
POLITECNICO DI MILANO
FACOLTÀ DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea in Ingegneria Informatica

DashMash: a Mashup Environment
for End-User Development

Relatore: Prof. Maristella MATERA
Correlatore: Prof. Cinzia CAPPIELLO

Tesi di laurea di:
PICOZZI Matteo
Matr. 734765
SPREGA Gabriele
Matr. 734892

Anno Accademico 2009 - 2010

Sommario

La tendenza corrente nello sviluppo delle applicazioni Web moderne – e in partico-
lare delle applicazioni del Web 2.0 – punta chiaramente verso un notevole coinvol-
gimento degli utenti. Le cosidette applicazioni sociali sono la prova del valore, in-
izialmente inaspettato, che deriva dal coinvolgimento degli utenti finali nel processo
di creazione di contenuti. Un’altra pratica emergente è lo sviluppo di applicazioni
attraverso l’integrazione di contenuti e funzionalità che sono disponibili nel Web, sot-
toforma di API aperte o, in generale, di servizi riusabili. Un esempio classico di questa
pratica è www.housingmaps.com, dove offerte immobiliari, estratte da Craigslist, sono
visualizzate su mappe fornite da Google. Questo fenomeno è conosciuto come Web
mashup, e mostra come gli utenti del Web siano sempre più coinvolti nel processo di
sviluppo di applicazioni Web.

Le tecnologie per l’integrazione e la composizione di applicazioni sono state al centro
degli interessi dei metodi di sviluppo del software degli ultimi 30 anni. Il problema da
risolvere è la creazione di modelli di dati, applicazioni e interfacce utente attraverso
l’integrazione di componenti già esistenti invece che optare per uno sviluppo ex-novo del
software. L’integrazione può essere ottenuta in forme diverse, ma in generale è possibile
distinguere tra tre classi principali: integrazione a livello dei dati, integrazione a livello
di applicazione e integrazione a livello interfaccia utente (o, più in generale, a livello di
presentazione).

L’integrazione a livello dei dati presenta diverse problematiche, dalla risoluzione di dis-
allineamenti tra modelli di dati differenti, per esempio termini uguali con significati di-
versi, alla costruzione e, manutenzione di schemi virtuali e traduzione di interrogazioni
tra schemi globali e locali. Ciò richiede interventi minimi a livello applicativo mentre
necessita di una profonda comprensione della semantica del modello dei dati di ciascun
componente – questo spesso è impraticabile.

L’integrazione a livello applicativo è stata largamente esplorata negli anni passati, con
risultati tecnologici come RPC, object brokers e, più recentemente, Web services. In
questo tipo di integrazione, un’applicazione composita ha una sua interfaccia utente
(UI), ma la sua logica applicativa è sviluppata integrando le funzioni che le appli-
cazioni componenti espongono. Questa pratica è molto efficente quando le applicazioni

I

II

componenti espongono un API mantenuta stabile nelle varie versioni.

L’integrazione a livello di presentazione deve invece supportare l’integrazione delle in-
terfacce utente dei vari componenti, lasciando la responsabilità della gestione dei dati
e della logica applicativa ad ogni singolo componente. Questo tipo di integrazione è
particolarmente adatta quando altri tipi di integrazione non sono possibili (come nel
caso in cui le applicazioni non espongano alcuna API), o quando lo sviluppo di una
nuova interfaccia utente da zero è troppo costoso.

Il Word Wide Web è denso di esempi di integrazione di componenti eterogenei al
fine di risolvere velocemente problemi contingenti, in alcuni casi totalmente diver-
genti dallo scopo per cui i singoli componenti sono stati sviluppati. Il sito Web
http://www.programmableweb.com colleziona centinaia di tali esempi. Fino ad ora
molti di questi mashup sono sviluppati a mano, utilizzando tecnologie diverse per garan-
tire l’interoperabilità tra i vari componenti. Il risultato è spesso efficace dal punto di
vista delle funzionalità offerte, ma è scarsamente documentato, difficilmente estendibile
e in rari casi interoperabile. Inoltre, non esiste un modo sistematico e standard per
descrivere le composizioni ed è difficile stabilire il confine tra la logica dei componenti
e quella dell’integrazione.

Lo scenario delle tecnologie per l’integrazione è tuttora in evoluzione, sotto diversi punti
di vista. Nel passato i tre tipi di integrazione sopra descritti erano chiaramente distinti
– e infatti l’integrazione a livello di presentazione era alquanto inesistente. In più,
l’integrazione era (ed è) complessa. I linguaggi di composizione ad oggi proposti (si veda
per esempio BPEL [11] o i manuali utenti per strumenti ETL [6]) sono molto complessi,
e lo stesso vale per lo sviluppo, l’esecuzione e l’analisi della logica di integrazione.

Recentemente i mashup hanno contribuito a creare maggiore confusione: per esem-
pio Yahoo!Pipes [56] è considerato uno strumento per la creazione di mashup, ma il
suo modello ha parecchie similarità con i modelli d’integrazione dei dati. Infatti è
difficile classificare i mashup come strumenti di integrazione di dati, di applicazioni o
di interfacce utente, perché essi ereditano diversi aspetti da ognuna di queste classi
applicative.

Alcuni requisiti recentemente emersi nell’intergazione delle applicazioni, che sono es-
tremamente rilevanti per questo lavoro di tesi, sono la semplicità, l’immediatezza e
l’espressività, aspetti che sono tutti introddotti (o per lo meno potenziati) dal Web
2.0. In particolare la semplicità è un requisito chiave nello sviluppo delle applicazioni
Web moderne. Funzionalità complesse e, recentemente, anche attività di sviluppo sono
sempre più alla portata dell’utente finale. Si considerino, per esempio, gli ambienti di
sviluppo di mashup offerti dai maggiori provider, come Intel, Google e Yahoo.

Il Web e lo sviluppo tecnologico rendono anche ogni risultato “visibile”: siamo sempre
più abituati a ritrovare in breve tempo ogni tipo di informazione, dalle informazioni
sui voli aerei ai bollettini del traffico, alle statistiche di accesso sui nostri siti Web.

III

La stessa visibilità è sempre più richiesta in ambito enteprise. Questa immediatezza e
visibilità è la caratteristica principale dell’ end user development.

Motivazioni

I mashup sono stati inizialmente concepiti nel contesto del “consumer Web”, come
strumento tramite cui gli utenti possono creare le loro applicazioni a partire da API
pubbliche, come per esempio Google Maps o Twitter API, o da contenuti estratti da
pagine Web. I mashup più popolari integrano API pubbliche disponibili sul Web,
tuttavia la tendenza è di sviluppare applicazioni più critiche, i cosiddetti entreprise
mashup [37], la traslazione dei consumer mashup verso ambiti aziendali. Gli enterprise
mashup abilitano i membri delle imprese ad utilizzare servizi interni che permettono di
accedere agli asset aziendali, e mescolarli in modi innovativi che possono anche generare
valore aggiunto. Per esempio, un obiettivo potrebbe essere l’automatizzazione di alcune
procedure burocratiche ricorrenti. Basti pensare, per esempio, ai manager aziendali
che vogliono creare da soli i loro cruscotti in modo flessibile e veloce, e all’enorme
quantità di servizi corporate (per esempio quelli per l’accesso alle risorse informative
aziendali), risorse Web e servizi aperti che, se integrati, possono enormemente facilitare
la costruzione di applicazioni per l’analisi di dati e di processi. I mashup stanno
perciò emergendo come tecnologia per la creazione di soluzioni innovative, capaci di
rispondere ai problemi che sorgono ogni giorno nel contesto aziendale, cos̀ı come in ogni
altro contesto dove la flessibilità e la variabilità diventano variabili predominanti. La
potenziale flessibilità dei mashup “aiuta gli utenti ad aiutarsi” [55], rendendo possibile
la composizione “on demand” delle funzionalità di cui hanno bisogno.

Data la variabilità con cui i mashup sono (e saranno) usati, emerge il bisogno di
fornire ambienti di sviluppo in cui gli utenti finali (gli attori principali del nuovo
processo di sviluppo) possano facilmente e velocemente costruire autonomamente le
loro applicazioni, senza dover necessariamente gestire le problematiche tecniche legate
all’invocazione dei servizi e alla loro integrazione. Questo si applica in ogni contesto –
non solo in quello aziendale: una “cultura della partecipazione” [30], in cui gli utenti
evolvono dall’essere consumatori passivi di applicazioni all’essere co-creatori attivi di
nuove idee, conoscenza e prodotti, è infatti sempre più condivisa [54].

Nonostante le premesse precedenti fino ad ora la ricerca sui mashup si è concen-
trata sulla definizione di tecnologie e standard abilitanti, ponendo scarsa attenzione
sull’obbiettivo di facilitare il processo di sviluppo – in molti casi la creazione di mashup
si basa ancora sulla programmazione manuale di servizi. È nostra convinzione che ciò
che rende i mashup diversi dalla più tradizionale composizione di servizi o dall’integrazione
di applicazioni e il loro potenziale come strumenti attraverso cui gli utenti finali sono
abilitati a sviluppare le loro applicazioni e quindi ad innovare [54], tuttavia questo
potenziale è scarsamente sfruttato. Alcuni studi recenti [12] hanno osservato che,

IV

nonostante le maggiori piattaforme di mashup (per esempio Yahoo!Pipes [56] o In-
tel Mash Maker [35]) semplificano lo sviluppo rispetto alla programmazione manuale,
essi sono ancora difficili da usare da parte di utenti non tecnici.

Questa tesi cerca di rispondere alle precedenti questioni, proponendo una piattaforma
Web, DashMash, che permette agli utenti finali di sviluppare i propri mashup facendo
uso di un paradigma intuitivo. In particolare l’obiettivo del nostro lavoro è stato
individuare delle astrazioni di alto livello che siano in grado, da un lato di catturare le
proprietà di diverse classi di risorse che sono utili per l’integrazione di mashup, dall’altro
di nascondere agli utenti i dettagli tecnici che derivano dalle diverse tecnologie adottate
dai servizi e utilizzate per la loro integrazione.

Obiettivi della tesi

Esistono alcuni requisiti chiave che incoraggiano lo End User Development (EUD). Ab-
biamo identificato le più importanti proposte in letteratura, approfondendole e validan-
dole nel contesto di un progetto proposto dal Comune di Milano. In questa occasione
abbiamo suggerito i mashup come strumenti flessibili per la realizzazione di ambienti
personalizzati a supporto della sentiment analysis [15]. Questa tesi si pone l’obiettivo
di raggiungere tali requisiti. In particolare:

1. Promuove un processo di sviluppo leggero, nel quale un intuitivo paradigma di
composizione viene contestualizzato all’interno di un ambiente visuale usabile,
mascherando la complessità dovuta ai linguaggi di programmazione attualmente
utilizzati per la gestione dell’esecuzione del mashup;

2. Propone dei modelli espressivi e dei linguaggi di descrzione per i servizi e per la
composizione di mashup, capaci di racchiudere le caratteristiche salienti alla base
del servizio di wrapping e di integrazione all’interno della composizione astraendo
dai dettagli tecnici caratteristici di specifici componenti e tecnologie;

3. Presenta un framework di esecuzione che supporta il processo leggero di sviluppo
assicurando:

• Un supporto istantaneo all’esecuzione, basato sull’interpretazione delle azioni
di composizione dell’utente e sull’esecuzione immediata del mashup secondo
Un paradigma WYSIWYG (What You See Is What You Get);

• La generazione automatica di modelli descrittivi risultanti dalle azioni di
composizione degli utenti iche guidano l’esecuzione del masup;

• La generazione di suggerimenti che aiutino l’utente finale ad identificare
servizi candidati come utili da aggiungere all’interno del mashup e ad indi-
viduare le possibili modalità di integrazione.

V

4. Mentre da un lato fornisce un approccio sistematico al meccanismo alla base
dello sviluppo leggero del mashup dal punto di vista del End User Programming,
dall’altro mostra come questi meccanismi in generale validi per la composizione
di ogni tipo di mashup possano essere specializzati per il dominio dei cruscotti
(si veda il caso di studio sviluppato per il Comune di Milano).

5. Basandosi sui risultati di uno studio centrato sull’utente, presenta l’efficacia del
nostro approccio secondo la prospettiva dell’utilizzatore finale.

Contenuti della tesi

La tesi è organizzata nel seguente modo:

• Parte II: Background

– Capitolo 2 - UI Composition: questo capitolo illustra le tecnologie esistenti
per l’integrazione a livello di presentazione e le differenze tra i vari approcci.
Fornisce inoltre un overview dei più importanti approcci di ricerca e delle
più importanti piattaforme commerciali.

– Capitolo 3 - Data analytics and visualization: questo capitolo illustra i con-
cetti principali della data analytics e della costruzione di visualizzazioni
avanzate di dati, sui quali abbiamo basato lo sviluppo di un insieme di com-
ponenti di mashup per la costruzione di cruscotti per la sentiment analysis.

– Capitolo 4 - End-user development : questo capitolo tratta l’End-User De-
velopment e declina i mashup su tale paradigma di sviluppo. Illustrando
le principali attività che caratterizzano lo sviluppo di mashup, il capitolo
sottolinea in particolare le potenzialità dei mashup come tool che possono
essere utilizzati per l’end-user development.

• Parte III: Models and Architecture

– Capitolo 5 - Models : questo capitolo illustra i modelli che catturano le as-
trazioni su cui si fonda la composizione event-driven che caratterizza il nostro
approccio. In particolare, propone un modello astratto per i componenti UI
(UISDL – UI Service Description Language), un linguaggio dichiarativo per
la specifica della composizione (XPIL – eXtensible Presenta- tion Integra-
tion Language), un modello per la rappresentazione dello stato (SMDL –
State Model Descriptor Language) che facilita il monitoraggio e l’evoluzione
della composizione, e un modello per il flusso dei dati (DFM – Data Flow
Model), che definisce un formato comune per la rappresentazione dei dati
scambiati tra i vari servizi nel mashup.

VI

– Capitolo 6 - Architecture: questo capitolo mostra l’implementazione client-
side del middleware di composizione ed esecuzione; illustra i principali mod-
uli architetturali che permettono (i) il paradigma di composizione visuale di
DashMash, caratterizzato dalla definizione automatica e personalizzata dei
binding tra servizi e la generazione di raccomandazioni sulla composizione,
(ii) l’esecuzione event-driven dei mashup e (iii) le astrazioni e i meccanismi
che stanno dietro alla generazione automatica di modelli di composizione e
mashup.

• Parte IV: Validation

– Capitolo 7 - Case study : mostra all’opera i concetti presentati nei capitol
precedenti e illustra la specializzazione della piattaforma DashMash per la
costruzione di cruscotti per la sentiment analysis.

– Capitolo 8 - User testing : presenta i risultati di un esperimento con la
partecipazione di 35 utenti, che ci ha permesso di validare alcune ipotesi
sull’usabilità di DashMash.

• Parte V: Conclusions

– Capitolo 9 - Conclusion: it draws the conclusions, summarizing the main
results that have been achieved and outlining the future work.

L’appendice fornisce anche il materiale adottato per l’esperimento con gli utenti.

Contents

I Rationale and Contribution 1

1 Introduction 3
1.1 Motivations . 5
1.2 Goal of this Thesis . 6
1.3 Outline . 7

II Background 9

2 UI Composition 11
2.1 Peculiarity of Presentation Integration 12
2.2 The UI Integration problem . 13

2.2.1 Composition language . 14
2.2.2 Communication style . 14
2.2.3 Discovery and binding . 15
2.2.4 Components visualization . 15

2.3 UI Composition technologies . 17
2.3.1 Desktop UI components . 17
2.3.2 Browser plug-in components . 18
2.3.3 Web mashups . 18
2.3.4 Web portals and portlets . 19

2.4 Tool-Assisted Mashup Development . 19
2.4.1 Yahoo Pipes . 19
2.4.2 Intel Mash Maker . 20
2.4.3 Quick and Easily Done Wiki . 21
2.4.4 Damia . 22
2.4.5 JackBe Presto . 23
2.4.6 Marmite . 24
2.4.7 MashArt . 24
2.4.8 ServFace . 26

3 Data analytics and visualization 27

VII

VIII CONTENTS

3.1 Data Analytics . 27
3.2 Visualization families . 28

3.2.1 Charts . 28
3.2.2 Tree Map . 30
3.2.3 Tag Cloud . 30
3.2.4 Table . 30
3.2.5 Interaction approaches to chart visualization 30

4 Web Mashups: a new paradigm for end user development 33
4.1 Classification of approaches . 34
4.2 The mashup development . 35

4.2.1 The development scenario . 35
4.2.2 The lightweight development process 38

4.3 The need for mashup tools enforcing EUD 41

III Models and Architecture 43

5 Models 45
5.1 Component model . 46

5.1.1 UISDL - The UI Service Description Language 48
5.2 Composition Model . 50

5.2.1 Event-driven composition . 51
5.2.2 XPIL - eXtensible Presentation Integration Language 52

5.3 State Model . 54
5.3.1 SMDL - State Model Descriptor Language 56

5.4 Data Flow Model . 58
5.4.1 The result set representation . 59

6 Architecture 61
6.1 General overview . 63
6.2 The runtime engine . 64
6.3 Event-driven execution: the Execution Handler 66
6.4 Generation of the composition models: the Composition Handler 66
6.5 Bindings definition . 69

6.5.1 Default Bindings . 69
6.5.2 Custom Bindings . 71
6.5.3 Quality-based Recommendations 72

6.6 Integration with proprietary data sources 76
6.6.1 Data Service . 76
6.6.2 DS client . 76
6.6.3 DS server . 78

6.7 Implementation and deployment choices 78

CONTENTS IX

IV Validation 81

7 Case study 83

7.1 The context: sentiment analysis . 84

7.2 Sentiment analysis techniques . 85

7.3 Sentiment analysis tasks . 86

7.3.1 City brand comparison . 86

7.3.2 Comparison by category . 87

7.3.3 Volume distribution . 88

7.3.4 Sentiment distribution . 88

7.3.5 Polarity pies . 89

7.3.6 Opinion flow . 89

7.3.7 Sentiment cloud . 90

7.3.8 Top influencers map . 91

7.3.9 Posts map . 91

7.4 Data Service . 92

7.4.1 Data integration . 92

7.4.2 Data warehouse approach . 95

7.5 Domain customization . 97

7.5.1 Data Service . 97

7.5.2 Custom bindings and compatibility matrix 98

7.5.3 Components development . 99

7.6 Complete example . 100

8 User testing 105

8.1 Users sample . 105

8.2 Procedure . 106

8.3 Experimental tasks . 107

8.3.1 Task1 . 107

8.3.2 Task2 . 107

8.4 Results analysis . 108

8.4.1 Performance . 108

8.4.2 Ease of use . 108

8.4.3 Satisfaction . 111

V Conclusions 113

9 Summary and future works 115

9.1 Future works . 116

9.2 Achievements . 116

X CONTENTS

VI Appendix 119

A Test materials 121
A.1 Experimental Tasks . 121
A.2 Pre-questionnaire . 122
A.3 Post-questionnaire . 123

List of Figures

1.1 The different levels of integration: data, application, and UI 4

2.1 Comparison of current UI integration approaches 17
2.2 Yahoo Pipe logo . 20
2.3 Yahoo Pipe Editor Example . 20
2.4 Intel Mask Maker logo . 20
2.5 Intel Mash Maker example . 21
2.6 QEDWiki logo . 21
2.7 Quick and Easily Done Wiki example 22
2.8 JackBe Presto logo . 23
2.9 PrestoWires application example . 24
2.10 Marmite example . 25
2.11 MashArt example . 25
2.12 ServFace logo . 26

4.1 The mashup development scenarios [24, 25] 36
4.2 Comparison between the traditional life-cycle for web applications and

the lightweight development process for mashups 39

5.1 Event-driven paradigm for service binding definition and service syn-
chronization . 52

5.2 The result set DTD . 59

6.1 Logical view of DashMash environment 62
6.2 Data structure (chain of associative arrays) that represent the composi-

tion listeners . 64
6.3 Main modules of the DashMash runtime engine 65
6.4 Interactions among the modules of DashMash 67
6.5 The drag & drop mechanism . 68
6.6 An example of bindings executions between CompositionHandler, DataSer-

vice and viewers . 70
6.7 The dialog box for bindings definition 71
6.8 Recommendations about all the possible rankings 73

XI

XII LIST OF FIGURES

6.9 The data buffer matrix structure . 77

7.1 The city brand comparison analysis . 87
7.2 The comparison by category analysis 87
7.3 The volume distribution analysis . 88
7.4 The sentiment distribution analysis . 89
7.5 The polarity pies analysis . 90
7.6 The opinion flow analysis . 90
7.7 The sentiment cloud analysis . 91
7.8 The top influencers map analysis . 91
7.9 The posts map analysis . 92
7.10 The data integration layers . 94
7.11 The global schema . 95
7.12 The attribute tree edited . 97
7.13 The snowflake schema . 98
7.14 The compatibility matrix . 99
7.15 First mashup example . 100
7.16 Second mashup example . 101
7.17 Status description . 102
7.18 Custom binding dialog box . 102

8.1 Task completion times for the two user groups 109
8.2 Ease of use scores for the two user groups 110
8.3 Results about satisfaction . 112

Part I

Rationale and Contribution

1

Chapter 1

Introduction

The current trend in the development of modern Web applications - and in particular of
those applications commonly referred to as Web 2.0 applications – clearly points toward
a high user involvement. The so-called social applications prove the initially unexpected
value of involving end users in the content creation process. Another practice that
has emerged recently is the development of applications through the integration of
contents and functionalities that are available on the Web in form of open APIs or
reusable services. A “classical” example of this practice is www.housingmaps.com,
which interweaves housing offers taken from the Craigslist with Google Maps. The
phenomenon is commonly known as Web mashups, and it shows that Web users are
increasingly also taking part in the development process of Web applications.

Integration and composition technologies have been one of the main focuses of software
development methods and technologies for the last 30 years. The problem they try to
solve is that of creating data models, applications, and user interfaces by integrating
existing components rather than doing development from scratch. Integration may
come in different forms, but in general we can distinguish among three main classes
of integration: data integration, application integration, and user interface (or, more
broadly, presentation) integration.

Data integration (see Figure 1.1(a)) presents several issues, ranging from the resolution
of mismatches between component data models, such as the same terms having different
meanings, to the construction and maintenance of virtual schemas and query mappings
between global and local schemas. It requires limited cooperation from component
applications; it however requires an understanding of the semantics of the data model
of the components.

Application integration (see Figure 1.1(b)) has been thoroughly explored and researched
in the past years, and the outcome of the research are technologies like RPCs and ob-
ject brokers in the past and, more recently, Web Services. In application integration,
a composite application has its own User Interface (UI), but its business-logic layer is

3

4 CHAPTER 1. INTRODUCTION

Figure 1.1: The different levels of integration: data, application, and UI

developed by integrating the functions that component applications expose. Of course
this works very well when the component applications expose an API that is kept more
or less stable across versions.

UI integration (see Figure 1.1(c)) should aim at composing applications in the presen-
tation layer, leaving the responsibility of data and business-logic management to each
component. UI integration is particularly applicable when application or data integra-
tion is not feasible (such as when applications do not expose business-level APIs), or
when the development of a new UI from scratch is too costly.

The World Wide Web is full of examples of integration of heterogeneous compo-
nents in order to quickly solve situational problems, even totally different from the
purpose single components have been conceived for. The Web site http://www.

programmableweb.com lists hundreds of such examples. So far, most of these mashups
are crafted in an ad-hoc fashion, using different technologies as bridges between com-
ponents. The result is often fully functional, but poorly documented, hardly extensible
and scarcely interoperable. Moreover, there is not a standardized way of describing
such compositions, and it is hard to tell where the boundary between the integration
code and the actual components is.

The landscape of integration technologies today is in evolution, under many perspec-
tives. In the past, the three types of integration described above were clearly separate,
and in fact UI integration was almost non-existent. Furthermore, integration was (and
still is) complicated. Composition languages proposed so far are very complex – see
for example BPEL [11] or any user manual for ETL tools [6], as is the development,
execution, and analysis of integration logic. Recently mashups contributed to mix-up
things, creating further “confusion”: for example, Yahoo! Pipes [56] is perceived as a
mashup tool and indeed it mashes Web content, primarily RSS feeds; but its model
shares many similarities with composition and integration models. Incidentally, it is
hard to classify mashups as an information, application, or UI integration tool, as they
inherits aspects from each of these application classes.

Some recent trends in application integration, which are extremely relevant for the
topic of this thesis, are also those of simplicity, immediacy, and visibility, all intro-
duced (or certainly accelerated) by Web 2.0. Simplicity is a trademark of modern Web

1.1. MOTIVATIONS 5

application development. Increasingly, complex functionality and now even program-
ming is brought to the end user, as in the case of recent mashup environments provided
by major companies, such as Intel, Google, and Yahoo!. People are getting used to
this simplicity and demand it more and more even for enterprise applications, even if
the latter are more sophisticated and mission critical.

The Web, and technological advances also make everything visible: we are getting
accustomed to having all sort of information, and in real time, from flight status to
traffic on the highways to detailed reporting on accesses to our Web site. The same
visibility is now required by IT managers and CIOs on business processes and enter-
prise services. Interestingly, this immediacy and visibility is also characteristic of end
user development, as for example pipes created with Yahoo!Pipes can be debugged
“live”.

1.1 Motivations

Mashups were initially conceived in the context of the consumer Web, as a means for
users to create their own applications starting from public programmable APIs, such
as Google Maps or the Twitter API, or contents taken from Web pages. The most
popular current mashups integrate public programmable APIs. However, the vision
is towards the development of more critical applications, for example the so-called
enterprise mashups [37], a porting of current mashup approaches to company intranets.
Enterprise mashups enable enterprise members to play with company’s internal services
that give access to the enterprise information assets, and to mash them up in innovative,
hopefully value-generating ways. For example, a goal could be the automation of a
recurrent bureaucratic procedure. Think for example to enterprise managers that want
to compose by themselves and in a flexible way their dashboards, and to the plethora
of corporate services (e.g., for the access to a variety of enterprise information sources),
Web resources and open services that, if integrated, can largely ease the construction of
applications for process and data analysis. Mashups are therefore gaining momentum
as a technology for the creation of innovative solutions, able to respond to the different
problems that arise daily in the enterprise context, as well as in any other context where
flexibility and task variability become a dominant requirements variable. The potential
flexibility of mashup environments helps people help themselves [55], by enabling the
on-demand composition of the functionalities that they need.

Given the variability of contexts in which mashups are (and are going to be) used,
the need arises to provide environments where the end users (i.e., the main actors of
this new development process) can easily and quickly self-construct their applications
without necessarily mastering the technical features related to service invocation and
integration. This is true in every context - not only in the Enterprise: a “culture of
participation” [30], in which users evolve from passive consumers of applications to

6 CHAPTER 1. INTRODUCTION

active co-creators of new ideas, knowledge, and products, is indeed more and more
gaining momentum [54].

Despite the previous premises, so far the research on mashups has focused on enabling
technologies and standards, with little attention on easing the mashup development
process – in many cases mashup creation still involves the manual programming of the
service integration. We believe that what makes mashups different from plain Web
service composition or application integration is their potential as tools through which
end users are empowered to develop their own applications and, thus, innovate [54].
However, this potential is rarely exploited. Some recent user-centric studies [12] found
that although the most prominent mashup platforms (e.g., Yahoo!Pipes [56] or Intel
Mash Maker [35]) simplify the mashup development, they are still difficult to use by
non technical users.

This thesis tries to respond to the previous needs, and proposes a Web platform,
DashMash, that allows end users to develop their own mashups making use of an
intelligible paradigm. The goal of our work has been in particular to identify high-
level abstractions that on one side capture the most relevant properties of the different
classes of resources, useful for their integration within mashups, while on the other
hand are able hide to the users the technical details deriving from the heterogeneous
technologies that characterize mashup services and especially their integration.

1.2 Goal of this Thesis

There are some key requirements that encourage End User Development (EUD). We
identified the most relevant ones proposed by the literature and we also investigated
and validated them in the context of a project funded by the Comune di Milano (Milan
Municipality), where we promoted mashups as a flexible tool for the construction of
personalized self-service environments supporting sentiment analysis [15]. This thesis
work aims at addressing such requirements. In particular:

1. It promotes a lightweight development processes, in which an intuitive mashup
composition paradigm is contextualized within a usable visual environment hiding
the complexity of the composition languages actually managing the execution of
the mashup, thus enforcing end-user programming.

2. It proposes expressive models and description languages for the mashup services
and the mashup composition, able to capture the most salient features at the basis
of service wrapping and service integration within mashups, abstracting from the
technical details that are characteristic of specific components and composition
technologies.

3. It presents a runtime framework supporting these lightweight development pro-

1.3. OUTLINE 7

cesses, that ensures:

• An instant execution support, based on the “on the fly” interpretation of
the user composition actions and the immediate execution of the mashup
composition in a WYSIWYG (What You See Is What You Get) manner;

• The automatic generation of descriptive models as resulting from the users
composition actions, which then drive the execution of the mashup;

• The generation of recommendations helping the end-user to identify can-
didate services to be added within the mashup and also possible ways to
integrate them.

4. While on the one hand it gives a systematic view over mechanisms for the
lightweight development of mashup based on end-user programming, through
the case study developed for the Milan Municipality it also shows how these
mechanisms, that are in general valid for the composition of any mashup class,
can be specialized for the specific domain of dashboard construction.

5. Based on the results of a user-centric study, it discusses the effectiveness of our
approach from the end user perspective.

1.3 Outline

The rest of this thesis is organized as follows:

• Part II: Background

– Chapter 2 - UI Composition: this chapter illustrates existing User Interface
composition technologies and the differences between different integration
approaches. It also overview the main research approaches and commercial
platforms so far proposed for mashup development.

– Chapter 3 - Data analytics and visualization: in this chapter we give an
overview of some relevant notions of data analytics and advanced data vi-
sualizations, on which we based the development of a set of mashup compo-
nents for the construction of mashup-based sentiment analysis dashboards
for our case study.

– Chapter 4: End-user development : this chapter discusses End-User Devel-
opment and relates mashups to such user-centric development paradigm. By
illustrating the main activities that characterize the mashup development,
the chapter in particular highlights the potential of mashups as tools that
can strongly enforce end-user development.

• Part III: Models and Architecture

8 CHAPTER 1. INTRODUCTION

– Chapter 5: Models : this chapter gives an overview of the models that cap-
ture the abstractions on which we founded the event-driven mashup compo-
sition that characterizes our approach. We in particular propose an abstract
model for presentation components (UISDL - UI Service Description Lan-
guage), a declarative composition language (XPIL - eXtensible Presenta-
tion Integration Language), a state model (SMDL - State Model Descriptor
Language), easing the mashup composition monitoring and evolution, and a
Data Flow Model (DFM), providing a common format for the representation
of data to be exchanged among the different mashup services.

– Chapter 6 - Architecture: this chapter shows a client-side implementation
of the composition and execution middleware; it illustrates the fundamen-
tal architectural modules that enable (i) the DashMash visual composition
paradigm, characterized by the automatic and custom definition of service
bindings and the generation of composition recommendations, (ii) the event-
driven mashup execution, and (iii) the abstractions and mechanisms behind
the automatic generation of composition models and mashups.

• Part IV: Validation

– Chapter 7 - Case study : it shows the previous concepts at work, and illus-
trates an instantiation of our DashMash platform for the construction of
sentiment analysis dashboards.

– Chapter 8 - User testing : it presents the results of an experiment involving
35 users, which allowed us to investigate some hypotheses about the usability
of our platform.

• Part V: Conclusions

– Chapter 9 -Conclusion: it draws the conclusions, summarizing the main
results that have been achieved and outlining the future work.

An appendix also provides details about the material adopted for the user experi-
ment.

Part II

Background

9

Chapter 2

UI Composition

UI (or, more broadly, presentation) integration allows an application to participate
with others as if they were designed as a single application. By this way, it is not
necessary to compile, package and release components composition as a single mono-
lithic unit. More specifically, UI integration composes applications by reusing their own
user interfaces. This means that the presentation layer of the composite application
is itself composed, at least in part, by the presentation layers of the components. UI
integration, is particularly applicable in cases where application or data integration is
not feasible (e.g., the applications do not expose a business level API), or where the
development of a new UI from scratch is too costly (e.g., the component application
often change or its UI is complex) [26].

Facing the problem of presentation-level integration (PI) requires to get benefit from
the great number of researches in the field of integration; it is also necessary to keep
in mind that integration problems and their correlated solutions differ in the kind
of integration needed, though certain approaches are common and seem to be more
successful and applicable than others.

The starting point on which we need to focus our attention consists in finding a ho-
mogeneous way to describe the different components to be integrated. Moreover, the
description should be simple, formal, human readable and modular: in fact, simplicity
often leads to diffusion as well as readability, which is essential for developers who often
need to read the specification directly. Modularization is also fundamental because it
enables the incremental expansion of the integration model. Using these paradigms
we can find a concrete example of how high is the probability of success in term of
diffusion in a well-known language such as WSDL [22].

It is also useful to reflect about the importance of tool support: as a matter of fact,
tools relevant for integration include both development environment as well as run-time
middleware that handle component bindings and interaction. Moreover, tools also act
as mediators between language representation and users, allowing reaching a larger

11

12 CHAPTER 2. UI COMPOSITION

number of developers.

It is quite ambitious to cover all these aspects in a single specification. A good ap-
proach could be to proceed incrementally, starting from basic requirements and then
adding functionalities if needed. This is for example the approach adopted by Web
Services.

Another interesting lesson, borrowed from application integration, is the success of
queue-based, publish-subscribe and bus mediated approaches to interoperability. The
value of such solution has been proved by the success of message broker platforms and
by the fact that even in Web services, originally born for fully decentralized interaction
with no assumption on a common middleware, the notion of enterprise service bus
quickly emerged and now is the common approach to implement SOAs, at least within
the enterprise.

The following sections with deeper the above mentioned issues, by highlighting the PI
peculiarities.

2.1 Peculiarity of Presentation Integration

One of the main features of UI integration is that it is typically event-driven, and specif-
ically guided by end-users’ actions: when the user interacts with the UI of a component,
it will react according to its own logic, generally involving an application-specific state
change. At this point, the rest of the components in the same composite application
need to be aware of this change, so that they can update their UI accordingly. It fol-
lows that communication between components mainly consists of notifications of state
changes. Therefore, in a composite application, the main difficulty is to manipulate a
component state as well as to detect its state changes.

Presentation Integration clearly appears different from, for example, application in-
tegration: in application integration components offers an arbitrary set of method
offering support for service invocation and data reply; integration is mainly procedu-
ral, achieved via the specification of fairly complex control logic (e.g., in BPEL or
other workflow-like language) that causes the invocation of services typically in some
predefined sequence.

Another peculiarity of UI integration is the notion of configuration parameters, for the
purpose of design-time component customization: a developer might want to specify
characteristics of components UI appearance, like background and zoom level. More-
over, in presentation integration the runtime middleware migh need to know if the UI is
visible or hidden, minimized or maximized: the middleware should be able to monitor,
query, and update the presentation modes of the components. In addition, components
in PI also require proper layout management, related to properties such as the location,

2.2. THE UI INTEGRATION PROBLEM 13

size, shape, transparency, and z-order of the presentation components.

2.2 The UI Integration problem

In UI integration is possible to identify four mainly issues:

• to define models and languages for component specifications.

• to define models and languages for component composition specifications;

• to choose communication styles for component interaction;

• to define discovery and binding mechanism (also during run-time) for identifying
components.

Also taking into account the guiding principles illustrated before, i.e., simplicity, for-
malism, readability and modularity of specifications, it is possible to identify some
possible solutions for managing components and the interactions with their presen-
tation layer; each one characterized by a given level of complexity, technology and
programming friendliness:

• Component model : in application integration components are characterized
by an API (Application Programming Interface) and also a component model.
In data integration, data source schema describe the component. Indeed, UI
integration at presentation layer, besides the reuse of class libraries, requires a
component model that can support complex interactions and coordination. Every
single component is described by a software interface enabiling service invocation
and a user interface that enables interaction. A UI component interface allows
several levels of interoperability.

• GUI-only: all interactions with GUI-only components are performed through
the component’s UI logic. The only method to integrate a GUI-only component
is to know its UI and be able to track the mouse position or key strokes and to
understand what the component’s UI shows so that is possible to execute actions
that cause UI modification.

• Hidden interface: in many Web applications, the component has an interface
that lets users control its UI, but it is not publicly described. Web applications
interaction allows the access and manipulation of content by sending HTTP re-
quests and displaying the response. These applications obey a general protocol
for interaction among clients and applications, usually hard to identify.

• Published interface: in this ideal case, the component provides a public de-
scription of its UI and an API in order to manipulate it at runtime. A low level
API might allow control of individual UI element. A high-level API would expose

14 CHAPTER 2. UI COMPOSITION

a set of entities and controllable objects, as well as operations to change entity
status.

2.2.1 Composition language

A composition language supporting identification and specification of the elements in-
volved in an orchestration and their interaction. As for as data integration, composition
often occurs via SQL views that allow one to express a global schema as a set of views
over a local schema.

In application integration the composition can be described either via general-purpose
programming languages such as Java, or dedicated application integration languages,
such as workflow or service composition languages. In UI composition there might be
two kinds of solutions:

• General-purpose programming languages: developers can adopt third-generation
languages for application composition. Such languages are very flexible but lack
abstractions to coarse-grained components (such as facilities for component dis-
covery and binding or high-level primitives for synchronizing what UI components
display).

• Specialized composition languages: high-level languages are typically used
with a XML syntax tailored to the composition of UI components at the level
of abstract/external descriptions. The main benefit of such languages is higher-
level programming of the compositions, that leverages the component model’s
characteristics.

2.2.2 Communication style

We have already underlined the importance of communication in UI integration: the
need to monitor UI events within some component that can update the state (and the
UI) of other components. It is possible to distinguish between two types of communi-
cation:

• Centrally mediated communication, in which the composite application has
a central coordinator that receives events from the components and issues in-
structions to manipulate component UIs.

• Direct component-to-component communication, in which the composite
application is a coalition of individual components.

These solutions clearly differ from data integration where components are typically pas-
sive and do not initiate communications with the integrating application. Application

2.2. THE UI INTEGRATION PROBLEM 15

integration shows the same difference: a centralized entity (the composite application)
invokes components as needed.

An additional distinction between these types of communication in UI integration is
the one between RPC-style interaction, in which components exchange information
via method calls and returned data, and publish-subscribe interaction [29], in which
applications communicate in a loosely coupled way via messages exchanged through
message brokers.

2.2.3 Discovery and binding

A relevant problem in UI integration is very important to discover the components
involved in the composition and understand how to get reference to them.There are
two different ways to do this: the first consists in defining the composition statically
at design or deployment time and the second consists in doing this dynamically at
runtime.

We observe that in data and application integration the binding between different data
sources typically occurs at design time when the data global schema is defined and
the discovery is performed dynamically by an integration middleware. However this
approach lacks flexibility because of the difficulty of interacting with newly discovered
components later added to the initial integration.

A hybrid binding solution is also used in which the application designer identifies and
tests a set of potential components and the users then select a subset of them at
runtime based on the task they need to tackle: in this case the discovery is static but
the reference is dynamic. This hybrid approach is possible in UI integration, too.

2.2.4 Components visualization

There are several solutions for component visualization, whose distinction is based
on the UI rendering paradigm. In fact, the component can display its UI in a first
kind of solution, while the composite application receives UI markup code from the
components and renders them in a second kind of solution.

The second one needs a markup description, that has to be interpreted using a rendering
engine in order to obtain a translation in graphical elements: the markup specifica-
tion describes often static UI properties, whereas scripting languages provide dynamic
behavior. Such description can be done with document-oriented languages or UI lan-
guages that model sophisticated application interfaces. Examples of such language are
XAML[3], XUL[4], UIXML[2], XIML[49] (Table 2.1).

16 CHAPTER 2. UI COMPOSITION

XAML Extensible Application Markup Language is a declarative XML-
based language created by Microsoft which is used to initialize
structured values and objects. XAML elements map directly to
Common Language Runtime object instances, while XAML at-
tributes map to Common Language Runtime properties and events
on those objects. Anything that is created or implemented in
XAML can be expressed using a more traditional .NET language,
such as C# or Visual Basic.NET. However, a key aspect of the
technology is the reduced complexity needed for tools to process
XAML, because it is based on XML.

XUL XML User Interface Language, is an XML user interface markup
language developed by the Mozilla project. XUL provides a
portable definition for common widgets, allowing them to move eas-
ily to any platform on which Mozilla applications run. While XUL
serves primarily for constructing Mozilla applications and their ex-
tensions, it may also feature in Web applications transferred over
HTTP.

UIXML uiXML is a XML language for programming UIX applications.
uiXML builds on top of the other UIX technologies, providing a
XML language for specifying user interfaces and linking them to
data and events. uiXML provides a declarative alternative to cre-
ating Web applications programmatically with the UIX Java APIs.
The pages, events, and any other items defined with uiXML ele-
ments are all transformed into Java objects behind the scenes and
are thus treated equally by UIX. No compilation is required.

XIML eXtensible Interface Markup Language is a XML-based language
that enables a framework for the definition and interrelation of
interaction data items. As such, XIML can provide a standard
mechanism for applications and tools to interchange interaction
data and to interoperate within integrated user-interface engineer-
ing processes, from design, to operation, to evaluation. XIML is an
organized collection of interface elements that are categorized into
one or more major interface components.

Table 2.1: Overview about some markup description languages

It is possible to have two different UI rendering solutions:

• Component-rendered UI: the component handles the UI’s rendering and dis-
play, thus the composite application is a collection of the component’s UIs. This
is the case of the classical desktop applications that leverage executable compo-
nents of linked graphical libraries.

2.3. UI COMPOSITION TECHNOLOGIES 17

• Markup-based UI: the component returns UI code and delegates the final UI
rendering to either the composite application or the running environment able
to interpret the components’ UI code and to allocate suitable layout space for
component rendering. In this case, user interaction with the component can
be handled directly via a suitable scripting logic embedded in the component’s
markup, or the composite application can intercept generated UI events and
forward them to the component for interpretation.

2.3 UI Composition technologies

We illustrate in Figure 2.1 a comparison between the different UI technologies con-
sidered in the context of UI composition. This comparison focused on the principal
aspects of UI integration previously presented. The compared technologies are shortly
described in the rest of this section.

Figure 2.1: Comparison of current UI integration approaches

2.3.1 Desktop UI components

Historically UI composition was born for desktop applications, to create an environ-
ment in which applications developed with heterogeneous languages could interoper-
ate. Think for example to ActiveX, which leverages Microsoft’s COM technology for
embedding a complete application UI into host applications, and the composite UI
application Block (CAB) [9] that is a framework for UI composition in .NET with a
container service that lets developers build applications on loadable modules or plugins.
In particular, CAB components can be used with any .NET language to build com-
posite containers and perform component-container communications. CAB provides

18 CHAPTER 2. UI COMPOSITION

an event broker for many-to-many, loosely coupled inter-component communication
based on a publish-subscribe runtime event model.

Another example is Eclipse’s Rich Client Platform(RCP)[1], which provides a similar
framework, but it also includes an application shell with UI facilities. It further offers
a module-based API that lets developers build applications on top of this shell. Eclipse
also allows developers to customize and extend UI components via so-called extensions
points, a combination of Java interfaces and XML markups.

Desktop UI components typically use general-purpose programming languages to inte-
grate components (C# for CAB and Java for RCP) because the component interfaces
are language-specific programming APIs. Components manage their own UI render-
ing; they could support flexible communication styles. Both design-time and runtime
bindings are supported as well, with the latter relying on language-specific reaction
mechanism.

Many of the technologies for desktop UI components are OS dependent. Although CAB
and RCP do not depend on the OS directly, they rely on their respective runtime envi-
ronments. The lack of technology-agnostic, declarative interfaces makes interoperation
between components implemented with different technologies difficult to achieve.

2.3.2 Browser plug-in components

Browser navigation experience usually involves advanced UI features. The main tech-
nologies used to create embedded UI components in markup-based interfaces are Java
applets and ActiveX controls. After the definition of the components binding at page
authoring time by Web designer, the browser downloads the components at runtime
and instantiates them.

These components often provide their own rendering, with a little further communi-
cation between themselves and the containing Web page. The external interface of
such components is very simple and usually requires only the proper configuration
parameters when embedding components into the markup code.

2.3.3 Web mashups

Web mashups are Web sites that wrap and reuse third-party Web content. A developer
thus performs the integration in an ad-hoc fashion by leveraging whatever programming
language the content source provides, either on the client or server side.

Content providers typically provide content as markup code, and mashup developers
integrate it in a centrally mediated way. Because content is markup based, the com-
posite application usually renders the components. The lack of infrastructure makes

2.4. TOOL-ASSISTED MASHUP DEVELOPMENT 19

component communication difficult and only provides a way to statically bind compo-
nents.

2.3.4 Web portals and portlets

Web portal development explicitly distinguishes between UI components (portlets) and
composite applications (portals). Portlets are full-edged, pluggable Web application
components; they generate document markup fragments that adhere to certain rules,
thus facilitating content aggregation in portal servers to ultimately form composite
documents. Portal servers typically let users customize composite pages and provide
single sign-on and role-based personalization.

Analogous to Java servlets, portlets implement a specific Java interface to the standard
portlets API, which was intended to help developers create portlets that can plug into
any standard-conform portal server. For Java portlets, portal application are based on
the Java programming language, whereas with Web Parts, a Web developer programs
applications in .NET.[8] The portal application aggregates its portlets’ markup outputs
and manages communication in a centrally mediated fashion.

Portlets also allow both static and dynamic binding; during runtime, the portal ap-
plication can make portlets available in a registry for user selection and positioning.
Although portlets and Web Parts have similar goals and architectures, they are not
interoperable. Web Service for Remote Portlets (WSRP) addresses this issue at the
protocol level by exposing remote portlets as Web Services; communication between
the portal server and portlets occurs via SOAP, which means developers can build the
portal and portlets with different languages and runtime framework.

2.4 Tool-Assisted Mashup Development

To speed the overall mashup development process, but also to enable even inexperi-
enced end users to mash up their own Web applications, numerous mashup-specific
development tools and frameworks have recently emerged.

These instruments typically come with a variety of features and a mixture of compo-
sition approaches. A close look at them lets us identify the open issues and research
challenges characterizing the mashup phenomenon. For presentation purposes, we se-
lected the most popular or representative approaches of end-user mashup tools.

2.4.1 Yahoo Pipes

20 CHAPTER 2. UI COMPOSITION

Figure 2.2: Yahoo Pipe logo

Yahoo Pipes [56] lets you mix popular data feeds
in order to create data mashups via a visual editor.
A pipe is a data processing pipeline consisting of
one or more data sources (for example, RSS/Atom
feeds or XML sources) and a set of interconnecting

operators, each of which performs a specific task.

It includes operators for manipulating data feeds (for example, sorting or filtering) and
operators for features such as looping, regular expressions, or counting. It also sup-
ports more advanced features, such as location extraction (for example, geocoordinates
identified and converted from location information found in text fragments) or term
extraction (for example, keywords).

Figure 2.3: Yahoo Pipe Editor Example

Yahoo Pipes therefore aims to let users design data-processing pipelines that filter,
transform, enrich, and combine data feeds and are again exposed as RSS feeds.

2.4.2 Intel Mash Maker

Figure 2.4: Intel Mask Maker logo

Mash Maker [35] provides an environment for
integrating data from annotated source Web
pages based on a powerful, dedicated browser
plug-in. Rather than taking input from struc-
tured data sources such as RSS or Atom, Mash

2.4. TOOL-ASSISTED MASHUP DEVELOPMENT 21

Maker lets users annotate Web pages’ structure while browsing and use such annota-
tions to scrap contents from annotated pages.

Advanced users can leverage the integrated structure editor to input XPath expressions
using FireBug’s DOM Inspector (a plug-in for the Firefox Web browser). Composing
mashups with Mash Maker occurs via a copy-and-paste paradigm, based on two modes
of merging contents:

• Whole page merging, in which the user inserts a page’s content as a header into
another page;

• Item-wise merging, in which the user combines contents from two pages at row
level, based on additional user annotations. You can use the two techniques to
merge more than two pages.

Figure 2.5: Intel Mash Maker example

2.4.3 Quick and Easily Done Wiki

Figure 2.6: QEDWiki logo

QedWiki [34] is the IBM’s proposal for a wiki-
based “mashup maker”, fully running inside the
client browser and allowing access to IBM’s
Mashup Hub. The Hub supports the creation of
data feeds and user interface widgets and incor-
porates Data Mashup Fabric for Intranet Ap-

22 CHAPTER 2. UI COMPOSITION

plications (Damia) for data assembly and ma-
nipulation.

As a wiki environment, it lets users edit, im-
mediately view, and easily share mashups. Mashups are assembled from JavaScript
or PHP-based widgets, whose wiring determines the mashup’s behavior. Widgets
represent application components and might or might not have their own user in-
terface.

To assemble a mashup, a user selects a page layout (an HTML template) and then
drags and drops widgets onto the page grid and interactively configures them.

Figure 2.7: Quick and Easily Done Wiki example

2.4.4 Damia

Through a Web-based interface, IBM DAMIA [52] provides easy-to-use tools that de-
velopers and IT users alike can use to quickly assemble data feeds from the Internet
and a variety of enterprise data sources. The benefits of such service include the ability
to aggregate and transform a wide variety of data or content feeds, which can be used
in enterprise mashups.

DAMIA lets you do the following:

• Import XML, Atom, and RSS feeds.

• Assemble feeds from both the Internet and from Excel spreadsheets. Database
support is coming soon.

• Import data from local les in XML format and Excel spreadsheets.

2.4. TOOL-ASSISTED MASHUP DEVELOPMENT 23

• Aggregate and transform a wide variety of data or content feeds into new syndi-
cation services. When building a complete Web application that provides a user
interface, additional tools or technologies are required in order to display the data
feed provided by DAMIA. Mashup makers and feed readers that consume Atom
and RSS can be used as the presentation layer in the enterprise Web application.

DAMIA is composed of the following:

• a browser-based Web application for assembling, modifying and pre-viewing mashups.

• services for handling storage and retrieval of data feeds created within the enter-
prise as well as on the Internet. In addition to creating data feeds from various
sources, DAMIA can publish information such as Excel spreadsheets or XML
documents in mashup formats.

• a repository for sharing and storing feeds or information created by DAMIA.

• services for managing feeds and information about mashups, search capabilities
and tools for tagging and rating mashups.

2.4.5 JackBe Presto

Figure 2.8: JackBe Presto logo

JackBe Presto[36] is an Enterprise Mashup Platform
that includes functionality for creating and syndi-
cating enterprise mashups. It provides a support
for application developers and power users to cre-
ate, customize and share Enterprise Apps mashups.
JackBe Presto functionalities includes:

• service access engines for Web services, SQL, RSS, and Web clipping;

• mashup composers/creators including a graphical, drag-and-drop tool and a declar-
ative enterprise mashup markup language;

• mashup connectors for popular enterprise tools including Microsoft Excel, HP
Systinet, and Oracle WebCenter;

• mashup APIs for JavaScript, Java, REST, C#, and .NET;

• Enterprise Mashup Markup Language (EMML)[45].

In March 2010 JackBe lanched a cloud-based version of its Presto product hosted on
Amazon EC2.

24 CHAPTER 2. UI COMPOSITION

Figure 2.9: PrestoWires application example

2.4.6 Marmite

Marmite is a tool created by Jeffrey Wong and Jason I Hong [55]. It is presented as
a solution that lets users create their own mashup without pre-required programming
skills. It permits to:

• access to Web Service APIs;

• combine Web Service APIs with screen-scrape oriented programming;

• present a tool composed by an operators menu, a data flow view and data view.

2.4.7 MashArt

MashArt [23] is a platform based on UI integration developed by University of Trento
in collaboration with SAP. The core engine of MashArt is an evolution of MixUp, a
previously delivered mashup engine which is also the basis of this thesis work. The
UI composition is event-based, interpreted at runtime, and uses standard HTML tem-
plates for the layout. UI components in the composition uses events and operations
to communicate/enact state changes. They are describe by an abstract descriptor
(MDL).

MashArt provides a drag & drop editor that permits a visual definition of the mashup
at design-time, during which user can define the integration logics and the placement
of the components into a layout grid.

2.4. TOOL-ASSISTED MASHUP DEVELOPMENT 25

Figure 2.10: Marmite example

Figure 2.11: MashArt example

26 CHAPTER 2. UI COMPOSITION

2.4.8 ServFace

Figure 2.12: ServFace logo

The ServFace[51] project aims at creating a model-
driven service engineering methodology for an inte-
grated development process for service-based appli-
cations.

The set of Service Annotations identified in the
ServFace project are captured in the ServFace An-
notation Model. Together with technical service de-

scriptions like WSDL, it provides the necessary input for an automated user interface
inference mechanism that generates high quality user interfaces for the interaction be-
tween human users and annotated Web services.

For the composition of annotated services to complex applications, two alternative
modeling approaches are investigated in ServFace.

• Presentation-oriented service composition, in which the application is modeled
visually by composing the application’s UI from parts that are generated using
the service annotations. Moreover, a ServFace Builder tool is under construction:
it will integrate an inference engine to generate user interfaces from annotated
services. This approach is the one most oriented in towards end-user development.

• Task-oriented service composition: it is supported by a tool called MARIAE [5].
It provides a novel solution able to exploit task models (represented in the Con-
curTaskTrees notation) and user interface models (in the MARIA language) for
the design and development of interactive applications based on Web services for
various types of platforms (desktop, smartphones, vocal, . . .). The tool is able to
automatically import service and annotation descriptions and support interactive
association of basic system tasks with Web services operations. Then, a number
of semi-automatic transformations exploit the information in such service and
annotation descriptions to derive usable multi-device service front ends.

Chapter 3

Data analytics and visualization

As we will show in Chapter 7, the case study developed for this thesis is a mashup
development tool for the construction of Web reputation dashboards.

This class of mashups is characterized by components in charge of extracting data
from a Data Warehouse and visualize them through advanced graphics visualization.
Therefore, our work is also characterized by the use of Data Analytic and Visualization
techniques.

In this chapter we will introduce the principal concepts that guided our work.

3.1 Data Analytics

Enterprise mashups enable enterprise members to play with company’s internal services
that give access to the enterprise information assets, and to mash them up in innovative,
hopefully value-generating ways. In this context Enterprise Mashup aimed at analysts
or decision makers. End-user would compose his own mashup to analyse data in order
to draw conclusions and make strategic decisions.
Data analytics is used in Industry, to allow companies and organizations to make
better business decisions, and in the Sciences, to verify or disprove existing models or
theories.

Data analytics distinguishes from data mining by scope, purpose and focus of the
analysis. Data miners sort through huge data sets using sophisticated techniques to
identify unexpected patterns and hidden relationships. Data analytics focuses on in-
ference, the process of deriving a conclusion based solely on what is already known by
the researcher.

Data analytics is generally divided into:

27

28 CHAPTER 3. DATA ANALYTICS AND VISUALIZATION

Exploratory data analysis (EDA) where new features in the data are discovered;

Confirmatory data analysis (CDA) where existing hypotheses are proven true or
false;

Qualitative data analysis (QDA) used in the social sciences to draw conclusions
from non-numerical data like words, photographs or video.

The term analytics has been used by many business intelligence (BI) software vendors
as a buzzword to describe quite different functions. Data analytics is used to describe
everything from online analytical processing (OLAP) to CRM analytics in call centers.
Banks and credit cards companies, for instance, analyze withdrawal and spending
patterns to prevent fraud or identity theft. Ecommerce companies examine Web site
traffic or navigation patterns to determine which customers are more or less likely to
buy a product or service based upon prior purchases or viewing trends. Modern data
analytics often use information dashboards supported by real-time data streams.

Our work is related to the dashboard construction. The tool we propose support
the composition of Enterprise Mashup dashboards, where each viewer is a mashup
component. The available mashup components are especially ad-hoc created “viewers”,
offering advanced visualization of some trend of data aggregations.

3.2 Visualization families

In order to support analyses, it is important to support users with data visualizations
that can help grasping data property and relationship emerging from the underling data
collection. For this purposes aggregate representations of data are more expressive and
more useful.

There are different families of visualizations, each one having its own characteristics,
this being suitable to represent some kind of data, or data aggregations, for particular
analyses.

In the following, we will categorize and describe the visualization families that we
considered in order to represent aggregated data extracted from the sentiment Data
Warehouse.

3.2.1 Charts

Charts are the most popular and used type of visualizations for data analytic. They
provide representations of aggregated data and could be of different types:

3.2. VISUALIZATION FAMILIES 29

• Pie Chart
A pie chart is a circular chart divided into sectors, highlighting data proportion.
In a pie chart, the arc length of each sector is proportional to the quantity it
represents. When angles are measured with one turn as unit then a number
of percent is identified with the same number of centiturns. The pie chart is
perhaps the most ubiquitous statistical chart in the business world and the mass
media. However, it is difficult to compare different sections of a given pie chart,
or to compare data across different pie charts. Pie charts can be an effective, in
particular if the intent is to compare the size of a slice with the whole pie, rather
than comparing slices among them. In general other plots such as the bar chart
or the scatter chart, or non-graphical visualizations, such as tables, may be more
suitable for representing certain information.

• Scatter Chart
A scatter chart is a mathematical diagram using Cartesian coordinates to display
values for two variables for a set of data. The data set is displayed as a collection
of points, each having the value of one variable determining the position on the
horizontal axis and the value of the other variable determining the position on
the vertical axis. A scatter plot can suggest various kinds of correlations between
variables with a certain confidence interval. Correlations may be positive (rising),
negative (falling), or null (uncorrelated).
One powerful aspect of a scatter plot, however, is its ability to show nonlinear
relationships between variables. Furthermore, if the data is represented by a
mixture model of simple relationships, these relationships will be visually evident
as superimposed patterns.

• Line Chart
A line chart is a type of graph which displays information as a series of data points
connected by straight line segments or interpolated using spline. It is a basic
type of chart common in many fields. It is an extension of a scatter graph, and is
created by connecting a series of points that represent individual measurements
with line segments. A line chart is often used to visualize a trend in data over
intervals of time – a time series – thus the line is often drawn chronologically.

• Area Chart
An area chart displays graphically quantitative data. It is based on the line
chart. The area between axis and line are commonly emphasized with colors and
textures. Commonly, this chart is used to compare two or more quantities.

• Bar Chart
A bar chart, or histogram, is a chart with rectangular bars with lengths propor-
tional to the values that they represent. Bars can be plotted both horizontally
and vertically. Bar charts are used for plotting discrete (or ’discontinuous’) data.

30 CHAPTER 3. DATA ANALYTICS AND VISUALIZATION

3.2.2 Tree Map

Treemapping is a method for displaying tree-structured data by using nested rectangles.
Each branch of the tree is associated with a rectangle, which is then tiled with smaller
rectangles representing sub-branches. A leaf node rectangle has an area proportional to
a specified dimension on the data. Often the leaf nodes are colored to show a separate
dimension of the data. When the color and size dimensions are correlated in some way
with the tree structure, one can often easily see patterns that would be difficult to spot
in other ways. A second advantage of treemaps is that, by construction, they make
efficient use of space. As a result, they can clearly display several items on the screen
simultaneously.

3.2.3 Tag Cloud

A tag cloud or word cloud (or weighted list in visual design) is a visual depiction of
user-generated tags, or simply the word content of a site, typically used to describe
the content of Web sites. Tags are usually single words and are normally listed alpha-
betically, and the importance of a tag is shown through font size or color. Thus, it is
possible to find a tag alphabetically and by popularity. The tags are usually hyperlinks
that lead to a collection of items that are associated with them. Sometimes, further
visual properties are manipulated, such as the font color, intensity, or weight.

3.2.4 Table

A table is a matrix of data, and is especially used to represent relational data. This
kind of visualization is not appropriated to represent aggregate values but to show the
whole information. For example, if an analyst is examining the Web reputation, as in
our case study, he would read a user comment about a particular topic to understand
the causes of a negative judgement. Using a table it is possible to show such detailed
information, which instead would not be shown through aggregate visualizations.

3.2.5 Interaction approaches to chart visualization

Web mashups users are people with different skills. If the user is used to conduct
analyses on a Data Warehouse and is familiar with dimension and measures will prefer
to define visualization for aggregate analyses a similar approach but if the user never
use before a Data Warehouse he probably will prefer specify his analyses setting visu-
alization property or preference. In order to meet these different habits we describe
this two interaction approaches to set visualizations.

3.2. VISUALIZATION FAMILIES 31

The data warehouse approach The users who are used to work with data visu-
alization tools on a Data Warehouse may prefer a similar approach also in the
mashup’s composition. In this approach user will specify dimension and measures
among the available ones.

The preference approach The user without Data Warehouse skills do not want to
deal with measures and dimensions. He may want to define visual proprieties,
e.g. data represented on x or y axes of a chart and what series has to be shown
in the chart.

32 CHAPTER 3. DATA ANALYTICS AND VISUALIZATION

Chapter 4

Web Mashups: a new paradigm for
end user development

One of the main problems in software development is to deliver products that meet
users needs and preferences. In all the software development models the critical phase is
the validation by the final users of the produced applications: as a matter of fact, if the
users do not find the software acceptable, the development cycle needs to iterate until
the users expectations are fulfilled. This of course is one of the main cost items in terms
of time and money. Let us for example consider the needs of different professionals
working in disparate areas, such as engineers, physicians, geologists and physicist,
who are not professional programmers. In these domains, end-users best know their
requirements and need situational and super vertical functionalities. Their productivity
would increase if they would be empowered with tools for the easy production of their
applications through lightweight development processes.

Traditionally, in the world of software development, there has been a clear separation
between designers and consumers of the applications. In this context, accommodating
the users needs is challenging. To overcome such difficulty, some development models
(e.g., the Iterative life-cycle [39]) have been proposed in alternative to the traditional
top-down Waterfall model. In the last years, with the revolution of Web 2.0, the Web
also started to change the development practices: the development of modern applica-
tions is increasingly characterized by the involvement of end users with typically limited
programming skills. The Web 2.0 in particular promotes the culture of participation
[30], where the separation between designers and users is reduced, and end-users are
more and more enabled to take part to the construction of contents and applications.
End-user development is therefore gaining momentum as a paradigm through which
end-users, by means of adequate tools adopting high-level abstractions, can flexibly
define (or simply customize) their own applications.

Although powerful for increasing the user involvement, end-user development is not a

33

34CHAPTER 4. WEBMASHUPS: A NEWPARADIGM FOR ENDUSER DEVELOPMENT

panacea, and we cannot affirm that it provides a comprehensive solution for software
development. For example, in the case of mashup development, we strongly believe
that quality mashups can be achieved only if quality components, programmed by
skilled programmers, are available. More in general, some development aspects are too
complicated to be handled without the intervention of expert programmers. However,
our work aims at demonstrating that under certain assumptions it is possible to provide
not skilled end-users with tools that, being based on components amenable to flexible
integration in several contexts, can potentiate end-users programming.

In this chapter we define and discuss end-user development, trying to classify the frame-
works so far proposed in literature to simplify the development and the programming
of applications at different levels of complexity and abstraction. Mashup development
is then discussed, to highlight its potential as a specific end-user development frame-
work.

4.1 Classification of approaches

The literature [30] distinguishes among different end-user development approaches.

End-User Programming (EUP) empowers and supports end-users to program with
techniques such as: programming by demonstration, visual programming, scripting
languages, and domain-specific languages.

End-User Software Engineering (EUSE) adds to EUP support for systematic and
disciplined activities for the whole software lifecycle including: reliability, effi-
ciency, usability, and version control.

End-User Development (EUD) focuses on a broader set of developments, e.g. cre-
ating 3D models with SketchUp, modifying games. It puts end-users as owners
of problems, and makes them independent of high-tech programming.

Meta-Design provides a framework and a design methodology to explicitly “design
for designers”, by defining contexts that allow end-users to create content; it
is applicable to different contexts and encompasses principles that may apply
to programming, software engineering, architecture, urban planning, education,
interactive arts, and other design fields.

Our work is focused on the EUD: our mashup environment allows the end-user to solve
different kinds of problems as owner, through lightweight development tasks which hide
the technological complexity behind the high-level abstractions. In this way the user
can compose his/her own applications with extreme flexibility without programming
efforts.

4.2. THE MASHUP DEVELOPMENT 35

4.2 The mashup development

Web mashups have the potential of supporting end-user development. In this section we
therefore identify the main steps in the mashup development process, to highlight how
adequate support, i.e., adequate development tools, can increase such potential.

4.2.1 The development scenario

We can distinguish two basic approaches for mashup development:

Manual approach: The end-user is programming-skilled and therefore is able to
write code to program components and their choreography.

Automatic approach: The end-user is not programming-skilled and has only to
integrate ready-to-use components that expert developers have previously pro-
grammed. S/he uses a tool that simplifies the composition of the mashup.

How mashups are developed depends on the type of mashup. While current consumer
mashups (for example, all the numerous mashups based on Google Maps) are mainly
the results of some hacking activities by expert developers, enterprise mashups highlight
different development scenarios. Therefore we start from some recent studies on the
enterprise mashup domain [43, 44] and quality of mashups [20]; we try to outline the
different contributions of users at different skill levels:

1. Mashups can be used by expert developers (for example implementers of an IT
department or service providers) to deliver applications quickly. End users are
not directly involved in the construction of such mashups but benefit from the
shorter turn-around time for new applications.

2. Expert developers create services that can be composed into mashups and pro-
vides a sandbox where end users can combine them themselves. The role of
developers is to create services, but mashups are constructed by users closer to
the application domain.

3. Expert developers deploy a tool that lets anyone create their own mashups. This
is analogous to how spreadsheets are used in organizations today: end users
(e.g., business analysts) can create spreadsheets without involvement from an
IT department. These mashups are often created for a single purpose and user.
They are indeed also known as situational applications [14].

Figure 4.1 illustrates the previous scenarios. The corresponding solutions differ in
terms of the heterogeneity of the services that can be combined, the diversity of user
needs that can be met, and the level of sophistication of either the user or the tools
that support their work.

36CHAPTER 4. WEBMASHUPS: A NEWPARADIGM FOR ENDUSER DEVELOPMENT

Figure 4.1: The mashup development scenarios [24, 25]

4.2. THE MASHUP DEVELOPMENT 37

When mashups are developed centrally (scenario A), the resources for developing
mashups are limited to the expert developers in the IT department. Given the lim-
ited resources of an IT department, only frequently requested applications will be
developed. However, these developers have the skills required to integrate widely het-
erogeneous services and data at a low level of abstraction, allowing (essentially) any
type of application to be built.

When IT focuses its resources to developing components and supporting users on how to
use those components (scenario B), IT will expose certain types of data and services in a
format that can be more easily consumed and combined by users who are not themselves
developers. These users will have a better understanding of the application domain
than the developers in the IT department. As the resources for mashup development
are not limited to IT staff, a larger diversity of user needs can be met in the second
scenario. Yet, the type of mashups that can be built is still limited to the components
that IT provides and will, generally, only enable a parameterization of components, as
users lack the skills to perform deeper integration.

A tool for the creation of mashups (scenario C) will, initially, be the most challenging
scenario to implement. However, it also provides the biggest pay-off. Using such tool,
users can combine services and data to create their own mashups. The tool constrains
what users can do, and, hence, gives warranties about the “composability” of mashup
components. Users, however, are not limited in terms of the types of applications they
can build: this scenario, therefore, supports the greatest diversity of user needs.

Another distinction between the different scenarios is the degree of control over the
quality of mashups being created. In scenario A, the IT department fully controls what
kind of mashups is being developed. Thus, IT ensures the quality of those mashups.
However, not all mashups have stringent requirements in terms of security, performance,
or reliability; they may only be used for a specific purpose, and a complex solution
developed by the IT department would also be too costly. In scenario B, the IT
department selects which components can be mashed up, and provides an environment
for safely executing those mashups. Users can create mashups from those components
to meet needs unanticipated or not served by the IT department. Mashups developed
by users in scenario C may subsequently serve as prototypes for hardened applications
developed by the IT department, should there be a need for the mashup to be exposed to
many users within the enterprise, or if the mashup will be offered to outside users.

In von Hippel’s terms [54], mashups “democratize” innovation, allowing end-users to
meet their own needs, which a central IT department or, more in general, a service
provider cannot always address. Their use also shortens the time by which users
obtain the desired functionality. As described, one use of mashups is to prototype
a solution to a problem faced by a specific user, and later generalize it to a larger
user community. Mashup development is therefore similar to open source development
(which was the source for von Hippel’s metaphor) in two ways: the contributors to

38CHAPTER 4. WEBMASHUPS: A NEWPARADIGM FOR ENDUSER DEVELOPMENT

an open source project are also users of the software it produces; and open source
projects provide a mechanism whereby contributors can progress from passive users to
providers of feedback and feature requests and to code contributors. Similarly, mashup
developers are often also users of those mashups (in scenarios B and C); and not all
users of mashups need to be developers, but they can contribute to their development
by providing feedback and feature requests, all the way to developing prototypes.

4.2.2 The lightweight development process

It is well recognized that the life cycle of Web applications is typically more dynamic
than the one of other classes of software. First, development for the Web must be fast.
Prototypes and a final application must be developed in “Internet time”, that is, in
days or weeks instead of months or years. Second, the possibility to log usage data of
hundreds to millions of users opens the way for more advanced testing and usability
analyses. Third, once an application has been deployed, evolutions and improvements
are applied while the application is actually online and used; in other words, an appli-
cation undergoes continuous online evolutions. The development for the Web naturally
spans over two main stages: the incremental development of the base version of the
application and the post-deployment, incremental evolution.

Although dynamic and fast, this development process goes well beyond the require-
ments of mashup applications and the skills of average mashup composers. It is in-
deed oriented toward professional programmers that develop document-centric, data-
intensive applications. Furthermore, it does not allow users to actively participate in
the development and to innovate themselves.

The ideal mashup development process should reflect the innovation potential of mashups:
to compose an application, starting from given contents and functionality responding
to personal needs, and to simply run it, without worrying about what happens behind
the scenes. The prototype-centric and iterative approach is accentuated: the composer
just mashes up some open services and runs the result to check whether it works and
responds to his needs. In case of unsatisfactory results, he fixes the problems and runs
the mashup again. Given the situational nature of mashup applications, the role of ap-
plication stakeholders must be put into perspective: requirements indeed correspond to
the (short-lived) needs of the mashup composer that lead to the mashup idea. Also, de-
sign and implementation and testing and evaluation have a different flavour, and should
be somehow simplified (or even hidden) through the use of adequate tool-kits.

4.2. THE MASHUP DEVELOPMENT 39

Figure 4.2: Comparison between the traditional life-cycle for web applications and the
lightweight development process for mashups

These considerations can be summarized in form of the lightweight development process
model shown in Figure 4.2(b), characterized by three main activities:

• Discovery and selection: Starting from an initial mashup idea, generally reflect-
ing personal needs and preferences, the mashup composer will select suitable
source services providing the necessary data, application logic, or user interfaces,
which in most cases are open services available on the Web. This is a new and
highly specific activity for mashup applications, which precedes the creation of the
mashup and implicitly incorporates requirements analysis and specification. The
initial mashup idea can be indeed considered an informal expression of the appli-
cation requirements. The selected mashup components provide a representation
of these requirements in terms of enabling services, which proves the feasibility
of the original idea and provides an initial draft of the organization of the final
mashup. Either in the tool-assisted approach or in the manual approach, the
services or the APIs, which will be used in the composition, have to be wrapped
into a component that is the atomic – black-box – part of a mashup. This com-
ponent creation task must be done by a programming skilled person – user or
tool administrator – because who creates a wrapper has to deal with protocols
and programming aspects. When end-user uses an automatic composition tool,
this phase is done by programmers or tool’s administrator which wrap all the ser-
vices that will be used in the tool. Who wraps API or services for an automatic
tool has probably also to describe the component to adapt it to an automatic
environment that needs some description, e.g. to manage component bindings.

• Mashup composition: Dedicated mashup tools will enable also the less skilled
Web user to graphically compose the selected components and to set up the nec-
essary integration logic and the layout of the composite application. The actual
integration logic will be based on intuitive formalisms and models and expressed

40CHAPTER 4. WEBMASHUPS: A NEWPARADIGM FOR ENDUSER DEVELOPMENT

via simple, domain-specific languages, which in most cases will however be hidden
behind the graphical modelling tools. This activity provides a new flavor for the
traditional design and implementation activities and, in particular, eliminates
the need for cornerstone activities, such as hypertext design, that for long time
have characterized the development of document-centric Web applications. The
deployment of the mashup application will then be performed by simply saving
it on a server for the hosted execution (one-click activity). The composer, in
both the approaches, has to create bindings among the available components. In
the manual approach he/she has to manually write code to embed and synchro-
nize the components. In the automatic approach it is the composition tool that
crates the binding writing code and the composer has only to interact with it
doing simple operations, i.e., drag-and-drop or selection in menus.

• Usage and maintenance: Once saved on the hosted execution server, the mashup
will immediately be ready for use. The maintenance of the application will be
shared among the mashup composer (e.g., he will fix problems in the composi-
tion logic) and the provider of the mashup platform (e.g., he will fix problems in
components and the hosted execution environment). This activity incorporates
the former test and evaluation and usage and maintenance phases. By running
the mashup, the composer can easily check whether the application works and
responds to his needs, or he can also collect feedback from other users. The neces-
sary evolution of the application then simply requires starting the mashup process
anew from discovery and selection. In this phase end-users could be helped by a
recommendation system based also on the components and composition quality
and on the compatibility among components.

The described lightweight process model is conditioned to the availability of a tool-kit
made of a dedicated, hosted mashup platform and a set of open services available on the
Web that already provide a high value in terms of supported features and available data.
The reuse of ready-to-use services is common to other component-oriented development
practices. However, the adoption of open services easily accessible through the Web is
peculiar of mashups and, if complemented with adequate development platforms, can
enable end users to innovate. Also, the typical environments for component-oriented
programming target expert programmers, who might develop even better mashups
by writing code. Yet, they go far beyond the capabilities of average Web users or
employees.

Finally, in order to eliminate the deployment task, which would be out of the capa-
bilities of Web users, we assume mashup platforms will provide support for hosted
solutions for both development and execution (partly this is already practice). As a
consequence, we can say that mashups are applications whose life cycle naturally starts
from the deployment point in Figure 4.2(a) and whose development occurs via incre-
mental evolutions: indeed, once saved, mashups are immediately online, and there are
no incremental development cycles.

4.3. THE NEED FOR MASHUP TOOLS ENFORCING EUD 41

4.3 The need for mashup tools enforcing EUD

As described in the previous section, the way to compose Web mashups could be posi-
tioned at different levels, characterized by different practices and programming efforts.
Expert Web users generally prefer to compose their application manually, writing
JavaScript, HTML, PHP, JSP or code for other languages for Web development,
and integrating APIs and services directly in the page code. However, if users are
programming-unskilled, they cannot write code. If a tool simplifying the composition
is not available, then they have to deal with programming and – given the heterogeneity
of components, programming languages, interaction protocols, the complexity of the
necessary integration logic, and similar – this is an option only for highly skilled pro-
grammers. In conclusion, manual development is out of the reach of Web users.

In line with the end-user development vision, enabling a larger class of users (not only
skilled developers) to compose their own mashups and to innovate requires the availabil-
ity of intuitive and easy development tools and a high level of assistance [19]. As already
introduced in Chapter 2, there is a considerable body of research on mashup tools typ-
ically featuring easy-to-use graphical user interfaces and drag-and-drop paradigms for
combining mashup components. However, to the best of our knowledge, none of these
tools provides an integrated development paradigm, instrument, and language easing
the integration of heterogeneous components. This implies that each tool is suited only
for some development tasks. None of these tools supports integration at all the three
layers that characterize Web applications, i.e., data, application, and presentation (UI)
logics (see Chapter 2). Also rarely the offered composition paradigm meets the skills
and the expectations of non expert users.

The development of an environment that natively covers the previous requirements is
the object of our work thesis, which in the end has produced an environment supporting
the agile, mashup-based development of Web applications. To ease the composition
task, the environment is equipped with an AJAX-based visual editor, enabling the
visual (i.e., based on drag-and-drop) composition of services. The composition logic is
event-based (to cater for the needs of synchronizing the UI state of each component)
and data-flow-based (to take into account the needs of service orchestration). As better
described in the following chapters, such technical details are however masked by the
paradigm for the visual composition of the components integration, and especially
by some abstractions that allow translating actions of the composition paradigm into
intermediate descriptive models driving the execution logics.

42CHAPTER 4. WEBMASHUPS: A NEWPARADIGM FOR ENDUSER DEVELOPMENT

Part III

Models and Architecture

43

Chapter 5

Models

The design of the mashup platform developed within the work of this thesis has been
driven by the need to alleviate as much as possible the mashup composition task. We
in particular tried to strengthen some key EUD factors [13, 30], which also emerged
from the analysis of user requirements conducted for the development of our case study
application:

• Abstraction from technical details : as also observed in a recent user centric study
[13], the representation of services as visual objects that abstract from technical
details (e.g., their programmatic interface), the immediate feedback on composi-
tion action, and the immediate execution of the resulting mashup to reveal the
service look& feel, help users realize the service functionality and the effect that
the service has on the overall composition. As described in Chapter 6 and 7,in
DashMash, users are asked to manipulate (e.g., add, remove or modify) visual ob-
jects focusing on the service visualization properties rather than technical details
of service and composition logic. As also confirmed by our experimentation (see
Chapter 8), this increases user satisfaction and, in particular, the user-perceived
control over the composition process.

• Composition support : the composition task is guided in multiple ways. On the
one hand, the composition engine creates default bindings among services in-
cluded in the mashup composition, which however users can easily modify and
extend. Default bindings are defined on the basis of compatibility rules that
the composition engine automatically infers from each component’s descriptive
models. The same compatibility rules are also adopted to “rank” available com-
ponents, thus providing suggestions for additional bindings.

• Continuous monitoring : users are provided with mechanisms that allow them to
understand the current state of the composition and to explore options about
how to complete or extend the current composition.

45

46 CHAPTER 5. MODELS

Given the previous requirements to potentiate EUD, the organization of the platform
has been centered around a lightweight paradigm in which the orchestration of some
registered services, the so called components, is handled by an intermediary framework,
in charge of managing both the definition of the mashup composition, by means of a
visual composition mechanism, and the execution of the composition itself. One pe-
culiarity of our approach is that, differently from the majority of mashup platforms,
where mashup design is separate from mashup execution, in DashMash the two phases
strictly interweave. The result is that high-level composition actions, executed by
users through the visual composition environment, are “automatically” translated into
intermediate models describing the composition; these models are immediately inter-
preted and executed. Users are therefore able to interactively and iteratively define
and try their composition, without being forced to manage complicated languages or
even ad-hoc visual notations.

Such a composition and execution paradigm is possible thanks to some abstractions
supporting the definition of an intermediate description level that is: i) close to,
thus easily derivable from, the lightweight concepts that the users exploit to com-
pose the mashups; ii) amenable to the rigorous interpretation of the engine managing
the mashup execution. While Chapter 6 illustrates the architectural component and
the mechanisms behind the construction and execution of the mashup, this Chapter
is devoted to clarifying the abstractions and the corresponding models at the basis of
our approach.

Usually, a component uses an API or a Web service to retrieve its own dataset. How-
ever there could be the necessity to use a proprietary database for the component
visualization, for example to use domain specific data as it happens for visualization
components (e.g services providers visualizations). The Data Flow Model has been
introduced to represent the most relevant proprietaries data.

5.1 Component model

The need for an abstract model for components requires the use of a component de-
scriptor that has not to be tied to specific implementation technologies and, at the
same time, has to be sufficiently powerful to describe the component characteristics
in terms of interaction and properties. The model must also capture the component
properties that potentiate the adopted composition and execution paradigm.

Our platform is based on the integration at presentation level. Conceptually, if a
mashup must be managed at UI level, a component can be characterized by a state,
which defines what the composite application can see and control in terms of changes to
the UI. The state can be complex and consist of multiple attributes (e.g., map location
and zoom level). A set of events allow notification of state changes, while operations

5.1. COMPONENT MODEL 47

allow for querying and modifications of the state.

In addition, presentation components typically have configuration parameters that re-
flect UI appearances, such as font face and background color. Parameters are specified
at design time (or component creation time) and exposed via a set of properties.

In general, the attributes of the component state are high level and conceptual (e.g.,
location and zoom level), while configuration parameters are related to preset graphical
attributes (font faces, background colors, etc).

However it is up to the component developer to define which characteristics are part
of the state and which characteristics are configuration parameters. Ideally, the state
should be kept as simple as possible to facilitate integration and reuse, as state changes
are what cause events to be exchanged among components and therefore need to be
handled in the composite.

The external interface (implementing the component model) of a presentation compo-
nent consists of a set of events, operations, and properties, which allow the component
to expose its state and configuration parameters.

A presentation component may expose:

• Events: a component may expose a set of events to notify other components of
its state changes, which are initiated either by user actions on the UI, by requests
from other components, or by its internal logic. Note that our component model
is only concerned with component-defined events, not native UI events defined
by the underlying UI toolkit. (E.g. If the user drags the mouse to change the
viewpoint, we are not interested in the click and drag operation, but in the state
change implied (viewpoint changed). Essentially, user actions trigger both native
UI events and component-defined events. However, native UI events are captured
by the underlying UI toolkit and processed by the components internally, whereas
component-defined events, which signal state changes, are exposed externally. It
is up to the component (or the component’s wrapper) to define and implement
the relationship between native UI events and component events that signal state
changes.

• Operations: a component can expose a set of operations that allows for queries
and modifications of its state. An operation typically supports a list of input
parameters which allows the caller to pass in values, and a return value which al-
lows the caller to retrieve the result. The support for multiple input values allows
an operation to set an attribute of the component state with various options, or
even to set multiple attributes of the state at the same time.

• Properties: at component creation time, properties can be used to expose the
initial state and the configuration parameters of the component. For example,
properties allow the design-time customization of the map component’s configu-

48 CHAPTER 5. MODELS

ration parameters such as font face and background color, and initial state such
as the default map location.

5.1.1 UISDL - The UI Service Description Language

In order to represent the component properties described above, we have adopted and
re-elaborated the UISDL specification of UI components already defined in Mixup [23].
UISDL is a XML language for the abstract description of the component properties
according to the abstract model previously described.

UISDL container: <uisdl>

It is the root of the XML element in a UISDL document. It’s composed of the following
attributes:

• Language namespace: http://www.openxup.org/2006/08/xpil/component

• xmlns:tns : this attribute contains the component namespace reference. The value
is an URI that can univocaly identicate it. It is unnecessary that it points to a
concrete resource.

<uisdl xmlns="http://www.openxup.org/2006/08/xpil/component"

xmlns:tns="http://namespace-for-the-target-application">

...

<!-- components -->

...

</uisdl>

Listing 1: <uisdl> example

Component: <component>

This element models a presentation component. It could contain a description, a list
of events, a list of operations or a list of properties.

It is composed of the following attributes:

• Id : it specifies the identifier of this components.

• Address : it specifies the component position as relative path. It can point to any
strings that allows to the adapter to localize the component and instantiate it.

5.1. COMPONENT MODEL 49

...

<component id="GoogleMaps" address="./GoogleMaps/GoogleMaps.js">

...

<!-- operations and events -->

...

</component>

...

Listing 2: <component> example

Operations: <operation>

This element specifies an operation that can be executed by a component. Operations
allow a status change through the middleware runtime.

The <operations> element is characterized by the attribute:

• Name: it specifies the name of the operation.

• Address : this is the reference string to the operation implementation in the com-
ponent wrapper.

• Type: data type of the parameter. The value is a XML Schema type and it can
be a data type defined by XML Schema as well as a more complex type defined
in <types> element.

The element <operation> could contain <input> elements, that specifies operation
input parameters, that in turn contain the attribute “element” (it specifies the element
name) and the attribute “type” (the value is a XML Schema type and it can be a data
type defined by XML Schema).

...

<operation name="showPosition" address="showPosition">

<input element="locality" type="xsd:string" />

</operation>

...

Listing 3: <operation> example

Events: <event>

This element specifies an event that can be launched by a component. Events permit
the notification of a component status change.

The principal attribute is: Name which defines name of the event; it allows other
components to identify it and listen for it. The value has an identifying target and has
to be unique between other events of the same component.

50 CHAPTER 5. MODELS

The <event> element contains the tag <description>, that provides a brief descrip-
tion useful for an end user to identify the semantics of the component’s event. It could
also include parameters, <param>, that specifies the data associated to the event. A
parameter is defined by:

• Name: name of the parameter.

• Type: data type of the parameter. The value is a XML Schema type and it can
be a data type defined by XML Schema as well as a more complex type defined
in <types> element.

...

<event name="onPositionChange" description="Changing position event">

<param name="localityName" type="xsd:string" />

</event>

...

Listing 4: <event> example

Properties: <property> This element specifies the properties of an element. They
are used for: species the initial status of the component and its graphic features at
creation; query the component status and its interface features at runtime.

It is characterized by these attributes:

• Name: property name. It has to be unique in the component.

• Type: species the data type of the property. The value is a XML Schema type
and it can be a data type defined by XML Schema as well as a more complex
type defined in <types> element.

• Required : specifies if the value of the property has to be specified in the compo-
sition document.

Types: <types> This element contains a list of data types XML Schema defined for
events, operations and properties parameters.

Moreover, it is possible to extend the component description, adding annotations to
represent values about attributes on qualities and component characteristics. Those
annotations are then used, as described in Section 6.2, 6.5.2 and ??, to calculate
aggregated quality and to make recommendation.

5.2 Composition Model

The aim of the composition model is to declare the components used in the composition,
how they interact and how they are synchronized. The composition model adopted in

5.2. COMPOSITION MODEL 51

DashMash also derives from the Mixup environment. It mainly includes event sub-
scription information in order to facilitate the communication among presentation
components, where each event corresponds to a user or system action that changes the
state of a component1. Before introducing the XML-based format for specifying the
component model, in the next Section we first illustrate the event-driven composition
logics that characterizes our approach.

5.2.1 Event-driven composition

As better illustrated in Chapter 6, our mashup paradigm requires that components ex-
change events through an event broker that facilitates loose coupling. The composition
model supports a “one-to-many” publisher/subscriber relationships among presenta-
tion components. So, through this mechanism, a component publishes an event and
the other components subscribe to it (i.e., to declare that they will listen to and handle
this event).

The publisher/subscriber relationship can be specified via event listeners. Each lis-
tener species an event publisher, event subscriber, and an operation of the subscribing
component. In addition, multiple event listeners can be used to support multiple event
subscribers for a single event from the event publisher. We stress that, in order to facil-
itate loose coupling, event listeners are elements belonging to the composition model,
not to the component model of the subscribing components.

As illustrated in Figure 5.1, as soon as events occur, the involved components publish
them. The occurrence of events causes a state change in the subscribed components.
Based on this paradigm, the mashup execution engine plays the role of a controller in
an MVC pattern [31], where the model corresponds to the application logic of mashup
components and the view relates to the presentation layer of each component and of
the overall mashup. Each component keeps running according to its own application
logic.

1If needed, it allows additional integration logics to be specified within event listeners, in the form
of simple inline scripts or references to external code.

52 CHAPTER 5. MODELS

Figure 5.1: Event-driven paradigm for service binding definition and service synchro-
nization

5.2.2 XPIL - eXtensible Presentation Integration Language

The composition elements previously described can be specified in a declarative compo-
sition language, the eXtensible Presentation Integration Language (XPIL) [26]. Such
language contains two sets of XML elements: the first declares the components in use,
and the second describes the composition model.

Xpil container: <xpil>

It is the root element of XPIL document. It has the following attributes:

• Language namespace: http://www.openxup.org/2006/08/xpil/integration

• xmlns:tns: this attribute contain the component namespace reference. The
value is an URI that can univocaly identified it.

Components: <component>

This element points to a presentation layer component. It is defined by these at-
tributes:

• Id: it specifies a unique id for the component in the XPIL document.

5.2. COMPOSITION MODEL 53

• Ref : it specifies the localization of an XPIL or UISDL document. the value could
be a le path, an URL, and it can be a relative or absolute reference. If the value
is referred to an XPIL document, the component is a made-up component, but
it will be treated as a single component in the composition. The <component>
element can contain a list of properties.

...

<component ref="../components/compositionHandler/compositionHandler.uisdl"

id="compositionHandler" address="compositionHandler"/>

<component ref="../components/dataService/dataService.uisdl"

id="dataService" address="dataService"/>

<component ref="../components/saveService/saveService.uisdl"

id="saveService" address="saveService"/>

...

Listing 5: <component> example

Event listeners <listener>

This element specifies an event listener that links a component event to an operation
of another component. It is characterized by these attributes:

• Id: it specifies a unique id for the listener in the XPIL document.

• Publisher: it contains the id of the source component that launches the event.

• Event: it specifies the name of the event. The value refers to the “name”
attribute of the <event> tag in the component descriptor. The combination
between this value and the attribute “publisher” identifies the event.

• Subscriber: it contains the id of the component that has to run an operation
because of the event launched.

• Operation: it specifies the name of the operation that it will be invoked after the
event notification reception. The element could contain XSLT/XQuery for data
transformation and conversion. Moreover, it could contain script or references to
external code to add additional integration logic.

54 CHAPTER 5. MODELS

...

<listener id="7" publisher="dataService"

event="dataReady"

subscriber="viewerBox1_viewerPieChartHC1"

operation="getData"/>

<listener id="8" publisher="viewerBox1_viewerPieChartHC1"

event="changeParameters"

subscriber="compositionHandler"

operation="changeViewerParameters"/>

...

Listing 6: <listener> example

5.3 State Model

XPIL provides supports the representation of composition schema by showing which
components are involved in the composition and how they interact (through pairs
<event-publisher, operation-subscriber>). Moreover, XPIL provides formal descrip-
tion of events and event parameters. However, these elements could become insufficient
if we have to describe an “instance” of a mashup at execution time. In that case, in
fact, we must trace each parameter is change to user interaction and component state
change.

Through the definition of a State Model, we enrich the composition description to
introduce new capabilities. In the following list, we present the advantages derived by
the introduction of a State Model.

• Real time composition and execution: in the tool we developed (see Chap-
ters 6 and 7) a user can add (or remove) a component to the composition with a
drag and drop interaction. The addition/removal of components causes the auto-
matic insertion/removal in an XPIL descriptor. Then, we need to re-instantiate
the composition. To keep the previous components configuration parameters that
results from the previous user interactions, we can analyse the State descriptor
to restore them after reloading the composition.

• Restore a customized composition: combining XPIL and state description
permits to save and to reload a composition in terms of involved components,
bindings between them and user customization (caused by state change interac-
tion effects between components or from user). Moreover, it is also possible to
create an history function exploiting the state description.

• Data selection and management: state description can be further useful
if we associate a proprietary database. As we show in the following Chapter,
state descriptor permits to analyse user settings, in terms of filtering data or

5.3. STATE MODEL 55

selecting data sources, to automatically generate query on databases. Moreover,
if components support data chunking, we can use this descriptor to store, for
example, the current page number in a text viewer component.

• Quality and recommendation: through state description analysis, it is also
possible (as it is currently under consideration) to define mechanism of recommen-
dations and quality analyses in order to help users to create their composition.
This mechanism, at state level, should be focused on component configuration
parameters.

Through the state model, we provide a distinction between possible typologies of com-
ponents. For example, driven by the requirements of our case study application, we
identify three typologies of components:

• Filters: these components are characterized by functionalities of data sources
selection, both proprietary or public, and their filtering. We classify as filters
components such as tag/keyword filters, time filters, etc.

• Viewers: viewers are components that do not have their own data sources,
but only provide a presentation layer with a little logic of data presentation
and aggregation, but without a proper individual meaning (e.g. a pure graphic
component that provides data visualization in a pie chart form, but that needs
other components data or external data sources to be useful/meaningful)

• Generic components: these are generic components that typically have indi-
vidual meaning and significant functionalities.

To better explain the difference between viewers and generic components, we provide
an example of different uses of Google Maps service. On the one hand, we classify as
generic component, a component that provides an interface to Google Maps service as
generic geographic map viewer; on the other hand, we classify as viewer a component
that uses Google Maps to show a map with a data visualization (i.e. , markers)
extracted by a proprietary database (as in our case of study, emphthe Top influencer
Map 7.3.8 in which there is a map with some flags and a data table.)

It is worth noting that component classification depends on the specific domain ad-
dressed by the mashups to be built. However, some classifications are in general
valid for entire classes of mashups; also, some concepts are reusable across different
classes. For example, data sources and viewers are particularly effective in the domain
of mashup-based dashboard construction; this is indeed the domain addressed by our
case study. This classification can be however adopted in any case where some ad-hoc
viewers are used to visualize data coming from any data source (local or remote).

The component typization exploited for the construction of the state model is, at the
moment, statically defined, but it is being developed a configuration tool through which
users can declare and define relevant component classes.

56 CHAPTER 5. MODELS

5.3.1 SMDL - State Model Descriptor Language

In line with the descriptive approach adopted for the other models, the State Model
also makes use of a XML-based specification that consists of the elements described in
the following.

State container: <state> It is the root element of State document.

ViewerBox element: <viewerbox> A viewerbox is a workspace in which a user
can create a composition with a drag and drop interaction to add components, as it
will be deeply presented in Chapters 6 and 7. A viewerbox is characterized by the
following attributes:

• Id: it specifies an unique id for the viewerbox in the state document.

• Name: this attribute stores a name assigned by the user.

<state>

...

<viewerBox id="viewerBox2" name="Mashup composition market">

...

<viewerBox id="viewerBox5" name="Traffic">

...

</state>

Listing 7: <viewerbox> example

A viewerbox can contains <filters>, <viewers> and <components> that are con-
tainers of the corresponding component typologies, or in general any other class of
components that is considered useful for a given domain.

Filter element: <filter>

This element points to a filter component. It is defined by these attributes:

• Id: it specifies an unique id for the filter in the state document.

• Type: it classifies the type of the filter, deriving from the user selection od filters
and assigned from the platform (i.e. tags, time, source,...).

• Value: this stores the value of the filter (the keyword for a tag filter, the date
selection,...).

5.3. STATE MODEL 57

...

<filters>

<filter id="filterSource1" type="Source" value="Twitter Search" />

<filter id="filterTag2" type="Tag" value="General" />

<filter id="filterTag3" type="Tag" value="Arts\&Culture" />

...

</filters>

...

Listing 8: <filter> example

viewer element: <viewer>

This element points to a viewer component. It is defined by these attributes:

• Id: it specifies an unique id for the viewer in the state document.

• Type: it classifies the type of the viewer, assigned from the platform (The con-
siderations, previously made about typification, are still available).

...

<viewers>

<viewer id="viewerBox1_viewerTimeVolumeHC1" type="TimeVolumeHC">

<preference name="series" value="brand" />

<preference name="domain" value="date" />

<preference name="range" value="volume" />

...

</viewer>

...

</viewers>

...

Listing 9: <viewer> example

Generic component element: <component>

This element points to a generic component. It is defined by these attributes:

• Id: it specifies an unique id for the viewer in the state document.

• Type: it classifies the type of the viewer, assigned from the platform (The con-
siderations, previously made about typification, are still available).

58 CHAPTER 5. MODELS

...

<components>

<component id="viewerBox4_RSSreader2" type="newsRSS">

<preference name="currentPage" value="3" />

<preference name="font" value="verdana" />

<preference name="rowPreference" value="20" />

<preference name="colorCombination" value="RedYellowGreen" />

...

</component>

...

</components>

...

Listing 10: <component> example

Both viewers and filters contains one or more <preference> elements that are char-
acterized by these attributes:

• Name: it specifies the name of the preference (i.e series, domain, range,..).

• Value: it stores the value of the preference.

5.4 Data Flow Model

A mashup component commonly accesses a service (public API or in general any local or
remote service) invoked through the component wrapper. Let us consider for example
Google Maps, the most famous and used API in the Web; when a user makes an
operation that needs to retrieve data, i.e., a zoom-in, the component that wraps Google
Maps has to send a request to the service provider communicating the new parameters
in order to cause the map redrawing. In the same way, all the components send requests
in order to obtain new data according with the user actions. Each component manages
by its own the requests, because in general there are not common data sources among
them.

In general, when the mashup component is derived from a “public” service available on
the Web, the format of the data retrieved and exchanged with the other components
in the same mashup depends on the specific requirements of the component; thus, it is
difficult to define and expect a common data format. However, as better explained in
Chapter 6, in the case of domain-specific components that share the access to a common
local data source, e.g., a company data warehouse, it is possible to “normalize” the
data accesses through a unique component, called DataService, that will send request
to the proprietary server from which data are taken are placed. In this case, it is
therefore possible to define a common data format to describe the retrieved data. The

5.4. DATA FLOW MODEL 59

main advantage is that such a description can facilitate the interpretation of data by
the components in charge of visualizing them, i.e., viewers.

5.4.1 The result set representation

The results are represented, as previously described, with a XML file that is passed
from the server to the client. In the following we describe the structure of the XML
file and provide an example of a result set file.

Structure

Figure 5.2 and 11 respectively report the DTD and an example of the result set de-
scriptor that we have adopted within our case study application, where viewers are in
charge of visualizing data coming from a local data source. The result set is indeed
aggregated by viewer boxes and viewers.

Figure: The result set dtd

Figure 5.2: The result set DTD

For each viewer, the results are aggregated by series. For each series there is a list
of items with their domain and range. This structure allows us to describe data that
will be visualized by a chart by using domain and range. With this solution we can
describe data when they have to be visualized through a table or other kinds of visu-
alization.

Let us consider a table: it has only a series of data and a domain, which represents
the table header, but it has more ranges for each item. Each item is a row in the table

60 CHAPTER 5. MODELS

and each range is a cell in the row.
Moreover, if we want to represent data with a tag cloud that shows, for each tag in the
cloud, information on quantity and quality of a tag, the quantity could be represented
by the dimension of the tag and the quality by its colour. Our result set model can be
used also to meet this need: each series in the result set will be drawn in a separate
tag cloud or in a different part of the tag cloud creating a cluster; the domain of the
items will be the tag and the ranges will describe the quantity and the quality which
are to be associate to a tag.

To our case study (Chapter 7) we will describe an implementation of DashMash that
has different charts as viewers, each of them needing a result set, as described before,
to be drawn.

<?xml version="1.0" encoding="UTF-8"?>

<dataset>

<viewerbox id="viewerBox1">

<viewer id="viewerBox1_viewerTimeVolumeHC1">

<series type="brand" name="London">

<item>

<domain type="date">2010-06-13</domain>

<range type="volume">35</range>

</item>

<item>

<domain type="date">2010-06-14</domain>

<range type="volume">27</range>

</item>

</series>

<series type="brand" name="Milan">

<item>

<domain type="date">2010-06-13</domain>

<range type="volume">18</range>

</item>

<item>

<domain type="date">2010-06-14</domain>

<range type="volume">19</range>

</item>

</series>

</viewer>

</viewerbox>

</dataset>

Listing 11: A result set XML file example

Chapter 6

Architecture

Based on the considerations and requirements highlighted in the previous chapter,
we have implemented the DashMash framework to facilitate presentation integration,
backed by the intuitive yet strong conceptual model for mashup composition and exe-
cution illustrated in the previous chapter. Figure 6.1 describes the overall architecture
of the proposed framework for the execution of composite applications. A composite
application to be executed by the platform consists of:

• One or more components, i.e., services described according to the UISDL com-
ponent model and suitably wrapped for facilitating their invocation during the
mashup execution. Component descriptors and wrappers are stored in a compo-
nent registry ;

• A specification of the composition model (i.e., the integration logics that coordi-
nates the components at runtime);

• A middleware in charge of managing the event-driven execution of the composi-
tion based on a publish-subscribe paradigm.

Users defines the mashup through a visual front-end. Users can select relevant com-
ponents, to include them into the composition, and combine them for synchronization
purposes, by defining listeners through a simple, intuitive visual paradigm.

This chapter will present the main modules of the outlined framework, namely:

• The middleware in charge of managing the event-driven execution of the mashups;

• The mechanisms supporting the visual composition of the mashup, which are
characterized by:

– The automatic generation of the composition model, also covering the ad-
dition of some default bindings ensuring a minimal synchronization among
included components;

61

62 CHAPTER 6. ARCHITECTURE

Figure 6.1: Logical view of DashMash environment

6.1. GENERAL OVERVIEW 63

– The immediate execution of the mashup, without the need of a design phase
preceding the mashup execution, and with the possibility for the users of
getting immediate feedback about the results of the composition actions;

– The production of quality-based recommendations guiding the users in the
choice of components and in the definition of additional component bindings,
which ensure the production of correct mashups with an increased quality
level.

• The modules and mechanisms enabling the integration of proprietary data sources,
which implies some assumptions about the structure of the data flow and the rep-
resentation of the exchanged result set.

6.1 General overview

Before describing in more details the DashMash architectural elements, we here provide
a general overview of the behavior of the framework and the steps involved in the
definition and execution of a composite application.

As illustrated in Figure 6.1, the DashMash composition and execution environment
is a Web front-end. A composition repository contains an HTML page that serves
as a layout for the composite application. All the style information related to the
positioning of the components are defined within this file. The basic setup consists
of a <div> element for each component. Additionally, the code for the framework
initialization and reference for every other piece of code needed (e.g., components
wrappers) must be placed in the <head> section.

At the beginning of the user session, an initialization script prepares the execution
environment for the instantiation of the components. It initializes the composition
descriptor namely XPIL composition and SMDL status descriptor files, and instanti-
ates a basic composition that involves all the services already declared into the two
descriptors, if any. As soon as users add components into the mashup, DashMash adds
pointers to the added components in the XPIL descriptor, and stores the parameters
for components configuration and invocation in the SMDL descriptor. The translation
of user actions into proper elements of the two descriptors is handled by the runtime
engine. During composition, such module also provides support for the immediate vi-
sualization of added components and for the production of recommendations both for
component selection and binding definition.

For each component declared in the XPIL, a corresponding “constructor” is called.
The constructor can be either part of the component itself, as in the case of native
components ad-hoc built for this environment, or a function in the component wrapper,
if it is an existing Web component and some kind of adapter is used to make it usable

64 CHAPTER 6. ARCHITECTURE

within our mashup environment. The component constructor is responsible for the
initialization and the rendering of the component in the <div> dynamically added
into the page layout, which is identified with the same “id” value as the “id” of the
component instance in the XPIL.

After the components identification and initialization is done, an XPIL parser pro-
ceeds to analyze the <listener> elements. For each listener, the relation <(publisher,
event)-(subscriber, operation)> is saved in a suitable data structure (a chain of asso-
ciative arrays) for easy reference at execution time. The data structure is shown in
Figure 6.2.

Figure 6.2: Data structure (chain of associative arrays) that represent the composition
listeners

At this stage, every component should be running its own business logic and drawing
its own interface. The framework module named “runtime engine” in Figure 6.1 waits
for function calls notifying events from a component. As soon as events occur, the
runtime engine intercept them and, based on the listeners defined in the XPIL, notifies
the subscribed components, if any, and triggers the execution of their corresponding
operations.

6.2 The runtime engine

As represented in Figure 6.3, the DashMash runtime engine basically plays the role of
an event broker: it intercepts events that occur during the definition of the mashup
composition by users and during the mashup execution. Depending on their nature,
intercepted events are then dispatched to the modules in charge of their handling,
namely the Execution Handler and the Composition Handler.

As shown in Figure 6.3, besides these fundamental modules, the runtime engine also
exploits some other components:

6.2. THE RUNTIME ENGINE 65

Figure 6.3: Main modules of the DashMash runtime engine

• The Status Manager aims at managing the SMDL-based status descriptor, which
has a primary importance for enabling immediate execution and the recovery
of previously defined mashups. Accordingly, it is necessary to keep it updated
after every change of components properties, or after the addition/removal of a
component. Modifications can be related to default or specific parameter values
(e.g., the value of a parameter for querying a data source), to layout properties
(e.g., the colors used to show values on a chart) or to any other property that
the user can set to control the component status, contents and appearance.

• The Data Manager handles a data structure, the Data Buffer, which stores struc-
tured (i.e., complex) data that mashup components exchange for synchronization
purposes. When such data are extracted from a local data source, e.g., a com-
pany warehouse, through the Data Manager intermediation we also guarantee a
mutual exclusion during data access and modification. As better illustrated in
Section 6.6.1, a specific component, the Data Service, is in charge of accessing a
local data source and storing the retrieved data into the Data Buffer.

• The Recommendation Manager supports mechanisms for producing quality-based
recommendation during the definition of components bindings. It computes qual-
ity indexes starting from quality annotations in the UISDL descriptors, that are
defined taking into account a component quality model [20]. The Recommen-
dation Manger evaluates also the syntactic and semantic compatibility between
components. As described in [10], the goal is to guide the user in the selection of

66 CHAPTER 6. ARCHITECTURE

quality components.

The following sections will illustrate the functionalities that are supported by the pre-
views architectural modules.

6.3 Event-driven execution: the Execution Han-

dler

The Execution Handler is the functionality group that manages the execution of the
mashup. In particular, it is in charge of interpreting the XPIL descriptor, to identify
the components involved and the publish-subscribe bindings defined among them, and
to instantiate the composition specified in the XPIL descriptor. During the mashup
execution, it plays the role of an event broker: each component keeps running according
to its own application logic, within the scope defined by an HTML <div>.

When an event occurs, the component (or its wrapper) notifies to the framework the
component that triggered the event and the event name (and event “parameters”, if
any). The Execution Handler looks up in the composition data structure, looking
for the component that is “interested” in the pair <publisher, event> that identifies
the event, and what is the associated operation to execute. The operation is then
invoked, using the event parameters (optionally applying the data transformations
needed).

Based on this paradigm, the DashMash engine and, in particular, its Execution Han-
dler, plays the role of a controller in an MVC pattern where the model corresponds to
the application logic of mashup components and the view relates to the presentation
layer of each component and of the overall mashup.

6.4 Generation of the composition models: the Com-

position Handler

In DashMash, due to the intermixing between mashup composition and execution,
events can be related not only to users and system actions occurring during the mashup
execution (those ones managed by the Execution Handler, which causes a change to
some other component’s state), but also to the dynamic definition of the composition
(e.g., the drag&drop of a component icon into the composition area). The Event Broker
intercepts events and dispatches them to the modules in charge of their handling.
The Composition Handler manages composition events, interacting with the other
architectural components as described in Figure 6.4:

6.4. GENERATIONOF THE COMPOSITIONMODELS: THE COMPOSITION HANDLER67

Figure 6.4: Interactions among the modules of DashMash

• It automatically translates the addition of a component into listeners and, based
on them, it immediately creates or updates (if already existing) the current com-
position model. As represented in Figure 6.5, the addition of a component is
performed by moving the representative icons into a composition panel, the so-
called workspace, a container implemented as an HTML <div> helping contextu-
alize the effect of the composition actions on the components it clusters. Since
the composition is immediately executed, the component UI rendering is also
immediate in the workspace.

• It dispatches the composition events to the status manager, to maintain the
description of the properties, in the format defined by the SMDL model, that can
be useful to recover the status of a previously defined mashup for a later execution,
but especially to let users modify their composition “on the fly”. Modifications
relate to default or specific parameter values (e.g., the value of a parameter for
querying a data source), to layout properties (e.g., the colors used to show values
on a chart) or to any other property that the user can set to control the component
status, contents and appearance.

• It dispatches the saveState event to a Save Manager that provides the sup-
port for saving an instance of the composition. This process involves the two

68 CHAPTER 6. ARCHITECTURE

descriptors of the composition: the XPIL file, to know components involved and
bindings between them, and the SMDL file, to know the last parameters settings
of the components. Regarding data, there are two possible policies: to save the
data structures (see Section 6.6.2) to create an instance of the mashup that does
not need to be linked to a database/Web service for component visualization, or
to not save any data structure. With the “not to save” policy, it is necessary to
request data from the database/Web service for component visualization.

• It dispatches any composition events to an History Manager, to add the last
user action into the history line. The History Manager provides the support for
undo/redo the last user actions. As the matter of fact, one of the key features of
direct manipulation systems is to make exploration safe for users, so that they
can interact without fear of permanently loosing information.

• As soon as the composition and the status update is complete, it notifies the
Execution Handler that in turn reloads the mashup composition and executes it
according to its event-driven, publish-subscribe logics.

Figure 6.5: The drag & drop mechanism

It is worth noting that the Composition Handler itself is a mashup component: any
user composition action generates a Composition Handler’s event, which is notified to
and managed by the Execution Handler. An interesting side effect of this architectural
choice is that event handling, whatever is the nature of the events, is encapsulated
within one module, i.e., the Execution Handler. Even more important, the logic behind
the automatic composition is “programmable” and, therefore, flexible: it depends on a
set of pre-defined listeners, whose knowledge is inside the Composition Handler which,
being a mashup component, can in turn be easily unplugged and replaced.

6.5. BINDINGS DEFINITION 69

6.5 Bindings definition

DashMash supports the definition of default and custom bindings among mashup com-
ponents.

The former are automatically defined by the Composition Handler when a composition
action is intercepted. This ensures a minimum level of inter-component synchronization
that does not require users to define service coupling. When a component is added,
the Composition Handler includes related default bindings in the XPIL, according to
an embedded (but still configurable) logics.

Custom bindings are instead user-defined. Nevertheless, the Composition Handler
offers also support by generating compatibility– and quality– based recommendations.
To this aim, it dispatches the composition events to the Recommendation Manager that
is in charge to evaluate the quality of the current composition and provides suggestions
about the selection of possible components to add or substitute to the existing ones in
order to achieve or improve the mashup quality.

6.5.1 Default Bindings

The basis for the automatic definition of default bindings is the classification of compo-
nents into data services, viewers, filters and generic components, already presented in
Chapter 5. Classifying components is in general useful to identify the minimum set of
bindings that components in the defined classes requires in order to get synchronized.
Such bindings are valid for any mashup instance. Therefore they can be automatically
defined, without requiring the users to program explicitly the service couplings.

Although the classification we have adopted satisfies the specific requirements of our
case study, it is quite general and reusable in several mashup contexts. For example
JackBe Presto also exploits a similar classification of mashables [28]. What is new
in our approach is that this classification of services allows us to codify default data
flows that can be automatically extended by the platform through the addition of
ad-hoc listeners. For example, filters are producers of parameters to be used to se-
lect data through the data service. Viewers, instead are consumers of data, as they
elaborate contents extracted through the data service and produce aggregate data.
Some components, e.g., data services, then can be both consumers and producers. The
synchronization between the Composition Handler and the other components is then
necessary to manage composition events. The composition visual environment is itself
a mashup, where the Composition Handler plays the role of publisher for all possible
composition events.

Figure 6.6 highlights the synchronization managed through the main default bindings.
For example, any time a component is added into the mashup, the Composition Handler

70 CHAPTER 6. ARCHITECTURE

Figure 6.6: An example of bindings executions between CompositionHandler, DataSer-
vice and viewers

publishes a corresponding event that triggers a Data Service Client operation through
which a pertinent portion of the updated state is sent to the Data Service Server (see
Section 6.6.3). Based on the state information, the Data Service Server queries per-
tinent data sources and sends the result set back to the Data Service Client. Based
on another default listener, the Data Service Client raises an event so that subscribed
viewers know about the new result set and, thus, refresh their status. As better illus-
trated in Section 6.6.1, data communication between the Data Service and the viewers
is managed by means of a local buffer in charge of storing aggregate data.

The “knowledge” about possible default mappings is coded inside the Composition
Handler and can be easily configured, with the advantage that DashMash can be easily
adapted to domains with possibly different services and classifications. In the end,
DashMash can also work without classification, allowing users to associate components
in any possible way, through the definition of custom bindings.

6.5. BINDINGS DEFINITION 71

6.5.2 Custom Bindings

Custom bindings are user-defined: first, the user selects which event exposed by the
added component (that is the publisher) s/he wants to map. Second, s/he chooses
which components (the subscribers) have to be related to this event. Third, s/he selects
the operations of the subscribers that have to be called-back by the event rising. Figure
6.7 shows the dialog box supporting definition of custom bindings.

Figure 6.7: The dialog box for bindings definition

When defining bindings, the selection of suitable services must be primarily based on
functional requirements. However, the quality of each involved services, as well as
compatibility issues, can drive the production of recommendations that can help user
building quality mashups. Many are the proposal for tools to develop mashups, but
there is a lack of proposals for the quality of mashups we tried to fill this gap by
adopting the approach described in [48]. We indeed believe that, beyond quality in
use, several issues must be considered, which are strictly related to the activities that
characterize the mashup development process.
The typical scenario for mashup development spans from the production of single
mashup components to the integration of selected components into a final mashup
composition. Given the nature of mashups as applications integrating other resources,
throughout the whole process the quality of the component resources and the adopted
composition patterns play a fundamental role.
The component developer creates component services for mashups. We assume that de-
velopers correctly implement the service functionality, taking into account well-known
principles, best practices and methodologies for guaranteeing the internal quality of
the code. However, when used in a mashup composition, component services can be
selected by considering especially some external properties. Since our aim is to inves-
tigate the quality of the final mashups, this is the perspective we are interested more,
which is related to aspects such as the architectural style (e.g., SOAP services vs.

72 CHAPTER 6. ARCHITECTURE

RESTful services vs. widget APIs), the adopted programming language (e.g., client
side such as JavaScript vs. server side such as Ruby), the data representation (e.g.,
XML vs. JSON), the component operability and interoperability (e.g., the multiplic-
ity of APIs targeting different technologies). Such external aspects indeed affect the
“appeal” of the component from the mashup composer perspective.
The component developer should try to maximize them, and should also make these
quality properties visible for the mashup composers, who can therefore base on them
the choice of components. The component developer therefore builds the component
having in mind the quality properties to be maximized. S/He can also document
such quality properties by means of suitable component descriptors. Listing 12 shows
an example of a UISDL descriptor extended with quality annotations. Such annota-
tions addressing the previous quality concerns requires the definition of sound models
(such as the one defined in [20]), first of all focusing on the quality of components as
stand-alone ingredients, but also on their attitude to generate quality mashups when
combined with other components.

...

<qualityAttributes>

<reputation>0.8</reputation>

<languages>

<language>javascript</language>

</languages>

<dataFormats>

<dataFormat>atom</dataFormat>

</dataFormats>

<security>no authentication</security>

<timeliness>0.9</timeliness>

<accuracy>0.9</accuracy>

<completeness>0.8</completeness>

<availability>1</availability>

<usability>1</usability>

<accessibility>0.9</accessibility>

</qualityAttributes>

...

Listing 12: UISDL quality annotation example

6.5.3 Quality-based Recommendations

While lightweight development processes are needed to alleviate the effort of end-
users, the development of services is a demanding activity, to be performed according
to traditional development processes by professional programmers. If on the one hand

6.5. BINDINGS DEFINITION 73

Figure 6.8: Recommendations about all the possible rankings

the success of a mashup is influenced by the added value that the final combination of
services is able to provide, on the other hand it is self-evident that the quality of the
final combination is strongly influenced by the quality of individual services.

Defining models and techniques for developing high-quality services and for assessing
their quality is a promising research direction to aid user innovation [20]. Anyway, it
is necessary to consider that the quality of a mashup is not a simple aggregation of
the quality of individual components, but it depends on the particular combination of
components into a composite logic, layout and, hence, user experience.

During the design of DashMash we have considered all these aspects to propose an
overall approach that can support users in the construction of high quality mashups.
In particular, we have identified three opportunities to provide users with quality as-
sessments: (i) the registration of new services, (ii) component ranking, and (iii) the
composition of selected components.

Registration of new services

As described in Section 6.1, the set of components C available in the DashMash plat-
form is composed of services that can be created ad-hoc or can be public. In both cases,
the quality of the component for a given mashup depends on its functional requirements
and non-functional characteristics. Since the Web provides a large amount of function-
ally equivalent data sources and component services, most of the times quality can be
the driver to select the most dependable ones. In our approach, quality evaluation
focuses on the assessment of both the intrinsic quality properties of the component
and the reliability (i.e., reputation) of the Web information sources accessed to re-
trieve data. The intrinsic component quality considers all the dimensions defined in
the quality model proposed in [20]. According to this model, the quality properties

74 CHAPTER 6. ARCHITECTURE

that should be maximized to obtain a high quality mashup represent traditional soft-
ware quality aspects such as functionality, reliability, and usability of the APIs, data
and presentation quality criteria.

As regards the reputation of Web sources, the data quality literature provides a set
of quality dimensions that can be adopted for the evaluation of the reputation of
structured and unstructured data. The variables that affect the overall reputation of
an information source are, in general, related to the institutional clout of the source, to
the relevance of the source in a given context, and to the general quality of the source’s
information content [18]. In case of sentiment analysis, Web 2.0 sources (i.e., blogs and
forums) represent a primary source of information. As defined in [18], the reputation of
this type of sources can be evaluated by considering the traditional quality dimensions
together with other specific dimensions such as the volume of information produced
and exchanged, the overall range of issues on which the source can provide information,
the degree of specialization of the source in a given domain, and the responsiveness to
new issues or events.

All the data useful for the assessment of quality criteria are documented during the reg-
istration phase in the component descriptors. Formally, each component ci ∈ C is asso-
ciated with a component descriptor and a quality vector. As illustrated in Listing 12 the
component descriptor lists all the operations and related parameters and all the tech-
nical details needed to evaluate quality. The quality vector QDi = [qdi1, qdi2, · · · , qdin]
contains the list of metrics through which it is possible to define the values of the
component quality CQi and source quality SQi as aggregate quality indexes for the
i-th component and data source, respectively.

Component ranking

When composing a mashup, users select components from the DashMash repository.
In the selection phase, the quality of individual services represents the main decision
driver. As described in the previous section, each component ci ∈ C is associated with
the component quality index CQi and source quality index SQi. These two indexes
can be linearly combined in an aggregate quality index Qi = w1 ∗ CQi + w2 ∗ SQi

where w1 and w2 are user-defined weights. The values Qi are used to define a ranking
among similar components and support the user during the component selection phase.

Composition of components

When a component is selected, recommendations about how to further select compo-
nents can be provided. The Composition Handler sends all composition events to the

6.5. BINDINGS DEFINITION 75

Recommendation Manager, which suggests actions to achieve or improve the quality of
the mashup. To do so, we have adopted the approach described in [48], for which both
the quality of component services and the overall mashup quality are the key drivers
of recommendations. Components are ranked on the basis of their mashability [48]
defined as the capability to be combined with previously selected components and to
maximize the quality of the overall mashup. Mashability can be seen as a combination
of compatibility and aggregate quality. Compatibility is an estimate of whether it is
possible to combine a component with those already included in a composition. It is
based on (i) Syntactic compatibility and (ii) Semantic compatibility. Syntactic com-
patibility checks the compatibility between the input/output parameters exposed by
the components. Semantic compatibility checks whether input/output parameters and
operations belong to the same or similar semantic categories, assuming that syntactic
compatibility is satisfied.

The compatibility index compij provides a preliminary measure of the compatibility
of a service to be added to a given mashup. A value equal to zero indicates the
incompatibility from a syntactic point of view while a positive value provides a measure
of semantic compatibility. The Recommendation Manager stores this index in form of
a matrix where events and operations of the available components are related to each
other and their compatibility is scored. The matrix is constructed every time a new
component is added to the repository C.

The notion of aggregated quality is an estimate of the final mashup quality achieved
by aggregating the quality of individual component services. Aggregate quality is
needed to build a ranking and suggest an ordered list of possible bindings. Note that
the quality of mashup QMk cannot be quantified as a simple sum of the quality of
individual components, but it is necessary to weigh quality by taking into account the
role and the importance of each component [21]. As shown in Figure 6.8, DashMash
provides the user with recommendations about all possible bindings ranked on the basis
the aggregate quality value of the final mashup.

Once a composition is in place (including at least a couple of components), quality can
be assessed by considering the composition status and the result set in order to suggest
alternative mashups that may provide the same functionality of the current composition
with greater aggregate quality. In DashMash, each result set is indeed structured so
as to highlight how the dimensions of the retrieved data relate to the visualization
dimensions of the selected viewers. For example, in the scenario depicted in Section 7.6,
a user might filter data based on a specific brand category. The amount of resulting data
series to display might drive the selection of the graph to visualize them. Components
that build line charts and 3D graphs perform the same functionality but with a different
expressiveness. The former are more clear in case of a limited number of categories (e.g.,
lower than five) while the latter are better in case of a higher number of categories. At
the end of a mashup composition, DashMash analyses the choices of the user and, on the
basis of the information about data and presentation extracted from the composition

76 CHAPTER 6. ARCHITECTURE

status, can make recommendations for a new composition.

6.6 Integration with proprietary data sources

In the “consumer” mashups each component in the composition takes its own data
from remote data source. For example Google Maps, the most famous and used API in
the Web, has its own data source storing all the information required in order to draw
maps. The component which wraps the Google Maps API has to send a request to the
service provider communicating the new parameters needed to redraw the map.

When end users need to use their proprietary data sources, components need to access
this data source in order to retrieve data, with the advantage that the organization
of data is known because the service is locally managed. This is not only the case
of Enterprise Mashups, in which the mashup is a decisional or analytic dashboard.
For example, as shown in [41], a personal trainer could be interested in providing a
“diet service” that helps other people to monitor their diet, which extracts data from a
“personal” database with food and calories. All these very heterogeneous cases could
be resolved using a domain-specific component, called Data Service, that knows the
schema of the datasource and therefore is able to extract and represent data, so that
they can be best exploited by other components within the mashup.

6.6.1 Data Service

Data Service (DS) is a double-sided component: it has a client side and a server side.
Figure 6.6 shows this architecture and the communication paradigm between DS client
and DS server. The DS server should be considered de-facto as a Web service [32], which
in our case also needs a UISDL description to interact with our mashup engine.

DS server is strongly dependent on the data source technology, model, schema and
instance, but DS client is a generic mashup component that accesses the server side
service as a common API wrapper and is independent from the data source.

In the following we will describe in details both the DS client and the DS server.

6.6.2 DS client

DS client is a common mashup component that exposes events and operations. Its role
is to catch the composition events that implies data updating operations, and sends
the corresponding requests to the DS server, in charge of retrieving data and returning
the XML description of the result sets.

6.6. INTEGRATION WITH PROPRIETARY DATA SOURCES 77

In order to retrieve data from the data source, the DS should know the context which
determines the query to be executed. Our solution is to make the DS client pass to the
DS server a part of the status document. The DS server makes a query for each viewer
that is passed to the service so the client send only the necessary requests.

There are three the main events that trigger the construction of a new query:

1. filterChanged. Since filters are associated to viewer boxes, when a filter
changes all the viewer boxes need to be redrawn. In order to achieve this effect
the Composition Handler raises the event filterChanged and the corresponding
operation is invoked in the DS client, which retrieves the portion of the status
needed. This portion relates to the viewer boxes in which the filter changed.

2. viewerChanged. If a viewer is added or some of its parameters are modified, the
event that is raised is viewerChanged. This event is bound with the operation in
DS client that sends to the service the correct portion of the status model. This
portion corresponds to the viewer box filters and the interested viewer refer to.

3. compositionReload. If this event is raised, the status model is passed to the
server side.

In all the three cases, after handling the events as describe above, the DS server executes
the needed queries and returns the XML description of the result set. This XML is
parsed and sliced into viewers subset of data. Such data are locally stored in a data
buffer. Each viewer can read from this buffer in order to retrieve data and draw itself.
Figure 6.9 shows the matrix representing the data buffer. The rows represent the viewer
boxes and the columns represent the viewers.

When are uploaded from the data buffer, the DS client raises an event of dataReady

to the right viewer.

Figure 6.9: The data buffer matrix structure

78 CHAPTER 6. ARCHITECTURE

6.6.3 DS server

DS server is strongly dependent on the data sources on which it has to make queries.
However, is possible to describe a common behaviour that can guide a domain developer
to develop this module.

In the following we will describe the main steps that Data Service server side performs
to provide the result set to the client side.

Parsing of the status As described in the previous Section 6.6.2, the Data Service
client side sends the status descriptor to the server side and here the status is
parsed in order to construct queries on the data sources.

Query generation and execution According to the status descriptor passed to the
server side, all the needed queries are generated and executed. Different ap-
proaches could be adopted in order to improve the performance of this step,
e.g., assigning the execution of multiple queries deriving from different viewers
to different threads.

Result set formatting and response composition The result sets returned by the
query execution are not in the format that the composition viewers could inter-
pret in order to draw charts. So in this phase the result set is formatted according
to the DFM schema described in Section 5.4.1.

6.7 Implementation and deployment choices

The current implementation of the DashMash architecture consists in a client-side
module with a modular composition engine core.
The natural environment for applications that lend themselves to presentation integra-
tion these days is the Web. Most of the existing mashups and mashup environments
link together different services with different underlying technologies, often time using
JavaScript as the “glue” that make the composition possible. Nearly every technology
currently used for Web applications, such as Java, .NET and Flash, allows some kind
of interaction with JavaScript scripts in the hosting Web page. Therefore HTML/-
JavaScript was the natural choice of platform for the implementation of the runtime
framework.

The choice of a client-side solution is due to the need of keeping our solution simple,
even from the point of view of the platform deployment. However, in order to simplify
the client-side architecture and to enable new features, such as the multi-user and
cooperative definition and the immediate execution of mashups, it is also possible to
enrich the server-side logics. In order to meet this aim, it is necessary to implement a
session paradigm and a multi-client orchestration by defining a server-side cooperative

6.7. IMPLEMENTATION AND DEPLOYMENT CHOICES 79

module. This cooperative module should be able to manage the SMDL and XPIL
descriptors also assuring the mutual exclusion during multi-users interaction. In this
scenario, synchronization becomes a critical factor, because the different instances of
the same composition running on different clients should be aligned each other. This
can be easy done using a two-step paradigm that implements a lock mechanism on
composition modification by users, and a sync notification that broadcast updated
composition and status descriptors to re-instantiate the composition client-side.

80 CHAPTER 6. ARCHITECTURE

Part IV

Validation

81

Chapter 7

Case study

In the context of a project funded by the Comune di Milano (Milan Municipality)
we have worked on the construction of a Web platform through which end users can
construct their dashboards for sentiment analysis. Sentiment analysis focuses on un-
derstanding market trends starting from the unsolicited feedback provided by users
comments published on the Web (this will be better explained in Section 7.1). The
project focuses on the definition of a city brand marketing model and on the design of
an engine in charge of the automatic extraction of sentiment indicators summarizing
the opinions contained in user generated contents [17].

After preliminary attempts with a traditional static dashboard fo the presentation
of analysis results, we have realized that end users could benefit from the ability to
compose their analysis flexibly, playing in variable ways with sentiment indicators, and
also complementing such indicators with “generic” external Web resources. This latter
feature would indeed help them to improve their analyses, by interpreting sentiment
indicators with a view on the events that cause trends and behaviours. This observation
led us to introduce mashups to accommodate flexibility and openness towards external
resources.

Within this thesis we therefore customized DashMash for this specific context. This
implied the development of specific components supporting sentiment analysis tasks,
namely ad-hoc implemented viewers and a Data Service in charge of assessing the
local data source where sentiment analysis data are stored. Such customizations are
described in Sections 7.5 and 7.4 . The first sections of this Chapter also provide an
overview over sentiment analysis, to highlight the requirements that guided us in the
DashMash customization activity.

83

84 CHAPTER 7. CASE STUDY

7.1 The context: sentiment analysis

With the Web 2.0 revolution there are a lot of Web sites enabling people to publish
their contents about specific areas of interest and people can easily publish and share
their information and opinions further increasing the huge amount of contents available
in the Internet. In this way Web users play an active role on publishing information
being authors themselves.

The most important Web sources where people publish their contents can be divided
in two types: social sources and content sources. The social sources are social net-
works that are focused on users and the social relationships among them. In these
Web sites users mainly focus their attention on WHO are the senders and WHO are
the recipients of the contents. The content sources are Web sites in which people are
virtually connected by having common interests rather then having real social rela-
tionships. In this kind of Web sites users are mainly interested on WHAT are contents
and WHAT are the experiences that they share. This classification is not exclusive
but can be applied to better understand the aims of Web sources. Some social sources
can include content-based sections where users concentrate on developing threads on
some specific topic while some content sources can be further extended with the possi-
bility to associate users with relationships. People can also have different approaches
to the Web sources. Especially in social networks, people tend mainly to insert their
original personal information and social relationships (this is the case of Facebook and
AsmallWorld). The greater part of the Web sites, instead, holds pseudo-accounts or
fake accounts: in these cases people can hide their personal identities and feel free to
express their personal opinions about what they are interested on (this is the case of
the forums).

Thanks to these new technologies, institutions and enterprises have the opportunity
to exploit the availability of this invaluable and huge amount of new marketing infor-
mation to obtain direct feedbacks from people. This is very important because year
by year people are always more influenced by Web sources. Besides traditional ways
of communication, people often look for many useful advices in the Internet. This
information supports users in decision-making processes that are strictly bound to the
reputation of any company’s products and services.

Sentiment analysis or opinion mining aims to determine the judgement or evaluation
which a user gives on a particular topic.

The rise of social media such as blogs and social networks has improved interest in sen-
timent analysis. With the proliferation of reviews, ratings, recommendations and other
forms of online expression, online opinion has turned into a kind of virtual currency
for businesses looking to market their products, identify new opportunities and man-
age their reputations. As businesses look to automate the process of filtering out the
noise, understanding the conversations, identifying the relevant content and actioning

7.2. SENTIMENT ANALYSIS TECHNIQUES 85

it appropriately, many are now looking to the field of sentiment analysis.

For companies it is impossible to manually analyse all the information from social and
content services, automatic analysis tools are therefore needed platform for the Web
reputation analysis.

Milan Municipality project focuses on several aspects of sentiment analysis: market
analysis to understand the domain of analysis, the definition of main categories in
which the information retrieved from the Web should be partitioned, the semantic
analysis of the Web surfers’ posts, the storage of these information in a unique data
source and the development of an engine for the automatic extraction of sentiment in-
dicators. DashMash has than been used as a front-end environment for the lightweight
mashup-based composition of sentiment services.

7.2 Sentiment analysis techniques

The basic task in sentiment analysis [27] is classifying the polarity of a given text at
the document, sentence, or feature/aspect level — whether the expressed opinion in a
document, a sentence or an entity feature/aspect is positive, negative or neutral.

Another interesting analysis is subjectivity/objectivity identification. This task is com-
monly [47] defined as classifying a given text (usually a sentence) into one of two classes:
objective or subjective. This problem can sometimes be more difficult than polarity
classification [42]: the subjectivity of words and phrases may depend on their con-
text and an objective document may contain subjective sentences (e.g., a news article
quoting people’s opinions).

The more fine-grained analysis model is called the feature/aspect-based sentiment anal-
ysis [46]. It refers to the study of determining the opinions or sentiments expressed on
different features or aspects of entities, e.g., a cell phone, a digital camera, an insurance,
or a bank. A feature or aspect is an attribute or a component of an entity, e.g., the
screen of a cell phone, or the picture quality of a camera. This problem involves several
sub-problems, e.g., identifying relevant entities, extracting their features/aspects, and
determining whether an opinion expressed on each feature/aspect is positive, negative
or neutral.

The technique for sentiment analysis adopted for our case study [16] performs an eval-
uation of the average opinion on a given subject of interest measured on a qualitative
5-point scale, ranging from very negative to very positive. The input data to the sen-
timent analysis are a set of snippets, i.e., fragments of text providing a comment on
the subject of interest. Sentiment is evaluated on individual snippets first and then
aggregated over a set of snippets.

86 CHAPTER 7. CASE STUDY

Most commercial tools providing sentiment analysis services aggregate the evaluation
of sentiment on individual snippets by calculating the mean value of sentiment over
the entire set of snippets or over a subset of snippets that have been published on
the Web within a given time frame. Snippets that comment on the same subject of
interest are usually stored in the same set even if they are gathered from multiple
heterogeneous Web sources. The mean value of sentiment across a set of snippets is
usually complemented by the total count of snippets that have been retrieved, in order
to provide users with an indication of the level of interest on the subject. [50] provides
a survey of existing tools that clearly indicates that the volume of talk on a subject
and the average evaluation of sentiment on large data sets retrieved from a broad range
of sources represents a common approach. This approach, however, raises a number of
information quality issues which could lead decision makers to wrong interpretations
and decisions. These issues are related to: the selection of Web information sources and
the characterization, interpretation and evaluation of the content of Web information
sources.

The classification of information sources and the assessment of the quality of their
information improves the reliability of reputation assessments and provides users with
a tool to select dependable sources in relation to the analysis that they need to perform.
Users are thus allowed a more focused search and more reliable interpretations.

7.3 Sentiment analysis tasks

During the initial requirement analysis, some specific analysis tasks have been iden-
tified. In the following we will describe these tasks as they are supported within the
DashMash customization for sentiment analysis. These analysis tasks are supported
by means of ad-hoc developed viewers, providing advanced visualizations for sentiment
indicators. The remainder of this Section illustrates the identified analysis tasks, by
clarifying the data dimensions and measure involved in each analysis task and the
corresponding visualization components.

The design of the underlying data-warehouse will be illustrated in Section 7.4.2.

7.3.1 City brand comparison

This analysis allows to compare the city brand volumes in a time interval. The dimen-
sions selected are Brand (Milan, London and Madrid) and Date and the measure is
the Volume of snippet. Figure 7.1 reports the charts as it appears in the implementa-
tion for the Milan Municipality. The brands are represented as series, the time is the
domain of the charts and the volume is the range of the chart.

7.3. SENTIMENT ANALYSIS TASKS 87

Figure 7.1: The city brand comparison analysis

7.3.2 Comparison by category

The comparison by category analysis shows the evolution in the time of the volumes of
user snippets of the different categories. The involved dimensions are Tag (category)
and Date and the measure is Volume. In Figure 7.2 we can notice that the categories
are represented as series and the time and the volume are represented respectively as
domain and range of the chart.

Figure 7.2: The comparison by category analysis

88 CHAPTER 7. CASE STUDY

7.3.3 Volume distribution

This analysis provide the volume of tags (categories) with respect to the Brand (Milan,
London and Madrid) and the Tag dimensions – obviously the measure is the Volume.
Figure 7.3 shows the chart that we adopted to represent this analysis. This kind of
visualization, as described in Section 3.2, is a tree map. The three series in the Figure
are the three brands that are divided into the categories rectangle. Each rectangle
has a dimension that represents the relative volume of snippets that talk about each
tag.

Figure 7.3: The volume distribution analysis

7.3.4 Sentiment distribution

This analysis aims to show the sentiment and the volume distribution among categories
and subcategories. From a data warehouse point of view, the dimensions are Tag
and Product/Service and the measures are Sentiment and Volume. As represented in
Figure 7.4, the scatter chart supporting this analysis has as domain and range the two
measures, respectively Volume and Sentiment. Instead the two dimensions are used to
represent the point identified by the function that has Volume and Sentiment as range
and domain. The color is associated with a colour code to the category and each point
represent a subcategory (Product/Service dimension).

7.3. SENTIMENT ANALYSIS TASKS 89

Figure 7.4: The sentiment distribution analysis

7.3.5 Polarity pies

This analysis is used to understand the polarity distribution of the judgements ex-
pressed by users with respect to polarity and tag. In Figure 7.5 is shown the chart
used to visualize the results of this analysis. We can notice that in this case the di-
mensions are Polarity and Tag and the measure is the Volume of snippet. Polarity is
represented as series and for each tag there is a slice of the pie.

7.3.6 Opinion flow

The opinion flow is an analysis that shows a detailed view on the post and the users.
The representation of this analysis is, as we can see in Figure 7.6, a table. The table
represents the user with his profile image, the source where the post is published,
the sentiment, of a snippet of the post, the corresponding brand (Milan, London and
Madrid), and the tag and the post text. On click on a row of this table, a detail of the
post is shown.

90 CHAPTER 7. CASE STUDY

Figure 7.5: The polarity pies analysis

Figure 7.6: The opinion flow analysis

7.3.7 Sentiment cloud

The sentiment cloud aims to show the top 100 words used in the posts related with a
brand. Each word in the tag cloud is associated with the sentiment value and the word
volume. This component was not reliable on the Web, so we implemented it using
an ad-hoc JavaScript business logic. The available public APIs are indeed difficult to
customize for the display of data extracted form data base (not just text).

7.3. SENTIMENT ANALYSIS TASKS 91

Figure 7.7: The sentiment cloud analysis

7.3.8 Top influencers map

This analysis aimed to show the top influencers. With different techniques the top
influencer are individuated and are monitored. In the Figure 7.8 are shown the top
influencer listed in the table and located in the map. The map component is derived
from Google Maps API. This analysis is very important because the top influencers are
to be monitored because their judgement could influence a large amount of people.

Figure 7.8: The top influencers map analysis

7.3.9 Posts map

This analysis shows the location on a map of the posts of a top influencer.

92 CHAPTER 7. CASE STUDY

Figure 7.9 shows the post location in a map and the list on the left shows the posts.
In the example represented in this figure the influencer is a travel agency and the
places located on the maps represent the different sites in which the travel agency is
placed.

Figure 7.9: The posts map analysis

7.4 Data Service

7.4.1 Data integration

The analysis tasks described in the previous section require the integration of data
coming from the different monitored sources. The information available in the Web is
generally non-structured because it is presented in HTML format. It is also different to
derive its semantics. However the schema of such information can be inferred analysing
each particular Web site structure. Crawler programs can extract information from
such site and give them a structure (and also a semantic). Each crawler is in charge of
reading the raw contents of a Web site and converting them in an global schema that
is the database of the platform. This operations can be done through two different
approaches: HTML parsing or API call.

HTML Parsing The HTML parsing has the disadvantage that it must be designed
ad hoc because it mainly depends on the presentation layer of a Web information
system. Then this approach is enough volatile but has the advantage that has not
particular limitations on HTML requests. This approach can be more complex
when dealing with high dynamic Web sites based on JavaScript and Ajax.

API call The API call is the best solution because it can be integrated in the system
and it can be considered as a black-box function that returns the data we need,

7.4. DATA SERVICE 93

hiding the specific architecture of the Web site. This approach is more durable
because the structure of the database of Web applications is more stable then their
presentation. However API calls have the disadvantage that they can be limited
by the Web source system to prevent DOS attacks or brute forcing. Unluckily
APIs are not available for all the Web sources, thus HTML parsing is often a
forced choice.

The sentiment analysis the Milan Municipality is interested in needs to compare mul-
tiple Web sites. Each Web site has its own pages structure or provide its own API.
In the project each crawler writes on its database according to its schema. In order
to visualize and compare data from different data sources there was the need of an
integrated schema. Moreover the sentiment analysis process is very heavy and it could
not done “on the fly”, therefore also the results of sentiment analysis has to be stored
with the crawler data.

The crawler data were not the only information stored. Also third party data were
stored and has been integrated. These data are the result of the sentiment analyses of
a consulting society that have its own schema to represent crawled data and analysed
data.

To meet this needs an integrated data source was designed and all the crawling data
and all the analysed data has been stored in the integrated database.

Layers

As shown in Figure 7.10 different data layers are identified in the integration pro-
cess.

Layer 0 Crawling processes extract data from Web sources and store them in local
data sources.

Layer 1 The Data Integration system merges all the local data sources into a general
global source that will be the input layer for the Sentiment Analysis module.

Layer 2 Sentiment Analysis processes elaborate data that can be analysed by the
Data Warehouse system.

Integration approach

The schemas of the different data sources are heterogeneous and this introduces com-
plexity in the mappings between local and global schema for entities or relationships
that are implemented in different approaches.
Since the crawlers are designed ad-hoc for each Web site and the Web site databases
schema are stable, the data sources are enough stable; the main problems can be due

94 CHAPTER 7. CASE STUDY

Figure 7.10: The data integration layers

to changes to the Web page visualizations of the Web sites analysed by page-parse
crawlers. Even though we have chosen a materialized database, the mapping between
data sources and global schema follows the Global As View approach [[40]]: the global
schema is expressed in terms of the data sources schemata. There are not global view
because they are represented by materialized tables in the global schema. Under this
approach, when adding a new data source, the global schema does not need structural
changes. To add a new data source, it is only required to create a stored procedure
for the asynchronous conversion of the local source following the mapping rules. The
schema mappings drive the implementation of the global database.

Figure 7.11 shows the global schema. In the following we are going to describe the
different entities in the global schema:

SOURCETYPE contains the types of the sources (blog, forum, etc...)

SOURCE contains the sources (Twitter, TripAdvisor, LonelyPlanet, etc...)

USER specifies the authors of the posts

FOLLOWING specifies the relationships among users of the sources

THREAD contains the threads found in the sources

POST contains the posts found in the sources

BRAND contains the keywords searched (in our case brands are Milan, London and
Madrid)

7.4. DATA SERVICE 95

SEARCH specifies the keywords searched in the sources

TAG contains the tag model that is the categorization of the topics that could be
identified by the semantic analyser of the texts

QUALITY contains the quality model which is a set of quality that can be associated to
a tag to better express the user thought

PRODUCTSERVICE contains the product-service model (another information that could
improve the tag categorization)

FEATUREPART contains the feature-part model (another information that could improve
the tag categorization)

SNIPPET specifies the snippets of the posts, a snippet is the atomic part of a sentence
which contains the user’s judgement

Figure 7.11: The global schema

7.4.2 Data warehouse approach

In order to meet the analysis needs, we also design a Data Warehouse that allows to
aggregate the data and show them to the reputation analyst.

96 CHAPTER 7. CASE STUDY

Fact identification

Analysing the integrated schema we derive that the fact is Snippet. Typically the Data
Warehouse fact is a relation among the dimensions but in our case the table Snippet,
is involved in relation among all the dimensions, as we can see from the ER schema of
the integrated data base reported above.

The table Snippet contains information about the source and the post from which
the snippet is taken, the text of the snippet, the sentiment value, the tag, brand and
quality associated with the snippet after the sentiment analysis. All information that
an analyst needs in order to understand the reputation. Counting the number of
snippets which talk about a specific topic, the analyst will be able to understand how
much people talk about this topic and if its judgement is positive or negative, thus
understanding the causes and improving the negative aspects.

Attribute tree

According to the ER schema, it is possible to generate the Attribute Tree diagram in
Figure 7.12. The root of this tree is Snippet and the child nodes are the entities taken
from the ER diagram.

Starting from the Attribute Tree diagram, we can edit the tree pruning and graft-
ing the appropriate nodes in order to obtain the tree which we will use for the Fact
schema.

The measure which we defined are two: Sentiment and Volume. The glossary about
how them are calculated is reported below.

Volume = COUNT(*)

Sentiment = AVG(SNIPPET.sentiment)

Beside the measures, the other nodes, which are children of the root, are defined as
dimensions. We identify as dimensions the nodes Date, Source, Tag, User, Quality,
Post and Brand.

Figure 7.12 shows the Attribute Tree edited, with the dimensions and the measures
previously defined with the nodes coloured as indicated in the legend.

Snowflake schema

The fact schema is a simple transformation of the Attribute Tree, therefore the dimen-
sions, and all the root’s child nodes, are reported and the measures are represented as
attribute of the fact Snippet.

7.5. DOMAIN CUSTOMIZATION 97

Figure 7.12: The attribute tree edited

We choose to represent the fact schema with a snowflake schema. According with the
diagram in Figure 7.13, the hierarchy of the dimension Source is respected but the
hierarchy of the dimension Date is flatted because it is easier for the date to use SQL
function instead of using keys and making join.

7.5 Domain customization

In order to meet the Milan Municipality requirements and in order to provide the
analyses above described, starting from the architecture described in Chapter 6, some
domain customizations are needed. In this Section we will describe these customiza-
tions.

7.5.1 Data Service

In our case study, in order to meet the Milan Municipality aims, we have to analyse
data from a proprietary data source principally with data warehouse queries.
As explained in Section 6.6.1, Data Service has two sides a client side that is general
and a server side that is strongly dependent to the data sources. Therefore the Data
Service server side is implemented considering the particular schema described in the
Section 7.4.1 and the queries are executed considering the global schema and the data
warehouse project described in Section 7.4.2.

98 CHAPTER 7. CASE STUDY

Figure 7.13: The snowflake schema

7.5.2 Custom bindings and compatibility matrix

In order to capitalize on the flexibility and the expressive power of mashups, the only
default bindings are not enough to meet the analyses needs. The better solution is to
synchronize the viewer components among them creating custom bindings. However,
if we consider that bindings are relations between two components we will assert that
the binding relation is not a total relation or rather is not possible to synchronize all
the components with all the other components.

Components must be semantically and syntactically compatibles. In order to describe
these compatibilities we have used a compatibility matrix (Figure 7.14) that maps
which components are compatible with which of the other ones.

The compatibility matrix is implemented as a XML document that contains all the
possible bindings between compatible components. Figure 13 reports the particular
example implemented for the case study.

7.5. DOMAIN CUSTOMIZATION 99

Tag cloud List Pie Scatter Tree map Line Line 3D
Tag cloud 0 1 0 0 0 0 0
List 0 0 0 0 0 0 0
Pie 1 1 0 1 0 1 0
Scatter 0 1 0 0 0 0 0
Tree map 1 1 0 1 0 0 1
Line 0 1 0 0 0 0 0
Line 3D 1 1 1 1 1 0 0

Figure 7.14: The compatibility matrix

1 <matrix>

2 <binding source="RandomTagCloud" event="clickOnMe" target="List" operation="setParameters"/>

3 <binding source="PieChartHC" event="clickOnMe" target="ScatterHC" operation="setParameters"/>

4 <binding source="PieChartHC" event="clickOnMe" target="TimeVolumeHC" operation="setParameters"/>

5 <binding source="PieChartHC" event="clickOnMe" target="RandomTagCloud" operation="setParameters"/>

6 <binding source="PieChartHC" event="clickOnMe" target="List" operation="setParameters"/>

7 <binding source="ScatterHC" event="clickOnMe" target="List" operation="setParameters"/>

8 <binding source="TreeMapJIT" event="clickOnMe" target="List" operation="setParameters"/>

9 <binding source="TreeMapJIT" event="clickOnMe" target="ScatterHC" operation="setParameters"/>

10 <binding source="TreeMapJIT" event="clickOnMe" target="RandomTagCloud" operation="setParameters"/>

11 <binding source="TreeMapJIT" event="clickOnMe" target="TimeVolume3D" operation="setParameters"/>

12 <binding source="TreeMapJIT" event="clickOnMe" target="PieChartHC" operation="setParameters"/>

13 <binding source="TimeVolume3D" event="clickOnMe" target="List" operation="setParameters"/>

14 <binding source="TimeVolumeHC" event="clickOnMe" target="List" operation="setParameters"/>

15 <binding source="TimeVolumeHC" event="clickOnMe" target="RandomTagCloud" operation="setParameters"/>

16 <binding source="TimeVolumeHC" event="clickOnMe" target="PieChartHC" operation="setParameters"/>

17 <binding source="TimeVolumeHC" event="clickOnMe" target="ScatterHC" operation="setParameters"/>

18 <binding source="TimeVolumeHC" event="clickOnMe" target="TreeMapJIT" operation="setParameters"/>

19 </matrix>

Listing 13: The XML of the compatibility matrix

7.5.3 Components development

The component used in our case study are ad-hoc components and have been imple-
mented using graphic libraries available on the Web, called Highcharts [7]. Initially the
viewer components were generic viewers or rather were developed to read the result
set document and to draw the charts preserving a generic behaviour. But in order to
show the Milan Municipality analyses the viewer components have been customized.
The viewer components, as described in Section 5.3, are components that should be
generic and should visualize the results from the result set document. However if the
analyses are domain specific and a general visualization is not enough, the viewer com-
ponents should be customized. In our case study the visualization components have
been modified in order to better meet the analyses needs.

100 CHAPTER 7. CASE STUDY

7.6 Complete example

Figure 7.15: First mashup example

Figures 7.15, 7.16, 7.17 and 7.18 shows an example of use of the Web front-end of our
platform, DashMash, for the composition of sentiment analysis mashups. A left hand
menu presents the list of components, currently data sources that materialize contents
extracted from community sites, several types of filters, a multiplicity of viewers to
visualize data, which are both open APIs, e.g, the Google APIs for maps and charts,
and ad-hoc developed services, and utility open API/services, such as feed RSS FEEDS
and calendars. Components can be mashed up by moving their corresponding icons
into the so-called workspaces.

Figure 7.15 shows a mashup in which the user has selected two data sources, storing
contents extracted from Twitter and TripAdvisor, and has filtered them by using a
keyword based filter, with key = Milan [18]. The effect of this integration is that the
workspace is now associated with the resulting data set. Contents are then presented

7.6. COMPLETE EXAMPLE 101

Figure 7.16: Second mashup example

102 CHAPTER 7. CASE STUDY

Figure 7.17: Status description

Figure 7.18: Custom binding dialog box

7.6. COMPLETE EXAMPLE 103

adding a pie chart viewer, visualizing the percentage of comments related to categories
of interest in the tourism domain (e.g., food, entertainment, art, and other relevant
entities), and a scatter plot visualizing the average value of sentiment for the same set
of categories.

Figure 7.16 shows a second mashup defined on top of the same data sources as the
previous one. In this case, the filters select comments from users that are considered
opinion leaders called influencers. Users are visualized through a list viewer, which
is integrated with Google Maps to show the user location. A further synchronization
with another map and another list viewer allows the user to see the original posts of
each influencer, as well as the geo-localization of their posts, if available.

Users can iteratively modify the composition, by adding or dropping components. Their
changes are enacted at real time. They can also access a text description of the status
of the current composition (see Figure 7.17), and easily modify sources, filters, viewers
or even configuration properties of single each filter or viewer.

Users can add further synchronization behaviors. For example, starting from the
mashup shown in Figure 7.15, the dialog box presented in Figure 7.18 allows the user
to set a coupling so that a click on a pie slice contextualizes the analysis offered by the
map viewer to that selected label. As explained in Section 6.5, based on descriptive
models of components, the dialog box presents the events exposed by the components
selected by the user, plus a short description. The system provides suggestions about
other candidate components based on compatibility rules and quality criteria.

104 CHAPTER 7. CASE STUDY

Chapter 8

User testing

In order to validate the composition paradigm of DashMash with respect to EUD,
we conducted a user based study. We have observed domain experts and naive users
completing a set of tasks through our platform. Our goal was to assess how different
skilled users would be able to easily develop a composite application.

The experiment specifically focused on the efficiency and intuitiveness of the compo-
sition paradigm, trying to measure this factors in terms of user performance, ease of
use and user satisfaction. In particular, we expected all users to be able to complete
the experimental tasks. However, we expected also a greater efficiency (e.g., reduced
completion task times) and a more positive attitude (in terms of perceived usefulness,
acceptability and confidence with the tool) by expert users. Their domain knowledge
and background could indeed facilitate the comprehension of the experimental tasks,
and improve the perception of the control over the composition method, and thus, their
general satisfaction.

The following Sections describe the users sample, the test procedure, the experimental
tasks and the questionnaires. Finally, we present the results analysis, deriving our
conclusion about users performances, perceived ease of use and user satisfaction.

8.1 Users sample

The study involved 35 participants. Six of them were real end users, i.e., analysts
and decision makers that are supposed to actually use DashMash for their analyses.
In order to prove to which extent the tool was intuitive even for naive users, we also
involved undergrad students of the Computer Engineering Programme at Politecnico
di Milano which have a moderate knowledge about Web technologies, but that are
never exposed to our tool neither to the sentiment analysis domain.

105

106 CHAPTER 8. USER TESTING

Table 8.1 describes the possible categories, which the users can be aggregated in, the
metrics and the volumes of users (absolute and relative) for each category.

Table 8.1: Dataset descriptive statistics

Metric’s category Metric Number Percent

Subjects cardinality 35 -
Gender male 29 83.0

female 6 17.0
Age age ≤ 25 27 77.1

25 < age ≤ 30 7 20.0
age > 30 1 2.9

Technology expert expert 13 38.1
non expert 22 62.9

Domain expert expert 6 17.6
non expert 28 82.4

Application yes 27 77.1
designer no 8 22.9
Time spent hours ≤ 4 8 22.9
on the Internet 4 < hours ≤ 8 20 57.1

hours > 8 7 20.0

8.2 Procedure

For novice users, the completion of the experimental tasks was preceded by a 5-minute
explanation about the domain and about the basic composition actions supported by
the tool. Expert users were instead introduced to the set of available components
and the basic composition mechanisms. All users were first asked to fill in a pre-test
questionnaire – see Appendix A.2, to gather data on their knowledge about services
and mashups. All users were then asked to perform two composition tasks. After the
completion of the two experimental tasks, users were then asked to fill in a satisfaction
questionnaire. In Appendix A.2 and A.2 are reported the pre-test and the post-test
questionnaires.

About two thirds of the subjects (13) were skilled on mashups. Dataset descriptive
statistics are summarized in Table 8.1.

After the completion of the two experimental tasks, the users were then asked to fill
in a satisfaction questionnaire, which combined several items to measure two main
dimensions:

1. Ease of use: we expected the paradigm facilitate user retention across tasks.

8.3. EXPERIMENTAL TASKS 107

2. Satisfaction: we expected a more positive attitude (in terms of perceived useful-
ness, acceptability and confidence with the tool) by expert users. Their knowl-
edge of the domain could indeed facilitate the comprehension of the experimental
tasks, and increase the perception of the control over the composition method.

The third dimension, performances, was measured by clocking the tasks execution.

8.3 Experimental tasks

The two tasks were comparable in terms of number of components to be integrated
and composition steps. Task2, however, required a less trivial definition of filters, to
sift the involved data sources, and a more articulated definition of bindings. Also,
while the formulation of Task1 was more procedural (i.e., it explicitly illustrated the
required steps), Task2 just described the final results to be achieved, without revealing
any details about the procedure required – see Appendix. A.1.

8.3.1 Task1

In the first task the user had to drag and drop the pie chart called, polarity pies, in
order to visualize the percentage of volume of the positive and the negative sentiment.
After that he/she had to filter the data with a tag filter on the tags arts & culture,
events & sports, fashion & shopping and food & drink.
Than the user had to add, dragging and dropping, a second chart to visualize the sen-
timent distribution through a scatter chart, and then had to create a binding between
the pie chart and the scatter chart, selecting from different options the publisher, the
subscriber, the event that rises the binding and the operation involved. After that, the
user was invited to click on a pie slice in order to enjoy the experience of the intra-
components synchronization.
The last point in the task asked the user to compare the volume time-line distribu-
tion for the three city brands (Milan, London and Madrid) adding a line chart that
shows this visualization and synchronizing the line chart with the pie chart inserted
before.

8.3.2 Task2

The second task was articulated along only two point, as previously said, our intent
was indeed it to increase the difficulty with respect to Task1 also giving less infor-
mation about the composition procedure, does leaving the user free to chose how to
proceed.

108 CHAPTER 8. USER TESTING

The first point of the task asked to add a line chart to show the comparison of the
volumes filtered by the positive sentiment polarity.
The second point asked the user to add a tree map – to show the comparison among
the volumes aggregated for brand and tag – and a list viewer – to show the opinion
flow. Both these visualizers have to be synchronized with the line chart inserted in the
first point of this task, with the aim of obtaining that when clicking on a point of the
line chart the tree map and the list viewer update their visualization.

8.4 Results analysis

In the following sections we describe the results on related to taking into account the
user performance in task completion, the time spent by users to perform the two tasks,
the perceived ease of use and the users satisfaction.

8.4.1 Performance

All the participants were able to complete both tasks without particular difficulties.
Details about the time spent by users in the two groups are reported in Figure 8.1 .
No differences in task completion time were found between experts and novices. In
particular, domain expertise was not discriminant for task 1 (p = .085) and for task 2
(p = .165). Similarly, technology expertise was not discriminant for task 1 (p = .161)
and for task 2 (p = .156). The lack of significant differences between the two groups
does not necessarily mean that expert users performed bad. However, it indicates that
the tool enables even inexperienced users to complete a task in a limited time. The
average time to complete task 1 was about 2.5 minutes, while for task 2 it was about
2 minutes. This positive result is not surprising since novices can perform as good as
experts even in the case of Web searches [38, 53].

The difference in completion times for the two tasks can be also used as a measure
of learning [33]. This difference is about half a minute (t = 28.2, p = .017), i.e., a
reduction of about 15%. This result highlights the learnability of the tool: although
the second task was more critical compared to the first one, subjects were able to
accomplish it in a shorter time.

8.4.2 Ease of use

The ease of use was further confirmed by the data collected through four questions in
the post-questionnaire, asking users to judge whether they found it easy to identify and
include services in the composition, to define service bindings between services, and to

8.4. RESULTS ANALYSIS 109

(a) Domain experts

(b) Application developers

Figure 8.1: Task completion times for the two user groups

110 CHAPTER 8. USER TESTING

monitor and modify the status of the mashups. We also asked users to score the general
ease of use of the tool. Users could modulate their evaluation on a 7-point scale. The
reliability of the ease of use questions is satisfying (α = .75). The correlation between
the four detailed questions and the global score is also satisfying (ρ = .58, p < .001).
This highlights the high external reliability of the measures. On average, users gave the
ease of use a mark of 1.77 (the scale was from 1 very positive to 7 very negative). The
distribution ranged from 1 to 4 (mean = 1.77,meanS.E. = .12). We did not found
differences between novice and expert users. This was especially true for perceived
usefulness (p = .51). The detailed ease of use score collected for the two users groups
are reported in Figure 8.2.

(a) Domain experts

(b) Application developers

Figure 8.2: Ease of use scores for the two user groups

8.4. RESULTS ANALYSIS 111

8.4.3 Satisfaction

The user satisfaction with the composition paradigm was assessed using two comple-
mentary techniques. A semantic-differential scale required users to judge the method
on 12 items. Users could modulate their evaluation on a 7-point scale (1 very positive
- 7 very negative). Moreover, a question asked users to globally score the method on
a 10-point scale (1 very positive - 10 very negative). The reliability of the satisfaction
scale is satisfying (α = 0.76). Therefore, a user-satisfaction index was computed as the
mean value of the score across all the 12 items. The average scores given by the two
user groups for the satisfaction question are reported in Figure 8.3.
The average satisfaction value is very good (min = 1.3,max = 3.5,mean = 2.2,meanS.E. =
.09). The correlation between the average satisfaction value and the global satisfaction
score is satisfying (ρ = .41, p < .015). On average, users gave the composition method
a mark of 2.9, with a distribution ranging from 2 to 4. We did not find differences
between experts and novices. Despite our initial assumption, we found that the ease of
use of the tool is perceived in the same way by novice and expert users, although the
latter have greater domain knowledge. The moderate correlation between the satisfac-
tion index and the ease of use index (ρ = .55, p = .011) also reveals that who perceived
the method as easy also tended to evaluate it as more satisfying. This confirms that
ease of use is perceived.

The last two questions asked users to judge their performance as mashup developers
and to indicate the percentage of requirements they believed to have satisfied with
their composition. This metric can be considered as a proxy of confidence [33]. On
average, users indicated to be able to cover the 91% of requirements specified by the
two experimental tasks (min = 60%,max = 100%,meanS.E. = 1.7%). They also felt
very satisfied about their performance as composers (mean = 1.8,meanS.E. = .13;
1 - very positive, 4 - very negative). We also found a direct correlation between the
users perception of their performance as mashup developers and the global ease of use
(ρ = .57, p < .001), meaning that the tool’s ease of use improves user confidence.

112 CHAPTER 8. USER TESTING

(a) Domain experts

(b) Application developers

Figure 8.3: Results about satisfaction

Part V

Conclusions

113

Chapter 9

Summary and future works

This thesis has focused the design of a mashup platform with an innovative compo-
sition paradigm, specifically conceived to encourage end-user development through a
lightweight mashup development process. Starting from some high-level abstractions,
expressed by suitable components and composition models, we have shown how to ease
the mashup definition by end users. In particular, we have introduced a Web-based
architecture that enables the automatic, system-guided definition of service couplings
for data flow and service synchronization control, while the users are still able to define
their custom bindings.

In order to allow also non-programming skilled users to easier accomplish their com-
position aims, our work provides:

• An execution engine that merges the composition and the execution phases, show-
ing instantaneously the mashup resulting from any incremental composition ac-
tion.

• The automatic generations of the composition descriptors (SMDL and XPIL);

• Support for compatibility and quality check through the generation of recom-
mendations during the definition of custom bindings.

We have also specialized the DashMash platform to cope with the requirements posed
by a project funded by the Milan Municipality. This has allowed us to identify further
requirements posed by enterprise mashups, where data services are needed to make
local data warehouse adhere to the data-as-a-service paradigm.

In order to validate our hypothesis about the ease-of-use of the composition paradigm
and its adequateness with respect to the end user development requirements, we con-
ducted a user testing involving a sample of 36 users. The results are very positive,
since they demonstrate how our solution allows the users to perform composition tasks

115

116 CHAPTER 9. SUMMARY AND FUTURE WORKS

effectively, also increasing the user perception of the platform ease of use and satisfac-
tion.

As a final observation, it is worth noting that part of our work investigated how Dash-
Mash could be specialized for enterprise mashups, where the application domain and
the component characterization are easier to identify and represent in form of rules
for the automatic composition. However, the proposed approach remains valid for
the composition of generic mashups. Of course, the lower the availability of domain
descriptions, the greater the need for users to explicitly define service couplings. Nev-
ertheless, as confirmed by the user-based study, the coupling definition mechanism is
still intuitive and further facilitated by quality-based recommendations.

9.1 Future works

During the experiment, users provided suggestions about possible improvements of the
platform. One comment suggested the need for easy mechanisms for component cre-
ation starting from generic services. While developing the components for sentiment
analysis, we realized that the “componentization” process is still a demanding task.
Although we believe that the preparation of components by expert developers is ac-
ceptable in an enterprise context, we are currently working at a wizard through which
the user can create the presentation layer for services not equipped with a user inter-
face. The service description and wrappers are then automatically created. The first
results, concerning described services (i.e., WSDL and Linked Data), are encouraging.
Our current work is devoted to improving this feature.

As future work, we also aim at exploring different composition solutions, to address,
for example, the cooperative definition of mashups (a feature that can greatly enhance
team-based cooperation), as well as an extension of the recommendations mechanisms
based on the emergence of composition patterns from the community’s mashups [48].
We also aim at investigating mashup interoperability, for example making DashMash
mashups compatible with emergent standards, such as Enterprise Mashup Markup
Language (EMML) [45].

9.2 Achievements

The results of this thesis related to the production of recommendations have been
presented at the International Workshop Composable Web 2010, held at Vienna in
July 2010, and published in the book Current Trends in Web Engineering published
by Springer Verlag, LNCS series.

9.2. ACHIEVEMENTS 117

A paper, describing the new composition paradigm and the overall architecture is under
revision for the conference WWW 2011.

In recognition of the innovative aspects promoted by the specialization of DashMash
for sentiment analysis, the City of Milan has been awarded with the Smau Innovation
in Enterprise 2.0 price1.

1Major details about the price are available at http://www.dei.polimi.it/news/dettaglio.

php?&id_elemento=151&idlang=eng

118 CHAPTER 9. SUMMARY AND FUTURE WORKS

Part VI

Appendix

119

Appendix A

Test materials

A.1 Experimental Tasks

During the experiment, user were asked to complete the following two tasks.

1. Create a first workspace in which:

• A pie chart visualizes the percentage volume of the positive and negative
sentiment. The visualization must show data relative to the tags: “arts &
culture”, “events & sport”, “fashion & shopping”, “food & drink”.

• A scatter visualizes the sentiment distribution, and is synchronized with a
slice selection of the pie chart (one you think is interesting).

• A line chart to compare the volume distribution in time for the three city
brands (Milan, London, Madrid), synchronized with the selection of a slice
of the pie chart (the same selected in the scatter).

2. Create a second workspace in which:

• A line chart shows only the positive sentiment.

• A tree map and a list viewer are synchronized with the line chart, so that
a click on a point of a series of the line chart causes the synchronization of
the tree map with the list viewer.

121

122 APPENDIX A. TEST MATERIALS

A.2 Pre-questionnaire

A.3. POST-QUESTIONNAIRE 123

A.3 Post-questionnaire

124 APPENDIX A. TEST MATERIALS

A.3. POST-QUESTIONNAIRE 125

126 APPENDIX A. TEST MATERIALS

Bibliography

[1] Eclipse rich client platform, http://wiki.eclipse.org/index.php/.

[2] http://download.oracle.com/.

[3] http://en.wikipedia.org/wiki/xaml.

[4] http://en.wikipedia.org/wiki/xul.

[5] http://giove.isti.cnr.it/tools/mariae/.

[6] http://www.etltool.com/.

[7] http://www.highcharts.com.

[8] Microsoft .net framework, http://www.microsoft.com/net/.

[9] Smart client-composite ui application block, http://msdn.microsoft. com/library/.

[10] S. Agnoletto and A. Barrese. Progettazione dei mashup orientata alla qualità:
modelli, metodi e strumenti di sviluppo. Master’s thesis, Politecnico di Milano,
2009.

[11] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business process
execution language for web services version 1.1. Technical report, BEA, IBM,
Microsoft, SAP, Siebel, 2003.

[12] A. D. Angeli, A. Namoun, and T. Nestler. End user requirements for the compos-
able web. ComposableWeb 2010, 2010.

[13] A. D. Angeli, A. Namoun, and T. Nestler. End user requirements for the compos-
able web. In Proc. of ComposableWeb 2010, in print, 2010.

[14] S. Balasubramaniam, G. A. Lewis, S. Simanta, and D. B. Smith. Situated software:
Concepts, motivation, technology, and the future. IEEE Software, pages 50–55,
Nov-Dec 2008.

[15] D. Barbagallo, C. Cappiello, C. Francalanci, , and M. Matera. A reputation-based
dss: the interest approach. ENTER, 2010.

127

128 BIBLIOGRAPHY

[16] D. Barbagallo, C. Cappiello, C. Francalanci, and M. Matera. Applied Semantic
Technologies: Using Semantics in Intelligent Information Processing, chapter Se-
mantic sentiment analyses based on the reputation of Web information sources.
Taylor and Francis, 2010.

[17] D. Barbagallo, C. Cappiello, C. Francalanci, and M. Matera. A reputation-based
dss: the interest approach. In Proc. of ENTER 2010, 2010.

[18] D. Barbagallo, C. Cappiello, C. Francalanci, and M. Matera. Reputation-based
selection of information sources. In Proc. of ICEIS 2010, 2010.

[19] M. Burnett, C. Cook, and G. Rothermel. End-user software engineering. Com-
munications of the ACM, 47(9):53–58, 2004.

[20] C. Cappiello, F. Daniel, and M. Matera. A quality model for mashup components.
In ICWE, pages 236–250, 2009.

[21] C. Cappiello, F. Daniel, M. Matera, and C. Pautasso. Information quality in
mashups. IEEE Internet Computing, 14(4):14–22, 2010.

[22] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services
description language (WSDL) 1.1. W3c note, World Wide Web Consortium, March
2001.

[23] F. Daniel, F. Casati, B. Benatallah, and M.-C. Shan. Hosted universal composi-
tion: Models, languages and infrastructure in mashart. LNCS 5829, pages 428 –
443, 2009.

[24] F. Daniel and M. Matera. Quando l’utente guida l’innovazione: Il web mashup,
volume 34, pages 29–38. AICA - Associazione Italiana per l’Informatica e il Calcolo
Automatico, June 2010.

[25] F. Daniel, M. Matera, and M. Weiss. Web mashups: leveraging user innovation.
Technical report, Politecnico di Milano, December 2009.

[26] F. Daniel, J. Yu, B. Benatallah, F. Casati, M. Matera, and R. Saint-Paul. Un-
derstanding ui integration: A survey of problems, technologies, and opportunities.
IEEE Internet Computing, 11:59–66, May 2007.

[27] M. deHaaff. Sentiment analysis, hard but worth it! Customer Think, Mar 2010.

[28] L. Derechin and R. Perry. Presto enterprise mashup platform. Technical report,
JackBe, 2010.

[29] P. E. et al. The Many Faces of Publish/Subscribe. Taylor and Francis, 2003.

[30] G. Fischer. End-user development and meta-design: Foundations for cultures
of participation. Journal of Organizational and End User Computing (JOEUC),
2009.

BIBLIOGRAPHY 129

[31] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, Boston, MA, January 1995.

[32] H. Haas and A. Brown. Web services glossary. W3C note, W3C, Feb. 2004.
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/.

[33] K. Hornbaek. Current practice in measuring usability: Challenges to usabil-
ity studies and research. International Journal of Human-Computer Studies,
64(2):79–102, 2006.

[34] IBM. Qedwiki, http://services.alphaworks.ibm.com/graduated/qedwiki.html.

[35] Intel. Intel mash maker. Technical report, 2010.

[36] JackBe. Jackbe presto. Technical report, http://www.jackbe.com/, 2010.

[37] A. Jhingram. Enterprise information mashups: Integrating information. VLDB,
pages 3 – 4, 2006.

[38] K. Khan and C. Locatis. Searching through cyberspace: The effects of link display
and link density on information retrieval from hypertext on the world wide web.
Journal of the American Society for Information Science, 49(2):176–182, 1998.

[39] C. Larman and V. R. Basili. Iterative and incremental development: A brief
history. IEEE Computer, 36(6):47–56, 2003.

[40] M. Lenzerini. Data integration: A theoretical perspective. In L. Popa, editor,
PODS, pages 233–246. ACM, 2002.

[41] E. Meazzo and M. Mosconi. My personal trainer. complementary-holter metabol-
ico virtuale. Technical report, Bachelor Thesis, Politecnico di Milano, 2010.

[42] R. Mihalcea, C. Banea, and J. Wiebe. Learning multilingual subjective language
via cross-lingual projections. In Proceedings of the Association for Computational
Linguistics (ACL), pages 976–983, Prague, Czech Republic, June 2007.

[43] Z. Obrenovic and D. Gasevic. Mashing up oil and water: Combining heterogeneous
service for diverse users. IEEE Internet Computing, pages 56–64, Nov/Dec 2009.

[44] M. Ogrinz. Mashup patterns: Designs and examples for the modern enterprise.
Addison-Wesley, 2009.

[45] OMA. Emml documentation. Technical report, Open Mashup Alliance,
http://www.openmashup.org/omadocs/v1.0/index.html, 2010.

[46] B. Pang and L. Lee. A sentimental education: Sentiment analysis using subjectiv-
ity summarization based on minimum cuts. In In Proceedings of the ACL, pages
271–278, 2004.

130 BIBLIOGRAPHY

[47] B. Pang and L. Lee. Opinion mining and sentiment analysis. Foundations and
Trends in Information Retrieval, 2(1-2):1–135, Jan. 2008.

[48] M. Picozzi, M. Rodolfi, C. Cappiello, and M. Matera. Quality-based recommen-
dations for mashup composition. In Proc. of ComposableWeb 2010, in print, 2010.

[49] A. Puerta and J. Eisenstein. Ximl: A universal language for user interfaces.
RedWhale Software, Palo Alto, CA USA.

[50] D. Schawbel. Top 10 reputation tracking tools worth paying, 2008.

[51] ServFace. http://141.76.40.158/servface/.

[52] D. E. Simmen, M. Altinel, V. Markl, S. Padmanabhan, and A. Singh. Damia: data
mashups for intranet applications. In J. T.-L. Wang, editor, SIGMOD Conference,
pages 1171–1182. ACM, 2008.

[53] A. G. Sutcliffe, M. Ennis, and S. J. Watkinson. Empirical studies of end-user
information searching. J. Am. Soc. Inf. Sci., 51(13):1211–1231, 2000.

[54] E. von Hippel. Democratizing innovation. MIT Press, 2005.

[55] J. Wong and J. I. Hong. Making mashups with marmite: towards end-user pro-
gramming for the web. CHI, pages 1435–1444, 2007.

[56] Yahoo. http://pipes.yahoo.com/pipes/.

