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Abstract

Use of flat plate floor systems consisting of conventional reinforced con-
crete slab-column system is becoming increasingly popular for non-participating
systems in medium and high seismic zones, as Italy is. Thus, it is of great
interest to develop models able to represent their non-linear behavior under
horizontal loads, both for the verification and design of this structural ty-
pology.
The aim of his dissertation is to apply a grid model, designed for the non-
linear behavior of flat slab-column connections, on a real study case in order
to test its performance in representing the experimental observed behavior.
The considered experimental study is the one carried out by Hwang and
Moehle at the University of California at Berkeley (1993), consisting on a
flat slab structure with sixteen slab-column joints, subjected to gravity and
biaxial cyclic lateral loading.
The geometry of the grid has been designed in order to model in the best way
the real geometry of the structure with its asymmetries; plastic hinges prop-
erties have been computed accordingly to the aforementioned grid model;
loads applied are the same of the real slab.
A force controlled non-linear analysis under gravity loads and non-linear
static (pushover) analyses under horizontal loading in the two principal di-
rections of the structure, are performed on the model slab.
The software used for all the analyses is SAP 2000 v.10.
The numerical global structural behavior and the joints behavior have been
compared with the experimental ones; the influence of column rectangularity
has been also investigated in relation of experimental studies on this topic.
Analyses show a good correspondence between the numerical and experi-
mental global structural behavior; interior connections are absolutely well
modeled, whereas edge and corner connections show departures from experi-
mental behavior, because the latter are strongly influenced by degradation of
mechanical properties due to biaxial cyclic loading. All the results obtained
may be interpreted taking into account for this fact.
Rectangularity of columns influence both the numerical global and connec-
tion response; this is less evident in the experimental case because of slab
degradation due to biaxial cyclic loading.
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Chapter 1

General Introduction

Reinforced concrete slabs are among the most common bearing structural
elements. What is defined slab is a flat element with two dimensions, which
identify a mean plane, much greater than the third one which represents the
thickness of the element. The structural scope of a flat slab is to bear loads
acting orthogonally to its mean plane thanks to its predominant flexural
behavior which is particularly effective when the shape and constraints allow
the slab to redistribute the loads along two or more preferential directions;
this behavior is called "bidirectional" or "two way". In the case only one
preferential direction exists, then we are dealing with "unidirectional " or
"one way" slabs.
This is only a first subdivision based on the mechanical behavior of plates;
a further distinction is accordingly to the type of constraints, which can be
point or continuous:

• slab with constant thickness supported by columns with or without
capitals (Fig. 1.1);

• with variable thickness with a local thickening at columns (Fig. 1.2);

• slab on border beams or bearing walls (Fig. 1.3).

Notice that the behavior of plates is bidirectional if the constraints set-up is
mesh like, while is unidirectional if they are aligned in parallel.
Finally, another subdivision distinguishes between constant thickness slabs
and lightened slabs (waffle slabs), suited for medium-big spans (Fig. 1.4).
The latters consist on in very thin plates sustained by nerves intersecting
in two principal directions (panelled slab) or in holes disposed inside the
thickness (alveolar slab).
In this thesis the case study will be the reinforced concrete constant thickness
slabs. The advantages of these particular structural elements are the very
high constructive simplicity, the reduction of the construction time and an
easy disposition of systems; the disadvantages are the greater amount of
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construction materials, the necessity of displacements and cracks control
and the critical verification against punching shear. The last issue will be
one of the topics that will be discussed in this work.

Figure 1.1: Example of constant thickness slab

Figure 1.2: Example of variable thickness slab

Figure 1.3: Example of slab sustained by beams
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Figure 1.4: View of waffle slab in plan

1.1 Non-linear behaviour of slabs under vertical and
horizontal loads

It is well known that the first cause of the concrete cracking is its very
low tensile resistance and ductility; then it cracks when the principal tensile
stresses has reached locally the maximum tensile strength of the material.
Thus, taking into account an elastic-brittle behavior for tensioned concrete,
it derives that the traces on the mean surface of the principal planes of the
flexure in the plates (Fig. 1.5(a)) are indications given by elastic analysis,
about the possible formation and direction of the cracks. With the increas-
ing of the loads, the orientation of cracks become more and more different
from the indications given by elastic analysis since the structural stiffness is
influenced by both the proceeding of the cracks regime itself and the rein-
forcing bars direction with their reinforcing geometrical ratio (Fig. 1.5(b)).
The collapse of reinforced concrete slabs occurs after that a series of cracked
strips has formed, both in the positive and negative side, along which the de-
formations are concentrated, while the adjacent "fields" are nearly flat. The
deformations along the cracked strips are in the form of micro and macro
fractures of tensioned concrete and elongations of reinforcement bars beyond
their elastic limit. Thus, the slab at the ultimate condition is a group of rigid
plates linked together by means of linear constraints along the cracked strips
and with yielded rebars. This behavior at the ultimate state is well modeled
by the "yield line theory" of the Limit Analysis.
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(a) Traces on the mean plane of the
principal bending moments in elas-
tic phase

(b) Flexural cracks

Figure 1.5: Example of a plate in flexural regime

This method consider the slab being at the limit situation of equilibrium, just
before the collapse, when the structure is no more redundant, since a number
of internal and external constraints have been lost by means of cracking and
yielding of reinforcement. The ultimate load of the slab system is estimated
by postulating a collapse mechanism that is compatible with the boundary
conditions. Bending moments at the plastic hinge lines (cracked strips) are
the ultimate moments of resistance of the sections, and the ultimate load is
determined using the virtual work principle or the equations of equilibrium.
It’s worth to remember that this is an upper bound approach based on the
kinematic theorem, then it gives an ultimate load for a given slab which is
either correct or too high, then unsafe; for this reason is necessary to examine
all the possible collapse mechanisms in order to ensure that the load-carrying
capacity of the slab is not overestimated. Finally notice that the yield line
theory assumes a flexural collapse mode, that is, that the slab has sufficient
shear strength to prevent a shear failure.
The non-linear behavior and the method for analysis and design of flat slabs
described above refer to the application of vertical loads to the structure,
for which usually this type of structural elements are designed. Anyway, the
study of their structural behavior in seismic zones is becoming more and
more important and of topical interest nowadays; for this reason, it is fun-
damental to study the behavior of structural bearing plates subjected also
to lateral loads. An analytical simplified method proposed by ACI Build-
ing Code used for the analysis and design of slab systems loaded by both
horizontal and uniformly distributed gravity loads is the so called equivalent
frame method.
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1.1.1 Equivalent Frame Method

This method represents a three-dimensional slab-column structure by a
series of plane frames (equivalent frames) constructed along the axis mid-
lines of the columns. Referring to Fig. 1.6 each equivalent frame consists
of either a row of interior columns plus the slab extending to the panel
center-lines on each side of the column line, or a row of columns at the
edge of the structure plus the slab extending from the edge to the panel
centreline. The division lines extend through the full height of the structure.
Then, the complete analysis of the slab system consist on the analysis of
a series of interior and edge equivalent frames, which extend longitudinally
and transversally along the structure.
The code permits to consider either the entire frame or a single floor when
only gravity loads act. The entire frame clearly should be considered if
horizontal loads act and must be resisted bending of the columns rather
than by shear walls or other bracing. Considering a single floor, the columns
above and below the strip run up to the slabs of the upper and lower plane
and at the extremities are fixed (Fig.1.7). The top and bottom stories may
have other support conditions.
As a further simplification, in a structure of several spans, the joints two or
more spans away from the one being considered may be taken as fixed if the
structure extends beyond that joint.

Figure 1.6: Example in plan of subdivision in equivalent frames
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Figure 1.7: Elevation and sections of equivalent frames: at the top elevation
of frame cut from slab structure, at the bottom on the left cross section of
interior frame and on the rigth cross section of edge frame

Determination of the relative stiffnesses of the sections may be carried
out considering the gross cross, uncracked cross sections. All variations in
concrete cross section along a member that occur outside the joint regions
should be taken into account. Therefore, a slab-beam (slab forming the beam
of the equivalent frame) which has drop panels, has a larger moment of in-
ertia near the ends than in the central part of the span. Then it is necessary
to subdivide the slab-beam in different elements in correspondence of the
changing of section area.
It’s worth to notice that the parts of the slab-beam lying between the col-
umn centreline and column face are effectively stiffer than the clear span
portion of the member. The code approximation consists on dividing the
moment of inertia of the slab-beam just outside the column by the quantity
[1 − c2/l2]2, where c2 and l2 are respectively the dimension of the column
and the width of the slab-beam orthogonally to the direction of the span for
which the bending moment will be determined.
For the columns, the stiffness is computed along its length from the middle
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of the thickness of the upper slab to the middle of the thickness of the slab
below and its moment of inertia is computed according to its section. In
the connection region instead, the moment of inertia is assumed to have an
infinite value throughout the joint region. It’s thus necessary that stiffness
and carryover factors take into account for the rigid portions of the mem-
bers; these can be computed with a number of methods among which the
column analogy method14. Alternatively, factors can be derived from tables
published by various agencies and authors, for example the Portland Cement
Association15 and Cross and Morgan16; several graphs and approximations
for stiffness factors are published by Hoffman et al.17 and Rice18.
Once the stiffness of the columns have been determined, the stiffness of the
equivalent columns Keq can be found as:

1
Keq

=
1∑
Kc

+
1
Kt

(1.1)

where ΣKc is the sum of the flexural stiffnesses of the columns above and
below the slab which frame into the joint being considered and Kt is the
torsional stiffness.
According to the ACI Code formulation, the singular torsional member stiff-
ness is expressed as:

Kt =
∑ 9EcC

l2(1− c2/l2)
(1.2)

In this summation where Ec is the Young’s modulus of concrete and C is the
torsional constant, the summation essentially refers to the torsional elements
on either side of the column, and at a corner column there is obviously only
one member to be considered. At columns with two members, the cross
sections and spans may be different on the two sides of the column, so the
mathitKt values are calculated separately for each and then summed.
The torsional constant is expressed as:

C =
∑(

1− 0.63
x

y

)
x3y

3
=
∑

x4
( y

3x
− 0.21

)
(1.3)

where x is the shorter side of a rectangular area and y is the longer one of
the same area.
The Keq value found is then used in the frame analysis; Keq refers to the
combination of two columns (one above and one below), and if it is used to
find a moment distribution factor, the factor applies to the total moment in
the two columns. This is not usually satisfactory, since the individual col-
umn moments must be found for design purposes. The distribution factors
to the two columns may be found by subdividing the total equivalent column
factor Keq in direct proportion to the individual Kc values.
An important factor that influences the stiffness of the structural members
is their state of cracking; considering that the increasing of cracking means
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decreasing of stiffness, this induces the increasing of the lateral flexibility
of the whole structure when subjected to lateral loads. In flat-slab struc-
tures, slabs would usually be cracked more extensively than the columns,
and lightly reinforced slabs would be expected to lose a significant amount
of stiffness. Thus, in order to take into account for this effects, usually re-
duction of uncracked flexural stiffness are used, ranging between 25% and
50% for not pre-stressed flat slabs.

1.1.2 Punching phenomenon of slabs transferring uniform
shear

A typical inelastic response of flat slabs under vertical and/or lateral
loading is the punching of connections. This is by definition a phenomenon
of rupture of the plane element in the zone around the point of application of
a point load given by an external action or a constraint reaction, that could
transmit also bending moment. This concentrate force provokes high shear
solicitations orthogonally to the mean plane of the plate in the zone around
the slab-column connection where also negative bending moments act; these
produce a complex state of stress inside the material that could lead to the
penetration of the column in the slab.
This type of failure is very dangerous because of its brittle nature and for
this fact it is not preceded by premonitory signs; in addiction the collapse of
a slab-column connection obviously leads to an increasing of the load acting
on the adjacent columns and this could provoke their subsequent punching
and then the sudden fall of slab portions over the inferior one. These phe-
nomena, if not properly taken into account in the design stage, could lead
the progressive collapse of a part or of the entire structure.
As already mentioned, in the zone of the plate around the slab-column joint,
a very complex state of stress exists, not only due to bending moment and
shear but also to torsion; in addiction these internal actions act with com-
parable magnitudes in two orthogonal directions ("two-way" system), differ-
ently to the other portions of the plate in which "one-way" actions principally
act; this is principal difference in the behavior of beams and plates.
A further fact to underline is the confinement that the portions of plate
around the loaded zone provide to the connection; this obviously increases
the strength of concrete.
Thus, this complex state of stress and the presence of cracks due to the three
combined actions make difficult to study theoretically the punching strength,
whose quantification is based principally on results of experimental tests.
The punching phenomenon is preceded by the opening of circular cracks
around the top part of the column due to radial negative bending moments;
then radial cracks start to open from the pillar due to tangential bending
moments (Fig. 1.8). From this situation, since bending moments decrease
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very rapidly going away from the column, a great increase of load should
be necessary in order to permit the formation of radial and circular cracks
in the outer zones. Thus, next cracks that form will be diagonal and start
to propagate at 2/3 of the ultimate load, from the level of the mean plane
and then spreading within the whole thickness of the slab. The shape of
the punching surface of rupture is typically conical. The causes of the phe-

(a) Top part of the slab (b) Bottom part of the slab

Figure 1.8: Example of punching cracking at a slab-beam connection

nomenon are still now unknown and are topics of study. Two causes are the
most probable: the tensile failure of the concrete in correspondence of the
surface of rupture; the concrete crushing in radial direction at the base of
the cone.
Several parameters have been identified as important for the resistance of
slab-column connections subjected to concentric loading; the most impor-
tant are the concrete strength (f ′c), longitudinal reinforcement ratio (ρs),
the aspect ratio of the supporting column (β), perimeter to thickness ratio
and size effect.

The influence of f ′c is quite obvious, since increasing it an increasing in
the punching strength is obtained with the trend proposed in Fig. 1.9.

With respect to the flexural reinforcement, results of tests (Mokhatar et
al., Elstner and Hognestad1, Base, Manterola, Cristwell, Pectu et al., Ghali
et al., Van der Voet et al.) in which the reinforcement ratio ρs was the main
variable are plotted in Fig. 1.10 in terms of vu/(fcm)1/3 together with the
function 0.7(100ρ)1/3. This type of function has been proposed by many
researchers and forms the basis of several major building codes.
Tests of slabs in which the yield strength of the reinforcement was the main
variable19 indicated that if the flexural reinforcement yield significantly be-
fore the shear strength has been reached, the shear strength is reduced.
However, a plot of the shear function of the yield strength, does not indicate
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Figure 1.9: Effect of concrete strength f ′c on shear strength1

a clear trend3.
Results of slab tests20, 21, 22 with concentration of the reinforcement near the
column showed that such concentration of reinforcement may be detrimen-
tal if too much steel is concentrated near the column. This harmful effect is
probably due to a loss of bond22.

Figure 1.10: Effect of flexural reinforcement ratio ρs on shear strength2

The shape of the column section has been proved to influence the shear
strength of connections. Experimental studies23 indicate that the concentra-
tion of concrete strains near the corner of rectangular columns increases with
the increasing aspect ratio β (ratio of long side to short side of a column)
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and that circular columns give higher shear strength than rectangular ones,
presumably due to absence of stress concentrations.

The influence of perimeter-to-thickness ratio (b0/d) on the punching shear
strength has been investigated3 collecting and studying results form different
experimental tests (Elstner and Hognestad1, Taylor and Hayes, Manterola,
Cristwell, Mokhatar et al., Ghali et al. Van der Voet et al.). It has been
noticed its strong influence (Fig. 1.11).

Figure 1.11: Effect of perimeter-to-thickness ratio on shear strength3

The effect of the slab effective depth d (size effect) is to reduce the shear
strength with its increasing. The trend is appropriately given by function
f(d) = 1/(d)1/3 2.

1.1.2.1 Resistance mechanisms

The presence of flexural reinforcements at the bottom and top part of
the slab partly oppose to the development of punching phenomenon, then
is necessary to design them taking into account this; in addiction, in order
to ensure a better level of safety against this shear failure, often shear rein-
forcement are added.
In general, it is possible to schematize punching phenomenon in two way:
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• considering the equilibrium between the compression at the base of
the cone and the tensile force of the top longitudinal reinforcements,
at collapse conditions (Fig. 1.12);

• by means of a struts and ties system, with struts for compressed con-
crete and ties for the contribution of the tensioned concrete and rein-
forcements (Fig. 1.13).

Figure 1.12: Horizontal forces acting on sections near critical diagonal ten-
sion cracks of a reinforced concrete slab-column connection

These models permit to take into account the different resistant contribu-
tions of concrete and reinforcements and then to simplify and understand
a phenomenon which is actually complicated; anyway these approaches are
not used in usual design but only in the research field.
A simplified and conventional method, common to different design codes,
consists on redistributing the concentrated force along a surface within the
thickness of the slab (critical surface) orthogonal to the mean plane. This
area could have different shapes according to the code considered and is con-
ventionally located at a defined distance from the column faces (Fig. 1.14);
the resistance criterion consists on the limitation of the magnitude of shear
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Figure 1.13: Strut and tie model for computing the strength with the pres-
ence of punching reinforcements

stresses on this surface below a certain value of stress (shear strength) which
is determined on experimental basis.

Figure 1.14: General schematization of the simplified method

Notice that the strength value is influenced, as already mentioned, by the
confinement effect given by the surrounding portions of the plate, increasing
the resistance, differently to what happens in beams.
Referring to figure 1.12, the compressive (C) and tensile (T) forces transmit-
ted between the cone and the surrounding outer parts are statically undeter-
mined; in fact the equilibrium C1 + C2 = T1 + T2 holds but not necessarily
C1 = T1. Thus force C1 can be redistributed in the surrounding concrete
accordingly to the distribution of stiffness. In this way, displacements due to
cracks opening are counteracted and compressive stresses arise in the slab.
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This is confinement and increase both shear and flexural resistance. These
tensile and compression forces are partly taken by longitudinal reinforce-
ment, then it is possible to understand that the connection shear resistance
depends also from longitudinal reinforcement ratio.

1.1.3 Punching phenomenon of slab-column connections trans-
ferring shear and unbalanced moment

A topic issue to analyze is the shear strength of slabs with nonuniform
shear around the critical section. That is, both axial load and unbalanced
bending moment are transferred at the slab-column connection. The term
unbalanced bending moment is used to emphasized that this is the moment
being transferred between slab and column at the connection. This can be
compared with the situation at an interior column of a symmetrically loaded
floor where the slab has a negative moment at the column, but that moment
on one side of the column is balanced by the negative moment in the slab on
the other side of the column and hence no unbalanced slab moment remains
to be transferred to the column.
In a flat slab floor carrying gravity loading there will generally be transfer
of both shear and unbalanced bending moments at edge columns and some
interior column; anyway this design aspect becomes particularly important
when horizontal loading on the building (wind or earthquake) causes a sub-
stantial unbalanced bending moment to be transferred within slab-column
connections. Its transfer provokes a nonuniform distribution of shear stress
in the slab around column and reduces the shear strength of the connec-
tion. The shear force and unbalanced bending moment are transferred by
combined bending, torsion and shear at the faces of the critical section (Fig.
1.16).
If the shear strength of the slab is reached , the slab will fail in diagonal
tension on the side of the column where the vertical shear stress is highest,
which often corresponds to the side about which the higher negative bending
acts, since it is the most damaged.
In addition to the parameters that affect the capacity of concentrically loaded
connections, the shear resistance of eccentrically loaded slab-column connec-
tions also depends on the eccentricity of the load e, expressed by the ratio
e = M/V 2.
Stamenkovic and Chapman4 have tested interior, edge and corner connec-
tions, for which the eccentricity was varied systematically; their results are
reported graphically in Fig. 1.15 and are explained in the following.
The results on interior joints show the same linear variation as the edge
columns with moment transfer in the direction parallel to the free edge. If the
moment at the edge column is applied normal to the free edge, experimental
results suggest an interaction curve of the form (Vu/V0)2 + (Mu/M0)2 = 1,
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where V0 is the shear resistance whenM = 0, andM0 the moment resistance
when V = 0. Results for corner connections subjected to moments applied
normal to one edge, suggest that there is a little interaction between moment
and shear force. However, tests with moment transfer in the diagonal direc-
tion show an increase in moment and shear resistance when V and M are
applied simultaneously. For seismic situation is necessary to take also into

Figure 1.15: Interaction diagrams for eccentrically loaded slab-column con-
nections4

account that slab-column connections of flat slab structures are subjected
to repeated reversals of unbalanced bending moment, which may lead to
failure in the slab around the column due to degradation of shear strength.
In these cases, it’s fundamental to guarantee both a sufficient strength and
an adequately connections ductility, in order to guarantee a proper energy
dissipation. In order to assure certain strength and ductility levels, the using
of transversal reinforcement is needed.

1.1.3.1 Analysis methods

Several analytical methods have been evaluated for the evaluation of the
solicitation and strength od a slab-column connection transferring shear and
unbalanced moment. Two of these are presented in the following:

Analysis based on a linear variation in Shear stress
The method specified by 1995 ACI Code24 is based on this type of analysis.
The analysis assumes that shear stresses on a critical perimeter vary linearly
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Figure 1.16: Critical section and actions at interior slab-column connection
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with the distance from the centroidal axis of the perimeter (Fig. 1.17) and
are induced by shear force Vu and by the part of the unbalanced bending
moment γvMu (γv = 1 − γf ) which is not transmitted by flexure (γfMu).
The method is semi-empirical, but the approach usually results in a conser-
vative estimate of the measured strength. This method has been developed
for slabs without shear reinforcement.

Figure 1.17: Assumed critical section and linear distribution of slab shear
stress for connection transferring shear and unbalanced moment

Analysis based on constant shear stress distribution
This method considers a constant non-linear distribution of shear stresses
around the column, with a change of sign at the columns mid-side. This a
typical distribution of plasticized section (Fig. 1.18).
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Figure 1.18: Assumed critical section and constant shear stress distribution
for connection transferring shear and unbalanced moment

1.1.4 Lateral displacement ductility

A punching shear failure of a slab-column connection without well-designed
shear reinforcement is usually a brittle failure and can have disastrous conse-
quences, as aforementioned. Hence, attention should be given to the ductility
associated with shear strength of connections to avoid a brittle condition if
possible. Ideally, the connection should contain reinforcement that holds the
connection together after punching shear failure of the slab and prevents the
slab from slipping down the column. For slabs without shear reinforcement,
some post-failure connection resistance can be obtained from the presence of
sufficient quantities of bottom steel in the slab passing through the column,
which acts as suspension steel, arresting movement of the slab down the col-
umn after punching shear failure and allowing redistribution of the gravity
load to elsewhere in the floor.
In seismic design the ductility of structure in the post-elastic range is a
very important consideration, since the structure, subjected to high magni-
tude earthquake, may have sufficient ductility to absorb and dissipate en-
ergy, given by repeated loading reversals, by post-elastic flexural deformation
without collapse.
Slab-column connection ductility at failure µ cannot be defined uniquely be-
cause the force-displacement relation has no distinct yield point (because the
yield spreads gradually across the slab transverse width).
To overcome the uncertainty in defining the yield displacement, an arbitrary
procedure5 is considered. The procedure was first to construct the envelope
relation between lateral displacement and lateral load (Fig. 1.19). The en-
velope relation was then idealized by an elastoplastic relation. The initial
slope of the idealized relation is a secant through the measured relation at
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load equal to two-thirds of the measured strength. The plastic portion of
the idealized relation passes through the maximum load and the maximum
deformation at failure. The intersection between these two lines defines an
effective yield displacement.
Displacement ductility is then calculated as the ratio between the ultimate
displacement and yield displacement (µ = Du/Dy) of the idealized relation
(Fig. 1.19). Notice that this formulation of ductility will be used to analyze
and interpret results of the numerical analysis in section 4.2.4.

Figure 1.19: Definition of displacement ductility5

Effect of gravity load on lateral displacement ductility
The level of gravity load carried by the slab is a primary variable affecting
the apparent lateral ductility5. This phenomenon has been identified in ear-
lier tests by Kanoh and Yoshizaki25.
To generalized the conclusion that gravity load affects lateral displacement
capacity of the connection, lateral displacement ductility µ was plotted ver-
sus the normalized gravity shear ratio Vg/V0 for test on interior connections,
without shear reinforcement, subjected to shear and unbalanced bending
moment5 (Fig. 1.20). The value Vg is the vertical shear acting at the fail-
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ure on the slab critical section; the quantity V0 is the theoretical punching
shear strength in the absence of moment transfer, as given by the following
equation9:

Inch-pound units
V0 = 4

√
f ′cb0d (1.4)

SI units
V0 =

1
3

√
f ′cb0d (1.5)

where b0 is the perimeter length of the slab critical section and d is the crit-
ical depth.
As it is possible to notice from Fig. 1.20, for values of the gravity shear ratio
Vg/V0 exceeding approximately 0.4, there is virtually no lateral displacement
ductility (µ = 1); this means that connection fails by punching before any
yield in the load-displacement relation is detected. As Vg/V0 decreases, there
is an increase in the available ductility.
The effect of gravity shear on lateral drift at failure shows, as for ductility,
a reduction in available drift with increasing gravity shear ratio (Fig. 1.21).

Figure 1.20: Effect of gravity load on ductility5

According to ACI Building Code9, the shear strength for square interior
columns is defined by Eq. 1.4 and 1.5; this limiting value has been estab-
lished from tests of slab-column connections for which shear failure occurred
before widespread yielding of the slab reinforcement19.
Under this loading condition, the surrounding slab confines the connection
region; this confinement is believed to be the reason why observed nominal
shear stresses at failure are larger for slab-column connections than for linear
elements such as beams26.

Effect of biaxial lateral loading on lateral displacement ductility
During wind or earthquake loading, the slab-columns connection is subjected
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Figure 1.21: Effect of gravity load on drift5

to lateral loads acting in multiple directions; this is the rule and not the ex-
ception. For this reason it is important to investigate the influence of biaxial
lateral loading on slab-column joints.
A little literature exists about this topic; Pan and Moehle5 have shown
results obtained by testing four specimens, two by uniaxial displacement
history and two with biaxial lateral load histories (Fig. 1.22), representing
interior connections without shear reinforcement.
Results show that biaxially loaded specimens failed at an earlier stage of
testing in comparison with the uniaxially loaded specimens. Both stiffness
and strength were less for the biaxially loaded specimens than for the equiv-
alent uniaxially loaded ones.
Authors5 conclude that biaxial lateral loading, as might occur during an
earthquake or wind loading, reduces the available strength, stiffness and
overall lateral displacement capacity of slab-column connections.

Effect of shear reinforcement on lateral displacement ductility
Test of slab-column connections with shear reinforcement demonstrate that
shear reinforcement not only considerably increases the shear strength but
also the ductility (Fig. 1.23). The using of closed stirrups, confining the
longitudinal reinforcement passing through the joint, leads to good values of
ductility; this beneficial effect it is not only due to the increment of torsional
and flexural strength , but also to the fact that stirrups avoid movements
and buckling of longitudinal reinforcement in the nearby of the column. This
action avoid the spalling of superior concrete cover, then allowing also to the
top longitudinal reinforcement to contribute to the slab suspension, differ-
ently to what happens without shear reinforcement.
Despite this fact, the increase of ductility depends also on many other fac-
tors; the most important are the type, the amount and detailing of shear
reinforcement. For example, it has been proved that shear studs are very
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Figure 1.22: Lateral displacement history and loading patterns5

effective in the increasing of ductility since their particular shape provides a
very good anchorage, which plays a major role for the efficiency of the shear
reinforcement2.

Data in Fig. 1.20 and 1.21 indicate that the available lateral displace-
ment ductility of reinforcement concrete flat-plate connections without shear
reinforcement is low by comparison with values often considered marginally
acceptable in seismic design. Hence, in seismic zones it is not recommended
to only rely on the flat slab-column connections in order to resist earthquake
solicitation, without also the presence of shear walls or other stiffening sys-
tems.
Anyway, despite the fact of low ductility performance of slab-column joints,
this does not actually mean that they provide poor performance during a
strong earthquake loading.
Fig. 1.24 presents idealized load displacement envelopes of a typical slab-
column connection27 and a slender shearwall28 that might be used to stiffen a
flat-plate building. If the wall is sufficiently stiff to restrain lateral interstory
drifts to approximately 1.5% (value usually indicated as a reasonable upper
bound for severe seismic loading29), the required displacement ductility of
the wall will be approximately 6. The required ductility of the slab-column
connection will be less than 2.
According to the data presented in Fig. 1.20 and 1.21, a slab-column connec-
tion can be expected to possess some minimal ductility and a drift capacity
of at least 1.5% drift only if Vg/V0 ≤ 0.4; expressed in terms of shear stresses,
the nominal shear stress due to vertical loads should be limited to 0.41

3

√
f ′c
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Figure 1.23: Influence of shear reinforcement on ductility2

MPa on the slab critical section. Notice that the vertical load should be
taken at least equal to the design gravity load shear.
For lateral interstory drifts exceeding 1.5%, adequate performance of the flat
plate cannot be assured. For this reason, a suitable structural system should
be provided to limit lateral drifts.

1.2 Building codes

The present building codes regarding punching failure of slabs, consid-
ered the complexity of this phenomenon, adopt simplified procedures for
verification, defining a control surface (critical surface), orthogonal to the
mean plain, delimited by a critical perimeter at a certain distance to the
column and with a depth equal to the slab effective depth. The fundamental
criterion for verification is that the magnitude of shear stresses acting on the
critical surface must be lesser than a particular value of strength of concrete,
defined by experimental data. In general, the acting stress can be evaluated
distributing the point load on the critical surface; anyway, in order to do
this in the proper way, it is necessary to distinguish between cases of inter-
nal columns and edge columns as well as between vertical and lateral acting
loads. As a matter of fact, the distribution of stresses will be uniformly
distributed along the critical perimeter in the case of internal column or ver-
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Figure 1.24: Comparison of ductility requirements at 1.5% drift5

tical load acting only, whereas lateral loads or, more generally, the transfer
of bending moment in connections, produce a non-uniform distribution of
stresses.
The definition of the critical surface according to all the different codes is
actually not much correspondent to what observed experimentally; in ad-
diction the different provisions lead to very different control surface. For a
detailed information regarding these topics, refer to the national code provi-
sions.
In the following section provisions related to the seismic design of punching
shear reinforcement in flat plates, according to the american code, will be
examined in the perspective of a future use of the grid model for the seismic
design and verification of structures.

1.2.1 ACI 421.2R-07: Seismic design of punching shear re-
inforcement in flat plates

During an earthquake, significant horizontal displacement of a flat plate-
column connection may occur, resulting in unbalanced moments that induce
additional slab shear; connections must be designed in order to prevent brit-
tle punching shear failure.
Even when an independent lateral-force-resisting system is provided, flat
slab-column connections must be designed to accommodate the moments
and shear forces with the displacements during earthquakes. This demand
may be effectively addresses by changes in dimensions of certain members
and/or their material strengths and/or provision of shear reinforcement.
The objective of ACI 421.2R-078 is to give recommendations for the design
of flat plate-column connections with sufficient ductility to accommodate lat-
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eral drift given by the selected lateral-force-resisting system, without punch-
ing shear failure or loss of moment transfer capacity.
The term "ductility" is the ratio of the displacement at ultimate strength
to the displacement at which yielding of the flexural reinforcement occurs.
For flat plate-column connections, there is no unique definition for these two
displacements; however definition adopted by Pan and Moehle (1989)5 is
used.
ACI 318-059 allows the analysis of flat plate-column frames as equivalent
plane frames. When the frame is not designated as part of the lateral-force-
resisting system and is subjected to horizontal displacements, the width of
slab strip to be included in the frame model and how to account for cracking
are modeling parameters that significantly affect the resulting computed val-
ues of the moments transferred between slabs and columns. ACI 421.2R-078

contains a procedure that determines an upper limit moment that can be
transferred between the slab and column when subjected to an earthquake.

1.2.1.1 Lateral story drift

Flat plate-columns frames without beams and without a lateral-force-
resisting system consisting of more rigid elements that limit the lateral dis-
placements are not permitted by ACI 318 in regions of high seismicity. In
this case flat plate buildings rely on a lateral-force-resisting system that lim-
its lateral displacement.
The story drift is defined as the story drift divided by the story height, which
is the distance between the mid-surfaces of the consecutive flat plates at top
and bottom of the story of interest.
It has been frequently recommended that flat plate structures should have
the capability to go through a design story drift ratio of at least 0.015, in-
cluding inelastic deformations29, 30, 5.
In the force-based design approach, a static elastic analysis of the lateral-
force-resisting system is performed to determine the elastic story drift δe.
This value is then multiplied by factors, specified in IBC-0631 to obtain the
design story drift δu ≤ 0.007÷ 0.025 of the story height, including inelastic
deformation.
The design story drift may reach the upper limit of IBC-06 when connections
are provided with slab shear reinforcement or when the gravity load produce
low punching shear stress.
ACI421.2R-07 considers the effects of gravity loads on story drift capac-
ity, based on several experimental studies6, 2, 7 that show the variation of
ultimate story drift ratio DRu with the ratio Vu/φVc for interior flat plate-
column connections transferring gravity shear forces Vu and reversals of cyclic
drift (Fig. 1.25). The experimental values of DRu are compared with the
design story drift δ at peak strength , divided by the story height. Vu is the



1.2 Building codes 35

maximum shear force transferred between column and slab at failure; Vc is
the nominal punching shear strength of the connection without shear rein-
forcement in the absence of moment transfer and it is computed according
to ACI 318-059.

Figure 1.25: Effect of gravity loads on lateral drift capacity of interior flat
plate-column connections6, 2, 7

Fig. 1.25 indicates that the flat plate-column connection capability to expe-
rience story drift without failure decreases with increasing magnitude of the
applied gravity loads. The solid horizontal line shown in Fig. 1.25 represents
the design story drift ratio of 0.015, which is frequently adopted as a mini-
mum drift capacity. This horizontal line intersects Curve 1 at Vu/φVc ∼= 0.40,
indicating that slabs without shear reinforcement can satisfy the required
0.015 design story drift ratio only if Vu ≤ 0.40φVc.
Fig. 1.25 shows that the curves representing experiments of flat plate-column
connections with shear reinforcement fall well above the horizontal line cor-
responding to a story drift ratio of 0.015.
The slab shear reinforcement is required when the maximum shear stress at
d/2 from the column face exceeds φvc, where vc is given by Vc/(b0d); b0 is
the perimeter of the critical section for shear at d/2 from the column face
and d is the average slab effective depth.
In addition, flat plate-column connections should have shear reinforcement
equal to or exceeding the minimum amount given by ACI 421.2R-078, except
when the value of Vu is less than 0.20φVc, being φ the strength reduction
factor: φ = 0.75 (ACI 318-059, Section 9.3.2.3).This requirement ensures
that the connections can sustain the design story drift ratio DRu = 0.025.
For detailed provisions regarding minimum shear reinforcement in flat plates,
refer to ACI 421.2R-07.
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1.2.1.2 Unbalanced design moment

According to ACI 421.2R-078, flat plate-column connections should have
a punching shear strength able to resist the factored shear force Vu and
factored unbalanced momentMu due to gravity loads combined with the de-
sign story drift during an earthquake. ACI 421.2R-07 furnishes the methods
to calculate the value ofMu and its upper limit, as explained in the following.

Frame Analysis
The moment of inertia of the slab and its supporting columns are determined
according to the equivalent frame method of ACI 318, unless the layout of
columns is highly irregular.
To account for the effect of cracking in non-prestressed flat plates, Vanderbilt
and Corley32 recommended to consider the moment of inertia of the slab
equal to 1/3 the value of the uncracked slab strip, from panel center-line to
panel center-line, to obtain a conservative estimate of the story drift.
ACI 318-05, Section R13.5.1.2, recommends the use of 25 to 50% of the
uncracked moment of inertia of the slab to compute the elastic story drift
δe. According to ASCE 7-05 δu is given by the following expression:

δu = δe

(
Cd
IE

)
(1.6)

where Cd = 1.25 ÷ 6.5 and IE = 1 ÷ 1.5 are dimensionless factors speci-
fied by ASCE 7-05, depending on the inherent inelastic deformability of the
lateral-force-resisting system and the occupancy importance of the structure,
respectively.
Flat plate-column frames not designated as part of the lateral-force-resisting
system experience the same lateral displacements as those of the lateral-
force-resisting system. Thus, connections should be designed to transfer
shears and moments associated with δu obtained from Eq. 1.6. Accurate
determination of shears and moments associated with δu is not possible, but
for design purposes, a simplified elastic analysis is proposed by ACI 421.2R-
07.
The unbalanced moment caused by factored vertical forces that exist during
an earthquake should be added to the moments due to the lateral drift.
To avoid underestimation of the unbalanced moments transferred between
the slab and the columns for a given value of δe, the unbalanced moments
Mu should be determined by an elastic analysis, but with the moment of
inertia of the slab equal to 50% of the value of the uncracked slab and using
the values of the moments of inertia of the uncracked columns(ACI 318-05,
Section R13.5.1.2).

Simplified elastic analysis
The unbalanced moments transferred between the slab and the columns un-
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der the elastic story drift δe can be determined by a linear analysis of sim-
plified equivalent frames both for interior and exterior columns (Fig. 1.26).
The slab is assumed to be simply supported at locations of controflexure
lines assumed at midspan. The column is assumed to have hinged supports
at controflexure points assumed approximately at the midheight of the story.
The horizontal displacement δe is introduced at the upper ends of the columns
as shown in Fig. 1.26. The value of δe can be estimated by any rational
analysis; for example, it can be calculated using an elastic analysis of the
lateral-force-resisting system subjected to the lateral forces as specified by
IBC-06 or ASCE 7-05.
The unbalanced moment, due to horizontal seismic force, transferred be-
tween the column and the connected slab is equal to the sum of the end
moments at the column ends above and below the flat plate-column connec-
tion. Additional unbalanced moments caused by factored vertical forces that
can exists during an earthquake should also be considered. The smaller of
the total unbalanced moment computed using this procedure and the upper
limit given in the following paragraph, should be used.

(a) Interior slab-column connection (b) Edge or corner slab-column
connection

Figure 1.26: Linear analysis of simplified equivalent frames

Upper limit for Mu

The value of the unbalanced moment corresponding to the displacement δe
can be higher than the value that produces ductile flexural failure. Provi-
sion of shear reinforcement in this case would not increase the value of the
unbalanced moment strength.
Based on finite element analyses (Megally and Ghali 2000b) and experi-
ments (Megally and Ghali 2000a) on flat plate-column connections transfer-
ring shear combined with moment reversals, the following upper limit can
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be set for the value of Mu:

Mu ≤
Mpr

αm
(1.7)

whereMpr is the sum of the absolute values of the probable flexural strengths
of opposite critical section sides of width c+d. Mpr

αm
represents the magnitude

of the unbalanced moment that will develop the yield strength of the flexural
reinforcement. When this occurs without a punching shear failure, the flat
plate-column connection will experience substantial drift and not lose the
ability to transfer gravity loads, thus avoiding collapse.
The equations (Eq. 1.8 and 1.9) expressing the empirical coefficient αm are
based on finite element results:

αm = 0.85− γv −
(
βr
20

)
(1.8)

αm = 0.55− γv −
(
βr
40

)
+ 10ρ (1.9)

where:

γv is the fraction of moment transferred by vertical shear stresses in the slab

βr is the ratio lx/ly or ly/lx when the transferred moment is about x or y
axis, respectively; lx and ly are the projections of the critical section
at d/2 from the column face on its principal axes x and y, respectively

ρ ratio of the tensile flexural reinforcement

Notice that the value of Mu can be substantially greater than Mpr, meaning
that the transfer of unbalanced moment can mobilized the flexural strength
of the slab over a width considerably greater than c+ d.

Design of shear reinforcement
When shear reinforcement is provided, the nominal shear strength (expressed
in stress units) is given by:

vn = vc + vs (1.10)

where vc and vs are the nominal shear strengths provided by the concrete
and shear reinforcement, respectively. ACI 421.1R-99 limits vn to 2/3

√
f ′c

or 1/2
√
f ′c MPa, respectively, when the shear reinforcement is SSR or stir-

rups. This two limits should be increased by 25% in seismic design when the
shear stress due to Vu/φ alone does not exceed 1/3

√
f ′c. This is because the

maximum shear stress is caused mainly by Mu, rather than by Vu. the value
of vc is limited to 0.125

√
f ′c MPa in seismic design (ACI 421.1R-99).

A summary of the steps explained previously for computing the paunching
shear strength of flat plate-column connections is given by the flow chart
shown in Fig. 1.27.
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Figure 1.27: Steps for punching shear design of earthquake-resistant flat
plate-column connections8
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Finally notice that ACI 318-05 provisions for shear reinforcement design are
relevant for flat slab-column connections not designated as part of the lateral-
force-resisting system. Shear reinforcement beyond the requirements of ACI
318-05 is reccomended when Vu/φVc > 0.4.
Fig. 1.28 displays the criterion for shear reinforcement requirement. A point
in Zones 1 nd 2 represents the case when Vu > 0.4φVc; with such high value
of Vu combined with unbalanced moment reversals, the ductility can be en-
sured only with shear reinforcement. ACI 421.2R-07 is consistent with the
code in recommending shear reinforcement in Zone 3 (zone of relatively high
DRu). In addition, for ductility purposes, the minimum shear reinforcement
should be provided.

Figure 1.28: Requirement for shear reinforcement criterion9
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Chapter 2

Grid Model for Flat-Slab
Structures

The aim of this master degree thesis is to apply a grid model33 presented
in the following sections for the non-linear static analysis of the seismic re-
sponse on a flat-slab floor (see Cap. 3), tested experimentally to punching
failure under gravity and lateral loads.
The grid model considered33 reproduces the non linear behavior of flat-slab
structures; the inelastic response of the structure is concentrated in point
hinges introduced into beam finite elements, modeling the response in bend-
ing, torsion and shear. This type of model permits to estimate internal
actions at slab-column joints; the description of their non-linear behavior
allows to evaluate the whole slab structural response up to failure. In partic-
ular, it is possible to asses connections safety with respect to punching and
structural deformability, in terms of interstory drift ratio,under horizontal
lateral loads.

2.1 Fundamentals of the grid model

The slab is represented by a grid of beam finite elements, fixed at joints,
arranged in two orthogonal directions; the columns are modeled with two
beam elements, one above and one below the slab, fixed to the plate (Fig.
2.1).
The beam finite elements have been defined as beam-column elements, thus
including the effects of flexural, torsional, axial and shear deformation. Six
degrees of freedom are activated at each joint.
The segments between the nodes are made of an elastic part and plastic
hinges which reproduce the flexural, shear and torsional non-linear behav-
ior; in general two flexural hinges, located at the two extremities where the
maximum bending moment is reached, one torsional and one shear hinge,
located at the center since shear and torsion are constant, are present in each



2.1 Fundamentals of the grid model 42

Figure 2.1: Model geometry and loads

segment (Fig. 2.2(c)).
The model has been developed by using a commercial finite element soft-

ware34, performing non-linear static analyses under displacement control.
The grid spacing must be sufficiently close in the nearby of connections in
order to obtain a good approximation of the effects of load in the slab, since
concentration of stresses exists in these zones; the elements can be more
widely spaced elsewhere35.
In this model (Fig. 2.2), rigid elements with length equal to the column cross-
section dimensions are placed at the centre of the connection (Fig 2.2(c)).
The elements intersecting the column have width equal to c+ d (where c =
side length of column and d = mean effective depth of the slab), which is the
width of the shear critical section according to the definition of ACI 3189

and is considered also for torsion in the transverse direction. A shear plastic
hinge has been placed in each one of these elements at a distance d/2 from
the column face.
The flexural non-liner behavior is concentrated over a larger width than
shear one and is considered equal to c + 3d according to ACI 3189; part of
this is modeled by flexural hinges of the elements framing into the columns,
whereas the remaining part by ones of the adjacent elements.
As regards the other elements of the grid, two possible solutions have been
taken into consideration by authors:

1. a regular spacing c+ d for all elements, thus simplifying the geometry
and also the definition of the member properties

2. a regular spacing 2d , leading to a rather fine grid
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(a) Critical sections close to the col-
umn: geometry, internal bending mo-
ments and torques

(b) Shear forces

(c) Grid elements and non-linear point
hinges for ACI 3189

Figure 2.2: Grid model
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These two grid types leads to equivalent results in terms of the whole struc-
tural response and failure modes for the group of specimens analyzed by
author of the model33. In the present thesis work, a more complicated grid
spacing has been chosen, as described in section 4.1, in order to adapt the
model to the particular column geometries of the test slab (see section 3.1.1).
Author refers to the possibility of further modifications of the grid, in order
to adapt the model to other codes33; in particular to Eurocode 236 has been
considered.

2.2 Properties of non-linear hinges

Each grid element is composed by an elastic part and by non-linear
hinges. The former has a stiffness determined considering the effect of shrink-
age and construction stresses13, 10, causing cracking in slab previous to the
action of lateral loads; for this reason half of the initial stiffness is proposed
for all elements37. The plastic hinges instead, which are lumped in singular
points, are characterized by relations that link bending moment, shear and
torsion with the inelastic curvature, shear distortion and twist angle, respec-
tively.
These relations have been described with a phenomenological approach and
using different models according to the internal action considered, as de-
scribed in the following paragraphs.

2.2.1 Bending moment

The moment-curvature relations have been obtained analytically for each
beam element, starting from the sectional geometrical characteristics, re-
inforcement and material characteristics. In order to do this, a sectional
model12 with non linear constitutive relations is used, based on perfect bond
and plane sections assumptions. This model takes into account also the ef-
fects of confinement given by stirrups on the compressed concrete.
The obtained moment-curvature relations are then approximated with trilin-
ear relationships (Fig. 2.3) which will be provided as an input to the model.
The length of the flexural plastic hinges are taken equal to d (effective depth
of the slab), according to tests38.
Notice that simplifications are considered: the bond-slip of longitudinal re-
inforcement and interaction with shear are not considered39, 13.

2.2.2 Torsion

In flat slab structures subjected to horizontal loads, high torsional mo-
ments develope along the elements transversally oriented with respect to the
direction of loading; in particular elements oriented in this way and being
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Figure 2.3: Typical moment-curvature relationship and trilinear approxima-
tion

in the nearby of connections are the most torsionally stressed. Thus, the
grid model33 used, contains also the definition of torsional plastic hinge, as
explained in the following.
A simplified phenomenological approach has been used for the relation be-
tween torque and twist, with the capacity Mtu and the corresponding twist
ψu. Torsion tests11 for slabs with and without transverse reinforcement mea-
sured capacities corresponding to shear strength much larger than for a beam
without transverse reinforcement, as consequence of the confinement given
by the membrane actions in the plate. Notice that the response was ductile
and the presence of stirrups did not modify the behavior substantially; these
results are considered by the author33 for the definition of the model.

Torsion Capacity
The torsional capacity Mtu0 for the elements placed at the four sides of the
connection is evaluated on the basis of a model for slab-column connections
formulated by Park and Choi40.
In their model the slab is represented by isoparametric bidimensional finite
elements (shell) with nine nodes, based on Mindlin’s theory of thick plates.
Within its thickness a series of these finite elements is placed. In this way it
is possible to describe the deformation due to the combined action of shear
and flexure, existing int he zone around the connection. This model40 pro-
vide also the state of stress at the interface of the critical zone at failure.
Park-Choi model40 was validated by the comparison with 51 test specimens.
By integration of stresses obtained within the critical surface, it is possible
to estimate bending moment, shear and torsion moment acting on each side
of the connection.
Considering Fig. 2.4(a),representing a typical slab-column connection, front
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(a) Flat plate-column connection sub-
jected to unbalanced moment

(b) Shear stresses along the critical
perimeter due to the unbalanced mo-
ment

Figure 2.4: Typical connection subjected to unbalanced moment

and back sides of the critical perimeter are subjected to an elevated bending
moment, whereas the lateral sides are subjected to a bending moment lesser
than the yielding one, since the unbalanced moment does not increment the
bending moment at the lateral sides of column. As consequence, the shear
stress along the lateral sides (Fig. 2.4(b)) reach values locally higher than
ones along back and frontal sides, which are also strongly damaged by flex-
ure.
Notice that in a slab damaged by bending moment, the shear force is prin-
cipally sustained by the compressed zones, where, in addiction to the shear
stresses, also membranal compression stresses are present. It is necessary to
take into account for this fact.
Along the lateral sides of the critical perimeter, subjected to bending moment
given by gravity loads, usually lesser than the yielding value, compressive
stress is assumed to vary linearly within the slab thickness. The relation
between acting bending moment and the maximum compressive stress of
concrete is defined as:

Mg = Asf2fsz = Asf2

(
d− c
c

σe
Es
Ec

)
z (2.1)

where:

Asf2 sectional area of the tensile longitudinal reinforcement

fs stress in the longitudinal reinforcement

z internal level arm

Ec concrete elastic modulus
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Es steel elastic modulus

c neutral axis depth

σe maximum concrete shear compressive stress

The maximum shear stress (vus) along lateral sides is equal to the summation
of the two components given by shear and torsional moment, transmitted by
the unbalanced moment, acting on these sides of the critical perimeter. The
relation is the following:

vus =
VGs

(c+ d)d
+Mt

c+ d

2J ′
(2.2)

where:

J ′ polar moment of inertia of the section of width c + d defined as J ′ =
2d3(c+ d)/12 + 2d(c+ d)3/12

VGs shear force acting along the considered side

Mt torsional moment acting along the considered side

The shear VGs is known, being the shear stressing one of the beam elements
adjacent to the column due to gravity loads only, and it can be obtained by
an elastic analysis; values of vus and Mt, which correspond to failure, are
instead unknown.
Park and Choi40 propose an equation that expresses the ultimate shear stress
(vus) as function of the compressive stress (σe). The relationship between
the two variables is obtained by aforementioned equations solved using values
of MG, VGs, Mt at failure, which are obtained from numerical results of the
analyses based on tthe finite element model defined by authors themselves40.
The equation interpolating the results obtained (Fig. 2.5), is the following:

vus
vc

= 5− 2.5
(
σc
f ′c

)
(2.3)

where vc is the uniformly distributed shear strength and f ′c is the concrete
compressive strength.

As it is possible to observe in Fig. 2.5, the shear strength along lateral sides
decreases with the increasing of the perpendicular compressive stress due
to flexure; thus this equation consider the interaction effect between normal
and tangential stresses.
In the grid model33, since it is necessary to evaluate the ultimate torsional
moment of the beam elements adjacent to the column, firstly solicitations
VGs andMG have to be evaluated from an elastic analysis; then it is possible
to compute σe due to MG and from this value vus is obtained. Finally, Mt
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Figure 2.5: Numerical data and interpolating equation

is computed inverting equation 2.2.
Thanks to this torsional model, it is possible to determine a resistant shear
stress value, in absence of shear and bending moments, up to a maximum of
five times the resistance for pure uniform shear (vc). Rigorously, this predic-
tion holds only without shear reinforcement; in fact its effect is to decrease
the level of interaction between Mt, VGs and Mg.
For this reason, for elements provided with shear reinforcement, it is neces-
sary to compute the hypothetical resistant torsional moment without shear
and bending moment solicitations, thus obtaining Mtu0 (>Mtu). This value
is then reduced on the basis of circular interaction law41 (Fig. 2.6), linking
shear and torsional moment, and from this, the value of Mtu to use in the
model, is obtained. The equation used is the following:

1 =
(
Mtu

Mtu0

)2

+
(
Vu
Vu0

)2

(2.4)

where:

Vu acting shear

Vu0 resistant shear

For the elements of the grid model33 placed externally to the critical zone,
an elastic-perfectly plastic behavior is defined, with the ultimate torsional
moment computed using a resistant shear stress value equal to 0.58

√
fc

41,
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Figure 2.6: Numerical data and interpolating equation

thanks to the approximated equation of torsion for stretched rectangle:

τ =
Mtb

J
(2.5)

where:

J = ab3/χ approximated torsional moment of inertia

a, b minor and major dimensions of the rectangular section of the element,
rispectively

χ coefficient which is function of the ratio of minor and major dimension
(a/b)

Twist Angle at Torsion Capacity
The values of ultimate twist angle ψu0 (at torsion capacity) measured exper-
imentally for specimens without transverse steel11 is used42 (Fig. 2.8).
For specimens with transverse steel, the values of ψu0 are obtained by a
model for reinforced concrete beams with transverse reinforcement10. This
model represents the beam, at ultimate condition with cracked concrete, by
a lattice composed by steel ties (yielded reinforcing bars) and compressed
concrete struts (Fig. 2.7). The torque as a function of plastic rotations per
unit length ψ is obtained. For detailed description of the application of the
torsion model refers to Collins and Mitchell publication10.
The plastic hinge length is provided as an input to the grid model and it

is equal to 1.5d, corresponding to experimental observations43, 13, 11. Thus,
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Figure 2.7: Torsional model for reinforced concrete beams with transverse
reinforcement

multiplying the calculated ψu0 by the hinge length, torsion angle are ob-
tained. The results for the specimens analyzed in the paper33 are shown if
Fig. 2.8 as a function of the transverse steel ratio.
The method to obtain the behavior of the torsional plastic hinge is quite la-
borious, then author33 provide a law that interpolates the values of ψu and
which is function of the geometrical and mechanical properties of the section.
In Fig. 2.9 values of twist angles, obtained from the torsional model10, and
the interpolating curve are represented. The interpolating function has the
following expression:

ρu = −0.0063ln
(
pst
f ′c

)
− 0.0071 (2.6)

where pst=Ast/s is the transversal reinforcement ratio and in which Sst is the
area of transversal reinforcement and s is their spacing. When the interaction
with shear and moment determines a capacity reduction from Mtu0 to Mtu,
the twist angle ψu0 is reduced to ψu, proportionally toMtu/Mtu0 (Fig. 2.10).

As regard connections with SSR, a perfectly plastic branch is assumed in
the torque-twist relation on reaching the torsion capacity, to consider the
improvements given by this type of reinforcement6, 2, 44.
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Figure 2.8: Values of angle θu from the torsion model10 and tests11

Figure 2.9: Values of twist angles obtained with torsional model10 and their
interpolating function
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Normalized Diagram
The following considerations hold for the elements adjacent to the column,
inside the critical zone. A tri-linear relation is used, with a first branch
beyond cracking up to the yield point, followed by a segment up to the
capacity Mtu and angle ψu, and a softening branch. The diagram calculated
by the torsion model described in the preceding paragraph10 is used for this
purpose. The values are normalized using the maximum torque and the
corresponding twist angle, obtained in the analyses. The piece-wise linear
diagram is obtained connecting the points at cracking, yield and ultimate.
Finally, the ordinates and abscissa of the diagram are multiplied by the cross
section capacityMtu, obtained by Park-Choi model40, and the corresponding
twist ψu to obtain the piece-wise linear curve used in the calculations.

Figure 2.10: Tri-linear approximation of the torsion response

2.2.3 Shear

The shear non-linear response is particularly important for elements
placed in the critical zone of connections, since in these areas shear stresses
are the highest.
The relation linking shear and non-linear deformation is based on the punch-
ing capacity Vu at the critical section and the corresponding deformation γu;
also in this case, a phenomenological approach has been used to derive the
model.

Shear Capacity
The punching shear capacity on one side of the critical perimeter is computed
as:

Vu = vn(c+ d)d (2.7)
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according to ACI 3189, 44, where the strength vn = 1

3
√
f ′

c

with no shear re-

inforcement. With transverse reinforcement vn = vc + vs, where vc = 1

6
√
f ′

c

and vs = Avfy

bs . Notice that b is the critical perimeter and s is the spac-
ing of reinforcement with cross-section area Av and yield strength fy. For
the outer elements without shear reinforcement, a linear reduction of the
strength from 1/3

√
f ′c to 1/6

√
f ′c is considered2, moving from the column

face to a distance equal to 4d.

Strain at Shear Capacity
The values of ultimate shear strain γu for slabs without shear reinforce-
ment have been obtained by a linear interpolation of the optimal values for
modeling the experimental punching in tests carried out on slab-column con-
nections33. In Fig. 2.11 the fitting curve is shown, whose equation is the
following:

γu = 0.0092

(
pfy

1
3

√
fc

)
− 0.011 (2.8)

where γu is function of a non-dimensional parameter which includes the lon-
gitudinal reinforcement ratio (p) and the strength of materials (fc, fy). For

Figure 2.11: Ultimate shear strain γu: fit for specimens without shear rein-
forcement

slabs with shear reinforcement the strain at yielding of transverse steel γy
and strain at failure γu are obtained from a sectional model12, as it is done
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for reinforced concrete beams. This is justified by the fact that the yield-
ing and failure of transversal reinforcement occurs when concrete is already
cracked, thus beneficial effects which increase the punching shear capacity
due only to concrete are lost. This reasoning explains the reduction of the
resistant contribute of concrete in presence of transversal reinforcement from
1/3
√
fc to 1/6

√
fc, being the latter strength value for "one way" solicitations

(e.g.: beam).
Values of γy at yielding of transverse steel and γu, computed for the speci-
mens analyzed in the article considered33, are shown as function of transverse
reinforcement ratio (Fig. 2.12).

Figure 2.12: Yield strain γy and ultimate shear strain γu obtained by the
sectional model12 for specimens with shear reinforcement

Normalized Diagram
First of all it’s necessary to compute the shear-strain response as for a beam
section subjected to pure shear, using the sectional model12 describe before.
The section of the element has a width equal to c + d and an height corre-
sponding effective depth d of the slab. The values of the diagram obtained
are then normalized using its maximum shear force and the corresponding
strain. The path of the diagram is approximated with a tri-linear relation
connecting the points at cracking, yield (if shear reinforcement is present)
and ultimate. The ordinates and abscissas of the diagram are multiplied by
thee cross section punching shear capacity Vu and the ultimate strain γu in
order to obtain the curve that will be inserted as input in the model (Fig.
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2.13).
Finally notice that the plastic hinge length is taken as the length of the
part of the slab where diagonal cracks develop; test results show that this is
approximately between d and 2d43, 45 depending on the slab reinforcement
ratio and the material properties. In the present model, the plastic hinge
length is taken equal to 2d.

Figure 2.13: Relation between shear force and inelastic strain: tri-linear
model
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Chapter 3

Test Results

The grid model describe in chapter 2 has been applied on a real study
case, consisting on an experimental tests on a flat-plate structure under ver-
tical and lateral loads, carried out at University of California at Berkeley13.
In the present chapter, a detailed description of this study case will be done
in terms of geometry, reinforcements and loadings in order to better under-
stand all the various and numerous aspects of the experimental test.

3.1 Description of the test slab

3.1.1 Geometry of the slab

The prototype slab (Fig. 3.1 ) represents a portion of a typical flat-plate
floor of an intermediate story of a multi-story office building. This slab has
three bays in each direction and a 203 mm slab thickness. Story height of
the prototype is 3.05 mm and bay width is 6.86 m and 4.57 m for long and
short directions, respectively.
The scale model (Fig. 3.2) used for the experimental study has dimensions
equal to 40% of ones of the prototype. The length of each bay is 2.74 m and
1.83 m for long and short directions, respectively. The slab is 81 mm thick.
Columns extended above and below the slab as shown in Fig. 3.2. The
columns stubs above the slab were 0.30 m long, and their purpose was to
anchor the column longitudinal reinforcement and to provide continuity of
the column through the floor; the inferior column stubs were 1.2 m long with
pinned connections at the extremities.
Four different column cross-sectional geometries were chosen (Fig. 3.1, 3.2)
in order to collect data related to the effects of column rectangularity: rect-
angular columns with aspect ratio 2:1 were used in the east half of the floor,
whereas squared columns in in the west half part (Fig. 3.1, 3.2). With this
layout, the structure is symmetric about the floor centerline along the long
direction.
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Figure 3.1: Layout of prototype slab (units in feet and inches)
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Figure 3.2: Layout of test slab
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3.1.2 Materials characteristics

The concrete used had a design compressive strength of 21.9 MPa; the
use of low compressive strength concrete is to exacerbate problems associ-
ated with shear and unbalanced moment transfer. Slab reinforcement used
for slab are deformed bars with cross-sectional area Al = 32 mm2 (φ = 6.4
mm) with an yield strength fy = 462.6 MPa, whereas the ones for columns
have have Al = 199 mm2 (φ = 15.9 mm) with fy = 536.4 MPa. Columns
transverse reinforcement was smooth bars of cross-sectional area Al = 32
mm2 (φ = 6.4 mm) with fy = 337.8 MPa. Notice that no transverse rein-
forcements are used for the slab.

3.1.3 Layout of reinforcements

The prototype floor slab was designed by authors following the general
procedures embodied in the ACI 318-83 Code46, although some liberty was
taken regarding selection of design moments; this was done in the interest of
testing the validity of the validity of the American Code procedures and of
more liberal procedures. All load factors and strength reduction factors of
ACI 318-8346 were applied in the design. The prototype design quantities
were subsequently scaled for the model slab.
The actions acting on the slab were computed by the Direct Design method
of the ACI 318-83 Code46 for gravity load moments, whereas lateral load
analysis for wind loads was based on the effective beam width model of Pec-
knold47. Gravity and wind load effects were combined according to the ACI
318-83 Code provision 9.2.
If geometry of the floor slab was symmetric about a floor centerline in the
long direction as already cited (Fig. 3.2), a different choice was done by the
authors for the layout of reinforcements, which are different on either side of
that longitudinal centerline because of the two different design philosophies
used, as specified in the following.
South of the centerline, all connections were proportioned for shear and mo-
ments computed as specified above, with the provisions for shear and moment
transfer, and all reinforcements details fulfilled, according to the ACI 318-83
Code.
North of the centerline, redistribution of moments between the connections
was assumed by authors. The objective of the redistribution was to allevi-
ate requirements for negative moments; the released negative moments were
redistributed to the positive moment regions of the column strips where the
mount of reinforcement was controlled by requirements of maximum spacing.
With the redistributed moments, midspan reinforcement was stressed near
yield under the design ultimate loads.
The two different design philosophies resulted in notable differences in re-
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quired reinforcement on the North and South halves of the floor slab, as it
is possible to notice from Fig. 3.3 to Fig. 3.6.
Uniform continuous bottom steel was adopted. According to moment redis-
tribution, two bottom rebars were added in the exterior panels as in Fig. 3.6.
Additional bottom reinforcement was provided at the interior slab-column
connections B3 and C3, as in Fig. 3.5 and Fig. 3.6, to resist progressive col-
lapse due to punching shear failure. Finally, notice that interior connections
B3, C2 and C3 were provided with bottom reinforcement satisfying recom-
mendation proposed by Collins and Mitchell19 without strength reduction
factor; whereas interior connection B2 was provided with bottom reinforce-
ment half of that recommended.
Figure 3.7 shows sectional details of slab reinforcement at the discontinuous
slab edges of the model. The slab rebars with 180◦ hooks were placed within
a width bounded by lines located four slab thickness (4h) beyond column
face. Outside this width, bars with 90◦ hooks were provided. The slab re-
inforcement parallel to the long direction was placed in the outer layers of
both the top and bottom (Fig. 3.7), which results in an effective depth of
70.6 mm (2.78 in.) for the long direction and an effective slab depth of 64.3
mm (2.53 in.) for the short direction.
Column reinforcement (Fig. 3.8) was selected by authors to ensure that the
column parts extending below the floor slab would posses strengths exceed-
ing transfer moment strength of the slab-column connections. Their design
conformed to the ACI 318-38 Code Appendix A.9 "Requirements for frames
in regions of moderate seismic risk".
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Figure 3.3: Model slab top steel layout - N-S direction
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Figure 3.4: Model slab top steel layout - E-W direction
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Figure 3.5: Model slab bottom steel layout - N-S direction
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Figure 3.6: Model slab bottom steel layout - E-W direction
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Figure 3.7: Sectional details at discontinuous edges of model slab (units of
measure in inches)
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Figure 3.8: Column reinforcements of model slab (units of measure in inches)
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3.1.4 Loads applied

The loads acting on the test slab are those for gravity and lateral loads.
In paragraphs 3.1.4.1 and 4.2.2 loads applied will be described in details.

3.1.4.1 Gravity load simulation

Apart from the self-weight of the structure, 378 lead weights (each one
45.36 Kg) have been placed over the slab and disposed in two layers (Fig.
3.9), resulting in an equivalent uniform gravity loading of 3.73 KN/m2. The
total vertical uniform load, comprising the self-weight of the model slab, is
equal to 5.65 KN/m2.
The authors decided to roughly approximate the construction loads by a
group of students standing on one panel of the model slab; this resulted in
an additional gravity load on that panel equal to 2.63 KN/m2.

Figure 3.9: Photograph of the test slab

3.1.4.2 Lateral load simulation

Lateral loads were applied to the test slab in two principal directions
(North-South and East-West) using four reversible hydraulic actuators sup-
ported on reaction frames. A schematic diagram of the lateral loading system
used by authors, is shown in Fig. 3.10.
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Notice that "pushing" forces from the actuators were applied through cylin-
drical rods acting against steel plates at the slab mid-depth (Fig. 3.10).
"Pulling" forces from the actuators were transferred to the slab through the
oversized loading sleeves that were connected around the slab. Being over-
sized, the sleeves did not restrain in-plane growth of the slab. The lateral
loading system results in compressive loading against the edge of the slab
regardless of the direction of loading.
Lateral tests have been actuated by displacement control.
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Figure 3.10: Lateral load system
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3.1.5 Testing procedures

Testing of the model slab have been included gravity load tests, construc-
tion load tests and lateral load test up to failure.
Firstly, the initial structural stiffness of the structure in the two principal
directions has been evaluated by tests LAT1 (N-S direction) and LAT2 (E-
W direction). These two tests have been performed limiting the maximum
interstory drift ratio to 1/800. At this stage of testing, gravity load consisted
of slab weight (1.92 KN/m2) only.
After that, the stiffness at occurred cracking due to service loads (test
LEAD), has been measured in the two principal directions by tests LAT3
(N-S direction) and LAT4 (E-W direction), identical in terms of interstory
drift to test LAT1 and LAT2.
Then, gravity loads have been increased to approximate the effects of con-
struction loads (test CONSTR); these consisted on an additional gravity
load of 2.63 KN/m2 on the panel on which the group of student stand. The
student group moved in clockwise order to test every panel. The sequence
of construction loading is described in Fig. 3.11.

Figure 3.11: Sequence of construction loading

After all panels had been loaded and unoloaded, lateral load tests described
above, were repeated for tests NS800 and EW800 in order to evaluate the
effect of the gravity load history on the lateral stiffness of flat-plate frames.
Finally, a group of tests with increasing lateral drifts, from 1/400 to 1/25,
had been carried out in both two principal directions. The nominal lateral
displacement history of each direction is shown in Fig. 3.12.
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Figure 3.12: Lateral displacement history
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The loading procedure was as follow: lateral drift was first imposed in the
South direction, then reversed to the North direction, then returned to zero
drift. The cycle was repeated once. After these two cycles in North-South di-
rection, the same sequence was immediately applied in East-West direction.
The alternating loading in the two orthogonal directions was then repeated
at double the lateral drift. The tests were paused after the testing for 4%
drift in East-West direction because most of the connections had failed for
punching.
Finally, two cycles at 5% drift in both directions were carried out in order
to test the residual vertical load carrying capacity after initial punching.
In the following, Table 3.1 containing the chronology and designation of tests
referred above, is presented.

Table 3.1: Chronology of tests on the model slab
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Chapter 4

Numerical Results

As previously mentioned, the aim of this master thesis is to apply the grid
model33 described in chapter 2 to a real study case consisting on a typical flat
slab structure with more than one bays in both principal directions, loaded
both vertically and laterally, in order to test the model for more complicated
structure with respect to ones by which the model itself was validated, in
particular singular connections (see Coronelli,201033).
The chosen study case, as referred in chapter 3, is an experimental test on
a flat-plate structure under vertical and cyclic lateral loads, carried out at
University of California at Berkeley13.
In the present chapter, the description of the setup of the grid model for this
particular study case and the comparison between test results and model
outputs will be presented.

4.1 Setup of the model

The grid model33 described in chapter 2 is used in order to create a
numerical model representing the test slab? considered in chapter 3. The
aim is to represent in the best way the experimental non-linear behavior
obtained from testing.
In order to design the grid to represent the test slab, indications of the Report
110 CIRIA35 are used as reference point. Principal concepts of this, about
finite element modeling, are discussed in the following.

Member Layout
The optimal grid layout should be obtained by considering the following
aspects referring ti Fig. 4.1:

1. the layout should be largely based on the center-lines of the columns.
This assumes that each column is represented by a point support and
the slab-column connection is represented by members connecting to
this point (Fig. 4.1).
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2. the stiffness of members connected to the columns should be calculated
for a width of slab equal to or a little wider than the column. This
ensures that the local nature of the moment transfer is realistically
modeled, because this is where the concentration of stress occurs.

3. lines of members should connect center-lines of panels (D1 and D2 in
Fig. 4.1).

4. a line of members should be positioned at quarter panel width from
the center-lines of columns (C1 and C2 in Fig. 4.1).

5. A line of members should be positioned at about a column width from
the column center-lines (B1 and B2 in Fig. 4.1).

Figure 4.1: Member layout for grillage analysis

Member Width
For simplicity, the choice of the member width may be based on half the
distance between the center-line of each member as shown in Fig. 4.2. At the
slab edges, the width of the member depends on the position of the column
relative to the slab edge. This method apparently requires the member to
be eccentrically loaded, but this has not been found to appreciably affect the
results.

Loading
Member loading gives more accurate results than nodal loading.
A number of different methods exist to share the load per unit of surface
applied on the slab, within the different beam elements of the grid. The
most accurate method, especially if distances between column center-lines
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Figure 4.2: Member widths for each grillage element

are strongly different in the two principal directions, consists on considering
the load acting on the slab delimited by the rectangle formed by four beams
and then share it within them proportionally to their length. If, for example,
the ratio between rectangle’s side is equal to 3, then 1/4 of the load will be
assigned to the short sides and 3/4 of the load to the long sides.

4.1.1 Grid geometry

Observing the layout of the test slab (Fig. 3.2), it is evident that the
structure is asymmetrical as regard the column sections; in particular four
different column sections have been used by authors of the experimental
test13 and this fact has complicated the design of the geometry of the grid,
as it will be explained in the following, and in particular make impossible to
use a constant grid spacing c+ d.
In addiction, notice that the slab geometry is symmetric about the floor cen-
terline along the long direction; thus, the grid geometry will be the same in
the southern and northern part of the slab.
Taking into account as reference the guidelines given by Report 110 CIRIA35,
the following choices in modeling the grid, have been done.
It has been decided to use for the beam elements placed on the axes connect-
ing the connections, a width equal to the major c+d of the axes themselves;
then, taking into account that the effective depth d is considered constant
overall the slab, the leading parameter for the choice is the column side width
c. For example, beam elements between connections B3 (9.6 x 9.6 in.) and
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C3 (12.8 x 6.4 in.) (Fig. 3.2) have widths equal to 9.6 + d except for the
element in the critical section of connection C3, which has a width equal
to 6.4 + d. The same width 9.6 + d is assigned to beam elements between
connections A3 (6.4 x 6.4 in.) and B3 (9.6 x 9.6 in.), except to the ele-
ment in the critical section of connection A3. To beams elements between
connections C3 (12.8 x 6.4 in.) and D3 (9.6 x 4.8 in.), a width equal to
6.4 + d has been assigned, except for element included in the critical section
of connection D3, to which a width equal to 4.8 + d inches is assigned. The
same reasoning has been used for all the other elements placed on the axes
connecting slab-column connections.
For elements not placed on the axes connecting joints, different widths are
used; in particular their width is based on half the distance between the
center-line of each member (Fig. 4.2). Thus, the number and the chosen
positions of the axes influence the section width of the beam elements.
It has been decided to position the axes adjacent to center-lines passing
through joints, at a distance equal to c/2 + d/2 from the center of connec-
tion with the major side dimension c, then at the border of its critical zone;
this has done in order to guarantee that these axes do not intersect the
critical zones of the connections lying on the same axis. For example, the
adjacent axis positioned at North of connection B3 is placed at a distance
equal to 9.6/2 + d/2 inches from the joint center; the exactly same distance
is used for the axis being at South of connection.
These axes are at the aforementioned distance with respect also to center
of joints A3, C3 and D3, thus outside of their critical zones. The same rea-
soning has been applied for all the other axes being adjacent to center-lines
linking connections.
For axis placed further with respect to the above mentioned axes, the widths
of finite elements lying on these are chosen (in according with prescriptions
of Report 110 CIRIA35) in order to permit that the ulterior further elements
can have a regular width of c + d, where c is equal to the minimum side
dimension in the two principal directions. In particular, for short slab direc-
tion cmin = 4.8in. and it is used for width of elements oriented in East-West
direction. For long slab direction instead cmin = 6.4in. is the minimum col-
umn side; anyway, since the structure is asymmetrical in terms of columns
sections, it is decided to use cmin = 6.4 for the west part of the slab and
cmin = 9.6 for the east part. These dimensions are then used for calculating
the width of elements oriented in North-South direction. This particular
choice has been suggested by the asymmetry of the slab.
The using of the minimum column side for each the three aforementioned
cases is based on the hypothesis that a fine grid should improve the accuracy
of numerical results; obviously this choice will increase the computational
cost of the analysis.
It is possible to observe the difference in grid spacing in Fig. 4.4 where the
plan view of flat-slab grid model is presented.
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The columns are modeled with two beam element, one below the slab grid
with a length of 1.260 m (4.13 ft) and one above with a length of 0.345 m
(1.13 ft). The columns stubs below the slab are pinned at their basis whereas
the above ones have free ends, as in reality. The column sections are taken
with the same dimensions of the ones effectively used in the test slab.
Notice that for all beam and column elements, the moment of inertia is de-
creased of the 50% of the original value in order to roughly take into account
for concrete cracking under service loads.
The portions of columns being in the thickness of the test slab are modeled
by four beam elements (core), positioned along the four column semi-axes,
which are infinitely rigid in the slab plain, thus creating a situation similar
to reality, in which the column section cannot inflect in the slab plain (see
Chapter 2). In order to obtain this very high rigidity, a big fictitious section
of 0.46x0.46m (1.5x1.5ft) is assigned to all the core elements. Notice that
all these elements have a length equal to d/2, where d varies according to
which column they belong to.
The four central beam elements of each connection are linked to the core
elements and thus they could have very short length (Fig. 4.4).
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Figure 4.3: 3D view of the grid model
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Figure 4.4: Plan view of the grid model
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4.1.2 Loads applied to the grid model

The real structure is subjected to gravity and lateral loads as explained
in sections 3.1.4.1 and 4.2.2.
As regard gravity loads, notice that it has been decided to not permit to the
software34 to automatically assign the self-weight to each single finite ele-
ment according to its volume and specific weight, but it has been preferred
to carry out from the total uniformly distributed gravity load per unit of
surface being on the structure (comprising self-weight), the total load per
unit length acting in the two principal directions.
In order to do this, it has been necessary firstly to obtain the mean width
of the beam elements lying on the axes in the two principal directions, by
dividing the slab dimensions (5.65 m for short direction and 8.43 m for the
long one) by their respective number of axes (33 and 35, respectively). By
this way the mean width of the elements oriented in East-West direction is
equal to 0.171 m, whereas for the others oriented in the North-South direc-
tion is equal to 0.241 m.
Finally, the total load per unit length is obtained by multiplying half of the
total load per unit surface for the mean width of the beam elements. The
loads obtained are 0.499 KN/m and 0.681 KN/m for elements in the long
and short direction, respectively.
Notice finally that these loads are not applied on the core’s elements. In
figure 4.5 the grid model with the uniformly distributed gravity loads is pre-
sented.
As regard lateral loads, it is tried to apply them in the same positions of
the experimental test, compatibly to the refinement of the grid. The loads
applied are unitary; their magnitude in fact is not fundamental since a dis-
placement control analysis will be carried out on the model.
In Figures 4.6, 4.8, 4.7 and 4.9 lateral loads applied to the model are pre-
sented for positive and negative verse for both the two principal directions
of loading.
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Figure 4.5: Gravity load applied on the grid model
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Figure 4.6: Lateral loads (red circle) applied to grid model in the positive
North-South direction

Figure 4.7: Lateral loads (red circle) applied to grid model in the negative
North-South direction
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Figure 4.8: Lateral loads (red circle) applied to grid model in the positive
East-West direction

Figure 4.9: Lateral loads (red circle) applied to grid model in the negative
East-West direction
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4.1.3 Plastic hinges

Plastic hinges are points of the elastic frame elements in which the non-
linear properties of the elements themselves are lumped. Plastic hinges are
not assigned to all the beam elements of the grid model, but to ones which are
the most significant because of their position in the grid; in particular they
are assigned to frame elements lying on the center-lines connecting joints
(except for elements of cores) and on the immediately adjacent axes. This
choice is done in order to make the model more computationally light both
in terms of time consumed for the definition of hinges and for the numerical
analysis.
Despite this fact, definition of hinges properties results very much time con-
suming and this is due to the particular geometry and layout of reinforcement
of the test slab. Let’s explain better this fact.
Three types of hinges are defined, according to the grid model33 explained in
chapter 2: flexural, shear and torsional. The properties of all these depend
on the geometry of the beams section, on concrete properties and on longi-
tudinal bottom and top reinforcement (no shear reinforcement are present in
the test slab). According to the consideration about the design of the grid
geometry in section 4.1.1 and on the reinforcement arrangement in both the
principal directions which is not symmetrical about the floor centerline in
the long direction (Fig. 3.3, 3.4, 3.5 and3.6), many different plastic hinges
have to be defined since a great number of frame elements have different
geometrical and reinforcement characteristics.
In the following, considerations about the different types of plastic hinges
are done.
The flexural plastic hinges properties are calculated as referred in section
2.2.1 using a sectional model12. Normalized diagrams, ultimate capacity
(Mpl,u) and associated ultimate curvature (φpl,u) are furnished as input to
the model. The software34 also require the plastic hinge length, which is
defined equal to d33.
Notice that flexural plastic hinges will be applied to all frame elements spec-
ified above; in particular high bending moments will develope at connections
and at the midspan of center-lines connecting joints. Fig. 4.10 shows a typ-
ical normalized diagram of a flexural plastic hinge.
For the shear plastic hinges properties definition, a change is done with
respect to the grid model33 regarding the normalized diagram shear force-
displacement (Fig. 4.11) used as input in the model. According to section
2.2.3, a tri-linear relation should be carried out from the response given by
the sectional model12; anyway this procedure accounts for the yielding of
shear reinforcement (see section 2.2.3) which, in this particular case, is not
present. Thus, the normalized diagram is constructed taking into account
values of Vpl/Vpl,u equal to 0.2 - 0.8 - 1 - 0.8. The corresponding values of
normalized shear displacement are, respectively: 0 - 0.8Vpl,u/Gf - 1 - 1.2;
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Figure 4.10: Normalized diagram of a flexural plastic hinge

in particular Gf is the cracked shear modulus (30% of the shear modulus)
times the shear area of element section. These normalized diagram (Fig.
4.11) with the associated shear capacity (Vpl,u[N ]) and the corresponding
ultimate shear displacement (γpl,u(1.5d)), computed as prescribed by grid
model33 are used as input to the model. Notice that shear plastic hinge
behavior is symmetrical for positive and negative shear.
An important remark is that shear plastic hinges have been applied only to
grid elements inside the critical zone and on its border. This choice is done
because shear force, acting outside the critical perimeter, are unimportant
with respect to ones inside it and this means that the external elements
should not show a non-linear response.
Also in the case of torsional plastic hinges properties definition, a change is
done with respect to the grid model33 regarding the definition of the ultimate
twist angle. According to it, values of ultimate twist angle ψu0 measured ex-
perimentally11 should be used, since no transverse steel is present in the test
slab; anyway it is preferred to use the model for reinforced concrete beams
with transverse steel10, using a fictitious shear reinforcement with little sec-
tion area (At = 13mm2) and low density (s = 110mm). This interpretation
of the model is justified by the mechanical reason that on a beam element
which is actually a part of a flat slab, a lateral confinement is applied; in
addiction from a series of experimental tests11 no substantial difference is ob-
served in the torsional behavior of slab reinforced and not-reinforced against
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Figure 4.11: Normalized diagram of a shear plastic hinge

shear.
About reduced torsional capacityMtu due to interaction effect, the Park and
Choi model40 is used, as proposed in the grid model33. The value of bend-
ing moment and shear acting in the slab due to gravity loads and used to
reduce the value of the torsional capacity without interaction effect (Mtu0),
are obtained by an elastic analysis of the slab grid model.
As input for the model, the normalized diagram (Fig. 4.12), the torsional
capacity and the corresponding twist angle per unit length are used. In ad-
diction, the plastic hinge length 1.5d is specified.
Notice that torsional plastic hinges computed in the aforementioned way
are put in frame elements of the critical section and in their adjacent ones,
since these parts of the structure are the most torsionally solicited. Actu-
ally, according to the grid model used33, for grid elements that are not at
the interface with the columns, elastic-perfectly plastic behavior is defined,
with capacity calculated41 with strength 0.58

√
f ′c, as specified in chapter 2.

Despite this fact, it has been decided to extend the aforementioned torsional
model also to members directly outside the critical zone, in order to improve
the torsional efficiency of the connections. For all the other beam elements,
a non-linear torsionally perfectly plastic behavior is assigned.
Notice finally that for torsional plastic hinges of the edge and border con-
nection, the value of ψu carried out from the model for R/C beams with
transverse steel10 is not used, but the half of the value is considered.
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Figure 4.12: Normalized diagram of a torsional plastic hinge

4.1.4 Analysis

The procedure followed for the analysis of the model slab is the following:
a load controlled non-linear analysis is firstly performed under gravity loads
specified in section 4.1.2; then, starting from these results, non-linear static
analyses with displacement control in both the two principal directions are
carried out for horizontal loads (section 4.1.2). Notice that positive and neg-
ative verse of loading are also considered in the analysis.
The pushover analyses are performed by setting into the software34 the node
to which imposing the displacement and its desired maximum value. The
node chosen is positioned in the central part of the test slab and the dis-
placement assigned is 0.063 m (0.206 ft) corresponding to 5% drift because
it’s of interest to lead the structure to failure.
Notice that the pushover analyses are performed under monotonically in-
creasing loads, thus different to the cyclic loadings applied on the test slab
considered13.
The output of the analyses are pushover curves (total lateral force applied
to the structure versus its lateral displacement), values of internal actions
(bending moment, shear, torsion) acting in the grid elements at each step
of the analysis and the visualization of the deformed shape of the structure
with in evidence the state of plastic hinges at each step. The latter permits
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to immediately and quite clearly understand the failure mode of the model
and its damage sequence.
The software shows the plastic hinges state according to different colors:
fuchsia is the color for plastic hinge which are beyond the first cracking, yel-
low for these which are beyond the yielding (or the 80% of the capacity) and
finally orange for these which have reached the capacity.
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4.2 Comparison between test results and model out-
puts

The type of analyses carried out on the model are non-linear gravity
load analysis and non-linear static (pushover) analyses, as referred in section
4.1.4. These are certainly different with respect to the cyclic and biaxial
nature of the test applied on the real structure (see section 3.1.5); thus, is
necessary to interpret from this perspective all the model results and their
comparisons with experimental data.

4.2.1 Punching shear failure of connections of the test slab

The flat-slab structure13 considered was tested by means of vertical and
cyclic lateral loads in two orthogonal directions, as described in section 3.1.5.
Before describing and comparing in details the experimental and model out-
put data, it’s interesting to have a general view of the damage and connec-
tions behavior at failure of the structural system.
As referred by authors of the experimental campaign13, punching shear fail-
ure of connections due to lateral loads did not occur until test EW25; this
means that the structure was able to resist cyclic lateral load test at 4%
maximum drift for direction North-South (test NS25) without approaching
punching shear resistance at connections. In the following, lateral moment-
rotation curves of each joint for test EW25 are presented in Fig. 4.14.
In this figure, as specified also in its legend, three different moment scales,
namely 250/100/70 in kip-in (corresponding to 28.25/11.30/7.91 KNm), are
used, respectively, for interior, edge and corner connections. Small circle in
a quadrant of a single graph marks the occurrence of the punching shear fail-
ure in that quadrant, which is defined as sudden loss of flexural resistance.
These failures are clearly understandable by observing the paths of cycles of
each single connection; in joints in which punching occurred an important
loss of capacity, in terms of bending moment, between the first cycle and the
second one at the same maximum drift, is observed. This particular behavior
is also more evident if Fig. 4.14 is compared with Fig. 4.13, which represents
the path of cycles at 1% maximum drift and in which sudden loss of bending
moment capacity was not surveyed in each connection. The differences in
cycles represented in Fig. 4.14 and 4.13 are absolutely clear.
The phenomenon of punching of several connections is clearly understand-
able also by observing the overall behavior of the structure, represented by
the experimental lateral load-deflection curves reported by authors13. In Fig.
4.15 the entire response history to failure (4% drift) are shown; the punching
failure of connections is clear for direction East-West, anyway also curves for
North-South direction show a quite visible degradation of the strength.
As it is well known, shear failure is a sudden phenomenon, thus also punching
failure is sudden (see Fig. 4.14) and, as referred by authors of the experi-
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mental study, this occurs for several connections within a short time period.
It is noted that all the interior connections (B2, C2, B3, C3) failed when
the slab displaced to both the West and the East directions. Similarly, the
edge connections with bending parallel to the direction of loading (B1, C1,
B4, C4) failed in two directions, except the square connection B1 which sur-
vived in the East direction. The rectangular edge connections with bending
perpendicular to the edge (D2, D3) failed in two directions, whereas the
square connections (A2, A3) survived except A2 failed in the West direction.
Notice finally that all the corner connections (A1, D1, A4, D4) survived in
test EW25 except the rectangular connection D1, which failed in the West
direction.
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Figure 4.13: Moment-Rotation curves of connections for test EW100 for both
East and West direction of the loading
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Figure 4.14: Moment-Rotation curves of connections for test EW25 for both
East and West direction of the loading
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Figure 4.15: Lateral load-deflection response to failure
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4.2.2 Lateral load versus deflection relationship

The report describing the experimental study considered13, provides data
about the total lateral load applied to the structure and deflection, in terms
of interstory drift ratio, which is defined as the lateral deflection of the slab
mid-depth divided by the column clear height of 1.22 m (4 ft). Notice that
lateral drifts and loads on the test slab have been considered positive by
authors in the South and West direction (Fig. 3.10).
Authors furnish data in tabular form about only the peak values (one positive
and one negative) of the lateral loads and the corresponding deflections, in
which gravity load effects are excluded, for each test from LAT1 and LAT2
to NS25 and EW25; lateral load-deflection curves for tests LAT1, LAT2,
LAT3, LAT4, NS200, EW200, NS25 and EW25 are provided, in which it
is possible to observe each single cycle. In this thesis only load-deflection
response to failure are reported in Fig. 4.15.
Peak values and corresponding deflections are well suited to be compared
with pushover curves carried out from the non-linear static analyses of the
grid model for the two orthogonal directions of loading; in Figures 4.20 and
4.21, graphs presenting the model pushover curves and the experimental lat-
eral load-deflection (drift) curve will be presented for both the positive and
negative verses of the two orthogonal directions (N-S and E-W). Representa-
tion of the slab deformed shape and the plastic hinges activated in the frame
elements are also shown in Fig. 4.22 and 4.23 only for the positive verse of
loading for both two principal directions. Notice that the legend of hinges
colors is specified in section 4.1.4.
The first important remark which is possible to do observing figures 4.20 and
4.21 is that the experimental responses are different in the two orthogonal
directions, both in terms of resistance and drift. This particularity could be
detected not only on the global behavior of the structure (lateral load-drift
curves) but also in the moment-rotation envelopes of each joint, as it will be
explained in section 4.2.3. This difference in all probability could be impute
to the degradation of the test slab due to the particular biaxial cyclic way
of loading, explained in section 3.1.5, which loads and thus deteriorates the
structure firstly in North-South direction and secondly in East-West direc-
tion. This scheme has been followed by authors during the entire test.
Since the performance of slab-column structures depends primarily on the
characteristics and conditions of slab-column connections, it is possible to
explain the above cited aspect of the response due to biaxial loading as
follows5 (Fig. 4.16). Under uniaxial loading, resistance is attributable to
torsion on faces AB and CD and shear and moment on faces BC and DA.
If an uniaxially loaded connection is loaded subsequently in the transverse
direction, faces AB and CD (which had previously been loaded in torsion)
begin to develop torsion. The interactions between flexure, shear and tor-
sion41 are such that the net connection resistance in any given direction is
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less under biaxial loading than under uniaxial loading. Similarly, more rapid
degradation of the concrete occurs under biaxial loading.

Figure 4.16: Forces on connection under uniaxial loading5

As regard the comparison between model and experimental curves, it is pos-
sible to notice firstly that in both the two principals directions, an underes-
timation of the initial stiffness of the whole structural system is detectable;
this is not meaningful in the evaluation of the validity of the grid model
since its initial rigidity is strongly influenced by the choice of the cracked
moment of inertia of columns, which has been assumed as the 50% of the
uncracked one (see Section 4.1.1). This choice will influence the structural
response until non-linear effects in the slab will become predominant due to
the increasing of the maximum lateral drift reached.
What is instead important to underline is the overall behavior of curves. The
pushover curve in North-South direction (Fig. 4.20) appears very similar to
the experimental one in terms of path and maximum lateral load whereas
the maximum drift reached is higher for the second (3.3% drift for model and
4% drift for experimental test). In East-West direction (Fig. 4.21) instead,
the comparison shows comparable drift (for both 3% drift) in the positive
direction but also an high overestimation of the lateral loads applied (both
for positive and negative direction). In negative direction numerical drift is
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much higher than the experimental one, but it’s worth to remember that
EW25 test has been stopped because of punching of several connections has
occurred. It’s also worth to notice that numerical drift reaches 4.4% value
in negative direction, which is much higher than 3% drift reached in the
positive one. Probably, the cause is a combination of the development of
the shear and torsional strength, which is influenced by the rectangularity
of the columns of the east edges which plays a fundamental role in this phe-
nomenon, as explained in the following: columns A2 and A3 (west edge)
have squared sections whereas columns D2 and D3 (east edge) have rect-
angular sections with an aspect ratio of 2:1 and in particular their major
sides are on East-West direction; this means that the torsional capacity of
the beam elements lying on the slab edge and being inside the critical zone
of connections D2 and D3 is much higher than the ones of edge elements
in the critical zone of connection A2 and A3, since torsional capacity (Park
and Choi model40) depends strongly on the sectional geometrical character-
istics and thus on element width. Parallel to this phenomenon, it’s necessary
to take into account the development of punching resistance in connections
which is different according to the direction of loading and thus to deformed
shape of the slab. It is known in fact, that punching is likely to occur where,
at the connection, negative bending moment acts, i.e. the tensioned fibers
are on the top surface (as in the right part of Fig. 4.17), instead of the case
of positive bending (tensioned fiber on the bottom surface as in the left part
of Fig. 4.17).
When the structure is loaded toward West (positive verse), in connections
A2 and A4 the acting shear force approaches before to the 80% of punching
capacity with respect to what happens in connections D2 and D3 (because
of the deformed shape), although the capacities of the first are higher than
the ones of the second (Fig. 4.18). This induce connections A2 and A3 to
redistribute actions on the other hinges, while the plastic hinges of connec-
tions D2 and D3 are still at the first stage of non-linearity.
Exactly the same phenomenon happens on connection D2 and D3 when the
structure is loaded toward East (negative verse); in particular these fail for
punching between 3.5% - 3.9% drift, whereas connections A2 and A3 have
just overcome the first stage of non-linearity (Fig. 4.19).
The fundamental difference in the two loading case is that in the second,
when shear plastic hinges of joints D2 and D3 fail for punching, these con-
nections have also a very good torsional resistance which is able to carry
the new increments of lateral loads; on the contrary in the first loading case
this does not happens since torsional resistance of joints A2 and A3 are quite
low, the redistribution process cannot take place and thus the analysis stops.
This is confirmed by the fact that torsional hinges approximately reach their
torsional capacity (Fig. 4.18(a)).
An ulterior confirm of this explanation is given by the small softening branch
in the negative part of the numerical curve, after the reaching of the maxi-
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mum lateral load (Fig. 4.21).
Notice that all this speech is not valid for North-South direction of loading,
since the structure is symmetrical about the center-line in the long direction
in terms of columns geometry. In this case what is different are layout and
ratio of reinforcement; anyway this seems to not influence both the experi-
mental and numerical response of the whole structure.

Returning to the differences in lateral loads applied in in East-West di-

Figure 4.17: Deformation of an internal connection subjected to unbalanced
moment

rection, it is certainly due to the already mentioned degradation of the test
slab thanks to biaxial cyclic loads applied in sequence (see section 3.1.5), de-
terioration that a non-linear static analysis cannot reproduce since consists
on the application on a structure of a monotonic lateral load with increasing
magnitude. The gap between model and experimental curves starts approx-
imately from 1% drift (4.21), that is the drift at which significant yield of
connections was detected in the experimental tests. Thus, 1% drift could be
interpret as the limit drift from which the biaxial loading start to deteriorate
heavily connections and then the whole structure. Thus, at this stage of the
comparison of results is already evident that the importance of the biaxial
and cyclic nature of loading strongly influences experimental results, as it
will be strongly confirmed in the behavior of connections presented in sec-
tion 4.2.3, but this phenomenon cannot be caught by the non-linear static
analysis.
In Fig. 4.20 it is possible to notice that the numerical analysis performs
a lot of very small steps at nearly 2% drift, both for positive and negative
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(a) State of hinges of connection A2 at
3% positive drift in East-West direction

(b) State of hinges of connection D2 at
3% positive drift in East-West direction

Figure 4.18: Comparison between hinges state

direction. This is due in both cases to numerical problems, associated to
the punching of connection B4, as regard South direction of loading (posi-
tive), and punching of connection B1, as regard North direction of loading
(negative); probably the model at these stage of the analyses has difficulties
overcome the punching of these connections and to redistribute the loading
increments to the plastic hinges still able to sustain it. This numerical phe-
nomenon is clearly visible in Fig. 4.30 as a sudden drop.
Something similar happens for East-West direction of loading; in particular
in negative direction the numerical model perform a lot of very small steps
after the drift of 4%. In this case the explanation is quite simple, since at this
stage of drift several connections has failed for punching (B3, C2, C3, D3,
D2) and then the model has difficulties to redistribute new load increments.
Despite this fact, no sudden drops in the moment-rotation diagrams of these
connections are noticed.
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(a) State of hinges of connection A2 at
3% negative drift in East-West direc-
tion

(b) State of hinges of connection D2 at
3% negative drift in East-West direc-
tion

(c) State of hinges of connection A2 at
4.3% negative drift in East-West direc-
tion

(d) State of hinges of connection D2 at
4.3% negative drift in East-West direc-
tion

Figure 4.19: Comparison between hinges state
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Figure 4.20: Comparison between the numerical pushover curve and the
experimental lateral load-drift curve in North-South direction
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Figure 4.21: Comparison between the numerical pushover curve and the
experimental lateral load-drift curve in East-West direction
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Figure 4.22: Representation of the deformed shape of slab and of the plastic
hinges activated for direction West direction of loading
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Figure 4.23: Representation of the deformed shape of slab and of the plastic
hinges activated for direction South direction of loading



4.2 Comparison between test results and model outputs 104

4.2.3 Moment versus rotation envelopes of joints

In this section a comparison between the experimental and numerical
moment-rotation envelopes of joints will be presented, since it is interesting
to investigate the singular behavior of each connection and how they influ-
ence the overall behavior of the whole structure.
Authors of experimental tests provided in the report13 considered, lateral
moment-rotation curves for tests LAT1, LAT2, LAT3, LAT4, NS800, EW800,
NS400, EW400, NS200, EW200, NS100, EW100 and lateral moment-rotation
envelopes up to drift of 4% of each connections for both the two orthogonal
directions. These moments, according to authors instructions, are obtained
by the product of the measured base shear (relative to the initial reading
of each test) and the column height of 1.26 m (49.6 in.). Only peak values
of the transfer moments and their corresponding rotations are provided in
tabular form in the report and actually these data are the more interesting
and more suitable for a comparison with model results.
It’s worth to notice that the behavior of connections varies according to two
discriminating factors: their position (internal, edge and corner) and the
direction of loading (North-South and East-West). For these reasons it is
decided to perform comparisons in both the two principal directions for nine
connections, in particular for all the internal joints (B2, B3, C2, C3), for
the south edge joints (B4, C4), for the south corner joints (A4, D4) and for
the south-west joint (D3). In this way, and taking also into consideration
that the slab is symmetric about the floor centerline along the long direction,
all the possible connection types, at least for what regarding geometry, are
considered.
In the figures presented in the following (Fig. 4.24 - 4.49), moment-rotation
curves for both the two principal directions are presented for the nine con-
nections specified above; in addiction photographs of damage of connections,
for those pictures are available from the report13, are reported.
A remark about the numerical curves presented in the following is that are
composed by bending moments and rotations obtained at each step of the
pushover analysis carried out with the sofware34.
Let’s start considering direction of loading North-South and in particular
start focusing on corner connections A4 and D4 (Fig. 4.24 and 4.28).
First of all, it’s possible to notice that the experimental envelopes (solid lines)
demonstrate that yielding of connections occurs gradually; anyway the most
significant yielding happens when drift reached approximately 1% and after
this, a relatively plastic response is shown up to a drift of 4%. Notice that
this is a general remark, holding for all connections and for both directions
of loading, as shown in from Fig. 4.24 to Fig. 4.49.
As regard the comparisons for this two first cases, firstly it is possible to no-
tice that in general the numerical envelope overestimates the experimental
one, at least for drift greater than 1% in positive direction and nearly the half
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in the negative one. The reason is supposed to be the progressive deterio-
ration of connections in the experimental tests due to the particular loading
procedure, for which the structure has been loaded firstly in North-South
direction and then in East-West direction for increasing drift, as explained
in section 3.1.5. Biaxial lateral loading procedure of testing has been proved
to reduce lateral load stiffness, strength, ductility and drift capacity of slab-
column connections by several research investigations, concerning singular
joints for both interior5, 48 and edge49 connections. Has to be noticed that
these study cases are different to connections A4 and D4, since they are at
the corners of the flat slab; anyway it is reasonable to suppose that this
deterioration phenomenon occurs also in corner connections, and if possible,
should be greater than in interior and edge connections. This effects on the
singular joints can be reasonably supposed to influence the overall behavior
of a flat-slab structure to which the singular connections belong to. From
this point of view it is possible to interpret the already cited pushover curve
overestimation of the experimental lateral load-deflection curve in East- West
direction (see Section 4.2.2).
Despite the differences in magnitudes between numerical and experimental
lateral loads in Fig. 4.24 and 4.28, the model catch well the shape of the
experimental curve showing decrements in the slope (flexural stiffness) of
the graph at similar rotations of the experimental curve; thus, the general
behavior of these connections is well modeled.
In Fig. 4.26 a photograph (taken from South) of the joint A4 after the
tests is presented; it is possible to recognize two big diagonal cracks which
are probably due to torsion arising during the cycles of test in North-South
direction, since authors of the experimental tests13 refer that no punching
failure has occurred in this connection.
Focusing on elements inside critical section of connection A4, this behavior
is effectively confirmed by numerical results, since no shear plastic hinges has
reached failure for both two directions of loading, whereas the torsional one,
placed on the south edge, experiences its capacity (Fig. 4.27(a)). Notice also
that flexural plastic hinge placed at the interface of the column on the west
edge, reaches its maximum resistance, suffering then a flexural deterioration
process that may affect the response of this element during the following
East-West test (Fig. 4.27(a)). This is what happens in reality; anyway grid
model33 couldn’t catch this fundamental particularity simply because it has
been not design to consider it. This is a further specification of the concept
already explained in section 4.2.2 about the biaxial deterioration of the test
slab, which is the principal reason for the difference between the numerical
and experimental response.
The influence that biaxial interaction of internal actions has on the the defi-
nition of plastic hinges properties could be an important development of the
model.
As regard edge connections B4 and C4 (Fig. 4.30 and 4.34), similar consider-
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ations can be done. Numerical curves overestimate experimental ones both
in positive and negative directions for connection C4, whereas connection B4
shows a step in its behavior, due to numerical problems at the punching of
the connection in direction North-South. However, without this particular-
ity, the general trend of the numerical curve is similar to those of the other
connections.
As just mentioned above, connection B4 experiences punching failure for
South direction of loading whereas this does not occur for both West and
South loading direction (Fig. 4.33); numerical results are then the oppo-
site of what happens in reality, since authors of experimental tests13 have
specified that shear failure of several connections occurred only during test
EW25 (Fig. 4.14). This anticipated failure, which occurs nearly at 2% drift
in North-South direction, is due to something not correctly defined in plastic
hinges parameters. In particular, supposing that flexural and shear hinges
are correctly defined, the value of the ultimate torsional twist ψu of torsional
hinges of edge elements could be the guilty because to high, although already
reduced as explained in section 4.1.3. If this is the cause, the overestimation
of ψu may induce the torsional plastic hinge to slower develope its capacity,
thus accelerating the loading process of the shear plastic hinge and leading
to its premature failure.
The problem underlined above is not absolutely detected in the behavior of
internal connections, which is modeled very well as explained in the follow-
ing; the reason is that the grid model33 used ha been principally calibrated
on internal connections test results. Thus, a better understanding of the
torsional behavior of edge connections could lead to further improvements
of the model.
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Figure 4.24: Comparison between the numerical moment-rotation curve and
the experimental moment-rotation envelopes of joint A4 in North-South di-
rection
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Figure 4.25: Comparison between the numerical moment-rotation curve and
the experimental moment-rotation envelopes of joint A4 in East-West direc-
tion
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Figure 4.26: Photographs of damage of connection A413
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(a) State of hinges of connection A4 at 3.3% positive drift in
North-South direction

(b) State of hinges of connection A4 at 3% positive drift in East-
West direction

Figure 4.27: State of hinges of connection A4 at the maximum numerical
drift reached for positive loading directions (West and South). Elements in
critical sections are marked with a red circle
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Figure 4.28: Comparison between the numerical moment-rotation curve and
the experimental moment-rotation envelopes of joint D4 in North-South di-
rection
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Figure 4.29: Comparison between the numerical moment-rotation curve and
the experimental moment-rotation envelopes of joint D4 in East-West direc-
tion
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Figure 4.30: Comparison between the numerical moment-rotation curve and
the experimental moment-rotation envelopes of joint B4 in North-South di-
rection
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Figure 4.31: Comparison between the numerical moment-rotation curve and
the experimental moment-rotation envelopes of joint B4 in East-West direc-
tion
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Figure 4.32: Photographs of damage of connection B413
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(a) State of hinges of connection B4 at 3.3% positive drift in
North-South direction

(b) State of hinges of connection B4 at 3% positive drift in East-
West direction

Figure 4.33: State of hinges of connection B4 at the maximum numerical
drift reached for positive loading directions (West and South). Elements in
critical sections are marked with a red circle
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Figure 4.34: Comparison between the numerical moment-rotation curve and
the experimental moment-rotation envelopes of joint C4 in North-South di-
rection
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Figure 4.35: Comparison between the numerical moment-rotation curve and
the experimental moment-rotation envelopes of joint C4 in East-West direc-
tion
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In Fig. 4.36, 4.41,4.43 and 4.46, moment-rotation curves of internal con-
nections B3, B2, C3, C2 are presented. It is possible to notice that the model
gives a very good prediction in term of strength and general behavior; the
correspondence is evident both in positive and negative parts of the graphs.
This means that the model is able to well represent the structural behav-
ior of internal connections and this is probably due to the fact that internal
joints seem to lesser suffer the effects of biaxial loading, with respect to what
happens for edge and corner connections. The principal reason could be the
presence of the slab all around the connection and this provide it more re-
sources with respect to an edge or a corner connection, in order to resist
loads in the two principal directions. Thus, numerical curves fit well the
experimental ones because the second do not show significant decrement of
strength in the negative branches.
An ulterior reason is that the grid model33 has been calibrated principally on
experimental tests results regarding internal connections, it’s not surprising
that the model works better for these cases.
It is also interesting to notice that for internal column, differently for what
happens for edge and corner columns, numerical curves slightly underesti-
mate experimental results.
Let’s now focusing on connection B3, anyway the following considerations
could be widen to all internal connections.
According to experimental results13 (section 4.14), connection B3 failed for
punching shear during test EW25 for both positive and negative direction
of loading at a drift of 3.3% and 2.4%,respectively. The numerical results
do not confirm that since the two shear plastic hinges on the two critical
elements in direction East-West, one on the left and one on the right of the
connection, reach the 91% (yellow) and the 75% (fuchsia) of their capacity,
respectively, for West direction of loading (positive) (Fig. 4.40(a)). For East
direction of loading (negative) also numerical results show punching failure
of connection, at least for shear plastic hinge on the left of the joint (Fig.
4.40(b)), whereas the right one experiences nearly 93% of its capacity. This
happens at the ultimate step of the analysis, at 4.4% drift, then much higher
than experimental one for which punching failure has occurred.
This difference between model and reality could be in all probability imputed
to the degradation of connections due to biaxial loading, and, in particular,
the explanation is very similar to the one already written for connection
A4. During numerical analysis in the North-South direction, critical ele-
ments in East-West direction suffer damaging due to torsion whereas ones
in the North-South direction suffer damaging due to shear and flexure (Fig.
4.39). During loading in the long direction instead, first elements should
resist principally to shear and flexure, whereas the second to torsion (Fig.
4.40). Thus, what happens in reality is that elements already damaged for
flexure and shear, will show lesser torsional capacity than the same virgin
elements; the same reasoning holds for elements firstly damaged by torsion.
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If the model33 could take into account for this, punching failure will proba-
bly occur also during numerical analysis for positive East-West loading for
drift similar to what observed experimentally.
Notice finally that torsional capacity is not reached in any of the beam el-
ements of the critical sections, differently to what observed in corner and
edge connections; this is due to their better performance against shear and
bending moment.
As regard connection D3 and in particular North-South direction of loading,
it is possible to notice that its experimental envelope is well represented by
the analysis (Fig. 4.48), despite the fact that it is an edge connection. The
reason in this case is that the load acts parallel to the border of the slab,
thus, the "back" and "front" part of the slab with respect to the connection,
give a comparable strength in the two opposite direction of loading.
A general remark for the comparison for moment-rotation curves in North-
South direction is that the ultimate ultimate rotations of experimental curves
are constantly greater then the ones obtained numerically; this is the con-
sequence of the pushover analysis in North-South direction which does not
reach the level of drift obtained from experimental tests on the slab.
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Figure 4.36: Comparison between the numerical moment-rotation curve and
the experimental moment-rotation envelopes of joint B3 in North-South di-
rection
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Figure 4.37: Comparison between the numerical moment-rotation curve and
the experimental moment-rotation envelopes of joint B3 in East-West direc-
tion
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Figure 4.38: Photographs of damage of connection B313
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(a) State of hinges of connection B3 at 3.3% positive drift in
North-South direction

(b) State of hinges of connection B3 at 3.3% negative drift in
North-South direction

Figure 4.39: State of hinges of connection B3 at the maximum numerical
drift reached for positive and negative North-South directions of loading.
Elements in critical sections are marked with a red circle
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(a) State of hinges of connection B3 at 3% positive drift in East-
West direction

(b) State of hinges of connection B3 at 4.4% negative drift in
East-West direction

Figure 4.40: State of hinges of connection B3 at the maximum numerical drift
reached for positive and negative East-West directions of loading. Elements
in critical sections are marked with a red circle
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Figure 4.41: Comparison between the numerical moment-rotation curve and
the experimental moment-rotation envelopes of joint B2 in North-South di-
rection
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Figure 4.42: Comparison between the numerical moment-rotation curve and
the experimental moment-rotation envelopes of joint B2 in East-West direc-
tion
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Figure 4.43: Comparison between the numerical moment-rotation curve and
the experimental moment-rotation envelopes of joint C3 in North-South di-
rection
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Figure 4.44: Comparison between the numerical moment-rotation curve and
the experimental moment-rotation envelopes of joint C3 in East-West direc-
tion
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Figure 4.45: Photographs of damage of connection C313
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Figure 4.46: Comparison between the numerical moment-rotation curve and
the experimental moment-rotation envelopes of joint C2 in North-South di-
rection
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Figure 4.47: Comparison between the numerical moment-rotation curve and
the experimental moment-rotation envelopes of joint C2 in East-West direc-
tion
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Figure 4.48: Comparison between the numerical moment-rotation curve and
the experimental moment-rotation envelopes of joint D3 in North-South di-
rection
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Figure 4.49: Comparison between the numerical moment-rotation curve and
the experimental moment-rotation envelopes of joint D3 in East-West direc-
tion
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The behavior of the whole structure in East-West direction, which is
possible to appreciate in Fig. 4.21, shows an important deterioration, more
severe than what observed in Fig. 4.20 for North-South direction. This is
due to the fact that East-West tests at a certain drift have been done al-
ways after the reciprocal in North-South direction at the same drift. This
phenomenon is also evident in the moment-rotation curves of the single con-
nections, reported from Fig. 4.25 to Fig. 4.49. Thus, for this direction the
model has more difficulties with respect to the previous case to fit well the
experimental results. It is possible to notice that, from experimental results,
external connections seems to be more damaged with respect to the internal
ones; sudden drops in resistance appear which are not so evident in internal
connections. For this reason, a first conclusion, could be that the model fits
very well the behavior of internal connections, whereas it may be improved
for edge and corner columns. In support of this consideration there is the
fact that the grid model used33 has been calibrated mostly on internal con-
nection tests, thus the conclusion above is not surprising.

4.2.4 Effects of columns rectangularity on singular connec-
tions and on the whole structure

In this section the effects of column rectangularity on the response of the
singular connections and on the whole structure will be investigated; in par-
ticular a comparison between effects on experimental tests? hwang-mohele)
and ones on the numerical analyses will be carried out. Notice finally that
only positive verses for both directions of loading will be taken into account
for the comparison.
Some experimental studies49, 48 carried out on edge column-slab connections
and interior column-slab connections with rectangular column sections with
an aspect ratio of 5, have already demonstrated that column rectangularity
significantly enhances the ability of slab-column joint to transfer more un-
balanced moment about the strong column axis at the expense of a lower
ductility ratio or more brittle modes of failure due to higher shear stresses
that develop along the column short side.
Let’s consider connections C4 (edge), D4 (corner) and C3 (interior), thus one
connection for each type present in the test slab, and let’s start observing
the numerical and experimental moment-rotation curves of edge column-slab
connection C4 for both North-South and East-West directions (Fig. 4.50).
The difference of behavior in the two orthogonal directions for both numerical
and experimental curves is evident, at least in terms of strength, confirm-
ing the results of cited experimental studies for which an higher strength is
expected about the strong column axis. It is also interesting to notice that
the model connection is evidently more deformable in North-South direction
than East-West direction, since for a certain bending moment the rotations
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are higher in the first case than in the second; thus, the model is able to
reproduce also this aspect of the test slab response.
According to experimental studies49, 48 cited above, results of the analysis for
loading along the weak column direction (North-South in this case) should
also show higher connection ductilities; effectively this is verified both by the
experimental test and by the model but with different magnitudes. In partic-
ular, according to the definition of connection ductility used in Anggadjaja
and Teng report49, the ductility µ for edge connection C4 for both the di-
rections of loading are presented in table 4.1.
As it possible to notice from table 4.1, higher ductilities are shown, both for

Connection C4
numerical experimental

µN−S 1.802 4.844
µE−W 1.595 2.327

difference 11.48% 51.96%

Table 4.1: Numerical and experimental ductilities of connection C4 for both
directions of loading and their differences

numerical and experimental results, for direction North-South than for direc-
tion East-West; however, it is worth to observe that values of the numerical
and experimental µ are very much different for both directions. In addic-
tion, also the numerical and experimental differences between ductilities for
North-South and East-West directions are strongly different in percentage;
this means that the changing in ductility in the two orthogonal directions is
not proportional for numerical and experimental results.
The same conclusions can be done for the comparison of the two direction of
loading of corner slab-column connection D4 (Fig. 4.51), at least as regard-
ing ductility (Table 4.2). On the contrary, a strange experimental strength
behavior is observed in the positive quadrant, where the capacity in the
North-South direction is higher than the one in East-West direction; this
is probably due to the punching of several connections occurred during test
EW25, has reported by authors of experimental tests13, which caused the
drop in resistance. Anyway, it’s worth to notice that no studies exist, to
writer’s knowledge, on rectangular corner connections subjected to biaxial
lateral loading; thus it is only an hypothesis of the writer that the moment-
rotation curve of corner connection D4 should follow results obtained by
Anggadjaja and Teng on edge connetions49. According to experimental re-
sults of Hwang and Moehle13, this supposition is wrong; anyway tests on
rectangular singular corner connections are maybe more suitable in order to
carry out more reliable conclusions. Numerical results instead, well follow
conclusions of experimental studies cited above (Fig. 4.51).
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Figure 4.50: Comparison between the North-South and East-West behavior
for both numerical and experimental moment-rotation curves of joint C4
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As regard interior connection C3 (Fig. 4.52), the higher capacity of the re-
sponse for direction North-South than direction East-West is confirmed both
by test and model results (Fig. 4.52). In this case, ductility show instead
a strange behavior, at least for experimental results. In fact for these an
important and unexpected decrement of µ passing from direction East-West
to North-South is computed, whereas numerical results show expected be-
havior with an increasing of the ductility for North-South direction (Table
4.3).

Connection D4
numerical experimental

µN−S 1.860 3.409
µE−W 1.411 1.817

difference 24.11% 46.68%

Table 4.2: Numerical and experimental ductilities of connection D4 for both
directions of loading and their differences

Connection C3
numerical experimental

µN−S 2.146 1.727
µE−W 1.455 3.210

difference 32.21% -85.81%

Table 4.3: Numerical and experimental ductilities of connection C3 for both
directions of loading and their differences
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Figure 4.51: Comparison between the North-South and East-West behavior
for both numerical and experimental moment-rotation curves of joint D4
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Figure 4.52: Comparison between the North-South and East-West behavior
for both numerical and experimental moment-rotation curves of joint C3
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It’s interesting to notice how the effect of column rectangularities influ-
ences the global behavior of the structure, and this could be observed by the
analysis of the pushover curves in the two principal directions. Observing
Fig. 4.53, firstly it is possible to observe that, similarly to what happens
for singular connections, the model is able to detect the decreasing of the
maximum lateral load passing East-West to North-South direction. Anyway,
tests results show this trend only up to 2% drift; after this experimental lat-
eral load-drift curves (both in positive and negative directions) drop, because
of punching of several connections, as referred by authors of experimental
campaign13 (reasons of this behavior already discussed in section 4.2.2).
In table 4.4 numerical and experimental ductilities of the whole structure,
carried out from lateral load-drift curve as explained in Pan and Moehle ar-
ticle5, are reported for both directions of loading.
It is possible to notice that also the global behavior of structure is influ-
enced by rectangularity of some columns, in fact the ductility is higher for
North-South direction than East-West direction; anyway, what is the most
interesting to underline is that the numerical and experimental differences
between ductilities in the two principal directions are absolutely similar in
percentage and thus the model it’s really able to fit this aspect of the exper-
imental non-linear behavior, differently to what observed for connection C4.
It’s finally important to notice that ductilities are computed only for the
positive North-South and East-West directions of loading.

Global Structure
numerical experimental

µN−S 1.774 2.349
µE−W 1.418 1.884

difference 20.11% 19.79%

Table 4.4: Numerical and experimental ductilities of the global structure for
both directions of loading and their differences
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Figure 4.53: Comparison between the North-South and East-West lateral
load-drift curve both numerical and experimental
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4.2.5 Vertical load response

In this section a comparison between the experimental and numerical
distribution of the base reactions for test LEAD (see Table 3.1) at the base
of columns is presented.
As preliminary remark is necessary to specify that the horizontal reactions
strongly depend on the stiffness of columns which depends in turn to the
moment of inertia of the frame elements. As already specified in section 4.2.2,
the choice used was to assume 50% of the uncracked moment of inertia of
each section in order to take into account for cracking of concrete. According
to this consideration and since gravity loads applied for test LEAD have not
induced significant non-linear effects on the slab, it’s reasonable to expect a
certain gap between experimental and numerical reactions.
Fig. 4.54 represents the deformed shape and the activated hinges of the
model slab. It is possible to observe, as already aforementioned, that the non-
linear effects of self-weight and service loads are quite low, since only fuchsia
hinges appear on the grid, meaning that no yielding of reinforcement has
occurred but only concrete cracking. This is agree to what experimentally
observed13.
In Fig. 4.55, 4.56 and 4.57 the ratios of the numerical to the experimental
reactions for each columns, are presented.
As it is possible to notice important differences exist between numerical and
experimental results, taking into account that the reference value for the
three graphs is one (one means that numerical and experimental results are
exactly the same).
A good reference parameter for the comparison is the mean value of the ratios
for each reaction’s direction considered (Fig. 4.55, 4.56 and 4.57). Thank’s to
this it is possible to clearly notice that the model best fits vertical reactions,
for which the mean error is equal to 11%; as regarding instead horizontal
reactions the mean value is equal to 59% for North-South direction and 36%
for East-West direction. Thus, an important scatter exists in the two latter
cases.
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Figure 4.54: Representation of the deformed shape of slab and of the plastic
hinges activated for gravity loads
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Figure 4.55: The ratios of the numerical to the experimental vertical reac-
tions
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Figure 4.56: The ratios of the numerical to the experimental horizontal re-
actions in the North-South direction
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Figure 4.57: The ratios of the numerical to the experimental horizontal re-
actions in the East-West direction
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Chapter 5

Conclusions

5.1 Summary

A model slab has been designed and assembled in order to represent the
non-linear behavior and results obtained from an experimental test carried
out on a flat slab structure subjected to gravity and lateral biaxial cyclic
loads (Hwang and Moehle, 199313).
The model slab has been based on a grid model (Coronelli, 201033) able to
represent the flexural, shear and torsional non-linear behavior of the slab
thanks to the definition of point non-linear hinges.
The geometry of the grid has been chosen in order to second in the best
way the irregularities of the structure, consisting on four different types of
column cross-section.
The following types of analyses have been carried out on the model slab: a
non-linear analysis under gravity loads (self-weight plus service loads) and
a non-linear static (pushover) analysis under horizontal loads, which has
results obtained from the gravity loads analysis as initial conditions. In
totality, four different pushover analyses have been performed: one in the
positive and one in the negative verse of both North-South and East-West
directions of loadings.
Comparisons between numerical and experimental results regarding struc-
tural lateral load vs. horizontal displacement curves, moment vs. rotation
curves of joints and reactions at the column bases have been performed. In
addiction, an analysis and interpretation of the effects of columns rectangu-
larity on ductility and strength of both the whole structure and singular con-
nections has been executed, in the light of some experimental studies49, 48.

5.2 Obtained results

This dissertation has been carried out in order to assess the performance
of the grid model33 on a complicate real study case consisting on a flat
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slab structure composed by several slab-column connections with different
column sections and subjected to a severe loading pattern. The aim is also
to understand which are the principal factors and parameters influencing
the numerical response, in order to better interpret the obtained results and
their difference with respect to the experimental ones; this is particularly
important for any future development of the model.
From the analysis and results obtained for the connections considered, the
following conclusions have been reached:

1. The first important consideration carried out by the comparison of
numerical and experimental results is the great influence that biax-
ial cyclic loading induces on the experimental structural response. In
particular this type of loading produce an important mechanical de-
terioration of the structure, that induce an anticipation of the struc-
tural failure (punching of several connection) for East-West direction
of loading. The grid model used has not the capacity to reproduce this
phenomenon, because doing this means that the flexural, shear and
torsional ultimate capacities with their relative deformations should
be able to be influenced by the maximum values of internal actions
reached during the previous orthogonal loading stage. This could be
surely an important future development of the model, especially from
the point of view of extending the use of this model for non-linear dy-
namic analyses.
Hence, it is worth to interpret all the numerical results, and in partic-
ular their comparison with the experimental ones, in the light of these
considerations.

2. For North-South direction of loading, the global behavior of the struc-
ture is well represented by the pushover curve, which fits very well the
lateral load vs. horizontal displacement curve, furnished by authors of
experimental test. The path and the maximum lateral load reached are
very similar for both curves, maximum drift instead is different (ex-
perimental one is greater) since the numerical analysis stops too early
because of numerical problems. A little bit larger difference starts to
become evident for the negative verse of North-South direction of load-
ing; in this case a little overestimation of the reached maximum lateral
load is observed. This gap is due to the degradation of the real struc-
ture due to biaxial cyclic loading that become absolutely evident for
experimental curve obtained for East-West direction of loading; in this
case pushover curve cannot fit well experimental results.

3. The experimental interior connections (B2, B3, C2, C3) behavior is
absolutely well numerically modeled for North-South direction of load-
ing, whereas for the orthogonal direction numerical results leave exper-
imental ones when the latter shows an important loss of strength or a
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plateau because of punching of the connection.
Also in this case, the difference between numerical and experimental
results are surely due to the deterioration of the flat slab thanks the
biaxial cyclic loading.

4. For edge connections loaded perpendicularly to the edge (B4, C4 for
North-South loading direction and D3 for East-West direction), nu-
merical response does not fit well the experimental one; in particular
experimental behaviors show plateaus which are sign of a ductile tor-
sional behavior which evidently is not well modeled by the model.
For edge connections loaded parallel to the edge (D3 for North-South
direction of loading and B4, C4 for East-West direction), the precision
of numerical response change according to the connection considered.
In particular, joint D3 show a numerical behavior absolutely similar
to the experimental one, due to the fact that in this case flexural and
shear behavior prevail on the torsional one; as regard joints B4 and
C4 instead, numerical results do not fit the real behaviors, showing
plateaus probably due to flexural ductile behavior.
The difference of model precision between joint D3 and joints B4 and
C4, which are all loaded parallel to the slab edge, is in all probability
due to the fact that the second are firstly loaded perpendicularly to
their edge (North-South loading direction) and only secondly in their
parallel direction. This means that B4 and C4 response in the long di-
rection is strongly influenced (then worsened) by the previous loading
stage in the short one.

5. Modeling of corner connections presents the same problems of edge
connections loaded perpendicularly to their edges: experimental be-
havior show plateaus due to the mix of flexural and torsional ductile
behavior which cannot be properly reproduced by the grid model.

6. According to the third, fourth and fifth considerations and to the dis-
cussion of obtained results in section 4.2.2 and 4.2.3, a proper modeling
of torsional behavior for edge and corner connections seems to be fun-
damental in order to achieve better results in the global and localized
numerical response.
In particular it is noted that the value of the ultimate twist ψu is prob-
ably overestimated for edge and corner connections; theoretically, a
lesser value of ψu leads torsional plastic hinges to reach before their
capacity and thus delay the failure of shear plastic hinges, allowing in
this way a more ductile behavior of the model.

7. Since model cannot consider biaxial degradation, it is possible to better
observe the influence of column rectangularity on both the global and
local structural response. According to experimental studies (Tan and
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Teng, 200548; Teng, 200849) ductility should increase in the short side
column direction whereas strength should increase in the long side col-
umn direction. These results are confirmed by numerical analysis both
for global and connection response; experimental data do not show
instead a unique trend for results, probably due to the deterioration
given by biaxial cyclic loading.

8. The shown comparison between numerical and experimental reactions
at the bases of columns under gravity loads only, shows an important
scattering of results without a clear trend, particularly for horizontal
reactions. This is due to the fact that, at this stage of loading, the
elastic behavior of the structure is predominant to the non-linear one;
thus, results are strongly dependent on the rigidity of structural ele-
ments (moments of inertia) which were not thoroughly investigated in
this work, since it is outside the aim of this dissertation.
However, it is not hardy to suppose that, if the real structure was
subjected to higher gravity loads, the numerical base reactions should
be more similar than experimental one, since non-linear effects will
become predominant.

5.3 Future developments and possible applications
of the model

The application of the grid model in this work, shows its validity for the
static non-linear analysis of flat-slab structures, even if some improvements
are necessary.
From the results presented in Chapter 4 and conclusions of Chapter 5 it
is possible to conclude that biaxial cyclic loading has greatly influenced the
experimental results and thus their comparison with the numerical ones. For
this reason, an important improvement of the grid model could be the defi-
nition, inside the procedure for carrying out the plastic hinge properties, of a
method so that flexural, shear and torsional capacities are influenced by the
bending moment, shear and torsion acting in the previous orthogonal load-
ing stage. This improvement is important also in the view of using the grid
model for verification and design of flat-slab structures subjected to seismic
loading.
A further improvement, suggested by analyses of results obtained, is the
better definition of torsional behavior of edge and corner connections; in
particular studies on the definition of the ultimate twist are necessary, since
this parameter has demonstrated to be fundamental in the torsional behav-
ior of the outer connections.
Interesting are the possible future applications of the grid model in the usual
engineering practice. The model is absolutely well suited for the evaluation
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of the safety against seismic loading of existing structure designed only for
gravity loads, without taking into account the unbalanced moments trans-
ferred in slab-column joints due to lateral loads.
Another very interesting application is the possibility to use the model for
the design of slab with both regular and irregular columns configurations.
In this case the procedure could be the following: firstly a pre-design of the
elements, determining the system non-linear deformability and the internal
actions. By this way, the model permits the computation of the bending mo-
ment (Mu) and shear (Vu) acting in the connections but also internal actions
acting into the slab. Taking into account these, it is possible to design rein-
forcement, and after that, changing plastic hinges properties, the verification
of the design and of the deformability of both the singular connections and
of the whole structure, can be carried out.
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