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AbstratSpae-time audio proessing has assumed great signi�ane and importane formany appliations suh as soure loalization, traking, beam-shaping, and manymore. In this thesis we want to propose a di�erent approah to aousti soureloalization on a plane by measuring time di�erenes of arrival (TDOA). We baseour approah on a frame whih uses three oordinates instead of only two, alsofor 2D loalization. We ould say that the third oordinate is to be interpretedas time or, vie-versa, that the three-oordinate system has a similar struture toprojetive geometry oordinates, where saling fator now matters. In pratieeah point of this spae identi�es a point on the plane where soure lies, in aspei� time instant. In this framework we represent the signal emitted by thesoure as a one the vertex oiniding with the soure position, or a irle pro-jeted in the third dimension inreasing its radius as third oordinate inreases.In the 3D spae, eah pair of TDOA measurement and mirophone position rep-resents a point through whih the one is supposed to pass. Loalization problemis thus turned into a one �tting problem. The above one �tting method analso be applied to multi-soure ase. In regard to this, a partiular ase is givenwhen image soures are reated by re�etions on walls. Therefore, we show howto apply our loalization method also to image soures. In doing so we an infera re�etor position based on real and image soures loations. For all the aboveproblems, we provide simulations and experimental results as well as omparisonswith other tehniques proposed in the literature. These omparisons show thatthe proposed algorithms perform at least as well as the best ones we seleted, butusing the projetive spae and dealing with onis allows us to write onstraintsin a ompat notation, more suitable when handling many onstraints. One ofour algorithms is also more robust when used with noisy measurements.





Estratto in Lingua ItalianaLo spae-time audio proessing ha assunto notevole importanza per molte appli-azioni ome la loalizzazione di sorgente, il traking, il beam-shaping, e altre. Inquesta tesi vogliamo mostrare un approio di�erente per la loalizzazione di unasorgente austia su un piano da misure di di�erenze di tempi d'arrivo (TDOA).Basiamo il nostro approio su un sistema di oordinate he ne usa tre al posto didue, nonostante loalizzi nel 2D. Diiamo he la terza oordinata va interpretataome tempo o, vieversa, he il sistema di tre oordinate ha una struttura similea quelle della geometria proiettiva, in ui il fattore di sala ora onta. In pratiaogni punto di questo spazio identi�a un punto del piano su ui giae la sorgentein uno spei�o istante di tempo. In questo senario rappresentiamo il segnaleemesso ome un ono ol vertie nella posizione della sorgente, o un erhio proi-ettato nella terza dimensione ol raggio he aumenta all'aumentare della terzaoordinata. Nello spazio 3D, ogni oppia di misure di TDOA e di posizione diun mirofono rappresenta un punto attraverso il quale il ono dovrebbe passare.Il problema della loalizzazione si trasforma dunque nel problema di riera diun ono passante per dei punti. Questo metodo di riera del ono può essereutilizzato anhe nel aso di sorgenti multiple. Un aso partiolare si ha quandodelle sorgenti immagine sono reate dalla presenza di ri�ettori. In questo aso,loalizzando le sorgenti reali e immagine possiamo inferire anhe la posizione diun ri�ettore. Per i problemi itati forniamo simulazioni e risultati sperimentalioltre ad un onfronto on tenihe trovate in letteratura. Il onfronto mostrahe gli algoritmi proposti si omportano bene almeno quanto i migliori tra quellitestati, ma l'uso dello spazio proiettivo e l'avere a he fare on onihe permettedi srivere i vinoli in maniera ompatta, preferibile quando si utilizzano moltivinoli. Uno dei nostri algoritmi è anhe più robusto degli altri in presenza dimisure rumorose.
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Chapter 1IntrodutionSpae-time audio proessing has assumed great signi�ane and importane formany appliations suh as loalization, automati amera traking for video-onferening, separation of aousti soures, beamformer steering for suppressingnoise and reverberation, beam-shaping, and many more. Many of these appli-ations are based on the exploitation of di�erent kind of measurements suh asdiretion of arrival (DOA), time of arrival (TOA), or time di�erene of arrival(TDOA).In partiular, to loate radiative point soures using passive stationary sensorarrays is of onsiderable interest and has been a repeated theme of researhin radar, underwater sonar, and seismology. A ommon method is to have theestimate of soure loation based on TDOA measurements between distint sensorpairs, or on TOA measurements when soures and sensors are synhronized.The aim of this thesis is to show an approah to 2D aousti soure loal-ization based on the idea of working in a three oordinates spae with TDOAsmeasurements. In this framework we use the two spatial oordinates used forloating objets on the plane, as well as a third oordinate related to the signalpropagation time. We also fous on how to extend this method to the multi-soure ase. This allows us to perform real and image soures loalization whena re�etor is present, therefore we an also infer the re�etor position. Proposedmethods make use of TDOAs, even though shown algorithms an be also appliedto TOAs measurements.In the literature many authors have dealt with these problem with di�erentapproahes. A omprehensive olletion of soure loalization algorithms based



16 Introdutionon TDOAs an be found in [1℄, but there are also other papers faing the soureloalization problem in losed-form solution [2℄, or with an iterative method basedon Taylor series [3℄, or expliitly giving a solution based on hyperbola intersetion[4℄. The ommon approah shared by these methods onsists in working with onlythe two spatial oordinates in order to loating the soure in 2D.However, over the last few years, the tehnologial progress allowed to reduethe size and the ost of the omponents. Mirophones and loudspeakers are nowmore a�ordable, and we think that in the near future they will be more extensivelyused in ommerial produts. For example, we imagine entertainment systemslike television sets or hi-� systems equipped with sets of miniaturized mirophonesor speakers or other sensors in order to take advantage of audio tehniques suhas those based on room awareness to improve auditory experiene.In order to jointly make use of all the onstraints given by the inreasingnumber of sensors and managing all of them with a ompat notation, a novelapproah to loalization problem is needed. In this diretion, some really inter-esting solutions are those proposed in [5, 6, 7℄, as they add a third oordinate tothe referene frame. In partiular [5, 6℄ show algorithms whih make use of threehomogeneous oordinates, extensively used in omputer vision. These methodsenable us to treat onstraints given by measurements as onis and quadris, lead-ing us to a ompat notation whih is ompatible with onstraints from TDOA,TOA and DOA. The interesting aspet of [7℄ is that it works taking into a-ount spatial oordinates together with propagation time, giving thus a physialmeaning to the third oordinate.Our goal is to propose a solution that takes advantage of both suh tehniques.We work in a 3D framework as we think that inreasing the dimensionality of thereferene frame allows us to treat some problem easily, for example turning manynonlinear problems into linear ones. However we also give a physial interpreta-tion to the third oordinate as signal propagation time, whih makes onstraintsmore understandable. In this 3D senario, eah point represents a loation on the2D surfae where soure lies, in a spei� time instant. The signal emitted by thesoure is represented by a one, the vertex oiniding with the soure position.As time goes by, the radius of irle inreases. In this 3D spae, TDOAs mea-surements and mirophones positions are turned into points through whih theone is supposed to pass. Loalization problem is thus turned into a one �tting



17problem where �nding the vertex of the one means �nding the soure loation.Working with a one in a 3D spae allows us to easily take degenerate geometriesinto aount. In fat we an study mirophones displaement in order to providea good one sampling, whih ensures better loalization performane.As far as multi-soure loalization problem is onerned, various approahesare proposed in the literature. For example in [8℄ and [9℄ an algorithm basedon blind soure separation is proposed, in [10℄ blind hannel identi�ation isused, while in [11℄ authors make use of lustering tehniques. A more interestingapproah for our purpose, is that based on orretly assigning TDOAs to eahsoure in order to treat the multi-soure loalization problem one soure at atime [12, 13, 14℄. These methods pratially onsist in exploiting some TDOAproperties so as to understand whih TDOA belongs to whih soure. This allowsus to split the multi-soure loalization problem into several single-soure loal-ization ones. In doing so we an apply our one-based single-soure loalizationalgorithms also to the multi-soure ase.A partiular multi-soure senario is given when image soures are reatedby signal re�etion on walls. In fat, when a re�etor is present in the sene,mirophones reeive a signal as if it was emitted by the real soure and an im-age soure reated by the re�etive path. In this partiular ase we an performreal and image soure loalization assigning TDOAs to eah of them using onemore the algorithms for TDOAs assignment as [12, 13, 14℄. After the real andimage soures are loated, we an also infer the re�etor position with some sim-ple onsiderations on soures loations. Nonetheless other solutions for re�etorloalization problem an be found in [15℄ and [16℄. In these papers authors fouson methods using all the TDOAs together, in order to loalize re�etors, withoutaddressing soure loalization problem.In brief we sum up the three problems treated in this thesis as: single-soureloalization in 2D; multi-soure loalization always in 2D; and re�etor loal-ization in the same framework. All the methods we propose for solving thisproblems are based on the one idea in order to work in the 3D spae, and areprovided with simulations or experimental results. We have also made a om-parison between some of the above ited tehniques found in the literature andour algorithms, whih on�rms good behavior of our algorithms, espeially withnoisy measurements.



18 IntrodutionIn Chapter 2, we fous our attention on giving the problem formulation andpresenting the notation used. Giving the problem formulation we also introduethe state of the art for all the three problems, exept for those tehniques whihare based on homogeneous oordinates.The methods employed so as to loalize soures and re�etors making useof homogeneous oordinate are disussed in Chapter 3. In this Chapter we alsopresent in a omprehensive way our novel 3D oordinate system, and show howTOAs and TDOAs measurements an be turned into onstraints in the extendedgeometry spae, using homogeneous oordinates as desribed in the literature, aswell as with our novel approah.After presenting the urrent state of the art and our new framework, in Chap-ter 4 we show how proposed algorithms, making use of two similar ost funtions,work for soure loalization. In this Chapter we fous on how to use previouslyshown onstraints in order to perform soure loalization, emphasizing also thestudy of favorable mirophones displaements and degenerate geometries.In Chapter 5 we then explain how to use the above proposed loalizationmethods for the multi-soure ase. In doing so, we deeply explain how to orretlyassign TDOAs to eah soure before applying a one-based algorithm.After the multi-soure general ase is introdued, in Chapter 6 we extend thealgorithm in order to loalize an image soure generated by a re�etive path.We show how to �nd real and image soures positions and how to infer re�etorposition from the soures ones, after whih (Chapter 7) we gather all simulationsand experimental results in order to prove the e�etiveness of our algorithms inontrast to the others found in the literature.Finally, in Chapter 8 we draw onlusions about the study and show possiblefuture works.



Chapter 2Problem Formulation
In this Chapter we introdue the mathematial formulation of soure and re�etorloalization problems. We also show the urrent state of the art in order tounderstand some possible approahes to these problems. The notation used inthe rest of the thesis is also given.Soure loalization problem is approahed when no obstales are presentwithin the sene, and only information from the diret signal is available. Firstwe disuss single soure ase, then we introdue also the multi-soure ase. Fi-nally we handle re�etor loalization problem when only one re�etor is present,and information about diret and indiret signal are available.
2.1 Aousti Measurements: Time of Arrival, TimeDi�erene of ArrivalIn this Setion we will refer about the methodology we use to ondut aoustimeasurements in a dry room. In partiular, we will relate about the measurementof times of arrival (TOAs) and time di�erenes of arrival (TDOAs) from ross-orrelation.In regard to TOAs, the goal is to measure the time of arrival of the aoustipaths that link the soure to the i-th mirophone. In order to do so, the loud-speaker produes a known sequene s(t) (time-ontinuous). The time-ontinuoussignal xi(t) aquired by sensor i synhronized with soure is the delayed replia



20 Problem Formulationof the signal s(t):
xi(t) = hs(t− τi) + vi(t). (2.1)The oe�ient h is the attenuation of the diret path from soure to reeiver;

τi is the orresponding delay; �nally vi(t) is an additive noise that alters ourmeasurement. After sampling by the A/D onverter we write the time-disretesignal as
xi(k) = xi(kT ) = hs(k − ii) + vi(k), (2.2)where T is the sampling period; k is the time-disrete index; ii is the disreteversion of τi. For the sake of simpliity TOAs are estimated by piking peaks inthe ross-orrelations of xi(k) and s(k). In partiular the lag ii is the loation ofthe �rst relevant peak in the ross-orrelation.When measuring TDOAs we remove the hypothesis that soures are synhro-nized with reeivers, while synhronism among mirophones still holds. Thissenario aounts for situations in whih an arbitrary soure (e.g. a person ut-tering a sentene, a ring of a mobile phone, et.) is ative in the environment.Obviously this is a more interesting ase beause it is more realisti to have asoure not synhronized with sensors. Even if we annot measure the time ofarrival, many ues about the soure position an still be extrated from the jointknowledge of the synhronized signals available at sensors. After time sampling,the signal aquired by sensor i in the array is

xi(k) = hs(k − ii) + vi(k). (2.3)The model in the above equation is equivalent to the model in equation 2.2. Underthe assumption that the attenuation h does not depend on the mirophone indexand that additive noises at di�erent mirophones are unorrelated, the ross-orrelation of xi(k) and xj(k) gives
rij(k) = h2s(k − ii)⊗ s(k − ij), (2.4)where ⊗ denotes the ross-orrelation operator. If the soure signal is a whitenoise, we obtain

rij(k) = h2δ[k − (ii − ij)], (2.5)whih exhibits a global maximum for k = ii − ij . For this reason we an extrat



2.2 Aousti Soure Loalization 21TDOAs from ross-orrelations searhing for the global maximum loations.2.2 Aousti Soure LoalizationTwo dimensional loalization problem onsists in �nding an aousti soure loa-tion on a plane, having information about the array geometry, time of arrival, ortime di�erene of arrival from soure to the array.We onsider an array of N + 1 mirophones loated on a plane at positions
ri , [xi, yi]

T , i = 0, ..., N (2.6)in Cartesian oordinate, where [.]T denotes transpose of a vetor. The �rst mi-rophone (i = 0) is regarded as the referene and is plaed at the origin of theoordinate system (r0 = [0, 0]T ). The aousti soure is loated at rs , [xs, ys]
T .

Figure 2.1: Loalization Setup: mirophones are loated at ri, soure is loatedat rs, and Di represents the distane from the i-th mirophone to the soure.The distane from the origin to the i-th mirophone and the soure are denotedby Ri e Rs, respetively, where
Ri , ‖ri‖ =

√

x2
i + y2i , i = 1, ..., N, (2.7)



22 Problem Formulation
Rs , ‖rs‖ =

√

x2
s + y2s . (2.8)The distane between the soure and the i-th mirophone is denoted by

Di , ‖ri − rs‖ =

√

(xi − xs)
2 + (yi − ys)

2. (2.9)The di�erene in the distanes of mirophones i and j from the soure is givenby
dij , Di −Dj , i, j = 0, ..., N . (2.10)The distane Di and the range di�erene dij are proportional to time of arrival(TOA) τi and time di�erene of arrival (TDOA) τij , respetively.If the sound speed is c, then

Di = c · τi, (2.11)
dij = c · τij . (2.12)The speed of sound (in m/s) an be estimated from the air temperature tair (indegrees Celsius) aording to the following approximate (�rst-order) formula

c ≈ 331 + 0.610 · tair. (2.13)
The loalization problem is then to estimate rs given the set of ri and τi, ormore realistially τij , as shown in previous setion. Note that having N+1 miro-phones gives us N + 1 distint TOA measurements τi and (N + 1) ·N/2 distintTDOA estimates τij , whih exlude the ase i = j and ount the τij = −τji paironly one. However, in the absene of noise, the spae spanned by these TDOAestimates is N-dimensional. Any N linearly independent TDOAs determine allof the others. In a noisy environment, the TDOA redundany an be used toimprove the auray of the soure loalization algorithms, but this would in-rease their omputational omplexity. For simpliity and also without loss ofgenerality, we an hoose τi0 , i = 1, ..., N as the basis for this RN spae.



2.2 Aousti Soure Loalization 232.2.1 State of the ArtIn this Setion we present the state of the art for TDOA and TOA loalizationproblem. However, TOA loalization problem is muh easier to be solved thanTDOA one beause TOA knowledge brings more information. For this reasonless TOA based loalization methods are proposed while it will be given moreimportane to TDOA loalization problem and its state of the art will be bettertreated. We will show how this problem an be solved with maximum likelihood(ML) or least-squares (LS) riteria, depending on the error probabilisti assump-tions, and whih are the similarities among the proposed solutions. It will beemphasized how many LS riteria start with the de�nition of a ost funtionfrom a shared equation based on TDOA de�nition and how these algorithmsdi�er only in the way they treat this equation. In fat some solutions proposedi�erent ost funtions, while others di�er for its minimization method.2.2.1.1 Loalization Based on Time of ArrivalWhen soure loalization problem based on TOAs is examined using estimationtheory [17℄, the measurements of distane between the soure and the i-th miro-phone are modeled by
Di = li(rs) + εi , i = 1, ..., N (2.14)where
li(rs) =

√

(xi − xs)
2 + (yi − ys)

2 (2.15)and the εi's are measurement errors. The squared distane from the soure to
i-th mirophone is given by

li(rs)
2 = (xi − xs)

2 + (yi − ys)
2

= Ki − 2xixs − 2yiys + x2
s + y2s

(2.16)where Ki = x2
i + y2i and x2

s + y2s = D2
0 if we hoose the �rst mirophone as theorigin. We an then de�ne the error

ei(rs) = Ki − 2xixs − 2yiys + x2
s + y2s −D2

i (2.17)



24 Problem Formulationand putting the N error together we obtain
e = Aθ − b (2.18)where
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.If we use a least-squares approah for the error minimization, the LS ost funtionto be minimized is given by
J = eTe = (Aθ − b)T (Aθ − b) (2.19)and a losed-form solution is given by

θ̂ =
(

ATA
)

−1
ATb. (2.20)2.2.1.2 Loalization Based on Time Di�erene of ArrivalWhen soure loalization problem based on TDOAs is examined using estimationtheory [1℄, the measurements of range di�erenes are modeled by

di0 = gi (rs) + εi , i = 1, ..., N (2.21)where
gi (rs) = ‖ri − rs‖ − ‖rs‖ (2.22)and the εi's are measurement errors. In a vetor form, the additive measurementerror model beomes

d = g (rs) + ǫ (2.23)



2.2 Aousti Soure Loalization 25where
d = [ d10 d20 ... dN0 ]T ,

g (rs) = [ g1 (rs) g2 (rs) ... g3 (rs) ]T ,

ǫ = [ ε1 ε2 ... εN ]T .Sine the measurement model is highly nonlinear, an e�ient estimator thatattains the CRLB may not exist or might be impossible to �nd even if it doesexist. For this reason several solutions using di�erent riteria have been proposed.Maximum Likelihood The maximum likelihood estimator (MLE) [1℄ is themost popular approah beause of the well-proven advantage of asymptoti ef-�ieny for a large sample spae. However to apply the maximum likelihoodpriniple the statistial harateristis of the measurements need to be knownor properly assumed prior to any proessing. From the entral limit theoremand also for mathematial simpliity, the measurement error is usually modeledas Gaussian with zero mean and ovariane matrix Cε. Sine the exponentialfuntion is monotonially inreasing, the MLE is equivalent to minimizing a (log-likelihood) ost funtion de�ned as
εML (rs) , [d− g (rs)]

T
C−1

ε [d− g (rs)] . (2.24)For this minimization an iterative algorithm suh as steepest desent an be usedin order to avoid the ost funtion exhaustive searh. However, MLE su�ers thelimitation given by the probabilisti assumptions to be made about the mea-sured range di�erenes. In order to overome this problem, many least squaresestimators (LSEs) have been proposed in the literature.Least Squares The LSEs make no probabilisti assumptions about the dataand hene an be applied to the soure loalization problem in whih a preisestatistial haraterization of the data is hard to determine. In the LS approah,we attempt to minimize a squared error funtion that is zero in the abseneof noise and model inauraies. Di�erent error funtions an be de�ned forloseness from the assumed (noiseless) signal based on hypothesized parameters tothe observed data, and any di�erent error funtion leads to a di�erent LSE. In theliterature two error funtion de�nitions are mainly found, named hyperboli LSerror funtion and spherial LS error funtion [18℄, but starting from the de�nition



26 Problem Formulationof Di (equation 2.9) other solutions to loalization problem are proposed.Hyperboli LS Error Funtion In the soure loalization problem, anobserved range di�erene di0 de�nes a hyperbola, whih is the lous of pointswhere the di�erene of the distanes to the i-th mirophone and the refereneone is a onstant. All points lying on suh a hyperbola are potential soureloations and all have the same range di�erene di0 to the two mirophones iand 0. The hyperboli LS error funtion is de�ned as the di�erene between theobserved range di�erene (di0) and that generated by a signal model dependingupon the unknown parameters (gi (rs)). Therefore, a sound soure that is lo-ated by minimizing the hyperboli LS error riterion has the shortest distaneto all hyperbolas assoiated with di�erent mirophone pairs and spei�ed by theestimated range di�erenes.The de�nition of this error funtion is based on the assumption that if themeasurements are noiseless, the measured range di�erenes are equal tothose generated by a model
di0 =

√

(xi − xs)
2 + (yi − ys)

2 −
√

(x0 − xs)
2 + (y0 − ys)

2 = gi (rs) .(2.25)For eah mirophone we an then de�ne the error
eh,i (rs) , di0 − gi (rs) . (2.26)The error funtion an be expressed in vetor form as
eh (rs) = d− g (rs) (2.27)and the orresponding LS riterion is given by

Jh = eT
heh = [d− g (rs)]

T [d− g (rs)] . (2.28)Sine Jh is nonlinear, minimizing it leads to a mathematially intratable solutionas N gets large. As a result, it is rarely used in pratie as is. Methods takingless time in order to lead to a solution are preferred.



2.2 Aousti Soure Loalization 27Spherial LS Error Funtion The seond LS riterion is based on theerrors found in the distanes from a hypothesized soure loation to the miro-phones. Referring to Figure 2.2, if we draw irles with radius Di entered atthe mirophones, they all interset in one point in the absene of measurementerrors. The orret soure loation is preferably at the intersetion of this group

Figure 2.2: Spherial LS Error Funtion: rs represents the soure position, while
r0, r1, and r2 represent mirophones. D0, D1 and D2 are the distanes fromsoure to mirophones. All the irles entered at mirophones with radius equalto the distanes to the soure, intersets in one point. The soure is loated atthis point.of irles (or spheres in 3D). When measurement errors are present, irles do notinterset in only one point. Therefore the best estimate of the soure loationwould be the point that yields the shortest distane to those irles.From the de�nition of the range di�erene and the fat that D0 = Rs, wehave

D̂i = Rs + di0 (2.29)where D̂i denotes the distane from the soure to the i-th mirophone basedon the measured range di�erene di0. From the de�nition of Di we an also



28 Problem Formulationwrite
D2

i = ‖ri − rs‖2 = R2
i − 2rT

i rs +R2
s . (2.30)The spherial LS error funtion is then de�ned as the di�erene betweenthe measured and hypothesized values

esp,i (rs) =
1

2

(

D̂2
i −D2

i

) (2.31)
= rirs + di0Rs −

1

2

(

R2
i − d2i0

)

, i = 1, ..., NPutting the N errors together and writing them in a vetor form gives
esp (rs) = Aθ − b (2.32)where
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.The orresponding LS riterion is then given by
Jsp = esp(rs)

Tesp(rs) = (Aθ − b)T (Aθ − b) . (2.33)A losed-form solution is then given by
θ̂ =

(

ATA
)

−1
ATb. (2.34)The spherial error funtion is linear in rs, therefore the omputational omplex-ity to �nd a solution will not dramatially inrease as N gets large. For thisreason the spherial LS error funtion an be used when a fast solution is needed.Unfortunately, this method is based on the assumption that the distane between



2.2 Aousti Soure Loalization 29the soure and the referene mirophone (Rs) was orret for the omputation of
D̂i. As shown in [18℄, a better solution an be found.Linear-Corretion Least-Squares In the previous solution we assumedthat the distane between the soure and the referene mirophone (Rs) wasorret for the omputation of D̂i. The whole error of the term di0 was then"loaded" on the i-th mirophone loation. In order to avoid this problem, thelinear-orretion least-squares method [18℄ was proposed. This algorithm searhesfor the minimum of the Spherial LS Error Funtion (Jsp) taking aount of theonstraint x2

s + y2s −R2
s = 0 whih fores the distane between the soure and thereferene mirophone to be Rs.Using this method, the solution is given by
min
θ

(Aθ − b)T (Aθ − b) s.t. θT
Σθ = 0 (2.35)where

Σ = diag( 1 1 −1 ). (2.36)Using this orretion is equal to onstrain the distane between the soureand the referene mirophone to be Rs. In order to solve this onstrainedminimization problem the tehnique of Lagrange multipliers is used and thesoure loation is determined by minimizing the Lagrangian
L(θ, λ) = Jsp + λθT

Σθ (2.37)where λ is the Lagrange multiplier. In [18℄ it is shown that in order to �nd
λ, a polynomial of degree six must be solved. Beause of its omplexity,numerial methods need to be used for root searhing. In order to performthis root searhing, a multi-step proedure is proposed.This algorithm is presented as an improvement of the Spherial LS Error Funtionone. The negative aspet is given by the omplexity of root searhing used to�nd the orret value of λ. This aspet makes this algorithm not suitable forreal-time problems or when a fast solution is needed, beause of time spent inroot searhing.



30 Problem FormulationGillette-Silverman Gillette and Silverman propose another losed-formmethod based on squared range di�erene between a referene mirophone andthe others [2℄. Their goal is to �nd a simple solution to the soure loalizationproblem, giving it in losed-form. In order to proeed with this algorithm, weneed to de�ne a referene mirophone, and without loss of generality we an takethe mirophone plaed at the origin as referene one. As an extension of this al-gorithm, also a method where di�erent referene mirophones are simultaneouslyused is proposed in [2℄.
The squared distane from the soure to the i-th mirophone is (from equa-tion 2.9)

D2
i = (xi − xs)

2 + (yi − ys)
2 . (2.38)The squared range di�erene between the referene mirophone and the

i-th one is then
D2

i −D2
0 = (xi − xs)

2 + (yi − ys)
2 − (x0 − xs)

2 − (y0 − ys)
2 . (2.39)Starting from this equation, Gillette and Silverman show how to obtain thefollowing linear system
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(2.40)where
wi,j ≡

1

2

(

d2ij − x2
i + x2

j − y2i + y2j
)

. (2.41)The solution an then be obtained with a least-squares inversion.As mentioned above the algorithm an then be easily extended to a moregeneral one, using M referene-mirophones at the same time. The follow-ing example shows how to extend the algorithm for M = 2 and M = 5



2.2 Aousti Soure Loalization 31mirophones. The system to be solved beomes
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. (2.42)
The solution an be one more obtained with a least-squares inversion.As mentioned above, this method ensures a simple and losed-form solution. Inorder to use this tehnique a greater number of mirophones should be used, ifompared to other methods. By the way it is a andidate solution when only afew time is given in order to �nd the solution.Taylor Series Another interesting solution is given by the Taylor seriesexpansion of equation 2.22 about a referene point and a suessive iterativegradient searh ([3℄ ,[19℄). This algorithm an also be viewed as a method foriteratively minimize the Hyperboli LS Error Funtion.To determine a reasonably simple estimator, the equation 2.22 an be lin-earized by retaining only the �rst two terms of the Taylor series expansionabout the referene point rs,0 = [xs,0, ys,0]

T

g(rs) ⋍ g(rs,0) +G · (rs − rs,0). (2.43)Here G is the gradient matrix
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∂gi
∂xs

=
x0 − xs

D0

− xi − xs

Di

, (2.45)
∂gi
∂ys

=
y0 − ys
D0

− yi − ys
Di

, (2.46)and the vetor rs,0 ould be an estimate of rs determined from a previousiteration or based upon a priori information. The soure loalization anbe performed with a gradient searh, as progressive approximation startingfrom an initial point rs,0 and applying the following update at the v-thiteration
rs,v+1 = rs,v +

(

GT
vGv

)

−1
GT

v eh (rs,v) (2.47)where eh is the hyperboli LS error funtion taken from equation 2.27. Thismethod is in fat an algorithm to iteratively minimize the Hyperboli LSError Funtion.This algorithm present a simple way to deal with the Hyperboli LS Error Fun-tion. A negative aspet is given by its iterative way of onverging to the solution.In order to use this method, the number of iteration should be ontrolled in orderto give a reasonable time of onvergene as well as an aurate solution.Exat Noniterative Linear Method In [7℄ a noniterative linear methodis proposed. This method is alled an exat method beause no linearization aremade. This algorithm is based on an inverse approah very similar to the ideaat the basis of Spherial LS Error Funtion. In partiular reeivers are presentedas if they at as soures emitting irular wave fronts, so that at a given timeall the wave fronts interset at the soure position. This method needs at leastfour mirophones for 2D loalization in order to write three equation (one foreah independent ouple of mirophones) linear in the unknowns xs, ys, and thepropagation time t. Taking aount of propagation time as well as the two spaeoordinate is one of the most interesting aspets of this method.2.3 Multi-Soure LoalizationWhen dealing with multiple soures, we want to be able to loalize all of themon the plane where they lie, having information about mirophones positions and



2.3 Multi-Soure Loalization 33TDOAs.If we have M white and unorrelated soures rsa , a = 1, ...,M emitting sa(t)in an anehoi room with N +1 sensors at ri , i = 0, ..., N , where only the diretpaths from soure a to sensor i with delay τa,i and attenuation ha,i ontribute tothe sensor signals
xi(t) =

M
∑

a=1

ha,isa(t− τa,i) , i = 0, ..., N, (2.48)the ross-orrelation rij(τ) will show at maximumM loal extrema. As previouslyshown in this Chapter, when only one soure is onsidered, the ross-orrelationexhibits only one peak, and TDOA an be extrated from the loation of thispeak.In the multi-soure ase, eah of the M peaks loation orresponds to a TDOAfor a partiular soure. Unfortunately we an not orretly assign peaks tosoures. Resolving this multiple-soure ambiguity is important for loalization,beause we have to assign eah TDOA to one soure and onsider all TDOAs ofthat partiular soure together to estimate its geometri position. This problemis known as TDOA disambiguation.After this problem is solved, and eah TDOA extrated from ross-orrelationis assigned to the orret soure, multi-soure loalization problem an be treatedas separate single soure loalization problems.2.3.1 State of the ArtIn order to solve TDOA disambiguation problem we an found several di�erentapproahes in the literature. Anyway some authors propose methods for simul-taneously loate all the soures. Now we sum up some of this methods.Clustering Tehnique One possible solution onsist in �nding soure loationandidates testing several TDOAs ombinations [11℄, and then perform a hekin order to �nd real soures loations.In order to use this method array mirophones are paired in doublets. Mi-rophones in eah doublet are supposed to be physially lose to eah other, sothat they an be assumed to reeive a time-shifted replia of eah soure signal,



34 Problem Formulation�ltered by the same aousti transfer funtion.Signals oming from eah pair of mirophones are pre-proessed by a stan-dard LPC algorithm in order to remove the ommon spetral features present indoublet signals (inluding the pith) and minimize spetrum �utuations.If the number of soures is not known, it an be estimated, and TDOAs areextrated from the reeived signals. From TDOAs generated for eah pair of dou-blets, a andidate soure position is omputed by e�ient geometri algorithmsavailable in the literature.While wrong estimates usually generate disperse lusters ontaining few points,dense lusters having an approximately elliptial shape are formed around thespeakers. Centroids of lusters are �nally seleted as speaker loations.DATEMM (Zero-Sum) Disambiguation of TDOA Estimates in Multi-pathMulti-Soure Environments (DATEMM) algorithm [14℄ is another solution to theproblem. This algorithm is useful for assigning eah peak of the ross-orrelationto a soure. This allow us to separate TDOAs for eah soure as well as reog-nizing whih TDOA belongs to re�etive paths.The algorithm is omposed by two steps. In its �rst step, DATEMM algorithmestablishes whih peaks of ross-orrelations belong to the diret signal, and whihto the re�eted signal. If we onsider a non reverberant room, we an go furtherthis step.One ross-orrelation peaks related to re�etive paths are removed, a stepis performed in order to assign TDOAs to soures. This assignment is based ononsideration on TDOAs between mirophones ouples. A partiular hek isperformed between TDOAs in order to �nd those whih math a ondition alledZero-Sum ondition. However this step is better explained in Chapter 5, whenour algorithm for multi-soure loalization is explained.Gaussian Likelihood Criterion Another possible solution onsists in usinga blind soure separation (BSS) method ombined with a likelihood riterion. In[8℄, authors propose a BSS method involving a multiple-input-multiple-output(MIMO) model in order to estimate TDOAs for eah mirophone pairs. ThisMIMO system is also shown in [9℄ as an alternative to the use of ross-orrelationfor extrating TDOAs from measurements. This method fouses diretly on theimpulse response between a soure and mirophones and thus, this approah is



2.4 Re�etor Loalization 35inherently based on the real reverberant propagation model. While performingthe separation of soures, the BSS method behaves similarly to a set of adaptivenull beamformers, whih steer nulls in the diretions of the soures.After this estimation step, a spatial ambiguity for soures loation still exists.The TDOAs extrated for eah mirophones pair an not still be used to loalize asingle soure position. In order to overome this problem, a likelihood funtion isproposed, and all the possible soure positions are tested. A omparison betweenthe likelihood of all possible soure on�gurations is performed, and the on�gu-ration giving the highest likelihood value is onsidered the orret on�guration.This step is shown to sometime fail in simultaneously loalize many soures forsome on�gurations. However, it an loalize at least one of them suessfullymost of the time.This algorithm also takes aount of the possibility of traking moving soures.In this ase a partile �lter is implemented.2.4 Re�etor LoalizationInferene problem onsidered in this setion onsists in �nding the position of asingle re�etor present into a sene, dealing with TDOAs measurements.We onsider the same array and soure setup used for soure loalizationproblem, but we add a re�etor. This re�etor an be modeled on the plane xyas a line of equation y = mx+q. Using the Cartesian oordinate system enteredin r0 = [0, 0]T the re�etor an be de�ned as all the points x = [x, y, 1]T whihsatisfy the ondition
xT l = 0, (2.49)where l = [−m, 1,−q]T .Dealing with one re�etor, eah mirophone reeives the signal from the diretpath as well as from the indiret path reated from the re�etion of the signalfrom point rp. A method to treat the multi-path propagation onsists in modelingthe signal oming from the indiret path as it omes from another soure, alledthe image soure. The image soure position is found mirroring the real sourethrough the re�etor. As we work with real and image soures we de�ne rs′ asthe image soure related to real soure rs.However, in order to estimate real and image soure loations we fae one



36 Problem Formulation

Figure 2.3: Inferene Setup: real soure is in rs, image soure in rs′, mirophonein rr, and rp represents the re�etion point. l represents a re�etor.more the TDOA disambiguation problem. In the multi-soure ase we had di�er-ent soures emitting di�erent signals, whih leads to a number of peaks in ross-orrelations equal to the number of soures. With a re�etor and one soure, wean onsider having two soures, the real and the image one, synhronized andemitting the same signal. This leads to four peaks in eah ross-orrelation be-tween mirophones instead of only two. For this reason we deal with a situationworse than the multi-soure one previously shown.However, as we will see in Chapter 6, this TDOA ambiguity an be solved withsome onsiderations based on the analysis of the auto-orrelations of the signalreeived by eah mirophone. Then, one we are able to assign ross-orrelationpeaks to real and image soures, we an estimate their position rs′ and rs fromthese TDOAs and derive l as shown in Chapter 6. However other solutions foundin the literature are proposed.2.4.1 State of the ArtThe problem of room geometry estimation using mirophones and loudspeakershas been addressed by several authors with various approahes. We �rst showa di�erent approah respet to the ross-orrelation in order to extrat TDOAstaking aount of reverberations. Then we propose two room geometry estima-



2.4 Re�etor Loalization 37tion methods, whih di�ers from our approah, in order to show that problemformulation an be di�erent from ours. Finally we also show a possible solutionfound in the literature for solving TDOA ambiguity aused by multipath.Blind Channel Identi�ation Using ross-orrelation for estimating TDOAs,we approximate the aousti room impulse response as a simple delta funtion,and the TDOA estimation is ahieved by maximizing the ross-orrelation fun-tion. However in [1℄ and [10℄ di�erent approahes are proposed based on blindhannel identi�ation. Blind hannel identi�ation approahes model an aous-ti room impulse response as an FIR �lter that inludes both a diret path andmultipath re�etions. In these approahes, after the modeling �lters have beenidenti�ed, the TDOA an be easily omputed by examining the diret paths inthe �lters.In a room with a soure and two mirophones, the i-th mirophone outputat time k an be written as:
xi(k) = s(k) ∗ hi + ni(k), (2.50)where ∗ denotes linear onvolution, s(k) is the soure signal, hi representsthe hannel impulse response between the soure and the i-th mirophone,and ni(k) is a noise signal. The blind hannel identi�ation via ross relationis based on a lever observation, x2(k) ∗ h1 = x1(k) ∗ h2 = s(k) ∗ h1 ∗ h2,if the mirophone signals are noiseless [20℄. Then, without requiring anyknowledge from the soure signal, the hannel �lters an be identi�ed byminimizing the squared ross-orrelation error. In matrix-vetor form, theoptimization beomes

h∗

1,h
∗

2 =arg min
h1,h2

1

2
‖X2h1 −X1h2‖2

s.t.‖h1‖2 + ‖h2‖2 = 1,

(2.51)where X i is the (N + L − 1) × L onvolution Toeplitz matrix whose �rstrow and �rst olumn are [xi(k−N+1), xi(k−N), ..., xi(k−N−L+2)] and
[xi(k − N + 1), xi(k − N + 2), ..., xi(k), 0, ..., 0]

T respetively, N is the mi-rophone signal length, L is the �lter length, and ‖.‖ denotes l2-norm. This



38 Problem Formulationminimization problem an be solved by eigenvalue deomposition. Whenthe �lters are estimated, the TDOAs an be omputed by examining thediret paths in the �lters.By using a more realisti model, the blind hannel identi�ation approahes havebeen shown to be more e�etive than ross-orrelation approahes to reverbera-tion. However we are working in a simple ase where only one re�etor is present,and we do not need all the information that the room impulse response brings.For this reason, the omputational omplexity of this algorithm is not justi�edfor our purpose, and prevents us from using it.Continuous Signals Method In [15℄, authors propose a method for estimat-ing re�etive surfaes using ontinuous signals without any prior information onthe soure signal. For this method, some soures and sensors are plaed intoa room whose walls positions need to be estimated. TDOAs from mirophonespairs are omputed by exponential �tting of ross-orrelation funtions. Then theapproah is based on the inverse mapping of the multi-path propagation problem.Re�etive surfae an be de�ned as a plane with points ful�lling perpen-diularity to a normal vetor n:
P 2(n,a) = {x ∈ R3 : nT (a− x) = 0), (2.52)where a de�nes an arbitrary point within the plane P 2. Replaing the point

a with b+ n plane parameterization then beomes
P 2
b = P 2(n, b+ n) = {x ∈ R3 : nT ((b+ n)− x) = 0}, (2.53)whih has only 3 degrees of freedom but as a trade-o� loses ability to rep-resent planes ontaining the referene point b.To identify a re�etive surfae P 2, we onsider a system of three points ri,

rs and oi ∈ P 2, namely the positions of i-th reeiving sensor, sound soureand the point of re�etion (Figure 2.4). The former two are assumed to beknown and the point of re�etion has to be estimated.Diret path time delay is determined as τd(rs, ri) = c−1 ‖ ri − rs ‖. The



2.4 Re�etor Loalization 39

Figure 2.4: Re�etor Top View for Continuous Signals Method: P 2 is the re�e-tor, n is the normal vetor, a an arbitrary point on the re�etor. ri and rj aretwo reeivers, rs is the soure, and oi, oj are two point of re�etion. The indiretsignal path is shown from soure to mirophones i and j.time delay for a re�etive propagation path is twofold and an be de�nedusing the three points de�ned earlier with
τ(rs,oi, ri) = τ(rs,oi) + τ(oi, ri). (2.54)Furthermore, the law of re�etion states that the pieewise propagationpath has equal angles of inidene and re�etion. As it happens, ellipsoids

E2(rs, ri) with sensor and soure ating as its foi ful�ll this requirement.This does not, however, gives the expliit point of re�etion, rather than aset of points ful�lling (2.54).Given a plane P 2 the point of re�etion an be realized as
oi =

‖ projP 2rs ‖ projP 2ri+ ‖ projP 2ri ‖ projP 2rs

‖ projP 2rs ‖ + ‖ projP 2ri ‖
(2.55)where projP 2 is a point projetion on the plane P 2.For a plane p ∈ P 2

b parameterized as 2.53, the delay beomes independentof the re�etion point: τ(rs,oi, ri) = τ(rs, ri,p)Re�etive surfaes an be found by performing a searh into the plane-



40 Problem Formulationspae de�ned by 2.53 where delay di�erenes from separate soure-sensorombinations interset in the searh spae.The surfae is estimated as the maximum argument of a pseudo-likelihoodfuntion as
p̂ = argmax

p

M
∏

i,j=1

Rxi,xj
(τi,j(rs,p)), (2.56)where Rxi,xj

(τ) is the generalized ross orrelation between two reeivedsignals xi and xj , and time delay di�erenes an be alulated as
τij(rs,p) = τ(rs, ri,p)− τd(rs, rj). (2.57)This solution to re�etor loalization is an advaned solution and it makes possibleto loate many re�etors. However with the above formulation the soure positionhas to be known.L1 Regularized Room Modeling An algorithm for obtaining a room modelbased on studying the room impulse response an be found in [16℄. This algo-rithm uses a onstrained room model and l1-regularized least-squares to ahievegood estimation of room geometry. The main idea onsists in synthetially orexperimentally obtaining a set of impulse responses for a set of hypothesized wallspositions, and performing a smart searh between this set of impulse responsesin order to �nd walls positions ompatibles with the reeived signal.Authors de�ne the single wall impulse response (SWIR) h(r,θ,φ)

m (n) as the dis-rete time impulse response from the loudspeaker to the m-th mirophone,onsidering that: the diret path from loudspeaker to the mirophone hasbeen removed and the array is mounted on free spae, exept for the pres-ene of a lossless, in�nite wall with normal vetor n = (r, θ, φ) and whihontains the point (r, θ, φ). For reasonably small arrays the sound will takeapproximately the same path from the soure to eah of the mirophones,whih implies that it should with high probability re�et o� the same wallsbefore reahing eah mirophone, suh that the re�etion oe�ients will bethe same for every mirophone. We an then rewrite the SWIR h
(r,θ,φ)
m (n)



2.4 Re�etor Loalization 41related to a generi mirophone as a vetor h(r,θ,φ) of length N just largeenough to ontain the �rst order re�etions.The �rst algorithm step onsists in obtaining synthetially or experimen-tally for the array of interest a set of SWIRs, eah measured at �xed rangeover a grid A of azimuth angles, and the SWIRs ontaining only the re�e-tion from a eiling at the same �xed range. In essene this set of SWIRsarries a time-domain desription of the array manifold vetor for multiplediretions of arrival.If A is su�iently �ne, for a set of W walls, there are oe�ients ci ,

i = 1, ...,W suh that we an represent an impulse response hroom, whihhas the diret path removed and trunated to only ontain early re�etions,
hroom ≈

W
∑

i=1

cih
(r0,θi,φi). (2.58)The problem is then to �t some h(r0,θi,φi) for some value of (r0, θi, φi) to themeasured impulse response, adjusting for attenuation. In order to aom-plish this goal, the SWIRs are ordered into a matrix H and attenuationoe�ients ci are ordered into a vetor a. The solution to the problem isthen given when the orret a is found. In order to �nd a the following

l1-regularized least-squares problem should be solved
min
a

‖ hroom −Ha ‖22 +λ ‖ a ‖1 . (2.59)If we onsider only SWIRs with oe�ients [a]i larger than a given thresh-old, then we have a set of andidate walls. With a post-proessing stage,impossible solutions are disarded in order to �nd the orret one.This algorithm aim is to �nd the omplete room geometry. For this reason itsomputational omplexity is high. When searhing for a single re�etor, using amethod so omplex is not neessary.DATEMM (Raster Condition) In [13℄ authors show that by exploiting thepeak positions of the auto-orrelation funtion, the extrema positions in the ross-orrelation always appear in a ertain raster: a set of time marks with known



42 Problem Formulationdistanes between them. Fig. 2.5 shows a simple example with one soure, twosensors, and two paths per sensor. The raster in the ross-orrelation onsists of

Figure 2.5: TDOA Disambiguation: raster for one soure as shown in [13℄. Dis-tanes between peaks in ross-orrelations an be found as peaks positions inauto-orrelations.four time marks whose distanes are known from the peak positions of the auto-orrelations. By �nding this raster in the ross-orrelation, its absolute positiondetermines the desired TDOA of diret and indiret paths.For this purpose, we �rst extrat the relevant peaks from both ross- andauto-orrelations. We now onsider two TDOAs τij,µ1ν1 and τij,µ2ν2 resultingfrom the same soure where the paths to sensor i are ommon (µ1 = µ2 = µ)and one of the paths to sensor j is a diret path (ν1 = 0 or ν2 = 0). Thedistane |τij,µν1 − τij,µν2| an be found as the position of a peak in theauto-orrelation of sensor j, see Fig. 2.5. As the diret path is always theshortest, we an also determine the sign of the above di�erene and heneidentify whether ν1 or ν2 is the diret path.Continuing this raster math for all TDOA pairs, τij,00 will be most likelyidenti�ed several times as the diret path (TDOA assoiated to real soure)while all other path ombinations (µ, ν) 6= (0, 0) will at least one be iden-ti�ed as non-diret. The TDOA τij,µν identi�ed as non-diret more timesthan others, is the TDOA assoiated to image soure.This algorithm allows us to assign TDOAs extrated from ross-orrelation toimage and real soures. In Chapter 6 we better explain how to use this methodin order to solve TDOA disambiguation problem.



2.5 Conlusions 432.5 ConlusionsWe have introdued the three problems treated in the thesis: single soure loal-ization, multi-soure loalization, and re�etor position inferene. We have alsoshown the notation used in next Chapters and we have given an overview of somelassial methods found in the literature to deal with the proposed problems.In the next Chapter we outline a di�erent approah to soure loalization andinferene using geometries onsiderations and a new oordinate system. We alsointrodue the new framework for solving these problems.





Chapter 3From Measurements to ConstraintsIn the previous Chapter we have given a mathematial formulation of loalizationand re�etor inferene problems, showing also some basi algorithms based onTDOAs proposed in the literature to sort out these problems.In this Chapter we fous on the approah based on the use of homogeneousoordinates. This approah starts desribing objets suh as mirophones andsoures in a new referene frame in order to �nd other possible solutions to thealready desribed problems. We show how in the literature a solution based onworking in a 3D frame for 2D loalization is already given, and then we present anew framework in order to �nd new TOAs and TDOAs onstraints. Our aim is topresent a 3D oordinate system similarly as in [5℄, but giving a physial meaningto the third oordinate as done in [7℄, where authors introdue propagation timeas a new oordinate.After this 3D framework is presented, a set of onstraints for loalization isgiven.3.1 State of the ArtIn order to solve loalization and inferene problems, some methods using pro-jetive geometry have been proposed. These methods mainly fous on turningmeasurements like TOAs and TDOAs into onstraints ating on geometri prim-itives, namely points (soures or reeivers) and re�etors. An interesting aspetof these methods onsists in the ompat notation that they use for onstraints.In partiular, the state of the art shows that eah measurement on aousti paths



46 From Measurements to Constraintsturns out to generate a projetive onstraint that takes the shape of a quadratior a bilinear form.
3.1.1 Diret Time of Arrival ConstraintsIn [5℄ is shown how measurements of the time of arrival an be turned intoonstraints that at diretly on geometri primitives. As far as the diret signalis onerned, the quadrati form represents a onstraint on the position of souresor mirophones.The set τi , i = 0, ..., N ontains the time of arrival measured from eahmirophone in the array. Let us onsider a single measurement τi . If the soureloation rs = [xs, ys]

T is given, the time of arrival onstrains the mirophone tobe plaed on a irumferene entered on the soure loation and with radius
ρi = τi · c, where c is the sound speed. The equation of the irumferene is

(xi − xs)
2 + (yi − ys)

2 = ρ2i . (3.1)We an desribe the irumferene using a parameter vetor c = [a, b, c, d, e, f ]T .The omputation of the parameter vetor c from the knowledge of ρi and rs anbe performed in two di�erent ways:1. by omparing the expansion of equation (3.1) with the general form of aoni given by
ax2

i + bxiyi + cy2i + dxi + eyi + f = 0 (3.2)we obtain that
c =

[

1, 0, 1,−2xs,−2ys,−ρ2i + x2
s + y2s

]T
. (3.3)2. the parameter is obtained by determining the null-spae of the oe�ient
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3.1.2 Indiret Time of Arrival ConstraintsAs shown in [6℄, dealing with re�eted signal, the onstraint ats on the line onwhih the re�etor generating the aousti path lies.As a result of the measurement of the TOA we obtain a set τi of TOAs relatedto re�eted signals. Let us onsider an aousti path that links the soure loatedat rs = [xs, ys]

T and the reeiver loated at ri = [xi, yi]
T through a re�etion, asdepited in Figure 3.1. The orresponding time of arrival is τi . The re�etionpoint rp on the re�etor honors the Snell's law. Our measurement τi is the sum of

Figure 3.1: TOA, Re�etion on a Wall: An aousti path links rs and ri throughthe re�etor l. The re�etion point rp honors the Snell's law.the Time of Flight τ(rs, rp) from rs to rp and the Time of Flight τ(rp, ri) from rpto ri. Without any information exept τi , as a onsequene, we are onstraining



48 From Measurements to Constraintsthe re�etion point ri to lie on an ellipse whose foi are rs and ri and whosemajor axis is α = τic/2, where c is the sound speed. As for the irumferene, wean diretly ompute the parameter vetor c from the geometrial informationassoiated to the problem. We �rst de�ne some auxiliary variables:- the minor axis of the ellipse is
β =

1

2

√

τ 2i c
2 − [(xs − xi)2 + (ys − yi)2];- the major axis of the ellipse lies on a line whose slope is

φ = arctan

(

ys − yi
xs − xi

)

;- the ellipse has its enter in
rc =

[

xc =
1

2
(xs + xi), yc =

1

2
(ys + yi)

]T

.With these de�nitions at hand, the parameter vetor is
c =
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We observe that the onstraint that imposes the presene of the re�etion pointon an ellipse does not involve any geometri primitive. In partiular, we areinterested in �nding the line on whih the re�etor lies.In order to do so, we use an alternative method to de�ne onis. In partiular,we an rearrange the parameter vetor c = [a, b, c, d, e, f ]T in matrix form as
C =







a b/2 d/2

b/2 c e/2

d/2 e/2 f






. (3.5)



3.1 State of the Art 49If x = [xi, yi, 1]
T are the homogeneous oordinates orresponding to the point

[xi, yi]
T , the oni an be written as

xTCx = 0.If the re�etor is de�ned as all the points x = [xi, yi, 1]
T whih satisfy the ondi-tion

xT l = 0,where l = [l1, l2, l3]
T , we an de�ne the oni using the set of lines l tangent tothe oni as

lTC∗l = 0.This onstraint now ats diretly on the re�etor line l.3.1.3 Diret Time Di�erene of Arrival ConstraintsAlso TDOAmeasurements an be turned into onstraints in a projetive geometryspae [5℄.If τij is the time di�erene of arrival between the signals aquired by miro-phones ri = [xi, yi]
T and rj = [xj , yj]

T , the soure rs = [xs, ys]
T is onstrained tolie on an ellipse whose foi are ri and rj and whose axis is α = τijc/2. The pa-rameter vetor c that determines this oni an be determined by expanding theequation of a generi hyperbola with foi ri and rj and with major axis α. We�rst de�ne some variables that are useful for the determination of the parametervetor:- the enter of the hyperbola is in the point

rc =

[

xc =
xi + xj

2
, yc =

yi + yj
2

]T

; (3.6)- the "minor axis" of the hyperbola is
β =

α2 − (xi − xj)
2 − (yi − yj)

2

α
√

1− (xi−xj)2+(yi−yj)2

α2

; (3.7)



50 From Measurements to Constraints- the major axis of the hyperbola lies on a line whose slope is
φ = arctan

(

yj − yi
xj − xi

)

. (3.8)With these de�nitions at hand, the parameter vetor of the hyperbola is
c =
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3.1.4 Indiret Time Di�erene of Arrival ConstraintsIn [5℄, authors onsider a senario in whih a single re�etor is present in theenvironment and auses the presene of a re�etive aousti path that links rs to
ri and rj through a speular re�etion. The time di�erene of arrival related tothis aousti path is τij . rs = [xs, ys]

T is the soure loation, rs′ = [xs′ , ys′]
T isthe image soure loation obtained by mirroring rs over the re�etor. The versornormal to the re�etor and pointing to the half-spae ontaining rs′ is n. Thedistane between rs and the re�etor is d. Finally, ri and rj are the reeiverloations on whih the time di�erene of arrival is omputed.The onstraint on the re�etor loation is then derived as a ombination ofother two onstraints: the �rst expresses rs′ as the re�etion of rs over there�etor, while the seond is related to the measurement of the time di�erene ofarrival of the aousti path from rs to ri and rj over the re�etor. The projetiveoordinates of rs and rs′ are, respetively, x and x′. The homography that relates

x and x′ is
x′ = Hrx,where

Hr =

[

I − 2nnT 2dn

0 1

]

. (3.9)From geometri onsiderations we observe that, if rs is known, the knowledge ofthe distane d and the versor n is su�ient to univoally identify the re�etor.
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Figure 3.2: TDOA, Re�etion on a Wall: an aousti path links rs to ri and rjthrough the re�etor l. The re�etive path an be thought as generated from theimage soure rs′, obtained by mirroring rs over the re�etor.The time di�erene of arrival τij between the aousti paths rs′ri and rs′rjonstrains the image soure rs′ to lie on a hyperbola with foi in ri and rj andwith axis τijc. As a onsequene, the onstraint derived from the knowledge τijis
x′TCx = 0, (3.10)where the oni-matrixC is obtained as in indiret TOA ase from the parametervetor c used in diret TDOA ase. From previews equations we obtain

xTHT
r CHrx = 0. (3.11)We observe that if the soure position rs is known, the only unknowns in thisequation are the distane d and the versor n, embedded into the matrix Hr.3.2 Problem ReformulationSine now, using homogeneous oordinates, objets in a 2D spae (soures, miro-phones, ...) have been turned into objets in a 3D spae, but no spei� meaningto the third oordinate was given. However it is possible to use a 3D workingspae giving a physial interpretation to the third oordinate in order to betterunderstand the new obtained onstraints.



52 From Measurements to ConstraintsLet us onsider an array omposed by N +1 mirophones on a plane, loatedat [xi, yi]
T , i = 0, ..., N . The soure is loated on the same plane at [xs, ys]

T .If the soure sends a signal at time ts ,and the i-th mirophone reeives it at
ti, we an represent the mirophones in a 3D spae at [xi, yi, ti]

T , i = 0, ..., Nand the soure at [xs, ys, ts]
T . In this new 3D spae, x and y represent the realobjets loation on the plane where they lie, and the third oordinate representsthe signal propagation time, so that points with same t are points reeiving thesignal simultaneously.In this senario the time of arrival (TOA) from the soure to the i-th miro-phone is given by τi = ti − ts, while time di�erene of arrival (TDOA) betweenmirophones i and j is given by τij = ti − tj for i 6= j.Without loss of generality it is possible to multiply the t oordinate by a salefator c orresponding to sound speed. In this new oordinate system, all the threeoordinates (x, y, z = t · c) represent distanes. Mirophones are then loated at

ri = [xi, yi, zi]
T , i = 0, ..., N and the soure is loated at rs = [xs, ys, zs]

T . In thisnew frame the di�erene zi − zs represent the distane from the i-th mirophoneto the soure, while zi − zj for i 6= j is the di�erene between distanes from i-thmirophone to the soure and j-th mirophone to the soure.

Figure 3.3: New Set of Coordinates: x and y represent the real objets loationon the plane where they lie, while z is proportional to signal propagation time.If the propagation medium is isotropi and homogeneous, the signal propa-



3.2 Problem Reformulation 53gating in a 2D spae is desribed by a irle entered on the soure loation withradius inreasing over time. In the new 3D spae, any time instant orrespondsto a z value, so for any radius value the irle lies on a spei� plane parallel tothe xy plane with z oordinate inreasing with radius. These irles gives birthto a one with apex in rs and 45◦ angular aperture, and all the points ri areonstrained to lie on this one (Figure 3.4) desribed by
(x− xs)

2 + (y − ys)
2 = (z − zs)

2. (3.12)

Figure 3.4: TOA Cone: the one desribes the signal propagating from the soureloated in rs, every mirophone is onstrained to lie on this one. r1 and r2represent two mirophones.
3.2.1 Diret Time of Arrival ConstraintsLet us onsider the ase in whih we have TOAs measurements for eah miro-phone. We an set the oordinate system referene so that zs = 0. The valuesassumed by zi are then diretly proportional to TOAs

zi = c · τi , i = 0, ..., N (3.13)



54 From Measurements to Constraintswhere τi represents the TOA measurement at the i-th mirophone. It is thenpossible to write the following ondition for eah mirophone
zi =

√

x2
i + y2i = c · τi , i = 0, ..., N . (3.14)In order to estimate the soure loation [xs, ys]

T we should �nd the equation ofthe one passing through the points [xi, yi, zi]
T aording to the onstraints

(xi − xs)
2 + (yi − ys)

2 = z2i

= (c · τi)2 , i = 0, ..., N.
(3.15)3.2.2 Indiret Time of Arrival ConstraintsIf only one re�etor is present, every mirophone reeives both the diret andthe re�eted signal. The re�eted signal an be modeled as the signal sent froman image soure obtained mirroring the real soure through the re�etor. There�etor loalization problem an then be solved if both the real and image soureloations are found.A simple solution of the problem is then provided in a few steps. We use thediret TOA onstraints on diret signal in order to �nd the real soure loation,and the diret TOA onstraints on re�eted signal in order to �nd the imagesoure loation. Then we derive the re�etor loation on the plane as the lineperpendiular to the segment joining the two soures passing from the middlepoint of this segment.3.2.3 Diret Time Di�erene of Arrival ConstraintsLet us onsider the ase in whih we have TDOAs measurements for eah pairof mirophones. We an set the oordinate system origin to r0, so that zi valuesare diretly proportional to TDOAs referred to the mirophone loated at r0

zi = c · (τi + ts)

= c · (τi + t0 − τ0)

= c · (τi − τ0)

= c · τi0 , i = 1, ..., N

(3.16)where τi0 is the TDOA between the i-th mirophone and the referene one.



3.3 Conlusions 55Compared to the TOA ase, now we have one additional unknown parameter,
zs. For this reason we should estimate all the rs omponents. In order to �nd
rs we onstrain one more a one to pass through the point ri , i = 0, ..., Nobtaining the following onditions

(xi − xs)
2 + (yi − ys)

2 = (zi − zs)
2

= (c · τi0 − zs)
2 , i = 0, ..., N.

(3.17)3.2.4 Indiret Time Di�erene of Arrival ConstraintsAs with indiret TOA, when only one re�etor is present, eah mirophone re-eives both the diret and the re�eted signal. One more the re�eted signal anbe modeled as a signal reeived from an image soure, and an be distinguishedfrom the diret one.We an then use the diret TDOA onstraints on both signals in order to �ndthe real and image soure loations. One the soures are loated, we an �ndthe line representing the re�etor on the plane. This line is perpendiular to thesegment joining the real soure to the image one and passes through the segmentmiddle point.3.3 ConlusionsIn this Chapter we have shown how it is possible to perform soure loalizationor inferene working in a di�erent spae, in partiular a 3D spae. We have�rst desribed methods found in the literature, then we have proposed a novelapproah in order to work in a new framework giving a meaning to all the threeoordinates.With this novel approah we have desribed a set of new onstraints forTDOAs and TOAs measurements. Now we an show algorithms that make use ofthese new onstraints so as to sort out soure loalization or inferene problems.





Chapter 4From Constraints to LoalizationIn the previous Chapters we have shown how soure loalization and re�etorinferene problems from TOAs or TDOAs measurements an be formulated, howthey are treated in the literature and how they an be solved using the homoge-neous oordinate spae.In this Chapter we disuss new TDOAs loalization algorithms whih makeuse of geometri onstraints presented in the previous Chapter. These algorithmsan be easily applied also to TOAs senario. Some piees of information aboutfavorable mirophone arrays displaement are then given.4.1 AlgorithmsAs shown in the previous Chapter, soure loalization problem from TOAs andTDOAs measurements is solved when the apex of a speial one is found. Theone equation is
(x− xs)

2 + (y − ys)
2 − (z − zs)

2 = 0. (4.1)but with noisy zi measurements, the points ri will not lie on this one. We anmodel TOAs and TDOAs measurements as
τ̂i = τi + εi

τ̂ij = τij + εij
,where τi and τii represent noiseless measurements, and εi and εij are additivenoise terms.



58 From Constraints to LoalizationThe following proposed algorithms are mainly methods to build a ost funtionbased on the one idea. This funtion should then be minimized in order to �ndthe apex of the one at minimal distane from the points ri. Di�erent ostfuntions are based on di�erent distane de�nitions.4.1.1 Cost Funtion Based on the Cone EquationThis algorithm is based on the idea that every point ri is supposed to lie on theone of equation 4.1. The error for eah mirophone is de�ned as
εc,i = (xi − xs)

2 + (yi − ys)
2 − (zi − zs)

2 , i = 0, ..., N. (4.2)The soure oordinates are then given by
rs = min

rs

(

N
∑

i=0

ε2c,i

)

= min
rs

(

εTc εc
) (4.3)where

εc =













εc,0

εc,1...
εc,N













. (4.4)In order to e�iently minimize this funtion, a method based on Taylor seriesexpansion is proposed, following the same idea of [3℄ and [19℄. The error vetor
εc an be written, using Taylor series expansion about a referene point rs,0 =

[ xs,0 ys,0 zs,0 ]T , as
εc ≃ εc|rs,0

+∇εc|rs,0
· (rs − rs,0) (4.5)where

∇εc =













∂εc,0
∂xs
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∂ys

∂εc,0
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∂xs
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, rs − rs,0 =







xs − xs,0

ys − ys,0

zs − zs,0






(4.6)
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∂εc,i
∂xs

= −2(xi − xs)

∂εc,i
∂ys

= −2(yi − ys)

∂εc,i
∂zs

= 2(zi − zs).

(4.7)The 4.3 an then be written as
rs = min

rs

{

[

εc|rs,0
+∇εc|rs,0

· (rs − rs,0)
]T [

εc|rs,0 +∇εc|rs,0 · (rs − rs,0)
]

}

= rs,0 −
(

∇εTc |rs,0
· ∇εc|rs,0

)

−1∇εTc |rs,0
· εc. (4.8)The solution an be iterated as

rs,v+1 = rs,v −
(

∇εTc |rs,v
· ∇εc|rs,v

)

−1∇εTc |rs,v
· εc (4.9)where v + 1 is the step number. We an onsider the �nal soure estimate rs asthe point rs,v+1, when |rs,v+1 − rs,v| it is less than or equal to a given threshold.

4.1.2 Cost Funtion Based on the Cone ApertureAs shown in the previous Chapter, the one we are looking for has a 45◦ apertureangle. In order to have this 45◦ aperture angle, the distane from point ri onone surfae to one axis (l1) should be equal to the distane from the apex tothe point on the axis with third oordinate equal to zi (l2) as shown in Figure4.1. This information an then be used in order to de�ne a new error
εa,i = l1 − l2 =

√

(xi − xs)2 + (yi − ys)2 − (zi − zs) , i = 0, ..., N. (4.10)We notie that if l1 in equation 4.10 is equal to l2, the error is zero, onverselyan error ours and the one does not �t the given points ri.The soure oordinates are then given by
rs = min

rs

(

N
∑

i=0

ε2a,i

)

= min
rs

(

εTa εa
) (4.11)
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Figure 4.1: Cone Aperture Constraint: if the aperture angle measures 45◦, thebold lines in �gure l1 and l2 should be equal in length. rs represents the soureposition, and ri is the i-th mirophone.where
εa =













εa,0

εa,1...
εa,N













. (4.12)
For the minimization of the ost funtion used in eq. 4.11, the Taylor seriesbased method already seen (eq. 4.8) an be used.

rs = min
rs

{

[

εa|rs,0 +∇εa|rs,0
· (rs − rs,0)

]T [
εa|rs,0 +∇εa|rs,0 · (rs − rs,0)

]

}

= rs,0 −
(

∇εTa |rs,0
· ∇εa|rs,0

)

−1∇εTa |rs,0
· εa. (4.13)where
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(4.14)
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∂εa,i
∂xs

= − (xi−xs)
√

(xi−xs)2+
√

(yi−ys)2

∂εa,i
∂ys

= − (yi−ys)
√

(xi−xs)2+
√

(yi−ys)2

∂εa,i
∂zs

= 1.

(4.15)
The solution an be obtained iteratively as in eq. 4.9.4.1.3 DisussionThe ost funtions we deal with are both based on one equation 4.1. For thisreason they are very similar.The most notieable di�erene is given by the use of the square root for theCone Aperture error de�nition εa,i (equation 4.10). However, εc,i is di�erent fromthe square of εa,i. In fat, if we ompute ε2a,i we obtain
ε2a,i = (xi−xs)

2+(yi−ys)
2+(zi−zs)

2+2
√

(xi − xs)2 + (yi − ys)2(zi−zs), (4.16)whih has only some terms in ommon with
εc,i = (xi − xs)

2 + (yi − ys)
2 − (zi − zs)

2. (4.17)This is why the Taylor series expansions of the two ost funtions are di�erent.Partiularly, we notie that when omputing the terms
∂εa,i
∂xs

= − (xi−xs)
√

(xi−xs)2+
√

(yi−ys)2
,

∂εc,i
∂xs

= −2(xi − xs),
(4.18)the �rst one is a normalized version of the seond one. This happens also to theterms related to y oordinate.The other main di�erene onsists in the derivative term related to z oordi-nate. In this ase we notie that when omputing

∂εa,i
∂zs

= 1,
∂εc,i
∂zs

= 2(zi − zs),
(4.19)



62 From Constraints to Loalizationthe �rst term does not take aount of zi or zs.Now that we have notied these di�erenes, it makes sense to ontinue usingboth ost funtions, in order to see with simulations and experiments how thesedi�erenes a�et results.4.2 Degenerate Geometry CharaterizationWith the shown algorithms, the solution is obtained �tting given points (ri) witha one. Some points displaements are more likely to produe better results thanothers, beause they sample the one in a better way. It is obvious that if wehave many points, but all near in spae, they sample only a little portion of theone, and it is more di�ult to �nd the orret one passing through these pointswhen noise is present.Point loations depend only on soure and mirophones loations. It is thennatural that the found solution to the loalization problem is strongly dependenton mirophones displaements around soure. For this reason in order to knowif these algorithms an be used with a partiular array, it is important to �ndfavorable and degenerate geometries.We �rst present the mathematial problem of �nding a one equation givensome points, and then we disuss some tested geometries.4.2.1 Mathematial ApproahIn order to �nd the minimumnumber of onstraints needed to loalize a soure, wemake some onsiderations related to the mathematial approah to one �tting.We need to onstrain a one of equation
(x− xs)

2 + (y − ys)
2 − (z − zs)

2 = 0 (4.20)to pass for given points ri's, in order to �nd xs and ys. Expanding the equationof the one leads to
x2 + y2 + z2 − 2xsx− 2ysy + 2zsz + x2

s + y2s − z2s = 0, (4.21)
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[

x2, y2, z2, x, y, z, 1
]
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= 0. (4.22)
We an then solve the following system
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s + y2s − z2s



























= 0. (4.23)
in order to �nd the unknowns xs, ys and zs.We notie that only three non ollinear points ri are needed. In fat the onewe are searhing for has less degrees of freedom than a generi one. This is dueto the fat that we onstrain the axis to lie on a line whose orientation is known(perpendiular to xy plane), and the aperture angle is onstrained to be 45◦.4.2.2 Case StudiesWe have just shown that at least three non ollinear points are needed in orderto loalize the vertex of the one, so we an use arrays of three mirophones, ormore in order to overome noise. As mentioned before, also array geometry isimportant in order to sample the one and use one algorithms.For this purpose we show how ost funtions used in equation (4.3) and equa-tion (4.11) hange using a ross array, a irular array, and a squared array whenthe soure is plaed in di�erent positions respet to the array. The three arraygeometry are shown in Figure 4.2.
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() Cirular ArrayFigure 4.2: Tested Arrays: (a) is the square arreay, (b) is the ross array, and() is the irular array. Dots represent mirophones on xy plane where soure ismoved. All measures are in meters.Cost funtions related to di�erent geometries for a soure at [xs, ys] = [1,−0.5]are shown in Figure 4.3.We notie that with the square array, both ost funtions are monotoniallyderesent in a big area around the minimum. Using a ross or irular arrayleads to funtions di�ult to minimize. This is due to the fat that the squarearray over a big area on xy plane and the soure lies in this area. In this waymirophones sample the one in a better way, taking one points all around oneaxis. If the one is sampled only from a side and not all around the axis, �ndingthe one equation from samples beome more di�ult.Another good aspet of the used square array is that mirophones are far fromeah other. In Figure 4.4 we show how ost funtions behave when the soure isloated outside the square array area ([xs, ys] = [3, 4]).We an notie that also if soure is loated outside the area overed by miro-phones, the minimum is easy to be found. In fat taking mirophones far fromeah other, we ensure a better one sampling.In onlusion the best solution seems to be given by the square array withmirophones far from eah other, beause the soure is fored to lie within thearray area and mirophones sample far points.



4.2 Degenerate Geometry Charaterization 65

−2

−1

0

1

2 −2

−1

0

1

2

−2.5

−2

−1.5

−1

−0.5

0

y [m]
x [m]

z 
[m

]

10^−0.5

10^0

10^0.5

10^1

10^1.5

(a) Cone Aperture (irular) −2

−1

0

1

2 −2

−1

0

1

2

−2.5

−2

−1.5

−1

−0.5

0

y [m]
x [m]

z 
[m

]

10^−2

10^−1

10^0

10^1

10^2

10^3

(b) Cone Equation (irular)
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(f) Cone Equation (square)Figure 4.3: Cost Funtions: Cone Aperture and Cone Equation ost funtionsfor irular (a) (b), ross () (d), and square (e) (f) arrays in logarithmi sale.The small dots represent arrays loations on xy plane, the big dot entered inthe blak area represents ost funtion minimum. We notie that in (e) and (f)the minimum is well loalized. For this reason we prefer the square array whenused with one-based algorithms.
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(b) Cone Equation (square)Figure 4.4: Soure Outside Array Area: also if soure does not lie into arrayovered area, Cone Aperture (a) and Cone Equation (b) ost funtions have anabsolute minimum well de�ned. Small dots represent arrays loations on xyplane, the big dot represents ost funtion minimum.4.3 ConlusionsIn this Chapter we showed how to use one onstraints in order to �nd a solutionto loalization problem. We also showed that at least three mirophones (points)are needed in order to �nd the one and thus the soure loation, and that somegeometries are more favorable than others. Next step onsists in extending thesealgorithms in order to infer information about re�etors, using information ofre�eted signal.



Chapter 5Extension to Multi-SoureLoalization
In previous Chapters we have only onsidered the presene of one soure at atime for the loalization problem.In this Chapter we show how we an deal with the multi-soure ase with one-based algorithms, onsidering the ase of two soures emitting di�erent signals.Algorithms an be easily extended to work with more than two soures.We �rst give a brief overview of data model in order to understand TDOAsdisambiguation problem. Finally we present algorithms to overome this problemand loalize the two soures.
5.1 Data ModelDealing with more than one soure, we have already shown in Chapter 2 that thesignal reeived from i-th mirophone is

xi(t) =
M
∑

a=1

ha,isa(t− τa,i), (5.1)where eah of M soures emits the white gaussian signal sa(t) , a = 1, ...,M ,
ha,i is the attenuation term and τa,i is the time of arrival from soure a to the
i-th mirophone.
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Figure 5.1: Multi-Soure Cross-Correlation: a simple setup with two miro-phones (ri,rj) and two soures (rs1,rs2). Time of arrival for eah ouple soure-mirophone is represented by τa,i. An example of how ross-orrelation should beis also given.The ross-orrelation funtion of two sensors signals xi(t) and xj(t)

rij(τ) = E[xi(τ + t0)xj(t0)] (5.2)exhibits a peak for eah soure, as shown in Figure 5.1. In partiular the peaksare loated at τa,ij = τa,i − τa,j , a = 1, ...,M .5.2 TDOA DisambiguationAs shown in Chapter 2, we an measure TDOAs from ross-orrelation peaks, butwe do not know whih soure eah TDOA belongs to. This problem is referredto as TDOA disambiguation problem.For one-based algorithms, the solution with four mirophones on the vertiesof a retangle is a good array solution. In this situation, if only a few soures arepresent in a non reverberant room, the TDOAs ombinations are few.For example, let us onsider the ase of having two soures and four miro-phones as in Figure 5.2, and we work with a referene mirophone. If we all
τa,i the TOA from soure i to mirophone j, and τa,ij the TDOA omputed as
τa,i − τa,j , the possible TDOAs ombinations are only four:1. [τ1,01, τ1,02, τ2,03] for a soure, and [τ2,01, τ2,02, τ1,03] for the other;
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Figure 5.2: Multi-Soure TDOAs; τa,i represents time of arrival from soure a tomirophone i, ri for i = 0, ..., 3 represent mirophones, and rs1 and rs2 are thetwo soures. All the diret paths are drawn.2. [τ1,01, τ1,02, τ1,03] for a soure, and [τ2,01, τ2,02, τ2,03] for the other;3. [τ1,01, τ2,02, τ1,03] for a soure, and [τ2,01, τ1,02, τ2,03] for the other;4. [τ1,01, τ2,02, τ2,03] for a soure, and [τ2,01, τ1,02, τ1,03] for the other.It is obvious that only the seond ombination leads to the orret soure loal-ization, while the others lead to wrong soures loations. Working with so fewTDOAs ombinations, we propose a method based on the evaluation of one-based ost funtions, in order to selet the orret TDOAs ombination.Of ourse if the number of soures inreases, a brute fore method an notbe used anymore. For this purpose we also show a method based on DATEMMonsideration about zero-sum ondition, already brie�y desribed in Chapter 2.5.3 AlgorithmsIn this Setion we �rst show a brute fore algorithm whih an be used underideal onditions and when only a few soures and mirophones are present, thenwe also propose a more realisti and robust algorithm based on DATEMM.



70 Extension to Multi-Soure LoalizationBrute Fore Approah The algorithm is based on the idea that both ConeAperture and Cone Equation ost funtions should be minimized in order to �nda soure loation. This means that the more the ost funtion approahes the 0value, the more the probability of orretly �nding a soure inreases.We an then use a one algorithm to loate a andidate soure position foreah TDOAs ombination. Then we an easily �nd whih ombination is theorret one just by omparing the ost funtion values.The algorithm is so omposed by a few steps. For the ase of two souresand four mirophones these steps are desribed in Algorithm 1. Cost funtionsde�nitions for the above ase are also given in Algorithm 1.Algorithm 1 Brute Fore Approah Algorithm: following these steps we anloalize the two soures positions evaluating eah TDOAs pair.1: we ompute TDOAs from ross-orrelations of signal reeived by miro-phones;2: we ompute every TDOAs ombination;3: we apply a one-based algorithm to every TDOAs ombination in order to�nd possible soures loations rs1 and rs2;4: we evaluate the one ost funtion for every TDOAs ombination and souresloations found as
J =

3
∑

i=0

(

(xi − xs1)
2 + (yi − ys1)

2 − (zi − zs1)
2+

(xi − xs2)
2 + (yi − ys2)

2 − (zi − zs2)
2
)

(5.3)if we are using Cone Equation algorithm, or
J =

3
∑

i=0

(

√

(xi − xs1)2 + (yi − ys1)2 − (zi − zs1)+

√

(xi − xs2)2 + (yi − ys2)2 − (zi − zs2)
)

;

(5.4)if we are using Cone Aperture one;5: we hoose as orret soure loations those who give the minimum value ofthe ost funtion J .Zero-Sum Condition A smarter solution is given by working on TDOAs om-binations, in order to disard all the wrong ones before applying a loalizationalgorithm.



5.3 Algorithms 71For this purpose we propose a slightly modi�ed version of DATEMM algo-rithm, in order to simplify it. In fat we are not onsidering the ase of a rever-berant room, and we have �xed the number of used mirophones to four. Forthis reason we do not need to use the full algorithm.In the ideal ase, using two soures, we should �nd two peaks for eah ross-orrelation. Working with four mirophones, we need to ompute six ross-orrelations, one for eah mirophones pair.The zero-sum ondition states that for eah mirophones triplet, the sum ofthe three TDOAs assoiated to a soure and these mirophones should be zero.Also the sum of TDOAs between all four mirophones should sum to zero, if theyare assoiated to the same soure.

Figure 5.3: Multi-Soure DATEMM: TDOAs graph for a four mirophones andtwo soures setup. ri for i = 0, ..., 3 represent mirophones, eah branh repre-sents a TDOA from a soure to the two linked mirophones. In this ase we haveassoiated TDOAs belonging to soure number one to eah branh. This way thegraph verify the zero-sum ondition.For example, for the on�guration of four mirophones and two soures, wean build a graph for eah soure (Figure 5.3) where nodes represent mirophones,while branhes represent TDOAs to the linked mirophones for the onsideredsoure.



72 Extension to Multi-Soure LoalizationAording to Figure 5.1 we an de�ne all the TDOAs for the �rst soure as
τ1,01 =τ1,0 − τ1,1,

τ1,12 =τ1,1 − τ1,2,

τ1,23 =τ1,2 − τ1,3,

τ1,30 =τ1,3 − τ1,0,

τ1,31 =τ1,3 − τ1,1,

τ1,20 =τ1,2 − τ1,0.In this ase, if we assoiate the orret TDOAs to the onsidered soure, theonditions to be satis�ed for triplets and for the four mirophones are1. τ1,01 + τ1,12 + τ1,20 = (τ1,0 − τ1,1) + (τ1,1 − τ1,2) + (τ1,2 − τ1,0) = 0;2. τ1,12 + τ1,23 + τ1,31 = (τ1,1 − τ1,2) + (τ1,2 − τ1,3) + (τ1,3 − τ1,1) = 0;3. τ1,23 + τ1,30 − τ1,20 = (τ1,2 − τ1,3) + (τ1,3 − τ1,0)− (τ1,2 − τ1,0) = 0;4. τ1,30 + τ1,01 − τ1,31 = (τ1,3 − τ1,0) + (τ1,0 − τ1,1)− (τ1,3 − τ1,1) = 0;5. τ1,01+τ1,12+τ1,23+τ1,30 = (τ1,0−τ1,1)+(τ1,1−τ1,2)+(τ1,2−τ1,3)+(τ1,3−τ1,0)

= 0.If we �nd the set of TDOAs respeting all the �ve onditions, we have founda set of TDOAs referred to the same soure.If we an not �nd this ombination, we searh for a ombination of TDOAsrespeting only ondition �ve, beause if we �nd this ombination, we an deriveall the TDOAs from the four external ones.If we annot �nd this ombination, it means that we have not orretly ex-trated peaks from ross-orrelations. In this ase we need to study mirophonestriplets in order to restore missing peaks.Table (5.1) explains when we an use zero-sum ondition in order to �ndmissing peaks supposing that only a ross-orrelation between the six omputedis orrupted. The algorithm steps are summarized in Algorithm 2.
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Algorithm 2 Zero-Sum Condition Algorithm: following these steps we an easily�nd whih TDOAs ombinations respet the zero-sum ondition.1: we ompute all the ross-orrelations and extrat two peaks for eah one.2: we searh for a TDOAs ombination respeting all the zero-sum onditions(onditions from one to �ve) imposing that TDOAs sums should not exeeda given threshold.3: if this ombination does not exist then4: we searh for a ombination whih respets at least ondition �ve.5: if no ombinations respet ondition �ve then6: we searh for a ombination leading to a ase shown in Table (5.1).7: if this ombination is found then8: we restore the orrupted TDOA aording to Table (5.1).9: end if10: end if11: end if12: if one or more ombinations respet the zero-sum ondition then13: we pik the one whose sum is loser to zero, and we have the TDOAsassoiated to a soure.14: else15: the algorithm exits with no suess.16: end if
Table 5.1: Zero-Sum Restoration: this table shows the relation between zero-sumonditions. When only one TDOA between τ1,01, τ1,12, τ1,23, τ1,30 is orrupted, itan be still restored.Cond 1 Cond 2 Cond 3 Cond 4 Cond 5 Wrong Peak Restoredyes yes yes yes yes -no yes yes no no τ1,01 = −(τ1,12 + τ1,20)respeted no no yes yes no τ1,12 = −(τ1,23 + τ1,31)yes no no yes no τ1,23 = −(τ1,12 + τ1,31)yes yes no no no τ1,30 = τ1,31 − τ1,01



74 Extension to Multi-Soure Loalization5.4 ConlusionsWe have shown in this Chapter that we an use a brute fore method, or a morerobust algorithm based on DATEMM in order to overome TDOA disambiguationproblem. The shown algorithms work when ross-orrelations have a number ofpeaks equal to the number of soures. In pratie this ondition is satis�ed whensoures are independents and emit di�erent signals.In the next Chapter we show how to solve TDOA disambiguation when twosynhronized soures emit the same signal whih is the ase found studying theinferene problem.



Chapter 6Appliation to Re�etorLoalizationIn the previous Chapters we have presented some algorithms used for soureloalization problem when mirophones reord the signal emitted by one audiosoure or several ones in a dry room. However, if a re�etor is present in thesene eah mirophone reord the diret and indiret signal. As mentioned inChapter 2, the presene of the re�eted signal an be treated with the imagesoure tehnique. In doing so, we deal with a situation similar to the multi-soure one, where the seond soure in the sene is the image soure.In this Chapter we �rst show problematis derived from having TDOAs fromdiret and indiret path, and then we show how algorithms previously presentedan be easily adapted to re�etor loalization.6.1 Diret and Indiret PathsIf only a re�etor is present, eah mirophone reords the diret signal and there�eted one. For a single soure signal propagating on two paths to mirophone
i, we obtain the signal

xi(t) = hi,0s(t− τi,0) + hi,1s(t− τi,1), (6.1)where s(t) is the soure signal, hi,0/1 and τi,0/1 are the amplitude and delay ofdiret/indiret path between the soure and i-th mirophone (Figure 6.1). If s(t)
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Figure 6.1: Diret and Indiret Path: rs is the real soure, ri and rj are twomirophones, and l is the line where the re�etor lies. The diret paths TOAsare τi,0 and τj,0, the indiret path TOAs are τi,1 and τj,1.is zero mean and white, the ross-orrelation rij(τ) = E[xi(τ + t)xj(t)] betweenthe two mirophones signals xi(t) and xj(t) will exhibit up to four extrema atTDOA positions
τij,µν = τi,µ − τj,ν, µ, ν ∈ {0, 1}. (6.2)However there is a di�erene between this ase and multi-soure one previouslyanalyzed. Sine the two soures emit the same signal, the number of peaks inross-orrelation funtion inreases. We an then work as if two soures werepresent, the real soure and the image one, but keeping in mind that they aresynhronized and emit the same signal.As an example, working with one soure, four mirophones, and one re�etor,leads up to four peaks for eah of the six ross-orrelations. Computing all thepossible ombinations of TDOAs in order to use a brute fore algorithm as theone shown for multi-soure loalization is now a long operation.In order to assign the orret peaks to real and image soures we use a methodbased on onsiderations about peaks position in ross- and auto-orrelation madein [13℄.The ross-orrelation extrema appear at well-de�ned distanes, whih an be



6.1 Diret and Indiret Paths 77predited by the extrema positions in the auto-orrelations. Let
xi(t) = hi,0s(t− τi,0) + hi,1s(t− τi,1),

xj(t) = hj,0s(t− τj,0) + hj,1s(t− τj,1),
(6.3)be two mirophone signals. The autoorrelations rii and rjj show, in addition tothe zero-lag extrema rii(0) and rjj(0), four other extrema at the positions

τii,10 = τi1 − τi0,

τii,01 = τi0 − τi1,

τjj,10 = τj1 − τj0,

τjj,01 = τj0 − τj1.

(6.4)
They oinide with the di�erenes of the ross-orrelation extrema

τii,10 = τi1 − τi0 = (τi1 − τj0)− (τi0 − τj0)

= τij,10 − τij,00 > 0,

τjj,10 = τj1 − τj0 = (τi1 − τj0)− (τi1 − τj1)

= τij,10 − τij,11 > 0.

(6.5)
This ondition is referred to as the raster ondition.Sine the diret path always has the shortest delay, τii,10 and τjj,10 are positive.This implies for the sensor i that the ross-orrelation extremum τij,1x of the ehopath is always right to the extremum τij,0x of the diret path 0. In ontrast, forthe seond sensor j, the extremum of the eho path is left to the extremum ofthe diret path. In Figure 6.2, these relationships are illustrated by the arrowsbelow rij .We onlude that eah arrow points from the diret path extremum to theeho path extremum for the orresponding sensor. Clearly, the diret path TDOA
τij,00 is that extremum in rij whih shows only arrow tails, while the indiret pathTDOA τij,11 shows only arrowheads.This raster mathing approah ombines the extremum positions of both auto-and ross-orrelations and enables us to identify the desired diret path TDOA
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Figure 6.2: Raster Condition: the two auto-orrelations of signal reeived bymirophones i and j on the left, and the ross-orrelation of this two signals on theright. In �nding whih di�erenes between ross-orrelation peaks oinide withextrema positions of auto-orrelations, and taking aount of these di�erenessigns, we an understand whih ross-orrelation peak is the TDOA of diretpath, and whih is the TDOA of the indiret path.6.2 AlgorithmsWhen TDOAs related to real and image soures are separated, we deomposere�etor loalization problem into separate soure loalization problems. In fatas soon as real and image soures are loated, the re�etor is onstrained to lieon the line perpendiular to the segment joining the two soures and passing forits middle point (Figure 6.3).For this reason the problem is solved in three steps:- �rst TDOAs are extrated from ross-orrelation peaks using the rasterondition,- then real and image soure are loated with either Cone Equation or ConeAperture algorithms,- �nally the loation of the re�etor is found.In order to extrat TDOAs we proeed with the following steps:
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Figure 6.3: Re�etor Geometry: rs is the real soure, r′

s is the image soure rpis the re�etion point, and l is the line where the re�etor lies.- we ompute auto-orrelations for eah mirophone,- we ompute ross-orrelations for eah mirophone pair,- we apply the raster ondition to eah ross-orrelation in order to �nd diretand indiret path peaks.Applying the raster ondition simply means omputing the di�erene betweenevery ross-orrelation peaks pairs, and searh for those peaks whose loationdi�erenes orrespond to an autoorrelation peak loation.After these few steps we have TDOAs assigned to real and image soures, andwe an proeed applying a one-based algorithm for soure loalization. Afterthis seond step, we an �nally derive the re�etor position.As we show in Chapter 2, in order to de�ne the line where the re�etor lies,only two parameters are needed (m and q). In order to �nd these two parameters,we refer to the geometry depited in Figure 6.3.The re�etion point rp, whih is known to be the middle point of line joining
rs and rs′, an be found from real and image soure loation as

rp =

[

xs + xs′

2
,
ys + ys′

2

]T

. (6.6)



80 Appliation to Re�etor LoalizationThe angular oe�ient of the line joining rs and rs′ is
m′ =

ys − ys′

xs − xs′
. (6.7)The re�etor line is perpendiular to line joining real and image soures, so itsangular oe�ient is

m = − 1

m′
= −xs − xs′

ys − ys′
. (6.8)In order to �nd the parameter q, we impose that the line y = mx + q passesthrough the point rp, and we obtain

q =
ys + ys′

2
−m · xs + xs′

2
. (6.9)6.3 ConlusionsIn this Chapter we have shown that it is possible to use one-based algorithmsalso in presene of one re�etor. We have �rst shown that TDOAs disambiguationan be solved with a simple method found in the literature in this ase. Thenwe have desribed how to perform re�etor inferene from these pre-proessedmeasurements.Now that we have shown all the algorithms, we an fous on simulations andexperimental results for validation purposes.



Chapter 7Experimental ResultsIn this Chapter we show simulation and experimental results obtained using theshown algorithms. These results are ompared to those obtained by using lo-alization algorithms found in the literature in order to justify the proposedapproah.First we present the hardware used in laboratory for experiments. Then weshow results for simulations and experiments on single and multi-soure loaliza-tion problem. Finally we show simulations for re�etor loalization algorithms.7.1 Experimental HardwareThe hardware we use in our experiments inludes one small loudspeaker (Figure7.1a and 7.1b) (for single soure ases), an otagonal speaker array (for multi-soure purpose) and several mirophones (Figure 7.1 and 7.1d), obviously to-gether with a sound ard onneted to a omputer. The single loudspeaker needsto be powered by an ampli�er. When we use only one soure, we move it by handin order to perform more tests and reord multiple aquisitions. For multi-soureexperiments, we light on and o� di�erent pairs of soures from the array.Reeivers are "Beyerdynami MM1" mirophones whose spei�ations aredesribed in Table 7.1. We use 4 of them for eah experiment �xed on di�erentbars. Main features of these mirophone are:- Linear Frequeny response- Omnidiretional Polar Pattern
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(a) Loudspeaker(zooming). (b) Loudspeaker(top view).

() Mirophones(zooming). (d) Mirophones(on�guration).Figure 7.1: Used Hardware: some examples of hardware.- Calibrated Open Ciruit Voltage- Narrow Tubular ConstrutionThe analog-to-digital/digital-to-analog onverter, whose spei�ation are widelydesribed in Tables 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, is an "Aurora Lynx 16" and it isused together with the "Fousrite Otopre LE" soundard.This soundard allows several sampling frequenies: 44.1, 48, 88.2, 96, 176.4,192 kHz. We work to 44.1 kHz, to hek the e�etiveness of the algorithm in theworst ase.
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Table 7.1: Experimental setup: mirophone spei�ations.Model Beyerdynami MM1Operating priniple PressureTransduer type Condenser (bak eletret)Operating priniple PressurePolar pattern Omnidiretional, di�use�eld alibratedOpen iruit voltage at 1kHz (0dB = 1V/Pa) 15 mV/Pa (= -36.5 dBV)
±1 dBNominal impedane 330 ohmLoad impedane 2.2 kohmConnetor 3-pin XLRLength 133 mmShaft diameter 19 mmHead diameter 9 mmWeight without able 88 gFrequeny response 20 - 20.000 Hz (50 - 16.000Hz ±1.5 dB)Max. SPL at 1 kHz 128 dBS/N ratio rel. to 1 Pa > 57 dBA-weighted equivalent SPL approx. 28 dB(A)Power supply 12 - 48 V phantom powerCurrent onsumption approx. 3.4 mA
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Table 7.2: Experimental setup: Aurora Lynx 16 spei�ations (Analog I/O).Analog I/OAurora 16 Sixteen inputs and sixteenoutputsType Eletronially balaned orunbalanedLevel +4 dBu nominal / +20 dBumax. or -10 dBV nominal /+6 dBV maxInput Impedane Balaned mode: 24 kohmUnbalaned mode: 12 kohmOutput Impedane Balaned mode: 100 ohmUnbalaned mode: 50 ohmOutput Drive 600 ohm impedane, 0.2µFapaitaneA/D and D/A Type 24-bit multi-level, delta-sigma

Table 7.3: Experimental setup: Aurora Lynx 16 spei�ations (Analog In Per-formane).Analog In PerformaneFrequeny response 20 Hz - 20 kHz, +0/-0.1 dBDynami range 117 dB, A-weightedChannel rosstalk -120 dB maximum, 1 kHz sig-nal, -1 dBFSTHD + N -108 dB (0.0004%) � -1 DBFS-104 dB (0.0006%) � -6 DBFS1 kHz signal, 22 Hz - 22 kHzBW



7.1 Experimental Hardware 85Table 7.4: Experimental setup: Aurora Lynx 16 spei�ations (Analog Out Per-formane).Analog Out PerformaneFrequeny response 20 Hz - 20 kHz, +0/-0.1 dBDynami range 117 dB, A-weightedChannel rosstalk -120 dB maximum, 1 kHz sig-nal, -1 dBFSTHD + N -107 dB (0.0004%) � -1 DBFS-106 dB (0.0006%) � -6 DBFS1 kHz signal, 22 Hz - 22 kHzBWTable 7.5: Experimental setup: Aurora Lynx 16 spei�ations (Digital I/O).Digital I/ONumber / Type 16 inputs and 16 outputs 24bit AES/EBU format, trans-former oupledChannels 16 in/out in single-wire mode8 in/out in dual-wire modeSamples Rates All standard rates and vari-able rates up to 192 kHz inboth single-wire and dual-wiremodesTable 7.6: Experimental setup: Aurora Lynx 16 spei�ations (On-board DigitalMixer). On-board Digital MixerType Hardware-based, low latenyRouting Ability to route any input toany or multiple outputsMixing Up to four input or playbaksignals mixed to any output,40-bit preisionStatus Peak levels to -114 dB on allinputs and outputs
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Table 7.7: Experimental setup: Aurora Lynx 16 spei�ations (Connetions).ConnetionsDigital I/O Ports 25-pin female D-sub onnetors.Port A: hannels 1-8 I/O, PortB: hannels 9-16 I/O. Yamahapinout standardAnalog I/O Ports 25-pin female D-sub onnetors.Analog In 1-8, Analog In 9-16,Analog Out, 1-8 Analog Out 9-16. Tasam pinout standardExternal Clok 75-ohm BNC word lok inputand outputMIDI One input and one output. Stan-dard opto-isolated, 5-pin femaleDIN onnetors



7.2 Evaluation Methodology 877.2 Evaluation MethodologyThis setion shows the main aspets of methodologies used for simulations andexperiments. In partiular we explain how simulations and experiments are on-duted, as well as the metris used for results analysis.For simulations and experiments, the estimation of a soure loation is per-formed many times in order to propose statistial results. With regard to simu-lations, this is done building a set of noisy TDOAs for eah soure position, andtesting eah algorithm with all the orrupted TDOAs. With regard to experi-ments, the same result is obtained reording a ontinuous signal and windowingit in many frames. TDOAs are then extrated from eah frame, and this allowsus to build the noisy TDOAs set.The auray of soure loalization algorithms is measured with the followingmetris:- mean bias on x:
bx =
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∣
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(xs − x̂s,i)

∣

∣

∣

∣

∣

, (7.1)where n is the number of noisy TDOAs tested for a soure loation, xs isthe soure's x oordinate, and x̂s,i is the estimated soure one based on the
i-th TDOAs realization. This is the measure of the absolute value of thedi�erene between x oordinate of the real soure and the estimated one.- RMSE on x:

Rx =

(

1

n− 1

n
∑

i=1

((εi)− (ε))2
)

1

2

, (7.2)where n is the number of noisy TDOAs tested for a soure loation, εi is thedi�erene between the soure loation x oordinate xs and the estimatedone with the i-th TDOAs realization x̂s,i, and ε is the mean error omputedas
ε =

1

n

n
∑

i=1

(xs − x̂s,i). (7.3)This is the root mean squared error obtained on estimated value of soure's
x oordinate on many simulations.For the re�etor loalization problem, we have de�ned in Chapter 2 the re-�etor as all points [x, y] satisfying the ondition y = mx + q. For this reason



88 Experimental Resultstwo additional metris are used in order to evaluate parameters m and q:- mean angle error :
∆α =

180

π

(

1

n

n
∑

i=1

arctan(m− m̂i)

)

, (7.4)where n is the number of noisy TDOAs tested for a soure loation, m isthe angular oe�ient of the line representing the re�etor, and m̂i is itsestimation based on the i-th TDOAs realization. This is the di�erene indegrees between real and estimated re�etor azimuth angle.- mean distane error :
∆q =

1

n

n
∑

i=1

(q − q̂i), (7.5)where n is the number of noisy TDOAs tested for a soure loation, q isthe interept between the y axis and the line representing the re�etor, and
q̂i is its estimation based on the i-th TDOAs realization. This is the meandi�erene between the interept between the y axis and the line representingthe re�etor and its estimation.7.3 LoalizationThis Setion shows a omparison between results obtained with the one proposedalgorithms and other algorithms found in the literature for the problem of soureloalization. First we present results obtained with simulations, then we presentresults from a real experiment.7.3.1 SimulationsIn this Paragraph we show some simulations to illustrate how one algorithmperforms with respet to others found in the literature.The simulation setup is desribed in Figure 7.2:- the array is made up of 4 mirophones plaed on the verties of a squaremeasuring (4m× 4m),- the soure is moved on 81 points on a square grid entered into the array.
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Figure 7.2: Simulation Setup: asterisks represent mirophones, rosses representthe grid where soures were loated. Eah soure loation is identi�ed by anumber. All distanes are in meters.For eah soure loation, 50 di�erent set of noisy TDOAs were tested in orderto �nd a reasonable statisti. Eah TDOA is omputed from range di�erene ofarrival orrupted with zero mean and 2 cm standard deviation gaussian noise.Figure 7.6 shows the bx and Rx omparison between di�erent algorithms. Inpartiular we tested Gillette-Silverman (GS) [2℄, Linear Corretion Least Square(LCLS) [18℄, Taylor series deomposition of hyperbola (Taylor) [3℄, and the twoone algorithms (Cone Eq. and Cone Ap.). We have deided to perform a testin order to hek if a soure was loated inside or outside the simulated room.Soures loalized outside the room (outliers) have not been taken into aountfor bx and Rx omputation.This partiular mirophones setup is very e�etive with one algorithm. Infat, we are searhing for a one whose vertex lies into an area surrounded bymirophones. This allows us to sample the one in points far from eah other,and the �tting one is found with a great preision.In partiular these data show that GS and LCLS methods are the worst onesbetween those tested, while both Cone Ap. and Cone Eq. algorithms an beompared to Taylor series deomposition of hyperbola equation, whih performs
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Figure 7.3: Experimental Setup: asterisks represent mirophones, rosses repre-sent the grid where soures were loated. Eah soure position is assoiated to anumber. This way we an refer to soures positions easily. All distanes are inmeters.very well. In favor of Cone Eq. algorithm we have to say that it is the one withless outliers using the same TDOAs used by others algorithms. For this reasonCone Eq. algorithm is preferable over the others for its performane.7.3.2 ExperimentIn this paragraph we show some experimental results in order to on�rm sim-ulations results in the real world. The metri used is the same one used forsimulations.The experimental setup is desribed in Figure 7.3.- the array is omposed by 4 mirophones plaed on the verties of a retanglemeasuring (2.4m× 2.8m),- the soure is moved on 20 points on a square grid entered into the array.The measurements for TDOAs omputation were taken from the emission of 2di�erent signals into a dry room. First a 10s white noise signal, then a 10sreorded speeh were tested. Eah reorded signal was then windowed into parts



7.3 Loalization 91of 10ms eah, in order to dispose of di�erent frames. TDOAs were omputedextrating the maxima of ross-orrelations.Figure 7.7 and 7.8 show the same omparison graphis as for simulations,respetively for gaussian noise and speeh signals. Also experimental data werepost-proessed in order to disard outliers. In fat data about soure loalizedoutside the room were not taken into aount.Graphis from experimental data on�rm the same results obtained from sim-ulations on algorithms omparison and show that using gaussian noise or speehleads to the same results.We also made a test on time of onvergene of used algorithms. Figure 7.4show the time used for eah loalization algorithm for estimating a soure for eahsoure position. This time is measured having already TDOAs measurements,so it takes aount only of time of onvergene of the algorithms. However itis also shown the ross-orrelation time for TDOAs omputation as a ompari-son. From this data we an notie that Gillette-Silverman method is faster thanthe others. However this result does not surprise us, beause GS gives the solu-tion in losed form, while other methods are iterative methods. Time spent forross-orrelation is really high ompared to those taken by algorithms for theironvergene. The only exeption is represented from LCLS method, whih hasprobably some problem in estimating soure position with this partiular setup.Figure 7.5 shows better the omparison between time used by GS and timeused by one algorithms, as well as time used for ross-orrelation for eah soureloation. We notie that GS is about 6 times faster than Cone Aperture and 3times faster than Cone Equation algorithms. However Cone Equation algorithmspent from 12 to 18 times less time than ross-orrelation. For this reason weonsider time of algorithms onvergene negligible. This allows us to use a one-based algorithm also if they are iterative methods.
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(j) Rx (Cone Equation)Figure 7.8: Experimental Results (speeh): bx and Rx for di�erent algorithmswhen using speeh as signal: (a) (b) GS, () (d) LCLS, (e) (f) Taylor, (g) (h)Cone Ap., (i) (j) Cone Eq.. Asterisks represent mirophones, rosses representreal soures positions. All distanes and errors are in meters. We notie thatusing speeh or gaussian noise gives the same results. So also in this ase thebest results are given by Cone Eq., Cone Ap., and Taylor.



100 Experimental Results7.4 Multi-Soure LoalizationThis Setion shows how the proposed algorithms perform in a two soures lo-alization senario. As for single soure, we �rst show simulations and thenexperimental results.7.4.1 SimulationsWe tested the brute fore algorithm for both Cone Aperture and Cone Equationmethods with the setup depited in Figure 7.10:- the array is made up of 4 mirophones plaed on the verties of a retanglemeasuring (2.4m× 2.8m),- soures are plaed in ouples of points inside the array area.Next Figures show results for three di�erent pairs of soures displaed in di�erentpositions:1. [xs1, ys1] = [0.4,−0.8] and [xs2, ys2] = [2,−2],2. [xs1, ys1] = [0.4,−0.8] and [xs2, ys2] = [0.4,−1.6],3. [xs1, ys1] = [0.8,−1.2] and [xs2, ys2] = [1.2,−1.2].Results are obtained from 50 simulations with TDOAs obtained from rangesdi�erenes orrupted with zero mean, 2 cm standard deviation gaussian noise.Figure 7.9 shows how J ost funtion behaves when TDOAs ombinationsare tested with Cone Equation and Cone Aperture algorithms. We an notiethat the minimum is learly found for TDOAs ombination number two (whihis atually the orret ombination) exept for ase 3. In this ase a symmetryof soures and mirophones makes two ombinations almost equal, so there aretwo lose solutions.Figure 7.10 shows lusters of soures loation estimated with the brute foreapproah on 50 simulations. For eah TDOAs ombination there are two lustersof points representing the two soures loations on all the simulations. The dotsnearest to real soures loations are always those found with the orret TDOAsombination and they also are the points whih minimize the ost funtion J . Inase 3, many lusters are near to soures positions and beome soure andidates
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(f) Cone ApertureFigure 7.9: Multi-Soure Cost Funtion: Cone Equation J ost funtion forsoures loation number 1 (a), 2 (b), and 3 (). Cone Aperture J ost funtionfor soures loation number 1 (d), 2 (e), and 3 (f). Four TDOAs ombination aretested as shown in Chapter 5. TDOAs ombination leading to the minimum ofthe ost funtion is the orret ombination.beause of the symmetry above shown. These simulations on�rm that withbrute fore methods, both soures an be well loalized. If the ost funtion hasseveral global minima, we expet that more TDOAs ombinations lead to similarsolutions, so it does not matter whih one is taken as the orret ombination.
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(f) Cone ApertureFigure 7.10: Multi-Soure Simulation Setup: irles are atual soures positions,asterisks are mirophones. Dots grouped in lusters are soures loated withdi�erent TDOAs ombinations with Cone Equation algorithm for soure loationnumber 1 (a), 2 (b), and 3 (a), and with Cone Aperture algorithm for soureloation number 1 (d), 2 (e), and 3 (f). Clusters loalized outside the array areaare not shown.



7.4 Multi-Soure Loalization 1037.4.2 ExperimentIn the laboratory we tested the DATEMM based method for TDOAs disam-biguation with Cone Equation, Cone Aperture, and Taylor series deompositionof hyperbola loalization algorithms. Figure 7.11 shows the setup:- 4 mirophones are loated on the verties of a square measuring (1m×1m),- 32 soures are plaed on an otagonal array as shown in Figure 7.11.We hose to use the otagonal array in order to have a well-measured ground-truth. In this way we had all soures already �xed in their position, and we hoseto swith on and o� the needed soures. This prevent us from making errors insoure displaement.

Figure 7.11: Multi-Soure Experimental Setup: rosses represent soures, aster-isks represent mirophones. Angle α are measured antilokwise starting fromsoure 1. Eah soure loation is assoiated to a number.As the setup is loser to a irular on�guration, we use the polar oordinates
α and r. Angle α is the azimuth angle de�ned as zero for soure number 1, andinreasing antilokwise as shown in Figure 7.11. The range r is the distane



104 Experimental Resultsfrom the soure to the enter of the array. Notie that the range is not the samefor eah soure beause they are not plaed on a irle but disposed with anotagonal shape.The metri used for auray measuring is similar to the one presented forsingle soure loalization, but works on the polar oordinates:- bias on α:
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, (7.6)where n is the number of noisy TDOAs tested for a soure loation, αs isthe α angle of the real soure, and α̂s,i is the estimated one based on the
i-th TDOAs realization. This is the measure of the absolute value of themean di�erene between the α angle of the real soure and the estimatedone.- bias on r:
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, (7.7)where n is the number of noisy TDOAs tested for a soure loation, rs isthe range r of the real soure, and r̂s,i is the estimated one based on the
i-th TDOAs realization. This is the measure of the absolute value of themean di�erene between the range r of the real soure and the estimatedone.- RMSE on α:
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, (7.8)where n is the number of noisy TDOAs tested for a soure loation, εα,i isthe di�erene between the soure α angle αs and the estimated one withthe i-th TDOAs realization α̂s,i, and εα is the mean error omputed as
εα =

1

n

n
∑

i=1

(αs − α̂s,i). (7.9)
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, (7.10)where n is the number of noisy TDOAs tested for a soure loation, εr,i isthe di�erene between the soure range rs and the estimated one with the
i-th TDOAs realization r̂s,i, and εr is the mean error omputed as
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(rs − r̂s,i). (7.11)For the experiment, soure number 1 was used in ouple with every othersoure of the array. The two soures emitted two di�erent white gaussian noisesfor 10s. Every reeived signal has been windowed into frame of 0.1s eah. With70 of these frames, TDOA disambiguation was then performed. After disam-biguation, loalization algorithms were applied to pairs of soures.Figure 7.12 shows results aording to explained metris. No results for soure1 are displayed. Outliers are disarded from shown results. All the above testedalgorithms perform well in this situation. Also in this situation Taylor, Cone Ap.,and Cone Eq. give results really lose. Furthermore also TDOA disambiguationworks orretly. Outliers due to TDOA disambiguation are more likely to ourwhen soures are loser to eah other.
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(d) RrFigure 7.12: Multi-Soure Results: bα (a), Rα (b), br (), and Rr (d). The twoCone Algorithms are ompared to Taylor series one whih is the best performingone between those tested from literature.



7.5 Re�etor Loalization 1077.5 Re�etor LoalizationThis Setion shows a omparison between results obtained with the one proposedalgorithms and Taylor series one for re�etor loalization.The omparison is made on simulation data with the hypothesis of havingalready solved the TDOAs ambiguity. The simulation setup was similar to thatused for soure loalization simulations, onsidering that a re�etor is present.The re�etor gives birth to an image soure for eah real soure tested. Foreah soure loation, 50 sets of orrupted TDOAs were tested for real and imagesoure. TDOAs were omputed from range di�erenes orrupted with zero meanand 2 cm standard deviation gaussian noise.The auray of inferene algorithms is measured with the metris shown atthe beginning of this Chapter.The omparison is made in partiular between the ones algorithms and theTaylor series one. The Taylor series algorithm was hosen between those testedin soure loalization beause it is the one whih performs best in the literature.In Figure 7.13 bias for the three algorithms is shown. We notie that whenestimating image soures Cone Equation algorithm performs muh better thanthe others. Cone Ap. and Taylor fail in loalizing many image soures, and thismakes impossible the re�etor loalization. This is due to the fat that we didnot impose a room dimension. This way we ould not reognize outliers, so theyhave not been disarded. From these results it is evident that Cone Eq. is morerobust than the other algorithms.This is why we show re�etor loalization results only for Cone Eq. in Figure7.14. From these results we notie that with Cone Eq. the angle error is almostalways under one degree, while the distane error an be also of 30 cm.
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Chapter 8Conlusions and Future WorksIn this work we have analyzed the problem of aousti soure loalization, espe-ially with TDOAs measurements.We have also provided details about re�etor loalization algorithms. In thisarea we have shown that it is possible to adapt our and others loalization meth-ods thanks to DATEMM algorithm, whih an be modi�ed for a less general aseof study.For the onsidered researh themes we have �rst made a summary of existingalgorithms in order to help us �nding solutions to some problems (in partiularthose about TDOA disambiguation) and to perform a omparison with our re-sults. Then we have explained what is the idea at the basis of one algorithmsand we have shown how they work. We have also made a study about possiblearray geometries that an be used with these algorithms so as to obtain the bestresults.After the theoretial study, we have implemented our and other algorithms inorder to give simulations and experimental results. In general one-based methodshere proposed perform, at least, as well as the best between others loalizationmethods, but making use of onis we an write our onstraints with a ompatnotation. In partiular when using the proposed mirophones on�guration, ConeEquation algorithm is to be onsidered more robust than the others, notably whensoures are outside the array area. This is most lear when we look at simulationresults on re�etor loalization. In fat re�etor loalization an not be performedwith the other algorithms, whih make too many errors. Again, Cone Equationalgorithm is likely to be more robust to noisy TDOAs, presenting fewer outliers.



112 Conlusions and Future WorksThis is why this algorithm is probably a better hoie when we are not allowedto disard measurements, and we need to estimate soure loation with everyframe of our reorded signal. For instane, in soure traking, it is more suitable touse an algorithm whih loates the soure with some error instead of an algorithmperforming in a more preise way but presenting outliers with some signal frames.In fat, if we do not have information about soure trajetory, we an not realizewhen an estimate is an outlier.As far as future work is onerned, a researh diretion is the extension ofsingle and multi-soure loalization methods to a reverberant room ase. Inthis senario we will need to study how reverberations a�et measurements, in asimilar way as we have done for re�etor loalization. In this on�guration it ouldalso be interesting to jointly sort out the problem of multi-soure loalization andre�etor inferene. Also the multi-soure and multi-re�etor ase an be studied,obtaining algorithms suitable for more general ases.The �nal sope of this researh ould be the study of how these algorithmsevolve into 3D loalization world. We ould �nd a 4D onstraints spae for oneost funtions in whih ones evolve into other geometri objets.If this goal proves suessful, the algorithms ould serve as a solution toloalize all the re�etors and soures in an atual room, enabling us to be inposition to ope with the most general ase.
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