
Politecnico di Milano

Facoltà di Ingegneria dell’Informazione

Tesi di Laurea in

Ingegneria Informatica

The Impact of SOA on
Interoperability:

a Systematic Literature Review

Supervisor Author

Luciano Baresi Marco Muffatti, 724742

Assistan Supervisor

Patricia Lago

Academic Year 2009/2010

Contents

1 Introduction. 7
1.1 What is SOA. 7
1.2 What is interoperability. 11
1.3 State of the art of interoperability in SOA. 13
1.4 Motivation of the work. 20

2 Systematic Literature Review. 22
2.1 Introduction. 22

2.1.1 Why. 22
2.1.2 Pilot study. 23

2.2 Review protocol. 26
2.2.1 Data sources. 26
2.2.2 Search strategy. 27
2.2.3 Study selection. 29
2.2.4 Data extraction. 31

3 Review Results. 37
3.1 Selected papers. 37
3.2 Selected sentences. 41
3.3 Classification of final sentences. 41

4 Findings. 44
4.1 Introduction. 44
4.2 Considerations on the SOA topics. 44

4.2.1 Building blocks. 44
4.2.2 Component modeling. 45
4.2.3 Composition. 46
4.2.4 Different service consumers. 47
4.2.5 Dynamic business process. 48
4.2.6 Heterogeneous components in the system. 49
4.2.7 Interfaces and adapters. 50

1

4.2.8 Many organizations in the system. 51
4.2.9 Open world. 52
4.2.10 Policies. 53
4.2.11 Services are located differently. 53
4.2.12 System Quality. 54

5 Conclusions. 56

Bibliography 62

A Selected Sentences. 63

B Pilot study. 86

2

List of Figures

1.1 SOA Architecture. 8
1.2 Service Interface and Adapter. 9
1.3 Client and Server SOA Layers. 10
1.4 Levels of Interoperability Model. 12
1.5 Example of Web Service Stack. 16

2.1 A Framework of SOA Concerns and Service-Oriented View-
points. 34

3.1 Selection of the Papers. 38
3.2 Distribution of Selected Papers by Year. 40
3.3 Selection of the Sentences. 41
3.4 Distribution of Selected Sentences for Each Paper. 41

3

List of Tables

2.1 Pilot Study Table A. 24
2.2 Pilot Study Table B. 25
2.3 Inclusion and exclusion criteria. 30

3.1 Number of Filtered Sentences for Each Selected Paper. 42

A.1 Building Blocks. 64
A.2 Component Modeling. 65
A.3 Composition. 68
A.4 Different Service Consumers. 70
A.5 Dynamic Business Process. 72
A.6 Heterogeneous Components in the System. 76
A.7 Interfaces and Adapters. 77
A.8 Many Organizations in the System. 80
A.9 Open World. 82
A.10 Policies. 83
A.11 Services Are Located Differently. 84
A.12 System Quality. 85

B.1 Pilot Table. 87

4

Abstract.

Service-Oriented Architecture (SOA) is an emerging software approach to im-
plement distributed systems. It is based on the integration of heterogeneous
applications to deal with rapid changes in the business goals. Independent
services are the components of the system. Loosely coupling and dynamic
binding enable a much more flexible integration than existing solutions. Ho-
wever, adopting Service-Oriented Architectures has many implications on the
system and its quality. Interoperability is a quality attribute that refers to
the ability of two or more elements to exchange information and to use it.
Starting from some differences between Service-Oriented and traditional soft-
ware engineering we highlighted in previous studies, we want to analyze the
impact of SOA on interoperability. Our methodology consists of a systematic
literature review, which aim is to provide evidences relevant to the mentio-
ned issue. We used as sources some digital libraries and we documented
all decisions concerning selection criteria, so other reviews can be performed
using this model. Review findings point out that differences between SOA
and traditional approaches have different impacts on different interoperabi-
lity levels (in particular syntactic, semantic and pragmatic). Our studies and
considerations do not refer to specific applications or technologies; however,
sometimes we introduced Web services examples to clarify practice concepts
or real adopted solutions.

5

Prefazione.

Negli ultimi anni le architetture orientate ai servizi stanno avendo una diffu-
sione sempre più ampia in ambito sia industriale sia accademico. Questo tipo
di approccio si basa sull’integrazione di elementi, detti servizi, che permette
di raggiungere gli obiettivi di business richiesti. Nonostante la loro natura
molto eterogenea, i servizi possono essere composti in sistemi molti com-
plessi, sfruttando il loro forte disaccoppiamento e la possibilità di effettuare
binding dinamici a runtime. Un aspetto che ricopre un ruolo fondamentale
all’interno di queste architetture è il livello di interoperabilità raggiunto tra
i vari partecipanti. In questo report andremo ad analizzare l’impatto che ha
un approccio orientato ai servizi su questo attributo di qualità attraverso un
insieme di differenze, ricavate da alcuni studi precedenti, tra l’ingegneria del
software tradizionale e quella dei sistemi Service-Oriented. Il nostro metodo
è basato su una revisione letterale, eseguita in maniera sistematica per giun-
gere ad una serie di evidenze riguardanti la nostra questione. Partendo da
alcune librerie digitali abbiamo definito tutti passi necessari per il raggiun-
gimento del nostro obiettivo nella maniera più formale possibile e abbiamo
giustificato tutte le nostre scelte in modo da poter anche riutilizzare questa
struttura come punto di riferimento per altri lavori simili a questo. I risultati
della revisione ci hanno portato a sostenere che le differenze tra SOA e le
architetture software tradizionali hanno un impatto diverso ad ogni livello
dell’interoperabilità, in particolare in quello sintattico, semantico e pragma-
tico. Nonostante tutte le analisi effettuate abbiano una validità generica,
abbiamo menzionato in alcuni casi le soluzioni adottate dai Web services, i
quali rappresentano la tecnologia orientata ai servizi più diffusa oggigiorno.
Ciò può essere utile per capire meglio alcune problematiche reali e la situa-
zione attuale di alcuni aspetti pratici delle SOA.

6

Chapter 1

Introduction.

1.1 What is SOA.

A Service-Oriented Architecture is a set of services. These components can
be invoked and their interface description can be published and discovered.
Each service is the endpoint of a connection, which can be used to access the
service and interconnect different services. Communication among services
can involve only simple invocations and data passing, or complex coordi-
nated activities of two or more services [1]. Basically, a Service-Oriented
Architecture is very simple: a service is exposed through a remote interface
(well-defined by an interface description that contains all the details about
the service) then it advertise itself at a central lookup service, sometimes
named broker. Client applications can find advertised services, by some pro-
perties, in the lookup service and they receive information about interaction
details of how to communicate with the desired service.

The service provider offers a service to service clients, or consumers. So-
metimes the service is not fully realized by the service provider implemen-
tation, but it can involve some backends, such as server applications, legacy
systems, ERP systems and databases. Flexible integration of heterogeneous
backends systems is one of the main goals of a SOA [1]. The use of backends
in SOA is not strictly necessary but it is very important because they are
involved many times in the service implementation. The service directory
has a central role in the architecture. It contains references of services pu-
blished there and clients can look them up in the registry. Object IDs are
assigned to each service. These IDs are valid only in the context of a specific
application and an absolute object reference solves this problem including
location information, such as host name and port.
The interaction between service client and service provider is defined by ser-

7

CHAPTER 1. INTRODUCTION.

Fig. 1.1: SOA Architecture.

vice contracts. Design-by-contract approach is used as reference model be-
cause a service needs to be specified more than simple remote interactions,
such as RPC-based invocations.
The service contract includes the following information about a service:

• communication protocols

• message types, operations, operation parameters, exceptions

• message formats, encodings, payload protocols

• pre- and post-conditions, sequencing requirements, side-effects, etc.

• operational behavior, legal obligations, service-level agreements, etc.

• directory service

Not all of these contract elements can be easily implemented. Communication
and message properties are usually described with interface descriptions. The
interface description of a Service-Oriented Architecture is more complex than
those of a distributed object-oriented middleware because it has to describe
a wide variety of message types, formats, encodings, payloads, protocols, etc.
Lookup (or broker) is used to locate or obtain the interface description and
the absolute object reference of a service. In addition, some of them provide
other information about the service that is missing in the interface descrip-
tion, such as operational behavior, legal obligations and SLA. Furthermore,

8

CHAPTER 1. INTRODUCTION.

specific-domain service properties or metadata of services exist.
A service contract can be realized with explicit and implicit contract spe-
cifications in electronic or non-electronic form. Implicit and non-electronic
contract specifications are not very useful because a client would not be inde-
pendent of provider features and this would contradict the principle of loose-
coupling. Using explicit, electronic form and accessible at runtime contract
elements, the broker can retrieve the best service provider for each consumer
request.

To understand SOA it is useful to introduce the concept of interface and
adapter. In fact, SOA is used within larger client and server applications and
services are used only for integration purposes. Adding a service interface
to the server application and a service adapter on the client side allows to
isolate applications from changes in SOA (or in service contract). Using these

Fig. 1.2: Service Interface and Adapter.

components some problems arise because services sometimes are message-
oriented, while other times they are RPC-oriented. As consequence different
kinds of protocols are used, such as reliable messaging protocols or unreliable
asynchronous RPC. Both client and server applications have to support many
different service adapters and service interfaces.

We can identify four main layers in a Service-Oriented Architecture.

9

CHAPTER 1. INTRODUCTION.

Usually this architecture is highly symmetrical on client side and provider
side. In addition, orthogonal tasks (or aspects) implemented across these
layers exist. Figure 1.3 shows them. Starting from the top, the main SOA

Fig. 1.3: Client and Server SOA Layers.

layers are:

• service composition. It includes all functionalities to compose services,
such as implementations of service orchestration, service coordination,
service federation or business process management. This layer is not
mandatory and it is not always implemented.

• client application/service provider. This layer performs client invo-
cations (service consumer side) and service implementations (service
provider side).

• remoting. This layer implements the middleware functionalities of a
SOA. It is composed by three sub-layers: invocation, adaption and
request handling. These details of the consumer and provider are hid-
den because the broker hides and mediates all communication between
the components of the system. The invocation layer is responsible for
marshalling/demarshalling and multiplexing/demultiplexing of invoca-
tions/replies. The adaption layer adapts invocations and replies in the
message flow. The request handling layer manages the basic tasks of
establishing connections and message passing between consumer and
provider.

10

CHAPTER 1. INTRODUCTION.

• communication. The communication layer defines the message flow
and it manages the operating system resources, such as connections,
handles, or threads.

Vertical tasks involve all SOA layers. They are orthogonal aspects useful
to realize every component of the architecture, such as security of services,
descriptions, management functionalities for services, etc.

1.2 What is interoperability.

There are many definitions of interoperability because the term can have va-
rious interpretations in different contexts [2]. We can certainly assert that in
software engineering context interoperability is a software quality attribute,
a property of the system useful to evaluate the quality of service (QoS) pro-
vided by the overall solution.
IEEE has four definitions of interoperability [3]:

• the ability of two or more systems or elements to exchange information
and to use the information that has been exchanged.

• the capability for units of equipment to work together to do useful
functions.

• the capability, promoted but not guaranteed by joint conformance with
a given set of standards, that enables heterogeneous equipment, gene-
rally built by various vendors, to work together in a network environ-
ment.

• the ability of two or more systems or components to exchange informa-
tion in a heterogeneous network and use that information.

Summarizing we can say that interoperability is the possibility to let some
different entities communicate inside a common environment, to understand
and to use information exchanged between them. In particular, for our aims,
interoperability is the ability of software and hardware on various machines
from various vendors to communicate with each other without significant
changes to either side [4].

Several interoperability models have been introduced in the literature to
classify interoperability levels, such as Levels of Information System Interope-
rability (LISI) model or the NATO Model for Interoperability [2]. However
these are technical models, too much related to the underlying technology or
domain. Levels of Conceptual Interoperability Model (LCIM) was proposed

11

CHAPTER 1. INTRODUCTION.

to deal with conceptual interoperability issues beyond technical interopera-
bility [5]. We can use it as reference to classify different levels of interope-
rability. LCIM has seven levels, from “no interoperability”, the lowest, to
“conceptual interoperability”, the highest, as illustrated in Figure 1.4.

Fig. 1.4: Levels of Interoperability Model.

• level 0: stand-alone without connection systems have no interoperabi-
lity.

• level 1: on this level a common communication protocol exists for ex-
changing data between participating systems. A communication infra-
structure is established allowing it to exchange bits and bytes through
underlying defined networks and protocols achieving a technical inter-
operability.

• level 2: the syntactic interoperability level relies in a common structure
to exchange information, like unambiguously defined data formats.

• level 3: on semantic interoperability level the meaning of data is shared.
A common information exchange reference model is used to reach this
level.

12

CHAPTER 1. INTRODUCTION.

• level 4: pragmatic interoperability is reached when the entities are aware
of the methods and procedures that each other are employing. Systems
have to understand the use of data; the context in which the information
is exchanged is unambiguously defined.

• level 5: since data and operations change over the time the state of each
system will be modified. Dynamic interoperability means that systems
are able to comprehend the state change that occur in the assumptions
and constraints that each other is making over the time, in particular
in the effects of operations.

• level 6: conceptual interoperability is the highest level of interoperabi-
lity. It requires that conceptual models will be documented based on
engineering methods enabling other engineers to interpret and evaluate
them. In other words, we need a fully specified but implementation
independent model with assumptions, constraints, etc.

Actually, not all of these levels are strictly related to interoperability. In fact,
level 1 is likely inherent to integratability, defined as the quality of an appli-
cation that makes it easier for it to exchange data with another incompatible
application. High levels, like level 5 and level 6, concern composability (the
principle that deals with the capability of software components, or modules,
to be combinated and assembled in various combinations to meet user requi-
rements). If we exclude level 0 (no interoperability) we can focus on level 2,
level 3 and level 4. These levels of interoperability are the most important
in current software systems and many studies have been made about them
because they are easier than dynamic and conceptual interoperability but
more efficient than technical interoperability.
In addition, we can introduce two different roles about interoperability: des-
criptive and prescriptive. The descriptive role of interoperability model al-
lows to evaluate a real system and to estimate its interoperability level. The
prescriptive role suggests the approaches and requirements that must be sa-
tisfied to reach a certain level of conceptual interoperability; it is a sort of
interoperability guidance model to follow at design time.

1.3 State of the art of interoperability in SOA.

Service-Oriented Architecture is an approach focused on software develop-
ment to build loosely coupled distributed applications using a collection of
services. Loosely coupled property is a fundamental principle of this kind
of architecture. It means that services interactions are neither hard coded

13

CHAPTER 1. INTRODUCTION.

(like in Object Oriented Programming) nor specified at design time (like in
Component Based Modeling). On the contrary services are defined out of
any execution context and interact on the fly without any prior collaboration
agreement [6]. Again, loosely coupled reduces both the complexity and the
cost of resources, communication and management [7].

The problem of interoperability is old as the existence of software systems
[8]. A first idea was to make enterprise applications interoperable via central
databases. This approach failed because of semantic problems; not enough
semantics could be covered in the database schema to understand the se-
mantics of data. Then non-interoperable applications were created based on
decentralized data management. Another attempt was to save the original
vision of data independence by federated databases. For the same previous
reason it failed because it was impossible to create a global understanding of
data without referring to application semantics, let alone business semantics.
Another school of interoperability has been concerned with standardizing
system interfaces in a way that one system can call the other system. Some
of them are RPC, CORBA, JEE and .NET. Here the problem of interopera-
bility is only about technical level and it fundamentally relies on information
hiding. It is very easy to call remote service with the parameter values that
are completely non-sensical.
Today we can assert that technical interoperability is achieved. Most of ser-
vice technologies rely on well-defined network protocols to exchange any data
in every communication stage.

In this report we do not want to discuss SOA technologies because our
concepts have to be valid for any architecture based in services. Anyway in
this section we will consider some implementations of SOA to understand
what interoperability means in practice and how it is realized in every level.
The most well-known instantiations of the service-oriented computing para-
digm are Web and Grid services, but there are also other types such as P2P
(Peer-to-Peer) services, which are currently gaining importance [9].
In particular, Web services (a.k.a. WS) are the most used SOA instantia-
tions. They promise universal interoperability and integration by establishing
commonly agreed protocols for mutually understanding what a service offers
and for delivering this functionality in an implementation independent way.
Interoperability of legacy applications is also enabled facilitating a seamless
integration between heterogeneous systems. Furthermore, new services can
be created and dynamically published and discovered without disrupting the
existing environment. Thus, WS technology provides a means of interopera-
ting between different software applications running on a variety of platforms
and frameworks.
The various WS standards and enabling technologies address technical level

14

CHAPTER 1. INTRODUCTION.

interoperability. The common standards for WS description publication and
invocation are WSDL, UDDI and SOAP. These XML-based protocols have
become standards de facto for web services, especially WSDL (Web Service
Definition Language) and SOAP (Simple Object Access Protocol) that pro-
vide the basis of service API description and service interoperation [10]. Web
service technologies are evolving toward being able to support more advan-
ced functionalities such as discovery, security, transactions, reliability, and
collaborative processes management.
Several proposals have been made with some standards like UDDI (Univer-
sal Description, Discovery and Integration), WS-Security, WS-Transaction,
WS-ReliableMessaging, BPEL4WS (Business Process Execution Language
for Web Services) and WSCI (Web Service Choreography Interface). These
standards constitute the basis on top of which developers can develop reliable
and secure communication among services.
At the messaging layer, Web services use SOAP for document exchange and
encapsulation of RPC-like interactions. However, the extensibility points
provided in the specification are the source of interoperability issues. Ins-
tead, at the content layer WSDL describes Web services as collections of
endpoints (port type) that describe the structure of the messages the service
support [10].
Several standards, not only about interoperability, are present in the WS
stack but usually only some of them are involved in a Web service imple-
mentation. In fact, more than one standard may cover the same aspect (for
example WS-Reliability and WS-ReliableMessaging describe two different
protocols concern Web service message reliability) or a standard cannot be
used, such as WS-Security, WS-Management. . . Figure 1.5 shows a possible
implementation of Web service stack.
Formally these standards and protocols are specifications. As mentioned
specifications may complement, overlap and complete each other. They are
usually referred as “WS-*”. Nowadays more than 80 specifications exist but
only few of them are largely used in implementations. Focusing on WSDL
and SOAP we must specify that the first is not a protocol but a common
language for defining Web service interfaces whereas the second is a proto-
col specification for exchanging structured information. Both rely on XML
(extensible Markup Language) and the latter relies on application layer pro-
tocols, usually HTTP/S.
SOAP, WSDL and WS-Security are currently the most widely adopted and
used specifications [11]. Although most platforms support UDDI, it is not
widely used. Increasing interest in modeling service process and composition
has led developers to support WS-BPEL.

All specifications are defined by organizations and each developer can

15

CHAPTER 1. INTRODUCTION.

Fig. 1.5: Example of Web Service Stack.

choose which one to adopt. Web Services Interoperability Organizations,
an industry consortium chartered to establish best practices for Web service
interoperability, has defined specifications with regards to interoperability,
named WS-I (Web Service Interoperability). It is not a protocol but a set of
guidelines and tests. It relies on profiles that describe adherence to a group of
specific versions of well-defined standards [12]. It is also their goal to provide
tools and certify conformance with the profiles. Many Web service products
were updated in recent years because of this initiative, in fact we can find
commonly “compliant with WS-I Basic Profile 1.1” in data sheets nowadays.
Unfortunately, WS-I has created a few profiles and other deliverables but
a lot of work has to be done to cover all layers and standards in the Web
service stack. Furthermore, WS-I profiles are not enough to satisfy all current
industry requirements and they are only limited to elements of syntactic
interoperability [13] and nothing has been made to address semantic issues.
In fact, using XML interoperability among services developed by different
organizations is guaranteed. Interoperability requires semantic as well as
syntactic agreements in order to succeed [7].

Semantic interoperability is concerned with ensuring that the exchanged
information has the same meaning for both message sender and receiver [14].
The data in the message have a meaning only when interpreted in terms of
the respective subject domain models. However, the message sender does
not always know the subject domain model of the receiver. Depending on

16

CHAPTER 1. INTRODUCTION.

its knowledge, the message sender makes assumptions about the subject do-
main model of the receiver and uses this assumed subject domain model to
construct a message and to communicate it. Semantic interoperability pro-
blems arise when the message sender and receiver have a different conceptua-
lization or use a different representation of the entity types, properties and
values from their subject domains [14].
Some examples of conflict are:

• naming conflicts: the representation is used to designate different enti-
ties, entity types or properties, or, conversely, different representations
are used to designate the same entity, entity type or property.

• generalization conflicts: the meaning of an entity type or a property
is more general than the meaning of a corresponding entity type or
property.

• aggregation conflicts: an entity type or a property partially overlaps a
corresponding entity type or property.

• isomorphism conflicts: the same entity type or property is defined dif-
ferently in different subject domain models.

• identification conflicts: the same entity is identified by different pro-
perties.

• entity-property conflicts: an entity type is modeled as a property.

A necessary condition for the semantic interoperability of two systems is the
existence of a translation function that maps the entity types, properties and
values of the subject model of the first system to the respective entity types,
properties and values of the subject domain model of the second system [14].
Coming back to our example of Web services, we can find different specifi-
cations about Web services semantic interoperability. Most of them rely on
ontology to represent information in a domain, in particular on OWL (Web
Ontology Language), a family of knowledge representation languages for au-
thoring ontologies. The most used Web service implementations of OWL are
OWL-S, WSMO, METEOR-S and WSDL-S.
The first one consists of three interrelated subontologies, known as profile,
process model and grounding [10]. The profile describes the capabilities and
parameters of the service. The process model details both the central struc-
ture and the dataflow structure required to execute a service. The grounding
specifies the details of how to access the service (communication protocol,
message formats, addressing, etc).

17

CHAPTER 1. INTRODUCTION.

WSMO(Web Service Modeling Ontology) provides a conceptual framework
and a formal language for semantically describing all relevant aspects of Web
services in order to facilitate the automation of discovering, combining and
invoking electronic services over the Web. It identifies four top-level elements
as the main concepts for describing several aspects of semantic Web services
[6]:

• ontologies. All resource descriptions as well as all data interchanged
during service usage are based in ontologies. The core elements of
an ontology are concepts (the basic entities of the agreed technology),
relations (model interdependencies between several concepts), instances
and axioms (define complex logical relations between the other elements
defined in the ontologies).

• WSMO Service description. A service capability describes the provi-
ded functionality. A capability is described in terms of preconditions,
assumptions, postconditions and effects. A service interface describes
the behavioral aspects of a service in terms of choreography (how they
interact with the service to consume its functionality) and orchestra-
tion (how service functionality is achieved by aggregating other Web
services).

• goal. We can define WSMO goal as an high level description of a task
required to be solved by Web services. Similar to a WSMO service, a
goal consists of non-functional properties, a capability describing the
user objective and an interface reflecting the user behavior require-
ments.

• mediation. WSMO ensures dynamic interoperability by defining me-
diators during design time that will be used by mediation components
during runtime to resolve heterogeneity on the fly. A mediation tries to
resolve mismatching that may arise between different used technologies
(data level), or interaction protocols (process level).

METEOR-S project addresses the usage of semantics to support the com-
plete lifecycle of Semantic Web processes using four kinds of semantics: data,
functional, non-functional and execution semantics [6]. The data semantics
describe the data (inputs/outputs) of the Web services. The functional se-
mantics describe the functionality of a Web service (what it does). The
non-functional semantics describe the non-functional aspects (like Quality of
Service and business rules). The execution semantics model the behavior of
Web services and processes. METEOR-S does not define a fully conceptual

18

CHAPTER 1. INTRODUCTION.

model for Semantic Web services description but it follows a light-weight ap-
proach by extending WSDL files with semantic annotation. The semantic
annotation is achieved by mapping WSDL elements to ontological concepts.
Specification for WSDL is named WSDL-S, a W3C member submission that
provides a mechanism to annotate the capabilities and requirements of Web
services (described using WSDL) with semantic concepts defined in an ex-
ternal domain model [15]. Externalizing the models allows WSDL-S to take
an agnostic view towards semantic representation languages. This allows de-
velopers to build domain models in any preferred language or reuse existing
domain models.

The third level of interoperability we highlighted in previous sections is
pragmatic interoperability. Semantic interoperability adds meaning to syn-
tactic elements but semantics do not use it. Pragmatic interoperability is
concerned with ensuring that message sender and receiver share the same
expectation about the effect of the exchanged messages [14]. When a system
receives a message it changes its state, sends a message back to the environ-
ment or both. In most cases, messages sent to the system change or request
the system state, and messages sent from the system change or request the
state of the environment. That is, the messages are always sent with some
intention for achieving some desired effect. In most of the cases the effect
is realized not only by a single message, but by a number of messages sent
in some order. Pragmatic interoperability problems arise when the intended
effect differs from the actual effect.
A necessary condition for pragmatic interoperability of a single interaction is
that at least one result that satisfies the constraints of all contributing sys-
tems can be established. Being a service a set of related interactions between
the system and its environment, another necessary condition for pragmatic
interoperability of a service is that the previous condition is met for all of its
interactions and they can occur in a causal order, allowed by all participating
systems. Pragmatic interoperability can only be achieved if systems are also
syntactically and semantically interoperable [15].

About Web services specifications able to ensure pragmatic interopera-
bility do not exist. Some models have been proposed but none of them has
been implemented in practice for Web services. These models usually rely
on mapping information (like in semantic interoperability) and system beha-
vior, and definition of conditions and constraints of information exchanged
between services.

19

CHAPTER 1. INTRODUCTION.

1.4 Motivation of the work.

SOA is a rather recent architectural pattern. Many studies have been made
in last years to formalize this new way of developing software but there are a
lot of aspects that have not yet been discussed or have been partially consi-
dered. Moreover, most of the implementations of SOA have been developed
by industry, and then each vendor produced its own applications, following
only some main guidelines. Just after the first applications, industries deci-
ded to define some useful standards to develop service-oriented components
and to exchange information. Then, also other software organizations, like
W3C, released their open standards, in particular for Web services, the most
widely implementation of SOA. Starting from previously studies that tried
to highlight differences between Traditional Software Engineering (TSE) and
Service-Oriented System Engineering (SOSE), we want to study which is the
impact that Service-Oriented Architectures have on interoperability. Indeed,
a new architectural pattern not only affects the software design of the system,
but also its quality attributes.

Quality attributes are non-functional requirements that describe the ove-
rall quality of the system. Achieving system goals for runtime quality at-
tributes is critical for developers of applications that consume services for
several reasons [13]. In fact application developers:

• need to be confident that the services (and compositions of them) will
meet end user quality requirements.

• need to understand the cost and risk of achieving quality requirements,
given that system qualities often must be traded off or built in.

• require information for selecting between alternate services with similar
functional capability.

• require information about QoS (Quality of Service) to monitor and
enforce Service Level Agreements (SLAs).

Dozens of quality attributes exist, such as reliability, availability, usability,
security performance, interoperability. . . It is the latter that we are going to
study and to analyze although some surveys have already been done.
Some researchers argue that through the use of the underlying standards, a
SOA provides good interoperability, allowing services and applications built
in different languages and deployed on different platforms to interact [15].
Moreover, they claim that the impact of SOA on interoperability is good
because interoperability is the major benefit of services although semantic
interoperability is not fully addressed and its supported standards are still

20

CHAPTER 1. INTRODUCTION.

immature.
Actually, we think that a better study has to be done because sometimes
studies concern Web services instead of SOA. As consequence, many conclu-
sions may not be exactly related to this architectural pattern but specific to
an implementation.

We decided to perform a systematic literature review, following the algo-
rithm described in the next chapter. Results of this selection will be analyzed
through differences between Traditional Software Engineering and Service-
Oriented System Engineering. By doing this, we will obtain systematic re-
sults that will be the basis of our considerations of the impact of Service-
Oriented Architecture on interoperability.
All criteria that we have chosen will be justified in the following chapters
so that other systematic reviews can be easily made using ours by simply
changing values of parameters.

21

Chapter 2

Systematic Literature Review.

2.1 Introduction.

This chapter describes how we realized the review. Firstly we will explain
why we have decided to adopt a systematic literature review and our pilot
study. Indeed, some guidelines derive from results of an initial work that
allowed us to focus on main concepts for the review.

The second section instead shows the review protocol we followed, moti-
vating all decisions we have taken about sources, strategies and selections.
Results and their classification will be analyzed in next chapters.

2.1.1 Why.

We decided to perform a systematic literature review to analyze and discuss
the impact of SOA on interoperability because this kind of approach will
allow us to identify and select all high quality research evidence relevant to
our issue. Systematic means that an explicit method has been performed to
achieve results. We use some digital libraries as source and the first step has
been the definition of the search strategy; then we have defined some criteria
to filter these papers, selecting those relevant for our topic and excluding
the others. The next step has been the data extraction, which consisted in
the selection of all sentences in papers that contained keywords relevant for
our subject. Subsequently, we have defined the criteria to select sentences
that described the impact of SOA on interoperability and which difference
(or differences) between traditional and service-oriented engineering they in-
volved. Finally, we have grouped final sentences by topic because this kind
of organization allows us to analyze all findings more easily.
Therefore the steps of our systematic literature review are:

22

CHAPTER 2. SYSTEMATIC LITERATURE REVIEW.

• data sources: search engines selection.

• search strategy: query definition.

• study selection: inclusion/exclusion criteria.

• data extraction: selection and filtering of relevant data (sentences).

These procedures are very systematic and we can say that this is the most
static part of the protocol. It is a sort of workflow that we have to follow
in order to identify valid evidence. Obviously results will depend on values
of parameters we are going to use. The choice of these values is the most
variable part of the protocol and we cannot rely on automated methodologies
to obtain the most appropriate values for our aims.

To solve this issue we did a pilot study that helped us understand the
main topic, the most recurrent mistakes as well as paper compositions and
keywords. We extracted from this study very useful information for the sys-
tematic literature review because we could focus more on our goals. Starting
from it, we deduced many keywords for selections, some inclusion/exclusion
criteria and how to classify final sentences. Next paragraph discusses about
this preliminary study and its details and results are shown in Appendix B.

2.1.2 Pilot study.

When we started our work we did not know which was the actual state of
research about quality attributes in Service-Oriented Architectures so we de-
cided to do a study about SOA and quality attributes. Previous studies
argue that differences between Traditional Software Engineering (TSE) and
Service-Oriented System Engineering (SOSE) exist. In particular [16] it de-
fines 7 differences between these two approaches. We want to use them to
analyze the impact of Service-Oriented Architectures on interoperability, se-
lecting sentences from papers that involve at least one of these differences.
The pilot study has not been very systematic, indeed we have taken some
papers regarding SOA not specific to interoperability. The choice of interope-
rability has been made later. Initially, we wanted to understand the impact
of SOA on quality attributes through the differences highlighted in previous
studies. Since many quality attributes exist we decided to split the work for
every attribute. The choice of interoperability derives from the high quan-
tity of discussions about it in SOA, in particular in Web services applications.
Furthermore many aspects of it are discussed in literature now, being services
a recent software system approach. Other interesting quality attributes are
surely security, reliability, availability, scalability and performance because

23

CHAPTER 2. SYSTEMATIC LITERATURE REVIEW.

they represent key points of this kind of architecture. A full research should
also involve other attributes, such as usability, extensibility, adaptability, tes-
tability, auditability, modifiability, operability and deployability.
Obviously, understanding the impact of a new software pattern on quality
attributes is very useful because it allows us to evaluate the quality of the
overall system and, eventually, to modify the design or the implementation
of our project. Furthermore, the use of differences helps us to take decisions
about the adoption of SOA by organizations because many problems arise
during the implementation and the integration of service-oriented solutions.
Now, we are going to describe the steps of our pilot study. Appendix B
contains all details and results. Firstly, we took some generic papers about
Service-Oriented Architectures, not specific of quality attributes. Initially,
we wanted to create a table with differences between traditional and service-
oriented systems and all main quality attributes. Then, reading the 12 pa-
pers, we should try to tick the cells representing an impact of a difference on
a quality attribute. In this way a check for each attribute meant that SOA
has an impact on this attribute through a difference (or more than one).
The table was structured as Table 2.1.

Diff A Diff B Diff C Diff D Diff E Diff F Diff G
QA 1 x
QA 2 x x x
QA 3

Table 2.1: Pilot Study Table A.

We have to read the example table as:

• SOA has impact on Quality Attribute 1. The Difference B is involved.

• SOA has impact on Quality Attribute 2 through Difference A, Diffe-
rence D and Difference E.

• SOA hasn’t impact on Quality Attribute 3.

The methodology to choose if a difference is involved on the impact of SOA
on a quality attribute relied on reading the papers. Whenever we found a
sentence relevant for differences and quality attributes we marked the related
cell(s).
Unfortunately this approach hasn’t been very useful because for most of the
quality attributes all differences were involved in the impact of SOA. For this
reason we decided to study only the impact of SOA on interoperability. As
mentioned, this is a very important quality attribute in SOA and we will see

24

CHAPTER 2. SYSTEMATIC LITERATURE REVIEW.

why.
Hence, we changed our strategy and we focused only on interoperability.
The methodology was always the same: reading the papers and selecting the
sentences. Differently from previous methodology we read papers one-by-one
and for each we enumerated its sentences, relevant for our aim. Finally we
have filled the table with the numbers of the sentences (the number format
is: “paper number”.“sentence number”). To reduce the number of sentences
we grouped them by topic, then, when possible, we concatenated them (two
sentences that belong to the same group and that fill the same and only cell
can be concatenated). Grouping sentences we changed their references. A
letter refers to the group and a progressive number to the sentence inside
this group. Then each sentence contains a reference number to its paper.
This kind of classification makes it easier to analyze the impact of SOA on
interoperability because each consideration that we are going to write regards
a topic of software engineering, so we can discuss more about it than about
a single sentence. The result is something like that shown in Table 2.2.

Diff A Diff B Diff C Diff D Diff E Diff F Diff G

Interoperability
A B2 A1 B1 C C1 C2

D D1 D2

Table 2.2: Pilot Study Table B.

The letter without number means that all sentences of that group are
in the cell, whereas a letter concatenated with a number refers to a single
sentence.
We completed the pilot study writing our considerations for every element
in the cells. The structure of considerations was:

• description of the topic in Traditional Software Engineering.

• description of the topic in Service-Oriented System Engineering.

• evaluation of the impact of this difference on interoperability.

Indeed, the first two descriptions define the difference and, as consequence,
this difference has an impact on interoperability. The last part describes this
impact. Obviously, considerations are partially subjective but for this preli-
minary study the main goal is the understanding of the argument. Then it is
very useful to deduct keywords and key points for the systematic literature
review.

25

CHAPTER 2. SYSTEMATIC LITERATURE REVIEW.

2.2 Review protocol.

As mentioned, we performed a systematic literature review because it sum-
marizes existing evidence, identifies gaps in current research and areas for
further investigation, and provides a background in which to position new
research objectives. The protocol we followed consists in four main phases,
each one described in the next paragraphs. Our aim is to identify previous
properties regarding the impact of SOA on interoperability, thus we used
the pilot study to extract some information to define parameters, such as
research strings or filter criteria.
We started choosing the sources of the review and then we created the que-
ries to apply on them so that we obtained some hundreds of papers. Later
we defined criteria to include or exclude papers relevant for our aim. Finally,
we selected relevant sentences from these papers filtering those sentences
containing keywords deducted from the pilot research.

2.2.1 Data sources.

The choice of data sources has been taken observing the current scientific
world. Computer science field publications are contained in electronic libra-
ries accessible via Internet. These resources are very useful because they allow
fast and customized researches and all contents are always updated. Many
digital libraries (or search engines) exist on the Web that contain publica-
tions such as papers, standards, e-books, digital subscriptions, conference
publications, etc.
We selected three digital libraries we believe are the most important in the
world on software engineering:

• IEEE Xplore Digital Library1

• ACM Digital Library2

• SpringerLink3

These databases are mostly used in doing systematic literature reviews and
their search engines accept similar input query formats so we can define a
generic query and adapt its syntax to all search engines. As consequence,
results of one search engine will be coherent with the ones of the other.
Moreover some papers will be contained in more than one database, thus
some results will be overlapped.

1http://ieeexplore.ieee.org
2http://portal.acm.org
3http://www.springerlink.com

26

CHAPTER 2. SYSTEMATIC LITERATURE REVIEW.

2.2.2 Search strategy.

This paragraph describes the queries we used in the search engines selected
before. The title of our research is “The impact of SOA on interoperability”
and the basic terms for the systematic review are SOA and interoperability,
whereas impact is what we have to deduce and to prove (the evidence).
This first step of the protocol is divided in two phases to define research
queries.
The first phase consists in the definition of synonyms of the terms to make
the search as exhaustive as possible. With synonym we mean words that
refer to the terms in the same topic, for example we consider service-oriented
computing as synonym of service-oriented architecture. Obviously the choice
of synonyms is very free, there are not constraints and it is very subjective.
For these reasons the pilot study is very useful since it helped us understand
how we can approximately a desired final result. Furthermore, after that
study, we can deduce which are the common words used in sections of papers
relevant for us.
In the query synonyms have to be in OR whereas the terms (SOA and inter-
operability) in AND. In our case we have:

("service-oriented"’ OR "service-oriented architecture"’ OR

"service-oriented computing" OR

"SOA" OR "service-engineering")

AND

("quality attributes" OR "interoperability")

It is easy to observe that word variations are not present; indeed, the search
engines we used automatically manage singular, plural, masculine, feminine
etc. Instead, we have to pay attention to quotation marks because search
engines interpret them as the beginning and the end of a sentence. Excluding
them some engines put words in OR and this mistake may cause unexpected
results. Being a digital research, the OR enlarges the number of results, while
the AND reduces it. The words we selected also depend on this property.
For example, the use of the word “heterogeneous” as “synonym” of service-
oriented architectures, in OR, produced thousands of irrelevant results and
for this reason we excluded it from the query.
In the second phase we have to fill in the fields of the query. The most
common fields in search engines are title, abstract, authors, full text, years,

27

CHAPTER 2. SYSTEMATIC LITERATURE REVIEW.

etc. After some test queries we decided to focus only on titles and abstract
because researches in full text produced too many results and almost all
of them were not relevant for our work. We have not considered the other
fields, like authors, years or codes because they are useful only to find specific
papers, whereas we do not know which papers will be found.
Initially the query for our work was:

(Title:"service-oriented" OR Title:"service-oriented

architecture" OR Title:"service-oriented computing" OR

Title:"SOC" OR Title:"SOA" OR Title:"service engineering")

AND

("Abstract":"quality attributes" OR

"Abstract":"interoperability")

The syntax may appear strange because Title and Abstract are repeated
many times and there is not a string like (Title:“service-oriented”OR“service-
oriented architecture” OR “service-oriented computing” ORĚ) AND (“Abs-
tract”:“quality attributes”OR“interoperability”). Indeed some search engines
execute the OR between the rule on the left and the rule on the right and
the lack of a field before a word (or words in quotation marks) is considered
as if the field would be “Full text” and results of the research could be wrong.
Furthermore, we adopted an interesting strategy to improve the quality of
the results. We tried to put in OR the query with the same query with
exchanged terms. In practice, we use the words of the Title in the initial
query for the Abstract in the second part of the new query and vice versa
obtaining:

28

CHAPTER 2. SYSTEMATIC LITERATURE REVIEW.

((Title:"service-oriented" OR Title:"service-oriented

architecture" OR Title:"service-oriented computing" OR

Title:"SOC" OR Title:"SOA" OR Title:"service engineering")

AND

("Abstract":"quality attributes" OR

"Abstract":"interoperability"))

OR

((Abstract:"service-oriented" OR Abstract:"service-oriented

architecture" OR Abstract:"service-oriented computing" OR

Abstract:"SOC" OR Abstract:"SOA" OR

Abstract:"service engineering")

AND

("Title":"quality attributes" OR

"Title":"interoperability"))

This query has to be adapted to the syntax of each search engine because
some fields may be different, for example the title may be represented as
Title, Document Title or Ti. Finally, search engines allow filtering results
through some criteria, in particular by year but we didn’t use this filter
because papers are quite recent (usually less than 10 years and most of them
less than 5 years).

2.2.3 Study selection.

After the digital research we have to filter these papers (or studies, because
there would also be other kinds of publications) defining inclusion and exclu-
sion criteria. A study is selected only if it satisfy all the inclusion criteria and
is removed if it fulfills any of the exclusion criteria. All criteria have to be
pre-defined and the pilot study helped us to take our decisions. Now we are
going to define our criteria and their motivations; Table 2.2.3 shows them.

The first inclusion criterion is quite easy to identify because obviously we
deal with Service-Oriented approach and its properties. The E1 criterion ex-
cludes all studies that discuss other topics. In fact some words are included
in other research fields because they can have many meanings. For example
SOC means Service-Oriented Computing or System-on-Chip, and the latter

29

CHAPTER 2. SYSTEMATIC LITERATURE REVIEW.

Inclusion Criteria Exclusion Criteria

I1: Service-Oriented is the main topic.

Motivation: we are interested in Service-Oriented

challenges, in particular architectures, computa-

tions and engineering.

E1: Study not about Service-Oriented.

Rationale: sometimes there are keywords with multiple mea-

ning, for example SOC also means System-on-Chip. These

papers are irrelevant for our work.

E2: SOA is a small part of the study.

Rationale: we want to focus on SOA. If the study concerns

distributed systems or software engineering we have not suf-

ficient information for our aim.

E3: Study is about a specific application.

Rationale: if the study is a case study or a specific appli-

cation the impact of domain specific information cannot be

generalized in SOA.

I2: Explicitly discuss interoperability.

Motivation: we want to study the impact on the

interoperability in the sense of software quality

attribute.

E4: Not about interoperability, but quality attributes

in general.

Rationale: we do not want information about the quality of

SOA in general; we are interested in studies specific of the

interoperability and its challenges in SOA.

I3: SOA scientific papers.

Motivation: a scientific study of SOA improves

the quality of the research and the challenges are

well considerate from the scientific world.

E5: Study not scientific (workshop, conferences, mee-

ting. . .).

Rationale: a non-scientific study does not include enough in-

formation about the topic and it cannot prove clearly its ob-

jectives.

Table 2.3: Inclusion and exclusion criteria.

30

CHAPTER 2. SYSTEMATIC LITERATURE REVIEW.

is completely useless for our aim. The second exclusion criterion means that
if a study is not specific to SOA it has to be removed. Indeed some publica-
tions treat with topics more generic that SOA, such as systems or software
engineering. SOA is a paradigm of distributed systems and some papers
discuss the main topic, retaining only a few parts to Service-Oriented Archi-
tectures. Unfortunately, these kinds of studies are too general because they
cope with the problems of the principle argument, whereas SOA is considered
secondary and we cannot obtain enough information. The last criterion that
derives from I1 filters specific studies of a domain or application because they
propose solutions that can be right only in those cases. Moreover, solutions
are sometimes technology dependent (or with domain constraints) and we
cannot apply them to general SOA issues.
The inclusion criterion I2 requires that a study essentially discuss interope-
rability. Indeed E4 excludes studies that refer only to quality attributes or
other properties of Service-Oriented Architectures. We want to analyze the
impact of SOA only on interoperability; other attributes are not relevant for
our work.
The last inclusion criterion regards more the type of publications than their
contents. We need scientific documents to identify evidences because non-
scientific studies might not have high levels of quality and information some-
times is not enough. Usually we selected digital papers (pdf) and we excluded
all other formats such as summaries of conferences, workshops and meetings.
Therefore, we defined three inclusion criteria, one for SOA, one for interope-
rability and a third one for the type of study. Starting from these inclusion
criteria we derived the exclusion ones and we explained the reasoning that
we followed. All criteria must be defined a priori and then they have to be
applied to all studies obtained from the digital research. Usually, applying
criteria on paper title and abstract can be selective even if for some papers
it has been necessary to read the full text. Finally we obtained the primary
studies. The next paragraphs describe how we extracted data from them.

2.2.4 Data extraction.

At this point of the review we have some papers that are very relevant for
our work. Now, we have to extract data that we will really use to identify
evidences. Our strategy consists of four phases:

• creation of keywords list

• filtering of sentences containing at least one keyword

• definition of inclusion conditions

31

CHAPTER 2. SYSTEMATIC LITERATURE REVIEW.

• selection of sentences that respect these conditions

The first and the third step are completely subjective; the second step is
automated, whereas we have performed the fourth. For these reasons we
have to focus on the first and on the third step (the fourth one is only an
application of conditions as well as a selection of papers due to inclusion and
exclusion criteria in the previous paragraph).
Here we can understand why the pilot study is fundamental; the keywords
we selected derive from this study and some of them are not trivial because
they are terms strictly involved in this research field. The box 2.2.4 contains
all the keywords we used.

action endpoint qos

adapt flexibility quality

approach functional rele

back-end heterogeneous run-time

backend impact runtime

block integrat semantic

build integration service engineering

change interaction service level agreement

class interface sla

compare interoperability stakeholder

compliance legacy system standard

component message syntactic

compos modul third part

consum multiple user third-part

cross object-oriented traditional

desgin OO vendor

develop open

difference organization

different paradigm

disparate pragmatic

dynami provider

Immediately, it seems that most of the keywords are incorrect because they
are non-sense. Instead, we used those because the second step is automated
and it finds all sentences containing exactly the terms we passed in input.
Therefore we did not use the plurals because the filter already selects the
sentence because of the singular terms without the “s” (for example, a word
was block hence we did not add blocks, indeed the first keyword covers both).

32

CHAPTER 2. SYSTEMATIC LITERATURE REVIEW.

For the same reason we cut some words that contain other keywords, for
example adapter is covered by adapt. Instead, other terms appear in dif-
ferent ways, such as run-time and runtime, back-end and backend, or they
can be acronyms, like sla and service level agreement.
Furthermore we built a non-case sensitive filter, so we defined all words lo-
wercase.
The second step, as mentioned, is automated and it is very fast and easy.
We have taken all papers and then we have applied a filter that selected all
sentences containing one or more keywords. Our tool is a linux script that
receives in input a file for keywords and a directory with all papers. Then it
parses all papers and it puts selected sentences on output. All input files are
text files that we derived from pdf papers. Actually, we removed useless text,
such as the text of summaries, tables and references. In addition, after some
tests, we decided to remove also paragraphs that are irrelevant for our work
(for example SOA descriptions produce always the same sentences) before
filtering papers.
The third step defines which are the conditions that filtered sentences have
to satisfy in order to identify evidences. Since our objective is to study the
impact of SOA on interoperability we have chosen two criteria. To be selected
a sentence has to:

• describe the impact of SOA on interoperability, and

• involve at least a difference between TSE and SOSE

The first criterion means that SOA has effects on interoperability, whereas
the second shows whether this quality attribute changes in Service-Oriented
Architectures. Sometimes a single sentence does not describe enough the
impact, but we can understand it from the context.

Differences need a more detailed discussion. Our work relies on previous
studies that treated differences between SOA and traditional software. Ac-
tually these differences have not yet been formalized, so some studies try
to do it. As reference we use a paper titled “On Service-Oriented Archi-
tectural Concerns and Viewpoints” where the authors define 7 differences
between SOSE (Service-Oriented System Engineering) and TSE (Traditional
Software Engineering) and, respectively, between SOA (Service-Oriented Ar-
chitecture) and SA (Software Architecture). This study focuses on the real
(fundamental) differences and their implications on SOSE and SOA and it
creates a framework that shows the relationship between these differences
and the service aspects. Now, we briefly describe the framework (Figure
2.1) and we the differences. The framework identifies 7 differences between
service-oriented approaches and traditional ones:

33

CHAPTER 2. SYSTEMATIC LITERATURE REVIEW.

Fig. 2.1: A Framework of SOA Concerns and Service-Oriented Viewpoints.

• Services are the building blocks : instead of focusing on implementing
a software system as a whole, SOSE and SOA focus on composing
coarse-grained discoverable services acting as building blocks of service-
oriented systems.

• Services are open: instead of not allowing any architectural changes
after deployment, an architecture of a service-oriented system can be
changed or even determined at runtime since services become the buil-
ding blocks that can be composed at runtime.

• Additional development roles are involved in development : developer is
not the only development role. This is rather split into three essen-
tial roles: service consumer, service provider and service broker since
services are building blocks that need to be published and consumed.

• Services are consumed and executed remotely : instead of buying and
installing software locally, users of services (pay and) consume services
that are executed remotely at the service provider’s side since services
as building blocks are by definition used rather than owned.

34

CHAPTER 2. SYSTEMATIC LITERATURE REVIEW.

• Services are cross-organizational : a software is often managed and ow-
ned by one organization. Instead, as services are not executed locally
at the consumer’s side, the control of services is often highly distributed
and crosses trust and organizational boundaries.

• SOA is designed under open-world assumptions : instead of assuming
stable execution environment, high uncertainty of the external environ-
ment has to be kept into consideration in SOSE and SOA.

• Services are designed with multiple sets of (non)-functional require-
ments : a software application is engineered for a single set of (non)-
functional requirements. Instead, since the consumers as well as their
needs are not completely known at design-time (according to open-
world assumptions), services are engineered with multiple sets of (non)-
functional requirements to fulfill different groups of potential consumers
with different quality requirements.

Below we explain how the service aspects address the previous differences:

• Increased importance of the identification of stakeholders. The addi-
tional stakeholders involved in development increase the importance of
capturing them explicitly in process models.

• Cross-organizational collaboration. Capturing the way in which cross-
organizational collaboration is carried out is crucial to highlight that the
additional development roles are distributed in different organizations
and services are owned by different business partners.

• Increased runtime effort. The high uncertaintly resulted from open-
world assumption demands for more runtime effort. Further, open
services imply that more decisions have to be postponed at runtime.
Making runtime effort explicit in a process model may highlight which
uncertainty is dealt with and which decisions are postponed.

• Different architecture types. The architectures of services, composite
services and service-oriented systems may indicate whether services are
the building blocks of a service-oriented system.

• Temporary provision-consumption relationship. One of the open-world
assumptions is not knowing the service consumers and their provider at
design time. Further, the provision-consumption relationship in making
SOA design decisions means making open-world assumptions explicit
and highlights the fact that services do not execute locally at the service
consumers.

35

CHAPTER 2. SYSTEMATIC LITERATURE REVIEW.

• Different perspectives of stakeholders. A SOA design decision has dif-
ferent impact on different stakeholders. Explicitly capturing these im-
pacts in making SOA design decisions points out the additional stake-
holders involved in the development.

• Dealing with heterogeneity. Open-world assumptions suggest a hetero-
geneous environment where different data formats, protocols and tech-
nologies may coexist. Specifically, considering heterogeneity in the SOA
design means making open-world assumption explicit.

The last step of data extraction is the selection of sentences that satisfy
the two criteria defined in the third step. A sentence is selected if it describes
one aspect of the impact of SOA on interoperability and it involves at least
one of the 7 differences we explained above. A sentences that does not respect
both criteria is excluded. As mentioned, a sentence can involve more than one
difference, so we have to mark which ones they are, whereas the criterion of
the impact is binary (if there is impact or not). To specify involved differences
is useful for next stages, when we will write our comments and considerations.
Furthermore, we are going to group selected sentences because in the pilot
study we noted that some groups are very related with these 7 differences.

The next chapter shows results of the sistematic literature review and then
we will make our considerations describing the differences between Service-
Oriented and Traditional approaches.

36

Chapter 3

Review Results.

In this chapter we show the results of our systematic literature review. We
proceed step by step, following the protocol defined in the previous chapter.
We will add some figures and tables in order to make it easier to understand
the workflow and how we obtained these results.

This work is divided in three parts; initially we discuss the results of the
selection of the papers, then those of sentences and finally we will organize
the sentences grouping them by topic.

3.1 Selected papers.

The digital research produced three lists of studies, one for each search en-
gine: IEEE produced 197 studies, ACM 29 and Springer 78. Then, we read
these studies to decide if they respected inclusion and exclusion criteria we
defined in the protocol (actually we read the abstract, rarely the full text).
Finally, we merged the results of the selections and we obtained 25 papers.
Figure 3.1 shows all the numbers of this part of the work. Just to have some
more information, we decided to merge the results after the selection. In the
merging we found two papers that derived from two different search engines.
In addition two papers were the same but they had different title. We consi-
dered these two papers as only one.
Here we number the 25 papers, so we will refer to them easily with an Id
rather than using the title.

1. Bingu Shim, Siho Choue, Suntae Kim, and Sooyong Park. A design
quality model for service-oriented architecture. 15th Asia-Pacific Soft-
ware Engineering Conference, 2008.

2. Tom Goovaerts, Bart De Win, and Wouter Joosen. A fexible architec-

37

CHAPTER 3. REVIEW RESULTS.

Fig. 3.1: Selection of the Papers.

ture for enforcing and composing policies in a service-oriented environ-
ment. International Federation for Information Processing, 2007.

3. Stanislav Pokraev, Dick Quartel, Maarten Steen, and Manfred Rei-
chert. A method for formal verification of service interoperability. IEEE
International Conference on Web Services (ICWS’06), 2006.

4. Liyi Zhang, Si Zhou, and Mingzhu Zhu. A semantic service-oriented
architecture for enterprise application integration. Second International
Symposium on Electronic Commerce and Security, 2009.

5. Leire Bastida, Alberto Berreteaga, and Inigo Cañadas. Adopting service-
oriented architectures made simple. Enterprise Interoperability III,
2008.

6. Sujatha Kuppuraju, Aravind Kumar, and Geetha Presenna Kumari.
Case study to verify the interoperability of a service-oriented archi-
tecture stack. IEEE International Conference on Services Computing
(SCC2007), 2007.

7. Sriram Balasubramaniam, Grace Lewis, Ed Morris, Soumya Simanta,
and Dennis Smith. Challenges for assuring quality of service in a
service-oriented environment. PESOS’S09, 2009.

8. Grace Lewis, Edwin Morris, Soumya Simanta, and Lutz Wrage. Com-
mon misconceptions about service-oriented architecture. Sixth Inter-
national IEEE Conference on Commercial-off-the-Shelf (COTS)-Based
Software Systems (ICCBSS’07), 2007.

38

CHAPTER 3. REVIEW RESULTS.

9. Giovanni Denaro, Mauro Pezzè, and Davide Tosi. Ensuring interope-
rable service-oriented systems through engineered self-healing. ESEC-
FSE’S09, 2009.

10. Rodrigo Mantovaneli Pessoa, Eduardo Silva, Marten van Sinderen, Dick
Quartel, and Lùıs Ferreira Pires. Enterprise interoperability with soa:
a survey of service composition approaches. Enterprise Distributed Ob-
ject Computing Conference Workshops, 2008.

11. Balázs Simon, Zoltán László, Balázs Goldschmidt, Károly Kondorosi,
and Péter Risztics. Evaluation of ws- standards based interoperability
of soa products for the hungarian e-government infrastructure. Fourth
International Conference on Digital Society, 2010.

12. George Athanasopoulos, Aphrodite Tsalgatidou, and Michael Pantazo-
glou. Interoperability among heterogeneous services. IEEE Internatio-
nal Conference on Services Computing (SCC’06), 2006.

13. Aphrodite Tsalgatidou and Eleni Koutrouli. Interoperability and eser-
vices. International Federation for Information Processing, 2005.

14. Marijn Janssen and Hans Jochen Scholl. Interoperability for electronic
governance. ACM, 2007.

15. Sven De Labey and Eric Steegmans. Making service-oriented java ap-
plications interoperable without compromising transparency. Enterprise
Interoperability III, 2008.

16. Jolita Ralyté, Per Backlund, Harald Kühn, and Manfred Jeusfeld. Me-
thod chunks for interoperability. Springer, 2006.

17. Liam O’Brien, Paulo Merson, and Len Bass. Quality attributes for
service-oriented architectures. International Workshop on Systems De-
velopment in SOA Environments (SDSOA’07), 2007.

18. Stanislav Pokraev, Dick Quartel, Maarten Steen, and Manfred Rei-
chert. Requirements and method for assessment of service interopera-
bility. Springer, 2006.

19. Sami Bhiri, Walid Gaaloul, Mohsen Rouached, and Manfred Hauswirth.
Semantic web services for satisfying soa requirements. International
Federation for Information Processing, 2008.

20. Boualem Benatallah and Motahari Nezhad. Service oriented computing
opportunities and challenges. Springer, 2005.

39

CHAPTER 3. REVIEW RESULTS.

21. Jameela Al-Jaroodi, Nader Mohamed, and Junaid Aziz. Service-oriented
middleware trends and challenges. Seventh International Conference on
Information Technology, 2010.

22. Olaf Zimmermann, Vadim Doubrovski, Jonas Grundler, and Kerard
Hogg. Service-oriented architecture and business process choreography
in an order management scenario. ACM, 2005.

23. Jian Wang, Keqing He, Yangfan He, and Chong Wang. Towards service-
oriented semantic interoperability based on connecting ontologies. In-
ternational Conference on Interoperability for Enterprise Software and
Applications China, 2009.

24. Andreas Winter and Jürgen Eber. Using metamodels in service inter-
operability. 13th IEEE International Workshop on Software Technology
and Engineering Practice (STEP’05), 2005.

25. Hamid Motahari Nezhad, Boualem Benatallah, Fabio Casati, and Fa-
rouk Toumani. Web services interoperability specifications. Computer
(IEEE Computer Society), 2006.

The figure 3.2 represents the time distribution of the papers over the years.
We can say that all these papers are very recent because they have been

Fig. 3.2: Distribution of Selected Papers by Year.

published in the last 5 years.

40

CHAPTER 3. REVIEW RESULTS.

3.2 Selected sentences.

Now, we have 25 papers and we have to filter all their sentences that contain
the keywords defined in the section 2.2.4. As shown in the figure 3.3 we
filtered 2042 sentences on which we made our selection. Finally we obtained
174 sentences, the core of our work. The table 3.1 indicates how many

Fig. 3.3: Selection of the Sentences.

filtered sentences were contained in each paper, whereas the figure 3.4 shows
the distribution of the final sentences.

Fig. 3.4: Distribution of Selected Sentences for Each Paper.

3.3 Classification of final sentences.

The classification of the 174 sentences could be made in at least three ways:

• by paper

• by difference(s)

41

CHAPTER 3. REVIEW RESULTS.

Paper Id N. of Sentences

1 46
2 117
3 75
4 62
5 72
6 31
7 30
8 169
9 96
10 84
11 58
12 97
13 69
14 49
15 49
16 73
17 54
18 57
19 213
20 60
21 85
22 119
23 63
24 74
25 140

Table 3.1: Number of Filtered Sentences for Each Selected Paper.

• by topic

The first and the second one are useful to organize the sentences because if
we know the paper or the difference, we can quickly find all related sentences.
However, our work consists also in the analysis of the impact of SOA and
the differences are means to achieve our conclusions. Hence, we decided to
group the sentences by group, in order to discuss many aspects of SOA and,
in this way, the considerations of the impact on interoperability will be more
complete and detailed.
These are the topics we used to group the sentences (in alphabetical order):

• building blocks

42

CHAPTER 3. REVIEW RESULTS.

• component modeling

• composition

• different service consumers

• dynamic business process

• heterogeneous components in the system

• interfaces and adapters

• many organizations in the system

• open world

• policies

• services are located differently

• system quality

Appendix A contains all topic tables. Each table is composed by three co-
lumns: paper number, involved differences and the content of the sentence.
These tables are the last step of the systematic literature review and they
are the starting point of our considerations that will be explained in next
chapter.

43

Chapter 4

Findings.

4.1 Introduction.

Now, we are going to analyze final sentences with our considerations. We
obtained 12 discussion topics about SOA’s aspects. We have seen that some
topics are closely related to some of the seven differences deduced in previous
studies. Thus, we can define two macro categories for our discussion topics,
those that represent a difference or not. Below we will show them in a
systematic way. Each topic consideration will be composed by four parts:

• brief generic introduction to the topic

• considerations concerning traditional software approaches

• considerations concerning Service-Oriented Architectures

• impact on interoperability

We defined this structure to use it as a sort of guideline, whereas chapter 5
will contain last evaluations of the work.

4.2 Considerations on the SOA topics.

4.2.1 Building blocks.

Any software architecture is composed by elements (or components) and their
relationships. Recursively each component can be decomposed into parts,
relationships and constraints.

In traditional software engineering architects usually define more than one
view of the project. The main organization of a system consists of the defini-
tion of macro components (and their relationships) then other views describe

44

CHAPTER 4. FINDINGS.

these components in detail, how they interact between the environment and
which constraints are applied. For example in client-server architecture the
main components are clients and the server. If we focus on the server, we
can design it as a three-tier architecture, with a view, a logical and a data
layer. Each layer can be represented as a composition of objects and so on.

Service-Oriented Architectures are always composed by services that are
the fundamental units of the composition. Services are loosely coupled and
they do not depend on the other ones presented. This property allows to com-
pose the system easily, dynamically and quickly; each element can contain
the service description and the actual implementation. These concrete ele-
ments and their interactions are the architecture of the system [17]. SOA in
fact, does not provide a complete architecture because it is an architectural
pattern or a new way of developing software, but it is not the system archi-
tecture by itself [7]. Some implementations of SOA are Web services, Grid
and P2P services (sometimes named eServices). The building blocks can be
a service or a node on the Web.

The interoperability is a crucial aspect in SOA because it leverages the
communication level between the blocks and the quality of the system com-
position. Since the elements are loosely coupled the communication is perfor-
med via standard protocols and adapters and interfaces allow the interaction
with backends of service providers. Backends are usually legacy systems al-
ready running. Their integration within SOA is a process that may not be
always easy and automatic [7] since this migration can imply a great adap-
tion effort and the quality of this work can compromise the interoperability
level of the component and, as consequence, of the whole system.

4.2.2 Component modeling.

At design-time software designers project the system and decide where to
collocate all the components. In software engineering several patterns and
approaches exist. A good designer has to be able to adapt the best model
in order to optimize the costs of the overall project. Grain and detail of the
design depend on various factors, such as the size of the project, the skills of
the programmers or the level of the language used.

In traditional software the most used paradigm is Object-Oriented and,
as consequence, many models have been developed for it. As a matter of
fact, the family of UML (Unified Modeling Language) diagrams represents
the starting point of the Object-Oriented modeling. In addition other ap-
proaches can be considered, for example the MVC (Model-View-Controller)
is a widespread architectural pattern that split up the software components
in three categories: the model defines the methods that interact with data,

45

CHAPTER 4. FINDINGS.

the view shows data and interacts with users and the controller dialogues
between these two components (a.k.a. business logic). This pattern allows
each programmer to develop always the same very specialized type of code.

In SOA there are essentially three participants in the system: service pro-
viders, service consumers and the broker. When defining a Service-Oriented
Architecture, the architect has to select which services will compose the sys-
tem (orchestration) and how they have to interact (choreography). For these
reasons services are considered the building blocks of Service-Oriented sys-
tems. In addition, a SOA is a distributed system and the components are
located in different places, so the communication channel is always a net-
work (usually Internet). However, most of service providers are not built
from scratch, but they are legacy systems that have to be adapted through
interfaces for this kind of communication.

Obviously, the level of interoperability is very relevant to allow the com-
munication between provider, consumer and broker. Some standards guaran-
tee a good level of syntactic interoperability, like WSDL, UDDI and SOAP
for Web services, but the loosely coupled principle simplifies dynamic compo-
sition of the system on the one hand, and it complicates the communication
between components on the other hand.

4.2.3 Composition.

A system composition is the aggregation of two or more elements in order to
achieve a complex goal. On the other side, great systems can be decomposed
in many components to subdivide the main process. Composition of systems
includes both the selection of the components and the definition of their
relationships and interactions.

In traditional software engineering the system composition concerns with
the combination of architectural elements at design-time. Object-Oriented
programming relies on models whose elements (classes) represent real ele-
ments and their interactions. Object-Oriented paradigm goal is the reusabi-
lity of the components; therefore, they have to be defined as good as possible,
in order to make their compositions easy when reused. In addition, the com-
position in UML is used to represent a class that contains other ones (that
it is not to be confused with the aggregation). For instance, a car can be
composed by an engine, 4 wheels, etc. Closed assumptions cause traditional
components to be very static as well as their bindings, which are already
defined before deployment.

Service composition is a fundamental mechanism in SOA that allows to
combine the capabilities provided by several available services in order to
satisfy more demanding needs [18] or to rapidly adopt to business changes.

46

CHAPTER 4. FINDINGS.

In fact, SOA is an approach focused on software development to build loosely
coupled applications using a collection of services [7]. The aggregation of ser-
vices into executable workflow is called orchestration. The main advantage of
SOA composition is that it can occur at runtime. This improves service dy-
namism, therefore if there are several feasible providers, the service consumer
can choose, while it is running, which one to use [17]. The aim of composition
is to use existing services to achieve some functionality that typically is not
provided by a single available service or that has to be implemented from
scratch. Actually, it is not easy to compose services dynamically. Currently,
binding to service is usually done at design-time because the developer can
discover the syntax and semantics before it is used [17].

Service composition plays a major role in enterprise interoperability [18]
since its level implies which services can be added to the system. Seman-
tic interoperability is the most open issue in service composition, whereas
standards description languages such as XML guarantee syntactic interope-
rability for service interactions [19]. These standards simplify composition
but dynamic binding and discovery at runtime require the use of ontologies
and semantics to describe function and usage of services [17] [6].

4.2.4 Different service consumers.

A system consists of a set of applications that interact and exchange data.
Essentially, two types of entities exist during an interaction: one of them
requires information and the other one responds to the request. Depending
on the context, these elements can be named differently, for instance client
and server, or consumer and provider, and their roles can depend on the
adopted paradigm, such as publish/subscribe, or architecture (e.g. P2P).
Anyway, there is always one component that provides information and, at
least, another one that use this information.

Traditional engineering systems are designed under closed world assump-
tion, elements that compose the architecture are exactly known and during
a consumption it is already established which is the provider and the consu-
mer. Often the consumer is not specifically known, but the server can provide
functionalities that a family of clients can require, for instance a Web server
may not know precisely which clients will contact it, but it will respond to
all HTTP requests received.

Instead, Service based Systems are characterized by being accessible by
different and multiple users [7]. A service can be consumed by users or
other services and they can require different information. Human users can
consume both formal and informal descriptions since service description often
contains an information part specified in natural language, whereas applica-

47

CHAPTER 4. FINDINGS.

tions can use service descriptions to support interactions among various ways
[11], for example, to verify that messages are exchanged in accordance with
the defined protocol. In general, applications can only consume formal spe-
cifications. Since services are designed under open-world assumption, service
providers do not known service consumers, so they have to support many
clients with different requirements. Designing a service in a way that it can
be used easily in many contexts is a much border task. If a service will be
used in more than one context, it is also necessary to incorporate the requi-
rements of many potential users and the usage patterns in the service design.
Moreover, the service implementation itself should be architected so that it
guarantees certain qualities desired by each of the stakeholders of the service
[17].

Supporting many different consumers can cause many interoperability
problems because the level of heterogeneity of the system increases. For
example services have to support different versions of standards and specifi-
cations [4] since open world architectures are very dynamic and requirement
changes are frequent.

4.2.5 Dynamic business process.

Organizations use IT to support their processes. These processes are dynamic
because they follow the changes and strategies of the company. Changes are
usually very fast and the software system has to adapt to them. There are
different reasons that cause a business change, like:

• merge and acquisitions

• legacy systems integrations

• growing set of business rules and regulations

Furthermore, a process can involve other organizations (suppliers, third-
parties, etc.) to realize the final product and a single change inside a single
point of the system can have consequences on other companies. Hence, in ge-
neral, changing a process is never trivial and the architecture model adapted
is a key to manage the software structure of a company.

In traditional software approaches, every change of the business process
means a change in the correspondent module (that can involve changes of
many components). Usually, this kind of operation is very complex and it
can be harmful for the component and for the whole system. In fact, it needs
to re-design, re-develop and re-deploy the application. All these operations
are very expensive in terms of time and costs but they are necessary because

48

CHAPTER 4. FINDINGS.

bindings among components are always static, decided at design-time. There
are some situations where the communication between some components re-
sults very complex , for example after an acquisition a company has to be
able to integrate its systems with those of the acquired. Creating adapters
can be the best solution but it is not very efficient because of their cost.

In SOA, instead, the composition of the system is completely different.
Basically the application is dynamic and it can be adapted also at runtime.
The main advantage is the possibility to interchange some services without
interrupting the system. Hence, two or more components can switch from a
protocol to another, change or add their APIs and interfaces and new services
can be added inside the architecture without affecting the other ones. These
features allow architects to adapt easily and quickly the application to the
business process, exploiting its flexibility. Usually, discovery mechanisms and
how to select a provider can be defined both at design-time and after deploy.

To let SOA’s components communicate, all of them have to interact in a
standard way. Many (XML-based) protocols have been developed to simplify
their communication. Thus, the interoperability in SOA is better than in tra-
ditional architectures because there is a good mapping between non-standard
service interfaces [20]. This allows new services to replace all old services,
that are no longer useful, at runtime (because they are loosely coupled), at
low-cost and dynamically. Web services, for example, are the most wides-
pread dynamic structures [21] and their syntactic interoperability is guaran-
teed by three standard protocols (WSDL, UDDI and SOAP) that simplify
the communication between all components available to accomplish business
processes.

4.2.6 Heterogeneous components in the system.

Two or more applications are heterogeneous when they run on different plat-
forms, have been written with different languages or have been designed
by different vendors. Actually, the elements that are not compatible are
messages, because heterogeneous applications can adopt different message
formats and data cannot be exchanged or understood. Many problems can
arise whenever a system tries to integrate new components, legacy systems
or third-party products. Interoperability itself can be defined as the capabi-
lity of multiple, autonomous and heterogeneous systems to use each other’s
functionalities.

Initially, even in traditional software, organizations could not exchange
information because they operates widely disparate hardware that was in-
compatible [22]. Also Object-Oriented programming languages lack high-
level support for platform-independent interactions, in Java, for instance,

49

CHAPTER 4. FINDINGS.

the burden of guaranteeing sustainable interoperability is put entirely on the
programmer [23]. Despite Component-based technologies have tried to ad-
dress the issue of interoperability between heterogeneous applications, they
have not provided a widespread solution for this problem [9].

The Service-Oriented paradigm builds on the notion of composing virtual
components into complex behavior. Thus, a consumer can use the functio-
nality offered by multiple providers without worrying about the underlying
differences in hardware, operating systems, programming language, etc. To
interact, services need not to share anything but a formal contract that des-
cribes each service and defines the terms of information exchange. Data are
exchanged via messages conformed to the information model and semantics.
Often a transformation between the enterprise semantics and the internal
information model of the service is required [6].

Interfaces and adapters play fundamental roles to provide interoperabi-
lity. Syntactic level is achieved easily in SOA and this is a main reason to
adopt Service-Oriented technologies as integration system. Semantic inter-
operability can be attained with ontology mappings, for instance, through
metamodel-driven approaches [21].

4.2.7 Interfaces and adapters.

Interfaces and adapters are subcomponents of a system that work as trans-
lators between two or more components. They perform the same functions
and represent the network access point of a software element, but they are
dual within interactions. The data requester uses the adapter to understand
the same language of the interface exposed by the accessible component, in
order to exchange data.

Thus, interface hides implementation and in traditional software engi-
neering the information hiding is a principle that avoids security problems
because the interfaces protect the access to some pieces of code. Moreover,
if the underlying implementation changes, users are not affected by these
changes.

Service-Oriented components also hide their implementations through an
interface, but the main difference with the previous approach is that the
service consumer does not know anything about the implementation of the
service provider. In fact, services are loosely coupled to be more flexible in
the composition and faster in the business changes. Clients are not concerned
with how the providers will execute their requests and the way a client (which
can be another service) communicates with the service does not depend on
the implementation of the service (for example it does not need to know what
language the service is coded or what platform the service runs on) [6]. Thus,

50

CHAPTER 4. FINDINGS.

a service consumer will know only the information and behavior models of
the provider and all the information necessary to determine if that service is
appropriate for its aims. In addition all changes in service implementations
do not impact on the service interface. Instead, the main goal of adapters is
to translate client applications messages in order to be compatible with the
language of the interfaces. Translations consist of mappings between message
languages.

Thus, interfaces and adapters are elements that improve interoperabi-
lity. Usually they rely on standard protocols and specifications. Indeed,
they guarantee syntactic interoperability and this is the main reason why
many organizations migrated to SOA. For example Web services rely on an
open standard to expose their interface, WSDL (Web Services Description
Language) and every programming language can define WSDL bindings that
translate their method calls back and forth to WSDL [23]. Moreover, WS-*
specifications are very flexible about interface definitions [11].

4.2.8 Many organizations in the system.

When a system is developed, its components can be local or remote whether
they are running inside or outside the same environment. In particular remote
components are located in other places, but inside organization boundaries.
Boundaries refer to the logical location of the components because a system
can be closed, but at the same time distributed.

In traditional software approaches, systems stay inside the same organi-
zation because all elements are developed for the enterprise business process
and each one has its own specific functionalities. These architectures do not
deny that using more than one product, language platform or subsystem.
Moreover, inside the organization all components are known and the use of
external elements is not a good choice because ad-hoc adapters have to be
developed.

Instead, SOA is very dynamic and to rapidly compose systems it exploits
the properties of all available services. These services can be either inside or
outside the boundaries of the organization, since services are decoupled and
their integration is very flexible [6]. For example a system can use services
of many organizations because each service implement an application that
only its organization can perform (because it only has necessary data or the
algorithm is better than another).

Obviously, integration of heterogeneous applications leads to interopera-
bility problems, In particular semantic interoperability is difficult to achieve
because it relies on ontology. Ontologies are currently a major technology
for supporting service description and composition but different organiza-

51

CHAPTER 4. FINDINGS.

tions define ontologies in different ways [18] and even if some approaches
define manual mappings or mediation techniques, good solutions for realistic
applications do not exist nowadays.

4.2.9 Open world.

Open world assumption means that the environment of the system is not
stable and can change frequently. On the contrary closed world assumption
refers to unchanging and known environment. Actually, closed approach
assumes that the external world changes slowly and the software can remain
stable for a long period [24]. Moreover, the software itself is closed since it
is composed of parts that do not change at runtime. Instead, in an open
world the environment changes continuously and the system has to adapt
and react dynamically. In addition, new components could be available in
the environment and the system can discover and bind them dynamically to
the application while it is running.

Traditional software systems are essentially designed under closed world
assumptions because designers know which are the elements of the archi-
tecture and how they communicate. Object-Oriented programming is hard-
coded and its components depend on the others, so each change can leverage
many elements and, as consequence, it can cause many side effects. Instead,
Component-based modeling relies on (third-party) components and it repre-
sents a step toward open worlds, but interactions between components are
specified at design-time [6].

On the contrary, services are defined out of any execution context and
interact on the fly without prior collaboration agreement. Each service should
describe its (non-) functional characteristics the client has to understand if
the service fits its needs. Moreover, services support dynamic binding that
can occur at runtime because the integration of components in SOA is very
flexible and fast. The use of a specific service can be chosen after deployment
and, for instance, if a service fails or is unavailable, dynamic binding allows
to replace it without interrupting the system. Service providers do not know
service clients; therefore dynamic binding is guarantee by loosely coupling.

For these reasons we can argue that Service Oriented Architectures are
designed under open world assumptions and interoperability between services
is a critical factor for dynamic binding. Since services describe, through in-
terfaces, their functionalities, clients have to be able to understand these in-
formation. Thus, semantic interoperability is required to improve flexibility
and agility, in particular to compose systems at runtime. Domain ontolo-
gies help semantic protocols to focus their research inside a set of relevant
solutions.

52

CHAPTER 4. FINDINGS.

4.2.10 Policies.

Policies in software engineering can have many means. We want to focus
on those concerning interoperability. Policies are rules that specify choices
in the behavior of a system. By specifying them separately from the appli-
cations, the behavior can be changed dynamically by modifying the policy
rules without affecting any application code [25].

Traditional systems do not need to specify many policies because ap-
plications are hard-coded and they know exactly how a component of the
architecture communicate with the other ones. In addition, even if the spe-
cific element is unknown the iterations are well-defined (massage formats,
protocols, etc.), but they are limited to the components of the systems.

Instead SOA relies on loosely coupled principle, so service environment
can evolve and change without concern of its components. Furthermore,
services are heterogeneous, developed in different languages and running on
many platforms. Since service consumers may need specific requirements,
which are very different from those of other consumers, service providers
have to support more than one set of (non)-functional requirements.

Hence, policies are a way to define interactions between services. In parti-
cular, for interoperability a policy enforcement solution has to map different
message formats with different types of requests for services [25]. The concept
of generic message format is introduced; its role is like an intermediary during
the interactions. The main advantage is that it is an adapter that translates
back and forth between the generic format and the native ones [25], impro-
ving the interoperability between heterogeneous components. Every service
can implement several policy-based adapters for different phases, such as
authentication, business, etc.

4.2.11 Services are located differently.

Applications involving resources located in different places are called distri-
buted systems. There are many advantages in adopting these architectures,
in terms of costs, performance and development, moreover different para-
digms exist to design them. Usually, a distributed system is composed by
entities that communicate through a network and they interact in order to
achieve a common goal; the problem is divided in tasks, or activities, each
one performed by one, or more, entities.

Traditional software engineering relies on Object Oriented Programming,
which focuses on combining elements of the domain problem in form of object
containing data and methods useful to solve concerned problem and reusable
for other ones. However, enterprise tired architectures evolved and demons-

53

CHAPTER 4. FINDINGS.

trated that combining methods with data between tiers worked against scala-
bility and loose coupling of the enterprise system, thus the use of data transfer
objects between tiers and the focus on the data model for communication bet-
ween tiers of the enterprise system [6]. In addition, these architectures and
implementations did not provide a good solution for computing specialization
and computing interdependence at business or government level.

SOA is a computing architecture that allows for complex relationships and
specializations of computing services on a global scale. Services are available
in a network such as Internet, but they can be developed also in-house.
Making use of third-party external services improve the specialization of the
services and the dynamism of the system because the application has not to
be installed, but it is remotely consumed. This creates a marketplace, which
is the functional area where service provider and potential service consumers
meet and negotiate via a service broker to come to a formal agreement about
consuming the services [7].

Standard communication protocols are needed for remote interactions.
Since Internet is the most used network (but it is not the only one), com-
munications between services rely on open standard protocols. For instance,
Web services combine XML and HTTP to obtain SOAP and they use it to
exchange data through the Internet. Standard protocols define common syn-
tax and mechanisms of data exchange, in fact they are the main elements
that allow achieving syntactic interoperability.

4.2.12 System Quality.

To evaluate the quality of a system usually metrics are used. A good design
helps to achieve desired levels of quality. If a system is composed by many
elements, the overall quality does not depend only on the quality of each ele-
ment, but also on the type of their composition. The quality can be described
through attributes, but some of them are not definable with metrics, such
as testability, maintainability and usability. Moreover the levels of quality
can be domain-dependent, because a level of quality can be good for some
systems can be bad for others. Therefore, some levels can change while the
application is running, for example the availability of server is very dynamic
because it can manage request queues and the availability may depend on
these queues.

In traditional software engineering many studies have been made to design
quality metrics. Indeed, there exist models and methodologies that can be
used to estimate the values of the quality attributes, such as the reliability of
a system or the availability of a component. All these metrics are very useful
to compare different systems, applications and patterns, but the most impor-

54

CHAPTER 4. FINDINGS.

tant models are those that allow to provide clear relationships from design
components to high level quality attributes [26], such as QMOOD (Quality
Model for Object-Oriented Design) for Object-Oriented programming.

Unfortunately, these models are not applicable to SOA systems because
of the inherent differences between the paradigms. Concepts such as class,
methods, attribute or inheritance are commonly found in OO systems yet
non-existent in SOA [26], so it is not possible to use the same metrics without
modifications. Furthermore a significant difference is in the abstraction levels
used to model system functionality; SOA was introduced to handle rapid re-
quirements changes in the business, which is in contrast to Object-Oriented
designs which aim to increase component reusability at much finer granu-
larity. The SOA’s dynamism leverages the overall system qualities because
components of the architecture may change rapidly. Since the choice of a
service can be made at runtime, the quality of a system can change. For
these reasons the architect has to consider these aspects at design-time to
satisfy the quality attributes required. It is not easy to estimate the quality
of a Service-Oriented Architecture at design-time because some services of
the system can be managed by third-parties and the risk that their level of
quality may change is high [12]. In addition SOA metric models are appli-
cable only after the system is implemented [26], since they use data which
can only be gathered during dynamic analysis.

The interoperability is a quality attribute, therefore all the previous issues
affect it. The level of interoperability in SOA cannot be guaranteed at design-
time because designers do not always know all the services that will compose
the architecture or they do not know how the system composition will change.
Hence, the quality of the interoperability will depend on the components
that in any time are present in the system. Its level can change a lot and
continuously due to the heterogeneity of the elements and many problems
can arise when at least one of these elements is managed by third-parties.

55

Chapter 5

Conclusions.

Analyzing the findings of the systematic literature review, we can assert
that there is a strong impact of SOA on interoperability and on all of the
differences involved in this assessment. The most relevant ones are those
concerning the integration of services, independent elements that compose
the software system. In particular, open world assumptions of SOA allow us
to make important remarks about interoperability. As a matter of fact, we
can consider services as building blocks of the system, without taking into
account their implementations. In fact, in order to compose the final system,
it is necessary to know what their functionalities are, not how they are execu-
ted. The use of standard interfaces enables strong decoupling between service
provider and consumers and it defines the SOA principle of loosely coupling.
To fulfill business goals, this tenet focuses design more on the integration of
services than on their implementations. In addition, from loosely coupling
derives another fundamental characteristic of SOA, dynamic binding. This
allows services to interact with new ones also after deployment, at runtime.
Service provider and service consumers may not share anything and in or-
der to interact clients have to accept the contract exposed by the provider,
which must ensure that its conditions are met during the consumption of
the service. Moreover, the provider can offer more than one set of functional
(or non-functional) requirements, in order to be consumed by many (poten-
tial) clients that are unknown at design-time. Furthermore, services may
be managed by specialized third parties and executed remotely (since they
are located within another organization), that is why the components of the
system can be very heterogeneous. On the one hand, this heterogeneity can
be exploited to improve flexibility in rapid business changes; on the other
hand, it can cause many interoperability problems, which are different for
each interoperability level.

The lowest one we considered in our study is the syntactic level. It is re-

56

CHAPTER 5. CONCLUSIONS.

lated to the data structure and message format employed to exchange infor-
mation between entities. In our analysis we deduced that organizations make
use of services for their interoperation capabilities. Interfaces and adapters
play leading roles to guarantee syntactic interoperability because they trans-
late custom service messages in formats accepted by data exchange protocols.
Hence, even if the components are not related, syntactic interoperability is
achieved and thanks to open standard protocols, such as XML and HTTP,
it is easy to accomplish satisfactory solutions, within complex domains.

Semantic interoperability is harder to achieve. Despite service interfaces
show which information can be exchanged, the client also has to understand
the meaning of this information in order to decide whether to consume the
service or not. Open world assumptions and runtime composition point out
that the choice of services within a system is an issue to be addressed. We
can see that semantic interoperability concerns mainly the phase of orchestra-
tion, rather than the data exchange between services. Most of the problems
arise when a consumer has to choose which service to consume from many
available providers because, in this case, there would be many conflicts in
the representation of entities, properties and values. Indeed, the sender and
the receiver do not know the subject domain model of the other one, since
the information is described with ontologies that can assume different mea-
nings within different contexts. Naming and identification conflicts occur
frequently, even within the same domain. Despite this issue is heavily under
research, there are no significant solutions for large-scale applications. These
problems delay the adoption of Service-Oriented Architectures. In fact, no-
wadays most of the bindings are done at design-time, falling short of SOA
expectations.

The last level we analyzed is pragmatic interoperability. Each level in-
cludes the underlying levels and, obviously, their problems, so previous issues
affected pragmatic troubles. Besides data format and its meaning, pragmatic
interoperability requires the interpretation of the information, which deter-
mines the transition to the next state of the system. This approach could
model the system, for instance, as a finite state machine, a Petri net, etc. so
that it is possible to define its behavior exploiting known techniques. The
interoperability level would be better if a service could choose another one
according to the consequences of this choice, rather than just its functiona-
lities.

Thus, we can assert that difficulties for interoperability grow with its le-
vels. We can affirm that syntactic interoperability in SOA has been achieved,
whereas semantic and pragmatic have not completely been attained. Howe-
ver, despite pragmatic interoperability seems a very far goal to achieve, we
can make several considerations about semantic. Many solutions for this

57

CHAPTER 5. CONCLUSIONS.

problem are currently being studied and some models and technologies are
spreading also in real applications. This research field is related not only to
Service-Oriented Architectures, but it relies on more generic issues concer-
ning the representation of the ontology within a given knowledge domain.
Efficient solutions for that problem can be useful to improve the quality of
the service integration, obtaining systems that are more flexible, low-cost and
faster both to be realized and changed.

Since Web services are the most widespread implementation of SOA, we
want to make some remarks about their interoperability. Syntactic level is
achieved through standard interfaces defined with WSDL, whereas interac-
tions between services rely on SOAP. These XML-based standard protocols
guarantee the communication between heterogeneous applications and spe-
cifications, like WS-I, improve this level significantly. Instead, for semantic
interoperability there exist various implementations, based on OWL, that try
to solve this problem. Unfortunately, none of them are able to provide good
solutions when the environment is enlarged or the domain becomes more ge-
neric, essentially because they have to map all the ontologies of every service.
Instead, pragmatic interoperability is not yet achieved, may be for the lack
of its prerequisites in the current implementations, such as technical colla-
borations between the processes of different parties. Although Web services
are claimed to be a good solution for integration of heterogeneous applica-
tions, we think that all previous considerations have to be further analyzed
because, sometimes, the adoption of these technologies cannot cope with all
interoperability issues.

58

Bibliography

[1] Uwe Zdun, Carsten Hentrich, and Wil van der Aalst. A survey of pat-
terns for service-oriented architectures. International Journal of Internet
Protocol Technology, pages 132–143, 2006.

[2] Edwin Morris, Linda Levine, Patrick Place, Daniel Plakosh, and Craig
Meyers. System of systems interoperability (sosi): Final report. TECH-
NICAL REPORT, 2004.

[3] IEEE. The authoritative dictionary of ieee standards terms seventh
edition. IEEE 100, 2000.

[4] Sujatha Kuppuraju, Aravind Kumar, and Geetha Presenna Kumari.
Case study to verify the interoperability of a service oriented architecture
stack. IEEE International Conference on Services Computing (SCC
2007), 2007.

[5] Wenguang Wang, Andreas Tolk, and Weiping Wang. The levels of
conceptual interoperability model: Applying systems engineering prin-
ciples to m&s. Spring Simulation Multiconference, 2009.

[6] Sami Bhiri, Walid Gaaloul, Mohsen Rouached, and Manfred Hauswirth.
Semantic web services for satisfying soa requirements. International
Federation for Information Processing, pages 374–395, 2008.

[7] Leire Bastida, Alberto Berreteaga, and Inigo Cañadas. Adopting service
oriented architectures made simple. Enterprise Interoperability III, pages
221–230, 2008.

[8] Jolita Ralyté, Per Backlund, Harald Kühn, and Manfred Jeusfeld. Me-
thod chunks for interoperability. Springer, pages 339–353, 2006.

[9] George Athanasopoulos, Aphrodite Tsalgatidou, and Michael Pantazo-
glou. Interoperability among heterogeneous services. IEEE International
Conference on Services Computing (SCC’06), 2006.

59

BIBLIOGRAPHY

[10] Boualem Benatallah and Motahari Nezhad. Service oriented computing
opportunities and challenges. Springer, pages 1–8, 2005.

[11] Hamid Motahari Nezhad, Boualem Benatallah, Fabio Casati, and Fa-
rouk Toumani. Web services interoperability specifications. Computer
(IEEE Computer Society), pages 24–32, 2006.

[12] Liam O’Brien, Paulo Merson, and Len Bass. Quality attributes for
service-oriented architectures. International Workshop on Systems De-
velopment in SOA Environments (SDSOA’07), 2007.

[13] Sriram Balasubramaniam, Grace Lewis, Ed Morris, Soumya Simanta,
and Dennis Smith. Challenges for assuring quality of service in a service-
oriented environment. PESOS’09, pages 103–106, 2009.

[14] Stanislav Pokraev, Dick Quartel, Maarten Steen, and Manfred Reichert.
Requirements and method for assessment of service interoperability.
Springer, pages 1–14, 2006.

[15] Meenakshi Nagarajan, Kunal Verma, Amit Sheth, John Miller, and Jon
Lathem. Semantic interoperability of web services - challenges and ex-
periences. ICWS ’06 Proceedings of the IEEE International Conference
on Web Services, 2006.

[16] Qing Gu and Patricia Lago. On service-oriented architectural concerns
and viewpoints. European Conference on Software Architecture. WIC-
SA/ECSA 2009, pages 289–292, 2009.

[17] Grace Lewis, Edwin Morris, Soumya Simanta, and Lutz Wrage. Com-
mon misconceptions about service-oriented architecture. Sixth Inter-
national IEEE Conference on Commercial-off-the-Shelf (COTS)-Based
Software Systems (ICCBSS’07), 2007.

[18] Rodrigo Mantovaneli Pessoa, Eduardo Silva, Marten van Sinderen, Dick
Quartel, and Lúıs Ferreira Pires. Enterprise interoperability with soa: a
survey of service composition approaches. Enterprise Distributed Object
Computing Conference Workshops, pages 238–251, 2008.

[19] Jameela Al-Jaroodi, Nader Mohamed, and Junaid Aziz. Service oriented
middleware trends and challenges. Seventh International Conference on
Information Technology, pages 974–979, 2010.

[20] Giovanni Denaro, Mauro Pezzè, and Davide Tosi. Ensuring interoperable
service-oriented systems through engineered self-healing. ESEC-FSE’09,
pages 253–262, 2009.

60

BIBLIOGRAPHY

[21] Andreas Winter and Jürgen Eber. Using metamodels in service inter-
operability. 13th IEEE International Workshop on Software Technology
and Engineering Practice (STEP’05), pages 1–10, 2005.

[22] Marijn Janssen and Hans Jochen Scholl. Interoperability for electronic
governance. ACM, pages 45–48, 2007.

[23] Sven De Labey and Eric Steegmans. Making service-oriented java ap-
plications interoperable without compromising transparency. Enterprise
Interoperability III, pages 233–245, 2008.

[24] Luciano Baresi, Elisabetta Di Nitto, and Carlo Ghezzi. Toward open-
world software: Issues and challenges. Computer (IEEE Computer So-
ciety), pages 36–43, 2006.

[25] Tom Goovaerts, Bart De Win, and Wouter Joosen. A flexible archi-
tecture for enforcing and composing policies in a service-oriented en-
vironment. International Federation for Information Processing, pages
253–266, 2007.

[26] Bingu Shim, Siho Choue, Suntae Kim, and Sooyong Park. A design qua-
lity model for service-oriented architecture. 15th Asia-Pacific Software
Engineering Conference, pages 403–410, 2008.

[27] Stanislav Pokraev, Dick Quartel, Maarten Steen, and Manfred Reichert.
A method for formal verification of service interoperability. IEEE Inter-
national Conference on Web Services (ICWS’06), 2006.

[28] Liyi Zhang, Si Zhou, and Mingzhu Zhu. A semantic service-oriented
architecture for enterprise application integration. Second International
Symposium on Electronic Commerce and Security, pages 102–106, 2009.

[29] Balázs Simon, Zoltán László, Balázs Goldschmidt, Károly Kondorosi,
and Péter Risztics. Evaluation of ws- standards based interoperability
of soa products for the hungarian e-government infrastructure. Fourth
International Conference on Digital Society, pages 118–123, 2010.

[30] Aphrodite Tsalgatidou and Eleni Koutrouli. Interoperability and eser-
vices. International Federation for Information Processing, pages 50–55,
2005.

[31] Olaf Zimmermann, Vadim Doubrovski, Jonas Grundler, and Kerard
Hogg. Service-oriented architecture and business process choreography
in an order management scenario. ACM, pages 301–312, 2005.

61

BIBLIOGRAPHY

[32] Jian Wang, Keqing He, Yangfan He, and Chong Wang. Towards service-
oriented semantic interoperability based on connecting ontologies. In-
ternational Conference on Interoperability for Enterprise Software and
Applications China, pages 28–33, 2009.

62

Appendix A

Selected Sentences.

Here we can find all sentences selected from the systematic literature review.

BUILDING BLOCKS

PAPER DIFF SENTENCES

2 1 Services are the fundamental building blocks of soft-
ware systems when applying the Service-Oriented
Computing (SOC) paradigm

8 1 Given the architectural elements, or building blocks,
any number of systems can be developed based on this
architectural pattern

13 1 eServices are the building blocks for loosely-coupled,
distributed applications based on the Service Oriented
Architecture (SOA) principles

13 1 eServices are the building blocks of SOA and are
mainly instantiated by Web Services (WS), Grid and
P2P Services which are briefly described below

13 1 In this paper we investigated the interoperability po-
tentials and challenges of WS, P2P and Grid services
which are the building blocks of SOA and are known
as eServices

continued on next page. . .

63

APPENDIX A. SELECTED SENTENCES.

BUILDING BLOCKS

. . . continued from previous page

PAPER DIFF SENTENCES

19 1 The fundamental elements of this computing approach
are loosely coupled software components, called ser-
vices

Table A.1: Building Blocks.

COMPONENT MODELING

PAPER DIFF SENTENCES

1 1 For instance, concepts such as class, method, attri-
bute, or inheritance are commonly found in OO sys-
tems yet non-existent in SOA systems

1 1 Another significant difference is in the abstraction le-
vels used to model system functionality

8 4 Modifying the legacy system to replace internal func-
tions with calls to external services, however, is much
more technically challenging and likely more expen-
sive

17 1,3 A service-oriented architecture (SOA) is an architec-
tural approach for building systems where there are
components that are service users and/or service pro-
viders

21 1 Service Oriented Architecture (SOA) is a promising
model for enabling software vendors to present their
software applications as services

21 3 Service Oriented Architecture (SOA) is not only an
architecture, rather it is a relationship between the
service provider, broker and user

continued on next page. . .

64

APPENDIX A. SELECTED SENTENCES.

COMPONENT MODELING

. . . continued from previous page

PAPER DIFF SENTENCES

21 3 SOA basically involves three main players: the service
provider, the service broker and the service requester

21 3 A relationship is created among participants: service
provider, discovery agency, and the service requester

Table A.2: Component Modeling.

COMPOSITION

PAPER DIFF SENTENCES

4 1 Composition defines a composition of services into an
executable workflow (business process)

5 1 Service Oriented Architecture (SOA) is an approach
focused on software development to build loosely-
coupled distributed applications using a collection of
services

6 1 These products need to interoperate with each other
for the system to behave as a cohesive whole and pro-
vide the desired functionality

6 1 An SOA implementation will have many services and
these services have to interoperate in an SOA envi-
ronment

8 1,2 If there are several providers of the same service the
service consumer can choose at runtime which one to
use

8 1,2 It is easy to compose services dynamically at runtime
8 1,2 In the case of dynamic binding, discovery and compo-

sition of services are done at run-time

continued on next page. . .

65

APPENDIX A. SELECTED SENTENCES.

COMPOSITION

. . . continued from previous page

PAPER DIFF SENTENCES

8 2 More advanced automatic discovery and composition
of new services at runtime requires the use of ontolo-
gies to describe function and usage of services

8 1 Composite business services may use one or more in-
frastructure services internally in addition to other bu-
siness services

8 1 Building an application based on services can be like
putting together a jigsaw puzzle where the parts do
not quite fit

10 2 An issue that apparently is not being widely addres-
sed is the support to end-users’ service composition at
runtime

10 1 We claim that service composition plays a major role
in enterprise interoperability, and so here we present
some state of the art on service composition ap-
proaches

10 1 In order to satisfy more demanding needs or to rapidly
adapt to changing needs it is possible to perform ser-
vice composition in order to combine the capabilities
provided through several available services

10 1 Service composition is an essential ingredient of SOA,
as it is concerned with aggregating interoperable ser-
vices such that the goals of (enterprises in) a collabo-
ration endeavour can be satisfied

10 1 A composite service consists of a composition of exis-
ting services to achieve some functionality that typi-
cally is not provided by a single available service

12 1 Each of these levels describes specific interoperability
concerns which need to be tackled when integrating
two service-oriented systems

12 1 Specifically, the first classification framework takes an
internal look on the aspects that need to be conside-
red when dealing with the integration of two systems,
whereas the second one uses a system architect ‘co-
arse’ point of view for the identification of the various
levels which are affected by the integration

continued on next page. . .

66

APPENDIX A. SELECTED SENTENCES.

COMPOSITION

. . . continued from previous page

PAPER DIFF SENTENCES

14 1 All these organization comprise hundreds, thousands,
or even more applications that need to communicate
with each other

16 6 As a consequence, non-interoperable applications were
created based on decentralised data management

18 1 The latter qualification becomes necessary because a
composite system has properties that emerge due to
the interaction of its components

19 1 It is an approach to building software systems that is
concerned with loose coupling and dynamic binding
between components (services) that have been descri-
bed in a uniform way and that can be discovered and
composed

19 2 The software then uses this information to dynami-
cally access the service

19 2 Semantics bring closer the possibility of switching ser-
vices dynamically by discovering them at runtime

19 3 Any collection of services needs common design, dis-
covery, composition, and binding principles since they
are typically not all developed at the same time

20 1 Companies A and B after discovering their match for
business (e.g., using a public or private registry), need
to agree on the joint business process, i.e., activities,
message exchange sequence and interaction contracts,
e.g., security, privacy and QoS policies

20 1 When services are described and interact in a standar-
dized manner, the task of developing complex services
by composing other (basic or composite) services is
considerably simplified

21 1 The main advantage of this approach is giving the ap-
plications a way to integrate various services available
online within the context of the applicationŠs specific
domain and using them as needed instead of imple-
menting the whole solution from scratch

continued on next page. . .

67

APPENDIX A. SELECTED SENTENCES.

COMPOSITION

. . . continued from previous page

PAPER DIFF SENTENCES

21 1 The interactions among services are done through a
standard description language such as XML, which
makes it easy to integrate different services to build
a business application and address problems related
to the integration of heterogeneous applications in a
distributed environment

24 1 The shift from developing large monolithic systems
towards service oriented architectures, including the
potential of web service-based implementations, leads
to new chances and challenges in software develop-
ment

25 1 Developers can use this combination of specifications
to specify choreographies among multiple services

Table A.3: Composition.

DIFFERENT SERVICE CONSUMERS

PAPER DIFF SENTENCES

4 3,7 There are different groups of stakeholders which use
the functionality of the architecture for various pur-
poses

4 3 Different types of engineers could be involved in this
process ranging from domain experts (ontology mo-
deling, creation), system administrators (ontology de-
ployment, monitoring) and software engineers

continued on next page. . .

68

APPENDIX A. SELECTED SENTENCES.

DIFFERENT SERVICE CONSUMERS

. . . continued from previous page

PAPER DIFF SENTENCES

5 6,7 In exchange, these systems are characterized by being
accessible by different and multiple users

6 7 Products support different versions of web service
standards and specifications

8 7 What is the process for creating, evolving, and chan-
ging services if there are many consumers of the ser-
vice?

9 7 Enabling interoperability with multiple implementa-
tions of a standard API shares some aspects with
supporting evolving APIs, but entails additional chal-
lenges that call for novel approaches, as the one pro-
posed in this paper

10 4,7 A service may have different implementations, and
each implementation may have multiple deployments
in different service end-points

10 7 The artefact produced in the requirements analysis
phase is a software requirements document, which
typically details the system’s functional and non-
functional requirements in a structured form

13 7 Grid services interoperability can be viewed along two
different dimensions: between distributed resources in
a Grid application, and between different Grid appli-
cations

19 1 Implementing a service-oriented architecture can in-
volve developing applications that use services, ma-
king applications available as services so that other
applications can use those services, or both

21 7 Services can implement a single business process or a
set of different processes that are made available for
integration with other heterogeneous services

21 7 This paper reviews the current work in the area and
the trends and challenges to be addressed when de-
signing and developing SOA middleware solutions for
different application domains

continued on next page. . .

69

APPENDIX A. SELECTED SENTENCES.

DIFFERENT SERVICE CONSUMERS

. . . continued from previous page

PAPER DIFF SENTENCES

25 7 A service’s interoperability information has two types
of consumers (and usage scenarios): human users and
applications

Table A.4: Different Service Consumers.

DYNAMIC BUSINESS PROCESS

PAPER DIFF SENTENCES

1 2 Organizations face various business challenges in ra-
pidly changing environments, often in forms of part-
nership changes or Merger & Acquisitions

1 2 Capable of providing mechanisms for integrating le-
gacy systems at low cost or handing rapid business
changes effectively, SOA mitigates risks introduced by
fluctuations in the business world

2 2 Systems need to be able to comply with an ever gro-
wing set of business rules and regulations that are
subject to continuous change

4 2 Changes to models and services are inevitable over
time

5 2 Even though this kind of development requires an ad-
ditional effort from a more traditional development,
the resulting applications are flexible and capable of
adapting in runtime to different needs, making them
optimal and profitable

continued on next page. . .

70

APPENDIX A. SELECTED SENTENCES.

DYNAMIC BUSINESS PROCESS

. . . continued from previous page

PAPER DIFF SENTENCES

7 2 Dynamic composition (and late binding in general)
provides an exceptional challenge for verifying inter-
operability

7 2 The activities to verify syntactic, semantic, and or-
ganizational interoperability must be performed “on
the fly” against the specific scenarios presented by the
dynamic composition

9 2 Design for change approaches support the design of
evolving APIs

9 2 Approaches to interchangeable services support inter-
operability of applications with services other than the
ones the application was originally written for, but
the work done so far considers mostly structural map-
ping between non-standard service interfaces, and dis-
misses semantic aspects of different implementations
of standard interfaces

10 2 The binding phase may be performed either at design-
time or at runtime, and can be static or dynamic

10 2 Dynamic service bindings allow a dynamic binding of
service user and service provider’s service at runtime,
given a selection and discovery mechanism, usually
defined at design-time

13 2 Furthermore, new services can be created and dyna-
mically published and discovered without disrupting
the existing environment

15 2,7 Second, WSIF determines the underlying protocol dy-
namically, so it can speak other protocols than SOAP,
and it can react on protocol changes by switching bet-
ween protocols at runtime

15 2 Currently, the programmer is forced to decide on
the communication protocol at implementation time
, leading to interoperability problems in architectures
where services may decide to switch to other protocols
at runtime

continued on next page. . .

71

APPENDIX A. SELECTED SENTENCES.

DYNAMIC BUSINESS PROCESS

. . . continued from previous page

PAPER DIFF SENTENCES

17 2 Lifecycle management comprises design time (identi-
fying and developing services), run time (defining and
monitoring SLAs) and change time (upgrading and
evolving services)

24 2 Web services form the most widespread infrastructure
to enable components to collaborate dynamically

25 2 The general consensus is that this will change in the
near future, with some dynamic binding possible as
more services become available

Table A.5: Dynamic Business Process.

HETEROGENEOUS COMPONENTS IN THE SYSTEM

PAPER DIFF SENTENCES

2 7 A SOA interconnects a set of heterogeneous systems
that may use different messages and formats

3 3,6 Semantic interoperability problems arise when the
message sender and receiver have a different concep-
tualization or use a different representation of the en-
tity types, properties and values from their subject
domains

5 1 These Service based Systems, also called composite
services, integrate and compose different existing ser-
vices

6 6 Interoperability is the ability of software and hardware
on various machines from various vendors to commu-
nicate with each other without significant changes to
either side

continued on next page. . .

72

APPENDIX A. SELECTED SENTENCES.

HETEROGENEOUS COMPONENTS IN THE SYSTEM

. . . continued from previous page

PAPER DIFF SENTENCES

6 6 Usually open Web Service standards and specifica-
tions are used to connect these products in an SOA
stack However, interoperability cannot be guaranteed
due to various reasons like differences in the versions of
Web Service standards and specifications supported,
differences in error handling mechanisms, differences
in protocol support etc

6 7 If it does not interoperate, alternate solutions like
adapter between products, product customization by
the vendor or similar product from different vendors
can be decided

8 1,3 Service implementations may involve developing new
software, wrapping a legacy software system, incorpo-
rating services provided by third parties, or a combi-
nation of these options

8 5 Testing services based on heterogeneous technologies
and owned by various organizations in an asynchro-
nous and distributed environment is a non-trivial task

9 6 Service interchangeability focuses on interoperability
between applications and services that fulfil equiva-
lent goals, but are designed independently by different
vendors and are not always fully compatible

12 6 Section 3 presents the interoperability dimensions
that are involved when trying to integrate heteroge-
neous services

12 1 Let us consider for example the interoperability pro-
blem that may arise when integrating two systems
that implement two incompatible processes

12 1 Thus, in order to facilitate the integration of hetero-
geneous services, special care should be given on these
levels

12 1,3 Existing component-based technologies have tried to
address this issue, but they haven’t managed to pro-
vide a widespread solution that would enable the in-
teroperation of diverse components developed by dif-
ferent providers, in multi-vendor platforms

continued on next page. . .

73

APPENDIX A. SELECTED SENTENCES.

HETEROGENEOUS COMPONENTS IN THE SYSTEM

. . . continued from previous page

PAPER DIFF SENTENCES

13 1 Interoperability between different peers needs advan-
ced interoperability techniques, since the various he-
terogeneous nodes of a P2P network need to commu-
nicate, exchange content and aggregate their diverse
resources, such as computing power or storage space

13 6 One of the major benefits they offer is interoperability
both between components of service oriented systems
and between different systems

13 6 Thus, WS technology provides a means of interopera-
ting between different software applications, running
on a variety of platforms and/or frameworks

14 5 In the past, agencies could not exchange information
because they operated widely disparate hardware that
was incompatible

14 3,5 Interoperation occurs whenever independent or hete-
rogeneous information systems or their components
controlled by different jurisdictions/administrations
or by external parties smoothly and effectively work
together in a predefined and agreed upon fashion

15 3 This lack of transparency forces programmers to
consider heterogeneity problems over and over again,
even though interoperability is ideally a middleware
responsibility

15 6 It is clear that such frameworks provide increased in-
teroperability at the cost of decreased transparency

15 6 Object-oriented programming languages lack high-
level support for platform-independent service inter-
actions

16 6 However, true interoperability is not yet here since en-
terprises running different applications built with dif-
ferent designs and architectures still have difficulties
talking to each other

continued on next page. . .

74

APPENDIX A. SELECTED SENTENCES.

HETEROGENEOUS COMPONENTS IN THE SYSTEM

. . . continued from previous page

PAPER DIFF SENTENCES

17 1,4 In this context, a service is a distributed component
with the following characteristics: is self-contained;
has a published interface that abstracts the underlying
logic; is location transparent; can be implemented in
different languages or platforms and still interoperate;
is discoverable and dynamically bound

17 5 However, the Web services goal of cross -vendor and
cross-platform interoperability begins to fall short
when services start to use features beyond the two
basic standards: Web Service Definition Language
(WSDL) and Simple Object Access Protocol (SOAP)

18 1 Interoperability is the capability of multiple, autono-
mous and heterogeneous systems to use each other’s
services effectively

19 6 In order to enable dynamic and seamless cooperation
between different systems and organizations, imple-
menting SOA poses new challenges to overcome

19 6 On the other hand, there is no universally agreed stan-
dard middleware, which makes it difficult to construct
applications from components that are built using dif-
ferent programming models (such as Microsoft COM,
OMG CORBA, or Java 2 Platform, Enterprise Edi-
tion (J2EE) Enterprise Java Beans)

19 6 Thus, a consumer can use the functionality offered
by multiple providers without worrying about the un-
derlying differences in hardware, operating systems,
programming languages, etc

21 6 Abstractions to hide the heterogeneity of underlying
environments thru supportive languages and protocols

24 6 The approach on using meta modeling technologies to
enable service interoperability on data level is inde-
pendent from the technological space used for service
interaction

continued on next page. . .

75

APPENDIX A. SELECTED SENTENCES.

HETEROGENEOUS COMPONENTS IN THE SYSTEM

. . . continued from previous page

PAPER DIFF SENTENCES

Table A.6: Heterogeneous Components in the System.

INTERFACES AND ADAPTERS

PAPER DIFF SENTENCES

2 6 Interoperability is achieved by inserting the adapter
components (Message Adapters and Policy Service
Adapters) that translate back and forth between the
generic format and native formats

4 3 On the other hand, the group of engineers forms those
stakeholders which perform development and adminis-
trative tasks in the architecture via Developer Inter-
face

4 6 Different enterprise systems are connected through
one interface, and a cross-system data transfer and
the reusage of objects or components is enabled

5 2 This enables in SOA based systems to easily replace
and add new services and changes without impacting
on the service interface

13 1 The Open Grid Services Architecture (OGSA) is a
significant effort by the Global Grid Forum towards
the standardization of protocols and interfaces which
integrates Grid and WSs

15 6 In this paper, we show that interoperability in Java
applications can be achieved without compromising
transparency

continued on next page. . .

76

APPENDIX A. SELECTED SENTENCES.

INTERFACES AND ADAPTERS

. . . continued from previous page

PAPER DIFF SENTENCES

17 6 That is possible because Web services define the in-
terface format and communication protocols but do
not restrict the implementation language or platform

19 1,6 Services are software components with well-defined in-
terfaces that are implementation-independent

19 6 A service is accessed by means of a service interface,
where the interface comprises the specifics of how to
access the underlying capabilities

19 6 A service is opaque in that its implementation is typi-
cally hidden from the service consumer except for (1)
the information and behavior models exposed through
the service interface and (2) the information required
by service consumers to determine whether a given
service is appropriate for their needs

21 1 It provides a framework to represent business pro-
cesses as independent modules (services) with clear
and accessible interfaces

22 6 However, in the past it was difficult to define com-
ponent interfaces using self-describing, openly stan-
dardized interface specifications which are now avai-
lable, for instance Web Services Description Language
(WSDL) and Business Process Execution Language
(BPEL) (to describe the workflow itself)

25 6 Management specifications provide for the definition
of visible interfaces for service tracking, accounting,
auditing, supervision, and control of service

25 6 Aside from such languages, these specifications donŠt
make assumptions or impose constraints on how to
define interfaces

Table A.7: Interfaces and Adapters.

77

APPENDIX A. SELECTED SENTENCES.

MANY ORGANIZATIONS IN THE SYSTEM

PAPER DIFF SENTENCES

2 3,5 The applications that emerge in service oriented ar-
chitectures can become large and fairly complex, and
can be interconnected with services from various or-
ganizations and stakeholders

4 1,4,5 Depending on particular architecture deployment and
integration scenarios, the back-end applications could
originate from one organization (one service provider)
or multiple organizations (more service providers) in-
terconnected over the network (internet, intranet or
extranet)

4 5 The architecture thus can serve various requirements
not limited to Enterprise Application Integration, but
also Business to Business (B2B) integration

5 1,5 Moreover, the Service based Systems are composed
by several applications and distributed services from
different organisations; therefore the control and ma-
nagement of the systems is a critical issue

7 5 Achieving organizational interoperability further re-
quires that the business activities that cross applica-
tions and services not only be aligned across organi-
zations but also well understood by the testers

8 5 The goal of these standards is to ensure that Web Ser-
vices, tools, and runtime environments interoperate
across vendors and organizations

8 4,5 Typically, services are reused across applications that
often cross enterprise boundaries

10 5 SOA is based on the assumption that enterprise sys-
tems may be under the control of different ownership
domains

continued on next page. . .

78

APPENDIX A. SELECTED SENTENCES.

MANY ORGANIZATIONS IN THE SYSTEM

. . . continued from previous page

PAPER DIFF SENTENCES

10 5 Different organisations define ontologies in different
ways, which may generate major problems of inter-
operability

11 5 The proposed architecture of the Hungarian e-
Government Framework, mandating the functional
cooperation of independent organizations, puts spe-
cial emphasis on interoperability

11 5 Although Hungary has middle-ranked position in the
level of e-government services, strategic studies and
assessments showed that one of the primary deficien-
cies is the lack of interoperable, multi- and cross-
organizational back-office functionality

11 5 The process-level layer orchestrates cross-
organizational activities and services

14 5 Departments and institutions collaborate and in-
teroperate in processes crossing their organizational
boundaries

16 5 Not only large organisations set up cooperation agree-
ments with other enterprises, also small and medium
sized enterprises are combining their forces to compete
jointly in the market

16 5 Interoperability is an issue that arises when multiple
organisations need to cooperate via information sys-
tems

19 5 Especially, in the case of service interaction where the
message and information exchanges are across boun-
daries, a critical issue is the interpretation of the data

19 5 Its strong decoupling between service provision and
consumption enables much more flexible and cost-
effective integration, within and across organizational
boundaries, than existing middleware or workflow sys-
tems do

continued on next page. . .

79

APPENDIX A. SELECTED SENTENCES.

MANY ORGANIZATIONS IN THE SYSTEM

. . . continued from previous page

PAPER DIFF SENTENCES

20 1,5 Recent advances in Web service technologies provide
necessary building blocks for supporting the develop-
ment of integrated applications within and across or-
ganizations

Table A.8: Many Organizations in the System.

OPEN WORLD

PAPER DIFF SENTENCES

2 5 Moreover, the underlying resources that are being in-
terconnected may be implemented on different hete-
rogeneous systems that are unaware of each other

3 3,6 However, the message sender does not always know
the subject domain model of the message receiver

3 6 Depending on its knowledge, the message sender
makes assumptions about the subject domain model
of the receiver and uses them to construct a message
and to communicate it

5 6 Service deployment: This task makes the service avai-
lable in a suitable runtime environment in order to
receive incoming requests from potential consumers

8 6 Changes in service interface and implementation must
be tested continuously by each of the service consu-
mers in order to ensure that the actual service beha-
vior conforms to intended behavior

continued on next page. . .

80

APPENDIX A. SELECTED SENTENCES.

OPEN WORLD

. . . continued from previous page

PAPER DIFF SENTENCES

12 4,6 Intended Clients: Although there might be specific se-
curity constraints dictating a different case, web ser-
vices in general may be invoked by any client with
internet access, provided that a client has the neces-
sary infrastructure (e.g. a SOAP engine) to exchange
messages (e.g. SOAP messages) with the service pro-
vider

12 6 Context level interoperability is important when dea-
ling with service interoperability in ubiquitous com-
puting

13 6 Service Oriented Architectures (SOA) emerged as an
evolutionary step from Object and Component based
approaches, with the promise to support the loose cou-
pling of system parts and to provide agility, flexibility
and cost savings via reusability, interoperability and
efficiency

15 6 In this paper, we investigate how the lack of transpa-
rency in object-oriented programming languages can
be cured, taking Java as an example

18 6 However, the message sender does not always know
the subject domain model of the message receiver

18 6 Depending on its knowledge, the message sender
makes assumptions about the subject domain model
of the receiver and uses this assumed subject domain
model to construct a message and to communicate it

19 6 Unlike objects or databases, a service is developed for
use by its consumer, which may not be known at the
time

19 6 Loosely coupling means that services interactions are
neither hard coded (like in Object Oriented Program-
ming), nor specified at design time (like in Component
Based Modelling)

continued on next page. . .

81

APPENDIX A. SELECTED SENTENCES.

OPEN WORLD

. . . continued from previous page

PAPER DIFF SENTENCES

19 6 Services are loosely coupled: Services are designed to
interact without the need for tight, cross-service de-
pendencies

19 6 What distinguishes SOA from other architecture pa-
radigms is loose coupling

19 6 Loose coupling means that the client of a service is
essentially independent of the service

19 6 The difference between the Web services approach
and traditional approaches (for example, distributed
object technologies such as the Object Management
Group - Common Object Request Broker Architec-
ture (OMG CORBA), or Microsoft Distributed Com-
ponent Object Model (DCOM)) lies in the loose cou-
pling aspects of the architecture

19 6 A service is provided by an entity - the service provider
- for use by others, but the eventual consumers of the
service may not be known to the service provider and
may demonstrate uses of the service beyond the scope
originally conceived by the provider

23 6 Note that the relations between the sub-ontologies Oi
and the RSO are loosely coupled

25 3 For example, the SOAP middleware and its prebuilt
libraries support the sending and receiving of mes-
sages, so developers don’t need to know these details
to implement Web services

25 6 In general, a client needs all interoperability speci-
fications at binding time because it needs to know
whether a service supports a certain specification

Table A.9: Open World.

82

APPENDIX A. SELECTED SENTENCES.

POLICIES

PAPER DIFF SENTENCES

2 6,7 Due to the openness and very frequent evolution of
a service oriented environment, it needs to be able
to interface with a range of policy languages, policy
servers, message formats and functional services

2 7 Therefore, a policy enforcement solution needs to be
interoperable with multiple message formats and with
multiple policy services

2 6,7 The policy enforcement service needs to bridge a va-
riety of message formats on the one hand, and dif-
ferent types of requests for policy services on the other
hand

25 7 A service definition can include policies-for example,
privacy policies-and other nonfunctional properties-
for example, QoS descriptions such as response time-
that clients interacting with a service should unders-
tand

Table A.10: Policies.

SERVICES ARE LOCATED DIFFERENTLY

PAPER DIFF SENTENCES

3 4 In general, the interaction mechanism is identified by
its location (e.g. the combination of an IP address
and port number can be used to identify a TCP/UDP
socket)

4 4 Generally, the goal is to allow users to interact with
business processes on-line while at the same time re-
duce their physical interactions with back-office ope-
rations

continued on next page. . .

83

APPENDIX A. SELECTED SENTENCES.

SERVICES ARE LOCATED DIFFERENTLY

. . . continued from previous page

PAPER DIFF SENTENCES

5 4,5 In some cases the company developing the service will
host the service itself or may choose to work with a
third party as a service provider

8 3 These services then can either be developed in-house
or bought from external service providers

10 4 The execution phase involves the invocation of all par-
ticipating services, possibly hosted in different provi-
der domains

19 4 A service-oriented architecture represents an abstract
architectural concept defining an information techno-
logy approach or strategy in which applications make
use of (perhaps more accurately, rely on) services avai-
lable in a network such as the World Wide Web

Table A.11: Services Are Located Differently.

SYSTEM QUALITY

PAPER DIFF SENTENCES

1 1,2 A SOA system’s quality depends on the appropria-
teness of its design, which should be evaluated and
managed from early in its development

1 1,2 However, finding the right SOA-based metric model
that quantifies overall system qualities and is appli-
cable early in development is difficult

1 1,2,4 Failure to apply OO metric models to SOA systems
led to the recent introductions of several SOA-based
metrics, but most of these emergent researches are
applicable only after the system is implemented

continued on next page. . .

84

APPENDIX A. SELECTED SENTENCES.

SYSTEM QUALITY

. . . continued from previous page

PAPER DIFF SENTENCES

4 2 Services can be chosen at run time based upon their
availability or other factors, such as quality

8 3 It is the architect’s responsibility to understand the
quality attribute requirements and architect the sys-
tem around the tradeoffs that are most important to
the stakeholders of the system

17 3 Building a system that relies on third parties without
the necessary agreements increases the risk of not mee-
ting the quality attribute requirements

Table A.12: System Quality.

85

Appendix B

Pilot study.

Introduction.

After analyzing the differences between traditional software engineering
and service-oriented system engineering we decided to study their impact on
a particular software quality attribute as the interoperability. The procedure
adopted was to do initially a systematic literature review choosing most rele-
vant papers about SOA and interoperability. Afterwards we filtered suitable
papers and we selected sentences and considerations that proved differences
between TSE and SOSE and especially that highlighted the impact of these
differences on the interoperability. Then we made a table to link every single
sentence with the difference(s) that involves the attribute. Actually, sen-
tences have been grouped according by a common topic (with a title and a
corresponding letter). In the table the letter alone means that all sentences
about that topic are linked whereas a letter followed by a number refer to
a single sentence. Finally we wrote our considerations about the choice of
every link focusing the differences regarding traditional software and service
oriented components. Moreover we described the impact that these diffe-
rences have on the interoperability.

Analysis.

a) INTERFCES DESCRIPTION AND ADAPTERS

1. The basic concept of a service-oriented architecture (SOA) is quite tri-
vial: a service is offered using a remote interface that employs some

86

APPENDIX B. PILOT STUDY.

Diff A Diff B Diff C Diff D Diff E Diff F Diff G

Interoperability

b a5 c a1 f n a1
c2 d7 d5 c1 g1 a2
d o3 g4 g2 g3 a3
g5 n2 h a4
n1 n4 g8 a6
o1 e

g6
i
l1
m
o2

Table B.1: Pilot Table.

kind of well-defined interface description. [1]

2. Communication channels and messages are usually described with in-
terface descriptions. The interface description of a SOA needs to be
more sophisticated than the interface descriptions of (OO-)RPC dis-
tributed object middleware, however, because it needs to be able to
describe a wide variety of message types, formats, encodings, payload,
communication protocols, etc. [1]

3. Both client and server applications may have to support many different
service adapters and service interfaces, supporting different models. [1]

4. A characteristic property of SOAs is that they are highly adaptable
in the remoting layer. Possibly different communication protocols and
styles must be supported, even at the same time. [1]

5. A SOA usually has to be able to be adapted at runtime. [1]

6. Variation at the communication layer is usually handled via protocol
plug-ins. Protocol plug-ins extend the client request handler and server
request handler with support for multiple, exchangeable communication
protocols. [1]

b) BACKENDS

1. A service provider offers a service to service clients. Often the service
is not realized fully by the service provider implementation, but also
by a number of backends, such as server applications (other SOAs or

87

APPENDIX B. PILOT STUDY.

middleware-based systems such as CORBA or RMI systems), ERP
systems, databases, legacy systems, and so forth. Flexible integration of
heterogeneous backend systems is a central goal of a SOA. Even though
the use of backend systems is of course optional, it is an important
characteristic of SOAs. [1]

2. The service provider is the remote object realizing the service. Often
the service provider does not realize the service functionality solely, but
instead uses one or more backends. When a SOA is used for integration
tasks, it should support multiple backend types. [1]

c) BROKER ROLE

1. Remoting. This layer implements the middleware functionalities of a
SOA (for instance a Web services framework). Usually, these details of
the client side and the server side are hidden in a broker architecture:
a broker hides and mediates all communication between the objects or
components of a system. [1]

2. Concerning integration of SOA and business processes there are several
important integration patterns, such as router, broker, and managed
process. These are general patterns that are, in combination, suitable
for bridging the two views of SOA and business processes. [1]

3. Concerning the microflow level, the broker and router patterns are im-
portant in order to model communication between a process-step and
services at an endpoint at a technical level. The request for service in-
vocation sent by the process-step must be routed to the right endpoint,
which is done by a broker. [1]

4. Within this architectural pattern, various components connect to a
service bus via their service interfaces. In order to connect those com-
ponents to the bus, service adapters are necessary. The service bus
handles service requests and generally represents a message-based rou-
ter and/or broker. [1]

d) COMPOSITION

1. In the enterprise scope, often multiple SOAs and other (distributed)
systems need to be composed to work together. [1] The backend does
not need to be a legacy system or another non-SOA participant: the
backend can be another service as well. This way, service composition
can be realized architecturally using a distributed variant of the pattern
component wrapper. [1]

88

APPENDIX B. PILOT STUDY.

2. Services come in two flavors: simple and composite services. The unit of
reuse with services is functionality that is in place and readily available
and deployable as services that are capable of being managed to achieve
the required level of service quality. [6]In formal academic literature,
a service is defined as a business function implemented in software,
wrapped with a formal documented interface that is well known and
known where to be found not only by agents who designed the service
but also by agents who do not know about how the service has been
designed and yet want to access and use it. These services could be
simple services performing basic granular functions such as order tra-
cking or composite services that assemble simple or other composite
services to accomplish a modular business task such as a specialized
product billing application. [4] As an example, a business flow, such
as an online book retail service, could be built using services across
multiple service providers pulling together, say, billing services from a
partner, and warehousing services from another partner. [4]

3. Specifically, the roadmap details the following four areas - (i) Ser-
vice foundations - the fundamental infrastructure that implements the
connectivity of heterogeneous components; (ii) Service Composition -
the aggregation of services into a single composite service, addressing
control and data flow, and transaction integrity; (iii) Service Manage-
ment and Monitoring - the myriad of activities required to control and
monitor SOA applications and infrastructures from troubleshooting to
auditing, and includes systems engineering attributes like scalability,
performance, and availability; and (iv) Service Design and Develop-
ment - tying the design and development of services to the business
process, a key facet that can fully realize the benefits of adopting SOA
as a business strategy. [4] A third study suggests the need for a col-
laboration and coordination fabric, but define it to be “a conceptual
artifact that is used to connect interrelated entities by providing com-
munication, coordination, and collaboration mechanisms”. [4]

4. While the services encapsulate the business functionality, some form of
inter-service infrastructure is required to facilitate service interactions
and communication. [6]

5. If designers perform discovery at design time, they select the services
and hard-code their addresses into the BPEL workflow. If they perform
discovery at deployment time, they use a service broker to “configure”
the application. [7]

89

APPENDIX B. PILOT STUDY.

6. Services can encapsulate component behavior at many levels, but still
describe it in the same way, thus easing composition of the components.
[12]

7. A new problem arises when we want to introduce new applications and
configure them to interoperate. [12]

e) FRONTENDS

1. Sometimes a number of different frontends need to access one service.
One special variant of multiple frontends is that there is more than one
service offered, and each of the frontends is a different channel. [1]

f) DOMAINS

1. Organizations can benefit from Grid Computing and Cloud Computing
in different domains: internal business processes, collaboration with
business partners and for customer-faced services. [2]

2. However, this sort of calculation only makes sense if placed in a broader
context. Whether or not computing services can be performed locally
depends on the underlying business objective. It might for example
be necessary to process data in a distributed environment in order to
enable online collaboration. [2]

g) STANDARDS

1. When it comes to wider use across organizational boundaries, however,
the use of these models are hampered by the lack of uniform standards
and support from major software vendors. [4]

2. The World-wide Web Consortium formally defines a Web service as “a
software system designed to support interoperable machine-to-machine
interaction over a network”. The interface to a Web service is described
in a machine-processable format, specifically Web Services Definition
Language or WSDL. Other systems interact with the Web service using
SOAP messages (typically XML over HTTP) in conjunction with other
Web-related standards. Web services typically have the following cha-
racteristics:

• They are independent of the underlying transport protocol

• The service attributes (location, capabilities, and access mecha-
nism) are described in the XML-based WSDL

90

APPENDIX B. PILOT STUDY.

• Web services use the directory services standard Universal Des-
cription, Discovery, and Integration (UDDI) to facilitate discovery
and use by clients, and

• They use XML over HTTP (SOAP) to communicate with each
other

Although Web services have been characterized as old technology in
a new implementation (distributed RPCs) or even broadly as middle-
ware, Web services are essentially the deployment of a service-based
computing model over the Internet, and unlike other earlier technology
implementations leverage open Internet standards to facilitate diverse
inter-enterprise communication and has garnered relatively unanimous
industry vendor support. [4]

3. The efforts are too numerous to list here, but the various online trade
journals have an abundance of information on vendor products, and on-
going collaboration efforts across various vendors to promote standards
and interoperability for enterprise service infrastructures. [4]

4. For example, the elements in the SOA pattern include service consu-
mers, service descriptions, service implementations, and possibly a ser-
vice bus. One relationship is that between service providers and service
consumers. In the case of Web Services, consumers and services are
connected by HTTP or HTTPS connectors carrying SOAP messages.
Given the architectural elements, or building blocks, any number of
systems can be developed based on this architectural pattern. These
concrete elements and their interactions are the architecture of the sys-
tem. [5] Software architects still need to architect systems based on
the SOA architectural pattern. They have to design services and ser-
vice interactions that meet the qualities that stakeholders expect of
the system. In addition, the architect(s) must make decisions on how
services are implemented. Service implementations may involve deve-
loping new software, wrapping a legacy software system, incorporating
services provided by third parties, or a combination of these options.
Is it technically feasible to create a service from the legacy system or
part of the system? How much would it cost to expose services from
the legacy system? However, being stable for years does not mean that
the standards are complete. For example, after adopting basic infra-
structure Web service standards, some organizations found that their
services still could not communicate information effectively with other
services due to different design decisions and flexibility in the standards.

91

APPENDIX B. PILOT STUDY.

The WS-I Basic Profile was constructed to provide better interopera-
bility across implementations using basic infrastructure standards. [5]

5. Once all the elements of an enterprise architecture are in place, existing
and future applications can access these services as necessary without
the need of convoluted point-to-point solutions based on inscrutable
proprietary protocols. This architectural approach is particularly ap-
plicable when multiple applications running on varied technologies and
platforms need to communicate with each other. In this way, enterprises
can mix and match services to perform business transactions with mini-
mal programming effort. [6] The ability to layer solutions and support
heterogeneity allows for gradual migration to service-based solutions.
The development of XML-based languages for defining and enforcing
service-level agreements, workflow, and service composition is suppor-
ting the gradual change of business processes, envisioned as part of the
growth of Software as a Service. [9]

6. Standards such as SOAP for Web services help to ensure that hetero-
geneity of solutions poses no problems. [9]

7. However, the Web services goal of cross-vendor and cross-platform in-
teroperability begins to fall short when services start to use features
beyond the two basic standards: Web Service Definition Language
(WSDL) and Simple Object Access Protocol (SOAP). Over the last
few years, many Web services standards have emerged from a number
of standards bodies. [11]

h) ORGANIZATIONS

1. It follows that the adoption of service oriented computing cannot be
without impact on the organization - and it appears that the impact
could possibly be felt across the organization’s internal boundaries and
beyond them to the interfaces with partner organizations. [4]

2. Services can be reused across applications that cross enterprise bounda-
ries. Changes requested by one service consumer in an existing service
can result in undesired results for another service consumer. Changes
in service interface and implementation must be tested continuously by
each of the service consumers in order to ensure that the actual service
behavior conforms to intended behavior. [5]

3. Since services maybe offered by different enterprises and communicate
over the Internet, they provide a distributed computing infrastructure

92

APPENDIX B. PILOT STUDY.

for both intra and cross-enterprise application integration and collabo-
ration. Clients of services can be other solutions or applications within
an enterprise or clients outside the enterprise, whether these are exter-
nal applications, processes or customers/users. [6]

4. Internally, the opportunity exists to increase organizational information
systems’ flexibility and adaptability. Externally, the opportunity exists
to generate revenue from existing software and to flexibly and rapidly
obtain new software without the burden of ownership. [9]

i) SEMANTIC

1. True interoperability can only be achieved if service consumers and
providers interoperate at both the syntactic and semantic levels. [5]

2. Enriching the service interfaces with additional semantic information
such as scenarios or behaviors, allows a more robust and stable service
composition. [8]

3. Interoperability refers to the ability of a collection of communicating
entities to share specific information and operate on it according to an
agreed-upon operational semantics. [11]

4. Services offer programming abstractions in which software developers
can create different software modules through interfaces with clearer
semantics. [12]

l) MULTI-USER

1. Because services provide a uniform and ubiquitous information distri-
butor for wide range of computing devices (such as handheld computers,
PDAs, cellular telephones, or appliances) and software platforms (e.g.
UNIX or Windows), they constitute the next major step in distributed
computing. [6]

m) INTERFACE DEFINITIONS

1. Service-based applications are developed as independent sets of inter-
acting services offering well-defined interfaces to their potential users.
[6]

2. As service interfaces of composed services are provided by other (pos-
sibly singular) services, the service specification serves as a means to
define how a composite service interface can be related to the inter-
faces of the imported services and how it can be implemented out of
imported service interfaces. [6]

93

APPENDIX B. PILOT STUDY.

3. As service development requires that we deal with multiple imported
service interfaces it is useful to introduce this stage the concept of a
service usage interface. A service usage interface is simply the interface
that the service exposes to its clients. [6]

4. In house service design and implementation. Once a service is specified,
the design of its interfaces or sets of interfaces and the coding of its
actual implementation happens in-house. [6]

5. Outsourcing service design and implementation. Once a service is spe-
cified, the design of its interfaces or sets of interfaces and the coding of
its actual implementation may be outsourced. [6]

6. Grid services are stateful services that provide a set of well-defined
interfaces and follow specific conventions to facilitate coordinating and
managing collections of web-service providers/aggregators. The grid
service indicates how a client can interact with it and is defined in
WSDL. [6]

n) OPEN WORLD

1. Component-based software represents another major advance, moving
software development processes to the open world. Third parties deve-
lop and provide components and are responsible for their quality and
evolution. Application development thus becomes partly decentralized.
At an extreme, application development consists of gluing components
together by using middleware technology as the integration and coor-
dination infrastructure. [7]

2. Researchers and practitioners are also increasingly interested in buil-
ding applications by assembling existing services executed remotely at
the provider site.

• Developers and users must trust the services they use to compose
the application. Each service should clearly describe its nonfunc-
tional characteristics, as well as its functionality, to let the client
understand if the service fits its needs. Moreover, the client must
be assured that the service meets its description’s promises.

• Developers should define suitable mechanisms to set up and nego-
tiate service-level agreements between clients and services.

• Developers should allow applications to set the bindings to specific
services at runtime.

94

APPENDIX B. PILOT STUDY.

• Because services might change unexpectedly and because of dy-
namic binding, their users (either humans or other applications/-
services) need to monitor real behaviors that might deviate from
what’s expected and plan for strategies to react to them. [7]

3. The following are some existing standards, industrial products, and
research prototypes that support, to a certain extent, the open world
assumptions. Service-oriented technologies:

• Jini

• Open Services Gateway Initiative (OSGI)

• SOAP

• Web Service Description Language (WSDL)

• Universal description, discovery, and integration (UDDI)

• Business Process Execution Language (BPEL)

• Web Service Security (WS-Security)

• Web Services Trust Language (WS-Trust)[7]

4. Web services let designers integrate and remotely use services that dif-
ferent providers supply. The Web services can also be composed toge-
ther to form more complex services. Designers typically use the Busi-
ness Process Execution Language for this. BPEL imposes a workflow-
based coordination of involved services and requires the identification
of at least the structure of the WSDL interface of all parties at de-
sign time. In principle, designers can discover new services at different
times. [7]

5. Heterogeneity. Any SSE concept, method or tool has to embrace hete-
rogeneity of the service application and the context in which it operates.
Just like dynamism, heterogeneity impacts all phases of the service de-
velopment lifecycle, posing restrictions on how software service systems
can be designed, developed, deployed, and evolved over time. Note that
in contrast to current practice, no assumptions can be made about the
system’s programming, execution, and management context before, du-
ring or after deployment. [8]

6. In our view, SSE will be based on standards and will be frequently
realized with Web services. In fact, languages such as SOAP, WSDL,
BPEL, WS-Policy, WS-Agreement already constitute the first step to
realize the technical aspects in some of the SSE tenets. However, it

95

APPENDIX B. PILOT STUDY.

is evident that research is needed to more effectively satisfy the open-
world assumption. [8]

o) TENETS

1. Without sound SSE tenets, we cannot guarantee that the usage of
SOA-compliant methods and tools results in software applications that
meet the basic SOA criteria ensuring that services are loosely coupled,
self-contained, and have a clean interface that is geared towards (re-)
composition. [8]

2. Firstly, dynamism implies that SSE methods, techniques, and tools
have to deal with emergent properties and behavior of complex service
networks, which may in fact be comprised of thousands of independent
- yet cooperating - services. Late binding and loose coupling constitute
two key principles for increasing the adaptability of service applications,
accommodating dynamic (re-) composition and (re-) configuration of
services in a network. [8]

3. In addition, SSE has to deal with services that may be deployed on va-
rious run-time platforms, including mobile devices, computing clouds,
and legacy systems, and have been developed in various programming
paradigms - including, but not limited to, OO and CBD. [8]

4. Dynamism. A key tenet of SSE is dynamism regarding both the services
that are aggregated into dynamic service compositions. [8]

Pilot study references.

[1] Zdun, U.; Hentrich, C. & van der Aalst, W. M. P., A survey of patterns
for Service-Oriented Architectures, International Journal of Internet Protocol
Technology, 2006, 1, 132-143

[2] Klems, M.; Nimis, J. & Tai, S., Do Clouds Compute? A Framework
for Estimating the Value of Cloud Computing, 7th Workshop on E-Business
(WeB2008), Springer, 2009

[3] Gu, Q. & Lago P., Exploring service-oriented system engineering chal-
lenges: a systematic literature review,SOCA (2009) 3:171Ű188, Springer,
2009

96

APPENDIX B. PILOT STUDY.

[4] Luthria, H. & Rabhi, F., Service Oriented Computing in Practice - An
Agenda for Research into the Factors Influencing the Organizational Adop-
tion of Service Oriented Architectures, Journal of Theoretical and Applied
Electronic Commerce Research, 2009, 4, 39-56

[5] Lewis, G. A.; Morris, E.; Simanta, S. & Wrage, L., Common Mis-
conceptions about Service-Oriented Architecture, Proc. Sixth International
IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Sys-
tems ICCBSS ’07, 2007, 123-130

[6] Papazoglou, M. P., Service-oriented computing: concepts, characteris-
tics and directions, Proc. Fourth International Conference on Web Informa-
tion Systems Engineering WISE 2003, 2003, 3-12

[7] Baresi, L.; Nitto, E. D. & Ghezzi, C., Toward Open-World Software:
Issue and Challenges, Computer, IEEE Computer Society, 2006, 39, 36-43

[8] van den Heuvel, W.-J.; Zimmermann, O.; Leymann, F.; Lago, P.;
Schieferdecker, I.; Zdun, U. & Avgeriou, P., Software Service Engineering:
Tenets and Challenges, ICSE International Workshop on Principles of Engi-
neering Service Oriented Systems (PESOS), IEEE Computer Society, 2009

[9] Gold, N.; Mohan, A.; Knight, C. & Munro, M., Understanding service-
oriented software, IEEE Software, 2004, 21, 71-77

[10] Gu, Q. & Lago P., On Service-Oriented Architectural Concerns and
Viewpoints, European Conference on Software Architecture, WICSA/ECSA,
2009

[11] O’Brien Lero, L.; Merson, P. & Bass, L., Quality Attributes for
Service-Oriented Architectures, Proc. International Workshop on Systems
Development in SOA Environments SDSOA ’07: ICSE Workshops 2007,
2007, 3

[12] Huhns, M. N. & Singh, M. P., Service-oriented computing: key
concepts and principles, IEEE Internet Computing, 2005, 9, 75-81

97

	1 Introduction.
	1.1 What is SOA.
	1.2 What is interoperability.
	1.3 State of the art of interoperability in SOA.
	1.4 Motivation of the work.

	2 Systematic Literature Review.
	2.1 Introduction.
	2.1.1 Why.
	2.1.2 Pilot study.

	2.2 Review protocol.
	2.2.1 Data sources.
	2.2.2 Search strategy.
	2.2.3 Study selection.
	2.2.4 Data extraction.

	3 Review Results.
	3.1 Selected papers.
	3.2 Selected sentences.
	3.3 Classification of final sentences.

	4 Findings.
	4.1 Introduction.
	4.2 Considerations on the SOA topics.
	4.2.1 Building blocks.
	4.2.2 Component modeling.
	4.2.3 Composition.
	4.2.4 Different service consumers.
	4.2.5 Dynamic business process.
	4.2.6 Heterogeneous components in the system.
	4.2.7 Interfaces and adapters.
	4.2.8 Many organizations in the system.
	4.2.9 Open world.
	4.2.10 Policies.
	4.2.11 Services are located differently.
	4.2.12 System Quality.

	5 Conclusions.
	Bibliography
	A Selected Sentences.
	B Pilot study.

