to issue such opera-

tions.

Since 1974, when it was conceived, HLS had long time of improvements,

concerning, for example, the input language adopted to describe the spec-

ification, the final architecture proposed and the support for the synthesis

of specifications belonging to different application domains. Despite the im-

provements in HLS, however, the RTL is still the dominant specification

and synthesis level. This is why many aspects must be still defined and

formalized. For example, early HLS methodologies were purely domain-

specific approaches, giving good results mainly in Digital Signal Processing

and dataflow-oriented applications domains. From mid nineties researchers

started to concentrating also on control domain. Nowadays, despite some
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vendors claim their HLS tool effectiveness in all the domains, limited users

acceptance degree shows the need of a general methodology unifying such

domains.

Among the HLS needs, this thesis work focuses on the problem of parallelism

extraction, and on those related. In the following such issues will be present-

ed through some considerations, that will show the current scenario.

From early 2000, C-like programming languages become the standard in HLS

as specifications description. C-like languages adoption allows code restruc-

turing by means of compiler-based transformations and optimizations, lead-

ing enormous advantages in terms of quality of synthesis results. However,

due to their sequential nature, such languages do not support explicit rep-

resentation of the inherent parallelism in the specification, thus introducing

the parallelism identification problem. Some language extensions were pro-

posed to address this problem. An example of such extended languages is

Handel-C [2], that includes non-standard instructions to control hardware in-

stantiation with an emphasis on parallelism. Handel-C, however, as the other

extensions proposed for high-level programming languages, is not supported

by methodologies for the automatic insertion of non-standard instructions.

Hence, they must be added by hand, increasing the design effort. A more

general approach to address the parallelism identification problem could con-

sists in producing a proper representation of the specification, exposing the

available parallelism. However, this leads to another problem, that is the

parallelism representation. Usually, graphs are used as Intermediate Repre-

sentation (IR), since they provide a good way to analyze the specification,

clearly showing its properties. Hence, the parallelism identification problem

can be addressed by finding a proper IR that shows the available parallelism,

i.e. by addressing the parallelism representation problem. Such problems
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may be exasperated by an inappropriate choice of the final architecture. In-

deed, even if it were possible to build a proper IR identifying all the inherent

parallelism, the final architecture may be either not able to exploit it or too

expansive in terms of area. Consider, for example, a specification containing

two parallelizable loops. When a datapath and a centralized FSM are chosen

to compose the final architecture, there are some feasible implementations.

A first one could consists in sequentializing the loops, thus not exploiting

the parallelism. Another one, instead, could consists in realizing an FSM

in which the states are obtained as combinations of operations that can be

simultaneously executed. Such solution does not restrict the parallelism ex-

ploitation, but results in an explosion of the number of states, resulting too

expansive in terms of area. Hence, a third aspect of the parallelism problem

has been identified, that is the parallelism exploitation.

High-level synthesis is generally performed through several sub-tasks, such

as instruction scheduling, resources binding, or datapath and controller syn-

thesis. Each of these sub-task is NP-complete. The scheduling defines an

ordering relation over the set of instructions by associating a priority to each

operation. Then, it uses the defined priorities for assigning to each instruc-

tion the control step in which it must be executed. The binding associates

each instruction with the functional unit where it will be executed. The de-

cisions taken in these phases affect timing performances, possibly restricting

parallelism exploitation. For example, when multiple independent instruc-

tions are bound on the same resource, they must be scheduled in different

control steps, sequentializing their execution. On the other side, when multi-

ple independent instructions are bound on different resources, their execution

must be sequentialized if they are scheduled in different control steps. A good

scheduler should allow the execution of an instruction as soon as possible,
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i.e. as the corresponding resource is available and the instructions which

it depends on have been executed. However, the clock cycle in which such

constraints will be satisfied cannot be always established in advance. In-

deed, several factors, such as branch conditions evaluations, are unknown at

compile time. Moreover, allowing one instruction to be possibly executed in

different control steps often leads to the explosion in the number of states of

the controller.

As above mentioned, the final architecture is usually composed of a datapath

and a controller, and the most common model for the controller is the FSM.

However, several FSM-based architectural solutions have been proposed to

implement the controller, such as centralized Finite State Machines (FSMs),

distributed FSMs, parallel FSMs and hierarchical FSMs. Among such pro-

posals, parallel FSMs address the parallelism problem by implementing a

controller structure composed of communicating sub-controllers. Such ar-

chitectures are event-driven. Sub-controllers communicate through message

passing, handled by proper communication and synchronization protocols.

The parallel controllers peculiarity is that they are responsible also for the

scheduling. Shifting the scheduling phase at run time allows to exploit the

parallelism. However, such architectures present a significant communication

and synchronization overhead. Moreover, since they are usually obtained by

FSM decomposition, the overall area increases. FSM decomposition is a

top-down approach that, starting from a centralized machine, divides it in-

to sub-machines. Often, non-overlapping decomposition results impossible.

Hence, in such cases, portions of circuit must be duplicated.

From these considerations, it is possible to infer some general conclusions.

First of all, the problem of extracting parallelism in HLS is composed of

three sub-problems: identification, representation and exploitation. Several
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aspects must be considered to address the entire problem. For example, the

definition of the final architecture represents a crucial aspect for parallelism

exploitation. The architectural solutions proposed so far to address such

problem result too expansive. Moreover, the designer should take into ac-

count that the controller model definition and the scheduling task are tightly

connected problems. Indeed, the tasks performed by these two components

are very close, since the latter must establish when an instruction has to be

executed, while the former is responsible for enabling instructions execution,

according to the decisions taken by the scheduler. Moreover, in architec-

tural models such as parallel controllers, the controller and the scheduler are

merged in a single entity. Finally, the adoption of C-like input languages lead

to the need of a proper IR to represent the parallelism. Such IR must be

carefully defined according with the choices made for the final architecture.

This thesis work proposes an HLS design methodology to build a parallel

controller structure able to handle with the parallelism problem. The input

language adopted to describe the specification is, as common, C-like. How-

ever, a novel IR will be defined to represent the inherent parallelism. The

idea at the basis of this work is that the controller can be obtained with a

bottom-up approach. In this way, the entire FSM construction is not needed

anymore, avoiding also the problems related to decomposition techniques.

The proposed parallel controller is able to enable an instruction execution as

soon as the instructions which it depends on have been executed and resource

constraints are satisfied. It is able to automatically identify the conditions

that enable instructions execution on the basis of any scheduler decision.

Such conditions are obtained by the analysis of the proposed IR. This means

that part of the scheduler’s tasks is shifted on the controller. More in detail,

the scheduler has to compute the priorities for the instructions, induced by
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the pre-defined order relation. Then, it has to assign a control step in which

each instruction will be executed. In the proposed architecture, this last task

is performed at run-time by the controller, while the scheduler statically per-

forms only the first one. In conclusion, the scheduler computes the priority

associated with each instruction at compile-time, while the controller dynam-

ically activate instructions execution on the basis of the information obtained

from the analysis of the proposed IR. Then, since the resources binding could

bound multiple independent instructions on the same resource, the statically-

computed priorities are used to establish which of them will be executed as

first, implementing a mechanism for conflicts resolution.

The proposed controller structure is not composed of a set of communicating

local FSMs. It is instead closer to a behavioral description of the specification

composed of several modules, interacting according to a token-based scheme,

which is a very simple communication paradigm. This choice prevents to in-

cur in the communication overhead problem. Finally, making the controller

able to identify by itself the conditions that enable instructions execution

led to face another aspect of the parallelism issue, that is the parallelism

formalization. Such problem consists in how to formalize the information

about the parallelism, obtained from the analysis of the proposed IR, in such

a way to make the controller able to understand and automatically manage

this information.

The main contributions of this thesis work can be thus summarized as follows:

� a new IR, namely the Parallel Controller Graph (PCG), has

been proposed to address the parallelism representation problem. The

PCG has been obtained from the analysis of a well known IR, i.e.

the Program Dependence Graph (PDG) [22]. The PDG shows the

so called minimum control and data dependencies of a program. The

PCG extends the PDG with the addition of the minimum control flow
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information.

� an analysis of the PCG has been performed to address the paral-

lelism identification problem. Such analysis aims to identify the mini-

mum set of conditions that must be satisfied to enable an instruction

execution.

� the information obtained from the analysis of the PCG has been formal-

ized, addressing the parallelism formalization problem. More in detail,

since the controller is able to manage signals, for each instruction, such

information has been formalized as a composition of signals, indicating

when the execution can start, i.e. when the above mentioned conditions

enabling the instruction execution are satisfied. Such composition of

signals defines a function, namely the Activation Function (AF),

associated with each instruction.

� a parallel controller structure has been proposed, addressing the

parallelism exploitation problem. This innovative controller structure

led to the introduction of different interacting modules, that have been

defined. After that, the parallel controller has been obtained through

a bottom-up approach.

� a series of optimizations have been proposed to reduce the logic

allocated to implement the activation functions.

The thesis is organized as follows. In Capitolo 1, the high-level synthesis

problem is introduced, and the most common architectural models are de-

scribed. Capitolo 2 provides an overview of the current state of the art of the

high-level synthesis techniques, focusing on three main features: the language

adopted for the specification description, the application domain and the fi-

nal architecture. In Capitolo 3, the proposed parallel controller is presented.

In particular, the proposed Parallel Controller Graph is introduced, Activa-

tion Functions are formalized, and a series of optimization techniques that
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can be applied to the parallel controller are finally presented. Experimen-

tal results are reported in Capitolo 4. Finally, Capitolo 5 draws concluding

remarks and possible future works are proposed to extend its capabilities.
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Preliminaries

In this Chapter some preliminary concepts, at the basis of this thesis work,

will be presented. However, for a fully comprehensive theoretical treatment

on such topics, the reader should refer to specific works.

The Chapter is organized as follows: in Section 1.1 the high-level synthesis

(HLS) process is introduced, then Section 1.2 presents the most widespread

architectural model (FSMD) produced by means of HLS. The subsequent

sections, from Section 1.3 to 1.7, aim to describe the various phases in the

synthesis flow, according to the typical flow model proposed in Figure 1.3, as

grouped in three main sections: front end (Section 1.4), synthesis (Section

1.5, 1.6), back end (Section 1.7).

1.1 Introduction to High Level Synthesis

High-Level Synthesis (HLS), also known as behavioral synthesis or algorith-

mic synthesis, is a design process that, given an abstract behavioral specifi-

cation of a digital system and a set of constraints, automatically generates a

Register-Transfer Level (RTL) structure that implements the desired behav-

ior [55]. In Table 1.1, the typical HLS inputs and outputs are shown; their

functionalities will be presented in the following.
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INPUT OUTPUT

- Behavioral Specification - RTL Implementation Structure

- Design Constraints (Datapath)

- Optimization Function - Controller (FSM)

- Resource Library

Table 1.1: Typical HLS inputs and outputs

Inputs:

� The behavioral specification consists in an untimed or partially timed al-

gorithmic description in high-level language (such as C language), that

is transformed in a fully timed and bit-accurate RTL implementation

by the behavioral synthesis flow.

� The design constraints impose some limitations to the synthesis flow;

for example they can specify the upper bound to the number of dif-

ferent instances of each resource, the cost limitations, the minimum

performance level in terms of latency of the specification execution,

the maximum area occupancy or the power consumption limit. In gen-

eral, the design constraints represent targets that must be met for the

design process to be considered successful.

� The optimization function is a cost function whose argument represents

the design target to optimize. The most common features desired to

be maximized/minimized are execution time, area and power consump-

tion. Clearly the optimization function, as it generally happens, can

depend on two or more variables. In such case, it is needed to manage

a multi-objective optimization process, where a global optimum solu-

tion could not exists at all. Instead, a set of designs, all satisfying the

constraints, for which is not possible to establish who is better, can co-

exist. Given a set S of feasible solutions, all functions of n parameters,

we say that s∈S is Pareto optimal if there not exists another solution
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s’∈S that improves one or more parameters without worsen at least

another one.

� The resource library contains a collection of modules from which the

synthesizer must select the best alternatives matching the design con-

straints and optimizing the cost function.

Output: it is a register transfer level description of the designed architec-

ture, usually consisting of

� a datapath is the entity which performs the computation between pri-

mary inputs, which provide the data to be elaborated, and primary

outputs, which return the results of computation.

� a controller is the entity which manages the computation, handling the

data flow in the data path by setting control signals values, such as the

FUs, registers and muxes inputs selection (see Figure 1.1). Controller

inputs may come from primary inputs (control inputs) or from data

path components (status signals as result of comparisons). It deter-

mines which operations have to be executed at each control step and

the corresponding paths to be activated inside the datapath.

Different controller implementations approaches are feasible; generally it is

implemented by hardwired logic gates, but it is also possible to build a pro-

grammable controller using the memory of specific custom processors. A

common model to represent the controller is the Finite State Machine (FSM).

The resulting architectural model, detailed in the following section, is known

as FSM and Datapath (FSMD).

1.2 FSMD Architectural Model

The most common architectural model in high level synthesis is the finite

state machine with datapath, as shown in Figure 1.1.
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Figure 1.1: Typical Architecture composed of a Finite State Machine (FSM) and

a Datapath.

1.2.1 Data Path

The data path includes a set of hardware resources, i.e. storage, functional

and interconnection units, and defines how those modules are connected each

other. All the RTL components can be allocated in different quantities and

types, and can be customly connected at design time through different inter-

connection schemes, e.g. mux or bus based. Different architectural solutions

could be adopted, allowing optimizations such as:

� multicycling: if each instruction requires exactly one clock cycle, then

the clock cycle is lower-bounded by the higher required execution time;

to overcome this issue, expensive instructions in terms of delay are

executed through subsequent clock cycles;

� chaining: it is another solution to the previous problem; instead of

reducing the clock cycle, instructions requiring less time are executed

subsequentially in the same clock cycle;

� pipelining: instructions are divided in stages, and the clock cycle set to

the time required to execute the slower one; if stages are obtained in
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a way such that there is no concurrency on the resources that execute

them, than different stages of different instructions may be executed in

the same clock cycle.

Formally, a data path DP can be described as a graph DP (M,T, I), where

� M = Mo∪Ms∪Mi is the set of nodes, corresponding to the DP modules,

i.e. instances of library components, where

– Mo is the set of functional units such as adders, ALUs and shifters;

– Ms is the set of storage elements, as registers, register files and

memories;

– Mi is the set of interconnect elements such as tristates, buses and

multiplexers;

� I ⊆M ×M is the set of graph’s edges, i.e. interconnection links.

1.2.2 Finite State Machine

The Finite State Machine (FSM) represent one of the most common models

applied in architectural synthesis. Even though they can describe different

kinds of sequential machines, FSMs are typically used for synchronous ones.

Synchronous machines are characterized by the presence of an impulsive

signal, i.e. the clock, propagated over the whole circuit, that determines

the moment in which the inputs must be evaluated to possibly cause the

transition from one state to another of the FSM. Hence, the order in which the

inputs are received does not affect the execution, provided they come within

the clock cycle. Instead, in the case of asynchronous machines, a global

temporization does not exists, and an explicit communication protocol is

required to ensure the computation correctness. The asynchronous machines

can be classified in two main categories: level machines, in which the system

state transitions are caused by changes in the level of the input variables,

and impulsive machines, in which the presence or absence of impulses causes
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such transitions.

Formally, a finite state machine is defined as the tuple M = (I, O, S, S0, R),

where

� I represents the input alphabet,

� O denotes the output alphabet,

� S denotes the set of states,

� S0 denotes the initial state,

� R denotes the global relation.

The global relation R is defined as R ⊆ S × I × S × O → {0, 1} such that

R(i, u, s, t) = 1 iff given as input i = (i1, i2, ..., in) ∈ I, M goes from the

current state s = s1, s2, ..., sk ∈ S to the next state t = t1, t2, ..., tk ∈ S

producing as output o = o1, o2, ..., ok ∈ O
The main FSM controller components are:

� a state register (SR), that stores the current state of the FSM model

describing the controller’s operation;

� the next state logic, that computes the next state to be loaded in the

SR;

� the output logic, that generates the control signals.

State-Transition Graph

A finite state machine M can be represented by its corresponding state-

transition graph G(S,E) where

� nodes s ∈ S are the states of M,

� edges e ∈ E ⊆ S × S denote transitions between states.
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State-Transition Relation

Given the global relation R and an input i,the state-transition relation de-

termines the relationship between current state and next state. It is defined

as ∆(i, s, t) = ∃oR(i, o, s, t). The state-transition function is usually denoted

by δ(i, s, t).

Output Relation

Given the global relation of M, the initial state S0 and an input i, the output

relation gives the output value of M. It is defined as Λ(i, o, s) = ∃tR(i, o, s, t).

The output function is usually denoted by λ(i, o, s).

Starting from the above definitions, it is possible to classify the different

types of FSMs in three classes:

� Autonomous - The input alphabet is the empty set (e.g. counters).

� State based - Also known as Moore’s machines, their output relation Λ

depends only on the current state.

� Transition based - Also known as Mealy’s machines, their output rela-

tion Λ depends on input values also.

The classical logic implementation of a FSM stores the states in storage ele-

ments (registers) while state-transition and output functions are synthesized

in combinatorial logic. The typical structure of a synchronous sequential

circuit, called Huffman model, is shown in Figure 1.2.

Finite State Machine with Data Path

The FSM model can be reasonably handled where variables are used to

represent the different states. For instance, a 16-bit variable can represent

216 = 65536 states that needs to be stored in storage devices such as registers

or register files. Adopting such encoding, the model can be defined as:

� a set V ar of variables representing the states;
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Figure 1.2: Sequential circuit’s Huffman model.

� a set Exp = {∆(x, y, z, ...)|x, y, x, ... ∈ V ar} of functions;

� a set Asg = {X = e|X ∈ V ar, e ∈ Exp} of assignments;

� a set Stat = {(a, b)|a, b ∈ Exp} of state variables, i.e. a relation among

the Exp set.

Now the Finite State Machine with Data Path can be defined as the tuple

< S, I ∪B,O ∪ A,∆,Λ >, where:

� S,∆,Λ denote the same sets defined for a FSM;

� I ∪B denotes the input language; it is an extension of the set I defined

for the FSM, in order to include some of the state variables b ∈ B ⊆
Stat;

� O∪A represents the output language, including some assignments a ∈
A ⊆ Asg

FSMDs can be adopted both to describe a design at RT level, or, at higher

levels of abstraction, to represent a producer/consumer process where inputs

are consumed and outputs are produced. Complex systems could be viewed
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as processes compositions, where each process is modeled as FSMDs and

communicates with the other ones. Communication is intent to be between

control units, between data paths and between control unit and data path.

The number of signals and the temporal relations between them during com-

munication define a protocol, e.g. request-acknowledge handshaking protocol

[7]. If the signals are managed by a unique clock, the system is said to be

synchronous. On the contrary, if the clock rates are different, the system is

said to be asynchronous.

1.3 High Level Synthesis Flow Overview

As mentioned above, the high-level synthesis is typically composed of differ-

ent tasks, as shown in Figure 1.3. There exists many approaches in literature

that perform these activities in different orders, using different algorithms.

In some cases, several tasks can be combined together or performed itera-

tively to reach the desired solution. In all the cases, the HLS flow steps can

be grouped in three main macro-tasks:

� Front End:

performs lexical processing, algorithm optimization and control/dataflow

analysis in order to build and optimize an internal representation (IR)

to be used in the subsequent steps. Internal representations describe

the specification underlining specific properties, on which a given task

of the synthesis phase will focus on.

� Synthesis:

in this phase the design decisions are taken, to obtain a RTL descrip-

tion of the target architecture that satisfies the design constraints. The

number and type of hardware modules is established and each instruc-

tion is scheduled and assigned to one of the available resources that

can execute it.

� Back End:
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the resulting design is derived and reproduced in a hardware description

language.

Figure 1.3: Typical HLS flow.

In the next sections, each task of the HLS-flow will be presented. Moreover

the controller synthesis step will be deepened, since it is the focus of this

thesis work.
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1.4 Front End

An Intermediate Representation (IR) can be described as an interface be-

tween a source language and a target language. Such notation should de-

scribe source code properties independently with respect to the source/target

languages details. Given as input a behavioral specification, the front end

translates it in a proper internal representation, performing lexical process-

ing, algorithm optimization and control/dataflow analysis.

1.4.1 Lexical Processing And Intermediate Represen-

tation Creation

The first step in the HLS flow consists in the source code parsing, that

translates the high level specification into an internal representation (IR), as

common in conventional high level language compilation, to abstract from

language details. This is why it is common to refer to this step (together

with the following one) as compilation phase. The resulting IR is usually

a proper graph representation of the parsed code, and can be optimized

or transformed producing several different additional representations of the

same specification, as described in Section 1.4.3.

1.4.2 Control/Dataflow Analysis and Algorithm Opti-

mization

The previous step provides a formal model that exhibits data and control

dependences between the operations. Such dependencies are generally repre-

sented in a graph notation: the most widely adopted ones, that will be later

discussed in Section 1.4.3, are the CFG (Control Flow Graph), the DFG

(Data Flow Graph) and the CDFG (Control Data Flow Grah), but several

other ones already exist. The control/dataflow analysis is a prerequisite for

the subsequent steps, but it also allows further optimizations to better exploit

the available parallelism. These optimizations are the same ones widely used
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in optimizing and parallelizing compilers, such as dead code elimination and

constant folding. Between these, one of the most impacting in this work is

the Static Single Assignment (SSA) form transformation of the source code,

that will be presented in Section 1.4.4, since it is common to refer to code

translated in SSA as a kind of internal representation.

1.4.3 Graph-Based Representations in High Level Syn-

thesis

In high level synthesis different graph based IRs are used, because of differ-

ent tasks could take advantage of using a specific representation that better

express a specific source code property. Starting from the definition of graph,

this section will introduce the most common graph-based IRs used in HLS.

Graph

A graph G(V,E) is characterized by

� a set of nodes V; in HLS such vertices v ∈ V usually denote instructions,

or sets of instructions to be executed.

� a set of edges E; each edge e ∈ E represents a relationship between the

source and the target nodes.

Control Flow Graph

The Control Flow Graph (CFG) is a graph modeling a (sub)program [13].

This kind of internal representation is commonly used by compilers for its

suitability in static analysis, such as liveness analysis. Each node of the CFG

represents an instruction, and each edge p→ q, oriented from p to q, denotes

that the instruction q can follow p in the execution order: p is said to be

a predecessor of q (p ∈ Pred(q)) and similarly that q is a successor of p

(q ∈ Succ(p)).
The entry point is a node without predecessors: Pred(entry) = ∅.
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Similarly, the exit point is a node without successors: Succ(exit) = ∅.
Non-conditional instructions have exactly one successor, while conditional

ones have two or more successors and in the CFG they correspond to bifur-

cation points.

Finally a node with two or more predecessors is a confluence point.

In Figure 1.4 the CFG of one possible implementation of Euclid’s algorithm

is presented as an example.

1: while m > 0 do

2: if n > m then /* swap */

3: temp := m

4: m := n

5: n := temp

endif

6: m := m− n
endwhile

7: return n

Figure 1.4: Pseudo-code and CFG of Euclid’s algorithm

The CFG may also be viewed as the state-transition graph of a Finite State

Automaton (FSA) that recognizes all the execution traces of the program.

In Figure 1.5 the FSA representation of Euclid’s algorithm CFG is shown.

Such automaton has a terminal alphabet I, i.e. the set of all the instruction

labels, and recognizes the regular language L(A) that is the set of strings

x ∈ I∗ which label a path from the initial state of the graph to a final state.

Those paths represent the potential execution traces of the (sub)program.
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Figure 1.5: FSM representation of Euclid’s algorithm CFG.

The language L(A) could be expressed by a regular expression (RE).

A RE for the Euclid’s algorithm example is: 1(2(345|ε)6)∗7 .

It’s important to note that CFGs may be constructed at different granularity

levels, such as instruction level or basic block level.

Control Dependencies Graph

The Control Dependencies Graph (CDG) is the graph representation of the

control dependence relation among the nodes of the CFG. Let x be a con-

ditional instruction in the CFG, and v, u ∈ Succ(x). A node y is control

dependent on x via v if :

� every path x→ v 99K exit traverses y ,

� ∃ a path x→ u 99K exit that does not traverse y.

Such control dependence is expressed in the CDG with the presence of an

oriented edge x→ y.

It is also possible to define the control dependence starting from the Post-

Dominance relation, dual concept of the Dominance relation.

Dominance and Post-Dominance Relations

Given a flow graph G, a node v dominates a node n if m occurs before n

on every directed path from the entry node to n. In other words each trace

reaching n cannot avoid to execute v before n. The dominance relation is re-

flexive: every node dominates itself. It is also transitive and anti-symmetric,
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thus the dominance relation is a partial order, and it is representable as a tree.

Dually, a node w is post-dominated by a node n if every directed path from

w to the exit node contains n. The post-dominance relation is irreflexive:

a node never post-dominates itself. Computing the post-dominance relation

over a CFG G is the same of computing the dominance relation over the re-

versed graph G’, thus the post-dominance tree coincides with the dominance

tree of G’.

Figure 1.6: Euclid algorithm dominance

tree.

Figure 1.7: Euclid’s algorithm post dom-

inance tree.

Once introduced dominance and post-dominance relations, the control de-

pendence relation can be defined as follows. Given a control flow graph G

and two nodes x, y ∈ G, y is said to be control dependent on x if and only if:

� y post-dominates a successor of x;

� y does not strictly post-dominates x.

Saying that y is control dependent on x means that x is a point in which a

divergence in the execution flow can occurr: there are execution paths to the

exit node containing the node y, others that bypass it. As said before each

edge x→ y in the CDG represents that y is control dependent on x. Figure

1.8 reports the CDG of the Euclide’s algorithm example.
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Figure 1.8: Euclid’s algorithm CDG.

Data Flow Graph

Given a sequence of instructions I and two instructions i, j ∈ I, where i < j

in the sequence ordering, if i defines or uses a variable defined or used by

j, there is a data-dependence between them. It is possible to identify four

types of data dependencies:

� Flow dependencies, or Read After Write (RAW)

� Anti dependencies, or Write After Read (WAR)

� Output dependencies, or Write After Write (WAW)

� Input dependencies, or Read After Read (RAR)

Input dependencies mean that an instruction i is RAR dependent on an

instruction j, but it does not need to wait until j completion to be executed.

As a result RAR dependencies do not affect the scheduling. Anti and Output

dependencies could constrain the scheduling of dependent instructions, but

they can be removed using techniques such as register renaming [42]. For

this reason, we often refer to RAW dependencies as “true”dependencies. The

Data Flow Graph (DFG) is a graph representing such data-dependencies [31],

where:
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� nodes represent operations;

� edges represent the dependencies described above.

Defining a Basic Block (BB) as a sequence of instructions,starting with a la-

bel and ending with a jump, not containing any other labels nor jumps, each

BB of a program has a DFG associated to. Usually DFG are constructed

starting from a BB, thus not considering conditional constructs (as if-then-

else constructs). DFGs are used to represent data-paths and to accomplish

average(a,b,c,d)

1: temp1 := a+ b

2: temp2 := c+ d

3: temp := temp1 + temp2

4: avg = temp/4

Figure 1.9: Pseudo-code and DFG of a program that computes the average of 4

numbers

scheduling tasks. In Figure 1.9 is reported the pseudo-code of a function per-

forming the average of four numbers (taken as input), and the corresponding

CFG.

Data Dependencies Graph

Even the Data Dependence Graph represents data dependencies between

instructions, but unlike the CFG it does it at a higher level, representing a

subprogram rather than a BB. The next example refers to a subprogram that

takes as input two estimates (x1, x2), their corresponding expected values

(y1, y2) and a threshold t, computes an error function and returns true if

it is lower than the threshold. Pseudo-code and the corresponding DDG are
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shown in Figure 1.10. Since both DDG and DFG represent data-dependencies

that express the data-flow, often we refer at them both as DFG.

lowError(x1,x2,y1,y2,t)

1: d1 := y1− x1

2: d2 := y2− x2

3: p1 := d1 ∗ d1

4: p2 := d2 ∗ d2

5: err := p1 + p2

6: if err < t then

7: low := true

endif

8: low := false

9: return low

Figure 1.10: Pseudo-code and DDG of “lowError”function

Control Data Flow Graph

Control Data Flow Graphs (CDFGs) are built to capture both control and

data flows, in a unique structure [76]. The CDFG is obtained starting from

the CFG and the DFGs of a given program. Singe DFGs generally refer to

basic blocks, the starting CFG is computed at basic block granularity level. It

is common to represent CDFGs including additional triangle-shaped nodes,

that represents bifurcation and confluence points in the control flow. In

Figure 1.11 the CDFG of the “lowError“ function example is reported; in

the graph it is possible to identify the preliminary basic block partitioning

of the original code.
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Figure 1.11: CDFG of the “lowError”function example.
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Sequencing Graph

As the CDFG does, the sequencing graph describes both control and data

dependencies, modeling control structures as diramations and loops with a

hierarchical structure. It is possible to define a sequencing graph as a graph

hierarchy, formed by several subgraphs (models) represented as DFGs that

may be reached by different nodes, thus representing model calls. Link nodes

are introduced in this representation, in order to connect different entity in

the hierarchy. Model calls are represented as nodes pointing to entities in a

lower level in the hierarchy. Nodes in a sequencing graph can:

� wait for their execution;

� being executed;

� have been executed.

When a node’s execution starts, we say that the node is activated, or fired.

The execution can start only when each predecessor of the node has been

executed. Activating a source node of a subgraph, the whole subgraph is

considered activated and its execution starts.

Program Dependence Graph

The Program Dependence Graph (PDG) [22] is a directed graph that rep-

resents both data and control dependencies of a given (sub)program. It is

obtained merging the CDG and the DDG, thus each edge node represent

an instruction (as in the starting graphs) and each edge represent a control

(from the CDG) or data (from the DDG) dependence. In Figure 1.12 an ex-

ample of PDG is shown, where solid edges denote control dependencies and

dotted ones data dependencies. Notice that even in this case an entry node

is added; in the example, to make the graph clearer, it is connected only to

nodes in the PDG without predecessors; anyway, it is the only node in the

PDG without incoming edges.
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Figure 1.12: PDG of the “lowError”function example.

System Dependence Graph

A System Dependence Graph (SDG) is a collection of PDG, connected through

call and parameter edges. It is useful to have a complete view of the depen-

dencies between statements in the whole program, and to more easily detect

the inherent parallelism.

Static Single Assignment Form

Once presented the main graph internal representations, it is now introduced

the static single assignment form of the source code, commonly considered

as another kind of IR. A subprogram is in Static Single Assignment (SSA)

form iff each use of a variable has a single definition point [70]. SSA form is

a desirable feature for several reasons, for example:

� it simplifies dataflow analysis and related optimizations;
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� uses and definitions of variables in SSA form relate in a useful way to

the dominator structure of the control-flow graph;

� multiple definitions of the same variable in the source program become

different variables in SSA form, eliminating needless relationships; for

example, instruction 4 in the example code proposed in Figure 1.13

exhibits a relation with both instructions 1 and 2, defining the variable

a used by 4. The corresponding code, written in SSA form, does no

longer hold the irrelevant relation between instruction 1 and 4.

1: a := x+ y;

2: a := a+ 3;

3: b := x+ y;

4: c := a+ b;

1: a1 := x1 + y1;

2: a2 := a1 + 3;

3: b1 := x1 + y1;

4: c1 := a2 + b1;

Figure 1.13: Example code and corresponding translation in SSA form.

Since source code generally don’t come in SSA form, many front-ends offer

this kind of transformation as a feature. It is obtained, in straight line

code, this way: each definition of a variable (e.g. a) is modified to define

a new one (e.g. a1, a2, ..., an), and each use of the variable is modified to

use the most recently defined version (see Figure 1.13). In the presence

of diramation constructs, the transformation is a little more complex. If

the same variable a is defined in two different branches of the diramation

point, SSA transformation will introduce two new variables a1 and a2. If,

in the original code, variable a is used at the confluence point, then in the

transformed code it is needed to establish which variable between a1 and a2

must be considered. This is obtained introducing a notational fiction, called

φ − function. In the proposed scenario, at the confluence point a new

assignment is introduced, a3 = φ(a1, a2): the φ−function is defined in order

to denote that variable a3 can assume the value a1 or a2 depending on the

branch followed at execution time. A clarifying example is shown in Figure
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1: a := x+ y;

2: if a < N then

3: a := a+ 1;

else

4: a := a+ 1;

endif

5: c := a+ b;

1: a1 := x1 + y1;

2: if a < N then

3: a2 := a1 + 1;

else

4: a3 := a1 − 1;

endif

5: a4 := φ(a2, a3);

6: c1 := a4 + b1;

Figure 1.14: Example code and corresponding translation in SSA form, with φ −
function insertion.

1.14.

1.5 Synthesis

The synthesis section consists of different steps strictly connected each other,

so it is usual to consider them as a unique core in the HLS flow. This steps

can be summarized in:

� Scheduling,

� Module Allocation,

� Binding.

A desirable feature for HLS is to estimate as soon as possible timing and

area overheads, so that later steps could optimize the design. A feasible ap-

proach is to start from one of the above mentioned tasks and consequently

accomplish the other ones. Then the obtained results could be used to mod-

ify the solution of previous steps: in this way the final solution, optimized

towards a performance metric, is built incrementally. Another possibility is

to fulfill the tasks partially, and complete them as results of other steps are

available. For example functional units could be allocated in a first time,
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and the interconnection allocation could be performed after the binding or

scheduling tasks. Clearly, performing allocation, scheduling and binding as a

unique task makes the synthesis a too complex process to be applied to real-

world specifications, since each them is NP-complete. The choice between

different ordering possibilities is dictated from the design constraints and

tool’s objectives. For example, under resource constraints, allocation could

be performed firstly and scheduling could try to minimize the design latency.

Instead, in time constrained designs, allocation could be performed during

the scheduling; the scheduling process, in this case, could try to minimize

the circuit’s area while meeting the timing constraints.

1.5.1 Scheduling

The scheduling task introduces the concept of time: according to the data

dependencies extracted by the front end all the operations are assigned to

specific clock cycles. Also the concept of parallelism is introduced: if the

dependences and the resource constraints allow it (i.e. if there are sufficient

instances of each one), more than one instruction could be scheduled in the

same clock cycle. A common approach addressing the scheduling problem

can be summarized as follows:

� the Data Flow Graph (DFG) of the specification is considered;

� the Data Flow Graph is scheduled, producing a graph G(V0, E, C)

where:

– v ∈ V0 are the nodes of the DFG, i.e. the operations to be exe-

cuted;

– e ∈ E are the edges of the DFG, representing the data flow;

– c ∈ C are cycle steps.

� a scheduling function θ : V0 → Π(C) assigns to each node v ∈ V0 a

sequence of cycle steps, where Π(C) is the power set of C, i.e. the set

of all the subset of C.
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As said before, a schedule could be differently constrained, e.g. time or

resource constrained. As an example, considering the DFG in Figure 1.9

in which only additions and divisions appears, a possible schedule under

resource constraints (1 adder and 1 divider available) is shown in Figure

1.15, assuming that each operation needs one cycle step to be executed.

Figure 1.15: “average”function exam-

ple scheduled CFG under resource con-

straints.
Figure 1.16: “low error“ function

example scheduled CDFG.

In the presence of control constructs such as if-then-else, the CDFG may

be used for scheduling purposes. Figure 1.16 represents a schedule obtained

starting from the CDFG in Figure 1.11: instructions in step C5 are executed

once the branch condition (scheduled in C4) is evaluated. It is clear that

those instruction are mutually exclusive, denoting that only one of them will

be executed, on the basis of the branch condition. It is possible to define

a mutually exclusion function as m : V0 → Π(N)|m(vi) ∧ m(vj) = 0 when

vi and vj are executed under mutually exclusive conditions. It could be

useful to underline that given a set of instructions and a set of dependencies
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between them, several schedules could be obtained. Many algorithms to face

the scheduling problem have been proposed in literature, managing either

timing and resource constraints.

1.5.2 Resource Allocation

A set of hardware resources is established to adequately implement the de-

sign, satisfying the design constraints. Allocation defines the number of

instances and the type of different resources from the ones available in the

resource library, which describes the relation between the operation types

and the modules. Since different hardware resources have different charac-

teristics, such as area, delay or power consumption, usually this informations

is included in the resource library, to guide both the allocation and the other

related tasks. Obviously, at least one component for each operation in the

specification model must be selected.

Resource Library

A library Λ(T, L) is characterized by:

� a set T of operation types;

� a set L of of library components (i.e. modules);

The library function λ : T → Π(L), where as usual Π(L) denotes the power

set of L, establishes which modules l ∈ L could execute operations of type

t ∈ T . On the other hand, the function λ−1 : L→ Π(T ) defines the operation

type set of l, written λ−1(l), i.e. the subset of operation types that a module

l ∈ L can execute. Given two operation of type t1, t2 ∈ T , if t1, t2 ∈ λ−1(l),
then they can share module l. Moreover, λ(t1) ∩ λ(t2) describes the subset

of modules that can be shared among operations of type t1 and t2.

In Section 1.2.1 the data path as been defined as a graph DP (Mo ∪Ms ∪
Mi, I), thus allocation task must determine the components belonging to each

module set Mk. This task defines the allocation functions for each module

set.
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Functional Units Allocation

The module allocation function µ : V0 → Π(M0) determines which module

performs a given operation. Clearly, an allocation µ(vi) = mj, vi ∈ V0,mj ∈
M0 is a valid one iff module mj is an instance of lj ∈ λ(ti), with ti operation

type of vi, i.e. mj can execute vi.

Registers Allocation

Values produced in one clock cycle may be consumed in another one, and

in this case such values must be stored in registers or in memory. Liveness

analysis can allow different variables sharing a register, revealing if their

life intervals overlaps or not, in order to reduce the number of registers,

and the design overhead in terms of area. Even in this case, techniques

developed in compiler theory are successfully applicable. In particular, after

the scheduling, each edge that crosses a cycle step boundary represents a

value that must be stored. Thus the scheduled DFG should be transformed

to take in account such situation. Given a scheduled DFG G(V0, E, C), the

storage value insertion is a transformation G(V0, E, C) → G(V0 ∪ Vs, E ′, C)

which adds nodes (storage values) v ∈ Vs such that each edge e ∈ E which

traverse a cycle step boundary is connected to a storage value. The register

allocation function could now be defined as ψ : Vs → Π(Ms); it identifies the

storage modules holding a value from the set Vs.

Interconnection Allocation

The interconnect allocation function is defined as ι : E → Π(Mi), and de-

scribes how the modules are connected and which interconnection is assigned

for each data transfer. Different solutions could differently affect the design

in terms of delay, area occupancy or interconnections complexity.

Once modules are allocated it is possible to define operation and modules

selection functions. The operation selection function σ0 : V0 → L determines
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on which type of library component l ∈ L an operation v ∈ V0 is executed.

The module selection function σ : L → N|L| determines the number of in-

stances of each library component that have been allocated. Given a library

component t ∈ L, σ(t) indicates the number of instances of l.

1.5.3 Module Binding

The allocation task defines the set M of modules that composes the data

path. Each module m ∈ M is an instance of a library component l ∈ L.

Given a DFG G(V0, E), each operation v ∈ V0 must be bound to a specific

allocated module m. This task takes the name of module or resource binding.

A resource binding is defined as a mapping β : V0 → M0 × N; given an

operation v ∈ V0 with type τ(v) ∈ λ−1(t), t ∈ L, β(v) = (t, r) denotes v

will be executed by the component t = µ(v) and r ≤ σ(t), i.e. v is assigned

to the r-th instance of resource type t. Module binding must ensure that

the resource assigned to an operation is available in the cycle step in which

the given instruction is scheduled. When the binding is performed before

scheduling, the scheduling task will take care of schedule operations in order

to avoid resource conflicts. Moreover, if two operations are mutually exclusive

they can be bound to the same module, even if they are scheduled in the same

cycle step. Different approaches can be followed to perform the binding; in

the simplest case β is a one-to-one mapping, associating each resource to one

operation.

1.6 Controller Synthesis

Once the datapath is built, it is possible to define the activation signals that

the controller will have to generate in order to activate the data path modules.

Controller synthesis can be performed following two main approaches:

� Microprogrammed Controller - each state of the FSM is coded as

a microinstruction that specifies the data path activation signals and
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the next state; if the resulting microprogram is stored in a ROM, the

next state can be represented by the ROM address of the next microin-

structions (i.e. associated to the next state). If the CFG describing

the specification is linear, i.e. there are not conditional nodes, the next

state could be computed by a simple counter without indicating it in

every microinstructions.

� Hardwired Controller - the controller is synthesized as a combina-

tory circuit and registers.

Both the models represent the abstract model of the synchronous FSM. The

design complexity increases in the presence of hierarchical structures, or in

control dominated specifications. Thus different approaches, depending on

the design complexity, will be next summarized.

Microprogrammed controller synthesis of linear data flow graphs

Usually, a read only memory is used, having a number of words equal to the

number λ of control steps. The memory addressing requires dlog2λe, and it

is obtained, as said in the previous section, using a simple module-λ counter

with reset signal, managed by the system clock. It is possible to recognize

two kinds of controller micropragramming:

� horizontal micropragramming - is the easiest solution: a bit of the

microinstruction is associated to each activation signal towards the data

path. This solution clearly increase the size nact of the ROM words,

i.e. of the microinstructions.

� vertical microprogramming - the nact bits are coded, thus reducing

the microinstructions size, but increasing the path between controller

and data path, due to the encoders insertion. Encoding can be suc-

cessfully applied only for those bits corresponding to mutually exclusive

activation signals, so a completely vertical solution is seldom feasible.

Thus, in practice, encoding is applied only to subsets of mutually ex-

clusive activation signals bits.
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Hardwired controller synthesis of linear data flow graphs

The controller is a typical FSM with λ states corresponding to the identified

control steps, whose activation signals are provided by the output function.

Since the only input of the FSM is the clock signal, the state diagram is

reduced in a loop of length λ.

Controller synthesis of hierarchical sequencing graphs

Hierarchy occurs in three possible cases:

� model calls - To each subgraph corresponding to a model call is as-

sociated a local control unit (or control block) whose activation sig-

nal is thrown by the model calls, thus activating the counter (in the

case of microprogramming) or the transitions (if it is hardwired) of the

local controller. When its activation signal is nullified, the local con-

troller halts and a reset signal is generated. The activation signal of a

control block is produced by a subgraph higher in the hierarchy (the

“caller”graph) and can be concurrent with other activation signals; the

execution of the control block is usually concurrent with the other in-

structions of the caller graph.The activation signal is valid until the

execution of the called model terminates. A structure model is shown

in Figure 1.17.

Figure 1.17: Hierarchical FSM model.
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� diramation - Diramations can be treated as calls of alternative models,

whose choice is dictated by the branch condition evaluation. A possible

implementation (see example in Figure 1.18) should store the outcome

of the condition’s evaluation until the execution of the called model

ends.

Figure 1.18: Hierarchical controller model in the presence of diramation constructs.

� loops - If the sequencing graph latency is known in advance (i.e. the

number of loop iteration is determined) the controller synthesis may

follow an approach similar to diramation constructs one. The loop

body can be considered a model call repeated several times. Thus

the activation signal of the loop body subgraph must be enabled for a

time interval equal to the loop body delay multiplied for the iterations

number. In the case the number of iterations is not known, during

the last control step of the loop body, i.e. the last instruction to be

executed, a completion signal must be generated to correctly implement

the Hierarchical FSM.
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1.7 Back End

1.7.1 Generation

The generation derives the design decisions made in the previous steps to

generate a RTL model of the synthesized design, where a set of register-

transfer components is adopted to represent both the data path and the

controller.

Output: RTL Model

The architecture description is written out as RTL source code, then trans-

lated in a target language, and structured in such a way to optimize the

subsequent logic synthesis task or to improve its readability. The RTL de-

scription could be written with different levels of detail, according to the

decisions made in the binding steps. For example, a = b + c executing in

state (n) could be written as shown in Figure 1.19 [19].

Figure 1.19: RTL description written with different binding details.

RTL descriptions including only a partial resources binding are simple to be

designed but force the logic synthesis process to perform the binding task
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and eventually the related optimizations. On the contrary, RTL descriptions

with additional binding details usually improve the predictability.
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Chapter 2

State of the Art

Since the inception of information technology, the synthesis of digital circuits

has been a main concern for researchers and scientific community. Over the

years, the proposed design methodologies have been forced to move to higher

abstraction levels due to the growing capabilities of silicon technology and

to the increasing complexity of applications and architectures. Such factors,

since early ’70s, made more and more inadequate lower abstraction level

methodologies such as Logic-level or Physic-level synthesis, and led to their

overcome in favor of High-Level Synthesis (HLS).

Over the years, HLS has received more and more attention by the designers,

for several reasons. One of the most important is the possibility of shorten

the design cycle increasing the chance for companies of hitting the market

window. Moreover, HLS led to the (at least partial) automation of the de-

sign process, significantly decreasing the development cost. Furthermore, the

error rate is reduced by the presence of a proper verification phase. Finally,

reviews reported in literature indicate that working at a higher level of the

design hierarchy using high-level synthesis reduces the amount of code that

must be developed by as much as two thirds [56]. Indeed, separating the

design intent from the physical implementation avoids the tedious process of

rewriting and retesting code to make architectural changes. This fact also

facilitates the design space exploration process since a good synthesis system
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produces several designs for the same specification in a reasonable amount of

time, allowing the developers to consider different solutions and trade-offs.

Generally, it is reported an overall reduction of the design effort, with respect

to lower level methodologies, of 50% or more [56].

Although nowadays HLS has a long history behind, many aspects still need

to be formalized and improved. A good means to better understand what has

already been done, which aspects were overlooked and which gap this thesis

work proposes to fill, could be to take a look to the past, tracking HLS evo-

lution. Before this, however, a clarification about the features characterizing

design methodologies in HLS will be provided in Section 2.1. According to

the chronological classification proposed in [54], there are three generations

in HLS evolution, in addition to a prehistoric period. Moreover, a fourth

generation is prospected for the future. Such chronological HLS evolution

will be traced in Sections from 2.2 to 2.5, showing how HLS is changed year

over year, according to user needs. Then, in Section 2.6, current HLS gen-

eration will be deeply analyzed with the aim to understand why a new HLS

generation is prospected to succeed in the next few years, and thus what are

the aspects needing improvements.

2.1 Design Methodologies Features in HLS

To completely characterize an HLS design methodology, three aspects must

be considered: the application domain, the specification description utilized

and the final architecture obtained from the synthesis. These three factors

represent the variables to carefully define before to start the design method-

ology planning. The choices made about these features will qualify the entire

work, determining the context which the methodology is focused on.

Applications can be divided into two categories according to their domain.

More in detail, it is possible to distinguish between data-oriented and control-

oriented applications. The prior includes those applications performing com-

putation on a massive amount of data, as dataflow intensive specifications
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and Digital Signal Processing. It is the case, for example, of multimedia

applications, since they work on a stream of data. The latter includes appli-

cations designed for the control. For example, protocol handlers fall in this

category, since they implement the set of formal rules that must be observed

when two or more entities communicate. Applications falling in one rather

than the other category have different peculiarities, often making HLS design

methodologies developed for one unsuitable for the other. Hence, one of the

most relevant challenge in developing an HLS methodology can be to make

it adequate for both the application domains.

Another variable to define in designing an HLS methodology is the input

language adopted to describe the specification. From this point of view it is

possible to distinguish between two macro-categories: low abstraction level

descriptions and high abstraction level descriptions. The first category in-

cludes languages such as Hardware Description Languages (HDL). Despite

HDLs are not the languages at the lowest abstraction level, they are con-

sidered, in this classification, as low abstraction level languages with respect

of those included in the second category. There exist several kind of HDLs,

from the primitive ISP and KARL, developed both around 1977, to the

more common Verilog and VHDL. Such languages can precisely describe op-

erations and circuit’s organization. The category of high abstraction level

descriptions can be in turn divided into the one of high-level programming

languages, such as C, C++ or SystemC, and the one of graphical models,

such as extended Finite State Machines (FSMs) or Petri Nets (PNs). The

choice of the description language is often tightly related to the application

domain. For example, describing a control-oriented applications as an ex-

tended FSMs may result simpler than specifying it by means of an high-level

C-like language, often leading to more performant synthesis results.

Finally, the target architecture must be defined. As anticipated in Chapter

1, the architectural model is usually composed by datapath and controller.

The most common approaches adopt an FSM as controller. Among these

approaches, several solutions can be distinguished. For example, the archi-
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tecture can be composed by a single centralized FSM, rather than of a set

of distributed and/or parallel FSMs. Moreover, a hierarchical structure of

FSMs can be built. However, there exist other solutions, based on the ap-

plication behavior. Such approaches construct the circuitry starting from

a behabioral description of the program, such as the Behavioral Network

Graph (BNG).

Figure 2.1: Main Features Characterizing Design Methodologies in HLS.

In Figure 2.1, for each of these three features (represented in the ellipsis) the

corresponding categories are shown (represented in the rectangles), as just

described. Moreover, some examples for each category is reported.

The three identified variables are strictly related each other. A good design

methodology should find the right combination between the choice of the

specification description and the definition of the final architecture, while
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obtaining good performances for both the application domains. In the fol-

lowing sections HLS chronological evolution will be tracked, focusing on the

choice made about these three features. Particular attention will be paid on

the final architecture definition, since this aspect represents the central topic

this thesis is focused on.

2.2 HLS Prehistoric Period

The seventies provided the basic ideas on which HLS is based, hence we

refer to this years as prehistoric period. More in detail, in 1974 M. Bar-

bacci noted that, theoretically, one could “compile”a behavioral description

of the specification into hardware, without any information about its struc-

tural description, such as synthesizable Verilog, thus setting up the notion of

design synthesis from a high-level language specification [32]. One of the pi-

oneering research groups worked at Carnegie Mellon University (Pittsburgh,

Pennsylvania) using input languages such as Instruction Set Processor (ISP),

Instruction Set Processor Language (ISPL), and Instruction Set Processor

Specification (ISPS). Such languages were HLDs developed ad hoc mainly to

describe DSPs applications. As above mentioned, the target hardware cir-

cuit consisted of a structural composition of data path, control and memory

elements.

Even though the prehistoric works showed interesting and highly ground-

breaking traits for the research, it was not yet the time for HLS spread in

industrial design, on which this new approach had a very little impact in

that years.

2.3 First HLS Generation

The period from 1980s to early 1990s characterized the first generation, that

have seen a decomposition of the HLS tasks into several subtasks, such as

hardware modeling and controller generation, on which this thesis work is fo-

69



CHAPTER 2. STATE OF THE ART

cused, rather than scheduling, resource allocation and binding. Even if many

of these subtasks are NP-hard problems, and they are often strictly depen-

dent on each other, they are almost independent from a logical point of view,

representing different problems that can be faced with different techniques.

Such decomposition, nowadays still adopted, had the aim of simplifying the

whole problem solving, focusing on one problem at a time, according to a di-

vide et impera paradigm. Moreover, in this way was possible to obtain more

performant circuits as result of the synthesis process, facing each subtask

with a different and appropriate methodology.

This age started with primitive and poorly performant algorithms in al-

most all the subtasks, that for this reason were usually addressed as single-

objective optimization problems. For instance, the school of thought sup-

ported by P. Paulin, J. Knight and their colleagues proposed to fix a latency

constraint trying to optimize area occupation [67][66]. The advantage of

fixed latency was an easy embedding of the resulting designs into systems

with more relaxed timing constraints. Only at the end of this generation

the improvements made in the underlying algorithms allowed simultaneous

consideration of timing and resource constraints. These improvements lead

to a successful appliance in the design of filters and other Digital Signal Pro-

cessing (DSP) functions.

In [37] are clearly identified two relevant aspects of first-generation HLS re-

search: first, the usage of a domain-specific input language, generally oriented

to describe DSP algorithms, and second the attempt to commercialize the

research ultimately failed. There was a long time of commercialization at-

tempts, in which the technology changed input languages, application scope,

and user interfaces many times, making HLS methodologies no more behind

the times. Such technological changes led companies to stop HLS tools pro-

motion on the market, although their internal use went on. Thus, it can be

inferred that the fundamental aspect restraining first HLS generation spread

was a limited acceptance by final users, i.e. the designers, that found most

drawbacks than advantages in using HLS. More in detail, such limitations
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were concerning:

� neither necessary nor useful : concurrent changes in design technologies

for integrated circuits, due to recent adoption of RTL synthesis, were

revolutionizing design methodologies. In such a scenario, automatic

placement and routing technologies offered by RTL synthesis seemed

more desirable, and the idea that HLS could fill a design productivity

need was an unlikely one.

� input languages : the type of input languages adopted in this first gener-

ation presented great difficulties, since they consisted in domain-specific

HLDs developed ad hoc. Adopting new input languages for a new and

unfamiliar design approach was an obstacle for many.

� quality of results : the resulting design was often inadequate, due to

primitive scheduling, simple underlying architectures and expansive al-

location criteria.

� domain specialization: methodologies and techniques implementing the

early tools were focused and properly worked on DSP design, concen-

trating on dataflow and signal processing. They were not appropriate

for the vast majority of early Application-Specific Integrated Circuit

(ASIC) designs, which concentrated on control logic.

In conclusion, it is possible to say that early works in HLS were mainly fo-

cused on scheduling heuristics for dataflow-dominated specifications as shown

in [65], [28], [16] and [26], with first attempts to automate the synthesis of

data paths, as described in many works, the most important of which are

[83], [50], [36] and [64]. As well explained in [54], it was the era in which the

research mainly concentrated on datapath-domain-specific applications.

2.3.1 Architectural Models

In this era the dominant model adopted for the final architecture consisted

in a composition of datapath and controller. More in detail, the classical
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approach in designing a controller consisted in synthesizing it as a centralized

Finite State Machine (FSM). Many works were published about FSMs, the

main of them are [23], [21], [80] and [81]. Such approach is still widespread.

Centralized Deterministic FSM

The centralized deterministic FSM approach is the simplest from the archi-

tectural model point of view. The controller is modeled by a single FSM.

More in detail, as shown in Figure 2.2, the controller structure is composed

by a combinational block implementing the state transition function and the

output function. The states are generally represented through edge-triggered

registers, characterized by responding to the change of state on the varia-

Figure 2.2: Standard Structure of a Centralized FSM.

tion front instead of on the level of voltage. An important advantage of this

structure is a simple clocking scheme, with a single clock which is not gated,

so that correct function and timing can be easily verified. The maximum

speed of such a structure is determined by the time required for changing

the flip-flops output and by the maximum propagation delay through the

combinational block. Since this delay directly corresponds to the size of

combinational block, decentralized approaches seems more desirable. More-

over, since the FSM is intrinsically sequential, parallelism is allowed only for

those operations that are assigned to the same control step. In other words,

the parallelism extraction task is totally moved to scheduling and binding

phases, often leading to an explosion in the number of states [27].
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2.4 Second HLS Generation

The period from mid 1990s to 2000s characterized the second-generation

HLS evolution. This age finally led the major EDA companies, such as

Synopsys, Cadence, and Mentor Graphics, to commercialize their HLS tools.

Synopsys offered Behavioral Compiler [49], Cadence’s Alta group provided

Visual Architect, and Mentor Graphics proposed Monet tool. Although these

tools were tried out seriously by a number of users, the technology achieved

a failure again.

The main failure reasons can be summarized as follows:

� input languages : behavioral Hardware Description Languages (HDLs)

were used as inputs. This choice was determined by the mistaken as-

sumption about who would use HLS, i.e. RTL synthesis users, that

were, by that time, almost familiar with such languages. This led to

a failure on several fronts. First, current RTL synthesis users decided

to keep their own tools, instead of switching to new tools that neither

provided substantial improvements in quality of results at the same

effort, nor gave substantial reductions in effort with the same quality

of results. Second, algorithm and software designers were discouraged

by the need, that HLS adoption would mean, of learning HDL. Third,

using HDL as input language implied simulation times as long as with

RTL synthesis, hence HLS adoption did not gave any advantage in

terms of time. Finally, it resulted impossible to exploit compiler-based

language optimizations.

� quality of results : the resulting design was still inadequate, as well as

unpredictable and widely variable. Moreover, formal validation meth-

ods were not been proposed yet. Hence, understanding if the synthesis

results were correct resulted very hard.

� lacks in control-dominated specifications synthesis : designers often used

specialized datapath compilers in conjunction with RTL synthesis, as
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shown for example in [30]. However, HLS could be applied also to

control-dominated algorithms. First attempts of applying this exten-

sion were proposed in this period, but with worse results with respect to

dataflow-dominated algorithms synthesis. Therefore, HLS started to be

considered a partial solution, giving quite good results only in certain

conditions. At that time, many researchers thought that understanding

the reasons of poor results in control synthesis was not a right invest-

ment of their time. Among the causes for this lacks there were the

use of inappropriate or insufficient Intermediate Representations (IRs),

that did not include informations about the control. Indeed, the most

common IR adopted in that period was the DGFG, as shown in [62]

and [61].

The second generation was the first age of commercial EDA and behavioral-

synthesis tools driven by hardware description languages. From the research

point of view, many works of that period, as [74], [69] or [82], were focused

on new scheduling techniques and strategies. Moreover, about the applica-

tion domain, some publications of that period, as [20], were still focused on

datapath synthesis. However, there was some attempt in control-dependent

specifications synthesis, as in [72], [52] and [85].

2.4.1 Architectural Models

In early second generation, first attempts to modify the target architecture

were proposed. Indeed, early second generation researchers realized that us-

ing a centralized FSM, synthesizing the controller, meant a great waste in

terms of area. As a consequence, the whole circuit latency increased, thus

giving worse performances. A first approach to solve such problem consisted

in FSM decompositions, leading to the definition of a distributed controllers,

possibly organized in a hierarchical structure. Such decompositions aimed to

reduce the area and/or the delay within an FSM. Many works were published

about this technique, such as [78] and [63]. In mid nineties, a successive ap-

proach followed, based on the idea that the primary responsibles for growing
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area were the interconnections. Indeed, interconnections comported the crit-

ical path delay to increase, determining a longer circuit clock cycle. The

critical path delay in a RTL circuit with a datapath and a controller is the

register to register data flow path with the longest delay. It consists gener-

ally of three components: controller delay, control wire delay and datapath

delay. In this period several techniques were proposed to reduce the critical

path delay, at different design levels. For instance, careful module generation

techniques at RTL level could produce faster modules, improving the per-

formance in the critical path. Moreover, logic minimization methods could

be used at the logic level reducing the number of gate levels in the critical

path. Unfortunately, these techniques met the controller and datapath delay

reduction work, while giving no benefits in wiring delay reduction. Further-

more, especially at high frequencies, the interconnect wiring delay results

the dominant factor in the circuit delay. On the other hand, as described in

[39], the control path delay has been found to be the slowest segment of the

overall critical path delays. For all these reasons, some mid-90s approach,

such as [39] and [18], performed FSMs decomposition with the aim to reduce

control path and control wire delays.

Finally, FSMs decomposition techniques were proposed to address another

problem, i.e. power overhead. In the following the main techniques proposed

in these years about FSM decomposition will be deeply explained, after a

brief overview on formal FSMs decompositions methodologies. After that,

some considerations about distributed and hierarchical controllers will be

highlighted.

Formal FSM Decompositions Methodologies

Since sixties FSM decomposition problem was treated from a formal and the-

oretical point of view. Three main decomposition techniques were identified:

parallel decomposition, cascade decomposition and generalized decomposition.

Parallel decomposition is the simplest technique. As shown in Figure 2.3, the

submachines M1 and M2 are supplied with the same input sequence I. Such
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Figure 2.3: Parallel Decomposition of a Finite State Machine.

submachines operate independently, providing informations about their in-

ternal state to a combinatorial circuit C, whose job is to generate the output

sequence O.

Figure 2.4: Cascade Decomposition of a Finite State Machine.

Cascade decomposition divides a given finite state machine into an indepen-

dent and dependent component. In Figure 2.4 an FSM cascade decomposi-

tion is shown. Observe that the given FSM is broken up into two submachines

M1 and M2, each driven by the same input sequence I. The obtained sub-

machines do not operate independently. Indeed, M2 is supplied, by means of

auxiliary inputs (see the edge from M1 to M2 in Figure 2.4), with informa-

tion about the current internal state of M1. Such information influences the

state transitions of M2, and enable M2 to generate the appropriate output se-

quence O. The possibility of passing state information from M1 to M2 makes

cascade decomposition more powerful than parallel decomposition. Then the

prior can be viewed as a generalization of the latter.

Generalized decomposition produces a model in which each submachine is

provided with information about the current state of the other, as shown

in Figure 2.5. In this case the internal behavior of each machine depends
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Figure 2.5: Generalized Decomposition of a Finite State Machine.

both by the behavior of the other and by the input sequence I. Parallel and

cascade decompositions can be viewed as particular cases of the generalized

one.

Among the works treating FSMs decomposition in a formal way there is the

one proposed by Hartmanis [40] in 1960, who applied an algebra on partitions

of states. This work focused on cascade decomposition. Such methodology

was extended in the few subsequent years in [53], [35] and [41] to preserve

the covers for the cascade decomposition finded. About parallel decomposi-

tion we cite [29]. Finally, we highlight that generalized decomposition [78]

received much less attention.

FSM Decomposition reducing area and delay within an FSM

From late eighties, researchers started to apply decomposition techniques,

formalized years before from a theoretically point of view, in FSMs design

for logic implementation, as reported in [78] and [63]. They found soon that

cascade decomposition has limited use in FSMs design, since specifications

of centralized controllers in microprocessor chips do not usually have good

cascade decompositions. Obviously, also parallel decomposition resulted in-

adequate, being less general than cascade one. Hence, they started to search

for factors producing a good generalized decomposition. In [78], for instance,

such factors were identified in sets of states and transition edges obtained

from a State Transition Table [79] specification of the given FSM. These fac-

tors were extracted and represented as a factoring submachine. Then the

occurrences of these factors in the original machine were replaced by calls to
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the factoring submachine. As discussed before, the objective was reducing

the overall area and delay within an FSM. For this reason were defined pro-

cedures to find all the exact factorizations, i.e. those that maximally reduce

the number of states and transition edges in the original machine. An impor-

tant result of this research is expressed by the following theorem, that shows

the significant advantages of exact factorization in terms of area, due to the

great reduction in the total number of edges and states that such technique

involves.

Theorem 1. A decomposed submachine Mi, produced by factorization from

an original machine M, via an exact factor with NI(i) internal states and

NE(i) exit states in each occurrence Oi
F ∈M , will have

NR∑
i=1

(|e(i)| −NI(i))

edges less than the original machine M, where e(i) is the set of internal edges

in Oi
F ∈M , and NR is the number of possible factors for M.

Unfortunately, exact factorization often produced too small submachines,

resulting in useless decompositions. Moreover, exact factorization may not

exists at all for a given machine. Hence, techniques to find good, though

inexact, factors in an FSM were proposed.

FSM Decomposition reducing control path and control wire delays

Another group of researchers concentrated on the critical path reduction, as

[18] and [39]. More in detail, techniques to reduce control path and control

wire components of the overall delay were proposed. Researchers focused on

such components since the prior was found to be the slowest segment of the

critical path, and the latter was found to be the dominant factor, especially

at high frequencies.

Eppling in [39] identified control points in a machine, representing minimal

partitions of a centralized controller, aiming to divide it into multiple local

controllers. Each control point can be viewed as the controller managing one
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operation in the machine. Hence, if an FSM contains N operations, then N

control points can be individuated inside that machine, one for each instruc-

tion. Eppling used a wire length extraction technique followed by clustering

of control points into local groups. Clustering was targeted at minimizing

wire lengths.

Papachristou and Alzazeri extended such work in [18]. They firstly parti-

tioned an RTL based controller output into control points, and then parti-

tioned the datapath around its constituent. At this point the control points

individuated were grouped so that all control points enabling the same kind

of operation were placed in the same datapath partition. Hence, in this case,

clustering resulted from datapath partitioning. In this way multiple local

controllers were generated, each controlling one datapath partition, also said

functional block. The last step of such technique was in the layout phase, in

which each controller were placed physically close to its corresponding func-

tional block, shortening wire lengths and thus reducing delays, especially at

high frequencies.

As will be described in the next chapter, we will introduce an extension of the

concept of control point, considering not only the operations in the program,

but also the needed and available resources in the target architecture. More

in detail, a new control component managing one occurrence of a resource in

the machine, with all its associated instructions, will be introduced. Hence,

if an FSM contains for example three additions and four multiplications, and

the target architecture has at least three adders and four multipliers, then

seven new components can be individuated inside that machine, one for each

resource needed and available.

Observe that such approach starts from an RTL circuit, and thus it is not

included in the HLS flow. Better results can be obtained integrating this

work in the RTL generation process. Moreover, datapath partitioning and

close physical placement of local controllers can be used to infer useful hints

for resource binding.
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Distributed Controller

As above mentioned, a distributed controller structure can be obtained by

FSM decomposition. From what said so far, it is possible to infer that the

objective of decomposition was to reduce the delay inside an FSM, or to

reduce the critical path delay, rather than to reduce the power overhead.

The concept of parallelism extraction is not included in the aims of realizing

a pure distributed controller structure. As in the case of centralized FSM, the

task of individuating set of instructions that can be simultaneously executed

does not concern the controller. Consider, for example, the above described

technique proposed by Eppling in [39], or the one presented by Papachristou

et al. in [18]. From the analysis of these methodologies it is possible to infer

that pure decomposition can directly be applied on an RTL circuit, without

being included in a HLS flow. In other words, decomposition takes as input

a centralized FSM, that can be obtained through HLS, and manipulate it to

reduce area and delay. Scheduling and binding have been already performed

on the centralized FSM and do not change after decomposition. Hence the

set of possible states for the distributed machine is the same obtained for

the centralized one. However, in this case the state of the entire machine has

not to be explicitly represented, since can be obtained as a composition of

the submachines states, leading to a considerable reduction in the number of

total states.

Hierarchical Controller

Inside Hierarchical Controllers different subcontrollers are organized in a hi-

erarchical structure, usually in accordance with the hierarchical relation ob-

tained from the Hierarchical Task Graph (HTG) [57] of the specification. In

the multi-level hierarchy, a controller at one level distributes groups of opera-

tions among its direct descendant. Each controller can start its computation

after the activation signal from its father has been received. When a local

computation is terminated, the corresponding subcontroller send a signal to

its father, implementing a synchronization mechanism that enable controllers
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at higher levels to properly activate subcontrollers.

A hierarchical controller structure is completely compatible with distributed

one. Moreover, it is also compatible with parallel controllers, that will be

presented in the next. Hence, it is possible to implement distribute and

hierarchical controllers, or distribute, parallel and hierarchical controllers.

2.4.2 Improving Control-Oriented Specifications Syn-

thesis

As above mentioned, this era was characterized by the first attempts of ad-

dressing the control-oriented specifications synthesis. Applications belonging

to such domain have very different features with respect to their dataflow-

dominated counterpart, thus needing different approaches. The most relevant

proposals in such direction were the ones based on non-deterministic finite

state machines, that will be now described.

NFA-Regular Expressions Based Controller

Usually, machines such as protocol handlers or communication encoders, re-

sults too complex to be described through a deterministic FSM model. They

need instead Nondeterministic Finite Automata (NFA) to be concisely de-

scribed. An NFA, or Nondeterministic Finite State Machine (NFSM) [58],

is a finite state machine in which for each pair {state, input } there may be

several next states. It was formally proved that for any given NFA it is possi-

ble to construct an equivalent deterministic FSM through standard methods,

such as powerset construction or subset construction (see [79], Theorem 1.19,

section 1.2, and [45]). Obviously, the first step needed to synthesize an appli-

cation, described with an NFA-based model, is transforming such description

in its deterministic equivalent. For this reason, NFA become explosive and

untenable when implemented in hardware with standard approaches, that

simply transform it in a deterministic FSM. For example, one of the most

widespread approaches were based the use of Esterel [24], a synchronous reac-
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tive language allowing an inherently non-deterministic machine description.

Its commands reacted to inputs from the outside world, by performing tasks

and sending outputs. Each reaction to a specified input was allowed to occur

independently of other reactions, creating an NFA model. However, the Es-

terel compiler, as above mentioned, created a deterministic State Transition

Graph (STG) [80], from the NFA specification, that often resulted explosive.

As a consequence, various techniques were proposed to address this problem,

based on the concept of classical regular expressions (REs) [10]. It is well

known that any FSM can be specified as a regular expression, representing

the set of all the strings belonging to the formal language recognized by the

automaton. Even though this means that the classical regular expression

description is always allowed, such specification is not guaranteed to be as

concise as other types. This is the main reason why regular expressions alone

are not enough, and should be used together with, not instead of, a nonde-

terministic description.

Moved by such considerations, in [75] and [11], regular expressions were used

as a specification for Programmable Logic Array (PLA) designs, to be con-

verted into an NFA state transition diagram, which in turn was directly

encoded as product terms of a PLA implementation. However, such tech-

nique may lose some of the informations present in the regular expression.

For example, let us consider a regular expression e = (a|b)+(b|c)∗ over the al-

phabet Σ = {a, b, c}. Such expression can be partitioned in two components:

(a|b)+ and (b|c)∗. Such kind of decomposition, defined natural partitioning

in [8], can be useful to identify points in which the machine can be divided

in submachines, distributing the control for a possible FSM factorization.

When the correspondent NFA state transition diagram is obtained from e,

such information about natural partitions may go lost. Indeed, both the par-

titions contain the character b. Hence, when b is read, if we consider only the

NFA representation, there is no way to understand what natural partition

this character belongs to.

A subsequent approach, proposed in [9], was the Production Based Speci-
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fication one. They considered, as specification language, the productions

derived from the grammar corresponding to the formal language recognized

by the automaton. Indeed, as described in [60], there exist three equivalent

models for the description of languages: automata, regular expressions and

grammars. Similarly, from the finite state machines point of view, there exist

three equivalent models for a (deterministic or nondeterministic) FSM de-

scription: the language it recognizes, the regular expression describing such

language and its associated grammar. The production based specification

model provided a hierarchical regular expression language augmented with

some unique operators. An algorithm for direct construction of the circuit

from a regular expression based tree was presented, which did not require con-

version of the RE to a NFA state transition diagram. This direct construction

often produced fast circuits, but with redundant state bit encodings.

Finally, Crews et al. [8] discussed techniques for high-performance controller

synthesis, from the complexity point of view. More in detail, they proposed

sequential optimization techniques whose complexity scales with the num-

ber of states bits, rather than the number of states. This work aimed to

provide viable synthesis techniques for designs which are too large for syn-

thesis with conventional methods. The methodology proposed in [8] started

from classical regular expressions [10] specifications, deriving from it an NFA

description. Once obtained, the NFA model were encoded as a tree-based

extended regular expression, and explored with the aim to construct efficient

controllers. More in detail, they assumed a controller specification as a regu-

lar expression in the form of a Directed Acyclic Graph (DAG) [48]. In Table

2.1 is shown the meaning of various symbols used in the specification DAG.

Using DAG representation it is possible to specify any completely determin-

istic automata without making use of traditional deterministic models, such

as STGs or actual state encoding. Moreover, from this specification, there

are direct gate level implementations which scale with the number of state

bits in the controller, which can be logarithmically smaller than the number

of machine states. Once obtained the DAG representation, they performed
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symbol meaning nodes type

concatenation of events sequential non-leaf nodes

, (left then right)

|| OR (either event below) sequential non-leaf nodes

AND sequential non-leaf nodes

&& (events occur simultaneously)

∗ Kleene closure (0 or more) sequential non-leaf nodes

+ 1 ore more sequential non-leaf nodes

action designates an output activation sequential non-leaf nodes

boolean function combinational (terminal)

function (of inputs only) nodes

Table 2.1: Regular Expression DAG Symbols.

natural partitioning, identifying proper sub-DAGs. For example, considering

the manipulation rules they adopted to minimize the original ER, specified

as follows

(A,B)||(A,C)→ (A), (B||C) (Rule 1)

(A,C)||(B,C)→ (A||B), (C) (Rule 2)

A||A→ A (Rule 3)

A, (A)∗ → (A)+ (Rule 4)

(A∗)∗ → (A)∗ (Rule 5)

A, (A{action})→ (A,A){action} (Rule 6)

it is possible to identify a sub-DAG inside each open/close round-parentheses

pair. Minimization is the main optimization technique proposed in this work.

It aimed to remove unobservable states from the system. After that, each

unique action in the DAG was put into correspondence with a unique out-

put of the controller. The output was set high only if the sub-DAG below

the action accepted, i.e. when the sequence of inputs for that sub-machine

matched the entire sequence specified in the DAG. After reducing the num-
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ber of terminals in the tree, the circuit was synthesized by traversing the

resultant DAG. The construction required one register for each path to a

terminal node. The circuit was generated recursively, by allocating regis-

ters at the terminals and constructing logic functions of the register outputs

(present state bits) according to the type of sequential operator at each node.

Logic functions were stored as Binary Decision Diagrams (BDDs) [12] during

construction.

Despite such methodologies presented some advantages in controller synthesis

for complex applications, regular expressions and nondeterministic automata

based approaches resulted in general computationally more expansive than

other approaches, thus not being considered general approaches.

2.5 Third HLS Generation

In early 2000s started the third HLS generation, that represents the cur-

rent one. The most important improvement characterizing this era is the

adoption, as HLS inputs, of C-like specification languages, as documented

in many works, as [84]. This made possible to take advantage of research

into compiler-based optimizations for code parallelization, regardless of HDL-

driven improvements. Designers had no more to learn unfamiliar HLDs, us-

ing instead modified versions of C, C++ or SystemC languages, and design

outputs gained a significant improvement. Indeed, compiler-based trans-

formations and optimizations allow code restructuring. For example, on

a DSP processor, the application’s control flow can be rearranged so that

intermediate data always fits in cache, or, on a Field-Programmable Gate

Arrays (FPGA), the initial C-like code can be restructured in such a way to

extract potential parallelism, resulting in a streaming pipelined implementa-

tion. Moreover, if the original specification result inappropriate for the target

hardware, restructuring can be used for example to get the design to work

in real time, or to fit within the available hardware resources. Many works

were published about compiler-based optimizations, as for instance [33], [34],
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and [68].

This is surely the generation in which tools commercialization increased.

Many EDA companies offered their own synthesizers. Some of these tools pri-

marily target Application-Specific Integrated Circuits (ASICs) and

Application-Specific Standard Products (ASSPs) designs, while others pri-

marily target FPGAs designs, and still others target both. The rise of FP-

GAs, due to their increased capacities and to the incorporation of specialized

features such as multipliers and distributed memories, played an important

role in HLS commercialization success. Since applications and architectures

complexity were significantly growing, implementing in hardware code por-

tions as accelerators became common use. FPGAs were used for such pur-

pose, and using HLS with FPGA targets was found to be a perfect way to

quickly map an algorithm into hardware. Most of the tools offered are based

on methodologies capable of handling dataflow and DSP domain, a small

amount is focused on control, as for instance Esterel EDA Technologies Es-

terel Studio, and a few sustain to be suitable for both dataflow and control,

as Bluespec Compiler (BSC) and Cadence C-to-Silicon (C2S).

Another significant improvement of this generation is related to the verifica-

tion phase. Some high-level synthesis tools generate SystemC representations

of synthesized designs, enabling much faster simulation runs compared with

traditional RTL simulations. However, low-level simulations may still be

needed for the verification, especially in the case of integrated system, since

HLS ones may not simulate all of the interfaces of the synthesized hardware,

as I/O, memory subsistems or other interfaces. Indeed, for example, all FIFO

buffers are modeled as infinite-depth C or C++ arrays, whereas in the final

implementation they will always have a finite depth. Furthermore, temporal

aspects of the design, such as FIFO push and pop, cannot be modeled in

untimed languages such as C or C++. To facilitate SystemC and RTL simu-

lations, HLS tools typically automatically generate RTL test benches based

on high-level test benches provided by the user, in addition to the RTL mod-

ule implementing the design, as shown in Figure 2.6.
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Figure 2.6: Tipical HLS tools output including RTL and RTL test benches.

Finally, high-level synthesis represents an efficient means for design space

exploration. Indeed, HLS tools can provide an estimate of the resource uti-

lization and clock frequency that the synthesized implementation is likely

to meet. Obtaining this estimate does not require invoking the RTL tools

and can be obtained at any point in the design process, enabling early de-

sign exploration, for example to identify achievable cost-performance points.

Hence, shifting the estimation phase at an higher level produces significant

benefits in terms of time and costs for design space exploration. For this rea-

son, as documented in [77], some of the most widespread uses of HLS tools

in industry today are for architecture exploration and rapid prototyping. In

architecture exploration, hardware and system architects can use HLS tools

to quickly model the functionalities of different architectures and thereby de-

rive an upper bound on their respective silicon area, performance, and power.

This allows to make a more accurate choice between the various alternatives.

In rapid prototyping, a system can be quickly modeled in an FPGA, enabling

system simulation, system-level performance analysis, and so on. Moreover,

area and timing estimates can be used to assess the synthesis results and,

as necessary, to make improvements to the implementation by modifying
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the high-level representation. Nevertheless, in some cases estimates result

misleading and inaccurate, over/under estimating up to 25%.

2.5.1 Architectural Models

In third HLS generation a new kind of final architecture was proposed, i.e.

parallel controllers. The adoption of high-level input languages describing

the specification led to difficulties in exploiting the parallelism, due to the

sequential nature of such languages. Hence, parallel controllers were proposed

to address such problem.

Parallel Controller

Historically, in literature the two terms “distributed”and “parallel”have been

often indifferently attributed to a controller structure. In our opinion, despite

many similarities, there exists a subtle difference between them. Both the

terms indicate the presence of an underlying structure composed by subcon-

trollers that work simultaneously, possibly interacting each other to compute

their next state. In that sense a distributed controller can be viewed as paral-

lel too, since subcontrollers work simultaneously. On the other side a parallel

controller results distributed too, since it is organized in a local controllers

structure. However, we are interesting in another meaning of the term “par-

allel”, indicating if the controller is able to auto-detect the parallelism in

the specification, while meeting finite resource constraints. Observe that at

compile time only an estimation of the parallelism can be performed, since

many informations, such as branch conditions results are unknown. Hence,

if scheduling and binding are statically performed, part of the exploitable

parallelism may be lost. In this sense, a pure distributed controller, obtained

by decomposition, cannot be parallel too, since it ignores the parallelism

extraction problem, already addressed in the previous phases of the syn-

thesis, while a pure parallel controller is for sure distributed too. In other

words, a parallel controller is responsible for the scheduling and the binding

tasks. There exist also hybrid solutions in which, for example, the controller
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works as scheduler, while the binding is previously statically performed. Ob-

viously, implementing a parallel controller structure requires a non trivial

communication protocol handling subcontroller-to-subcontroller communica-

tion, subcontroller-to-resource communication and resource-to-subcontroller

communication.

Parallel Controllers have been often implemented adopting a specification

description capable to express the parallelism in the application. As will be

explained in the next, Petri Nets [17] [46] have been found to be a proper

model supporting the implementation of efficient parallel controllers. The

token-based architecture obtained through a Petri nets model faithfully mir-

ror the one needed to represent communication in a parallel controller.

However, parallel controller can be also obtained when a C-like description

of the specification is used, with the help of a proper IR, as in the case for

example of the BNG. Such IR, as will be clarified in the next, has the pecu-

liarity to represent also the final parallel architecture.

Since parallel controllers construction techniques depend on the description

adopted for the specification, in the following such aspects will be deepened.

2.5.2 Specification Description

As above mentioned, C-like high-level programming languages found great

acceptance in third HLS generation. However, they are affected by the prob-

lem of parallelism extraction. As a consequence, adopting such languages,

building a proper IR to support the synthesis become a critical problem.

Historically the standard IR adopted in conjunction of C-like specification

languages is the CDFG. A relevant alternative approach is based on the

Behavioral Network Graph, that is an intermediate representation able to

describe also the final architecture, thus unifying high-level synthesis and

logic synthesis domains. However, both such approaches are afflicted by the

parallelism extraction problem. The alternative could be using graphical de-

scription languages for describing the specification, such as Petri Nets.

In the following such approaches will be explained.
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Control-Data Flow Graph Based Approaches

Control-Data Flow Graph (CDFG) based approaches are the most common

in HLS representing a standard de-facto. Most of the commercial tools are

based on such IR, and many reasearch works are found on it too. The fea-

tures of CDFG that make it useful as an initial specification from which to

synthesize are the ability to perform static scheduling and the analysis of

resource needs that is possible.

Hybrid techniques were proposed based on DFG or on CFG. Fon instance,

Jung et al. in [38], considered a DFG specification in which each node rep-

resented a hardware library module containing a synthesizable VHDL code.

From such specification they automatically synthesized a control structure,

called cascaded counter controller, supporting asynchronous interaction with

outside modules while implementing the synchronous dataflow semantics of

the graph at the same time.

DFG, CFG and CDFG models, however, may lack in exploiting part of the

available parallelism in the specification, and may underestimate the amount

of needed resources. For an example in which CDFG fails in recognizing the

available parallelism see the specification reported in Figure 3.2 (Chapter 3,

Section 3.2). The underestimation of the amount of needed resource is a

consequence of sequentializations forced by false dependencies.

Behavioral Network Graph Based Approaches

Behavioral Network Graph (BNG) representation was proposed by Bergam-

aschi in [73] with the aim of unifying the domains of HLS and Logic Synthesis.

The BNG is an RTL/gate-level representation of a behavioral specification.

The construction methodology to build a BNG starts from the CFG to cre-

ate a logic network representing the FSMs for all possible scheduling. Then

DFG and the results of data-flow analysis are considered to obtain a logic

network representing the datapaths for all schedules. Finally, control and

data portions are merged to obtain the BNG.

Since this thesis focuses on the control, in the following only control BNG
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Figure 2.7: Example of CFG for a Specification.
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construction methodology will be deepened. The first step in scheduling a

CFG consists in individuating places bounding a state. Such places consists

in cuts on the CFG edges, named state cuts. A state cut on a CFG edge

indicates that all overlying and underlying operations must be scheduled in

different control steps, thus belonging to different states of the machines. A

state cut variable SCij is defined for each node i of the CFG and for each

i’s incoming edge j, with value 1 if a state cut occurs in the corresponding

place, 0 otherwise. State cuts can be placed in different positions according

to the available resources. Moreover, different solutions can be obtained, also

considering the same number of resources, if there are less resources of a cer-

tain kind than operations needing that resource kind potentially executable

in the same control step. Consider for example the CFG in Figure 2.7. If

state cuts are placed for instance between the operations 2-3, 3-8 and 13-14,

the FSM shown in Figure 2.8 is obtained, whose implementation using one-

hot-encoding results in the logic network is shown in Figure 2.9.

Figure 2.8: A possible FSM for the CFG

in Figure 2.7.

Figure 2.9: Hardware Implementation for

the FSM in Figure 2.8.

Each state cut has direct implications on the storage elements and inter-

connections in the datapath. Indeed, when a state cut is placed inside the

lifetime interval of a value, it forces that value to be stored in a register since

its definition is in one state and its use in another. In other words there

exists a direct correspondence between state-cuts and registers in the one-

hot-encoded FSM. Hence, the positions of the state cuts determine the basic
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control and datapath logic, thus, for the BNG to represent all schedules, it

needs to encompass the different hardware configurations for different choices

of state-cuts. For this reason State-Value Nodes (STNs) are introduced. A

STN is a logic structure which represents the choice of either having or not

having a state cut on a particular control-flow edge. In other words an STN is

a switch which can choose between storing the input value (if the associated

state cut variable has value 1, thus a state cut occurs) or passing it through

the output immediately (if the associated state cut variable has value 0, thus

a state cut does not occur). From a more practical point of view, when

SCij = 0 the STN simplifies to a wire, thus not enforcing a new state. When

on the contrary SCij = 1, the STN simplifies to a register, thus enforcing a

state transition.

The algorithm for the control BNG construction can be summarized in the

following steps:

1. Traverse the CFG and, for each node i, associate a variable SCij with

each i’s incoming edge j. If the node i has a unique incoming edge,

then the subscript j can be omitted. A node with an indegree greater

than one is called join node.

2. Traverse the CFG and for each node i with a single predecessor and a

single successor, create a STNi. The net at the output of the STNi

gate (STNi net) represents the control signal activating the operation

in node i.

3. For each join node i, create a STNij for each predecessor j and connect

all STNij nets to a single OR gate. The output of the OR gate is called

STNi net.

4. For each node i with multiple successor edges (fork nodes), create a

STNi and connect its output net to as many AND gates as successor

edges. Each AND gate has two inputs: the first input is net for the fork

node, STNi, and the other input is a net representing the condition on

the corresponding successor edge. This condition net may be a primary
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input or a net coming from the datapath. The output of each AND

gate is called net STNij.

5. Connect the multiple STNi obtained in the same topology as the CFG.

Despite such techniques has the enormous advantage of providing the con-

troller of scheduling and binding capabilities, it has the great drawback of

starting from the CFG. As above mentioned, the CFG contains false de-

pendencies avoiding to completely exploit the available parallelism in the

specification.

Petri Nets Based Approaches

A Petri Net [43] (PN) is a mathematical modeling language for the de-

scription of distributed systems. Thanks to its ability in representing the

parallelism inside an application, this model started to be used as graphi-

cal specification description language in HLS, as an alternative to high-level

programming languages. A Petri net can be viewed as a marked version of a

Petri Net Graph [43].

Definition 1. A Petri Net Graph (PNG) is a 3-tuple (S, T, W), where:

� S is a finite set of places, i.e. nodes representing conditions

� T is a finite set of transitions, i.e. nodes representing events that may

occur

� W : (S × T )
⋃

(T × S) → N is a multiset of arcs, i.e. it defines arcs

and assigns to each arc a non-negative integer arc multiplicity.

Observe that no arc may connect two places or two transitions.

Definition 2. A Petri Net is a 4-tuple (S, T, W, M0), where:

� (S, T, W) is a Petri net graph
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� M0 is the initial marking, a marking of the Petri net graph

A Petri net representation of a controller structure is equivalent to the one

obtained by dividing the specification of a controller into a number of con-

current processes, producing a set of sub-controllers, and then implementing

each controller as an FSM and linking them together with control lines and/or

semaphore bits subject to the initial parallel specification. An example of

PN specification of a controller is shown in Figure 2.10.

Figure 2.10: Example of Petri Net Specification of a Controller.

Petri nets have found relatively acceptance in HLS research. Biliński et al.

[51], for example, proposed to exploit the graphical representation of con-

currency provided by Petri nets to synthesize a parallel controller structure.

They based this choice on the observation that such graphical representation

is often easier to understand, hence it can reduce the likelihood of parallel

synchronization errors. The main improvement derived from the work in

[51] was that, unlike previous works, they did not need the construction of

a reachability graph from the Petri net for synthesizing parallel controllers,

with consequently saving in computational time and memory. Such work was

later extended by the same authors in [47], explicitly implementing VHDL

simulation cycle implications into the Petri net model. Here a formal con-

troller decomposition methodology for a Petri net specification was presented.

Finally a hierarchical PN-based approach was proposed in [44].

95



CHAPTER 2. STATE OF THE ART

The main advantage in using PNs is that they allow easy specification of co-

operating subsistems, and the use of formal validation methods. The model

represents a token-based architecture, implementing the communication into

the controller structure. A PN-based model, however, requires priority and

synchronization schemes to share variables and to implement sub-controllers

communication, increasing design costs.

2.6 Why Fourth HLS Generation is Prospected

The commercial adoption of high-level synthesis mirrors the technology’s

various phases, as shown in Figure 2.11. The years from 1994 to 1996 are

included in the first generation. As above mentioned, at that time HLS was

no more than an experiment, and this meant low sales levels. The years from

1997 to 1999 characterized the second generation, in which an increment in

the sales level of the major EDA companies was recorded. After a first suc-

cess, the commercialization attempt failed leading to the sales decrease that

characterized the years from 2001 to 2003. From 2004, third generation emer-

sion mirrors a growth in sales, that still continues to rise, as is prospected it

will do in the future. At this point, as HLS future seems to be positive, the

question that arises is why fourth HLS generation is prospected. To answer

this question a deeper analysis on third HLS generation defects and lacks is

needed.

Hence, in this section current HLS generation will be deeply analyzed with

the aim to discover the reasons why a fourth one is prospected, and which

gaps next HLS generation should fill. Moreover, will be clarified how this

thesis work proposes to contribute to HLS improvement.

User experiences, documented in technical papers, can be a good means

to really understand the effectiveness of the improvements claimed in third

HLS generation. Unfortunately, this usually takes many years before enough

meaningful reports become available, also considering restrictions, often im-

posed by tool’s vendors, from publicly discussing comparative benchmarks.
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Figure 2.11: Sales of electronic system-level synthesis tools. Source: Gary Smith

EDA statistics.

Hence, since we have seen that market trends are very close to technological

changes in HLS, first of all, we can take a look at the market analysis about

EDA segments revenue in the last five years, conducted by the EDA Con-

sortium (EDAC) Market Statistics Service (MSS), shown in Table 2.2. From

such analysis is possible to infer that, despite high-level design and verifica-

tion is constantly growing year over year, and RTL design and verification

is loosing market share, still in 2010, the latter has registered revenues for

more than three times higher with respect to the prior. This means that

RTL remains the dominant specification and synthesis level. To understand

the reasons for this, we will make our observations on the basis of what re-

searchers and industrial groups have published so far about their experiences

in HLS usage. Among the most recent works in this direction we mainly

refer to that one proposed by Sarkar et al. in [77], in which HLS usages,

improvements and lacks are discussed, mainly focusing on ASICs targets,

and to [15] in which an independent benchmarking and analysis firm, named

Berkeley Design Technology Incorporation (BDTI), proposes a certification

program to evaluate high-level synthesis tools for FPGAs. In the following,

the aspects related to each of these domains will be discussed separately.

Among the most common utilizations of HLS in industry, there are design
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space exploration and rapid prototyping. In ASIC target design, these uti-

lizations are usually more widespread than using HLS with the purpose of

generating RTL code to synthesize into silicon. However, these kind of ap-

plications does not have neither the stringent area or power requirements

involved in designing an ASIC, nor the requirement for tight integration

with other design tools involved in an ASIC design flow. Hence, although

such uses of HLS tools are encouraging, they are not really mainstream uses

of a synthesis tool. Despite starting the design process with RTL causes both

the quantity of the source description and the time required for verification

tasks to increase explosively, and despite advances in HLS algorithms, RTL

remains the dominant specification and synthesis level in designing ASICs.

The reasons for this can be summarized as follows:

� difficulties in meeting design goals : when applied in a strictly con-

strained context, as ASIC design, HLS shows difficulties in meeting

design goals, such as optimizing area and power, and meeting through-

put and latency requirements. The experience documented in [77] has

shown, for example, that different HLS tools produces very different

designs in terms of area. These results can be viewed in Figure 2.12, in

which the synthesis produced by three different tools, T1, T2 and T3,

are compared with the one obtained by hand writing the RTL code.

Note also the dramatic change in area between the first model and

Figure 2.12: Area generated by different HLS tools on a quantization and inverse-

quantization (QIQ) module.

the model optimized for area. This large variation in results become

more weighty when, as frequently happens, it is not available a manual
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RTL to compare with. Moreover, this investigation demonstrated that

even C-like code is not efficiently portable across tools. Indeed, was

found that, when applying the same C-like model, written for one tool

and properly modified for another, the resulted design is significantly

different in area, and no code or tool’s configuration changes would

reduce it. As reported in [59], high-level language choice can be a crit-

ical factor for successful use of HLS. C/C++ offers the highest level

of algorithmic exploration, but sequential execution semantics with no

explicit support for parallel structures. Hence, obtaining good results

for the synthesized RTL requires an advanced parallelizing compiler

embedded in the synthesis tool to automatically extract parallelism in

an application. The quality of results become so very dependent on

the methodologies implemented in the embedded compiler and on the

kind of IRs adopted in optimizations.

� limits in full exploitation of HLS advantages : often overall design cycle

and productivity benefits cannot be fully exploited. For example, opti-

mization of area and power requires fine-tuning the code, which makes

more difficult its reuse in other tools and technologies. Constraints

posed by different tools also limit the number of ways a designer can

influence the microarchitecture of the design, and sometimes the quality

of result (QoR) provided by the HLS tool is far from what an experi-

enced designer can do manually. Finally, the design process sometimes

degenerates into a long series of optimizations, decreasing the produc-

tivity and effectively stripping the code of its portability and flexibility.

The experience described in [15] shows that HLS can significantly increase

the productivity of current FPGA users, especially for those that use DSP

processors in highly demanding applications. Indeed, they compared the per-

formances obtained by a mainstream DSP processor with the ones obtained

using HLS tools on FPGAs. The result was that the latter approach gives
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Figure 2.13: Maximum frame rate

achieved for a video application on a DSP

processor and an FPGA plus HLS tools.

Figure 2.14: FPGA resource utilization

on a wireless receiver, implemented using

HLS tools versus hand-written RTL code.

40X better performance than the prior, as shown in Figure 2.13. Moreover,

was found that HLS tools are able to achieve FPGA resource utilization

levels comparable to hand-written RTL code, as shown in Figure 2.14. A

surprising outcome of this analysis is that the synthesis work for FPGA re-

quired a similar level of effort as the one required for the DSP processor,

despite historically DSP processor implementation resulted easier. However,

these results are strictly related to the application. Indeed, other works, as

[14], show that, in some high parallelizable signal processing applications,

FPGAs could achieve up to 100X higher performance and 30X better cost-

performance than DSP processors.

Unfortunately, HLS manifests some deficiency also in FPGAs domain, the

main of them can be summarized in:

� difficult parallelism and control handling : this aspect is related to

C/C++ adoption as input languages. As above mentioned, such lan-

guages give the enormous advantage to offer the highest level of al-

gorithmic exploration, facilitating code restructuring and optimization

works. This is the main reason why they should be adopted. At the

same time, however, they represent a challenge in parallelism and con-
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trol management, due to they sequential execution semantics without

explicit support for parallel structures. To successfully face this prob-

lem more attention should be paid on properly choose the Intermediate

Representations (IRs). A poor IR can prevent to exploit an adequate

degree of parallelism, or can provide poor informations about control

handling. As we will see in the next, the first step of this thesis work

is a deep analysis of the specification dependencies, leading to the def-

inition of a proper IR. Moreover, C-like languages adoption can be not

suitable for the description of control-oriented applications, that can

be easily represented for example by extended FSMs, or by Petri Nets.

� variable quality of results : HLS on FPGAs gives good results and a

lot of interest in DSP-domain applications, especially for wireless and

wired communications and for image processing, as reported in many

technical reports, such as [86]. This fields are stricly related to dataflow-

dominated applications and signal processing. However, good results

can be generally obtained in control-dominated applications synthesis

too, provided a relatively low level of data dependencies. In most cases,

tools that are able to efficiently manage dataflow-dominated applica-

tions get worst results when applied to controlflow-dominated ones, and

vice-versa. Some vendors state that their tools can efficiently handle

both data and control flow dominated domains, as for instance Mentor

Graphics Catapult C. Other tools vendors, instead, claim effectiveness

in a specific domain, as for example Synfora PICO Express, able to effi-

ciently handle control. Despite third-generation HLS tools claim good

effectiveness in both dataflow and control, the emphasis on DSP fits in

well with the overall perception that third-generation HLS is particu-

larly suitable for signal-processing domains. This is the main reason

why a fourth generation multidomain HLS toolset is prospected. In-

deed, none of these tools is comprehensive in targeting all the domains:

control and dataflow; FPGA and ASIC; random logic and processor-

based; and hardware, software, and mixed hardware-software forms.
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As a result, these tools do not let designers explore the design space in

even a semiautomated format without changing toolsets and investing

a lot of work in tracking and optimizing various branches of the design

tree.

2.7 Conclusions

From what discussed so far about HLS history, in both research and indus-

trial areas, it is possible to drawn some general conclusions. As we will see in

the next chapters, such conclusions represent the basis for this thesis work.

First of all, the adoption of C-like high level languages led the enormous

advantage of allowing algorithmic exploration and compiler-based optimiza-

tions. On the other hand, such languages do not support explicit parallel

constructs. Hence, a proper IR is needed to adequately exploit the paral-

lelism in the given specification. Such IR must take into account both data

and control dependencies. Moreover, it has to facilitate the identification of

different instructions that can be execute simultaneously, while preserving

the original application meaning.

Another key point concerns the difficult acceptance of HLS methodologies.

While it is often used in design space exploration, many limitations in other

kind of utilizations come up against. To make of HLS the mainstream ap-

proach, more general methodologies need to be developed, supporting syn-

thesis processes in a wider range of domains. Despite some vendors claim

their HLS tool efficiency in all the domains, such approach results common

accepted nowadays only in some application domains, such as DSPs, in which

HLS effectiveness is largely proved by a great amount of technical reports.

This problem is not related only to application domains, but also to the kind

of target technology. For example, in most of the designs, HLS still presents

more problems than benefits, usually giving quality of results not compara-

ble with those obtained by hand-writing the RTL code. As discussed before,

users acceptance degree is a good means to evaluate real HLS perception
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and effectiveness, since the market has shown to faithfully mirror technol-

ogy changes. In conclusion, HLS is still inadequate to efficiently identify the

inherent parallelism that can be exploited in hardware, in a wide range of

application domains.

Another relevant conclusion is that the adoption of high-level programming

languages describing the specification led to the parallelism extraction prob-

lem. The main source of parallelism in a specification are branch conditional

constructs, such as loops. Hence, a methodology able to recognize the par-

allelism and thus to handle with branch conditional constructs should be

proposed. As above described, this task can be performed on the basis of a

proper IR.

A first step to overcome these problems could be a careful definition of the

final architecture, focusing on the controller synthesis phase. The most com-

mon model adopted for the controller synthesis has been so far the Finite

State Machine one. However, different models have been proposed in litera-

ture for such purpose, and there exist other solutions well fitting this work.

The aim of the controller model renewing should be to improve the exploita-

tion of parallelism, regardless of the application domain.

Moreover, the proposed final architecture must be defined taking into account

all these factors. Architectures composed by datapath and a parallel con-

troller structures seem to fit in supporting parallelism exploitation, if prop-

erly designed. None of the proposals in this direction, however, can address

the parallelism problem without significantly increasing the communication

overhead, due to sub-controllers synchronization. Indeed, techniques adopt-

ing high-level programming languages are still mainly based on CDFG, thus

incurring in parallelism problem, while graphical descriptions based ones in-

cur in the communication overhead problem.

Since the language adopted in this work to describe the specification is a

C-like programming language, to propose an HLS methodology able to build

a performant controller structure, handling with both the application do-

mains, two relevant choices have to be made, respectively about a proper IR
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for its construction and of an adequate architectural model on which to base

it. At present, neither of these two aspects have been completely addressed

in literature. Alternative proposals, indeed, result not enough convincing to

become the mainstream approach, while common ones still presents several

drawbacks.

This thesis work aims to fill the above mentioned gaps. More in detail, we will

define a proper IR supporting C-like specifications synthesis. Such IR will be

obtained starting from another well known IR, the Program Dependencies

Graph [22]. Then, this new IR will be used to get a parallel execution model,

through the creation of a parallel and distributed controller structure. As

will be described in the next, the final architecture proposed in this work is

not obtained by decomposing a centralized FSM, and it is not composed of a

set of communicating local FSMs. It is instead closer to a direct implementa-

tion of the behavioral specification. Such architectural model is proposed to

dynamically extract the available parallelism in the specification, regardless

of its application domain.

In conclusion, observing HLS evolution, the need of unifying HLS domains

was found to be a critical and actual problem for HLS to succeed. In particu-

lar, the synthesis in control-oriented application domains has given practical

evidence to be a weak link in high level synthesis, leading to a very little

acceptance degree in such domains. Moreover, a careful controller synthesis

methodology can persuade also ASIC designer in using HLS, facilitating the

meeting of the design goals and reducing the limits in full exploitation of

HLS advantages.

In such a scenario, this thesis work proposes the integration in the HLS flow

of a methodology for building a parallel controller structure able to extract

the highest degree of parallelism from a C described specification, regardless

of its application domain.
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Chapter 3

Proposed Methodology

As above mentioned, the purpose of this thesis work is to propose an ap-

proach for the controller synthesis in HLS. The analysis of the state of the

art suggests the need of a twofold improvement. On one side a proper Inter-

mediate Representation has to be developed, and on the other side an ade-

quate choice of the controller architecture is required. Both of these aspects

will be addressed in the methodology proposed in this thesis. In particular,

regards the first aspect, a new kind of IR will be introduced starting from

the Program Dependence Graph (PDG) of the specification, while about the

second one, an appropriate distributed and parallel controller structure will

be defined. It will be also described how to derive the implementation of

such architecture from the proposed representation.

More in detail, given an high-level language specification of an application,

the addressed problem is to integrate a methodology in the HLS flow to

automatically synthesize a distributed and parallel controller structure that:

� is able to extract all the available parallelism in the specification

� enables the concurrent execution of the identified parallel operations,

provided that resource constraints are satisfied

� efficiently manages control constructs in the specification
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The tasks performed to obtain such controller can be summarized in two

macro steps: the analysis process, leading to the definition of the Intermedi-

ate Representation, and the controller synthesis process, including the gener-

ation of the hardware needed to control the datapath. As will be described

in the following, both of these macro tasks encase a series of sub-activities,

that will be compared with the approaches proposed in literature, to present

similitudes and differences.

The project organization will be detailed in Section 3.1. Section 3.2 overviews

the analysis process, clarifying the steps which it is divided into, and motivat-

ing the choices taken in this work. Moreover, in this section a motivational

example will be introduced to further clarify the scenario. In Section 3.3,

the new proposed IR, namely the Parallel Controller Graph (PCG), will be

presented. Then, in Section 3.4, it will be explained how the PCG is used to

create the logic needed to properly enable instructions execution. In Section

3.5, an overview of the controller synthesis process will be presented, start-

ing the description of the second phase of this thesis work. Such last phase

will be directly inferred from the results of the previous analysis phase. In

Section 3.6 the proposed architectural model for the controller will be in-

troduced. Such architectural model will be further detailed in Sections 3.7

and Section 3.8. Then, Section 3.9 describes how to generate the controller.

Finally, Section 3.10 describes a series of optimization techniques that can

be applied to the resulting model.

3.1 Project Organization

As above mentioned, among the phases in the HLS flow shown in Figure

1.3, this thesis focuses on Controller Synthesis. A relevant aspect need-

ing improvements in HLS is related to the parallelism extraction, since C-

like high-level languages have sequential execution semantics without explicit

support for parallel structures. In this sense a parallel controller structure

can contribute to overcome this issue. In literature, such kind of structure
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has been already proposed. However, usually parallel controllers are imple-

mented with the support of non trivial communication and synchronization

protocols, that significantly increase the communication overhead [51] [44].

Moreover, the proposed controller is also distributed. Distributed structures

Figure 3.1: Project Flow: the Steps in which this Project is Organized.

are usually obtained by a top-down approach that starts from a monolithic

FSM and applies decomposition techniques. Hence, a preliminary step needs

to be performed for the construction of the centralized FSM. A bottom-

up approach seems more suitable, since it allows to avoid the entire FSM

construction. The final controller architecture is not composed of a series

of FSMs, but it is composed of several modules, interacting according to a

token-based scheme, which is a very simple communication paradigm.

Several steps have been considered to realize the proposed model. Such
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phases, organized in two macro-tasks, are shown in Figure 3.1. The former is

the Analysis Process, in which, through an analysis of the Program Depen-

dence Graph, a new Intermediate Representation, called Parallel Controller

Graph (PCG), will be defined. Then, the PCG will be in turn analyzed to

obtain the conditions that enables an instruction to be executed. Such con-

ditions will be represented by a special form of a logic function, in which the

meaning of standard logic operators, such as AND and OR, is partially ex-

tended. The Controller Synthesis Process allocates and connects the modules

needed to implement the target controller architecture, according to function

associated with each operation.

3.2 Analysis Process Overview

One of the objective of the analysis phase, is to build an Intermediate Rep-

resentation from which an execution model will be constructed, preserving

the inherent parallelism. Such a model can be characterized by a produc-

er/consumer paradigm: an instruction i (i.e. the consumer) can be executed

if and only if the instructions on which it depends on (i.e. the producers)

have been already executed. Hence, given an high-level language description

of the specification, the problem addressed in the analysis phase is to iden-

tify the conditions enabling an instruction execution, preserving the available

parallelism. This task involves a series of sub-tasks, that can be briefly sum-

marized as follows:

1. Parallelism Identification: choice of a representation exposing the avail-

able parallelism in the specification

2. Enabling Conditions Identification: identification of the conditions en-

abling the execution of each instruction

3. Enabling Conditions Representation: choice of a proper representation

for conditions that enables instructions execution
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In the next section a motivational example will be introduced to better ex-

plain such problems and how they have been addresses. More in detail, this

example is presented with the aim to clarify what is needed to perform an

analysis oriented to the construction of a parallel controller structure, and to

explain the choices made in this thesis work.

3.2.1 Motivational Example

A representative example of C-written specification will be now introduced

to better explain how the analysis phase should be carried out. The selected

example, shown in the following, shows some exploitable parallelism. Such

parallelism is represented by the presence of two loops, loop1 and loop3, that

can be potentially simultaneously executed. Moreover, it is characterized by

an elevated number of both data and control dependencies, increasing the

number of control steps needed to schedule all the operations, and compli-

cating the parallelism extraction.

In this case, it may result difficult to statically identify a control step in

which each operation can start, since the program presents conditions whose

evaluation result determines which instructions must be executed. Condi-

tions evaluation results may be unknown at compile time. For example, it

may be unknown at compile time the number of iterations for loop2, since it

depends on the value of the variable n2, which in turn depends on the value

of the variable i, which in turn depends on the value of the variable a that is

an incoming argument of the function. For this reason it results impossible

to know its value before run time.

For this reason, a general approach should not aim to find the exact control

step in which activate each operation, but only to identify the conditions that

enable their execution. For example, the condition enabling the execution

of the instruction 16 can be expressed as “after the values for both the vari-

ables read, a and b, have been defined”. Moreover, considering the producer

of variable b, i.e. instruction 14, another kind of enabling condition can be

identified. Instruction 14 execution, indeed, is possible only when the branch
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condition of instruction 13 has been evaluated as true. Obviously, this infor-

mations has to be formally identified and properly represented. Moreover,

all the considerations made so far need to be formalized to define a general

approach.

void MotivationalExample(int a, int b, int c, int * out)

{

1: int i=0;

2: while(i<a) #loop1

{

3: int j=0;

4: int n2=i+1;

5: while(j<n2) #loop2

{

6: int t1=j+1;

7: c=a+t1;

8: i=i+c;

9: j=j+1;

}

10: i=i+1;

}

11: int k=0;

12: while(k<10) #loop3

{

13: if(a>k)

{

14: b=k+a;

}

15: k=k+1;

}

16: int t2=a*b;

17: int res=t2+c;

18: *out = res;

}
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3.2.2 Parallelism Identification

The key to identify the parallelism available in the specification is the adop-

tion of a proper model as Intermediate Representation (IR). As above men-

tioned, the most common approaches adopted in high level synthesis use

graphs as IRs. More in detail, the Control Data Flow Graph (CDFG) repre-

sents the standard approach. In CDFG-based methodologies control depen-

dencies are derived from the CFG, while data dependencies from the DFG.

Even if data dependencies between operations are well shown by the CFG,

it fails on recognizing the available parallelism, i.e. it serializes control con-

structs introducing “false”control dependencies.

This issue will result clearer considering the CFG in Figure 3.2, obtained

from the proposed example. The two loops, loop1 and loop3, in the spec-

ification could be executed in parallel, not having neither data nor control

dependencies between their instructions, but the CFG serializes them intro-

ducing an edge (from node 2 to node 11), and so a “false”dependency. Thus,

a CDFG based execution model will ignore the parallelism provided by the

two parallel loops. Even if in this particular case, front-end optimizations,

such as loop merging, could reduce the problem’s impact, a general solution

is definitely required to deal with these situations.

For this reasons, the Program Dependencies Graph (PDG) seems more ade-

quate to be adopted as the starting point of the analysis process, representing

the so called minimum dependencies in the specification.

Formally, the minimum dependency relation can be defined as follows.

Definition 3. Given a PDG = G(V,E), where

� v ∈ V are the graph nodes, i.e. the instructions

� e = (v1, v2) ∈ E are the graph edges, with v1 source node and v2 target

node

we define the minimum dependency relation M among the set of instructions

V , as:
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Figure 3.2: CFG corresponding to the Motivational Example C code.
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v1Mv2 ⇔ ∃e ∈ E|e = (v1, v2).

Based on this property, the PDG is able to address the parallelism identifi-

cation problem.

In fact, the information contained in PDG allows the recognition of different

sources of parallelism exploitable in the specification. Consider, for instance,

the PDG shown in Figure 3.3, obtained from the proposed example. Solid

black edges represent control dependencies, blue dotted edges represent true

data dependencies and green dotted edges shows false data dependencies

(i.e. anti and output ones). In this worth noting that, in Figure 3.3, only

one edge is represented even when there are multiple dependencies between

two edges. More in detail control dependencies have to be considered as the

more relevant ones, followed by true data dependencies, and by false data

dependencies. Such representation clearly shows that there is not any real

dependence between nodes 2 and 11, hence loop1 and loop3 can start their

execution simultaneously.

The PDG seems a good starting point to create a parallel execution model,

since an important property holds. Let us define a level for each operation

in the program dependence graph as the maximum of the parents levels plus

one. For instance, considering the PDG in Figure 3.3, level 0 will be assigned

to the entry node, level 1 will be assigned to all the entry node successors,

i.e. nodes 1 and 11, and so on. Note that level 3 has to be assigned to node

13, since the node with maximum level among its predecessors is node 12,

that has level 2. Table3.1 reports the level assignment for the operations,

according to their position in the PDG.

As described in [22], all the operations at the same level in the PDG can be

executed simultaneously, since no dependencies between them occur. Hence,

for example, the execution of the operations 3, 4 and 13 can overlap, if an

adequate number of resources is available. Moreover, the PDG allows to dis-

cover the highest level of parallelism in the source code: if all the instructions

in one PDG-level are executed in the same control step, the ASAP instruc-

tion scheduling is obtained, according to the set of minimum dependencies,
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Figure 3.3: PDG obtained from the motivational example C specification.
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LEVEL OPERATIONS

0 ENTRY

1 1, 11

2 2, 12

3 3, 4, 13

4 5, 14

5 6, 15, 16

6 7, 9

7 8, 17

8 10, 18

Table 3.1: Level assignment for the Operations in the PDG.

that, by definition, exploits the highest level of parallelism.

3.2.3 Enabling Conditions Identification

The section describes how the PDG can be also adopted to identify and

describe the conditions that enable instructions execution. Considering, for

example, the instruction 3 in the motivational example, it is possible to infer

the information about such conditions from the PDG in Figure 3.3. Indeed,

the PDG shows that 3 depends on instruction 2 by means of the oriented

edge from 2 to 3. Thus, the PDG suggests that 3 can be executed after the

instruction 2 has been executed. However, saying that 3 has to be executed

after 2 is not enough, since in this case the nature of the dependency between

the two operations is of control type. This means that another condition must

be added, i.e. 3 can be executed after 2, and the execution of 3 is subject to

the positive evaluation of the condition “i < a” . In any case the PDG shows

also this information by marking with a “TRUE” label the edge from 2 to 3.

However, the PDG is not able to provide all the informations needed. Hence,

the PDG presents a relevant drawback: it does not show all the informations
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needed by the execution flow. This fact makes it unusable as basis to build

the parallel controller structure. Hence, it has to be adequately expanded

to construct a real execution model. To understand this issue, consider, for

example, instruction 17. The information inferred from the PDG is that

17 has a data dependency with both 7 and 16. Hence, it can be executed

after both 7 and 16 have been executed. This information is clearly wrong.

Indeed, operation 7 belongs to loop2’s body. Thus, it has to be executed

many times before the final value for the variable c is computed. Associating

to 17 the above described activation function, after 7 is executed for the

first time, the execution of 17 can start, provided that also 16 has been

executed. As a consequence, 17 would read the wrong value for the variable

c. The missing information in this case is that 17 cannot start until the

termination of loop2 execution. Moreover, since loop2 belong to loop1, 17

must be waiting for loop1 termination too. This is just an example in which

PDG fails in identifying enabling conditions. In particular, it is clear that

control and data dependencies are not enough to identify the minimal set

of the enabling conditions for an operation. There exist, indeed, situations

in which the flow has to be necessarily considered. In conclusion, a new

IR called Parallel Controller Graph is proposed to address these issues. By

extending the PDG with the missing information.

3.2.4 Enabling Conditions Representation

After identifying the conditions enabling the execution of an instruction, they

have to be stored in a convenient and easy-to-manage form. Such represen-

tation should be as concise as possible, and should be in an optimizations-

compatible form. To choose a proper representation for the enabling condi-

tions some preliminary considerations are needed.

The proposed model is event driven, following, as mentioned in the previ-

ous sections, the producer/consumer paradigm. More in detail, given the

minimum dependency relation M induced by the PDG, v1Mv2 denotes that

the execution of v2 must wait until v1 completion to start, thus v1 repre-
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sents a producer while v2 represents a consumer. It is also possible to say

that the execution of v1 activates v2, leading to the following interpretation

of the statement v1Mv2: the execution of v1 produces an activation signal

consumed by v2, enabling its execution. This last interpretation fits better

in representing also enabling conditions induced by control dependencies, in

which the conditional node evaluation result, showed through labelled edges,

must be considered. Indeed, such last interpretation is more related to the

product (activation signal) with respect to the producer (instruction), allow-

ing the consideration of the product properties (in this case labels).

If an instruction v2 has more than one incoming edges, i.e. ∃v1a, v1b ∈ V such

that v1aMv2, v1bMv2, then the activation signal for v2 is obtained through

a proper combination of the signals associated with the incoming edges, is

called activation function. Furthermore, given an edge e = (v1, v2), with v2

having only e as incoming edge. This combination the execution of v1 does

not always lead to the activation of v2: in fact, in the case of diramation con-

structs, the execution of the conditional instruction will not activate both

the true and the false branch. Thus activation functions must consider these

situations too, taking into account the result of the condition evaluation.

3.3 Parallel Controller Graph

Starting from the program dependencies graph, we introduce a new kind of

internal representation, called Parallel Controller Graph. The name chosen

for the graph denotes the objective of building a parallel controller structure,

providing a proper execution model, i.e. the enabling conditions for the

operations. The first issue that required to modify the PDG is the need of

more informations about the control flow. This lead to the following formal

definition for the PCG.

Definition 4. The Parallel Controller Graph (PCG) is defined as an oriented

graph G(V,E), where V is the same set of nodes of the corresponding PDG =

G′(V,E ′), and the set E of edges is defined as
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E = DT ∪DAO ∪ ∪CU ∪ CL ∪ CBE ∪ FU ∪ FL

where:

� DT denotes the set of edges representing RAW (flow, or true) data

dependencies; each edge dt = (v1, v2) ∈ DT has a label indicating the

variable defined by v1;

� DAO denotes the set of edges representing WAR (anti) and WAW (out-

put) data dependencies; each edge dao = (v1, v2) ∈ DAO has a label

indicating the variable used by v1 and defined by v2 in the case of WAR

dependencies, or defined by both v1 and v2 in the case of WAW depen-

dencies;

� CU denotes the set of edges representing control dependencies without

any condition, i.e. all the control dependencies edges outgoing from the

entry node belong to CU ; the subscript U indicates that this kind of

edges are unlabeled;

� CL denotes the set of edges representing control dependencies with some

condition; each edge cl = (v1, v2) ∈ CL has a label indicating which

branch of the diramation node the edge is associated to;

� CBE denotes the set of loops back-edges.

� FU denotes the set of control flow edges without any condition;

� FL denotes the set of control flow edges with some condition;

Labels can be viewed as properties characterizing some kind of edges. Labeled

edges could be described by the 3-tuple (v1, v2, L), where v1 represents the

source node, v2 the target node and L the label.

In the next, for each node v, the following notation will be adopted:

� in(v) = {ei = (vi, v) ∈ E} will indicate the set of incoming edges;

� out(v) = {eo = (v, vo) ∈ E} will indicate the set of outgoing edges;
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� fanIn(v) = |in(v)| will indicate the number of incoming edges;

� fanOut(v) = |out(v)| will indicate the number of outgoing edges.

As above mentioned, the proposed model is based on the concepts of ac-

tivation signal and activation function. For each node, the corresponding

activation function depends on the set of the node’s incoming edges in(v),

according to the above described product-related interpretation of the pro-

ducer/consumer paradigm.

Given a PDG = G′(V,E ′), the algorithm to obtain the set of edges E of the

corresponding PCG = G(V,E) can be summarized in the following steps:

1. A transitive reduction is performed, among all the control edges having

the entry node as source, i.e. belonging to the set CU : each edge

e = (ENTRY, v), such that ∃e1 = (ENTRY, v1) and exists a path from

v1 to v, is removed. The reason why this edges are eliminated is that, in

such situations, it results redundant the condition that the entry node

activates the execution of v, since the activation of v depends also on

other instructions execution. Since no instructions can be executed

until the program starts to run, i.e. until the entry node is activated,

dependencies from the entry node are really needed only for those nodes

depending only on the entry node. However, this is just an optimization

that, if not performed, does not affect the PCG correctness.

2. Loops require additional labeled control flow edges el ∈ FL and back-

edges eb ∈ CBE. Two simple algorithms to add such edges will be

presented in the next paragraphs, including explanations about the

reasons that make them necessary.

3. Nodes without outgoing edges are linked to the exit node; such edges

will be included in the set FU ⊂ E. This information is related to the

specification flow. In other words, it is a means to identify when the

computation terminates.
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Figure 3.4: First version of the PCG for the motivational example obtained from

the corresponding PDG by applying the first steps of the PCG construction algo-

rithm.
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Figure 3.4 shows a first version of the PCG, obtained from the corresponding

PDG by applying transitive reduction on control edges starting from entry.

3.3.1 False-labeled control flow edges insertion algo-

rithm

Consider the first version of the PCG in Figure 3.4, obtained for the moti-

vational example C specification and the corresponding PDG in Figure 3.3.

Node 16 is not control dependent on node 12, since does not exist, in the

corresponding CFG, a path reaching the exit point from node 12 not con-

taining node 16; thus node 16 is only data dependent on node 14. Since

activation signals are associated with dependencies, i.e. with edges, in this

case the execution of 14 leads to an activation signal that allows 16 to start

(being fanIn(16) = 14), even if the while loop, loop3, is not finished yet.

To handle with such situations, additional edges are introduced, having the

loop header (e.g. node 12) as source and the data dependent node (e.g. node

16) as target. The rationale for making such edges as control flow edges,

instead of the control dependence ones, will be clarified in Section 3.4.4. In-

troducing a false-labeled control flow edge from 12 to 16 is equivalent to state

that instruction 16 must wait until loop3 termination to start. The proposed

algorithm requires loops detection: this task is usually performed by the

front-end, and recognizes the loop constructs in the source code, associating

them an identifier loopID. In the adopted representation, each instruction

of the source code is assumed to be contained in a loop: instructions be-

longing to a loop are associated to the corresponding loopID, all the others

are associated to a dummy loop, namely loop 0. The set of the instructions

belonging to a loop is denoted by the loop identifier itself. Once loops are

detected, a loop forest is built.

A loop forest is a tree representing the nesting relations between the iden-

tified loops, where the root node is loop 0 (see Figure 3.5). Given a loop

forest, loopj is defined as an inner loop with respect to loopi (outer loop) if

there exist a path from loopi to loopj in the loop forest tree.
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Figure 3.5: Loop forest tree for the motivational example specification.

Considering again the first version of the PCG Figure 3.4, since node 16 is

not control dependent on node 12, node 17 is not control dependent on node

5. However, in this case, instruction 5 belongs to loop2 that is an inner loop

with respect to loop1. Hence, loop2 termination is not enough to enable

instruction 17 execution, since loop2 will be executed as many times as the

number of iterations of loop1. Thus, 17 has to wait for loop1 termination

too. To handle also with such situations, a false labeled edge will be added

from the header of the outermost loop in the loop forest (e.g. node 2), with

exception of loop0, to the data dependent instruction (e.g. node 17).

In conclusion, a false-labeled control flow edge must be added each time it

occurs a data dependency with source an operation belonging to a loopi,

with i 6= 0, and target an operation belong to a loopj, with i 6= j. However,

additional aspects have to be considered.

Consider, for example, node 3 and 9 in Figure 3.4. They are data dependent.

Moreover, node 3 belongs to loop1, while 9 belongs to loop2. Hence, all the

so far mentioned conditions for a false-labeled control edge addition hold.

However, in this case adding such control flow edge is equivalent to say that

instruction 9 must wait until loop1 termination to start. It is obviously a

paradox, since loop1 cannot terminated if instruction 9 has not been exe-

cuted, since it belongs to a loop1’s inner loop. Hence, if a data dependency

occurs, with source an operation belonging to a loopi, and target an opera-

tion belong to a loopj, with loopj inner with respect to loopi, no edges must

be added.

Finally, consider the opposite situation, i.e. when a data dependency occurs,
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with source an operation belonging to a loopi, and target an operation belong

to a loopj, with loopi inner with respect to loopj, as for example, for nodes

8 and 10 in Figure 3.4. In this case the false-labeled control flow edge is

needed, since 10 must wait for loop2 termination before to start.

On the basis of this analysis, it is now possible to define the algorithm for

the false-labeled control flow edges insertion. Such edges will be indicated

with e = (s, t) ∈ FL. The algorithm works as follows:

1. for each loop k (except loop 0), instructions are progressively analyzed

in order to find data dependencies d = (v1, v2) ∈ DT ∪DAO, such that:

� v1 ∈ loopk

� v2 ∈ loopw, loopw 6= loopk

� loopw is not an inner loop with respect to loopk

2. each identified dependency d = (v1, v2) is considered. The front-end

associate to each loopk a loop header, that generally could include

more than one instruction, composing a basic block. Denoting with

header condk the loop condition test instruction of loopk header’s ba-

sic block, the source node s of the additional control edge is set to the

node corresponding to header condk.

3. the target node t is set to v2;

4. the edge just identified is labeled as a false-branch control flow depen-

dency, denoting that the loop restarting condition is not satisfied, so

the loop execution is finished;

5. finally the edge e = (s, t, L = false) is added to the graph.

Figure 3.6 shows the resulting PCG after false-labeled edges insertion for the

motivational example specification.
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Figure 3.6: PCG for the motivational example after false-labelled control flow edges

(red edges) insertion.
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3.3.2 Back-edges insertion algortihm

When a loop is executed for the first time, its entry point is activated by the

associated activation function, which depends on the node’s incoming edges;

using the current version of the PCG, it becomes impossible to establish how

to manage the subsequent iterations of the loop, since no edges from the loop

itself reach the header, making entry point execution start independent with

respect to activation signals that should come from the loop body.

Consider, for example, node 2 in Figure 3.6. In this partial version of the

PCG, node 2 results activated after node 1 has been executed. Since node 1

is executed one time, also node 2 does. Indeed, there not exists any relation

between node 2 and the instructions belonging to loop1 from which it is pos-

sible to infer that node 2 has to be possibly executed many times. Moreover,

also the information about conditions enabling the re-activation of node 2

misses.

To face this problem, back-edges are introduced in the graph. These edges

must unequivocally identify the termination of a loop iteration. Usually,

given a loop, a back-edge is considered as an edge having source the last in-

struction of the loop body, and target the loop header. This implies that any

given loop is characterized by a unique back edge; moreover, most common

loop detection algorithms work identifying back-edges in the CFG and thus

associating them to a loop. This approach requires that an execution flow

is well defined, but the current PCG version does not satisfy this require-

ment. The main difference in using PCG instead of CFG is that the latter

supports the representation of loops with single entry point and single exit

point, while the former supports the representation of multiple entry and

exit points loops. Indeed, from the partial PCG representation, it is possible

to identify a set of instructions, where each of them may be the last one

of the loop. Similarly, the entry point of a loop may be not unique in the

partial PCG, so it is possible to identify a set of instructions that may be

executed for first in the loop iterations. This is an interesting feature, since

the execution order is not known in advance, giving more chances of opti-
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mization. Moreover, this representation supports parallel execution, since a

set of instructions can be simultaneously executed as first/last of the loop.

In the next, for each loop k, the following notation will be adopted:

� first(loop k) = {vf ∈ V |∀e = (vi, vf ) ∈ in(vf ), vi /∈ loop k} will indi-

cate the set of nodes not depending on any other node in the loop, i.e.

the set of instructions that can be executed for first in the loop.

� last(loop k) = {vl ∈ V |∀e = (vl, vj) ∈ out(vl), vj /∈ loop k} will in-

dicate the set of nodes such that does not exists any other node in

the loop depending on them, i.e. the set of instructions that can be

executed for last in the loop.

It should be clear at this point, that in the proposed representation more

than one back edge is associated to the same loop.

Denoting with k the number of detected loops, the algorithm to add such

back-edges in the graph works as follows:

1. for each k 6= 0, the set first(loop k) is computed;

2. for each k 6= 0, the set last(loop k) is computed;

3. the set of back-edges is computed as

DBE =
⋃

k{e = (vl, vf ), vf ∈ first(loop k), vl ∈ last(loop k), k 6= 0},

4. each edge belonging to DBE is added to the graph.

Some clarifications are needed for nesting loops. The proposed algorithm is

able to handle even loop nestings under the assumption that the front-end

produces a representation for the loops structure composed by three parts:

header, body and trailer. Such representation is often adopted by front-ends.

An example for such model is shown in Figure 3.7. Header and trailer are

single basic blocks, while the body can be composed by several basic blocks.

The trailer basic block represent the exit point of a loop. The instructions

inside the trailer belong to the loop immediately higher in the loop forest.
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Considering the example in Figure 3.7, loop2 trailer instructions belong to

loop1 body, and loop1 trailer instructions belong to loop0. Adopting such

assumptions ensures that, for each loop k, the set of instructions that can be

executed for last in the loop cannot belong to an inner loop. For example, the

set of instructions that can be executed for last in loop1 will never belong to

its inner loop, loop2, since loop2 body instructions must be always followed

by loops2 trailer instructions, i.e. by instructions belonging to loop1. This

fact makes legal the definition of the set last(loop k) as above described,

making also correct the presented algorithm.

However, other loop graph construction assumptions are possible. To handle

with such situations, the algorithm should be slightly modified. Indeed, in

other representations for loops structures may happen that the some of the

instructions that can be executed for last in an outer loop belong to an

inner loop, since the loop trailer may miss. Such instructions would never be

detected as belonging to the set last(loopouter), since such set contains, by

definition, only instructions belonging to loopouter.

A more general version of the algorithm for the back-edges insertion works

as follows:

1. if a loop has no inner loops associated with, back-edges are added as

explained above;

2. in the case of two-level loop nestings, with loopO the outer loop and

loopi the i-th inner loop,

� if @e = (vo, vj) ∈ out(vo), vo ∈ last(loopO) such that vj ∈ loopi∀i ∈
I, with I the set of inner loops, then the previous algorithm is

applied;

� if ∃e = (vo, vj) ∈ out(vo), vo ∈ last(loopO) such that vj ∈ loopi,

then labeled-back edges must be added; indicating them as elbe =

(s, tf ), the source node s of each edge is the one corresponding

to loopi condition test instruction, while the targets are nodes

tf ∈ first(loopO); the obtained edges must be false-labeled.
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Figure 3.7: A possible representation produced by the front-end for loops structure

and the loop forest of the corresponding specification.

3. in the case loopi is not an innermost loop, i.e. there exist other loops

in the loop forest tree that are inner with respect to loopi, then it is

needed to restart the analysis from point 1, considering this time loopi

as an outer loop.

In other words, the situation above described is recognized by the presence

of an edge with an instruction belonging to last(loopO) as source, and an

instruction belonging to loopi as target. Such edge indicated a dependency

from an instruction of the outer loop to an instruction of the inner loop.

This means that the inner loop instruction has to be executed after the outer

loop instruction has been executed. Hence, the outer loop instruction has

been wrongly recognized as belonging to the set of instructions that can

be executed for last in the outer loop. Moreover, it means that loop inner

termination is the right condition for loop outer to re-start. Indeed, since

the target of the data dependency belongs to the inner loop, waiting for its

execution is not enough. The correct value will be produced only after the
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loop in which is contained, i.e. loop inner, is terminated. For this reason a

false-labeled back-edge is added with source the inner loop header condition,

and target the outer loop header condition.

Notice that, also applying the simplified version of the algorithm, in the case

of end-condition loops, if the condition evaluation node belongs to last(loop),

backedges could require to be labeled. Furthermore, this situation may occur

rather than not on the basis of front end code transformations and of the

kind of IR produced. For example, many compilers usually insert additional

instructions at the end of the loops, making them never end with a diramation

node: adopting this internal representation in no cases labels will be needed

for backedges.

Finally, Figure 3.8 shows the complete version of the PCG, obtained after

back-edges insertion and after connecting the nodes without successors with

the exit node through unlabeled control flow edges (step three of the PCG

construction algorithm).

3.4 Activation Function

the producer/consumer paradigm implies that, when an operation is exe-

cuted, a done signal is produced and delivered to the other instructions

depending on it. Anyway, as described above, the reception of a done signal

does not always result in the activation of a given operation, thus activation

functions are introduced. The parallel controller graph representation allows

to associate the signals produced by an operation i1 with the outgoing edges

of the vertex v1 associated to i1. Similarly, the signals s1, s2, ..., sk that enable

the execution of an instruction i could be associated with the incoming edges

e1, e2, ..., ek ∈ in(v) of the vertex v associated to i. Thus, given a node v ∈ V ,

the activation function AF (in(v)), or simply AF (v), can be described as the

signal obtained properly combining the done signals associated to edges be-

longing to in(v) (see Figure 3.9). Because of the two-way correspondence

between them, as previously done for nodes and operations, in the next sig-
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Figure 3.8: Complete version of the PCG for the motivational example.
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nals and the corresponding edge in the PCG will be alternatively used.

Figure 3.9: Activation function graphical representation

The activation function is obtained by combining the done signals through

two basic operators:

� the join operator ∧, corresponding to the logic operator and ;

� the or operator ∨, corresponding to the logic operator or.

This connection with Boole’s algebra is meaningful since the boolean events

of signal productions/receptions are considered as operands. In the phys-

ical implementation, a signal will be assumed as generated when it has a

high value. Given two signals s1, s2, whose generation denotes the occurred

execution of operations v1 and v2 respectively:

� s1 ∧ s2 returns 1 as a result, thus generating a signal, iff both s1 and

s2 have already been generated, i.e. both v1 and v2 have already been

executed;

� s1 ∨ s2 returns 1 as a result, thus generating a signal, iff at least one

between s1 and s2 has already been generated, i.e. at least one between

v1 and v2 has already been executed.

In addition to the two basic operators, another one is needed to be introduced,

to handle with labeled edges belonging to the sets CL and FL. Given a node

v, the presence of an edge e = (v1, v, L) ∈ in(v)∩ {CL ∪ FL} denotes that v1
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is a conditional operation and that v depends on the result of the condition

evaluation performed in v1. Thus, execution of v is subject not only to the

execution of v1, but also to the result of its evaluation.

For this reason, the unary operator ∧cond, whose operand is a labeled edge

belonging to {CL ∪ FL}, is defined. Indicating with res(v1) the outcome

of the condition evaluation in v1, ∧cond(s), with s the signal associated to

e = (v1, v, L), returns a high value iff both these conditions hold:

� s has already been generated, i.e. v1 has already been executed;

� res(v1) = L.

Moreover ∧cond(s1) , with s1 /∈ {CL ∪ FL}, returns the signal s1 itself.

Property 1. For any conditional node vc, the same signal results from the

appliance of the ∧cond operator to any of its outgoing edges e = (vc, vj, L)

having the same label L, i.e. denoting with Vc the set of the conditional

nodes:

∀ vc ∈ Vc, ∀ s1, s2, ..., sj associated to its outgoing edges e1 = (vc, vj, L1),

e2 = (vc, vj, L2), ..., ej = (vc, vj, Lj), with L1 = L2 = ... = Lj:

∧cond(s1) = ∧cond(s2) = ... = ∧cond(sj)

Hence, it is possible to adopt the following notation:

∧cond(sj) = ∧cond(vc, vj, L) = ∧cond(vc, L)

since the resulting signal does not depend on the target of the control edge.

Given a set of signals S, the following terms are introduced:

�

∏
s∈S

s =
∏

S, the result of the appliance of join operator to all the

signals belonging to S;

�

∑
s∈S

s =
∑

S, the result of the appliance of or operation to all the

signals belonging to S;
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�

∏
cond

S, with S ⊆ {CL ∪ FL}, the set {scond = ∧cond(s), s ∈ S}

Obviously, if |S| = 1, S = {s}, then
∏
S =

∑
S = s.

Remarking that the set E of edges characterizing the PCG can be partitioned

as

E = DT ∪DAO ∪ CL ∪ CBE ∪ FU ∪ FL,

some preliminary definition will be next introduced to formulate the activa-

tion function.

3.4.1 Control Path and Control Path Signal

Consider the node 14 in the PCG obtained from the motivational example,

shown in Figure 3.8, focusing on control dependencies. The operation 14 is

control dependent on the operation 13. Hence it has to be executed only if

the variable a assumes a value greater than the one assumed by the variable

k. The operation 13 is in turn control dependent on the operation 12. Hence

it has to be executed many times while the variable k assumes a value less

than 10. In this case it is possible to state that instruction 13 will be exe-

cuted exactly ten times since it is known the number of iterations for loop3,

but this information is not available in general. Indeed, a general approach

should take into account that loop3 may not be executed at all, since the

condition test can result false before the begin of the first iteration. Finally

the operation 12 is in turn control dependent on the entry node, since all the

instructions not having incoming control edges depend on the entry node.

In conclusion, node 14 has to be executed while k is less then 10 and only

if a is greater than k. From such considerations it is possible to infer that a

complete formulation of the control part of the activation function should not

consider just the activation signals associated with the immediate predeces-

sors in the PCG. It should consider, instead, the presence of a control-edges

path, starting from the entry node and terminating into the considered node.

Consider, now, node 16 in the same example. It is connected to node 12 by

means of a false-labeled control flow edge, expressing the condition that the
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execution of 16 must follow the execution of 12 when the condition k < 10

is false. Hence, also conditions coming from labeled control flow edges must

be considered. For this reason, in the next, conditions deriving from both

control dependencies and control flow edges will be handle.

Given a vertex v ∈ V , an activation edge for v is defined as eact ∈ {CU ∪
CL ∪ FL} such that eact must be produced in order to execute e. The set of

all the activation edges for v is indicated with Eact(v). The set Eact i of edges

belonging to Eact(v) which form a directed path in the PCG from the entry

node to node v, define a control path cpathi(v) ⊂ {CU ∪ CL ∪ FL}. Remem-

ber that, if a control-edges path is found starting from a node vi without

incoming control edges, an edge from the entry node to vi is added in the

corresponding control path, since it means that such control dependency is

implicit in the PCG. Hence, each control path will start from the entry node.

Each node v can be reached by different control paths, whose set is identified

by CP (v). It is the case, for example, of node 10 in the PCG of the motiva-

tional example shown in Figure 3.8. In the proposed example it is possible

to recognize two control paths for node 10:

� cpath1(10) = (ENTRY, 2, T )→ (2, 5, T )→ (5, 10, F ),

� cpath2(10) = (ENTRY, 2, T )→ (2, 10, F ).

It is assumed that each node has at least one control path: if no path is

found in the PCG, then CP (v) = {(ENTRY, v, T )}, remembering again

that building the PCG a transitive reduction for edges with source the en-

try node has been performed. Notice that in the control-path computa-

tion, edges outgoing from the entry node are considered as labeled edges

e = (ENTRY, v, L = true). Given a control path, it is possible to define the

control path signal as follows.

Definition 5. Given a control path cpathi(v) for a node v, a control path

signal cpsi(v) is defined as:

cpsi(v) =
∏

cpathi(v),
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i.e. as the signal obtained applying the join operator to all the edges compos-

ing the control path cpsi(v).

Starting from the properties of boolean algebra, the following property for

control path signals hold:

Property 2. cpsi(v) =
∑

j∈cpathi(v)

j

where j represents the negation of signal j = (v1, v2, L) ∈ {CU ∪ CL ∪ FL},
defined as follows:

j = (v1, v2, L
′) with L′ 6= L.

Edges coming from the entry node are ignored in this computation. It is

important to underline that if there exists an edge j = (v1, v2, L) in the

PCG, then it will not exist an edge j = (v1, v2, L
′) for sure: it is just a

notational fiction used to denote that the outcome of condition evaluation in

node v1 is different from L. Considering the previous example, it results for

node 10:

� cps1(10) = (2, 5, F ) ∨ (5, 10, T ),

� cps2(10) = (2, 10, T ).

3.4.2 Control Dependencies Activation Signal

Each node v ∈ V can exhibit both control and data dependencies, that

contribute together with loop backedges, to form the activation function for

node v. From the considerations made in the previous section, it can be

inferred that control dependencies must be considered exploiting the concept

of control path. Hence, the subsequent definition follows.

Definition 6. The control dependencies activation signal scontrol(v) is de-

fined as

scontrol(v) =

|CP (v)|∑
i=0

cpsi(v),
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i.e. as the signal obtained applying the or operator to all the control path

signals cpsi(v) associated to each control path cpathi(v) ∈ CP (v) reaching

node v.

The correctness of such definition is justified by the fact that only one signal

cpsi(v) can be produced in a given time, since only one control path reaching

a specific node may be followed in one of the possible execution flows. An

interesting property of control dependencies activation signals is defined as

following.

Property 3.

If |in(v)| = 1, in(v) = {s = (vs, v) ∈ {CU ∪ CL ∪ FL}}, then scontrol(v) = s.

Justification of this property is trivial: if |in(v)| = 1, then |CP (v)| = 1, i.e.

there exist a unique control path reaching node v. Thus activation of v will

depend on its predecessor vs execution only, and there is no need to consider

the entire control path.

The definition given for control dependencies activation signals covers also

the case of labeled control flow signals, since these edges has been included

in the definition of control path. Despite the concepts of control dependency

and control flow edge are very different, the cases concerning the prior aspect

will be included in the ones concerning the latter. Hence, with an abuse of

notation, signal concerning both this kind of informations will contribute to

obtain control dependencies activation signals. The only case remaining not

considered is the case of the exit node, that is the only node having unlabeled

control flow incoming edges. This case management is closer to the case of

data dependencies. For this reason, it will be introduced at the end of the

next section.

3.4.3 Data Dependencies Activation Signal

Consider the node 16 in the PCG obtained from the motivational example,

shown in Figure 3.8, considering now data dependencies. Node 16 is data de-

pendent on node 14. This means that 16 cannot start before 14 is executed,
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but 14 has to be executed only if the condition test for the instruction 13 is

true, while 16 has to be executed regardless of the outcome of such condition

evaluation. To handle with such situation activation signals for data depen-

dencies must take into account the activation path of the instruction that is

source of the dependency. In other words, it must be expressed the concept

that a data dependency need to be considered only when the source of such

dependency has to be executed, otherwise it must be ignored.

Data dependencies constraining the execution of node v are denoted by edges

in the PCG belonging to D(v) = (DT ∪DAO)∩ in(v). The data dependencies

activation signal is introduced to determine if data dependencies constraints

are satisfied; given that if d = (vs, v) ∈ D(v), then vs denotes the source

node of d, a first definition for data dependencies activation signal follows.

Definition 7. A data dependencies activation signal sdata(v), for a node v,

is defined as

sdata(v) =
∏

d∈D(v),i∈{o,...,|CP (vs)|}

(
∑

({d} ∪ cpsi(vs))).

i.e. as the signal obtained applying the join operator to the signals obtained

by applying the or operator between each data dependency edge d and each

control path negated associated to the source of the data dependency vs.

From the Property 2, an alternative formulation for data dependencies acti-

vation signals can be obtained as:

sdata(v) =
∏

d∈D(v),i∈{o,...,|CP (vs)|}

(
∑

j∈cpathi(vs)

({d} ∪ j)).

For node 16 in Figure 3.8, having only one data dependency edge d, whose

source instruction, 14, has in turn only one control path, it will result:

� cpath(14) = (ENTRY, 12, T )→ (12, 13, T )→ (13, 14, F )

� sdata(16) =
∑

j∈cpath(14)

({d} ∪ j) = d ∨ (12, 13, F ) ∨ (13, 14, F ).
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Figure 3.10: Example showing the need of considering control paths in data depen-

dencies activation signal computation.

This formulation is able to handle also mutual exclusive dependencies, that

will never be simultaneously satisfied. This situation should be clear consid-

ering the example provided in Figure 3.10, in which a name has been assigned

to each edge just to clarify the formulation:

� node v6 exhibits data dependencies coming from v1, v4 and v5;

� signals e 46 and e 56 will never be simultaneously produced, since v4

and v5 are mutual exclusive operations; node v1 indeed, will be always

be executed, but the generation of signal e 16 will still not allow execu-

tion of v6 until there is evidence that v4 and v5 have not to be executed;

this situation is managed considering the control paths of nodes v1, v4

and v5, i.e. the nodes on which v6 is data dependent on;

� denoting with e ijL the edge e = (vi, vj, L) and with v0 the entry node,

it results:

– cps(v1) = e 01,

– cps(v4) = e 02 ∧ e 23T ∧ e 34T ,
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– cps(v5) = e 02 ∧ e 23T ∧ e 35F ;

then:

sdata(v6) = (e 16 ∨ cps(v1)) ∧ (e 46 ∨ cps(v4)) ∧ (e 56 ∨ cps(v5)) =

= (e 16 ∨ cps(v1)) ∧ (e 46 ∨ cps(v4)) ∧ (e 56 ∨ cps(v5)) =

= e 16 ∧ (e 46 ∨ e 23F ∨ e 34F ) ∧ (e 56 ∨ e 23F ∨ e 35T )

The proposed general formulation, in many cases will be penalized by the

presence of redundant or not necessary operations. Additional optimizations

will be introduced in Section 3.10. Even in this case, as it was for control

dependencies activation signals, it results that the following property holds.

Property 4.

If |in(v)| = 1, in(v) = {s = (vs, v) ∈ D}, then sdata(v) = s.

The definition introduced for data dependencies activation signals, however,

cannot manage the following situation. Consider node 18 in the PCG ob-

tained from the motivational example specification, shown in Figure 3.8. It is

data dependent on node 17, hence, according to the formulation given above,

its data dependencies activation signal will be obtained as:

sdata(18) = (17, 18) ∨ (∧cond(2, T ))

This means that instruction 18 is activated as soon as the execution of loop1

starts, when the value for the variable res has not been computed yet, or else

the instruction 18 is never activated if the loop1 test condition is false since

the first iteration, and thus none iteration of the loop has not to be executed.

In conclusion, either 18 starts too soon, or it does not start at all. In both

cases the behavior is wrong. To handle such situations, in the next section,

some considerations about the dominance property will be presented, and the

definition of data dependencies activation signals will be slightly modified.

Finally, it remains to manage the case of unlabeled control flow edges, i.e.

the case of the exit node. As above mentioned, this case has to be handle
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in way similar to data dependency. Considering the PCG in Figure 3.8, it

is clear that instruction 18 has to be executed to activate the exit node,

and thus terminate the program execution. The exit node has only one

predecessor, node 18, that in this case dominates it. In other words, all the

paths from entry to exit pass through node 18. There may be, however,

situations in which the exit node is not dominated by any of its predecessors.

In such situations, the exit node may need only a subset of its predecessors

execution to start. Indeed, some of the predecessors can belong to mutual

exclusion regions. For this reason, in computing the activation signal for the

exit node control paths of the instructions it is data dependent on must be

considered. With an abuse of notation, the activation signal for the exit node

will be called scontrol(EXIT ). Denoting with vfs the source of the unlabeled

control flow edge, it will be defined as:

scontrol(EXIT ) =
∏

f∈FU ,i∈{o,...,|CP (vfs)|}

(
∑

({f} ∪ cpsi(vfs)))

Also this definition, however is afflicted by the above described problem, and

thus will be slightly modified after the considerations that will be made in

the next section.

3.4.4 Preserving the Dominance Property

At this point, all the elements needed to make some considerations about the

dominance property have been introduced. This topic will be faced for two

reason. First of all, a formal justification will be given for the introduction of

a new kind of edges, i.e. the control flow edges; then, the definition of data

dependencies activation signals will be modified to manage the situations

described in the previous section.

Introducing false-labeled control flow edges, instead of control dependency

edges, it has been avoided to incorrectly add a control dependency not present

in the original specification.

To clarify this concept, suppose that false-labeled control dependency edges

would been added. Then, a control dependency would been added between
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source and target of such kind of edges, since a control dependency edge, in

a graph representation, is a means to represent control dependencies. Re-

member that, given two nodes vi and vj, vj is control dependent on vi if and

only if there exists a path from vi to the exit node not traversing vj.

Consider, for example, the false-labeled control edge (2, 17, F ), that would

been added to build the PCG associated to the motivational example speci-

fication, shown in Figure 3.8. The consequence of such insertion is that node

17 becomes dummy control dependent on node 2.

Moreover, considering the PDG from which the PCG has been obtained,

shown in Figure 3.3, it is clear that node 17 dominates node 18. Indeed,

given two nodes vi and vj, vj is dominated by vi (or equivalently vi domi-

nates vj) if and only if all the paths from the entry node to vj pass through

vi. Such property must hold in PCG too, since dominance relations must be

preserved.

However, it is possible to state that, after false-labeled control edges in-

sertion, the PCG would contain a paradox. Indeed, considering again the

consequences of edge (2, 17, F ) addition, it would result:

1. 17 dominates 18 by construction, i.e. the dominance relation is pre-

served. Indeed, all the paths from the entry node to node 18 pass

through node 17.

2. Since in a graph representation control edges indicate the presence of

a control dependency, node 17 become control dependent on node 2.

3. Node 18 is not control dependent on node 2.

4. Since node 17 is control dependent on node 2 and 18 is not control

dependent on node 2, then 17 does not dominate 18. Indeed, if 17 is

control dependent on node 2, there will be a path from node 2 to the

exit node not traversing 17, and if 18 is not control dependent on 2,

all the paths from node 2 to the exit node will traverse node 18. This

implies the presence of a path from the entry node to 18 not traversing

node 17. Obviously, it is an absurd, since point 4. is in contrast with
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point 1. Indeed, such a path does not really exists, but its presence

is formally inferred by the false control dependency induced by the

false-labeled control edge added a posteriori.

For this reason false-labeled control flow edges has been added. Indeed, such

edges have been added to extract informations about the control flow, hence

they can be interpreted only as control flow informations.

Interpreting control flow edges only as control flow informations, however,

means modify the definitions provided for data dependencies activation sig-

nals and for scontrol(EXIT ). Hence, control flow edges are used in two dif-

ferent ways in such cases and in the case of control dependencies activation

signals computation.

In the case of control dependencies, they are used to compute the control

paths that can enable an instruction execution. Since an instruction can be

activated when it is reached by the control flow, in this case both the infor-

mations about control dependencies and control flow are needed.

In the case of data dependencies (and in the case of the exit node), con-

trol flow edges are still used to compute control paths, but this time control

paths negated are used to understand if the instruction source of the data de-

pendency has to be executed, and as a consequence, if the target of the data

dependency has really to wait for its execution. Hence, in this case, the infor-

mation needed concern only control dependencies, since it is an implicit way

to differentiate the instructions according to the possible mutual exclusion

region they belong. In other words, in such situations the information about

the flow must be excluded from the computation of control paths. According

to such considerations, the final definitions for data dependencies activation

signals and for scontrol(EXIT ) follow. Denoting with vs the source node of a

data dependency, and with CPF (vs) = {cpathF (vs)} the set of control paths

for the node vs containing at least a control flow edge belonging to the set

FL, it is possible to define the set of the control paths for the node vs which

not contain any control flow edge as:

CP ′(vs) = CP (vs) \ CPF (vs)
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Definition 8. A data dependencies activation signal sdata(v), for a node v,

is defined as

sdata(v) =
∏

d∈D(v),i∈{o,...,|CP ′(vs)|}

(
∑

({d} ∪ cpsi(vs))).

i.e. as the signal obtained applying the join operator to the signals obtained

by applying the or operator between each data dependency edge d and each

control path negated associated to the source of the data dependency vs, not

containing any control flow edge.

Definition 9. The control dependencies activation signal for the exit node

is define as

scontrol(EXIT ) =
∏

f∈FU ,i∈{o,...,|CP ′(vfs)|}

(
∑

({f} ∪ cpsi(vfs)))

This formulation is general and ensures the correctness of the activation

function for any kind of dependencies.

3.4.5 Back Edges Activation Signal

For each loopk, each node belonging to first(loopk) has incoming backedges,

introduced to manage subsequent loop iterations.

Definition 10. The back edges activation signal sbe(v) for a node

v ∈ first(loopk) is defined as

sbe(v) =
∏

Cbe(v)

where Cbe(v) denotes the set CBE ∩ in(v) of incoming back edges.

This formulation is justified by the fact that operation v at iteration i + 1

can be executed only if all operations in the previous iteration i have already

been executed. Anyway, especially in the case the front-end does not perform

loops analysis and optimizations, such as loop invariants detection or loop

hoisting, some instruction belonging to i + 1 could be executable even if
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not all the instructions of the previous iteration have been executed. Thus,

a proper analysis of loop-carried dependencies will detect these situations,

thus reducing the cardinality of the set Cbe(v) and then simplifying back

edges activation signals computation.

3.4.6 Activation Function Formulation

Once introduced control dependencies, data dependencies and back edges

activation signals, it is now possible to determine a proper formulation for

the activation function AF (v):

AF (v) = (scontrol(v) ∧ sdata(v)) ∨ sbe(v).

This formulation is justified this way:

� data dependencies and control dependencies must be both satisfied

to enable operation v, thus a join operation between their associated

activation signals is needed;

� only one between control/data dependencies activation signals and back

edges activation signal is needed to start a loop execution, so an or

operator between them is needed. This should be clear considering the

instruction 12 in Figure 3.8: when loop3 must be executed the first

time, the back edge activation signal has surely not been yet produced,

since the instruction 15 has not been yet executed. However, when

dependencies are satisfied, i.e. after instruction 11 execution, the loop

must be executed the first time, consuming the corresponding signal.

Then, when the back edge signal will be produced, there will no longer

be the already satisfied dependency signals, since they will be already

consumed. Hence, they must not be considered for a loop to re-start.

However, this is not a limitation since there is no need for subsequent

iterations to care about dependencies already satisfied when the loop

is first entered.

146



CHAPTER 3. PROPOSED METHODOLOGY

N
O

D
E

A
C

T
IV

A
T

IO
N

F
U

N
C

T
IO

N

1
A
F

(1
)

=
s c

(1
)

=
T
R
U
E

a

2
A
F

(2
)

=
s d

(2
)
∨
s b

e
(2

)
=

(1
,2

)
∨

(1
0,

2)

3
A
F

(3
)

=
s c

(3
)

=
∧ c

(2
,T

)

4
A
F

(4
)

=
s c

(4
)
∧
s d

(4
)

=
(∧

c
(2
,T

))
∧

(1
,4

)

5
A
F

(5
)

=
(s

c
(5

)
∧
s d

(5
))
∨
s b

e
(5

)
=
{(
∧ c

(2
,T

))
∧

[(
3,

5)
∨

(∧
c
(2
,F

))
]}
∨

[(
9,

5)
∧

(8
,5

)]

6
A
F

(6
)

=
s c

(6
)
∧
s d

(6
)

=
(∧

c
(2
,T

))
∧

(∧
c
(5
,T

))
∧

[(
3,

6)
∨

(∧
c
(2
,F

))
]

7
A
F

(7
)

=
s c

(7
)
∧
s d

(7
)

=
(∧

c
(2
,T

))
∧

(∧
c
(5
,T

))
∧

[(
6,

7)
∨

(∧
c
(2
,F

))
∨

(∧
c
(5
,F

))
]

8
A
F

(8
)

=
s c

(8
)
∧
s d

(8
)

=
(∧

c
(2
,T

))
∧

(∧
c
(5
,T

))
∧

(1
,8

)
∧

[(
7,

8)
∨

(∧
c
(2
,F

))
∨

(∧
c
(5
,F

))
]

9
A
F

(9
)

=
s c

(9
)
∧
s d

(9
)

=

=
(∧

c
(2
,T

))
∧

(∧
c
(5
,T

))
∧

[(
3,

9)
∨

(∧
c
(2
,F

))
]∧

[(
6,

9)
∨

(∧
c
(2
,F

))
∨

(∧
c
(5
,F

))
]

10
A
F

(1
0)

=
s c

(1
0)
∧
s d

(1
0)

=

=
{[

(∧
c
(2
,T

)
∧

(∧
c
(5
,F

))
]∨

(∧
c
(2
,T

))
]}
∧

[(
4,

10
)
∨

(∧
c
(2
,F

))
]∧

[(
8,

10
)
∨

(∧
c
(2
,F

))
∨

(∧
c
(5
,F

))
]∧

(1
,1

0)

11
A
F

(1
1)

=
s c

(1
1)

=
T
R
U
E

a

12
A
F

(1
2)

=
s d

(1
2)
∨
s b

e
(1

2)
=

(1
1,

12
)
∨

(1
5,

12
)

13
A
F

(1
3)

=
s c

(1
3)
∧
s d

(1
3)

=
(∧

c
(1

2,
T

))
∧

(1
1,

13
)

14
A
F

(1
4)

=
s c

(1
4)
∧
s d

(1
4)

=
(∧

c
(1

2,
T

))
∧

(∧
c
(1

3,
T

))
∧

(1
1,

14
)

15
A
F

(1
5)

=
s c

(1
5)
∧
s d

(1
5)

=
(∧

c
(1

2,
T

))
∧

(1
1,

15
)
∧

[(
14
,1

5)
∨

(∧
c
(1

2,
F

))
∨

(∧
c
(1

3,
F

))
]

16
A
F

(1
6)

=
s c

(1
6)
∧
s d

(1
6)

=
(∧

c
(1

2,
F

))
∧

[(
14
,1

6)
∨

(∧
c
(1

2,
F

))
∨

(∧
c
(1

3,
F

))
]

17
A
F

(1
7)

=
s c

(1
7)
∧
s d

(1
7)

=
(∧

c
(2
,F

))
∧

[(
7,

17
)
∨

(∧
c
(2
,F

))
∨

(∧
c
(5
,F

))
]∧

(1
6,

17
)

18
A
F

(1
8)

=
s d

(1
8)

=
s d

(1
8)

=
(1

7,
18

)

E
X

IT
A
F

(E
X
I
T

)
=

(1
8.
E
X
I
T

)

T
ab

le
3.
2:

A
ct

iv
a
ti

o
n

F
u

n
ct

io
n

s
in

ex
te

n
d
ed

fo
rm

fo
r

th
e

O
pe

ra
ti

o
n

s
in

th
e

P
C

G
o
bt

a
in

ed
fr

o
m

th
e

m
o
ti

va
ti

o
n

a
l

ex
a
m

p
le

.

a
T
h
e
op

er
at
io
n
s
w
it
h
a
T
R
U
E

va
lu
e
fo
r
th
e
ac
ti
va
ti
o
n
fu
n
ct
io
n
ca
n
st
a
rt

th
ei
r
ex
ec
u
ti
o
n
w
h
en

th
e
p
ro
g
ra
m

st
a
rt
s
to

ru
n
.

147



CHAPTER 3. PROPOSED METHODOLOGY

In conclusion, considering once again the PCG obtained from the motiva-

tional example, shown in Figure 3.8, the activation functions for each node are

shown in Table 3.2. Notice that control edges from entry have been omitted,

since the program will always start. Indeed, a control edge (ENTRY, vi, F )

indicate the condition in which the program does not start, while a control

edge (ENTRY, vi, T ) indicate a condition in which the program start. Since

it is known that the program starts such two kind of edges can be both omit-

ted. For brevity, the set scontrol will be denoted as sc, the set sdata will be

denoted as sd, and the unary operator ∧cond(s) will be denoted as ∧c(s).
Finally, as will be described in the next of this work, such formulation for the

activation function can be easily optimized in different ways. For example,

it can be reduced by means of the Boolean Algebra rules, since it can be

viewed as a logic function.

3.5 Controller Synthesis Process Overview

One of the main objective of the analysis phase has been the construction of

a Parallel Controller Graph representing the specification to be implemented:

starting from the PCG, each instruction v of the source code has been an ac-

tivation function AF (v) associated with, which indicates if v’s dependencies

have been satisfied. In this case, execution of v can start. Given this scenario,

a controller structure design is proposed in order to exploit the analysis phase

results. The most natural way to obtain the desired behavior, is to associate

to each instruction a control module which manages its execution, exploiting

the concept of activation function. Activation functions should thus be hard-

wire implemented, defining activation function modules. Control modules

will then receive the signals produced by the associated activation function

module as input; when the signal is turned high than execution can start.

Moreover, once the instruction is executed, a signal must be sent to the other

activation function modules associated to the dependent instructions. The

resulting controller design, from a behavioral point of view, consists then in a
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set of pairs control/activation function module associated to each instruction

(i.e. nodes in the PCG). In following sections, the synthesis process of such a

controller is presented, starting from the definition of the target architectural

model (Section 3.6). Then a proper design for the control (Section 3.8) and

activation function (Section 3.7) modules is proposed, and finally, in Section

3.9 the definition of a synthesis step to be included in the high level synthesis

flow is presented.

3.6 Architectural Model

The proposed architectural model is composed of a controller and a datapath,

as usual. The controller is not a centralized FSM-based one, as in the state-

of-the-art FSMD model, indeed it follows the design concepts previously

presented.

Figure 3.11: Example PCG.

Starting from the example PCG in Figure 3.11, Figure 3.12 shows such an

architectural model. Each node in the PCG has a control module associated

to, which manages its execution. Such control modules:

� take as input signals produced by the associated activation function
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Figure 3.12: Synthesized architecture scheme.
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modules;

� when the activation function module fires, than it means that the ex-

ecution can start. In this case they produce control signals to be sent

to the datapath through the controller out ports, activating the corre-

sponding functional units.

Communication occurs even from the datapath to the controller, as in the

case of activation functions that must care of the result of a conditional

instruction. For example, node 1 in Figure 3.11 is a diramation node: acti-

vation functions of instructions 2 and 3, depending on the result of condition

evaluation, receive this result from the datapath, as in Figure 3.12.

3.7 Activation Function Module

In Section 3.4 the activation function for a node v has been defined as:

AF (v) = (scontrol(v) ∧ sdata(v)) ∨ sbe(v)

where

� scontrol(v) =

|CP (v)|∑
i=0

cpsi(v),

� sdata(v) =
∏

d∈D(v),i∈{o,...,|CP (vs)|}

(
∑

({d} ∪ cpsi(vs))),

� sbe(v) =
∏

Cbe(v).

In order to obtain a proper implementation of the activation function module,

each introduced operator involved in the activation function formulation, i.e.

join operator ∧, or ∨ operator and conditional join operator ∧cond have been

designed, as described in the following. As a result, the activation function

module will consist in a set of interconnected modules, each implementing

one of the above mentioned operators.
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3.7.1 Join Module

The join module implements the join operator previously defined. It is a

sequential module taking as inputs the signals to be joined, in addition to

clock and reset signals. In its basic implementation, it produces as output a

high valued signal iff all the inputs signals have been received, i.e. they have

assumed a high value. Since input signals may be received in different clock

cycles, when a input turns high the join module must store this information,

i.e. the corresponding signal reception. Thus, the join module is designed as

a finite state machine. In Figure 3.13 the FSM representing a 3-inputs join

Figure 3.13: Finite state machine representing 3-inputs join module

module is shown:

� s0 represents the initial state, in which no input signal has been re-

ceived;

� states ri, rij, rijk represent the occurred reception of signals i, j, k;

� starting from s0, if input i turns high then a transition to state ri is

performed; a transition due to signal i reception is represented by edges

ini, starting from the current state and going to the corresponding next;

� if the current state is ri, if the signal i turns high again, no transition is

performed; instead if the signal j 6= i turns high, a transition to state

rij occurs. The same happens if current state is rij;
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� for a 3-input join module, the state s123 denotes that all input signals

have been received: if the state s123 is reached, than the output signal

must be produced, and a transition made to the initial state s0.

In the proposed example, signals are received one at a time, but this is only

to make explanation more clear: in the real implementation more than one

signal can occur simultaneously; for example, starting from the initial state

s0, if signals s1 and s2 turn high at the same time than transition is made

to state r12. Notice that the proposed FSM model does not have a final

state: when state s123 is reached and output produced, the FSM returns in

the initial state. This way the join module is constantly monitoring input

signals and in case, it turns high the output signal again. This feature is

surely needed to state if a loop body must be executed again or not. This

Figure 3.14: Portion of a PDG showing incoming edges of a loop condition node

issue will result more clear considering the example proposed in Figure 3.14.

Activation function for vertex v2 is given by

f(v2) = e1 ∨ (e2 ∧ e3) ,

thus a join between signals e2 and e3 is needed, and this operation must be

computed at each iteration of the loop. It is important to notice that in some

situations, in the presence of loop constructs, signals to be joined could be

produced once for different subsequent iterations of the loop; then the join
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module, as just proposed, will turn high the output signal only at the first

iteration, showing an erroneous behavior. An example is provided by Figure

Figure 3.15: Example of inadequacy of standard join module

3.15, where the activation function for the node v3 is given by

f(v3) = ∧cond(e23) ∧ e13 ,where e23 = (v2, v3, T ) and e13 = (v1, v3, a).

Writing s = ∧cond(e23) and a = e13, s is high-valued only when the loop is

executed the first time: at the second iteration, after the reception of signal a,

the FSM representing the join module reaches state ra; since it surely will not

receive signal s again, no other transition will occur, and thus the execution

flow halts. To handle with this problem, a modified version of join module is

introduced. Its associated FSM, for the previous example, is shown in Figure

Figure 3.16: Modified 2-input join module
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3.16: at the first iteration, when both a and s has been received, the FSM

goes to state ras, it produces the output signal and than returns in state ra

instead of state s0. This way, for the subsequent iterations, signal a will be

assumed as already received. The FSM returns to the initial state s0 through

the reception of an explicit reset signal, starting from state ra. Signals, as

a in the example, that requires the modified version of the join module, are

identified in the PCG building process, or in a preliminary analysis phase.

Notice that some front-end optimization, as loop hoisting, can avoid many

of these situations to occur.

3.7.2 Or Module

The or module produces an high valued signal if any of the signals taken as

input turns high. Since there’s no need for this module to store informations

about signals already received, the natural way to implement it is using a

simple or gate.

3.7.3 Condition Join Module

Condition join module (Figure 3.17) implements ∧cond operator; it is re-

marked that, given that node v1 is a diramation node and s = (v1, v2, L =

condi), ∧cond(s) produces a signal iff both

� v1 has already been executed, generating the signal sv1 ,

� condition evaluation in v1 has condi as outcome.

Even if ∧cond operator has been defined as an unary one, from a behavioral

point of view it should be viewed as a join between the signal sv1 taken

as input, and the signal cond representing the result of vertex v1 condition

evaluation. This is implemented through condition join module: it takes as

input signal s and signal cond, that must be forwarded from the datapath,

more precisely from the functional unit, e.g. a comparator, that computes

condition evaluation. If diramation node v1 has N branches, than condition
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join module has N output ports: the signal resulting from ∧cond(s), s =

(v1, v2, L = condi) with i = 1, 2, ..., N , is given by the i-th out port of the

module. Thus a single condition join module can implement at least N

Figure 3.17: Condition join module schematic representation.

different ∧cond operations; their precise number N ′ is given by

N ′ = |CL(v1)|, with

CL(v1) = out(v1) ∩ CL = {e = (v1, t, L = condi), t ∈ V, i ∈ {1, ..., N}}.

It is then implied that condition join modules are associated with dirama-

tion nodes in the PCG, and that all operations ∧cond(e), e ∈ CL(V ) are

implemented sharing the same conditional join module. Since signals s and

cond are produced simultaneously, there is no need of storage elements in

the module, whose physical implementation requires only combinational cir-

cuitry.

3.8 Control Module

The control module has the role of managing the execution of an instruction.

It takes as input the signals produced by the associated AF module, and when

execution can start it activates the functional unit on which the instruction

is bound sending control signals to the datapath. When the execution is

performed, it notifies this to the AF modules associated to dependent in-

structions. Anyway, the AF signal reception itself does not always lead to
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the immediate activation of the instruction: if it is mapped on a shared re-

source, concurrency must be handled. For this reason the control module has

been designed as a control element receiving the activation function signals,

connected to a priorities manager, introduce to manage concurrency.

3.8.1 Control Element

Figure 3.18: Control Element module schematic representation.

The control element schematic representation is shown in Figure 3.18:

� clock and reset denotes clock and reset signals taken as input by the

module;

� input signal sop assumes an high value when the operation associated

to the control element can start its execution, i.e. it is turned high

when the activation function for node v turns high;

� output signal rop, is turned high when the execution of the operation

can start (which means that sop signal has already been high-valued

and all dependencies satisfied); it can be viewed as a request to the

priorities manager, that will establish if the functional unit on which

the given operation is associated to is available;

� input signal aop represents the answer of the priorities manager to the

control element’s request: it assumes a high value if the functional unit
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on wich the operation is bound is available; together with the aop signal

reception, the associated operation is executed.

Notice that if the functional unit on which the operation is bound is not

shared among different operations, than there is no need for the control

element to send (and to receive) any signal from the priorities manager.

In absence of concurrency over the functional units, the execution of an

operation can start as soon as the control element receives the sop signal.

The behavior of the control element module can be described by a finite state

Figure 3.19: Control Element module FSM representation.

machine, presented in Figure 3.19 :

� in the initial state no request is forwarded since the dependency con-

straints are not yet satisfied;

� when the sop signal is received, then execution can start and a request

is sent to the priorities manager, bringing the machine to the state

labeled as ”rop = 1”;

� while aop signal has not yet come, no transition is made: rop signal

maintains its high value, since request for execution must be sent again

to the priorities manager until the requested functional unit becomes

available and thus the aop signal is received;

� when aop signal turns high, the operation is executed and the FSM

returns to the initial state. If indeed the control element is associated

to an operation belonging to a loop, then the operation can have to be

executed more than once, and the control element must manage this

situation. For this reason, even in this case, there is not a final state.
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3.8.2 Priorities Manager

During the binding phase each instruction is associated with a particular

instance of a functional unit able to execute it. If the same module is bound

to more than one instruction, than it is shared among them. It is clear that

if in a given cycle step multiple instructions sharing the same functional unit

are ready to be executed (their associated control elements have received the

sop signal), a choice between them must be made. This task is performed by

the priority manager, introduced to handle with concurrency. The choice is

made according to operation priorities, that are obtained starting from the

instruction scheduling. Given a set VM of operations that share the same

functional unit M , an instructions schedule S induces a binary relation ≤p

over VM such that:

v1 <p v2 iff cs(v1) > cs(v2) with v1, v2 ∈ VM ,

where cs(v) is the cycle step in which instruction v is scheduled according

to S. For each feasible scheduling it results cs(v1) 6= cs(v2), since two in-

structions scheduled in the same cycle stop cannot be bound to the same

functional unit. Thus the schedule S defines a total ordering over the set

VM : the priority pt(v) of instruction v is then defined as its position in such

a ordering. It follows that instruction scheduled in earlier cycle step has

Figure 3.20: Priorities manager schematic representation.

greater priority, and vice versa. Therefore the priority manager, given two

operations v1 and v2 belonging to VM both ready to be executed, will enable
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the execution start of the one with greater priority. The priority manager

module can be schematically represented as in Figure 3.20. If it is associated

with a functional unit M such that |VM | = n, than it has n inputs and n out-

puts, each corresponding to a different operation i. When the i-th input rop

turns high it means that the control element associated to the i-th operation

vi ∈ VM has required the instruction execution. Indicating with ROP (t) the

set of rop signals received at control step t, the output signal aopi activating

operation i, is generated if:

� ropi ∈ ROP (t);

� i = argmaxj(pt(vj)).

Obviously at each cycle step t, only one of the n outputs is turned high.

To clarify how control elements and priorities managers actually interact,

Figure 3.21: Example parallel controller graph.

consider the parallel controller graph in Figure 3.21. Assuming only one

adder available, the three instructions must be scheduled in subsequent cycle

steps, and bound to the unique functional unit. For example, a feasible

scheduling according to the dependency constraints associates v1 to cycle

step c, v2 to c + 1 and v3 to c + 3. Hence it results v3 <p v2 <p v1. Figure

3.22 shows how control elements and the unique priorities manager behave

at the beginning of code execution, e.g. at cycle step t = 1:
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Figure 3.22: Interaction between priorities manager and control elements at control

step t=1; red edges denotes high-valued signals.

� v1 and v2 are dependent only to the entry point, so they can be both

immediately executed; the start module produces done signals that

satisfy their dependencies, than sop1 and sop2 are high-valued;

� sop2 has not yet been generated, since v3 depends on both v1 and v2;

� received the corresponding sop signals, control element 1 and control

element 2 request the activation of v1 and v2, turning high rop1 and

rop2;

� the priorities manager receives in the same cycle step more than one

activation requests, thus a choice must be made. It results ROP (t =

1) = {rop1, rop2}; since v1 >p v2 or alternatively pt(v1) > pt(v2), then

operation v1 is selected and aop1 turned high.

� in the following control step t = 2, it will be

sop1 = sop3 = 0, sop2 = 1→
→ rop1 = rop3 = 0, rop2 = 1→ ROP (t) = {rop2} →
→ aop1 = aop3 = 0, aop2 = 1;

� in control step t = 3, it will be

sop1 = sop2 = 0, sop3 = 1→
→ rop1 = rop2 = 0, rop3 = 1→ ROP (t) = {rop3} →
→ aop1 = aop2 = 0, aop3 = 1.
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The resulting schematic representation of the control module, is shown in

Figure 3.23.

Figure 3.23: Control module schematic representation.

3.9 Controller Synthesis Flow

The previously defined controller architecture design, must be automatically

obtained starting from the specification through a HLS flow. As a result, the

general Controller Synthesis step, presented in Section 1.6, has been mod-

ified as shown in Figure 3.24. The introduced controller synthesis flow is

composed of a set of sub-task: the first steps (1. and 2.) are not depen-

dent from the performed analysis phase; in step 3. for each node in the

parallel controller graph control modules, activation function modules and

in the case of diramation nodes conditional join modules are allocated and

interconnected. Finally the interconnections, where not, are defined. Notice

that even the resource library has to be extended, including the introduced

modules.

3.9.1 Common Ports Instantiation and Interfaces Cre-

ation

At the beginning of the synthesis phase, the controller is just an empty black

box. As a first step common ports are added to the design; such ports include:
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Figure 3.24: Controller synthesis step added in the HLS flow.
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� clock signal port,

� reset signal port,

� start signal port,

� done signal port.

The start signal is introduced to make the implemented subprogram’s exe-

cution start. In the parallel controller graph representation, the start signal

is assumed to be produced by the entry node, representing the unique entry

point of the source program. In the same way, the done signal denotes that

execution has been performed, and in the PCG this is denoted by the acti-

vation of the exit node. The input/output interfaces with the datapath are

then instantiated. Input ports are used to receive signals from the datapath,

output ones to send control signals in order to manage the datapath itself.

3.9.2 Priorities Managers Allocation

Once the functional unit binding and instruction scheduling task have been

performed, enough information is available to correctly perform priority man-

agers allocation:

� the FU binding provides information about the priorities manager to

be instantiated, identifying the functional units shared among multiple;

to each of them is associated a priorities manager;

� the instruction scheduling provides informations to properly construct

the priority ordering, which concurrency management performed by

the priorities manager is based on.

3.9.3 Activation Function Modules, Control Modules

and Condition Join Modules Creation

In this synthesis step the results obtained in the analysis phase are exploited.

For each node in the PCG, except the entry node, each of the following tasks
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is performed:

� Activation function module creation: since the AF module is a com-

pound one, each module composing it must be instantiated, and prop-

erly connected; connection of the inputs to the corresponding ports is

also performed;

� Control module creation: for each node, the corresponding control el-

ement is instantiated and connected to the associated functional unit

module, and, if needed, to a priorities manager;

� if the considered node is a diramation node, then a condition join mod-

ule is also allocated. The input signal, representing the outcome of the

condition evaluation, is taken through the controller input ports.

The entry node is treated differently with respect to the other nodes in the

PCG, since it does not represent an operation to be performed, but it simply

denotes the entry point of the implemented subprogram.

3.9.4 Interfaces Connection

Interconnections are defined from the allocated control modules to the con-

troller output ports, in order to allow the sending of control signals to the

datapath. Notice that these phase may be embedded in the control modules

creation step.

3.10 Optimizations

One of the most important factors impacting on the area overhead in the

proposed architectural model is the need of activation function (AF) mod-

ules allocation. Each AF module is composed of a set of modules, each

implementing the introduced operations. Since the proposed formulation of

the activation function has the aim of being as most general as possible, in

many cases activation functions include redundant operations that increase
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the number of physical resources to implement them. Thus, in order to im-

prove the performance in terms of area, some optimization algorithms are

proposed to:

� reduce the number of modules needed to implement the AFs;

� reduce the number of inputs of the allocated modules, since, considering

the proposed implementations, described in Section 3.7, modules area

occupancy increases according with the number of inputs.

The two following approaches have been identified:

� reduction of the number of edges in the PCG ; this is obtained through

SSA form transformation of the source code;

� activation functions simplification; this is obtained exploiting the boolean

algebra properties.

In the following such optimization approaches will be presented.

Remember that in the proposed formulation there exist two kinds of edges,

since signals can come from either a control module or a conditional join

module. In the former case they are expressed as (vi, vj), where vi and vj are

operations, while in the latter case they are expressed as (vi, L), where vi is

a conditional operation and L is the label indicating the result of the associ-

ated condition evaluation. However, using the above described formulation

for the activation function, edges (and thus signals) of both kinds can be ho-

mogeneously treated as literals, with the only difference that their high/low

value has a different meaning. When a signal (vi, vj), coming from a control

module, assumes an high-value it means that the corresponding operation

vi has been executed, while when it assumes a low value, vi has not been

executed yet. Conversely, when a signal (vi, L), coming from a conditional

join module, assumes an high value it means that the corresponding con-

ditional operation vi has been executed giving L as result of the condition

evaluation, while when it assumes a low value, it may be because either vi

has not been executed yet, or it has been executed giving L as result of the

condition evaluation.
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3.10.1 Static Single Assignment Form Transformation

The transformation of the source code into static single assignment (SSA)

form, in many cases could drastically reduce the number of edges in the PCG

(leaving unchanged the number of nodes), thus simplifying the computation

of activation functions.

1: x := x+ a;

2: x := x+ b;

3: x := x+ c;

4: x := x+ d;

5: res := x;

Figure 3.25: Example code and corresponding PCG.

Figure 3.25 shows a simple purely data-flow subprogram, not in SSA form:

the variable x has several definition points, in which it is also used; as a result,

it is possible to recognize in the corresponding PCG a chain of data depen-

dencies, most denoting irrelevant relationships between instructions. Table

3.3 reports the resulting activation functions for each node of the PCG. To

implement such AFs, four activation function modules must be allocated,

each composed of a join module having from two to four inputs.
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If indeed the source code is translated into the SSA form, as shown in Fig-

ure 3.26, the set of data dependencies becomes greatly reduced, leading to

simpler formulations of activation functions. Referring to Table 3.4, activa-

tion functions for the code translated in SSA form shows no need for the AF

modules to be allocated. In the case of complex programs, this can result in

a great reduction in terms of area overhead.

1: x1 := x0 + a;

2: x2 := x1 + b;

3: x3 := x2 + c;

4: x4 := x3 + d;

5: res := x4;

Figure 3.26: SSA translation of previous example’s code and corresponding PCG.

3.10.2 Activation Functions Simplifications

As the introduced operators used to define activation functions are strictly

connected to boolean operators, some properties of Boole’s algebra holds for

join, or and conditional join operators too. Thus, activation function can be

simplified exploiting these properties.
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NODE ACTIVATION FUNCTION

1 AF (1) = sc(1) = TRUE

2 AF (2) = sd(2) = e12

3 AF (3) = sd(3) = e23 ∧ e13
4 AF (4) = sd(4) = e34 ∧ e14 ∧ e24
5 AF (5) = sd(5) = e45 ∧ e15 ∧ e25 ∧ e35

EXIT AF (EXIT ) = e5

Table 3.3: Activation Functions in extended form for the nodes of the PCG in

Figure 3.25.

NODE ACTIVATION FUNCTION

1 AF (1) = sc(1) = TRUE

2 AF (2) = sd(2) = e12

3 AF (3) = sd(3) = e23

4 AF (4) = sd(4) = e34

5 AF (5) = sd(5) = e45

EXIT AF (EXIT ) = e5

Table 3.4: Activation Functions in extended form for the nodes of the PCG in

Figure 3.26.
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Algebraic Simplification

Algebraic simplification of activation functions can be achieved exploiting

the following properties of boolean algebra:

1: a ∨ 1 = 1

2: a ∧ 0 = 0

3: a ∨ a = a

4: a ∧ a = a

5: a ∨ a = 1

6: a ∧ a = 1

7: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
8: a ∨ (a ∧ b) = a

9: a ∧ (a ∨ b) = a

10: a ∨ (a ∧ b) = a ∨ b
11: a ∧ (a ∨ b) = a ∧ b

Table 3.5: Common properties of boolean algebra useful to simplify activation func-

tions.

As an example consider the activation functions of the motivational example

listed in Table 3.2; for node 7 it results:

AF (7) = sc(7) ∧ sd(7) =

= (∧c(2, T )) ∧ (∧c(5, T )) ∧ [(6, 7) ∨ (∧c(2, F )) ∨ (∧c(5, F ))].

This formulation of AF (7) requires a 4-inputs join module and a 3-inputs

or module to build the corresponding activation function module. Since

∧c(2, F ) = ∧c(2, T ) and ∧c(5, F ) = ∧c(5, T ), applying property 11 in Table

3.2, it results:
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AF (7) = (∧c(2, T )) ∧ [(6, 7) ∨ (∧c(2, F )) ∨ (∧c(5, F ))] ∧ (∧c(5, T )) =

= (∧c(2, T )) ∧ [(6, 7) ∨ (∧c(5, F ))] ∧ (∧c(5, T )) =

= (∧c(2, T )) ∧ (6, 7) ∧ (∧c(5, T ))

The formulation of AF (7) obtained through algebraic simplification requires

indeed only a 3-inputs join module. Moreover this result can be formally

explained, beyond the mathematical correctness, considering the PCG in

Figure 3.8: node 7 corresponds to the instruction c = a+ t1,

� operand a is given as input

� operand t1 has a single definition point, in node 6.

Thus node 7 is data dependent only on node 6, and there is no need in this

case to consider the control path computing the data dependencies activation

signal sd(7). Anyway, still reasoning about dependencies, it is possible to

notice that the obtained formulation is not the minimal one. In fact, the join

operator takes as input both (∧c(2, T )) and (∧c(5, T )), even if the generation

of signal (∧c(5, T )) implies that (∧c(2, T )) has already been produced. Thus

the minimum formulation for AF (7) is given by:

AF (7) = (6, 7) ∧ (∧c(5, T ))

that can by obtained exploiting flow informations about dependencies. This

kind of optimizations will be presented in the following.

Simplification through flow analysis

The formulation obtained for the activation functions may be not minimal,

also after applying the above described optimizations. This is because it may

contain input combinations that will never occur. Consider, for example,

the activation function of node 7 in the PCG shown in Figure 3.8. For

sake of simplicity, the reduced version of such activation function has been
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(2, T ) (6, 7) (5, T ) AF (7)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

Table 3.6: Truth table for the reduced activation function of node 7 in the PCG

shown in Figure 3.8.

considered, i.e. AF (7) = (∧c(2, T )) ∧ (6, 7) ∧ (∧c(5, T )). Table 3.6 reports

the corresponding truth table.

Though flow analysis it is possible to infer the following logical implication:

(5, T )⇒ (2, T )

Such implication represents the fact that, if the condition associated with

node 5 has been evaluated as true, then the condition associated with node

2 has been necessarily evaluated as true too. Indeed, observing the PCG in

Figure 3.8, it is clear that instruction 5 cannot be activated until instruction

2 condition results true. Hence, instruction 5 condition cannot be evaluated

as true, since instruction 5 cannot be activated at all. From this implication

it is possible to infer one consideration consideration about the output of the

activation function AF (7):

� the combination of signals (2, T ) = 0 and (5, T ) = 1 will never occur,

hence the corresponding value of the activation function AF (7) can be

changed in a don’t care condition.

The truth table for AF (7), obtained after don’t care conditions addition for

the output values, is reported in Table 3.7.
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(2, T ) (6, 7) (5, T ) AF (7)

0 0 0 0

0 0 1 ×
0 1 0 0

0 1 1 ×
1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

Table 3.7: Truth table for the activation function of node 7 in the PCG shown in

Figure 3.8, after don’t care conditions addition on the output values.

Now, don’t care conditions addition for the input values can be obtained

by minimization techniques, such as Karnough Maps method. For example,

considering the Karnough map forAF (7), after don’t care conditions addition

Figure 3.27: Karnough Map for the activation function of node 7 in the PCG

shown in Figure 3.8, after don’t care conditions addition on the output values.

on the output values, shown in Figure 3.27, the minimum formulation of the

activation function for node 7 can be obtained:

AF (7) = (6, 7) ∧ (∧c(5, T ))
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Indeed, it can be inferred that when the signal (5, T ) assumes value 1, the

signal (2, T ) has necessarily value 1. Hence, the optimization removed the

information of (2, T ) from the activation function since it is effectively re-

dundant.

This simplification is general and maintains the correctness of the activation

function also in the case of mutual exclusion. Consider, for example, node 6

of the PCG shown in Figure 3.10. Its activation function in extended form

can be computed as:

AF (6) = (1, 6) ∧ [(4, 6) ∨ (2, F ) ∨ (3, F )] ∧ [(5, 6) ∨ (2, F ) ∨ (3, T )]

The corresponding truth table is shown in Table 3.8. By means of flow

analysis the following logical implications can be inferred:

(3, T )⇒ (2, T )

Table 3.8: Truth table for the extended activation function of node 6 in the PCG

shown in Figure 3.10.

(1, 6) (4, 6) (2, F) (3, F) (5, 6) (3, T) AF(6)

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 0 1 1 0

0 0 0 1 0 0 0

0 0 0 1 0 1 0

0 0 0 1 1 0 0

0 0 0 1 1 1 0

0 0 1 0 0 0 0

0 0 1 0 0 1 0

0 0 1 0 1 0 0

0 0 1 0 1 1 0

0 0 1 1 0 0 0

0 0 1 1 0 1 0
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Table 3.8: (continued)

(1, 6) (4, 6) (2, F) (3, F) (5, 6) (3, T) AF(6)

0 0 1 1 1 0 0

0 0 1 1 1 1 0

0 1 0 0 0 0 0

0 1 0 0 0 1 0

0 1 0 0 1 0 0

0 1 0 0 1 1 0

0 1 0 1 0 0 0

0 1 0 1 0 1 0

0 1 0 1 1 0 0

0 1 0 1 1 1 0

0 1 1 0 0 0 0

0 1 1 0 0 1 0

0 1 1 0 1 0 0

0 1 1 0 1 1 0

0 1 1 1 0 0 0

0 1 1 1 0 1 0

0 1 1 1 1 0 0

0 1 1 1 1 1 0

1 0 0 0 0 0 0

1 0 0 0 0 1 0

1 0 0 0 1 0 0

1 0 0 0 1 1 0

1 0 0 1 0 0 0

1 0 0 1 0 1 1

1 0 0 1 1 0 1

1 0 0 1 1 1 1

1 0 1 0 0 0 1

1 0 1 0 0 1 1

1 0 1 0 1 0 1
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Table 3.8: (continued)

(1, 6) (4, 6) (2, F) (3, F) (5, 6) (3, T) AF(6)

1 0 1 0 1 1 1

1 0 1 1 0 0 1

1 0 1 1 0 1 1

1 0 1 1 1 0 1

1 0 1 1 1 1 1

1 1 0 0 0 0 0

1 1 0 0 0 1 1

1 1 0 0 1 0 1

1 1 0 0 1 1 1

1 1 0 1 0 0 0

1 1 0 1 0 1 1

1 1 0 1 1 0 1

1 1 0 1 1 1 1

1 1 1 0 0 0 1

1 1 1 0 0 1 1

1 1 1 0 1 0 1

1 1 1 0 1 1 1

1 1 1 1 0 0 1

1 1 1 1 0 1 1

1 1 1 1 1 0 1

1 1 1 1 1 1 1

(3, F )⇒ (2, T )

(3, T )⇔ (3, F )

(3, T )⇔ (3, F )

(2, T )⇒ (3, T ) ∨ (3, F )

(4, 6)⇒ (3, T )
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(5, 6)⇒ (3, F )

(2, T )⇔ (2, F )

Indeed, node 3 cannot be activated at all when the condition associated with

node 2 is false, hence its associated condition cannot be evaluated neither

true nor false. As a consequence, it results:

� the combination of signals (3, T ) = 1 and (2, T ) = 0, as well as the

combination of signals (3, F ) = 1 and (2, T ) = 0 will never occur,

hence the corresponding value of the activation function AF (6) can be

changed in a don’t care condition.

� the combination of signals (3, T ) = 1 and (3, F ) = 1 will never occur, as

well as the combination of signals (3, T ) = 0 and (3, F ) = 0. Hence the

corresponding value of the activation function AF (6) can be changed

in a don’t care condition.

� when (2, T ) = 1 exactly one signal between (3, T ) and (3, F ) must

have value 1. This is because node 2 has only not 3 as successor.

Hence AF (6) can be changed in a don’t care condition when (2, T ) = 1,

(3, T ) = 0 and (3, F ) = 0 simultaneously.

� the value for the signals (2, T ) must be always different from the value

for the signal (2, F ). Hence, when (2, T ) = 1 and (2, F ) = 1, or (2, T ) =

0 and (2, F ) = 0, the corresponding value of the activation function

AF (6) can be changed in a don’t care condition.

Notice that in this case the literal (2, T ) is not present in AF (6). However,

through flow analysis it has been obtained the implication (2, T ) ⇔ (2, F ),

allowing to say that in this case (2, T ) = 1 is equivalent to (2, F ) = 0. Hence,

all the implications obtained can be transformed by substituting (2, F ) to

(2, T ), (2, F ) = 0 to (2, T ) = 1 and (2, F ) = 1 to (2, T ) = 0. The truth table

for AF (6), obtained after don’t care conditions addition, is reported in Table

3.9. For brevity, in this case only the rows for which the activation function
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had value 1 before the minimization has been reported.

The resulting activation function after don’t care conditions addition for node

6 is:

AF (6) = [(1, 6) ∧ (5, 6)] ∨ [(1, 6) ∧ (4, 6)]

This formulation can be further reduced by applying the properties of Boolean

Algebra. The resulting minimal formulation for AF (6) is:

AF (6) = [(1, 6) ∧ (5, 6)] ∨ [(1, 6) ∧ (4, 6)] = //(distributive)

= {[(1, 6) ∧ (5, 6)] ∨ (1, 6)} ∧ {[(1, 6) ∧ (5, 6)] ∨ (4, 6)} = //(a ∧ (a ∨ b) = a)

= (1, 6) ∧ {[(1, 6) ∧ (5, 6)] ∨ (4, 6)} = //(distributive)

= (1, 6) ∧ [(1, 6) ∨ (4, 6)] ∧ [(5, 6) ∨ (4, 6)] = //(a ∧ (a ∨ b) = a)

= (1, 6) ∧ [(4, 6) ∨ (5, 6)]

Minimization through flow analysis is a powerful optimization. Indeed, us-

ing the truth table after don’t care conditions addition as input of a generic

logic synthesis tool, the associated activation function can be automatically

reduced. Moreover, in order to obtain the minimal form for activation func-

tions, a flow analysis must be performed in conjunction with algebraic sim-

plifications. Since data flow based optimization requires the construction of

truth tables for the activation functions, a preliminar step of algebraic sim-

plification could be performed, in order to reduce the number of literals, and

thus the size of the associated truth table.

This optimization, however, has not been implemented in this thesis work.

Hence, formulation and implementation of the flow analysis are left as further

works.

Transformation in Product of Sum (POS) form

In many situations may result convenient having the activation function in

POS form. Indeed, in the proposed architecture products corresponds to join

operations; they need thus join modules to be performed. Sums, instead,

corresponds to or operations, needing or modules to be performed. The
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(1, 6) (4, 6) (2, F ) (3, F ) (5, 6) (3, T ) AF (6) match

1 0 0 1 0 1 × (3, T ) = (3, F ) = 1

1 0 0 1 1 0 1 (5, 6) = 1, (3, F ) = 1

1 0 0 1 1 1 × (3, T ) = (3, F ) = 1

1 0 1 0 0 0 × (3, T ) = (3, F ) = 0

1 0 1 0 0 1 × (3, T ) = 1, (4, 6) = 0

1 0 1 0 1 0 × (3, T ) = (3, F ) = 0

1 0 1 0 1 1 × (3, F ) = 0, (5, 6) = 1

1 0 1 1 0 0 × (2, F ) = 1, (3, F ) = 1

1 0 1 1 0 1 × (2, F ) = 1, (3, F ) = 1

1 0 1 1 1 0 × (2, F ) = 1, (3, F ) = 1

1 0 1 1 1 1 × (3, T ) = (3, F ) = 1

1 1 0 0 0 1 1 (4, 6) = 1, (3, T ) = 1

1 1 0 0 1 0 × (3, T ) = (3, F ) = 0

1 1 0 0 1 1 × (3, F ) = 0, (5, 6) = 1

1 1 0 1 0 1 × (3, T ) = (3, F ) = 1

1 1 0 1 1 0 × (3, T ) = 0, (4, 6) = 1

1 1 0 1 1 1 × (3, T ) = (3, F ) = 1

1 1 1 0 0 0 × (3, T ) = (3, F ) = 0

1 1 1 0 0 1 × (2, F ) = 1, (3, T ) = 1

1 1 1 0 1 0 × (3, T ) = (3, F ) = 0

1 1 1 0 1 1 × (2, F ) = 1, (3, T ) = 1

1 1 1 1 0 0 × (2, F ) = 1, (3, F ) = 1

1 1 1 1 0 1 × (2, F ) = 1, (3, T ) = 1

1 1 1 1 1 0 × (2, F ) = 1, (3, F ) = 1

1 1 1 1 1 1 × (3, T ) = (3, F ) = 1

Table 3.9: Truth table for the extended activation function of node 6 in the PCG

shown in Figure 3.10, after don’t care conditions addition on the output values.
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join module is a sequential module, implemented as an FSM, while the or

module is a simple or gate. Hence, join modules are more expansive than or

modules. POS form can in same cases reduce the number of join modules,

and the number of inputs needed for each join module.

Consider for example the activation function for node 5 of the PCG shown

in Figure 3.8:

AF (5) = [(2, T ) ∧ (3, 5)] ∨ [(8, 5) ∧ (9, 5)]

Figure 3.28: Schematic representation of the circuit portion implementing the AF

in SOP form for node 5 of the PCG in Figure 3.8.

It is in SOP form and requires a single or module with two inputs and two join

modules both with two inputs. Figure 3.28 shows a schematic representation

of the circuit portion implementing AF (5) in SOP form.

By applying De Morgan theorem, it results:

AF (5) = [(2, T ) ∨ (3, 5)] ∧ [(8, 5) ∨ (9, 5)]
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Now AF (5) is in POS form. Such transformation lead to a formulation need-

ing a single join module with two inputs and two or modules both with two

inputs. Hence, it requires one join module less. However, implementing such

formulation need to define the negation operator applied to signals. Indeed,

in the proposed formulation, negation operator can be applied only to control

paths, for which it has been defined. The negation of a control path has been

introduced to identify the conditions indicating that a given instruction has

Figure 3.29: Schematic representation of the circuit portion implementing the AF

in POS form for node 5 of the PCG in Figure 3.8.
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not to be executed. When such conditions hold, the associated data depen-

dency does not need to be satisfied. Applying De Morgan theorem, instead,

lead to define the negation for the signals, in which case the negation has a

different meaning. Considering conditional instruction outgoing edges, the

negation applied to such edges may have different meanings. Indeed, it can

mean either that the instruction has not to be executed, or that the result

of the evaluation of its associated condition must be different from the la-

bel of the considered outgoing edge. Considering, instead, non-conditional

instructions, the negation applied to their outgoing edges means that the

instruction has not to be executed.

In any case, these are only observations, since the formalization for signals

negation and for transformation in POS form is remanded to future works.

For now, it is just possible to observe that such transformation needs, in the

proposed example, five not modules. Figure 3.29 shows a schematic repre-

sentation of the circuit portion implementing AF (5) in POS form.
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Experimental Evaluation

In this chapter, the proposed methodology for the synthesis of the parallel

controller (identified as PC in the rest of the chapter) has been validated in

terms of performance and area occupation. In particular, the performance

has been evaluated through the simulation on a set of benchmarks, while the

area occupation has been evaluated through RTL synthesis targeting FPGA

devices. In both cases, the results are compared with those obtained con-

sidering a target architecture whose controller is designed as a finite state

machine (identified as FSM in the rest of the chapter).

Section 4.1 introduces the implementation details for the proposed methodol-

ogy, while in Section 4.2 the experimental setup is presented. Finally, Section

4.3 and Section 4.4 present, compare and analyze the experimental results

obtained in terms of performance and area occupation respectively.

4.1 High Level Synthesis Details

The proposed methodology has been implemented in a C++ and integrated

into PandA [5] framework. PandA aims at providing an open-source frame-

work (Figure4.1) covering different aspects of the hardware/software co-

design of embedded systems, including methodologies to support:

� the research on high-level synthesis of hardware systems,
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Figure 4.1: Panda framework schematic overview.

� parallelism extraction for software and hardware/software partitioning,

� the definition of metrics for the analysis and mapping onto multipro-

cessor architectures and on dynamic reconfigurability design flow.

The part for high-level synthesis receives as input a behavioral description

of the algorithm, in C language, and generates the Verilog description of

the corresponding RTL implementation as output, along with a testbench

for the simulation and validation of the behaviour. This HDL description is

then compatible with commercial RTL synthesis tools.

Internal Representation In order to construct the Parallel Controller

Graph of the input specification, the C code has to be properly transformed

into a graph-based internal representation.

For this purpose, PandA exploits the front-end capabilities of the GCC com-

piler [3] ver. 4.3.4, as shown in Figure 4.3). In particular, the source code

is parsed, producing GENERIC trees: GENERIC is a language-independent

representation, which interfaces the parser and the code optimizer. The

GENERIC code is then translated into the GIMPLE IR, with the purpose of

target- and language-independent optimizations. GIMPLE data structures
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Figure 4.2: PandA analysis flow.

provide enough information to perform a static analysis of the specification,

stored in ASCII files. Following the grammar of these files, a parser recon-

structs the GIMPLE data structure in the PandA framework, thus allowing

further analysis and the construction of additional internal representations,

such as CFG, DFG and PDG. Once the PDG is obtained, the PCG is con-

structed using the algorithms proposed in the Chapter 3. Parallel Controller

Graphs data structures and construction algorithms have been implemented

on the top of the Boost library [1] ver. 1.40.

Figure 4.3: GCC internal structure.
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Synthesis The PandA high level synthesis has been extended in order to

produce the RTL descriptions of the proposed controller architectural model.

Besides implementing the controller synthesis, the resource library has been

also extended by introducing the modules needed to correctly implement the

modules introduced in Section 3.6, such as control elements, priority man-

agers and activation functions. The other synthesis sub-tasks (see Section

1.5 for additional details) have been accomplished by exploiting the existing

algorithms already provided by the framework, as described in the following:

� Resource allocation and binding : these steps are performed with-

out specifying resource constraints, allowing resource sharing; the re-

sulting allocation and binding schemes are the same ones for both the

PC and the FSM controllers. Only the register management is differ-

ent, since, in PC, each variable is stored in a different storage element,

following a conservative approach. On the contrary, in FSM, the reg-

ister binding is performed exploiting a clique covering approach [25].

For this reason, a significant increase in the number of registers needed

to implement the datapath is expected for the designs based on the

parallel controller.

� Instruction Scheduling : scheduling is performed using a list-based

algorithm [71] to compute the priority of each operation; anyhow, any of

the existing scheduling algorithm that is able to define a similar priority

ordering can be adopted as well. The analysis of such scheduling algo-

rithms, or possibly the definition of proper scheduling methodologies,

are postponed to further works. Moreover, chaining and multi-cycling

are currently not supported, even if the extension is straightforward.

Finally, the datapath is based on a mux-based architecture. For this reason,

the activation of the operations by the PC and the FSM needs to enable the

proper paths from registers to functional units and viceversa by means of

selectors.
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4.2 Experimental setup

The proposed methodology has been validated on two set of benchmarks,

classified depending on their available parallelism. To estimate the amount

of parallelism in the specifications, parallel regions are defined as independent

code portions where:

� straight line code instructions are assumed to belong to the same par-

allel region, even if there exist instructions that may be executed si-

multaneously;

� independent control constructs define different parallel regions; as an

example two independent loops constructs belong to different parallel

regions, while nested loops belong to the same one.

Thus parallel regions show the amount of available parallelism that common

FSM-based approaches usually fail to exploit, due to the sequencing of con-

trol constructs, as discussed in Section 3.2. The two benchmark classes are

characterized as follows:

1. unique parallel region - benchmark belonging to this class, listed in

Table 4.1, are common high level synthesis benchmarks, characterized

by data-intensive specifications. Except the Kim benchmark, which

includes if-then-else constructs, all the other benchmarks are com-

posed only of straight line sequential code. This set has been considered

to verify that the proposed approach lead to the same results, in terms

of clock cycles, with respect to the FSM approach, that in this case is

able to statically exploit the available parallelism.

2. multiple parallel regions and control intensive - benchmarks belonging

to this class, shown in Table 4.2, are synthetic control-intensive speci-

fications, designed as follows:

� Synth lx1 is characterized by the presence of a simple loop con-

struct, performing 50 iterations, and it is the only benchmark in

this class having a unique parallel region;
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Benchmark #source code # operations # parallel

instructions regions

ARF 36 33 1

Chemical 33 37 1

DCT 51 57 1

DCT Wang 49 56 1

Dist 57 58 1

EWF 34 38 1

FIR 14 15 1

Kim 26 34 1

Paulin 11 14 1

Pr1 42 50 1

Simplebiquad 4 10 1

Table 4.1: Unique parallel region class benchmarks characteristics.

� Synth lx2, Synth lx3, Synth lx4 are obtained combining respec-

tively two, three and four parallel instances of Synth lx1;

� Synth FIR lx1 is obtained combining FIR and Synth lx1;

� Synth FIR lx2 is obtained combining FIR and Synth lx2;

� Synth 2FIR l Biquad is obtained combining two instances of FIR

and an independent loop whose body contains Simplebiquad;

� Synth complex is obtained combining FIR, Kim and two indepen-

dent loops, one of which is embedded in an if statement. This

means that, for FSM, even if it would be possible to statically

identify the parallelism, the scheduling performed at compile-time

would increase the number of states, due to the presence of the if

statement, whose branch condition result is unknown in advance.

In fact, in such situation, all the admissible alternatives should be

considered [27]. Moreover, this situation is further complicated by

the fact that the number of instructions executed when the then
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branch is very different from the number of instructions executed

when the else branch is taken.

These benchmarks show an higher level of available parallelism, denoted

by their number of parallel regions, thus a performance improvement

adopting the parallel controller design is expected.

Benchmark #source code # operations # parallel

instructions regions

Synth lx1 8 14 1

Synth lx2 13 27 2

Synth lx3 18 40 3

Synth lx4 25 53 4

Synth FIR lx1 22 28 2

Synth FIR lx2 27 41 3

Synth 2FIR l Biquad 41 47 2

Synth complex 66 90 3

Table 4.2: Multiple parallel regions class benchmarks characteristics.

Once the RTL descriptions of the selected benchmarks have been produced

through the described HLS flow, the experimental evaluation is carried out

in two phases:

1. performance evaluation,

2. area occupation evaluation.

RTL implementations have been simulated by means of Icarus Verilog [4]

ver. 9.3, producing performance estimates in terms of clock cycles needed to

perform the specification’s execution. Area occupation have been extracted

through RTL synthesis on FPGA, using Xilinx ISE ver. 11.1 [6], a RTL de-

sign suite that follows the typical synthesis flow illustrated in Figure4.4.
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Figure 4.4: Overview of ISE’s design flow.

The chosen metrics for the RTL synthesis have been the number of Look-

Up-Tables (LUTs) and Flip-Flop (FF) registers needed to implement the

design on the target device, that is an FPGA Virtex-5 XC5VLX330T (pack-

age ff1760, speed grade -2). This device has 51,840 available slices, where

each of them contains four LUTs and four flip-flops. As a result, there are

207,360 LUT/flip-flop pairs available for the synthesis. In both the evalua-

tion phases, the target frequency is fixed and, for this reason, performance

can be evaluated just comparing the number of clock cycles resulting from

the simulation.

4.3 Performance Evaluation

Table 4.3 shows the results of the simulations performed on the benchmarks

belonging to the unique parallel region class, where the input values have

been randomly assigned. The results show that adopting the PC, the de-

signer is able to obtain the same performance of the FSM. In fact, there is a

unique parallel region, which parallelism is fully detectable and exploitable

at compile time. For this reason, the FSM-based approach is able to achieve

the same performance of the methodology proposed in this work.

Moreover, it is worth noting that the proposed controller does not worsen the

performance. This is a desirable feature, since it means that the implemented
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Benchmark #Clock Cycles (FSM) #Clock Cycles (PC)

Arf 10 10

Chemical 9 9

Dct 13 13

Dct Wang 12 12

Dist 12 12

Ewf 9 9

Fir 8 8

Kim 12 12

Paulin 5 5

Pr1 12 12

Simplebiquad 5 5

Table 4.3: Clock Cycles for the execution of class1 benchmarks.

token-driven approach which manages the activation of all operations does

not introduce communication overheads, as it happens instead for designs

based on more complicated communication protocols.

The results obtained for the second class of benchmarks, that are character-

ized by control-intensive specifications, are presented in the following.

Benchmark #Clock Cycles #Clock Cycles Speedup

FSM PC

Synth FIR lx1 162 158 1.02

Synth FIR lx2 318 162 1.96

Synth 2FIR l Biquad 163 158 1.03

Table 4.4: Clock Cycles for the execution of Synth FIR lx1, Synth FIR lx2 and

Synth 2FIR l Biquad benchmarks.

Table 4.4 shows the performance obtained through the simulation of bench-

marks Synth FIR lx1, Synth FIR lx2 and Synth 2FIR l Biquad. The first

one is composed of two parallel regions, but their parallelism is not enough
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to lead to a significant speedup. In fact, the parallel regions are unbalanced :

there is an initial phase in which the FIR’s code and the parallel loop are con-

currently executed, exploiting parallelism and available resources, and lead-

ing to a gain of 4 clock cycles on the execution time. When the FIR’s code

is completely executed, parallelism is no longer available (there is only one

parallel region to be executed), and the parallel controller offers the same per-

formance of the FSM-based controller. The same situation is found for bench-

mark Synth 2FIR l Biquad. Results obtained for benchmark Synth FIR lx2

instead, show a good increase of the speed-up. In this case when the FIR’s

code has been executed, there are still two parallel loops that can be concur-

rently executed, and the parallel controller exploits this kind of parallelism.

simulation #Clock Cycles #Clock Cycles Speedup

FSM PC

RUN1 203 139 1.86

RUN2 153 83 1.84

RUN3 139 99 1.41

RUN4 169 135 1.25

RUN5 211 132 1.60

Table 4.5: Clock Cycles for the execution of Synth complex benchmarks.

Table 4.5 provides the performance for the Synth complex benchmark. The

performance has been evaluated through five different runs of this bench-

mark, assigning different random values to input variables for each run. In

this case, due to its control-intensive nature, input variables significantly af-

fect the number of instructions to be performed, and random input values

ensure to maintain the unpredictability of the execution flow. Thus it repre-

sents a good challenge for dynamic extraction and exploitation of parallelism.

The parallel controller, in these simulations, effectively demonstrates the ca-

pability of extracting parallelism even in the case of unpredictable behavior

at run-time.

All the following simulation results refer to benchmarks Synth lx1, Synth lx2,
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Synth lx3 and Synth lx4, shown in Figure 4.6. Considering synth 1x1, even

Benchmark #Clock Cycles #Clock Cycles Speedup

FSM PC

Synth lx1 156 156 1

Synth lx2 312 159 1.96

Synth lx3 467 162 2.88

Synth lx4 623 315 1.98

Table 4.6: Clock Cycles for the execution of Synth lx’s benchmarks.

if the specification is control-dominated, there is a unique parallel region, and

the simulations outcomes confirm the results obtained for the first class of

benchmarks. The situation significantly changes when increasing the num-

ber of parallel regions from 1 to 2. In this case (benchmark synth 1x2) the

number of clock cycles needed to perform the computation is almost halved

adopting the parallel controller design instead of the FSM-based one. Since

the relative weight of the sequential fraction of the code (i.e. the initializa-

tion instructions) is small with respect to the total number of instructions,

the obtained speed-up is near to the maximum theoretical one (e.g., 2x),

given by the number of parallel regions. Augmenting the parallelism degree

to 3, the obtained speedup still increases, also in this case reaching a value

near to the theoretical maximum (e.g., 3x). However, when increasing the

number of parallel regions to 4 (i.e., benchmark synth 1x4), the results show

a decrease of the speedup with respect to the previous case. This is due

to the saturation of available resources: the first three loops exploit all the

available resources, and the fourth one is sequentialized. However, resource

availability is not the only aspect mitigating the speedup increase. Indeed, as

above mentioned, in the current implementation of the parallel controller, the

resources binding is given and performed by means of the algorithms mainly

developed for the FSM. Such algorithms are mainly designed to address the

parallism identified by the FSM. As a result, also independent instructions

may be bound on the same resource, reducing the parallelism exploitation.
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4.4 Area Evaluation

The first step performed to evaluate area occupation of the proposed imple-

mentation has been the analysis of some metrics extracted during the high

level synthesis flow. In particular, Table Table 4.7 shows the resources needed

to be allocated to implement the parallel controller for each benchmark, and

the number of flip-flop registers expected on the basis of the such resources,

leading to the following considerations:

� the number of Control Elements (#CE) is equal to the number of oper-

ations reported in Table 4.1 and Table 4.2, since each operation requires

a Control Module to be instantiated;

� the number of Conditional Join Modules (#C-JOIN) is equal to the

number of conditional operations;

� the number of Priority Managers provides information about the num-

ber of functional units that share at least two operations;

� the number of Join modules is larger than the number of Or modules

for each benchmark, and this is due to the current formulation of the

proposed activation function. This is a relevant issue, implementing a

Join module requires a number of flip-flops equal to the number of its

inputs.

� the estimated total number of Flip Flops (FF) is computed as the sum

of the FF needed for both Join modules and Control Elements: in

almost all the cases the number of Join FF is at least an half of the

overall number, and this underlines the impact that join modules have

on the area overheads for the parallel controller.

In conclusion, for the reduction of the Join modules, and thus the number of

flip-flops, transformations from SOP to POS forms are definitively required,

remarking the potential impact of the optimization algorithms proposed in

Section 3.10.
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Controller DataPath

Estimated # FF Estimated #FF

Benchmark FSM PC FSM PC

ARF 10 61 256 896

Chemical 9 75 544 1024

DCT 13 121 512 1536

DCT Wang 12 108 320 1504

Dist 12 102 704 1664

EWF 9 78 544 1056

FIR 8 29 224 416

Kim 26 130 96 832

Paulin 5 24 160 320

Pr1 12 100 352 1312

Simplebiquad 5 18 128 256

Synth lx1 8 38 48 108

Synth lx2 16 48 192 608

Synth lx3 23 112 256 928

Synth lx4 31 149 320 1248

Synth FIR lx1 14 66 288 704

Synth FIR lx2 22 103 288 1024

Synth 2FIR lBq 15 96 640 1280

Synth complex 57 278 352 2112

Table 4.8: Estimated number of Flip Flops for controller and datapath, in the case

of both FSM and PC-based designs.
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The estimated number of needed Flip Flops has been computed even for the

FSM controller and the Datapath, for both PC and FSM designs.

Results are compared in Table 4.8 and, from their analysis, it is possible to

draw the following considerations:

� Controller - FSM requires in all cases a lower number of registers with

respect to PC; however it must be considered that FSM optimizations

to better exploits parallelism, such as the technique in [27], could lead

to an exponential increase of the number of states and consequently

of the number of needed flip-flops. Moreover, as previously discussed,

optimizations of the activation functions could significantly reduce the

number of flip-flops in PC designs. Anyway, the number of flip-flops

required for the datapath implementations usually dominates the con-

troller ones by at least one order of magnitude.

� Datapath - The estimated number of needed register to implement the

datapath, is significantly higher in PC designs. This is due to the

conservative approach adopted for register binding in the PC-based

synthesis. These results clearly show that a proper register binding

definition is very important, but it has been left as further work since

it is out of the scope of this thesis.

Estimated results have been in the following compared with actual ones ob-

tained through RTL synthesis. Table 4.9 compares the estimated total num-

ber of flip flops needed to implement FSM and PC designs, with the actual

number of used register in the physical implementation on FPGA. The re-

sults show that the synthesis process can be effectively able to predict the

requirements in terms of resources. Moreover, the proposed approach for PC

increases the predictability of the designs, demonstrated by a lower average

difference between estimated and actual values. This opens new possibilities

for research in the exploration of the architecture (e.g., priority scheduling

and operation binding) at higher level of abstraction, i.e. without performing

the actual synthesis for each candidate solution.

197



CHAPTER 4. EXPERIMENTAL EVALUATION

Total Total

Estimated # FF Actual #FF

Benchmark FSM PC FSM PC

ARF 266 957 385 957

Chemical 553 1099 554 1099

DCT 525 1657 532 1653

DCT Wang 332 1612 332 1602

Dist 716 1766 718 1766

EWF 553 1134 553 1134

FIR 232 445 232 446

Kim 122 962 122 1025

Paulin 165 344 165 344

Pr1 364 1412 365 1408

Simplebiquad 133 274 133 275

Synth lx1 56 146 138 323

Synth lx2 208 656 208 679

Synth lx3 279 1040 279 1034

Synth lx4 351 1397 351 1389

Synth FIR lx1 302 770 312 767

Synth FIR lx2 310 1127 322 1123

Synth 2FIR lBq 655 1376 656 1375

Synth complex 409 2390 432 2376

Avg. Difference 3,80% 1.00%

Table 4.9: Total number of estimated and actually used Flip Flops.
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Total

Actual #LUT

Benchmark FSM PC

ARF 1066 896

Chemical 1148 781

DCT 2232 1862

DCT Wang 2330 1722

Dist 2045 1615

EWF 1296 845

FIR 399 295

KIM 832 1163

Paulin 457 381

Pr1 1918 1566

Simplebiquad 137 118

Synth lx1 270 294

Synth lx2 495 581

Synth lx3 653 946

Synth lx4 1013 1360

Synth FIR lx1 871 647

Synth FIR lx2 934 943

Synth 2FIR lBq 1420 982

Synth complex 2111 2484

Table 4.10: Number of used LUTs.
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Finally, Table 4.10 show the requirements in terms of LUTs to implement

the entire benchmarks, with both the controllers. The results show that

the number of LUTs required by the PC is usually reduced with respect to

the designs based on the FSM. In fact, when a larger number of registers is

used (as in the case of PC), the number of multiplexers is usually reduced

since there are less conflict between paths from/to functional units. For

this reason, the number of registers and multiplexers have to be necessarily

explored at the same time in order to reduce the number of the registers,

without degrading the number of the multiplexers.

4.5 Concluding Remarks

In conclusion, the proposed approach is effectively able to exploit the paral-

lelism by identifying at run-time the instructions that can be executed step

by step. On the other hand, the results show that efficient algorithms have to

be necessarily designed for determining the proper operation binding and the

corresponding priority values in order to further improve the performance.

From the analysis of the area occupation, additional observations can be

made. First, since the implementation of a Join module requires a num-

ber of flip-flops equal to the number of its inputs and such modules have a

large impact on the number of flop-flops required for the PC implementa-

tion, transformations from SOP to POS forms are definitively required for

the reduction of the Join modules. Then, the results show that the pro-

posed approach for PC increases the predictability of the designs, opening

new possibilities for optimizations at higher level of abstraction, i.e. without

performing the actual synthesis for each candidate solution.

In conclusion, concurrent explorations of scheduling priorities and operation

bindings, as well as registers and multiplexers will be able to further improve

performance and area occupation of the proposed controller. Finally, addi-

tional optimizations such as adding don’t care conditions and transformations

from SOP to POS would further reduce the number of required resources.
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Conclusions and Future Works

The main objective this thesis work aimed to achieve was to optimize par-

allelism exploitation in HLS. For such purpose, two main contributions have

been proposed: a new parallel controller structure, and a methodology for

the design of such architecture in high-level synthesis.

The guideline of the whole project is that the task of establish when an in-

struction can start its execution can be shifted on the controller. Making the

controller able to dynamically select the set of instructions to execute in each

control step eliminates most of the restrictions in parallelism extraction. The

only limitation may come from binding and number of available resources.

Indeed, in the proposed model, the binding task is performed in advance as

well as resources allocation.

The proposed methodology started with parallelism representation. A new

graph, namely the Parallel Controller Graph (PCG), has been proposed as

Intermediate Representation (IR) for such purpose. The PCG has been con-

structed as an extension of the Program Dependence Graph (PDG) repre-

senting the minimum set of control flow informations, in addition to the

minimum set of control and data dependencies already represented by the

PDG. Such informations resulted in the insertion of back-edges, labeled con-

trol flow edges and unlabeled control flow edges. The algorithms for the

insertion of these kind of edges, and thus for the PCG construction, have
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been presented.

Representing the inherent parallelism of an application was not the only

aim leading to the PCG construction. Such IR, indeed, was built in such a

way to easily support the extraction of the informations about the minimum

set of conditions enabling instruction execution. These conditions indicate

what events must happen for an instruction can start its execution, thus

expressing when the dependencies are satisfied. Hence, an analysis of the

PCG has been performed at first to identify the parallelism; then, the iden-

tified parallelism has been formalized into activation functions, representing

the above mentioned conditions. Activation functions has been implemented

as combinations of signals. This allows the parallel controller to automat-

ically understand and manage such information, addressing the parallelism

formalization problem. Activation functions represent the basis to build an

execution model. Indeed, they provide not only the information about the

exploitable parallelism, but also a complete characterization of the control

flow of the synthesized application.

The proposed architecture for the parallel controller has been obtained through

a bottom-up approach. First, the set of modules composing the controller

has been defined, describing their behavior. Then, such modules has been

properly interconnected. The resulting architecture is event-driven following

the producer/consumer paradigm. Each time an instruction is executed it

fires, informing the instructions depending on it that the associated depen-

dency is satisfied. More in detail, since each instruction depends on a set

of instructions, properly combined according to the activation function, each

time an instruction is executed the fired signal is collected by the AF module.

The AF module in turn will fire when all the dependencies will be satisfied,

informing the associated instructions that its execution can start.

The proposed methodology has been implemented integrating the C++ High-

Level Synthesis framework into PandA [5]. It has been applied on a set

of benchmarks, obtaining their RTL description targeting the parallel con-

troller. Then, the same set of benchmark has been synthesized targeting a
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centralized FSM. The performance obtained in these two cases have been

compared in terms of clock cycles. This has been possible since the synthesis

has been performed setting the frequency in advance. The parallel controller

has shown good performance, especially for those specifications characterized

by an high degree of available parallelism. However, area occupancy, eval-

uated through RTL synthesis, increased. One of the main reasons for this

is that register allocation is optimized in the case of the FSM, while these

optimizations has not been extended to the case of the parallel controller

yet.

In conclusion, the main goal of this thesis work was to propose a parallel

controller structure improving performance by parallelism exploitation. This

objective has been achieved. However, although the obtained results are

satisfying, parallel controller capabilities could be extended in future works,

improving area occupation and giving even better performance. Some hints

for further improvements are provided in the following.

� The optimizations described in Chapter 3, i.e. translation into SSA

form, algebraic simplification, reduction trough flow analysis and trans-

lation into POS form, can be formalized and implemented. This would

lead to a reduction of the logic needed to implement activation func-

tions into hardware, possibly reducing the number of registers.

� Registers allocation can be improved by applying optimizations tech-

niques. Standard optimization techniques, however, may result inade-

quate for the parallel controller, since concurrent run-time-established

execution of multiple instructions, complicates the analysis for registers

reuse. Hence, the proposal of novel algorithms may be needed.

� Resources allocation and binding are currently performed in the same

way for the FSM and for the parallel controller. More in detail, the

parallel controller uses the allocation and binding algorithms developed

for the FSM. This means that they are performed starting from the in-

formation contained in the Control Flow Graph (CFG). Since the CFG
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fails in recognize all the sources of parallelism, it can be allocated a

lower number of resources of a certain kind with respect of the number

of independent operations needing that kind of resource to be executed,

thus restricting parallelism exploitation. Moreover, multiple indepen-

dent operations can be recognized as dependent in the CFG. In such

cases it may be bound on the same resources. For these reasons, the

algorithms performing resources allocation and binding starting from

the PCG should be developed.
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