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Sommario

L'obiettivo di questa tesi € lo studio del problema di Riemadella gasdinamica in
un gas diatomico che dissocia. L'attenzione sara conderdtd gas di idrogeno.
Nonostante 'idrogeno non sia coinvolto nelle tipiche eotr ipersoniche nelle
fasi di rientro atmosferico, la scelta € comunque giustdickalle sue numerose
applicazioni tecnologiche. Inoltre, diversi studi di déeee astrofisico coinvol-
gono il gas idrogeno che attraversa un ampio intervallo miperature fino alla
ionizzazione.

Da un punto di vista termodinamico I'idrogeno € molto ings@nte a causa del
valore piuttosto elevato della stemperatura rotazionalehe consente agli effetti
dovuti alle rotazioni molecolari di manifestarsi a tempera non troppo basse.

In questo lavoro é stato utilizzato un modello termodinanmécentemente in-
trodotto da Quartapelle e Muzzid [1] (si veda anche [2]) obree correttamente in
conto I'accoppiamento tra rotazioni e vibrazioni anarnsbeidella molecola &
descritte tramite il potenziale di Morsé [3]. Inoltre, lasslociazione molecolare
viene rappresentata come un aspetto puramente termodmalré avviene in se-
guito a rotazioni o vibrazioni non piu sostenibili, abbandodo quindi ldegge di
azione di massapesso impiegata per determinare la composizione allibgjai
di una miscela. L'attenzione di questa tesi € rivolta afiaurre questo concetto
nellarisoluzione del problema di Riemann. | risultati otié verranno confrontati
con quelli forniti da un modello termodinamico semplificatee considera le ro-
tazioni completamente eccitate. L'analisi non sara litaitsolamente ai valori
di temperatura elevati ai quali avviene la dissociaziona sirivolgera anche al
dominio delle basse temperature alle quali la distinziceedue modelli termodi-
namici diventa marcata. Sebbene giain condizioni di disgoane le differenze tra
i risultati forniti dai due modelli inducano all’'utilizzoidjuello completo, quando
lo sguardo si sposta sulle basse temperature la sceltaadiobbligata.

Il capitolo[2 descrive il modello termodinamico completa Pielrogeno, che
include I'accoppiamento tra rotazioni e vibrazioni dellaletola e la sua disso-
ciazione (RVD). Sono inoltre derivate le espressioni dietlg proprieta termod-
inamiche necessarie nella soluzione del problema di Riam@yme funzioni di
temperaturd’ e volume specifico.

Il capitolo[3 richiama i principi fondamentali di due modelémplificati, en-
trambi caratterizzati da un trattamemiassicodelle rotazioni. Il primo modello
condivide con quello completo le vibrazioni anarmonicha dissociazione (VD)
mentre il secondo é basato su oscillazioni armoniche ezdilia legge di azione
di massa per determinare la composizione del gas. Sonodmdiettuati dei con-
fronti sulle proprieta termodinamiche piu importanti ot con i vari modelli.
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2 Sommario

Il capitolo[4 e la parte piu originale del lavoro ed & dedicata studio del
problema di Riemann per un gas diatomico che dissocia. mghiogo sono
evidenziati i tratti essenziali del problema di Riemanme@rensentato inf4]. In
seguito si fornisce una nuova e completa formulazione adddlpma, estesa al gas
in presenza di dissociazione. Quest’ultimarende il prolalenatematico piu com-
plicato e richiede la soluzione di sistemi non lineari atiérno del ciclo principale
che determina gli stati sinistro e destro sulla disconténdi contatto. In partico-
lare, sia la soluzione dell’'onda d’urto che dell'onda diefazione richiedono di
risolvere un sistema formato da due equazioni che sonodzaquoe che definisce il
coefficiente di dissociazione e, rispettivamente, I'egoae di Rankine—Hugoniot
o la condizione di entropia costante.

Nel capitolo[d sono presentati e commentati i risultati pgn#icativi dei
problemi di Riemann analizzati. Particolare attenzione@ichta alle situazioni
in cui la dissociazione gioca un ruolo importante, quintd alte temperature. Per
verificare 'accuratezza dei risultati & effettuato un confo tra quelli ottenuti con
il modello RVD e VD. Inoltre, nel caso delle onde d’urto, € pibile confrontare
le soluzioni con i dati forniti dalla NASA]5]. Infine viene ahzzata la regione di
basse temperature sia per le onde d’urto che di rarefaziomedo da evidenziare
le differenze che scaturiscono da un differente trattameéelie rotazioni.

Il capitolo[@ riassume il lavoro fatto e le conclusioni chepsissono trarre,
proponendo infine possibili sviluppi futuri.

Infine I'appendic&A presenta le espressioni delle funzibpartizione utiliz-
zate nei modelli RvD e VD.



1 Introduction

The Riemann problem of gasdynamics is very important in tixysof nonlinear
waves in compressible flows and it is also fundamental in #neeldpment of
finite volume methods in which it occurs at every interfacevaen two grid cells.
Generally, the Riemann problem for gases with simple thelsmamic propertiesis
studied. Onthe other hand, taking into account molecussadiiation is mandatory
for hypersonic flows in which the rise in temperature afterghock front leads to
a modification in the chemical composition of the gas.

The aim of this work is to study the Riemann problem in a diatogas in the
presence of dissociation. The focus will be on the hydrogen gven if the hy-
drogen is not involved in typical hypersonic flows in the rerg phase, the choice
is justified by its many technological applications (a tgbiRiemann problem of
general interest involving hydrogen gas could be the faibfra pipe). Besides
that, many astrophysical investigations involve the hgerogas encompassing a
wide range of temperatures up to ionization.

From a thermodynamical viewpoint, the hydrogen gas is vatgrésting be-
cause of the fairly large value of itetational temperatureso that the peculiar
effects of molecular rotations can manifest at not too steatperatures. An orig-
inal and recent thermodynamic model due to Quartapelle amzM [1] (see also
[2]) which properly takes into account effects of rotati@msl the dissociation of
the molecule Hwill be used. The focus of the present work will be the inabusi
of the dissociation as a purely thermodynamic aspect in ieen&n problem,
abandoning th&aw of mass actioeommonly employed to determine the compo-
sition of the gas. Furthermore, the Riemann problem in tivdémperature region
will be analyzed in order to understand the improvementastieg from the com-
plete model with a coupled treatment of rotations and anbarovibrations, with
respect to a simplified model which considers fully excitettions.

ChaptefR describes the complete thermodynamic model édnytrogen gas
including the rotations and vibrations of the moleculesthed dissociation (RVD)
into atoms, as presented in [1, 2]. The expressions of altiieemodynamic
properties of the gas needed for formulating the Riemanhbleno are derived as
functions of the temperatufg and the specific volume.

ChapteB recalls the basic elements of two simplified moteith character-
ized by fully excited molecular rotations. The first modeds#s with the complete
one the anharmonic vibrations and dissociation (VD) whilke $second approxi-
mate model is based on harmonic oscillations (HC) but musbbglemented by
the chemical law of mass action to account for molecularodisgion.

Chaptei’# is most the original contribution of the work andesoted to the
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4 Chapter 1 Introduction

study of the Riemann problem for a dissociating diatomi@idgs. First, the
fundamental features of the Riemann problem of the gasdisaamre oulined, as
presented in(J4]. Then a new and complete formulation of phablem in the
context of a dissociating ideal gas is presented. The pcesefithe dissociation
coefficient makes actually the mathematical problem moffecdit than for a
nondissociating gas and may require to solve nonlineagsystithin the external
cycle which determines the states on the two sides of thexcbdiscontinuity. In
particular, the solution of either the rarefaction waveharshock wave is obtained
from nonlinear systems of two equations representing $sodiation equation and
the condition of constant entropy or the Rankine—Hugorgoggion, respectively.

In chapteEb the most important results of the Riemann problare presented
and discussed. Particular attention is payed to situatiowhich the dissociation
plays an important role, thus high temperature values amsidered. In order to
verify the accuracy of the solutions, a comparison betweenrésults obtained
by means of RVD and VD models is made. For the case of the shauksya
comparison with data provided by NASA [5] is also possiblmalty, the domain
of low temperatures is analyzed for either shock or rarefactaves to underline
the differences resulting from different treatment of tatas.

Chapteb summarizes all the work done and the results @ataamd proposes
some future developments.

Finally, appendiXA presents the expressions of the pamtitinctions used for
the RVD and VD models.



2 Thermodynamics of hydrogen gas at equilibrium

This chapter recalls the basic elements of the thermodynaradel due to Quar-
tapelle and Muzzio described in [1] and detailed in the agpeRV of the lecture
notes([2]. The model describes a dissociating diatomid gkesaunder the assump-
tion of thermodynamic equilibrium. The internal motion bétdiatomic molecules
is characterized by a complete coupling between rotatindsaaharmonic vibra-
tions, as described in appenfik A.

First the Helmholtz potential is introduced and the cownditior equilibrium
dissociation is considered to define the dissociation meiffi« of the diatomic
gas, which is uniquely determined by the temperafii@nd the specific volume
v. Next, the Helmholtz potential is used to derive the equestaf state for energy,
entropy and other relevant thermodynamic properties, @gifons of7 andv.

2.1 Helmholtz potential

As is well known, the Helmholtz potential (also referred ®elmholtz free
energy) is athermodynamic potential obtained by perfogaibegendre transform
on the fundamental relation in the energetic represem&iti@rderto havgd andl
as independent variables. The expression of the free efarthe gas considered
is:

o . Zu(T ) Zu(T
F(T,V, Nu,, Nu) = —Ni, kBTln% — NyksTIn eH;VJ 2.1)
Ho H

with the partition functiong, (T, V') andZy (T, V') expressed by equatios (Al 15)
and [A16), respectively. Here “e” denotes the base of therablogarithm and
Ny, and Ny the number of the molecules,ldnd atoms H. The free enerdy{R.1) is
afundamental thermodynamic relation and all the thermadyao properties of the
gas can be obtained from it. Moreover, the minimun#'adefines the equilibrium
composition of the gas which undergoes a chemical transftoom

2.2 Equilibrium dissociation

Following Zel'dovich and Raizef[8], the equilibrium comgtion of the gas stems
from two constraints which express the stationarityoénd the conservation of

g = E(S,V,N) with E, S, V andN = (N, N, ...) denoting respectively the internal
energy, the entropy, the volume and the total number ofgesti For a complete description of the
fundamental relation in both energetic and entropic forehismmathematical properties we refer
to [6,[4].



6 Chapter 2 Thermodynamics of hydrogen gas at equilibrium

the atomic constituents of the gas mixture through theiogl@tVyy, + Ny = Ny,
where Ny denotes the (fixed) total number of constituents preseneeds free
atoms H or as atomic components of the moleculgsWsing this two conditions

leads to: ~
Ny, 7}

= ) 2.2
S 7 (2.2)

Let us now introduce the dissociation coefficient

\Vii, — N
a= Nty — Nty _ e (2.3)
N,
from which we can find:

Nu, = (1—a)Ny, and Ny =2aMN,. (2.4)

Substituting the partition function§ {Al15) and {A.16)drthe equilibrium
equation[[ZR) and using the relationshipsl(2.4), gives:
o 1 ZAT,V) 1 ety

I—a 4Zw(T.V) Ny, () v B(t,v), (2.5)

with v =V / [mp,Nu,|, t = T/Ty, 20(t) = e Pe/*T z0(T') and Z0U(T') given
by equation[[AIR), and where we have introduced the cotsstan

1 (2 +1)% (gh)*H>? T3/2 (2mkg)®/? ud/?

i 42 g h? ’
ty = Mmax
2 + 1/nmax’

with H the hydrogen mass in atomic unit,= 1.660 x 1072"kg, and the other
quantities defined in appendiX A. Solving equatlonl(2.5)fgives the equilibrium
dissociation coefficient of the gas:

alt,v) = %5@, o) [VIT 478 0) ~1]. (2.6)

2.3 Energy equation of state

The internal energy of the mixture is defined by the standalation:

8F<T7‘/7NH27NH>

a7 , (2.7)

E=F(T,V,Nu,, Ny) = T



2.4 Entropy equation of state 7

with F' given by equation{2l1). A direct calculation provides tlimehsionless
specific internal energy = e¢/[Ru, 1| of the dissociating gas as a functiontof
anda:

3
€(t,a) = 5 (L+a)t+ (1= a) [en(t) — tal,
where the superscriptinderlines that' is the energy of thirozenmixture, namely
afunction also of as an independent variable. Moreovef(t) = xn (t)/2n(t) IS
the roto-vibrational contribution to the internal enengith , (t) = 2}, (¢) t*. At

thermodynamic equilibrium, the dissociation coefficiengiven by [Z5), so that
the specific energy depends on both the independent vesiadhel v:

e(t,v) = ; 1+ a(t,v)]t+ [1 — a(t,v)] [ev(t) — tq]. (2.8)

2.4 Entropy equation of state

The entropy is defined from the Helmholtz free enefgpy:
OF (T, V, Nu,, Nu)
oT

A direct calculation provides the dimensionless speciftocomy o = s/ Ry, of the
dissociating gas as a function®gfv anda:

S=-

. (2.9)

o'(t,v,a) = (1+a) E +§ Int+In (;’—dﬂ + (1 - a)ow(t) + T(a) + oo,

whereoy is the entropy in a reference statg,(t) = % + In 2 (¢) is the roto-
vibrational contribution to the entropy afitia) = —2alna — (1 —a) In(1 — «)

is the contribution due to the mixing of the molecular andvatospecies.

Taking into account the equilibrium dissociation leadsi®éntropy equation
of state:

ot v) = [1+ alt, v)] B + g Int+In (Uﬂd)] 210
+ [1 — a(t,v)] on(t) + T(a(t,v)) + op.

2.5 Thermodynamic properties

From the explicit expression of the Helmholtz potential afidhe equations of
state for energy and entropy, any other thermodynamic prppéthe gas can be
derived. Since we are interested in the equilibrium propgrhereinafter we will
always considety = «(t, v) avoiding to write the independent variabtesndo.
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2.5.1 Pressure

The pressure function can be obtained from the Helmholtzmi@t by means of

OF (T, V, Nu,, Nu)

P = —kgT
B ov

. (2.11)

A direct calculation leads to:
Ry, T

P(T,v)=(1+a«) .

(2.12)

It is useful to express the derivatives of the scaled pregsus P/[Ry,T] with
respect ta andv:

op(t,v) 1

ot —(1+@+t04t);,
Op(t,v) t
5 :—(1+a—vav)—vz,

whereq; anda,, denote the partial derivatives aft, v). The pressure derivatives
are now used to derive other thermodynamic properties tilebb@&employed in
the solution of the Riemann problem to be discussed in chipte

2.5.2 Specific heats

First, we consider the specific heat at constant volume, lwisiclefined as the
partial derivative of the specific internal energy with resfto the temperature:

_e(T,v) 0" (T,o) 0T, )

co(T,v) = 5T~ aT + %a ar(T,v). (2.13)
Substituting the expressions of the derivatives of theiaieenergy yields:
c(t,v) 3

Ry, 2

wheree,, (1) = [z2n(t) yn(t) — 2o ()] / [t 20(8)]? With yn (1) = t2 2/, (). The
specific heat at constant pressure is defined as follows

c—c—T@2 @
P ar ), \opP),’

where the derivativgdv/0T')p is obtained from the pressure equation of state
P = P(T,v) by implicit differentiation. For the case of the dissoaigtdiatomic
ideal gas considered, it yields:

Slurara-aan+ -l -ula @9

(1 + o+ tOét)Q

t,v) = c,(t, .
ep(tv) = () +

(2.15)
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Figuresdl and]2 show the temperature dependeneg(6fv) andcp(7, v), for
different values of the specific volume. For temperature®@p0 K, equilibrium
hydrogencp agrees well with values provided byl [9], with relative ditfaces
< 1%. In the low temperature range, andcp have the well known behaviour for
the diatomic hydrogen gas at equilibrium, as presentedxamgle in [10], with
a difference in the position of the maximum vakael %.

60 -

50~

v = 1000 m°/kg

40+

cV/RH

L 3
50l v = 1000 m“/kg

Figure 1: Specific heats (7', v) (upper) and:p(T, v) (lower) for different values
of the specific volume.
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cV/RH

10

cP/RH

Figure 2: Specific heats (7', v) (upper) andp(T', v) (lower) in logarithmic scale,
for different values of the specific volume.
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In the low temperature region it is important to distinguistween ortho- and
parahydrogen. The orthohydrogen molecules have two nwitleiparallel spin,
whereas parahydrogen molecules have nuclei with antipaspin. For very low
temperatures (aboib K), the hydrogen gas is composed almost completely by
parahydrogen and at abati K the composition is near t80%. As temperature
increases, the ratio between orthohydrogen and parahgaitegds t® : 1: this
distribution ratio is commonly defined as normal hydrogemrépresent the ortho-
and para- modifications, the summation over the rotationahtym numbers in
the roto-vibration partition functiod {A.15) must be limd to; odd for orthohy-
drogen andj even for parahydrogen. In figuté 3 both specific heats aréeplot
for ortho-, para- and normal hydrogen. Curves are in excedecord with the
known behaviour, presented for examplelin [11]. The valdes dor parahydro-
gen and orthohydrogen are compared with data presente}l shi@ving relative
differences< 1%.

45~

| | | | J
0 100 200 300 400 500 600

Figure 3: Specific heats (7', v) (solid) andcp (T, v) (dashed) for the orthohydro-
gen, parahydrogen and normal hydrogen. Circles represewfata of[9]. In this
temperature range the curveswfare exactly the same of those@ftranslated
vertically by the quantityRy, .



12 Chapter 2 Thermodynamics of hydrogen gas at equilibrium

2.5.3 Sound speed

The sound speed is defined in terms of the pressure equatstatefas follows:

e = (50) =7 |2 (20) - (5),

S
A simple calculation gives, in dimensionless form:

[e(t, v)])? _ {(1 + o+ tayg)?
RHQTV Cv(t, U)/RH2

Figure[4 shows the behaviour of the sound speed computed (iBIB), for dif-
ferent values of the specific volume.

+1+a— vav} t. (2.16)

25

Figure 4: Adimensional sound spe&d’, v)/+/Ru, Ty (solid), for different values
of the specific volume. The dashed curves represent the spaed of monatomic
ideal gas (upper) and diatomic undissociated ideal gaseflow

2.5.4 Fundamental derivative of gasdynamics

The fundamental derivative of gasdynamics, introduced lgriipson([12], is of
primary importance in the definition of the nonlinearity chaeristics of the Euler
equations, as discussed in sectibn$ 4.2[and 4.5. By definitie fundamental
derivative of gasdynamics is:
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v 0¢(s,v)
I'=1-—- .
c Ov

The derivative of the sound speed function- ¢(s, v) with respect taw can be
determined in terms of those of the available functioa ¢(7',v) by reminding
thaté(s,v) = ¢(T'(s,v),v) and by employing the chain rule, to give

oc\ _ 9c(T'(s,v),v) [ 0c or N e
o), v —\aT ), \ ov ), v T:T(Sw)'

The partial derivative of” at constant entropy is evaluated by the implicit differ-
entiation theorem which gives

00N _ (e (Bs\ [ (s (0
ow), or ), \ov ), or ), o),
For the gas to behave in a classical way, i.e. compressivekshaves and
undercompressive rarefaction wavés;> 0 is required. This condition is always
verified for the hydrogen gas in the dissociation regionhasvs in figurd®. Since

I" > 1 for the range of temperatures and specific volume consigdénedsound
speed increases with pressure, as arguedin [12].

145+

14

v = 1000 m°/kg

1.35

13F

1.25F

1.2

1.15

11

1.05 I I I I I I I ]
0

Figure 5: Fundamental derivative of gasdynanii¢g’, v), for different values of
the specific volume.
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3 Simplified hydrogen model

In this chapter a simplified thermodynamic model for a digsony diatomic ideal
gas is described. Differently from chaplér 2, rotationsreoe taken as fully ex-
cited and completely uncoupled from vibrations which astéad still represented
through the Morse potential. Thus, equation(A.14) will sedito express the par-
tition function of the hydrogen molecule,Hvhereas for the atom H the expression
remains the same of the previous model (equaflon{A.16)).

Following the same steps of the previous chapter, we willvdezxpressions
for the equations of state for energy, entropy and othevaekthermodynamic
properties of the gas. In order to underline the differemesalting from different
treatment of rotations, this simplified model will be comgrhmwith the previous
one. Afurther comparison will be made with a chemical moHE&:) of the mixture
H—-H, based on théaw of mass action

3.1 Dissociation equation and equilibrium properties
Dissociation equation

Using the stationarity of the Helmholtz free energy and tbeservation of the
atomic constituents of the gas leads to:

o Vietat gy

l—a  z2(t) wg

= B(t,v), (3.1)

wherez(t) = e P¢/#T 7, (T) with Z,(T) the vibrational partition functioi{A10)
and we have introduced the constant:

1 _( 2H5/2T 27TkB 3/24,5/2

va 2v2 g0,

As a consequence, the dissociation coefficient is againuetjycdetermined by
(3) as a function of andv, so that at equilibriuna = «/(¢, v):

at,v) = %B(t,v) [\/ 1+4/B(t,v) — 1] . (3.2)

15



16 Chapter 3 Simplified hydrogen model

Energy and entropy equations of state

Using the definitions of the internal ener@y{2.7) and entf@®), the fundamental
relation can be expressed in the parametric form:

(

e(t,v) = %(5 + o)t + (1 — a)le(t) — tql,
o(t,v) = %(5 +a)(1+Int)+ (1 —a)oy(t) (3.3)

)] + 7@+ a0

v

Ud

++a) [1m

\

wheree, () = (1) /2(t) with () = 2/(¢) £ ando, (t) = & +1n 2(t) denote the
contributions to the internal energy and entropy due toatibns, whilel («) =
—2alna — (1 — a)In(1 — «) is the contribution to the entropy due to the mixing
of the molecular and atomic species andepresents the entropy in a reference

State.

Pressure

The pressure function and its derivatives with respectdadv are exactly the
same introduced in chapi@r 2 withgiven by the equatioi(3.1).

Specific heats

Starting from their definitions we obtain, in adimensiorahh:

Cv(tvv) _ %(5 + Oé) + (1 — Oz)E(,(t) + [% - [EV(t) - td]} i,
. 2 (3.4)
cr(tv) _ (t,v) + Q+odtia)
Ry, I+a—vay

Sound speed and fundamental derivative of gasdynamics

As for the pressure, the sound speed and the fundamentadtileziof gasdynamics
are the same introduced in chafiér 2, witlyiven by equation{3l1) and, by

equation[3K).
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3.2 Comparison between the models

The comparison of theto-vibra dissociatindRVD) model of chaptdr]l2 with the
vibra dissociatingVD) model just described, shows how the different treatimen
of rotations affects the thermodynamics of the gas.

First, the dissociation coefficient(t, v) is analyzed. Figurél 6 shows the compar-
ison between RVD and VD models for different values of thecgmevolumew.
The RVD model gives always a lower value @f When the gas is very diluted
(high values ofv), relative differences are small (beldi) and the two models
give almost the same value af As the specific volume decreases, differences
become more important: far = 0.01 m3/kg they reach about3%. This will
have an impact on some of the other properties, as we can teenmext figures.
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Figure 6: Dissociation coefficient(t, v) for the RVD (solid), VD (dashed) and
HC model (dashed-dotted), for different values of the dpeeolume.

Despite differences in the dissociation coefficient, tHaes of the pressure com-
puted from equatiod{Z.12), with respectively obtained frori{2.5) arild(3.1), are
extremely close. Maximum differences increase with but are always below
4% in the range of specific volumes and temperature analyzed.
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Figure 7: Adimensional pressure for the RVD (solid), VD (oed) and HC model
(dashed-dotted), for different values of the specific vaum

The most important differences are found to be in the spduo#fats. Similarly to
the other thermodynamic properties, differences betweennto models increase
with 1 /v, reaching about0% near the peaks. Furthermore, a completely different
behaviour is found in the low temperature region. As we canisdigure®, the
specific heat, given by the VD model has a starting valuef= gRHQ, since
rotations are considered as fully excited and their coutidin to the specific heat

is constant!™ = Ry,. On the contrary, the RVD model considers the transient
between the unexcited and the fully excited rotations, iteatb very different
values ofc, for low temperatures. In this region the differences camchiesbout
40%, making mandatory the RVD model to properly describe theabielur of the
gas. For the specific heat the comments are exactly the same.

If we analyze the ratio of the specific heats- cp/c,, we find that, except for
very small values of temperature, the differences betweetno models weaken
and are< 2% in the range of temperatures and specific volumes considered

The last thermodynamic properties compared are the sousedspnd the
fundamental derivative of gasdynamics, for which diffeesare found to be 2%
in both cases, establishing a substantial equivalencegeetthe two models.
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cV/RH

Figure 8: Specific heat, for the RVD (solid), VD (dashed) and HC model (dashed-
dotted), for different values of the specific volume.

10°F

= 1000 m°/kg

10

T/T
v

Figure 9: Adimensional specific heatin logarithmic scale for both RVD model
(solid) and VD model (dashed), for different values of theafic volume.
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Figure 10: Adimensional sound speed for the RVD (solid), \dashed) and HC
model (dashed-dotted), for different values of the speedlame.

Before we proceed with the analysis of the Riemann problenh&hydrogen gas,
it is useful to compare the results obtained through the RW@®\AD model with a
very simple gas model which considers classic rigid rotetjtnarmonic vibrations
and uses the law of mass action in order to determine theilequih composition
of the mixture. We will refer to this model as HC modébafmonic-chemical
Descriptions of this model can be found in many gasdynarneixistooks, see for
example[[1B[ 14].

Figured ®[T7[18 an10 show comparisons between the threelsnmadour
representative thermodynamic properties. The HC modekgtienates the value
of the specific heat,, moreover it gives higher values of the dissociation coetfic
for most values ot analyzed. Differences on between the HC model and the
RVD model are about5% —20% with 2500 < T' < 5000. They reach almosX0%
on ¢, near its peak for the most diluted gas ar; for v = 0.01 m3/kg. The
accord between the models is more satisfying with regardégsound speed and
pressure, with differences 5% in both cases.
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In this chapter the Riemann problem of gasdynamics will beyered. It is an
initial value problem for the system of Euler equations vaérticular initial con-
ditions. The variables are characterized by a jump in timgtiial values, and are
uniform on the left side and on the right side of a discontyiuthe two different
states will be referred to as theft stateand theright state Since there is no
reference length in the problem statement, the solutioelissnilar, namely it is
constant along any ray of thet plane. In general the solution consists of three
waves:shockor rarefaction waveandcontact discontinuitypossibly of vanishing
intensity. The intermediate wave is always a contact discoity while each of
the two external waves can be either a shock or a rarefacawa depending on the
initial conditions. The solution of the Riemann problem &wimportant in the
simulation of compressible flows since the Riemann probkethe starting point
to formulatefinite volume methodshere it is solved at every interface between
two grid cells and at every time level.

Following Quartapelle et al[[4], we will first analyze thgenstructure of the
Euler equations which leads to the determination of the ema#tical and physical
nature of the three different waves. Then a suitable fortrariaof the equations
which describe the shock and the rarefaction wave for the cbhe dissociating
gas will be introduced and the solution technique will bespreaed.

4.1 Eigenstructure of Euler equations

The Riemann problem of gasdynamics is formulated startmg the Euler equa-
tions written in quasi-linear form and with the energy bakwequation replaced
by the entropy transport equation under the assumptiorathatissipative phe-
nomena can be disregarded. The resulting system of hyperbgqlations of

gasdynamics assumes the form:

ow ow
ot TAW 5y =0

with vectorw and matrixA (w) defined as follows:

v U —v 0
oP oP
=1 u and A = i i
v ) <a) ! <a)
§ 0 0 u

21



22 Chapter 4 Riemann problem for dissociating gas

Here v denotes the specific volume, the velocity, s the specific entropy and
P = P(s,v)isthe pressure equation of state of the gas considered igéralues

of A(w) represent the speed at which information travels in the #inidl are the

eigenvalues of the characteristic equation:

|A(w) — A(w)I| =0.
which gives:
M(W)=u—c(s,v), M(w)=u, A(w)=u+c(s,v),

with c(s,v) = [0P(s,p)/0p]*/? denoting the sound speed of the fluid. These
eigenvalues are indipendent from the choice of the varsalded to formulate the
Euler system: using for example the dengitinstead of the specific volume
would have led to exactly the same values\pf

To understand the nonlinear nature of the Euler system we teagzompute
the eigenvectors associated with the three eigenvalueseigenvectors are easily
found to be:

v = (%), v
ri(w)= [ cls;v) |, ra(w)= 0 , r3(w)=| —c(s,v)
0 (%0), 0

4.2 Linear degeneracy and genuine nonlinearity

Every eigenvalug;(w) defines a scalar field in the space of vecters: (v, u, s)"

and every eigenvectat(w) defines a vector field in the same three-dimensional
space. At the same time, the gradient of the eigenvalye;(w) defines an-
other vector field. The linear or nonlinear nature of the wassociated to each
eigenvalue depends on a simple geometrical relationsipeea the field of the
eigenvector and that of the gradient of the correspondiggr®ialue, expressed
by the scalar produat(w) - Vi, A(w). If this product never vanishes, then the
eigenvalue is said to bgenuinely nonlineawhile if it is always zero than the
eigenvalue idinearly degenerate For the Euler equations we can observe that
the second eigenvalue is always linearly degenerate andhbdirst and third
eigenvalues are found to be such that:

ri(w) - Vodi(w)=cl' and r3(w):Vyul3(w)=—cl

where I" is the fundamental derivative of gasdynamics. As alreadywshin
chaptef®, the functioh’ never vanishes for the gas considered here.
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4.3 Contact discontinuity

We first analyze the contact discontinuity. Let us considerge travelling at a
speed given by the second eigenvalue of the Euler equatrmhsl@ermine the
change of the variables inside such a wave. This means tdetctor function
w = w(q) solution to the ordinary differential system:

dw _
dg
with ¢ a parameter which represents the indipendent variable.gnjaén arbitrary

function whose choice fixes a parameterization of the smtutiin terms of the
components of,(w), we have:

a(q) ra(w),

(dv OP(s,v)
dg —a(q) 95
du
7
ds OP(s,v)

\ d_q - Oé(q) 61) .

So, the velocity is constant through the contact discomtyinMoreover, the ratio
of the first and third equations gives

dv _ OP(s,v) /OP(s,v)
ds Os ov
Let us now define a function of three independent variables:

&(s,v, P) = P(s,v) — P,

so that the equatio®(s, v, P) = 0 implicitly defines a functionn = v(s, P). The
derivative ofv(s, P) with respect to entropy is obtained by means of the theorem
of partial derivation of the implicit functions:

0P(s,v, P) OP(s,v)

Qv ____9s ___0s
0s ) p 0P(s,v, P) OP(s,v)’

ov ov

Since this expression coincides with /ds along the contact discontinuity, the
pressure is constant along the wave considered, wheraad any other thermo-
dynamic variable different from pressure can experiencergjin its values.

To summarize, the characteristic of the contact discoittimithe constancy of
both velocity and pressure; as we will see, these conditidihise used to formulate
the Riemann problem as a system of two nonlinear equatiatisunknowns the
values of the temperature on both sides of the wave.
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4.4 Rarefaction wave

We now analyze the rarefaction wave. Let us consider a wakénlj a given
initial state(v;, u;, s;)T with the states belonging to thetegral curveswhich are
by definition the curves tangentin every point to the diattf a given eigenvector.
In other words, anintegral curve is the solution of the cadyrdifferential equations
system

dw

dg
with initial conditionw(0) = w; = (v;,u;,s;)". For genuinely nonlinear eigen-
vectors, it is possible to use the eigenvalue as the parametel = \q3(w(&))
of the curve. The derivative of this relation with respectétgives a(¢) =
+1/[c(s,v) I'(s,v)]. The system becomes:

a(q) 1'1|3(W)a

dW . ir1‘3(W)

ds c(s,v) I'(s,v)’ (4.1)

and must be solved with the initial condition(§;) = w;, with §; = Ay3(w;).
Substituting the expression of 3(w), the equation of the third component of
1) says that the rarefaction wave is isentropic.

Reminding the thermodynamic models introduced in chafersdB, we can
write in dimensionless form:

Uf(t7 v, a(ta U)) = 0y,

whereo; = o'(t;, v;, ;) anda; the solution ofa? + 3(t;, v;) (e — 1) = 0. The
determination of the isentropic trasformation of the gashwspecific entropy;
requires to solve a nonlinear system of two equations:

o(t,v,a,00) =o' (t,v,a) —o; =0

(4.2)
P(t,v,a) =a?+ B(t,v)(a—1)=0
which, for any fixed, gives the solutiom = v"®(¢, 0;) anda = o"(t, 0;) along
the isentrope passing through, v;). Thus, the solution of the rarefaction wave
for the case of the dissociating gas is more complicated filathe polytropic
ideal gas and requires the solution of the system (4.2) bynme&the Newton
method. The pressure is provided immediately by the equafistate:

P(T;i) = P(T,v"(T, 0;)).

The systeni{4]1) is reduced to only two equations and it isiptesto obtain a direct
relationship between velocity and specific volume by takirggratio between the
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two first equations. The first order differential equatiorséparable and can be
integrated to obtain:

v o
g (03 1) = u; £ / dsutl) gy
Vg v
As we have seen in the description of the thermodynamics efdiksociating
hydrogen gas, the most convenient independent variabl& tasdefine all the
other properties is the temperature. So, taKeas the independent variable, we
have:

P"®(T;i) = P(s;, T),

T / s
) c(s;, T") dv™(T";1)
() =k [ SR

K3

(4.3)

ar’.

The derivativeiv™'/dT can be evaluated by using the differentiation rule for im-
plicit functions:

0(¢, ¥) O O Db I
dv™  9(T,a) _ 9T da  0adT (4.4)
,) Do Do '

_ O
dar — 9(
(v, a) Ov o Oa Qv

Finally, we must notice that, when the solution of the Riemproblem consists
of two rarefaction waves, for particular values of the aditielocities it is possible
the formation of a region of vacuum behind the wave’s tailisTcircumstance
is identified by the vanishing of the temperature on the adrdecontinuity. We
can define a relative velocCityacuum

Te (50, T) dv™(T51) T (s, T) dv™(T;r)
Pvacuum = /0 sy ar /0 vty ar 0 49

such that, fow,, = u, — uy > yacuum @ region of vacuum occurs.

4.5 Shock wave

In this section the solution of the shock wave is obtainedgdneral the shock
moves with a speed # 0 with respect to the system of reference in which
the Riemann problem is defined. The solution is achievedgusia Rankine—
Hugoniot jump conditiond(w) — f(w;) = o[w — w;|, with f(w) the flux of
the hyperbolic system in the conservative form and= (p,m = pu, E%)". It
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is convenient to move to the frame of reference of the shocakhith the fluid
velocity isU = u — o, so that a steady-state version of the Rankine—Hugoniot
conditions is obtained, namely:

U;/v; =U]wv,
Ui/vi+ P, =U*v+ P,
U2+ e+ P, = U? + e+ Pu.
Combining the three equations leads to the purely thermamymrelation:
e(P,v) —e; + %(PZ + P)(v—v;) =0,
which defines? = PR(v; i) implicitly.

_uz

Using the definition of thenass velocity/ = 4 ' itis possible to obtain

v
the expression of the velocity behind the shock

uﬁg(v; i)=u; F \/— [PRH(U; i) — Pi] (v —;)

in which the subscript;; refers to the first and third eigenvalue of the Euler equa-
tions and the signs are determined by the property> 0 which guarantees that
the wave is compressive.

Similarly to the rarefaction wave, itis convenient to forliate the solution of the
shock wave in terms of the temperature. Reminding the theéymamic relations
of the dissociating gas, the Rankine—Hugoniot equationfoes, in dimensionless
form:

ef(t, a)— €+ %[pi +pf(t,v, a)} (v—1v;) =0,

weree; = €'(t;, a;), p; = p'(t;, vi, o) anday the solution ofv2+ 3 (¢, v;) (a; —1) =
0. The determination of the solution of the shock wave regumeolve a nonlinear
system of two equations:

d(t, v, a,0;) =€ (t,a) — € + %[pl +pf(t, v, oz)} (v—1v;) =0,
P(t,v,a) =a? + B(t,v)(a—1) =0,

(4.6)

which, for any fixed, gives the solutiom®™ = v(¢;i) anda = a(t; i) behind the
shock. The pressure is provided immediately by the equafistate:

PRY(T:i) = P(T,v"(T;1)). (4.7)
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Now the velocity after the shock wave is easily expressetarfarm

uﬁg(T; i)=w; F \/— [PRH(T; i) — PZ} [URH(T; i) — vi} ) (4.8)

The derivativedv™/dT can be evaluated by using the differentiation rule for
implicit functions:

900y 090y
do™ 9T da ~ dadT 4.9)
dr 090y 090y |
Ov da Oa Ov

4.6 Structure of the Riemann problem

Finally, the characteristics of the contact discontindegcribed in sectidn4.3 can
be exploited to formulate the equations representing teenBnn problem.

We will denote byu, (7°;1) and P(T'; 1) respectively the velocity and the pres-
sure after the wave which connects the left state (T, P, u,)" with a generic
state characterized by a temperatiiteThe analytical form of the two functions
u = uy(T;1) and P = P(T;1) depends on the nature of the wave that can be
either a shock wavel{ > T)) or a rarefaction wavel( < T;). Similarly, us(7;r)
andP(T’; r) denote respectively the velocity and the pressure aftavéive which
connects the right state= (7;, P,, u,)" with a generic state characterized by a
temperaturd’. We can summarize the form of (7’; 1) andus(7; r) as follows:

u®(T;)  ifT <T, u(Tyr) T <T,
uy(v;l) = and us(v;r)
uXNTY) T > T, uSN(Tye) T > T,

with the superscript§” and R denoting the solution of the rarefaction wave or
the shock wave given by equations{4.3) dndl(4.8). As already, the functions
defining the velocities depend on the eigenvaluasd3. Conversely, the functions
defining the pressure are indipendent from the eigenvald@sn

Plo:1) P&(v;l)  ifT <1y d Plo:r) P&(v;r) T <T,
v;l) = an v;r) =
PRA(; 1) T > 1T, PRA(y;r) T >T,

with P@ and PRH given by equationd14l.3) an@{#.7) respectively. To solee th
Riemann problem requires to determine the valligsl’*, P* andu* which char-
acterize the states on the two sides of the contact disaotytinTo simplify the
notation we will refer to the two unknowns @s= 7 andWW = 7T;*. To guarantee
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the property of equality of the values of velocity and preesan the two sides of
the contact discontinuity,’ andW must be the solutions of the nonlinear system
of two equations:

ur(T;1) = ug(W;r),
P(T:1) = P(W;r),

which can be written also as:

¢(Z,r) (T7 W) =0,
’l/}(é,r) (T7 W) = 07

wherep (T, W) = uq (T3 1) —uz(W;r) andy,y (T, W) = P(T;1)— P(W;r).
This system can be solved numerically with a Newton methdd¢chvneeds to
evaluate the Jacobian matrix:

duy(T51)  dug(W;r)

D) Yiery) dT dW
— T = . 4.10
a(T, W) dP(T;1)  dP(W;r) (4.10)
dT dw

For the case of the gas considéiethe expressions of the elements of the Jacobian
matrix, when the wave is a rarefaction wave, are the follgwin

dr  Twe(Tii) dT

duyjs(T'1) L (s T) dv™(T3)

and

dP®(T;i)  dP(T,v"™(T;i)) OP(T,v) N OP(T,v) dv™(T};i)
ar dT - T v dr

The derivativelv™(T';i) /dT is given by equatiori{4l4). On the other hand, when
the wave is a shock wave, the derivatives are:

dPRA(T;i)  dP(T,v®7(T;i)) _ OP(T,v) N OP(T,v) dvRH(T;i)

dT dT oT ov dT
and
_ dPRY(T ) ¢ s dv"(T50) - e
AT _ | g LT el [P - )
dT 24/ —[PRH(T; 1) — B][vRA(T;i) — vi]

2As well as for any mixture of nonpolytropic gases.



4.6 Structure of the Riemann problem 29

wheredvR™(T; 1) /dT is given by equatior{419).

The existence and uniqueness of the solution of the Riemanbigm can be
demonstrated under the assumption th&, v) /0v > 0. In this case the Newton
method will converge to the solution provided the initiakgs is close enough to
the solution: taking the initial guess as the arithmeticmadhe two initial values
T, andT, is simple and turns out to be also effective.
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5 Results

In this chapter the Hugoniot curves for the hydrogen gas esteginalyzed to high-
lightthe consequences of the dissociation. Then, residtsne Riemann problem
in the presence of dissociation and in the low temperatgiemere presented and
discussed. Three different kinds of solutions are consittesymmetrical solu-
tions with either two rarefaction waves or two shock waves! mixed solutions
with one rarefaction wave and one shock wave. A comparistwdan the results
obtained by means of the RVD and VD models is made. Initiatidtns for every
Riemann problem are suggested by the analysis of cHdpteo8jér to underline
differences between the models for certain initial thergmaoic data, as well as
to verify their equivalence for other initial data. Finalfgr the case of the shock
waves, a comparison with results provided.inh [5] is made.

5.1 Hugoniot curves

The Hugoniot curveor Hugoniot adiabatis fundamental in the study of shock
waves. It is the locus of all the thermodynamic stdtes”) which may be con-
nected by a single shock to an initial stétg, ;).

Starting from a small value of pressure (and so of tempezgttire Hugoniot
curve first tends to the vertical asymptote pertaining tadiaéomic undissociated
ideal gas. When pressure increases further, dissociatiouris and makes the
curve cross the diatomic gas asymptote. Then, for highespres, the Hugoniot
curve reaches a minimum valuewfafter which the curve has an inversion when
the dissociation is complete. Finally, the curve tendseoértical asymptote of the
monatomic gas, but from the left side instead of from thetrifigure L1 shows the
adiabats for the RvD and VD model. They agree quite well, pkioer small values
of the pressure after the shock. This will determine diffiees in the solution of
the Riemann problem with two shock waves in the low tempeeategion. The
dissociation coefficient after the shock increases with the shock strength because
the increment in temperature prevails over the diminiskpegific volume.

Furthermore, referring to Bates and Montgomeny [15], inieresting to no-
tice that, if the shock is strong enough, an exotic mechatkisown asacoustic
emissiorcould manifests. This is a shock wave instability which doesimply
an anomalous behaviour of the shock sidtes always positive. It requires the
slope of the Hugoniot curve to be within a critical range. Ufaf11 confirms this
occurrence for the hydrogen gas when the shock wave is swdmntect an initial
low temperature state to completely dissociated conditiorhe analysis of this
kind of instability is very important in the study of the ingsion ofinertial con-
finement fusion of pellet materiafor which the hydrogen is used. However, this

31
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subject goes beyond the aim of this work, we just wanted tavghat the criterion
for such shock instability can be met when the shock is stemaygh.

200 400 600
v [m/kg]

800

1000

P [Pa]

0.2 0.4 0.6 0.8 1

Figure 11: Left plot shows the Hugoniot curves for the RVDIi(goand VD
(dashed) model. Curves become red when instability ooiteis met. Vertical
lines represent the asymptotes for the diatomic undissatimolecular gas (left)
and the monatomic gas (right). Right plot shows the dissiotiacoefficienta
after the shock. For both plot the initial statelis= 30 K andv = 1000 m3/kg.

5.2 Shock waves

To have a symmetrical solution made of two shock waves, d@geainodynamic
conditions must be chosen initially on the two sides of treealntinuity, while

the velocities must be opposite, positive on the left andatieg on the right side.
First, we focus on initial conditions which can generatedissociation of the gas

after the shock wave.

A wide interval of initial temperatures00 K < T, < 7000 K and velocities
in the rangel300m/s < |ug| < 23000m/s, for values of the specific volume
1m?/kg < vg < 1000 m*/kg, have been analyzed.

It is possible to make a comparison between the resultsraatdly means of
the RVD and VD models. The analysis of chajifler 3 shows veryl sliffierences
on the thermodynamic properties when the mixture appr@aohe of the two
limiting conditions of molecular and atomic gas, espegitdr large values ob.
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Differences become more important when the ideal gas is pentjally dissoci-
ated and relatively dense. These conditions have an impatieosolution of the
Riemann problem. In fact, when the initial data are such thatgas is almost
undissociated or reaches a high level of dissociation tifeeshock (nea#0%), the
solution of the Riemann problem provided by the two modedswaerely equal and
the differences slightly exceed a féwon all the thermodynamic properties, show-
ing a tendency to increase withiv. When the shocks are strong enough to cause
only a partial dissociation of the gas (abdutto—40%), the differences become
more relevant omy, although they remain quite low on the other thermodynamic
properties. Since two different thermodynamic models aeslyit is impossible to
guarantee the same initial valuesfinda, for any fixed(7', v). It is interesting

to notice that, in this region of partial dissociation, théial difference of these
quantities is almost conserved after the shock. The geagrakment of the solu-
tions is due to the very small differences found in the Hugbourves for the two
models. Figur€2 shows the solution of the symmetrical Riemproblem with

To = 6000K, vy = 0.1 m?/kg andug = +6140m/s. We can see the substantial
agreement of the specific volume, pressure and temperatithreifferences all

< 1%. The difference on the value afon the contact discontinuity exceetd¥.

The results obtained by means of RVD and VD models can be cadpath
the data provided by NASA5]. This reference employs a tleetpmamic model
assuming rigid rotations and harmonic vibrations of theauoles, with a correc-
tion to take into account the coupling between these twoaneti The properties
behind the shock are obtained through an iterative methwd.different values of
the initial specific volume are taken into account and thedjéthe moving shock
us lies in the intervall km/s < us < 24km/s. The thermodynamic properties of
the gas behind the shock agree quite well with the refereata (@vith relative
differences< 5%), except for the composition of the mixture which differsdy
quantity15%—40%.

It is also interesting to study the solution of the Riemanabpegm for the
hydrogen gas fof’ < 150 K, due to the relatively high value of its rotational tem-
perature which spreads the transient between unexciteftiiydxcited rotations
in a wider interval of temperatures and at higher values tbawther diatomic
molecules. The analysis of chapiér 3 shows how the RVD and \dDets deter-
mine a completely different behaviour of some thermodyrgmoperties of the
gas, e.g. specific heats. Also the Hugoniot curves of figureohfirm substantial
differences between the models. This has consequences @olition of the
Riemann problem in the low temperature region which sholevaat differences
on pressure, specific volume and temperature on the consacrdinuity, respec-
tively of 3%, 7% and9%. Figure[IB shows the solution of the Riemann problem
for To = 50K andug = +1000m/s. The value of the initial specific volume is
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Figure 12: Two-shock symmetrical solution of the Riemanmbpem with initial
conditionsTy = 6000K, vy = 0.1m?/kg andug = +6140m/s, for the RVD

model (solid) and VD model (dashed).

not critical since, for very low temperatures, the paramzsge curves representing
the thermodynamic properties of the gas overlap and theveldifferences on the
solutions become independent.of
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Figure 13: Two-shock symmetrical solution of the Riemanobpem with initial
conditionsT, = 50K andu, = £ 1000 m/s, for the RVD model (solid) and VD
model (dashed). The variabteis not shown since for such small temperatures
the gas does not dissociate.
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5.3 Rarefaction waves

The symmetrical solution with two rarefaction waves neeilsal conditions on
the two side of the discontinuity characterized by the sdaraemodynamic states,
but opposite diverging velocities. As already pointed awectioi 4K, when two
rarefaction waves occur it is possible to have a region ofivactbehind wave’s
tails. The initial velocities which determine the formatiof vacuum depend on the
values of the initial thermodynamic properties of the gag)@ressed by equation

E@.3).

First, we focus on the domain of initial temperatures in \ihige rotational
motion is fully excited. Values of temperatur@é)0 K < 7Ty < 9000 K and specific
volume0.1 m?*/kg < v < 1000 m?/kg are considered, with initial velocities up to
the vacuum formation limit. In all cases the level of disstion of the gas decreses
after the wave. When two rarefaction waves occur, we expgbeh differences
than with the solution containing two shock waves, due toritegration between
the initial condition and the intermediate state which defithe velocities. The
analysis of the results confirms that. Differences on althlieemodynamic proper-
ties tend to increase with the initial velocity, this medret the more intense is the
rarefaction, the higher are the differences between the RMDVD models. The
highest differences are found when the initial gas is plritsssociated. Similarly
to the shock waves, they increase wittv. A change in the initial specific volume
from 1000 m? /kg to 0.1 m?/kg can triple or more the relative differences on the
thermodynamic properties which now reach high values nigtfon « but also for
P, T andv on the contact discontinuity. Figurel14 shows the solutf@Riemann
problem in which the rarefaction waves reduce gas dissonitom40% to 10%.
Differences of the values @f, v, P anda in the intermediate state are respectively
2%, 7%, 10% and14%. For P and«, we notice an increment of the differences
with respect to their initial values due to the differentrthedynamic models.

Moving the focus on the low temperature region, we notice the evalua-
tion of the integrall{413) requires particular attentiod: Gauss points have been
employed to guarantee the requested accuracy. Also, thenent computed
by the central Newton iteration have been reduced to avojdithe tempera-
tures. Figurédl5 shows the solution of the Riemann problerife= 150 K and
uy = F820m/s. The two models provide very different results, which nsaike
mandatory to adopt the RVD model in this range of temperatuiiéhe relative
difference on the temperature is ab8bifs. If we observe the specific volume and
pressure, differences are much greater. The RVD modelgee\a value ob in
the intermediate state which almost doubles the one prdwgethe VD model,
whereas gives a pressure which is one third of the other.
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Figure 14: Two-rarefaction symmetrical solution of the iR@&n problem with
initial conditionsTy = 7500K, uy = F23000m/s andv = 0.1 m?/kg, for the
RVD model (solid) and VD model (dashed). The choiceipfs such that the gas
can encompass the most critical values.of



38 Chapter 5 Results

1.5¢ 0.3r

0.03f
0.025¢
0.02

= o.018f
=

0.01

0.005F

-0.5 0 0.5
X

©T/Ty

Figure 15: Two-rarefaction symmetrical solution of the iRan problem with
initial conditionsT, = 150K, ug = F820m/s andv = 0.1 m?/kg, for the RVD
model (solid) and VD model (dashed).
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5.4 Mixed solution

Finally, Riemann problems with solutions characterizedh®s/presence of both
a shock wave and a rarefaction wave have been solved. Thdsokigsolution is
obtained when the initial thermodynamic states are differ&he pattern of the
waves of the solution is such that the shock wave always gatpa towards the
region with lower initial temperature or higher initial spigc volume.

Initial jJumps up to a factor0 for temperature anth00 for specific volume have
been analyzed. In general, we find that the mixed solutiorkersathe differences
between the solutions provided by the two models which awydan be neglected
only when the initial jump is very small. The most criticalusition is when the
initial jump in the specific volume is wery high. Figurel 16 sisothe Riemann
problem solution fofl = 5000 K andwv,. /v, = 1000, which produces differences
upto7%onT.
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Figure 16: Solution of the Riemann problem with initial carahs 7;, = 5000 K,
vy = 0.01m3/kg andv, = 10m?3/kg, for the RVD model (solid) and VD model
(dashed).



6 Conclusions

This work conducted a comparison between a completely stamithermody-
namic model (RVD) and two simplified ones (VD and HC) for a manet consist-
ing of a diatomic molecular gas that can dissociate into at@onstituents. The
complete model differs from the others on the treatment démadar rotations and
vibrations, which are completely coupled. The hydrogenga® been analyzed,
because of the high value of its rotational temperature.tfidenodynamic prop-
erties provided by the complete model have been comparédyito verify their
accuracy in the low temperature domain in which it gives a gletely different
description with respect to the simplified models. Also imaot differences have
been found when the gas is only partially dissociated (up te 0.4), this is
emphasized for small values of the specific volume.tempesradd

Then, starting from Quartapelle et all [4], a new formulatod the Riemann
problem of gasdynamics for the dissociating gas has beesdinted. The pres-
ence of the dissociation requires to solve an additionalimear problem to have
the solution of either the rarefaction wave or the shock weagch is now com-
putationally more expensive. The Riemann problem has bealyzed for the
gas models considered from very small values of the temyrerap to complete
dissociation and the results obtained by means of the RvVDvéhdhodels have
been compared. Results for values of temperature for whehatational motion
of the molecule is fully excited, i.&” > 300 K, have been considered. Reflecting
the initial thermodynamic comparison, the most importafiecences have been
found when the gas is only partially dissociated after tracklor the rarefaction
wave. In this case, the choice of the complete model is mangtd have the cor-
rect solution. The analysis of the low temperature regiatenimes the importance
of choosing the complete model which guarantees the codesatription of the
roto-vibrational molecular motion. For very small temgaras, the RVD and VD
models can provide completely different results, esplyciahen two rarefaction
waves occur.

Future work should be directed on the confirmation of the micakresults
by shock tube experiments as well as on the improvement ofdhgutational
efficiency of the solution by a Roe’s linearizatidn[16] oétRiemann problem for
the dissociating gas to be introduced in the numerical grligchemes by finite
volumes. Further work could be aimed at extending the thdymamic model
in order to have a description of an air model valid for hypars aerodynamic
studies. The application of a,Hnodel which allows ionization possibly in the
context of relativistic flows represents also a challengghwof being accepted.
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A Partition functions for molecular and atomic hy-
drogen

In this appendix the partition functions used to derive ttopprties of both molec-
ular and atomic hydrogen are introduced. In general thetjparfunction is ex-
pressed by:

Z(3,V,N) = Ze (A1)

where3 = 1/(kgT) with kg = 1.38065 x 10723 J/K denoting the Boltzmann
constant,N the number of the particles contained in the voluend E; the
total energy of the whole system in the microscopic sfatee summation being
extended to all of the possible states of the system. Whestarayis composed of
noninteracting material particles, such as the moleciulas @eal gas, the energy
of the system is the sum over the energies of all of its pagicAs a consequence,
the partition function can be factorized in elementary ipart functions of the
constituent elements. In particular, for a systerﬁVohdistinguishable identical
particles, the partition function becom&g3,V, N) = [Z(5,V)]V/N!, where
Z(6,V) is the partition function of a single molecule.

The energy levels of each single molecule are the eigervati¢he time
independent Schrodinger equation for the whole molecule:

Hy = B, (A.2)

in which ¢ is the wavefunction an@ denotes the hamiltonian operator which
comprises the total energy of the molecule.

Assuming that the energy of the particle has independeitiaeldontributions,
the partition function of the single molecule will assume tactorized form:

In the following, we will give the expression of the partitidunction of each
contribution used express the partition function of the \@maolecule H and atom
H.
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A.1 The hydrogen molecule
A.1.1 Translation

As is well knowf, the translational partition function of a free patrticle is

27rkaT) 3/2 v

Ze(T, V) = ( . (A.4)

wherem denotes the mass of the particle dnet 6.626068 x 10~2* m* kg/s the
Planck constant.

A.1.2 Rotation

As a first approximation, the rotations are assumed to be lsietpindependent
from the oscillation of the internuclear distance of the ecole. In sectioi”/ATl4
the two kinds of motion will be accounted for in a fully couglmodel to achieve
the correct energy levels.

The rotational energy of the quantum rigid rotor is
E; =j(G+ kT, j=0,1,2..., (A.5)

wherej is the rotational quantum number aifid= 7%/ (2ur?) therotational tem-
perature with 2~ = h/(27) being the rationalized Planck constamthe reduced
mass of the molecule and the equilibrium internuclear distance.

For most diatomic molecule§; assumes a very small value, of the order of
few kelvins, while for hydrogen molecule is relatively larfy ~ 88 K. Under the
assumption that the rotations are fully excited (thessical limif), the rotational
partition function becomes:

1 T
2P = (A.6)
r

with oag denoting the symmetry factor, equal to 1 for eteronucledemde and 2
for homonuclear, which couples the rotational and nuclese ®f atoms. Actually,
the expression for the homonuclear case is more complicaiédepends on the
nuclear spin of the atoms. This will be properly taken intocamt in sectiof’/AT14.

3See any text book dealing with statistical mechanics resulapplications such as [8,110] 17]
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A.1.3 Vibration

The simplest way to describe the vibrational motion of aah@t molecule is
using the harmonic oscillator model whose potentiaf {8) = 1k(r — r.)?, with

k denoting the elastic constant anthe distance between atomic nuclei. A closed
form solution for the vibrational eigenvalues can be aahikev

1
En:(n+§)hwo, n=20,1,2..., (A.7)

with wy = +/k/u, which are a uniform infinite ladder with separatiéw,.
This model is satisfactory just for small deviations fronuigiQrium bond length,
whereas for larger oscillations the parabolic approxioratif the potential must be
abandoned. Thiglorse potentialintroduced in[[3], provides a much more realistic
description of molecular potential:

V(r)=D.[(1=e ) <], forr>o, (A.8)

whereD, is the potential minimum depth,— r, the displacement from the equi-
librium distance-. and\ is a length scale of the Morse potential curve. The three
parameters depend on the molecule. The Schroédinger egquaitio the Morse
potential can be solved analytically and leads to the eigleles:

1 1
E’I’L — _D€+D€ |:2 - (n+ 5) Xe} (n+ 5) Xe, n = 07 1,2. . .777/["I'1ax7 (A.g)

wherex. = h/(\M/2uD. ). Energy levels for the Morse potential are no more
distributed with uniform density and tend to be closernascreases. Notice that
the integer values are limited by a maximum value,.x Which is obtained from
the conditiondE,,/dn = 0. A direct calculation providesma = 1/x. — 1/2.

It is easy to verify thatF,, .. = 0 and therefore the largest oscillatory Morse
mode corresponds to the dissociation of the molecule. Heheeanharmonic
Morse potential provides a valid description of the vilwatand dissociation of
the diatomic molecule. Figutell7 shows a comparison betteeharmonic and
the Morse potential.

Finally, the partition function for the Morse oscillatorsténe following form:

Z(T) = e Bnkel — gPe/keT N ™ grandu/T (A.10)
n=0 n=0

where we have introduced the shorthand= (n + 1) [1 — (n + 1) X] and the
vibrational temperaturd’, = hwy/ks.
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Figure 17: Potential curves and energy levels for the hartnped dashed) and
Morse (black solid) oscillators.

A.1.4 Roto-vibration

Till now rotational and vibrational degrees of freedom haeen considered as
completely independent. Overcoming this assumption isdatamy for hydrogen
molecule due to the relatively high value of its rotatiorehperature.

The Schrodinger equation for rotational and vibrationdlamonic motion
must be solved. No closed form solution exists, but many @ppration tech-
niqueE can give mathematical expressions of the eigenvalugswhich now
depend on both rotational and vibrational quantum numb@ise most useful
expression of theoto-vibrational eigenvalues is the one presented by Harris and
Bertolucci [22]:

2 [+ D] TG + D)’
1 2= (nt3)x] (04 3) xe
=35+ 1) (n+3) (1= £)(kxe)*,

wherex = \/r., which combines good accuracy and easy usage for our aim.

(A.11)

4Some examples can be foundin][8| 19,20, 21].
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In order to justify this choice we have compared the valueviged by [AT11)
with other numerical results (figufel18) as well as with ekpental data (figure

19).

err %]

Figure 18: Comparisons between energy levels obtained lapsnaf [AT1) with
parameters given biy[23] and reproduced in tBble 1 and neaieesults presented
in [24] (left plot) and [25] (right plot). Very small relatevdifferences between the
models justify the adoption of equatidn (Al11).

Figure 19: Comparison between energy levels obtained byysnefa[A11) and
experimental data presented In1[26]. Differences are venyfor most of the
guantum numbers, become relevant just for maximum valugso€in.

In expression[[AJl1) the levels must be limited by some makibound corre-

sponding to the achievement of stationary energy. In thegmterotational and
vibrational context, to determine the energy stationartyuires to evaluate the
partial derivative)E,, ;/on = 0 and0E,, ;/0j = 0 which leads to the cutoff
curve presented in figufel20.
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Table 1: Morse parameters used for the case of the hydrogkatute H,.

state  pfamu] A[A] 7. [A] k= )\r. Xe D, [em™!]
X! Z;r 0.504 0.525 0.741 0.7085  0.0571 38318

Unlike any other diatomic molecule, for which the cutoff la/ays due to unsus-
tainable vibrations, KHdissociates mainly for unsustainable rotations.

\

25

nabl e rotation

20

151

10

unsustai hab| e vibrati

Figure 20: Countour lines of the energy levels and cutoffewf the roto-vibration
spectrum for the hydrogen moleculg.H

In order to express the roto-vibrational partition funatiof hydrogen molecule,
we have to take into account the coupling between rotatiahtla@ nuclear state
of atoms in the case of the homonuclear molecule, more coatpli than the
one expressed in equatidn (A.6). Following the analysis wbd[10], they are

coupled through the Fermi statistics since hydrogen nacte-ermi particles with
half numbered spin. The coupling for the case of the hom@aucholecule is due
to symmetry requirement for the nuclear-rotational wavestion, in particular it

must chance its sign when two Fermi particles are interobdngd he argument
leads to the following expression for the nuclear-rotorailon partition function

for the hydrogen molecule:

Jmax B N )
ZWAT) = /%7 (2L + 1) (T +6;)(25 + e /' Y e/t (A12)
j=0 n=0

wherel}, = 1 isthe hydrogen atom spin numbet: 7'/7, is the adimensional tem-



A.1 The hydrogen molecule 49

peratureq) — [1 — (ot by - 3J(J+1)(1—m)nxe%]( +1),b; = b,T/T,
with b; = [1 — 7(5 + 1)(x*xe)?] j(j + 1) andd; a function which is equal to 1 for
j odd and O forj even.

A.1.5 Electrons

Since the electronic energy levels are largely spaced]ée&renic partition func-
tion is assumed to contain only the term corresponding t@tband molecular
state:

Zei(T) = g0eFolkeT (A.13)

A.1.6 Complete partition function for the molecule

Neglecting the simplest molecule model which consists msater classical rota-
tions and the harmonic oscillator, we focus on two differ@idels which differ
on how rotations are taken into account.

The first model considers the rotational degree of fredoiy &®cited, hence
uses equatiof(Al6). This avoids the problem of couplingdkegional and internal
partition function, as outlined at the endlof’Al1.2. Thus, plartition function for
the whole molecule is:

ZMﬂWzZi@ﬂWTWZ“WW%@)
2mmp, kg T 3/2 o
_ 0 a—Eon,/keT H2 B ksT —an/t
R G NS S
(A.14)

The second and more physically consistent model considerimplete coupling
between rotations and vibrations. The partition functionthe whole molecule
IS:

Zua(T.V) = Z3(T) Z4,(T, V) Z5™(T)

2mp, kT \ >
= gO e o /keT (7””’;; 5 ) Vel /tet (2], 4 1) (A.15)

Jmax

S Uk +6;)(2) + 1) “Ze*%/t

J=0
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A.2 The hydrogen atom

The case of the atomic hydrogen is less complicated than ¢ihecuoie since there
are neihter the rotational nor the vibrational degreessgfdom. The contributions
to the partition function come from translational motiowlanuclear and electronic
coupling. Thus, the partition function for atomic hydrogen

Zu(T, V) = Z§(T, V) Z{°*(T)

. < 27TmH k?BT 3

/2 (A.16)
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