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Sommario

Il lavoro proposto illustra le fasi progettuali ed implementative che hanno condotto alla

realizzazione di un sistema di Video Streaming per reti di sensori wireless. Nella prima

parte del documento sono analizzate le reti di sensori allo scopo di individuare vincoli e

limitazioni che condizionano le scelte progettuali. Successivamente, tale analisi viene

estesa alle reti di sensori multimediali.

Nella sezione teorica del documento viene presentato lo stato dell’arte delle tecniche

di compressione di immagini e video. Tale ricerca è stata orientata all’individuazione

dell’algoritmo di compressione video più adatto allo scopo di questo lavoro. Successi-

vamente vengono descritte le fasi progettuali ed implementative che hanno portato allo

sviluppo del sistema di Video Streaming. Viene inoltre descritta la simulazione volta a

confrontare il protocollo di rete implementato con l’alternativa proposta.

Infine, le performances del sistema sono testate ed analizzate. Il sistema ottenuto per-

mette l’invio di un flusso video attraverso i diversi nodi componenti la rete di sensori

fino al gateway, dove tale flusso viene visualizzato.



Abstract

This dissertation describes the design and the implementation phases which brought to

the realization of a Video Streaming System on a Wireless Sensor Network. In the first

part, the Wireless Sensor Networks are analyzed to understand the general constraints

and limitations that underneath the development environment. Subsequently this anal-

ysis is extended to the Multimedia Wireless Sensor Networks.

The document reports also a survey on the current data compression techniques. Such

methods were studied to find the best data compression algorithm usable in the Video

Streaming System.

In the implementation section the requirements and the constraints that characterized

the work development are presented, together with the design issues encountered and

the solutions adopted. Moreover it is reported the simulation aimed to compare the

used network protocol with one of the most common alternatives.

Finally the performances of the Video Streaming System are tested and analyzed. The

presented system allows to send a video through the diverse nodes of a wireless sensor

network till reaching the gateway, where the images flow is displayed.
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Chapter 1

Introduction

THE considerable scientific interest around Wireless Sensor Networks (WSN)

of the past years was mainly due to the great potentialities of this kind of

technology. WSNs offer a low cost and easily scalable network for data col-

lection and environmental monitoring purposes. The price of this simplicity is payed

in a resource constrained architecture presenting many limitations in terms of perfor-

mance and functioning autonomy. These architectural limits give rise to a whole set of

design issues faced by the scientific community in the last years: need to reduce en-

ergy consumptions, reliability of the nodes, processing power of the motes, etc. Many

research results have been reached allowing to extent the applications range of this

technology from the original military context to other fields like environmental moni-

toring, healthcare, data collection, etc.

In the recent years, the technology progresses, in particular in image chips develop-

ment, allowed to equip sensors with multimedia functionalities. Indeed, new CMOS

based cameras reduce consistently the amount of energy required for image acquir-

ing, maintaining a fair pictures quality. Such advances, together with the production

of more powerful sensors and, at the same time, with reduced energy consumptions,

extended further the fields of application of the WSNs in such a way that a new name

was coined: Wireless Multimedia Sensor Network (WSNM).
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WSNMs offer many new utilization possibilities that range from environments video

monitoring, surveillance systems, patients monitoring, etc. But together with these

new functionalities also new problems came. The processing efforts required by the

multimedia contents strain also the new generation and most powerful sensors. More-

over, such huge amount of data causes problem also in the transmission phase. Indeed,

the network must sustain the increase of network traffic with related problems such

as congestion and packets losses management. Together with this routing issues, the

need of higher transmission rates and the long active periods of the radio chip bring

not negligible energy consumption problems.

The developing of the video streaming system presented in this work had to take in

account all these design issues. Before starting the software development, we did

an accurate research on the current data compression techniques to evaluate whether

one of them could perform better than the already implemented Jpeg encoder, for still

images and to chose a light and efficient compression method to further reduce trans-

mitted data size in the video subsystem.

The implemented work is based on an image acquisition software available among the

Intel Mote 2 contributions developed by the Stanford University for TinyOS [3]. We

exploited the original Jpeg compression algorithm implementation and the drivers of

the OV7670 camera chip , installed on the IMB400 CrossBow multimedia module, to

build a Difference Pulse Code Modulation (DPCM) algorithm to efficiently encode the

video frames sequences. In a second phase the module for the serial communication

with a general purpose computer, provided by the TinyOS contributions, has been ex-

tended to support a reliable multihop radio protocol, based on the CC2420 chip drivers

provided by the TinyOS 2.1.1 release.

The radio protocol implementation consisted in developing a sender module for the

camera mote together with a base station attached to the general purpose machine.

The base station has in charge to receive packets through the radio channel and to for-

ward them to the gateway, on the serial connection. Moreover, we implemented the

software supporting the insertion in the network of one or more intermediate nodes to
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create a multihop network paradigm.

Also a Tossim simulation of the currently used network protocol has been imple-

mented, as well as another losses management solution. This simulation was needed

to compare such protocol with one of the most common alternatives, the Selective

Repeat paradigm. Once the photo and the video subsystems, together with the radio

protocol, were completed, the system performances were analyzed measuring image

processing and network parameters. The different functionalities were tested varying

the number of intermediate nodes, till a maximum of four, and the transmission power

levels, going from 0 dBm to -25 dBm. The testbed preparation required some code

modifications aimed to collect information without compromising the correctness of

the measurements.

The outcome of the work will be deeply reported and explained in the rest of the dis-

sertation:

Chapter 2 introduces the sensor networks describing the most important features and

the most common applications.

In Chapter 3, Wireless Multimedia Sensor Networks are analyzed also reporting the

new challenges and issues deriving from this new sensor network paradigm.

Chapter 4 presents the results of the initial research work about the state of the art of

images and video compression techniques.

In Chapter 6 we describe the design and development phases of the system deploy-

ment. Moreover it is described the development of the network protocols simulation.

In Chapter 7, the results of the performance tests for the different system configura-

tions are presented.

Finally, in Chapter 8 considerations about the performances of the implemented system

and the work outcomes are presented, together with possible future developments.
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Chapter 2

Wireless Sensor Network

Wireless sensor network (WSN) is a relatively new technology gaining a

growing attention in the scientific and industrial community. This fact

is referable to the diverse noteworthy and peculiar features offered by

a sensor network, especially whether developed on a wireless architecture. A WSN,

represented in Figure 2.1, consists in a set of sensor nodes (also called motes) commu-

nicating each others through a wireless channel, with no constraints on the topology

of the network. Those sensors constitute a low cost and low power networked sys-

tem, particularly well suitable to data collection and environment monitoring, easily

adaptable to different aims through software programming. Moreover, this technology

offers contained installation costs and a reduced maintenance. Examples of monitored

data range from simple measurements, like temperature or humidity values, to more

elaborated information, like accelerations or vibrations.

The technological improvements in the hardware design of the last years have per-

mitted to deal with sensors supporting a certain degree of on board computation and

consuming a relatively small amount of energy; much help has come also from the

large use of energy saving policies that involves network operations as well as the soft-

ware executed by the sensor.
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Figure 2.1: Schema of a WSN

The design of this kind of network is similar to the common ad-hoc networks

planning methodology but with some differences, imputable to the distinct technology

adopted: the number of nodes in a WSN can be notably higher than in an ad-hoc net-

work, motes are densely distributed in the environment and the topology could change

frequently. However, WSNs present new problems with respect a common wireless

scenario: motes are largely exposed to malfunctions and are subjected to tight energy

constraints. Though the network protocol has often been designed to maximize the

energy savings communication is the activity with the highest energy dissipation in a

generic WSN. Another issue comes from a common wireless network problem, that

results amplified by the resource limits of the WSN: this is the low reliability of the

wireless channel. While in a wired network the capacity of each link is fixed, in a wire-

less environment, due to the interference level perceived at the receiver, the channel

capacity can vary even consistently. Things get worse in a sensor network scenario,

because transmission capacity is already limited and retransmissions cost energy.
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2.1 Sensors

The typical hardware configuration of a mote consists of a micro controller for

computation, a RAM memory to store dynamic data structures, flash memories where

are placed the execution code and long-lived data, a communication module, composed

of an antenna and a wireless transceiver, one or more sensors and a power source, usu-

ally provided by batteries to support the versatility often required to this kind of net-

work architecture. Some examples of currently available sensors are showed in Figure

2.2

It is possible to classify the sensing units in two separated categories: passive and ac-

tive. While the first type of sensors does not need to act in an active manner to acquire

information, like light and pressure transducers , the other one require a direct and

constant action to acquire data, consuming a considerable amount of energy. This is

the case, for example, of a sensor equipped with a camera.

One of the most famous motes is the MicaZ: it is based on an Atmel micro controller

Figure 2.2: Wireless Sensors Examples

together with 4K bytes of RAM memory, 128 K bytes of program flash, 512 K bytes of
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log memory. On the communication side it has an IEEE 802.15.4 2.4-GHz transceiver

that supports a maximum rate of 250 Kbps and a range of about 50 meters. It acquires

data through a 10-bit ADC, and runs on two AA batteries. The processor current draw

is of 8 mA in active mode while the radio frequency transceiver consumes almost 20

mA in receive mode.

2.2 Network

Inter node communication could be reached through different techniques. Infrared

data transmission is tolerant to interference, offers reliable transmissions and is license-

free but requires each node to be in line of sight with the others. Another approach

exploits Bluetooth proprietary technology. The main issues of this solution are: high

energy consumption, strong limitations on the number of nodes in the network and

complex overlying MAC layer.

Many solutions bases the network communication on the IEEE 802.15.4 standard. The

IEEE 802.15.4 standard was developed to provide a framework and the lower levels

for low cost, low power networks. It only provides the MAC(Media Access Control)

and PHY(PHYsical) layers, typically for a Personal Area Network (PAN), leaving the

upper layers to be developed according to the market needs.

The chief requirements are low-cost, low-speed but ubiquitous communication be-

tween devices. The concept of IEEE 802.15.4 is to provide communications over

distances up to about 10 meters and with maximum transfer data rates of 250 Kbps.

Additionally, when the hardware supports radio sleep mode, it permits to the recovered

node a fast re-synchronization with the network.
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2.3 Designing guidelines

To realize the typical WSN requirements, innovative mechanisms for a communi-

cation network have to be found, as well as new architectures and protocol concepts.

One of the main challenges is the need to support specific quality of service, lifetime

and maintainability requirements of specific applications. On the other hand, these

peculiar mechanisms also have to generalize to a wider range of applications allowing

to contain costs.

The wireless medium adopted by these networks imposes the designer some limita-

tions. In particular, communication between over long distances is only possible using

prohibitively high transmission power. The use of intermediate nodes as relays can

reduce the total required power. Hence, for many WSN implementations, multihop

communication is a necessary solution.

The considerable number of nodes and the request of a simple deployment require the

ability of the network to configure most of operational parameters autonomously, in-

dependent with respect to external configuration. For example nodes should be able to

determine their geographical position using only other nodes of the network. Also, the

network should be able to tolerate failing nodes or to integrate new nodes.

In some applications, a single sensor is not able to decide whether an event has hap-

pened but several sensors have to collaborate to detect an event and only the joint

data of many sensors provides enough information. Instead of sending all the data

to the edge of the network, where is processed, the information is elaborated in the

network itself to achieve a collaboration model reducing the transmission load. An

example could be the measurement of the average temperature in a place: while data

are propagated through the network they are aggregated to reduce the total number of

transmissions.

In a WSN, where nodes are typically deployed redundantly to protect against failures,

the identity of the particular supplying data node becomes irrelevant. What is im-

portant are the answers and the values themself, not which node has provided them.
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Hence, the address-centric approach typical of traditional communication networks

leaves room to a data-centric paradigm.

Another property required in a WSN is locality: nodes, who are very limited in mem-

ory resources, should attempt to limit the state that they accumulate during protocol

processing only to information about their direct neighbors. This help the network to

scale to large numbers of nodes without having to rely on powerful processing at each

single node.

Obviously, all these properties must be implemented in energy efficient manners, nec-

essary to support long lifetimes.

2.4 Applications

WSN development was originally motivated by military purposes: this technology

is particularly suitable in a war environment due of the fault tolerant characteristics

and the self organizing capacity of the network. Furthermore, due to the low cost of

Figure 2.3: WSN for Pipeline Security

the components and the high mote density, the destruction of some devices does not

affect the network integrity. Common uses include: battlefield surveillance, targeting

and target tracking systems,nuclear, biological or chemical attack detection.

In the last years, WSN are gaining popularity even in a civilian context, where this

science has found many fields of application, especially in environment monitoring

10



Figure 2.4: Environmental Monitoring Example

like, for example, precision agriculture,tracking of movements of small animals, pol-

lution study. Two examples of WSN applications in a civilian context are showed in

Figures 2.3 and 2.4. But WSN find space also in healthcare area, where this tech-

nology is used in tracking and monitoring of patients as, for instance, in the Laura

project [15], in drug administration in hospitals, providing interface for the disabled

people etc. Others applications concern factory automation processes and smart home

technologies.
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Chapter 3

Wireless Multimedia Sensor Network

WSN were originally focused on the collection of scalar data, simple pro-

cessing and transmission to remote locations. Here, received data were

processed by more powerful devices to obtain the most accurate infor-

mation. More recently, the availability of inexpensive and low power hardware such

as CMOS camera and microphones that allow to capture multimedia content from the

environment has fostered the development of Wireless Multimedia Sensor Network

(WMSN). These new devices allow retrieving video and audio streams, still images

and scalar sensor data. In addition to the ability to collect multimedia data, WMSN are

able to process, store and, in case of heterogeneous sources, correlate or fuse different

information flows. This new research direction, not only enhance existing sensor net-

work applications such as tracking, home automation, and environmental monitoring,

but they will also enable several new ways of employment of this kind of technology:

• Multimedia surveillance sensor network:

wireless video sensor networks will be composed of interconnected, battery-

powered miniature cameras, each packaged with a power wireless transceiver

capable of processing, sending and receiving data. Video and audio sensors will

be used to complement existing surveillance systems.

• Storage of potentially relevant activities:

13



Multimedia sensors could infer and record potentially relevant activities (thefts,

car accidents, traffic violations), and make video/audio streams reports available

for future query.

• Traffic avoidance, enforcement and control systems:

it will be possible to monitor car traffic in big cities or highways and deploy

services that offer traffic routing advice to avoid congestion or simply to collect

vehicular traffic data.

• Advanced health care delivery:

Patients will carry medical sensors to monitor parameters such as body temper-

ature, blood pressure, pulse oximetry, ECG, breathing activity. Furthermore,

remote medical centers will perform advanced remote monitoring of their pa-

tients via video and audio sensors, location sensors, motion or activity sensors,

which can also be embedded in wrist devices.

• Automated assistance for the elderly and family monitor:

Multimedia sensor networks can be used to monitor and study the behavior of

elderly people. Networks of wearable or video or audio sensors can infer emer-

gency situations and immediately connect elderly patients with remote assis-

tance service or relatives.

• Environmental monitoring:

Several projects on habitat monitoring that use acoustic and video feeds are

being envisaged. For example, arrays of video sensors are already used by

oceanographers to determine the evolution of sandbars via image processing

techniques[10]].

• Person locator services:

Multimedia content such as video streams and still images, along with advanced

signal processing techniques, can be used to localize missing people, or identify

wanted criminals.
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• Industrial Process Control:

Imaging, temperature and pressures for instance, may be used for time-critical

industrial process control. For example, in quality control of manufacturing pro-

cesses, such as those used in semiconductor chips, automobiles, food or phar-

maceutical products.

3.1 Multimedia sensors

Figure 3.1: CMUcam1, CMOS Based Camera

A multimedia sensor does not differ much from common sensors, as those exam-

ined in Chapter 2. Basically they are equipped with a processing unit, a communication

subsystem, a coordination system and a storage unit. The great difference is the multi-

media module and the correspondent analog-to-digital (ADC) converter. Usually this

module is equipped with a microphone but, most of all, an image sensor as the one

showed in Figure 3.1. This add new capacities to the mote but increases also the com-

plexity of some components such as the ADC. Since 1975 till few years ago, the de
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facto standard for image sensors was the CCD (charge coupled device). As compared

to traditional CCD technologies, there is a need for smaller, lighter camera modules

that are also cost-effective when bought in large numbers to deploy a WMSN.

In a CCD sensor, the incident light energy is captured as the charge accumulated on a

pixel, which is then converted into a voltage and sent to the processing circuit as an ana-

log signal. This architecture brings some disadvantages with respect to its integration

on a wireless sensor: they require more electronic circuitry outside the actual image

sensor, are more expensive to produce and, above all, they consume up to 100 times

power than a CMOS sensor. Unlike the CCD sensor, the CMOS chip incorporates am-

Figure 3.2: CMOS Sensor Functioning Schema

plifiers and A/D-converters, which lowers the cost for cameras since it contains all the

logics needed to produce an image. Every CMOS pixel contains conversion electron-

ics. Compared to CCD sensors, CMOS sensors have better integration possibilities

and more functions. However, this addition of circuitry inside the chip can lead to a

risk of more structured noise, such as stripes and other patterns. CMOS sensors also

have a faster readout, lower power consumption, higher noise immunity, and a smaller
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system size[11]. In Figure 3.2 it is showed how the CMOS sensor captures the image

transforming it in an electrical signal. Depending upon the application environment,

such as security surveillance needs or biomedical imaging, these sensors may have

different processing capabilities.

3.2 Design Issues

The volume of data collected as well as the complexity of the necessary in-network

stream content processing provides a diverse set of challenges in comparison to generic

scalar sensor network research. Multimedia motes have to support tasks increasingly

demanding in terms of number and computational complexity of operations. Due to

the considerable energy dissipation spent in transmission, acquired data have to be

elaborated in order to reduce size. This task could require a lot of energy resources

if low complexity and efficient coding techniques are not used. Moreover, acquiring

more and more accurate data, increase dramatically the load in the entire network. For

this matter, it is necessary, to combine data compression techniques with new trans-

mission policies aimed at reduce the network traffic.

The wide variety of applications envisaged will have different requirements. In addi-

tion to data delivery modes typical of scalar sensor networks, multimedia data include

content based requirements. This force to consider QoS (Quality of Service) and ap-

plication specific requisites. These requirements may pertain to multiple domains and

can be expressed, amongst others, in terms of a combination of bounds on energy con-

sumption, delay, reliability, distortion, or network lifetime.

Multimedia contents, especially video streams, need transmission bandwidth that is

orders of magnitude higher than that supported by currently available sensors. For ex-

ample, the nominal transmission rate of state-of-the-art IEEE 802.15.4 is 250 Kbit/s.

Data rates at least one order of magnitude higher may be required for high-end multi-

media sensors, with comparable power consumption. Therefore we need to balance the

trade-off between transmission performance and energy consumption. A help could
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come from new transmission techniques such as UWB (Ultra Wide Band)[4]

Because of the considerable amount of data generated by multimedia sensors, efficient

processing techniques for lossy compression are necessary for this kind of networks.

Traditional video coding methods are based on reducing bits generated by the source

encoder by exploiting the source statistics. More commons encoders rely on intra-

frame compression techniques to reduce the redundancy within the same frame and

inter-frame compression to exploit redundancy between subsequent frames. The two

correlation types are showed in Figure 3.3. Since predictive (inter-frame) coding re-

Figure 3.3: Spatial and Temporal Correlation Example

quires powerful processing algorithms it may not be suited for low-cost multimedia

sensors. The solutions adopted try to move as much computation as possible to the

decoder, designing lightweight and distributed source encoders that produce different

small data flows put together by the decoder [9].

WMSN allow performing multimedia in-network processing algorithms on the raw

data extracted from the environment. This requires new architectures for collaborative,

distributed and resource constrained processing that allow for filtering and extraction

of semantically relevant information at the edge of the sensor network. In this way it,
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is possible to increase the system scalability by reducing the transmission of redundant

information, merging data originated from multiple views, on different media and with

multiple resolutions.

Obviously power consumption has a central role in the deployment of WMSN. The

considerable amount of data and its elaboration require energy saving oriented algo-

rithms, even more than in traditional WSN. In fact, while the energy consumption of

traditional sensor nodes is known to be dominated by the communication facilities, it

may not necessarily be true in WMSN.

Wireless multimedia sensor networks will support several heterogeneous and indepen-

dent applications with different requirements. It is necessary to develop flexible, hier-

archical architectures that can accommodate the requirements of all these applications

in the same infrastructure.

3.3 State Of The Art

The field of video sensor networks is a relatively new area of interest that offers

different research opportunities. The add of multimedia content to the sensor networks

required a rethinking of the network layers and architecture. Many of the last years re-

searches were focused on answering to the requirements of the new network paradigm.

With the increase of the required bandwidth, the old MAC (Medium Access Control)

protocols became inefficient. Indeed, existing schemes are based mostly on variants of

CSMA/CA (Carrier Sense Multiple Access, with Collision Avoidance) MAC protocol

and present notable limitations in terms of latency and coordination complexity. The

channel contention could be significantly reduced using two radios in which to one is

delegated the task of channel monitoring and is responsible for waking up the main ra-

dio for data communication. The disadvantages of this approach reside in the distinct

channels assignment and in the increased hardware complexity.

A contention free alternative could be the implementation of a TDMA (Time Divi-

sion Multiple Access) protocol. With this paradigm, channel resources are assigned

19



in a small time interval with a contention based method while the rest of the frame is

contention-free and divided on the basis of the QoS (Quality of Service) requirements.

The main problems of this technique concern the network scalability and the complex

network-wide scheduling.

A third way reproduces MIMO (Multiple Input Multiple Output) antenna systems,

where each sensor functions as a single antenna, sharing information and simulating a

multiple antenna array.

The unreliability of the wireless channel requires error correction mechanisms. The

main link layer classes of error correction protocols are FEC (Forward Error Control)

and ARQ (Automatic Repeat Request). While the former applies different degrees of

redundancy to different parts of the video stream, on the basis of the part importance,

the ARQ protocols use the bandwidth efficiently at the cost of additional latency in-

volved with the retransmission process. Recent comparisons between the two tech-

niques showed that for certain FEC block codes (BCH), longer routes decrease both

the energy consumption and the end-to-end latency [21].

In a WMSN could exist nodes with different capabilities. Consequently there could

be different routes with different characteristics based on the diverse features of the

nodes along the path. Moreover the routing could be based on video stream content.

For instance, streams belonging to cameras with the same orientation could follow the

same route to facilitate redundancy removal.

Another approach could speed up the routing procedures differentiating between flows

with different delay and reliability requirements. Each node selects its next hop based

on link-layer delay measurements [8].

Transport layer protocols can follow UDP (User Datagram Protocol) or TCP (Trans-

port Control Protocol) models. Usually, for multimedia contents, UDP paradigm is

more appreciated. It allows to give more importance to timeliness constraints than

reliability requirements. The Real-time Transport Control Protocol (RTCP), based on

UDP, permits a dynamic adaptation to the network conditions, allowing bandwidth

scaling and integration of different images in a single composite. In addition, with
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application level framing (ALF) it is possible to ensure a better compatibility between

different networks, such as WSN and IP-networks, encoding specific instructions in

the packets header.

On the other side, TCP approaches support a more selective management of the net-

work traffic. For example, in MPEG protocol, some frames, called I-frames, can not

be retrieved by interpolation and dropping packets indiscriminately, as in the case of

UDP, may cause discernible disruptions in the multimedia content. It would be better

to introduce a sort of selective reliability mechanism that increases the protection of

these packets with respect to less important parts.

Although many of the cited works were developed in a simulated environment, some

of them were implemented. For example in the surveillance systems, where WMSN

allow costs reduction and more flexibility in the system installation, new way of mon-

itoring are offered, like target classification and tracking [7].

Alongside of the existent development environments, new frameworks are developed

with the aim of helping the designers in implementing new multimedia applications

that can exploit the potentialities offered by sensors with multimedia capabilities [16].

The increase of the network traffic, due to the multimedia content of the network, re-

quires the developing of new routing protocols to efficiently drain the huge amount of

data. Older protocols must be updated or substituted by newer and more reliable traffic

management methods [19].

Other research studies concern testbeds to test new protocols and applications devel-

oped for Wireless Multimedia Sensor Networks or to measure how the existent tech-

niques perform with respect to the new and more problematic multimedia approaches

[13].
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Chapter 4

Image Coding Techniques

THE considerable amount of information produced by a multimedia sensor

together with the limited resources of commons WSN, require data com-

pression techniques to reduce the network load and the intermediate node’s

processing efforts.

Images are made of pixels, each pixel is described by a variable number of bits de-

pending on the image type, grayscale or colored, and quality. The number of bits re-

quired to represent an image may be substantially lower because of redundancy. This

redundancy can be classified in three different types: spatial redundancy, due to the

correlation between neighboring pixel values, spectral redundancy, generated by the

correlation between different color planes or spectral bands and temporal redundancy,

due to the correlation between different frames in a sequence.

Image compression research aims to reduce the number of bits required to represent

an image by removing these redundancies.

The most general categories in which a compression method could fall are: lossless

and lossy compression. While lossless methods allow to reconstruct an image identical

to the original, on a pixel-per-pixel base, lossy compression drops some information

with respect to the original, so that the result of reconstruction operations contains

degradations.
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In a WMSN environment, the choice of a technique aimed to reduce the size of an

image captured by a node must be driven by the performance limits of the mote’s

hardware and by the energy constraints to which it is subjected.

The major part of compression techniques elaborate the signal transforming it and pro-

cessing data in frequency domain to exploit properties of the transform with the aim

of a more efficient compression of the information.

4.1 Fourier Transforms

There exist many types of transforms: Fourier, Cosine, Hadamard, Karhunen Lo-

eve, Tchebichef, etc. Each one has different properties and complexity. In the image

compression field discrete Fourier transformation (DFT) is frequently used because it

can condense most of the image information in few coefficients. The main issue is the

high computational complexity. On the other side, Hadamard transformation is very

fast and performs better than Tchebichef or discrete cosine transformation (DCT) with

images containing rapid gradient variations while loses effectiveness for continuous

tone images[12].

One of the most used transforms, adopted in JPEG and MPEG standards, is DCT. This

technique is used when the input signal contains only real parts: it is referable to the

Fourier transform where the the imaginary part is always zero. It is appreciated for

the compromise between performance and effectiveness offered and for some owned

properties like the fact that for real inputs it gives real output so that less storage space

is needed and for the ability of exploiting the correlation between adjacent pixels. DCT

is able to concentrate most of the signal in the lower spatial frequencies so that, in the

subsequent quantization operations, most of high frequencies coefficients have a zero

or negligible value and can be cut. Another advantage of the DCT is the possibility of

computing the transform with a reduced complexity. Although the direct application

of these formulas would requires O(N2) operations, it is possible to compute the same
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thing with only O(NlogN) complexity by factorizing the computation similarly to the

fast Fourier transform (FFT) [6].

The DCT represents a finite set of points in a sum of cosine functions,oscillating at

different frequencies.

The one dimension DCT formula is:

n

∑
0

xncos[
π

N
(n+

1
2
)k] k = 0, ...,N−1 (4.1)

For image processing, which obviously deal with two dimensions arrays, it is suf-

ficient to apply such transformation two times.

Consider a signal X of size M by N. Then the 2D DCT of X is given by Y which is

also a M by N signal, where Y is given by:
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The purpose of the transformation is to prepare the data set for the compression.

The output of the DCT algorithm contains the same information of the original image,

it is a lossless step. Usually this transformation is followed by two others elaborations:

quantization and entropy encoding. These will be examined in details in the next para-

graphs.

4.2 Wavelets

The Fourier transform is only able to retrieve the global frequency content of the

signal, while the time information is lost. This is overcome by Short Time Fourier

Transform (STFT) which, applying a constant temporal window in the calculation of
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the Fourier transform, can retrieve also temporal information. Notice that, due to the

fixed window length, they are extracted constant-time and constant-frequency reso-

lution samples. This works well for low frequencies where often a good frequency

resolution is required over a good time resolution while, for high frequencies, time

resolution is more important than frequency resolution.

The wavelet transform allows a multi-resolution analysis. It is calculated similarly to

the Fourier transform but trigonometric analysis functions are replaced by a wavelet

function. A wavelet is a short oscillating function that contains both the analysis func-

tion and the window. Time information is obtained by shifting the wavelet over the

signal while the frequencies are changed by contraction and dilatation of the wavelet

function.

The discrete wavelet transform (DWT) is gaining increasing importance in digital im-

age processing. It uses filter banks to perform the wavelet analysis. The DWT trans-

form decomposes the signal into wavelet coefficients from which the original signal

can be reconstructed again. The wavelet coefficients represent the signal in various

frequency bands. The coefficients can be processed in several ways, giving the DWT

attractive properties over linear filtering.

The DWT is defined as:

C( j,k) = ∑
n∈Z

f (n)ψ jk(n) (4.3)

where ψ jk(n) = 2−
j
2 ψ(2− jn− k)

Images are analyzed and synthesized by bi-dimensional filter banks. The low frequen-

cies, extracted by high scale wavelet functions, represent flat background, the high

frequencies represent regions with textures. The compression is performed with a

multi level filter bank that divides the signal in subbands. Lower bands, that give an

approximation of the original image and are supposed to last for the entire duration of

the signal, must be codified with less bits whereas higher frequencies, that represent

image details and are assumed to appear from time to time, should have fewer bits.
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After the DWT analysis, bit allocation and quantization is performed on the coeffi-

cients. The coefficient are grouped scanning and coded for compression. The process

of entropy coding can be split in a modeling part where probabilities are assigned to

the coefficients and a coding part where each coefficient is coded. An image could be

compressed also ignoring coefficient under a threshold to obtain lossy compression.

This technique finds application also in video compression.

4.3 Image Compression Algorithms

There is a considerable number of compression techniques in literature. As for

transforms algorithms each one has peculiar advantages and disadvantages. It is not in

the purposes of this work to discuss all the existent methods, therefore only some of

them will be taken in account in order to give an idea of the diverse approaches that

can be used in image processing.

4.3.1 Lossless compression

Lossless compression algorithms allow the reconstruction of the exact original data

set starting from compressed data. This kind of compression is used in many appli-

cations such as ZIP or GZIP file formats. It is mainly adopted for text or source code

compression or in specific image format such as PNG or GIF. All the lossless com-

pression techniques rely on Shannon’s noiseless coding theorem [18] that guarantees

the correct decoding of the compressed data as long as the average number of symbols

out of the decoder exceeds the source entropy by an arbitrary small amount.

As showed in Figure 4.1, almost all lossless compression methods consist of two

stages: decorrelation and entropy coding. Decorrelation means remove the redun-

dancies present in the original data source while entropy coding consists, basically, in

assigning smallest codewords to more frequent source symbols.

A notable technique that does not follow the described schema is Bit-plane coding,
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employed especially in grayscale images coding. This method considers the binary

representation of each pixel and builds as many matrixes as the number of bits that

constitute the pixel word, filling each matrix with bits that covers the same position

in the different words (bit planes). Each bit-plane is then separately compressed using

run-length encoding.

Decorrelations(n) Entropy Coding x(n)

Figure 4.1: Lossless Compression Schema

Decorrelation

One noteworthy decorrelation technique is linear prediction. It consists basically in

a differential pulse code modulation (DPCM) without quantization. For each sample

it builds a prediction from the weighted sum of neighboring samples. Decorrelation is

accomplished subtracting predictions to the actual sample values so that the entropy of

the source results diminished.

Another decorrelation method is associated to transforms. Since to avoid losses we

can not apply quantization, the approach consist in coding the information otherwise

discarded. This is accomplished subtracting the output of the lossy coder (transforma-

tion and quantization) from the original data set and entropy coding the result. It must

be said that this coding technique does not reach a noteworthy compression ratio.

Alongside of these technologies there is a set of multi resolution techniques includ-

ing hierarchical interpolation (HINT), the Laplacian pyramid and the S-Transform.

These methods form a hierarchy of data sets representing the original data with vary-

ing resolution and supporting therefore progressive transmission which allows data to

be decoded in several stages. For example, HINT starts with a subsample version of

the original data set that has been coded with any lossless technique. Linear prediction
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is then applied to subsampled data to estimate intermediate samples. Subsequently the

difference between estimated intermediate sample and actual intermediate samples is

entropy coded. The process is repeated until all the intermediate samples have been

estimated.

Entropy Encoding

The probability mass function (PMF), in probability theory, is a function that gives

the probability that a discrete random variable assume a certain value. Unless the PMF

of the decorrelated data is uniform, entropy coding can be applied to further compress

the data. The majority of compression schemes employ Huffman coding or arithmetic

coding.

Huffman coders generate, given a source alphabet and the corresponding PMF, the

optimal set of variable length binary codewords of minimum average length. The

Huffman codes length is always within one bit of the entropy bound. Most practical

Huffman encoders are adaptive and estimate the source symbols probabilities from the

data. A Huffman code is built in such a way that a word can not be a prefix of another

word and that words with highest number of occurrences are coded with shorter code-

words.

Arithmetic coding is a generalization of Huffman coding. The principle is the same

as Huffman coding: it is a variable length encoding scheme where frequently used

characters will be stored with fewer bits. Rather than separate the input into compo-

nent symbols replacing each with a codeword, the arithmetic encoding codes all the

message in a single number, a fraction n where 0.0 < n < 1.0. The decoding process

start dividing the real interval [0.0,1[ in subintervals corresponding to the PMF of the

symbols. In this way exists a direct relation between an interval and a source alphabet

symbol. The first decoded word is found looking up in which interval the received

number falls. Then the individuated interval is subdivided in the same manner as be-

fore and the procedure is recursively repeated until all the message has been decoded.
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The Lempel-Ziv-Welch (LZW) coder was developed for text compression but was also

applied in signal compression with limited success. It is a dictionary based technique:

when a sequence of symbols matches a word stored in the dictionary, its index is sent,

otherwise the sequence is forwarded without coding and is subsequently added to the

dictionary. This algorithm does not need to be preceded by decorrelation procedures

because exploits source correlation. The main issue of this method is that the dictio-

nary size increases rapidly with increasing sample resolution, making it unsuitable for

high performance applications.

Another frequently used technique is the run-length coding, particularly useful for

compression of binary source data where long sequences of the same symbol have

high probability. The idea at the ground of this method is to transmit the length of the

runs of repeated symbols instead of transmitting each symbol.

4.3.2 Lossy compression

Lossy compression is a data encoding method in which some information is de-

liberately discarded to achieve a better compression ratio. This methods are mainly

applied in the discretization of continuous sources in a finite set of discrete values

but find also employment in the transformation of a discrete source in another with a

smaller alphabet. Obviously the applying of this techniques introduce a distortion in

the resulting output signal. This degradation is usually quantified through dedicated

metrics that, with the reached compression ratio (the ratio between compressed size

and original size), is used to estimate the fairness of the algorithm.

Quantization

Quantization is the non invertible operation used to discretize a set of continu-

ous random variables. It can be distinguished in: scalar quantization, referred to the

quantization of a single random variable, and vector quantization, referred to the quan-

tization of a block of random variables simultaneously. Moreover, it can be applied
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to already discrete sources to obtain a coarser representation of the original data set

which allows the possibility of higher compression ratios. The method is based on a

set of output values, called reproduction levels, and on a set of decision regions stated

with the constraint that each one of the source symbols belongs to one interval. The

quantization function substitutes each value of the source with the corresponding re-

production level. In this way the initial alphabet is reduced to a smaller set of symbols.

Vector quantization is the generalization of the scalar quantizer of a single variable to

the case of a block or a vector of random variables. Augmenting the samples length

increases the coding capacity because the simultaneous coding of a group of random

variables allows a more efficient representation of the source information. The func-

tioning is the same for the single variable case but here the decision regions are in Rn.

The design of an optimal generic quantizer for a source with given statistics, con-

sists in finding the codebook and the partition that minimize the distortion. There are

different optimization methods: for scalar quantizer it is often used the Lloyd-Max

algorithm from which it has been derived the Linde-Buzo-Gray (LBG) algorithm for

vector quantizers.

Jpeg

Jpeg is the acronym for Joint Photographic Expert Group. It has published diverse

standards for image compression: among those we mention Jpeg, lossy compression

algorithm of continuous tone still images, Jpeg-LS, lossless and near lossless com-

pression algorithm for continuous tone still images and Jpeg2000, scalable coding of

continuous tone still images, lossless and lossy.

The most famous of them, Jpeg, has been developed in different implementations. The

baseline version of the standard includes the following phases: each color component

is divided in blocks of 8x8 pixels each, then each block is processed independently

applying DCT transform, subsequently the output of the DCT step is quantized cutting

off the transform coefficients with a value minor than a threshold. At last the data flow
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is run length and Huffman encoded. The quantization step could be influenced tuning

the quality factor of the Jpeg algorithm: this number is usually comprised between 0

and 100 and its value is inversely proportional to the quality of the output image. A

schema of the Jpeg compression steps is showed in Figure 4.2.

The Jpeg standard is appreciated for its low complexity, the limited memory require-

ments and the reasonable coding efficiency. On the other side it presents also many

issues such as blocking artifacts at low bit rate, does not have lossless capabilities, poor

error resilience etc.

Some of the problems have been fixed in the Jpeg2000 standard. Here we find an im-

proved coding efficiency, full quality scalability from lossless to lossy at different bit

rates, division of the image in subimages (tiling), improved error resilience and region

of interests, part of the image that can require a better quality compression. Another

interesting characteristic in Jpeg2000 standard is the use of wavelet transformation in

place of the discrete cosine transformation. This brings consistently advantages in

scalability management: while in Fourier transformations, to which DCT belongs, the

basis functions cover the entire signal range, varying in frequency only, wavelet basis

functions vary in frequency as well as spatial coordinate. This allow to achieve spa-

tial scalability reconstructing from only low resolution coefficients as well as quality

scalability decoding only sets of bit planes, starting from the most significant bit plane.

DCT 8x8 
Blocks

Quantization

Entropy Encoding
Coded
Stream

Run Length 
Ecoding

Figure 4.2: Jpeg Compression Schema
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Embedded Zerotree Wavelet and Set Partitioning in Hierarchical Trees

An embedded coding is a process of encoding the transform coefficients that allows

for progressive transmission of the compressed image. Zerotrees are a concept that al-

lows for a concise encoding of the positions of significant values that result during the

embedded coding process. The embedding process used in EZW is called bit-plane

encoding. The EZW algorithm is specially designed to use with wavelet transforma-

tion.

The method is divided in multiple steps, showed in Figure 4.3. First of all it must be

chosen the threshold value, so that there exist at least one wavelet coefficient greater

than the threshold. Subsequently, the threshold value is halved and then, in the sig-

nificance pass, the algorithm builds the set of wavelet quantized coefficients assign-

ing wq = Tk and sending in output the coefficient sign whether the absolute value of

the correspondent wavelet coefficient is greater than the threshold, otherwise leav-

ing wq = 0. In the refinement pass the algorithm scans through significant values: if

w(m) ∈ [wq(m),wq(m)+Tk] it outputs the bit 0, if w(m) ∈ [wq(m)+Tk,wq(m)+ 2Tk]

it outputs the bit 1.

In few words, the bit-plane encoding of the EZW algorithm consists in computing bi-

nary expansions for the transform values using the initial threshold as unit and then

recording in magnitude order only the significant bits of these expansions. During the

decoding process the signs and the bits output can be used to reconstruct an approxi-

mate wavelet transform to any desired degree of accuracy. Once obtained the desired

detail level, it is possible to decide to stop the decoding process.

Zerotrees are exploited to reduce the number of bits sent to the decoder. It must be

noticed that natural images in general have a low pass spectrum. When an image is

wavelet transformed the energy in the subbands decreases as the scale decreases (low

scale means high resolution), so the wavelet coefficients will, on average, be smaller in

the higher subbands than in the lower subbands. Moreover, large wavelet coefficients

are more important than smaller wavelet coefficient. There are coefficients in different
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Figure 4.3: EZW Encoding Schema

subbands that represent the same spatial location in the image and this spatial relation

can be depicted by a quad tree except for the root node at top left corner representing

the DC coefficient which only has three children nodes. A quad tree is defined as a tree

of locations in the wavelet transform. If the tree root is in [i,j] its children are located

at [2i,2j], [2i+1,2j], [2i, 2j+1] and [2i+1,2j+1]. A quad tree can have multiple levels

when a child is the root of another tree.

A zerotree is defined as a quad tree which, for a given threshold T, has insignificant

wavelet transform values at each of its locations.

Once wavelet coefficient have been encoded, with respect to the current threshold, in

ones (higher than T) and zeros (lower than T), the EZW exploits the zerotrees based on

the observation that wavelet coefficients decrease with scale. It assumes that there will

be a very high probability that all the coefficients in a quad tree will be smaller than a

certain threshold if the root is smaller than this threshold. In this case the whole tree

can be encoded with the zerotree symbol. Fortunately, with wavelet transform of natu-

ral scenes, the multi resolution structure of the wavelets does produce many zerotrees

allowing to reduce notably the compressed data size. After identified the zerotrees, the

data are encoded using an arithmetic encoding algorithm.

The set partitioning in hierarchical trees (SPIHT) algorithm is a highly refined

34



version of the EZW. It offers highest PSNR (Pixel Signal Noise Ratio) for given com-

pression ratios, consequently it is probably the most widely used wavelet algorithm

for image compression. Set partitioning refers to the way these quadtrees divide up,

partition, the wavelet transform values at a given threshold. The analysis of this parti-

tioning of transform values has been exploited to improve EZW algorithm.

SPIHT makes use of three lists: the List of Significant Pixels (LSP), List of Insignif-

icant Pixels (LIP) and List of Insignificant Sets (LIS). These are coefficient location

lists that contain their coordinates. After the initialization, the algorithm takes two

stages for each level of threshold: the sorting pass (in which lists are organized) and

the refinement pass (which does the actual progressive coding transmission). The re-

sult is in the form of a bitstream.

SPHIT uses a state transition model to encode zerotree information. Every index in

the baseline scan order is assigned to a state depending on its value with respect the

current threshold and the output of a significant function. From one threshold to the

next the locations of transform values undergo state transitions. State transitions are

coded with a smaller amount o¡f bits with respect the whole states: the states are four

and only from one state all the others can be reached; the second and the third state can

reach only two states while the last state is final. Encoding only the state transitions

allows SPHIT to reduce the number of bits needed.

This algorithm performs better than other more sophisticated algorithms. For example

it outperforms Jpeg both in perceptual quality and in terms of PSNR. Moreover it is

less exposed to artifacts. It also is more efficient and more effective than EZW [17].

4.4 Video Compression Algorithms

Today’s digital video coding paradigm represented by the ITU-T and MPEG stan-

dards mainly relies on a hybrid of block based transform and interframe predictive

coding approaches. In this coding framework, the encoder architecture has the task

to exploit both the temporal and spatial redundancies present in the video sequence,
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which is a rather complex exercise. As a consequence, all standard video encoders have

a much higher computational complexity than the decoder (typically five to ten times

more complex), mainly due to the temporal correlation exploitation tools, notably the

motion estimation process. This type of architecture is well-suited for applications

where the video is encoded once and decoded many times, i.e., one-to-many topolo-

gies, such as broadcasting or video-on-demand, where the cost of the decoder is more

critical than the cost of the encoder. On a sensor network the encoders have limited

processing capacities while the decoders usually are run on machines out of the sensor

network that can face major computational complexities.

Distributed Video Coding

The emerging technology for video streaming processing on wireless sensor net-

works is the Distributed Video Coding (DVC). The signals are captured independently

by different sources and subsequently merged by a central base station that has the

capability to jointly decode them.

The theoretical foundation of this technology can be found in the Slepian-Wolf coding

theorem. It establishes that, if two sources are coded separately, provided that they

are decoded jointly and that their correlation is known to both the encoder and the

decoder, the lossless compression rate bound represented by the joint entropy H(X,Y)

can be approached with a vanishing error probability[20]. Another contribution was

given by Winer-Ziv studies. They showed that for correlated Gaussian source and a

mean square error distortion measure, there is no rate loss in the independent coding

of the sources with respect to the joint coding and decoding of the two sources [22].

One of the first applications in DVC is PRISM, by the Berkeley’s group [14]. The

algorithm divides the stream in group of pictures on which a complete cycle of coding

decoding process is applied. The first frame of this group of pictures is encoded in a

traditional way, for example with AVC/H.264 Intra [5]. This first frame is then used
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to encode the remaining frames of the group with an hybrid technique, showed in Fig-

ure 4.4 which combines distributed and traditional coding. Each frame is split in 8x8

blocks and then transformed. Each block is considered as a separate unite and encoded

independently from its spatially neighboring blocks. Then, the encoder estimates the

current block’s correlation level with the previous frame by using a zero-motion block

matching. Further the blocks are classified into different encoding classes depending

on the level of estimated correlation. The blocks with a lower level of correlation

are encoded using conventional coding methods while high correlated blocks are not

coded. The medium correlation blocks are encoded with a distributed approach where

the number of bits used depends on the correlation level. The encoder computes syn-

drome bits used, at decoder side, to correct different predictors.

Another implementation is called Stanford codec. Video sequence is again split in

groups of pictures: the first picture of the group is called key frame and is coded with

traditional methods. The remaining frames are completely encoded in a distributed

fashion passing through a quantization phase and then Turbo encoded. At decoder

side intermediate frames are decoded by interpolation between the key frames. The

decoder corrects its prediction using parity bits received from the encoder.

Interframe Video Compression

Interframe compression includes those techniques applied to a sequence of video

frames and not only within an image. Interframe compression exploits the similarities

between successive frames, known as temporal redundancy, to reduce the volume of

data required to describe the sequence.

The most established and implemented strategy is the block based motion compensa-

tion technique, employed in MPEG or ITU-T video compression standards. This tech-

nique is based on motion vector estimation: the image is divided into disjoint blocks

of pixels and each block is compared to areas of similar size of the previous frames to

find an area that is similar. A block from the current frame for which a similar area is
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Figure 4.4: PRISM Encoding Schema

sought is known as a target block. The location of the similar or matching block in the

past frame might be different from the location of the target block in the current frame.

The relative difference in locations is known as the motion vector. If the target block

and matching block are found at the same location in their respective frames then the

motion vector that describes their difference is known as a zero vector. In the coding

phase, instead coding blocks that simply moved through the image, the encoder codes

the motion vectors describing such a movement. During decompression the decoder

uses the motion vectors to find the matching blocks in the past frame and copies those

blocks in the right position.

The effectiveness of compression techniques that use block based motion compensa-

tion depends on some assumptions: objects move on a plane that is parallel to the

camera plane, illumination is spatially and temporal uniform and occlusion of one ob-

ject by another does not happen.

Another interesting technique often adopted for its simplicity is Differential Pulse

Code Modulation(DPCM). This coding system merges predictive coding and scalar
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quantization. The technique exploits the correlation between two subsequent frames

coding the prediction residual. This residual, due to inter-symbol correlations assumes

small values with high probability, thus having a smaller variance than the source. With

continuous signals this small variance allow to reduce the quantization error variance,

that is proportional to the variance of the quantizer input. Moreover it is possible to

design adaptive quantizers that compensate slowly varying input signal power by dy-

namically scaling the quantizer output.

DPCM is also suitable for discrete signals as video sequences. The basic idea ex-

ploits again the correlation between closest frames but this time predicted residuals

have not to be quantized. The residual coefficients are zeros or near zeros values

and constitute the ideal input for the subsequent compression phases as, for instance,

transforms and run length coding. Due to the proximity and the smallness of those

values the mentioned techniques can achieve better compression results exploiting the

reduced amount of information carried by the data set. A schema of the DPCM en-

coder/decoder is showed in Figure 4.5.
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Figure 4.5: DPCM Transmitter and Receiver Schema
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Chapter 5

Hardware and Software

IN this Chapter the hardware and software components used to implement the

video streaming on the sensor network will be presented in details.

An accurate analysis of the hardware features of the adopted sensors was neces-

sary for the developing of the entire system. Quality parameters and performances of

the components had to be considered to avoid bottlenecks and to tune properly all the

variables involved.

5.1 Crossbow Intel Mote 2

The Intel Mote 2, Figure 5.1, is an advanced sensor network node platform de-

signed for demanding wireless sensor network applications requiring high CPU/DSP

and wireless link performance and reliability.

The platform is built around a low power XScale processor, PXA271. It integrates an

802.15.4 radio (ChipCon 2420) and a built in 2.4 GHz antenna. It exposes a “basic

sensor board” interface, consisting of two connectors on one side of the board, and

an “advanced sensor board” interface, consisting of two high density connectors on

the other side of the board. The Intel Mote 2 is a modular stackable platform and can

be stacked with sensor boards to customize the system to a specific application, along
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with a “power board” to supply power to the system.

Figure 5.1: Intel Mote 2

Processor

The Intel Mote 2 contains the PXA271 processor. This processor can operate in a

low voltage (0.85V) and a low frequency (13 MHz) mode, hence enabling low power

operation. The frequency can be scaled to 104 MHz at the lowest voltage level, and

can be increased up to 416MHz with Dynamic Voltage Scaling (DVS). Currently DVS

is not supported by TinyOS 2.x and the voltage level can only be set to 13, 104 or

208 MHz. The processor has many low power modes, including sleep and deep sleep

modes. It also integrates 256 KB of SRAM divided into 4 equal banks of 64 KB.

The PXA271 is a multi-chip module that includes three chips in a single package, the

processor, 32 MB SDRAM and 32 MB of flash. The processor integrates many I/O op-

tions making it extremely flexible in supporting different sensors, A/Ds, radio options,

etc. These I/O options include I2C, 3 Synchronous Serial Ports one of which dedicated

to the radio, 3 high speed UARTs, GPIOs, SDIO, USB client and host, AC97 and I2S

audio codec interfaces, fast infrared port, PWM, Camera Interface and a high speed

bus (Mobile Scaleable Link). The processor also adds many timers and a real time

clock. The PXA271 also includes a wireless MMX coprocessor to accelerate multi-
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media operations. It adds 30 new media processor instructions, support for alignment

and video operations and compatibility with Intel MMX and SSE integer instructions.

Radio

The Intel Mote 2 integrates an 802.15.4 radio transceiver from ChipCon (CC2420).

802.15.4 is an IEEE standard describing the physical and MAC layers of a low power

low range radio, aimed at control and monitoring applications. The CC2420 supports

a 250 kb/s data rate with 16 channels in the 2.4 GHz band. The Intel Mote 2 platform

integrates a 2.4 GHz surface mount antenna which provides a nominal range of about

30 meters. If a longer range is desired, an SMA connector can be soldered directly

to the board to connect to an external antenna. Other external radio modules such as

802.11 and Bluetooth can be enabled through the supported interfaces (SDIO, UART,

SPI, etc). The power levels available with this radio chip are described below together

with the current consumptions.

Power Level Output Power Current
[dBm] [mA]

31 0 17.4
27 -1 16.5
23 -3 15.2
19 -5 13.9
15 -7 12.5
11 -10 11.2
7 -15 9.9
3 -25 8.9

Table 5.1: CC2420 Power Levels

Power Supply

To supply the processor with all the required voltage domains, the Intel Mote 2

includes a Power Management Integrated Circuit(IC). This PMIC supplies 9 voltage
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domains to the processor in addition to the Dynamic Voltage Scaling capability. It also

includes a battery charging option and battery voltage monitoring. Two of the PMIC

voltage regulators (1.8 V and 3.0 V) are used to supply the sensor boards with the

desired regulated supplies at a maximum current of 200 mA. The processor communi-

cates with the PMIC over a dedicated I2C bus (PWRI2C). The Intel Mote 2 platform

was designed to support primary and rechargeable battery options, in addition to being

powered via USB.

5.2 Crossbow IMB400

The IMB400, Figure 5.2, adds multimedia capabilities to the Imote2 platform. It

allows for capturing images, video and audio as well as for audio playback. All data is

digitally captured for storage, transmission or further processing on the Imote2 main-

board. In addition, the IMB400 features a PIR sensor for platform wake-up from sleep

if movement is detected.

The IMB400 attaches to the advanced connector set of the Imote2 main-board.

Figure 5.2: IMB400 Module
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Specifications

The camera sensor supports different resolutions. It can acquire VGA, QVGA, CIF

and QCIF images with RGB, YCbCr or YUV formats. Moreover it supports hardware

image scaling and filtering and drivers allow to tune some of the camera acquirement

parameters such as automatic exposure, gain, white balance and black level. Image

controls include also saturation, hue, gamma and sharpness.

The IMB400 camera chip is the OV7670 VGA from Omnivision. The OV7670 can

operate at 30 frame per seconds (fps) in VGA with full user control over image quality,

formatting and output data transfer.

The audio codec supports sampling rates up to 48 kHz in mono mode. Signal to noise

ratio is major than 94 dB while the total harmonic distortion (THD) is less than -80

dB. It allow also to set programmable filters for noise suppression.

It also includes a microphone and a line input, an on board miniature speaker and a

line output.

The passive infrared sensor (PIR) supports a maximum range of almost 5 meters and

detection angles of 80-100°.

5.3 TinyOS

TinyOS [3] is an open source operative system developed by the University of Cal-

ifornia at Berkeley to develop WSN software. The main difference with the common

operative systems is that TinyOS is not based on a kernel that interface all the com-

ponents. Instead it offers a direct access to the hardware. Furthermore it has been

developed thinking to the low power and low resources WSN environment.

In order to cope with the severe hardware constraints of sensor nodes, TinyOS only al-

lows for static memory allocation. This makes it very space and time efficient because

there is no need for maintaining an additional data structure managing the dynamic

heap. The only necessary data structure is the call stack keeping track of local vari-
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ables and a few pointers. The first version of the operative system was released in the

October of 2002 and was followed by many updates until version 1.15, released in the

June of 2005. This first version presented some limitations due to the not very intuitive

structure and the high dependency of many components that obstructed the reuse of the

code.

The need of a more modular system brought to the 2.x version of TinyOS. The soft-

ware was completely redesigned to create a new system, adaptable to different hard-

ware platforms, more simple and modifiable.

In this thesis work it has been developed the video streaming system on the 2.1.1

source code.

TinyOS is implemented with the NesC programming language. It has been created

for the developing of embedded systems applications. Because an embedded system

has functionalities already known at design time, it could be built keeping in account

hardware as well as software needs, allowing to develop a more efficient product.

5.4 NesC

NesC is a dialect of the C programming language. It offers a system to create

and assembly modular components to obtain robust and easily modifiable embedded

systems.

The main features of this language are:

• Construction and composition separation: the development of a NesC applica-

tion is based on the assembling of a series of components that can be pre existent

or ad-hoc created. Every component is assembled through configuration files

and must define and implement its specifications.

• Component specifications through interfaces: a component must declare exter-

nal interfaces used and those provided by itself. Because every interface is de-

fined as a set of function prototypes it result easier to reuse the code for new
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applications.

• Bidirectional interfaces: other than the functions provided by the component,

the latter must specify a series of events to be managed by the user of that mod-

ule.

• Static structure: the graph interconnecting the components is static and can not

be modified run-time.

• Concurrency: the NesC model is compatible with the TinyOS concurrency model

and consists in processes that execute their activities on shared data in the same

time.

In NesC language they are defined three types of functions: commands, events,

tasks.

Commands and Events

A component can require services offered by another component through com-

mands. Commands are functions declared in the interface definition which accept

input parameters and output a return value.

Events, instead, are generated by a module and must be managed by the application

that uses the module. They represent hardware interrupts managers. The interrupts

can take place due to external factors such as the reception of a message or for internal

reasons like, for instance, a timer expiration or the dispatch of a packet. The concur-

rency behavior of both commands and events can be synchronous or asynchronous.

Asynchronous commands or events can be generated by hardware interrupts and their

execution starts once the interrupt has been triggered, stopping all the other operations.

The execution will be restarted from the point where it was interrupted once the inter-

rupt manager finished its work. On the other side, commands or events declared as

synchronous (default behavior) can not manage hardware interrupts and can be called

only by tasks.
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Tasks

Task are pieces of code that can be executed without being blocked by other syn-

chronous commands. A scheduled task is put in the tasks queue. Here the elements of

the queue are executed with a First In First Out (FIFO) policy. This kind of function

can execute other tasks, activate commands or generate events. Moreover the non-

preemptive nature of this function allow to avoid race conditions on shared variables.

The only functions that can preempt a task are those explicitly defined as asynchronous

with the async keyword.

Interfaces and Components

Interfaces are files describing functions and events the module associated with the

interface respectively provides and triggers. This paradigm allow to easily write mod-

ular code, modifiable and reusable.

In NesC language a component can be a module or a configuration. Modules im-

plement the functions and events described in the interface. In the configurations it

is declared how the components are connected with each other and can also provide

interfaces.

5.5 Hardware Abstraction Architecture

Hardware Abstraction Architecture (HAA) for TinyOS 2.0 is an hardware abstrac-

tion model that balances the conflicting requirements of code reusability and portabil-

ity on the one hand and efficiency and performance optimization on the other. It is

composed by three main parts:

• Hardware Presentation Layer (HPL) This layer is positioned directly over the

HW/SW interface. It includes modules that manage interrupts directly and mod-

ify register values. The HPL components sh expose an interface that is fully

determined by the capabilities of the hardware module that is abstracted. The
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interrupt service routines in the HPL components perform only the most time

critical operations (like copying a single value, clearing some flags, etc.), and

delegate the rest of the processing to the higher level components that possess

extended knowledge about the state of the system.

This HPL does not provide any substantial abstraction over the hardware be-

yond automating frequently used command sequences. Nonetheless, it hides the

most hardware-dependent code and opens the way for developing higher-level

abstraction components. These higher abstractions can be used with different

HPL hardware-modules of the same class.

• Hardware Abstraction Layer (HAL) This layer is still dependent on the hard-

ware layer and masks to the upper layers the hardware complexities. In contrast

to the HPL components, they are allowed to maintain state that can be used for

performing arbitration and resource control. Instead of hiding the individual

features of the hardware class behind generic models, HAL interfaces expose

specific features and provide the ”best” possible abstraction that streamlines ap-

plication development while maintaining effective use of resources.

• Hardware Interface Layer (HIL) The final tier in the architecture is formed by

the HIL components that take the platform-specific abstractions provided by

the HAL and convert them to hardware-independent interfaces used by cross-

platform applications. These interfaces provide a platform independent abstrac-

tion over the hardware that simplifies the development of the application soft-

ware by hiding the hardware differences.

5.6 Tossim

In the distribution of TinyOS considered in this thesis, a simulator of a sensor net-

work is implemented. This simulator, called Tossim, becomes useful in diverse aspects

of the software development phases: first of all it comes in help as a support in the de-
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bugging phase. Because of the embedded nature of the sensors, it is often hard to

clearly understand what is going on at run time, therefore simulating the buggy code

can save much time. On the other hand, before implementing the code on the sensors it

could be useful to simulate the behavior of the system to decide, for instance, in which

way it must be developed.

Tossim simulates entire TinyOS applications, it works by replacing components with

simulation implementation. The level at which a component is replaced is very flexi-

ble, it can simulate a packet level component as well as a low level radio chip.

Figure 5.3: TinyViz Screenshot

Tossim is a discrete time simulator, it pulls event on an events queue and executes

them. Simulation events can represent hardware interrupts as well as high level system

events. Also tasks are simulation events.

Indeed Tossim is a library, it is necessary to run a program that configure a simulation

and runs it. Supported languages are Python and C++.[2]

By default Tossim captures TinyOS behavior at a very low level, for instance it sim-

ulates the network at a bit level and replicates each individual ADC capture and each

interrupt of the real system but it does not model the real word. Instead it implements
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abstractions of real world phenomena. For example, instead modeling radio propaga-

tion, it provides abstraction of direct independent bit errors between two nodes; it also

does not model draw or energy consumption, however it is simple to add annotations

to components that consume power to provide information on when their power state

changes. After the simulation is run a user can apply a model to these transitions.

There exists a Java visualization and actuation environment for Tossim called TinyViz.

It is not only a visualizer but also a framework where plugins can provide desired

functionalities. Plugins can be dynamically registered and deregistered. For example,

when in Tossim a node sends a packet, a networking plugin can listen for packet send

events and update TinyViz node state and draw an animation of the communication.

51



52



Chapter 6

Video Streaming System

Implementation

IN this Chapter they will be described the diverse phases that led to the develop-

ment of a video streaming system on a wireless sensor network.

Initially it was necessary an accurate analysis of the already available software

for compression and transmission of the data. Moreover it was examined the state of

the art reached in developing low power and low complexity compression algorithms

to establish whether other methods could fit better the requirements.

Most of the time spent in this work was taken by the code implementation of the

system, also because debugging operations of embedded systems presents a lot of dif-

ficulties. Furthermore TinyOS and the used hardware had some unexpected behaviors

in particular situations. This abnormalities required adjunctive efforts to be understood

and fixed.
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6.1 Architecture Of The Existent System

The initial system architecture is constituted by one multimedia node directly con-

nected to the gateway through a serial cable. The components constituting the mote

are the Intel mote 2 node an IMB400 multimedia board and the programming board

used for serial communication.

The software already available from previous works is made of three major parts: the

image acquisition and compression module, a serial transmission module and the Java

application used to interact with the user. The first two modules implement sensor side

operations while the third handle the data on the gateway.

On the sensor side it is possible to conceptually divide the code in data processing code

and transmission code. The former manages the multimedia section of the sensor set-

ting camera parameters, acquiring the raw array of pixels and eventually compressing

the image for the delivering. The transmission code divides the image array in bursts

and sends them on the serial cable to the gateway.

The gateway is any multi purpose machine supporting the Java environment and run-

ning applications devoted to data collection and display.

Implementation

The original implementation belonged to the TinyOS code contributions[1] lightly

reworked to add the possibility of decompress and save received Jpeg images.

The cameraJpegTestSerial application, as the original implementation is called, is

composed by two modules devoted to image processing: cameraJpegTestM.nc and

JpegM.nc. In the camera module there are primitives to receive commands from se-

rial channel and to acquire pictures in the format specified by those commands. The

available commands allow to choose between color and grayscale images and between

QVGA and VGA formats.

The JpegM.nc module implements the code for Jpeg compression of the original im-

age through discrete cosine transform, quantization, run length encoding of the zeros
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and Huffman encoding.

Transmission operations are implemented in the SendBigMsgM.nc module where the

image array received from cameraJpegTestM is divided in 64 bytes bursts and each

packet is sent on the serial channel to the Java application running on the gateway.

There were two Java applications the computer that had to elaborate data needs to run.

One is the Serial Forwarder program that is used to directly read packets incoming

on the serial port to subsequently handle or simply observing them. The other appli-

cation, called CameraGUI, provides a graphical environment to easily interact with

the camera mote. This program allows to select picture resolutions and formats and

to send an acquire command to the mote. In Figure 6.1 is described the cameraGUI

behavior on the reception of data packets. Once the image has been sent, the program

receives the packets forwarded by the Serial Forwarder, reconstructs the initial image

array and saves it on disk adding the png or ppm header. If the image received is com-

pressed the CameraGUI application exploits the C decoder coupled with the JpegM.nc

compression module to reconstruct the image in a human readable format.

6.2 Development Of The Video Streaming System

The development phase of the system presented in this work can be divided in three

steps. The first part focuses on the compression algorithm and its behavior. Then it is

implemented a first version of the video streaming on the mote allowing only the serial

and direct communication with the gateway. In the last phase, it is implemented the

radio communication: initially the mote can send data only with a direct radio connec-

tion to the central computer, then it is added the multihop support with a static routing.

The entire work required an evaluation on the techniques to adopt in the design of

the system. This included mainly the compression technique used to reduce the data

sent on the network. Due to the fact that an optimized version of the Jpeg compres-

sion algorithm was already implemented and that no method were found during the

mentioned research that overcome entirely such Jpeg implementation, it is decided to
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Figure 6.1: Camera GUI On Receipt Operations

use the existent compression system as the basis on which build the video streaming

application.

6.2.1 Analysis Of The Existent System

The core of the starting system is the compression algorithm. It is based on the

Jpeg standard and foresee the following steps. Initially it receives in input an array

containing the image matrix read with a per row order. After some initialization opera-

tions, from the input data are generated discrete cosine transform coefficients applying

a fast version of the DCT algorithm and quantizing the coefficients through a quanti-

zation table. These operations outputs a new array of coefficients with values cut to fill

a one byte signed integer variable except for the DC coefficient that can assume values

between 0 and 255.

The set of data elaborated by the fast DCT algorithm goes then in input to the run
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length encoder. The original implementation of the zeros encoder parsed the array

counting how many zeros each sequence of consecutive zeros have and saving that

value in a counter. The maximum counter value is limited to 128 while all the other

coefficients, not involved in the coding, are cut to a seven bit signed value (-64, +63).

This happens because the implementation of the algorithm foresee to mark with the

most significant bit set to one the coefficients not coded while the counters exposed

zero as first bit.

This coding procedure, even if very efficient in the way it distinguishes coefficients

and counters, cuts coefficients major than 63 and minor than -64. The output of the

DCT, already cut to 8 bit signed values, is constituted by few high magnitude values

representing the low frequencies and many zero or low value coefficients representing

details of the images. Using the described run length encoding technique many of the

most important low frequencies values would be cut so that the image loses quality.

For this matter the coding algorithm, showed in Figure 6.2, has been reimplemented

in a way that avoid coefficients cuts. Now, counters are preceded by a zero while un-

touched values can be coded with a number between -128 and 127. The byte used for

signalling a counter is partially retrieved by the extension of the counter range from

128 to 255.

DCT 
Output

if Coeff == 0
Then

Else Count Number
of Zeros

Output Zero 
followed by the 
Counter Value 

Output Coeff Value

Figure 6.2: Run Length Encoding

The tests done with the new implementation showed a behavior varying from image to

image. Substantially the compression rate is maintained with a difference between the
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two methods in order of the hundreds of bytes in the compressed data size. The num-

ber of values that would be cut by the old algorithm is not very high, the percentage

is around the 1% of the all coefficients but those values contains the major part of the

image information.

The data exiting from the run length encoding are then Huffman encoded to further

reduce the transmitted information.

Another series of code manipulations concerned the C implementation of the decoder.

As previously said, the images coded on the sensors through the Jpeg nesC implemen-

tation are decoded gateway-side using the correspondent decoder, implemented in C

programming language. Initially this implementation supported only QVGA format

images and had a little bug in the code images decoding. In this first phase of the work

it is added the support for VGA decoding extending the existent one and some bugs

has been fixed.

Subsequently it has been necessary to tune the camera parameters to obtain the best

quality from the device. This step required a large set of experiments to test many

of the different configurations allowed for the camera chip. The main parameters set

include gamma curves values, dimensions of the acquire window, scaling parameters,

etc. Moreover it has been implemented the support for another image format: QCIF,

useful to reduce the data flow of the video stream in the initial stages of the develop-

ment.

Before setting these parameters the image chip output was shifted with respect the

actual image acquired and therefore some columns on the extreme right of the image

were showed on the extreme left. Also this problem has been solved by correcting

chip’s settings. An example of a shifted image is showed in Figure 6.3

The serial communication part is substantially left unchanged. The image array is

divided in data segments of 64 bytes. Every packet contains a 16 bit ID to allow or-

der reception checking duplicate or lost packets. At this time the system is capable to

communicate on the serial channel to the gateway supporting QVGA, VGA and QCIF

formats and the Jpeg compression of the images.
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Figure 6.3: Example of a Shifted Picture

The general behavior of the existent system is the following. An image acquisition

starts with the correspondent command message sent by the CameraGUI application.

Once received by the camera mote they are set the parameters and the variables neces-

sary for image acquisition and processing as, for instance, image resolution and format

and it is called the acquire task that has in charge to fill a buffer, located in the sdram

memory, with the matrix of the acquired picture read row per row. The resulting ar-

ray is then processed by the image processing task to reduce the number of bytes per

pixel, if the raw image is sent, or to compress the data. Subsequently it is passed to the

transmission module where the data array is fragmented and sent in multiple packets.

The steps of the picture acquire operation are showed in Figure 6.4

It must be said that the color images acquisition is not optimal yet. The read of the

different colors is not well implemented and the resulting images show chromatic in-

consistencies. For this matter and with the aim of limit at most the transmitted data

size, the video streaming system is based only on grayscale images.
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6.2.2 Video System Implementation

Once obtained a working environment for pictures acquisition, it starts the design

of the algorithm implementing the video system.

The first image format adopted is, as said, grayscale image type with a QVGA resolu-

tion corresponding to a window of 320x240 pixels. Each pixel is coded with only one

byte.

Working with limited band capacities, it was necessary to employ some kind of reduc-

tion of the amount of data transmitted. After a research on the state of the art of video

coding techniques, due to the fact that the intraframe coding technique (Jpeg) is already

implemented and that a light and efficient interframe coding method is needed, it has

been decided to develop a DPCM algorithm with the residual given by the difference

between previous and current frame.

DPCM

The developing of this system passed through three different implementation steps:

initially a Matlab version of the encoder and the decoder functions was produced, ex-

ploiting the Matlab framework to obtain in a short time a functioning model of the

system. Subsequently the code has been translated to C implementing all the functions

in a language very close to the final one. The last step consisted in bringing the C code

on the sensor adapting it to the nesC dialect. The encoder was thus implemented on
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the sensor attached to the camera, in the DpcmM.nc module. With this file the con-

figuration file DpcmC.nc and the interface declaration Dpcm.nc were also associated.

The DpcmM.nc file contains one main function called dpcm encode that does all the

work taking in input the addresses of the arrays containing the image to process and the

result of the elaboration, the dimensions of the image, the Jpeg quality parameter, the

number of the current frame, the maximum bandwidth value and the buffer address.

......F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F0 F1

Sequence 1
Sequence 2

Figure 6.5: Video Streaming Frames Sequences

The function behavior is different with respect to the kind of frame processed. The

frame number zero, f0 is always treated as a common Jpeg image while the other

frames fx x = 1..9 are coded using the inter frame correlation between them and the

previous one. The frame sequence is periodic with a ten frame period and is showed

in Figure 6.5. The frame number in input to the function is considered after calculat-

ing the modulo 10 operation on it. However this is a parametric value, tunable on the

necessities.

Once the f0 frame is coded, the original not coded frame is saved in a buffer for later

use. Instead encoding the second frame entirely, it is first subtracted to the content of

the buffer containing f0 and then only the residual r of this operation is compressed

with the Jpeg algorithm described above. This allow to diminish the information con-

tent of the data set so that it can be reached a better compression ratio. After the coding

of the differences between f0 and f1, those differences are summed to the content of

the buffer b to obtain the same prediction available at the decoder. Now the buffer b

contains the predicted values of the f1 frame. Such content will be subtracted to the

f2 frame to send only the differences r. The process is repeated until the f10 frame for

which the buffer content will be ignored coding such frame as a Jpeg image.
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Before coding the frame array with DCT it is performed another operation to reduce

further the data size. The image array is subsampled coding each four pixels block

with a coefficient obtained averaging the four pixels values.

On the decoder side the process is inverted. The first frame, f0 is decoded as a simple

Jpeg image and the result of the decoding process is saved in a buffer. Subsequently

the output of the inverse DCT, run length and Huffman uncompress operations for all

the fx frames of the sequence is summed to the buffer content to reconstruct the orig-

inal frame content. The first frame of the subsequent sequence, f10, is not summed to

the buffer content and is entirely stored in such buffer. Before displaying the image,

the picture resolution is increased to QVGA format reconstructing the missing pixels

by bicubic interpolation. As on the encoder side the stand alone frame recourse every

ten pictures.

The entire video coding and decoding process is showed in Figure 6.6 and 6.7.
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Figure 6.6: Video Coding Process
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Figure 6.7: Video Decoding Process

Extension Of The CameraGUI Software

The introduction of the video functionality required the implementation of the rel-

ative support in the Java environment to allow the interaction between the user and the

sensor network and to display the video stream. The original CameraGUI application

was split in a multi thread program to support the constant flow of information incom-

ing and the contemporary elaboration of such data.

Alongside the existing process they are added two threads: one called receiver thread

while the other is named display thread.

The receiver thread has in charge to receive the data packets from the Serial Forwarder

and inspect the payload content to ensure the correct packet sequence within the frame

is respected, furthermore it has to control the frame number in such a way that the

entire frames can be decoded as simple Jpeg pictures while intermediate frames are

decoded as a difference and then summed to the buffer content. The structure of a

video packet is showed in Figure 6.9. To do this the thread is synchronized with the
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Figure 6.8: Screenshot of the Gateway Side Application

camera sensor node that is sending the packets. Every correct frame received a counter

is incremented so that the DPCM decoder could know the position of the frame within

the sequence and consequently its type. A correct frame is a frame for which all the

parts in which the sender divide the coded data for the delivering are received without

errors. If a frame is not received correctly the subsequent frames must be discarded

until the synchronization is restored. The corruption of a frame is generally due to the

loss of one or more packets that compromises the correct construction of the entire

frame. All the subsequent frames depending on the discarded one become invalid be-

cause the buffer is corrupted.

The synchronization is naturally restored with the correct reception of the subsequent

frame zero that does not depend on the previous ones. This could affect the perfor-

mances of the system because some transmitted data became completely unuseful. To

reduce this time lost the algorithm uses a mechanism to anticipate the sending of the

entire frame. When the receiver thread finds that the sequence of the inner parts of a

frame or the frames flow are broken, it stops saving the incoming data and send a com-

mand message to the camera mote. On the reception of this message, the camera mote
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Figure 6.9: Video Packet Schema

forces the restart of the frames enumeration, acquiring a full Jpeg frame and marking

it with frame id zero.

All the correctly received frames are saved on disk and the path to every file is inserted

in the frameBuffer array. Every time the sequence is restarted unexpectedly the current

position of the array is set to null while the path of the first frame of the reset sequence

is saved in the next position. As illustrated in the following this mechanism allow to

easily synchronize the display thread.

The display thread reads the files from the disk, decode properly the different frames

and display those using the Java Swing libraries. The receive thread and the display

thread read and write respectively the frameBuffer with synchronized methods. Once

the display thread acquires the path to the current file to be elaborated, it passes such

path to the DPCM decoder together with the frame’s number. This number is used by

the decoding algorithm to discriminate between the whole Jpeg pictures and the coded

differences as it is done during the encoding process. Afterward, the decoded image is

acquired reading the decoder’s output and displayed through the Java Swing libraries.

As the receiver thread has to be maintained synchronized with the camera node, in the

same way the display thread must be aware of the interruption of the sequence and the

subsequent restart. This is achieved, as described before, inserting a null value in the

frameBuffer every time the frames flow brakes. In this way, reading the null value, the

display thread knows when to reset the frame counter so that the current frame can be
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decoded properly. A schema of the receiver and display thread interaction is presented

in figure 6.10

Frames Buffer
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Path F1
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NULL

Path F0
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Figure 6.10: Interaction of Receiver and Display Threads

The display thread is started only when the frameBuffer contains a predetermined num-

ber of elements. Once started it consumes the content of the buffer decoding and dis-

playing it and then the thread is send in sleep mode for 450 milliseconds. After this

sleeping time it wakes up, read the second position of the buffer and elaborates it, and

so on. This guarantees a discreetly fluent video reproduction but consumes the buffer

content too rapidly with respect to the buffer refilling speed that is always slower even

on the serial channel. Once the frameBuffer is empty the display thread stops calling

a wait() primitive on the frameBuffer object and pauses until the number of buffer el-

ements does not exceed the defined refilling threshold. When the latter is overcame

the receiver buffer calls a notify() on the same object and the display thread restarts its

task.
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Extension Of The Node Transmission Module

To support the transmission of the new data flow it has been necessary to extend

also the communication module of the camera mote. The existent module allowed only

the transmission of images through the fragmentation of the image array in multiple

packets and the sent of these packets on the serial channel. To add the possibility

of sending video frames the mote has been equipped with functions similar to those

of the image sending. The main difference is the packets size, extended from 64 to

100 bytes to reduce the number of packets transmitted on the channel and thus the

network traffic. Another modification concerned the packet format. As for the image

case, messages contain a buffer of unsigned 8 bits integers that brings the bursts of the

actual data yield by the camera. While in the photo messages the only ID required for

the packets numbering is the 16 bit part identification number within the fragmented

sequence, here it is also necessary to distinguish the different frames and guarantee the

correct order delivering. To do this it is inserted another 8 bits ID reset to zero every

250 frames.

Design Issues

The problem encountered during this developing phase are mainly two. Both con-

cern the video fluidity: the first one affects the image elaboration process while the

second concerns the transmission operations.

The video system is slightly different than the image acquisition process described be-

fore Here, in fact, it must be acquired and sent an arbitrarily long sequence of frames.

The series of images must be taken with a higher rate if compared to the single image

acquisition where the subsequent picture could be acquired only after the previous one

was completely received by the gateway. Moreover, smaller is the acquiring (and the

processing) time, earlier the system could start sending the data. These considerations

do not find confirmation in the software behavior which apparently could acquire at the

really slow rate of two frames per seconds. Inspecting the source code of the camera it
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was found a piece of code implementing a busy wait that stopped the whole acquiring

process to allow the camera chip to settle after the image acquisition. To be able to re-

move that busy wait the mote’s working frequency had to be augmented from 13 MHz

to 208 MHz. Subsequently that frequency was set to 104 MHz due to transmission

problems. This allowed to speed up the image acquisition rate to almost 5 frames per

second and had also the benefit of reducing image processing time. Obviously all of

this was achieved at the price of an increased energy consumption.

The second problem encountered in the developing of the system concerned the vol-

ume of data sent by the multimedia mote. Every frame was composed of 76800 bytes

that compressed and fragmented in 100 bytes bursts have an average size of 50-60

packets for the full frames and 25-35 packets for coded differences. Moreover in case

of highly dynamic scenes the size of the intermediate frames could increase notably

and the size of the images augments proportionally to the number of details captured

by the camera.

With this characteristics the frame transmission took too much time and the frame rate

of the display thread must be set to a value major than one frame per second to be com-

parable to the arrival rate of the frames. Because a video stream with that frame rate

is totally unacceptable it raised the need of reducing transmitted data size. The first

solution adopted interested video resolution that passed from QVGA to QCIF with a

window of 176x144 pixels, each coded by one byte. In this way the transmission time

is consistently reduced and the reproduction rate can be augmented till almost three

frame per second. This time the price of the problem fixing has been a notable reduc-

tion of the displayed video’s window size.

To overcome also this limitation it was used a well known technique called subsam-

pling. The basic idea underneath this fixing is to acquire a complete QVGA image,

reduce the coding to one byte per pixel as for all the processed images and then re-

ducing further the image size dividing the matrix in groups of four pixels and sending

only the average value of these four pixels. This technique halves both the dimensions

of the original matrix containing the image. The image delivered to the gateway has
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now a 160x120 resolution. To restore the original image size it is used a method of-

fered by the Java Swing library that reconstructs a QVGA image through a bi-cubic

interpolation technique with a tolerable quality loss.

6.2.3 Radio Transmission Implementation

The second step consists in the introduction of a base station directly connected to

the gateway through a serial cable and implementing a radio communication between

the camera mote and the mentioned base station.

The transmission protocol implemented was based on the acknowledgement of each

transmitted packet. Initially it does not limit the retransmissions number in case of

lost packets or acks. Subsequently this paradigm has been conserved only for images

delivering while video frames packets can not be retransmitted more than 5 times thus

if the fifth sent fails the data burst is lost.

The communication between the control application (CameraGUI) and the camera

mote is bidirectional. The traffic going from the node to the base station and then

to the Java program is mainly composed by data packets. On the other side, from the

gateway to the motes they are sent control packets such as commands to start and stop

operations and to control the information flow. For instance, the command messages

that reset the frames count are sent directly by the Java application. Moreover there

are all the acknowledgements responses for each packet correctly transmitted between

camera mote and the base station.

The base station task consists only in forwarding packets to the gateway. Every mes-

sage received is saved in a FIFO queue. A task has in charge to consume the queue

content by sending messages on the serial channel to the Java application that will

elaborate them. Actually this queue contains for most of the time only the packet just

received. In fact, the serial communication is faster than the radio one because packets

there are no losses and the packets are not acked, thus messages are forwarded imme-

diately avoiding queue waits.
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In a second time the system was extended to support a multihop paradigm. This re-

quired the design of intermediate nodes with the simple assignment to forward every

kind of packets passing through them. From this moment the simple communication

between nodes seen till now assumes more a network connotation. It raises therefore

a question on which kind of routing paradigm is better to use. To simplify the net-

work design and to avoid augmenting the network traffic with routing messages, it was

chosen a static protocol. Every intermediate node has a source and a destination cor-

responding to the TOS NODE ID (the node identifier,unique within a network) of the

previous and the subsequent node in the path from camera node to base station node.

Obviously the camera node has only a destination address stored while the base station

has only a source address.

The checks that intermediate nodes and base station node apply on the incoming pack-

ets are the same. They control that the information flow respects the original order by

checking the identification numbers inserted within the packets payload. The behavior

is slightly different for photo and video packets. The photo packets, in fact, are acked

through all the hops they made till the base station. For these reason all the packets

must arrive in the correct order to guarantee the final picture could be reconstructed

and each node checks that the ID of the current message is the subsequent to the pre-

vious one. On the other side, video packets are subjected to a maximum number of

retransmissions attempts. Due to this fact a packet could be lost in any step of the

path and the sequence could result broken. Thus the nodes check only that the cur-

rent packet has an ID major than the last one received. This mechanism was initially

studied to avoid duplicated packets to reduce the number of forwarded packets and, in

the development phase, helped in finding packets sequence errors. In a scenario with

many intermediate nodes it could be useful exploiting these checks to anticipate the

broken sequence detection and the sending of the resynchronization command to the

camera mote in such nodes to reduce notably the unuseful traffic.

The nodes implement a queue to store data packets of both video and photo type. Oth-

ers kinds of messages, such as command or control messages, are not put in a queue on
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their arrive for two reasons: first because implementing more than one queue give rise

to inconsistencies within the queue system itself, as will be described in the following

design issue section, secondly because there are no cases in which it is necessary to

send more than one command in a short time and the loss of these messages in the

reception phase compromises the system behavior.

The main difference between the base station and the intermediate node is that in the

first case received messages are sent on the fast and reliable serial channel while in

the second case the sent is again on the radio medium that is subjected to errors and

retransmissions. Due to this fact, the queue of the data packets on the forwarder nodes

can often saturate. To avoid this scenario, in which further incoming packets would

be lost, a mechanism to regulate the incoming traffic has been introduced. There exist

two thresholds called respectively stop threshold and restart threshold that allow the

system to know if the queue is near saturation and to take the proper countermeasures.

When the incoming messages queue size is equal or major than the stop threshold, the

mote continues accepting new packets but sends a control message to its source node.

On the reception of this message the source node stops to send packets and remains

in that state until it does not receive another control message from its destination node

meaning that it can restart sending operations. The latter message is sent by the full

queue node only when its queue size decreases under the restart threshold value. Ob-

viously when a node can not send messages it easily will fill its own queue and will

ask its source node to stop sending messages. This stop condition will be propagated

until the the stop of the camera node that is the actual source of data packets.

Design Issues

The main problems in the radio communication development concerned hardware

and software limits more than real design problems. The first issue concerned the

TinyOS acknowledgements. After several tests it was found that the higher frequency

to which motes can work, 208 MHz, gives rise to problems with the delivery and the
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reception of the acknowledgements. It was necessary to slow down the working fre-

quency of each node to 104 MHz to obtain from the system the expected behavior.

The second problem encountered interests the already mentioned queues. Allocating

more than one queue to store not only the data messages but also control and test

messages, the queue system become totally unreliable. Packets correctly received and

saved in the queue showed inconsistencies and wrong values once extracted and read.

To solve this problem it was necessary to deallocate all the queues except for the data

one, the only necessary for the system.

The last difficulty found concerned the messages reception. The symptoms of the

problem rised when to the well tested system composed by a camera node, an inter-

mediate node and the base station they were added an arbitrary number of interme-

diate nodes. The system seemed to work well for the first moments, all the packets

were received correctly by the gateway application passing through all the sequence

checks of all the intermediate nodes and of the base station and through the hardware

checks like Cyclic Redundancy Check (CRC) or concerning the message type or the

header flags. But once the video frame or the entire image were displayed they present

notable degradation till being totally corrupted. After a meticulous analysis of the

entire system it was clear that the problem did not belong to the implemented soft-

ware. Moreover the 2 hops system worked well and on all the intermediate nodes the

same code was installed. Firstly we though about the increased network traffic but the

symptoms of the problem did not go in that way. Packets were not lost, they were

corrupted but at the same time they passed all the controls. The header was intact but

the payload was not. After diverse tests it was clear the problem was located between

the hardware checks and the triggering of the receive event by the TinyOS software of

the intermediate nodes. Basically each intermediate mote could not face the elabora-

tion of the packets after the rate at which the packets arrived was augmented due to

the addition of more intermediate nodes. The nodes were stressed by the increasing

number of checks required to discriminate whether accept a message or not and could

not elaborate correctly the accepted packets. To overcome this situation it was reduced
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consistently the payload size of each packet from 100 and 64 bytes, respectively for

video and photo, to 40 bytes for both the data types. In this way the number of packets

sent for the same data size augmented but each packet is much more easily handled by

the reception stack of the intermediate nodes. Furthermore, as a confirmation of the

fairness of the solution adopted, it is possible to see how the corruption of the packets

increases augmenting the payload size till a limit, around 50 bytes, when many packets

are received corrupted. Another observation that could be made is that adding more

and more intermediate nodes the problem could represent. Already with three inter-

mediate nodes sometimes it is possible to notice images degradations even if slight. In

Figure 6.8 the video streaming system functioning is showed.

6.3 Symulation Of A Different Network Protocol

The implemented communication protocol is very simple. Every packet sent, at

each step of the path between the camera node and the base station, is aknowledged

before sending the subsequent. Even with the introduction of the 5 retransmissions

limit for the video packets, this kind of paradigm generates an high packets traffic and

a notable delay between one transmission and the subsequent.

To speed up the transmission operations it has been proposed an alternative protocol,

called Selective Repeat. The basic idea of this protocol consists in sending a certain

number of packets without requiring acknowledgements in any of the path steps. Once

the base station received the last packet, or once a control timer is fired, the received

packets are checked and for those not received is sent a message to the camera node

with a retransmission request. The retransmissions follow the same paradigm: they

are sent without checking the correct reception. If even one of the retransmitted pack-

ets is lost, the base station node sends another retransmission request. Obviously this

protocol is based on the assumption that the channel has a low error rate so that the

retransmissions number is little.

The Selective Repeat version of the video system sends, without waiting for acknowl-
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edgements, a burst of 64 packets and then stops waiting for a feedback from the net-

work. All the sequence of packets sent is stored in the camera node’s memory. The

base station waits for the incoming packets. Once the last message of a sequence is

received, the base station checks how many packets of such sequence were correctly

received. If all the packets were received, the base station sends an acknowledgement

to the camera node, otherwise it sends a retransmission request indicating which pack-

ets were lost.

A specific control message is used to communicate to the camera which packets must

be retransmitted. This message contains a 64 bit integer as payload. The integer rep-

resent a bitmap, initially all the bits are zero. For every correctly received packet, the

base station sets the correspondent bit in the bitmap to one. Once the camera receives

the control message scans the bitmap and retransmits the packets corresponding to the

positions of the bits set to zero.

It must be noticed that the base station needs more information to correctly send re-

transmission requests. First of all, the base station must know that all the packets of

a sequence has been sent even if the last message is lost. Secondly, the last burst of

packets of the entire data source could be composed of less than 64 packets. The first

problem is solved setting a timer which, once fired, sends the retransmission message

containing the 64 bit mask built till that moment. The timer value must be propor-

tional to the average transmission time of a burst. To correctly set the timer value,

we collected a series of burst transmission times. The timer expiration is set to the

maximum of the collected values further augmented by the 5%of its value. To solve

the second problem it has been necessary to send the size of the source data within an

acknowledged packet.This description packet brings the information on the image size

that allow to compute the number of the last sequence and the last packet ID.

To study the behavior of this new paradigm, a simulated version for Tossim has been

implemented . To compare the behavior of the current system with the new one also

the old system has been simulated. In the next Chapter the results achieved will be

examined.
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Chapter 7

Performances Evaluation

AFTER the implementation phase, described in Chapter 6, a detailed analysis

of the system performances is now presented. The test performed focused

on observing the system functioning in both the operating modes: pictures

acquisition and video streaming.

Several parameters are taken into account to evaluate the two subsystems. These mea-

surements are taken varying environment variables such as nodes’ transmission powers

and the network population. While video quality is fixed the photo subsystem is tested

also varying the pictures format. All the photo part tests are done using compressed

pictures, distinguishing between QVGA and VGA format.

In order to measure the different parameters without conditioning the system function-

ing, data collection operations required a series of code modifications, especially in

monitoring the network traffic. In this Chapter we will describe the methods used to

collect and to elaborate data and how the system responds to the different transmission

power and topology conditions.
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7.1 Testbed

The preparation of the test environment required to insert several data collectors

all over the developed software.

The monitoring of images processing operations is split between source and desti-

nation of the data flow. Acquire time (τA) and compression time (τC) are collected

through timers inserted in the camera module, cameraJpegTestM.nc. While the for-

mer measures the temporal interval necessary to take the picture and to store it in a

buffer allocated in the SDRAM, the latter is the time taken by the the frame to pass

through all the compression steps of the Jpeg algorithm, in the photo case, or of the

Dpcm algorithm, in the video case. On the destination side, it is measured how long

the C decoder takes to decompress the received data (τD). Also here the photo and the

video cases must be distinguished. While for the first function all the received data are

Jpeg compressed pictures, only some of the video frames constitute an entire image,

the others are residuals that must be decompressed and added to the buffer content.

Therefore in decompression time of the video case are included also all these opera-

tions. Moreover, for all the frames, independently from their type (entire images or

residuals), the compressed data size is recorded .

For each frame these information are collected and sent to the gateway in a time mes-

sage packet, showed in Figure 7.1. In the video streaming monitoring, the correct

sending of these packets is not checked with acknowledgements, to reduce the influ-

ence on the network traffic to the minimum.

Another series of collectors are used to monitor the network traffic. The camera mote

and each of the intermediate nodes register the number of sent packets (Nsend) and the

number of retransmissions (Nrtx) required to correctly deliver a message.

This statistic message is sent by the camera mote once the transmission is finished:

in the pictures case, the message is sent after the last data data packet has been acked

while in video streaming mode the test packet is sent once the video transmission has

been stopped. In both cases the packet collects the values of Nsend and Nrtx located
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Header Acquire Time Compression Time Frame Size

Payload

13 Bytes 32 Bytes 32 Bytes 32 Bytes

(a) Time Test Packet

Header Camera Rx Pkts InterNode Rtx Pkts Frame Number

Payload

13 Bytes 32 Bytes 32 Bytes 32 Bytes

(b) Statistics Test Packet

Figure 7.1: Schemas of the Test Packets

at each step of its path from the camera mote to the gateway. To be sure to collect

updated data, at each step the packet is elaborated and forwarded only once the data

message queue is empty. The statistic message format is showed in figure 7.1.

All these measurements are collected, with the respective differences, for both photo

and video modes. To better understand the behavior of the video streaming, it is nec-

essary to add some other measurements. These values characterize the performances

of the DPCM algorithm over the entire video system. The time in which the buffer is

filled with new frames (τre f ill) and how long does it takes to such buffer to be empty

again (τempty). The latter timers are placed directly on gateway application.

All the test are conducted with a linear network topology where the nodes are in line

of sight with each other. Each test is executed for a number of hops that ranges from

1 to 4. Each of these is performed for three different power levels. The higher trans-

mission power adopted is of 1mW (0 dBm). The lowest is of 3µW (-25 dBm) while

the intermediate level is of 0.1mW (-10 dBm). For each of these test cases the photo
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system is operated varying the image format. On the other side, the video streaming

performance is distinguished on the basis of the movement of the subject in high and

low motion. Indeed in videos with high degree of movement the subsequent frames

show a lower correlation, increasing the size of the residual produced by the DPCM

algorithm and consequently the number of packets transmitted.

7.2 Image System Analysis

The image processing performance analysis was done considering a sample of ten

pictures for each test case. Moreover, to test the network performances, due to the fact

that the brightness of the environment and even the slighter movement of the camera

can influence the compressed data size, a single QVGA picture is considered, storing it

in memory and sending it multiple times. We chose an image rich of details to analyze

the case in which the compression algorithm is much more stressed and the resulting

compressed data size is considerable. An example of the high details image considered

during the tests is showed in Figure 7.2.

Figure 7.2: Picture Sample Used for Network Performances Monitoring
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In the table 7.1 the average τA, τC and τD values are presented considering all the test

cases, over a population of 120 samples. Time values are reported in milliseconds

while size is in bytes. Table 7.1 shows how the acquire time of the image is substan-

Acquire Compression Decompression Image
Process [ms] Process [ms] Process [ms] Size [byte]

QVGA 92.6583 470.0750 87.0750 8.6095e+03
VGA 90.3667 1.3351e+03 210.0750 2.3221e+04

Table 7.1: Pictures Processing Times

tially constant for the two formats while the data size is strongly influenced by the

picture resolution. Due to the increased size also the τC and τD on the VGA file is

more than two times those of the QVGA data. The table also justifies the adoption

of techniques, described in Paragraph 6.2, to further reduce the transmitted data in

video streaming system. Indeed every frame would require more than 500 millisec-
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Figure 7.3: Graph of the Transfer Times of a QVGA Picture
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onds only to prepare the image to send. Moreover it must be considered the sending

time to the closest node of the network that, as we will see in the following graph, is

around 700 milliseconds. This would mean that the minimum reproduction frame rate

at the gateway is less than one frame per second. Figure 7.3 shows the photo system

performance in sending a picture of a fixed size varying the number of hops and the

transmission powers. As explained before in this Chapter, the picture sent is always

the same so that the measurements are independent from data size. For each test 240

packets are sent. The timer is started when the gateway sends the Get photo command

and is stopped once all the packets have been received. From the Figure it is clear that

the network behavior remains constant for 0 dBm and -10 dBm transmission powers,

with the transfer time that slightly increases augmenting the number of hops but does

not exceeds the second.
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Figure 7.4: Graph of Packets Retransmissions of a QVGA Picture

Things get worst with the lowest power for which the transfer time is equal or compa-
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rable to the other two powers in the first part of the graph but subsequently diverges

for three and four hops, reaching values higher than 20 seconds. Another interesting

parameter to measure is the retransmissions number Nrtx. We expect that graph 7.3

and 7.4 are strongly correlated because the transfer delays depends on the number of

lost packets. Due to the fact that no losts of packets are allowed, all the messages

are retransmitted until they are correctly delivered and the time losses caused by these

transmission attempts are reflected in the delays graph. We can notice how the two be-

haviors are similar. With the two higher powers the functioning is almost the same for

all the network configurations while with the power transmission level set to -25 dBm

the retransmissions number augments considerably in the three and four hops cases.

In general, the photo system behaves very good with a number of intermediate nodes

minor than three and starts losing efficiency since the add of the third forwarder node,

provided that we are in the higher or intermediate power level. Otherwise the perfor-

mance degradation is visible since the add of the first intermediate node and shows

a notable worsening adding the second and the third. This correlation between the

number of nodes and the increase of lost packets can be explained by the mutual inter-

ference generated by the motes.

7.3 Video System Analysis

To measure the performance of the video system for all the test cases, we consid-

ered video streams of 5 minutes. For each test case two types of videos were recorded:

the first one was produced filming an almost static scene, with slow movements of the

subject and a fix background while the second type concerned high motion scenes on

a fix background.

Obviously it was not possible to reproduce the same motion quantity for all the test

cases, and it was not possible to avoid brightness difference between different tests.

Due to this fact the graphs could appear slightly less consistent with what we expect.

Another note concerns the type of parameters considered in the tests. Due to the fact
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that the first video frame is always an entire jpeg image, it was meaningless to measure

the delay from the starting of the video acquisition to the reception of the first frame,

because the times are exactly the same of the photo transfer time except for the limit on

the number of retransmissions, as explained in Paragraph 6.2.3. Moreover the received

picture is not immediately displayed but is put in a buffer. For this matter the filling

and emptying times of such buffer are considered taking into account the worst case

corresponding to the maximum filling time τmaxEmpty and the minimum emptying time

τminRe f ill .

As done for the photo system, firstly we present a table with some significant values

describing the image elaboration process. These values are τA, τC, τD and the frame

size. As expected the acquire time does not differ much either from the photo case nor

between the motion types. The differences are instead visible for the compression and

decompression values. Here it takes less time to compress and decompress a frame

because the size of the data are notably decreased with respect to the photo case. It

must be noticed that here we called frame both the entire Jpeg images and the residu-

als produced by the DPCM algorithm. The mean size of the frames is almost 8 times

Acquire Compression Decompression Frame
Process [ms] Process [ms] Process [ms] Size [Byte]

Low Motion 91.7597 268.3625 29.1431 1.1128e+03
High Motion 92.6904 269.4769 28.5767 1.1701e+03

Table 7.2: Video Processing Times

smaller than the QVGA case of the table 7.1. This is one of the major results reached

in this work. Indeed also the video format is QVGA but thanks to DPCM algorithm

and image subsampling technique, described in Paragraph 6.2.2 the mean data size

transmitted in the video mode is strongly smaller with respect to the photo system.

Another measure similar to the photo case is Nrtx, showed in Figure 7.5. In the follow-

ing we present the percentage retransmitted packets with respect to the three different

power levels and the different network configurations for both the high and the low

84



1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

80

P
ac

ke
ts

 [%
]

Hops

−25 dB
−10 dB
0 dB

(a) High Motion Retransmissions

1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

P
ac

ke
ts

 [%
]

Hops

−25 dB
−10 dB
0 dB

(b) Low Motion Retransmissions

Figure 7.5: Percentage of Retransmitted Packets in the Video Streaming System
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motion cases.

The two graphs are very similar. For all the three power levels there are no retransmis-

sions in the one hop configuration. The worst behavior is registered when the power

level is set to -25 dBm. The low motion case behaves slightly better due to the fact

that the generated traffic is less because the mean data size is smaller but the differ-

ences are not marked. The two higher power levels perform very good also in presence

of an intermediate node. The retransmissions number for high and low motion cases

with transmission power level -10 dBm settle around the 5% of the transmitted packets

while with a 0 dBm power that value decreases to the 2% for both cases. In the other

two network configurations even the intermediate power loses some efficiency with

the percentage of retransmitted packets that is more near the 30%. On the other side

the max power level case performs better in all the situations, remaining almost always

below the 20%. Only with the low motion and four hops configuration the amount of

retransmissions is over the 20%, as for the intermediate power case. Probably this bad

behavior is also influenced by the external and environmental factors such as bright-

ness changes or degradations in the radio channel quality.

As described in the Paragraph 6.2.3, it is possible, due to the video transmission pro-

tocol implementation, to lose packets. Indeed every node try to retransmit the un-

successfully delivered packet for a maximum of 5 attempts after which the packets is

considered lost. The following graphs, presented in figures 7.6(a) and 7.6(b) show the

behavior of the video system respectively in high and low motion cases, in terms of

packets losses. Notice that this measurements are strongly subjected to the channel

quality variations between two different test cases.

Both the graphs show the expected behavior with the packets lost number that increases

adding new intermediate nodes and augmenting the hops in the path. Again the worst

performance is registered by the lower power level that loses more than the 10% of

the transmitted packets in the configuration with four hops, in low motion mode. The

higher power levels show a good behavior also with the three hops configuration while

in the lowest power level case more than the 12% of the packets are lost. A consistent
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Figure 7.6: Percentage of Packets Lost in the Video Streaming System
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efficiency reduction also for the 0 dBm and the -10 dBm cases is visible only with

three intermediate nodes. The two graphs does not present a great spread between the

registered values due to the motion type. The most important characterization of the
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Figure 7.7: Graph of Buffer Emptying Times in High Motion Mode

video streaming behavior considers the time delays. As described in Chapter 6, the

current implementation uses a buffer to store the received frames and starts displaying

the buffer content in a second moment, when the number of elements in the buffer

reached a certain threshold. Such threshold is now set to 50 frames. In the same man-

ner, when the buffer content is consumed, the reproduction stops to allow the system

to refill the buffer. For this matter, it is difficult to consider parameters that show the

reproduction delay directly because it depends on the position of the received frame in

the buffer. It has been decided to describe the system functioning through the τempty

and τre f ill times of the buffer. In this way we can not know the exact display delays but

we can indirectly estimate the system behavior considering that τempty is the period in
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which the video is displayed while τre f ill is the period in which the video stops waiting

for the new frames.

In Figure 7.7, we showed the minimum buffer emptying times for the different net-

work configurations, in high motion mode. In this case the high power level shows

a considerable better behavior with respect to the other two levels. In the worst case,

represented by the minimum emptying buffer time with the four hops configuration,

the video is on for 30 seconds. It is a good result if compared to the worst case value,

40 seconds, of the refilling time, showed in Figure 7.9(a). It means that with a four

hops architecture, provided that the power level is set to 0 dBm, in the worst case for

every 70 seconds of the video streaming activity we can monitor the subject for at least

30 seconds. On the other side, the graph shows also that for the other two power levels

things get rapidly worse. Indeed apart the good behavior registered for the one hop

configuration, the other configurations show emptying times minor than 20 seconds.

1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

10
x 104

τ E
m

pt
y [m

s]

Hops

−25 dB
−10 dB
0 dB

Figure 7.8: Graph of Buffer Emptying Times in Low Motion Mode
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It is important to notice that this time the motion type influences substantially the

system behavior. In fact, especially in configurations with less hops the buffer emp-

tying time is longer for the low motion mode, where the mean packet size is smaller.

This difference is less marked with a major number of intermediate nodes due to the

presence of more retransmissions that made the emptying time value more and more

dependent on the environment and channel interferences. The global progress of the

graph in Figure 7.8 is substantially similar to the high motion case but with a more

marked difference between the two lower levels. Moreover, considering also the re-

filling time graph of Figure 7.9(b) we can notice that with the maximum power, in the

worst case of the four hops configuration, we can watch almost 30 seconds of video

every minute.

Analyzing the refilling time graphs, in figures 7.9(a) and 7.9(b) we can have a better

view of the periods of time in which the video is off, waiting for the buffer to be filled.

It is possible to see how the refilling time is almost constant through the change of the

network configurations for the higher power level. We can infer that, once the buffer is

empty, it will take almost forty seconds before the video restarts. Even here,especially

for the high power level, the low motion video shows slightly smaller values, espe-

cially in the configurations with less intermediate nodes. The two lower power levels

show a completely different behavior with respect to the 0 dBm level, with the refilling

time that grows with the addition of intermediate nodes. This is probably due to the

increasing number of retransmitted packets that slows down the entire refilling opera-

tion.

The last parameter taken in account is referred to the resynchronization time of the

DPCM algorithm. As described in Paragraph 6.2.3, when the Java application of the

gateway detects a lost packet, it sends a sequence broken message to the camera mote

to restart the DPCM sequence sending an entire Jpeg image. This resynchronization

operation costs time and the graphs in Figure 7.10 describe this time loss. The timer

is started when the application receive an out of sequence packet and is stopped when

the first packet of the Jpeg frame is received. Here the worst case is again considered,

90



1 1.5 2 2.5 3 3.5 4
2

4

6

8

10

12

14

16
x 104

τ R
ef

ill
 [m

s]

Hops

−25 dB
−10 dB
0 dB

(a) High Motion Refilling Times

1 1.5 2 2.5 3 3.5 4
2

4

6

8

10

12

14
x 104

τ R
ef

ill
 [m

s]

Hops

−25 dB
−10 dB
0 dB

(b) Low Motion Refilling Times

Figure 7.9: Buffer Refilling Times in the Video Streaming System
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reporting the higher time values recorded.

For the intermediate power level the time values are different between the power levels

but almost constant for all the network configurations, except for the 4 hops configura-

tion where the time value slightly increases. For the lower power level the time values

are constantly under 10 seconds for the first three network configurations. In the fourth

network case the resynchronization time diverges till reaching 18 seconds in the high

motion case and overcoming 40 seconds in the low motion case. Even here the higher

power level performs better remaining under five seconds even in the worst case, with

three intermediate nodes.

Where the resynchronization time is zero, it means that the streaming never broke.
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Figure 7.10: Resynchronization Time in the Video Streaming System

93



7.4 Network Protocols Analysis

To improve the efficiency of the system, as described in Paragraph 6.3, a new net-

work protocol is proposed. Due to the fact that the major limitation of the current

system comes from the high number of transmitted packets, the proposed algorithm

try to reduce the network traffic limiting the number of acknowledgements sent by

each node.

The proposed paradigm, called Selective Repeat is based on the transmission of a 64

packets burst, from the camera node to the base station, without requiring any ac-

knowledgement. Only once all the 64 packets has been sent, the sender waits for a

cumulative acknowledgement. If some of the transmitted packets are lost along the

path, the base station asks for their retransmission.

To evaluate the possibility of implementing a go back n version of the video stream-

Sending Retransmissions Packets
Time [ms] Number Lost

Stop and Wait 1.0467e+004 0 0
Selective Repeat 9.9537e+003 0 0

Table 7.3: Low Noise Simulation Results

ing system the protocol has been simulated using Tossim, the sensor network simulator

described in Section 5.6. Moreover, to compare the go back n with the paradigm used

by the system, also the Stop and Wait protocol currently implemented is simulated.

The simulation software reproduces a sensor network composed by the camera node

and a base station. The camera node generates a fixed size matrix representing the

image produced by the camera node. Indeed, the matrix has 320 columns and 240

rows, as a QVGA image. Once the simulated image is generated, the data are divided

in 1200 packets with a 64 bytes payload. Moreover, the 1200 packets are subdivided

in 18 sequences of 64 packets each. Finally, two simulations of 5000 seconds are per-

formed for each protocol, changing the noise level in the network.

In the following the results of the simulations are presented for the high noise and
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Sending Retransmissions Packets
Time [ms] Number Lost

Stop and Wait 1.0668e+004 17.7107 0
Selective Repeat 1.0478e+004 17.5656 0.0164

Table 7.4: High Noise Simulation Results

the low noise cases. In tables 7.3 and 7.4 the average sending time (τs), the average

retransmissions number (NRtx) and the average number of packets lost (NLost) are re-

ported for both the protocols implementations. The mean is computed on a per photo

basis.
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Figure 7.11: Graph of The Simulated Sending Times of the Low Noise Simulation

The table 7.3 shows how for the low noise simulation, where the system does not re-

transmit any packet, the Selective Repeat protocol performs notably better than the

Stop and Wait. The mean sending time, measured over a population of 488 simulated

photos, is almost 500 milliseconds lower in the Selective Repeat case. The sending
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times progress with respect to each sample of the population is showed in Figure 7.11.

The red graph represent the performances of the Selective Repeat protocol, while with

the blue color is traced the Stop and Wait behavior.

The differences are less marked if the channel noise model is worsened. Indeed, as

showed in the table 7.4 with the same NRtx, the behavior of the two paradigms, in

terms of average sending times τs, is now comparable even if also in this case the Se-

lective Repeat protocol performs slightly better. Moreover, comparing the table 7.3

with the 7.4, we can notice how the both the protocol lose performances with the in-

crease of the channel noise but, above all, how the worsening of the Selective Repeat

paradigm is much more marked.
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Figure 7.12: Graph of The Simulated Sending Times of the High Noise Simulation

Another interesting characteristic emerging from the protocols simulations is the most

major variance of the τs values showed by the Selective Repeat, especially in the high

noise case. This suggests, as we expected, that the Selective Repeat performances
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suffer more the uncorrelated channel quality degradations. Indeed while a moment in

which the channel is particularly bad can cause a small amount of retransmissions in

the Stop and Wait paradigm, in the Selective Repeat protocol this situation force the

base station to send back the retransmission request which must be elaborated by the

source node and performed, requiring a not negligible time overhead. Moreover the

uncorrelation of the errors lean to distribute the errors on different bursts so that the

described procedures must be repeated multiple times during a single photo send.

As in the low noise case, the two protocols behaviors are showed graphically, in Fig-

ure 7.12. The high noise data are collected over a population of 477 simulated photos.

Again, the Stop and Wait performance is signed in blue while the Selective Repeat is

represented with the red color.
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Chapter 8

Conclusions

THE DISSERTATION has focused first on a survey of Wireless Sensor Networks

with the analysis of features and limitations of this kind of networks. Subse-

quently we introduced the Wireless Multimedia Sensor Networks showing

how the capabilities of the system and the design issues change in this new approach.

Afterward, the research results on pictures and video coding techniques are reported,

presenting the main mathematical theory foundations, such as DCT and Wavelet trans-

forms, and reporting principal lossy and lossless image coding methods as well as

video coding algorithms.

In the second part of the work, the developing phases of the video streaming system are

described in details, underlining the encountered problems and the solutions adopted

to overcome such difficulties.

Finally the photo and the video subsystems are tested measuring how they perform

through the collection of most significant parameters. Some values, such as those

describing image processing performances (τA, τC and τD) or the retransmissions per-

centage, are meaningful for both the subsystems while others are needed to better de-

scribe the more complex video system. The latter parameters include buffer timings,

τEmpty and τRe f ill , as well as packets lost percentages.

From the performed tests emerges that the most important results come from the used
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compression techniques. Indeed, the DPCM algorithm implemented produces frames

almost 8 times smaller than Jpeg compressed images of the same format (QVGA). This

is obtained at the price of a slight but tolerable image quality degradation in the repro-

duced video. Moreover the average DPCM compression and decompression times are

notable smaller than those of the Jpeg QVGA images.

In the video case, on the network performances side, the tests underline a very good

system behavior for the one and two hops configurations provided the use of the max-

imum or the medium power transmission levels. With the three hops configuration is

also achieved a fair performance level with both the higher power levels. Moreover,

the maximum transmission power level supports pretty well also the add of the third

forwarder node. It must be said that the behavior of the lower transmission power level

is very different with respect to the other two. In this case, the system performs reason-

ably well only in the one hop configuration while adding even only one intermediate

node reduces notably the video performances.

The photo subsystem behavior is instead very good till the three hops configuration

included, for both the higher and the medium transmission power levels. It loses some

goodness in the four hops configuration. This time the lower transmission power level

performs well for the first two configurations, diverging from the other monitored lev-

els only when the second and the third intermediate nodes are added.

Finally, from the simulation performed with Tossim for the evaluation of a the Selec-

tive Repeat network protocol it is emerged the fairness of the adopted solution in case

of noise channels.

8.1 Future Developments

The performances tests outcome underlines the main limitations of the video stream-

ing architecture and the bottlenecks to which the system is subjected. Almost all of

these limitations concerns the constrained resources with which we have to relate.

Some of them are negotiable through a redesign of the most critical sections of the
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system.

Packets Losses

With the current implementation the video system presents, in a few cases, a really

inefficient behavior. Indeed, once a packet constituting a frame is lost, the reconstruc-

tion of that frame at the gateway is compromised: without such packet the C decoder

does not have enough information to decode the entire frame. For this matter, losing

a packet is the same as losing an entire frame. To overcome this situation it should

be reimplemented the image coding process on the sensor side. Instead encoding the

whole image matrix in a single compressed file, it could be convenient to divide the

image in blocks coding them independently so that a packet lost would correspond to

the loss of a single block. After all or some of the blocks have been correctly received,

the gateway application can reassemble such subparts to reconstruct the original im-

age.

However, to avoid notable video quality losses, also in the subsequent residuals frames,

the block size must be as small as possible while to better exploit the intra frame corre-

lation the block size should be as big as possible. This trade-off should be conveniently

resolved to obtain the best performances from the system.

Multihop Interference

Another problem encountered during the tests is the increase of the inter-nodes in-

terference. Due to the fact that the medium access follows the Carrier Sense Multiple

Access with Collisions Avoidance (CSMA/CA) paradigm, the presence of many nodes

in the network transmitting on the same frequency channel could generate many colli-

sions and, as a consequence, many retransmissions or transmissions delays. A solution

to this problem could be the implementation of a Time Division Multiple Access pro-

tocol that assigns the resource univocally. With this paradigm a support for different

Quality of Service flows could also be implemented.
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Different Network Protocol

Another possible future development could interests the network protocol. The

current implementation checks the correct transmission of every packet with acknowl-

edgements. When the acknowledgement signalling the correct reception of a packet is

not received, the latter is retransmitted. In the photo case, the number of retransmis-

sions has not limitations while a video packet could be resent, at most, 5 times.

If, due to the channel quality and the network configuration the majority of the trans-

mitted packets is received after the first transmission, the delay yield by the ack wait

could be avoided changing the network paradigm. For instance, only one cumulative

ack could be sent after the delivery of a fixed number of packets. If some of the packets

did not arrive to the destination node, the protocol could require their retransmission.
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