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3 Feature Detection and Detectors 

3.1 Introduction 

In this chapter, the definition and algorithm of detectors which are used in this work 

will be explained. First an introduction to the definition of feature is given and then 

―Kanade-Lucas-Tomasi‖ detector, ―Harris detector‖ and ―Fast-Hessian‖ detector which 

are used in this work will be simply presented. 

3.2 Definition of a Feature 

Let’s say that there is not a certain and exact definition for what constitutes a feature. 

This definition is strongly related to the problem and type of the image application. But 

generally it could be defined that a feature illustrates ―interesting‖ part of an image and 

they are used as a starting point for many computer vision algorithms. Feature detection 

is a low-level image processing operation and they are used as the starting point and 

main primitives for subsequent algorithms so it shows how much this starting part could 

be essential for overall algorithm. Many computer vision algorithms use feature 

detection as the initial step, so as a result, a very large number of feature detectors have 

been developed. These vary widely in the kinds of feature detected, the computational 

complexity and the repeatability. 

A local feature is an image pattern which differs from its immediate neighborhood. It is 

usually associated with a change of an image property or several properties 

simultaneously, although it is not necessarily localized exactly on this change. The 

image properties commonly considered are intensity, color, and texture. Figure below 

shows some examples of local features in a contour image (left) as well as in a gray 

value image (right). Local features can be points, but also edgels or small image 

patches. Typically, some measurements are taken from a region centered on a local 

feature and converted into descriptors. The descriptors can then be used for various 

applications. 
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Figure. Importance of corners and junctions in visual recognition and an image example 

with interest points provided by a corner detector 

 

3.2.1 Image Feature Types 

We could sort some type of image feature as following: 

Edges 

Edges are points where there is a boundary (or an edge) between two image regions. In 

general, an edge can be of almost arbitrary shape, and may include junctions. In 

practice, edges are usually defined as sets of points in the image which have a 

strong gradient magnitude. 

 

Corners 

The terms corners and interest points are used somewhat interchangeably and refer to 

point-like features in an image, which have a local two dimensional structure. The name 

"Corner" arose since early algorithms first performed edge detection, and then analyzed 

the edges to find rapid changes in direction (corners). These algorithms were then 

developed so that explicit edge detection was no longer required, for instance by 

looking for high levels of curvature in the image gradient. It was then noticed that the 



 

 

An Evaluation of Feature Matching Strategies for Visual Tracking 

 

8  

 

so-called corners were also being detected on parts of the image which were not corners 

in the traditional sense (for instance a small bright spot on a dark background may be 

detected). These points are frequently known as interest points, but the term "corner" is 

used by tradition. 

 

Blobs / regions of interest or interest points 

Blobs provide a complementary description of image structures in terms of regions, as 

opposed to corners that are more point-like. Nevertheless, blob descriptors often contain 

a preferred point (a local maximum of an operator response or a center of gravity) 

which means that many blob detectors may also be regarded as interest point operators. 

Blob detectors can detect areas in an image which are too smooth to be detected by a 

corner detector. 

3.2.2 Feature detector categorization base on their application 

In the following, we distinguish three broad categories of feature detectors based on 

their possible usage. It is not exhaustive or the only way of categorizing the detectors 

but it emphasizes different properties required by the usage scenarios: 

 

1. One might be interested in a specific type of local features, as they may have a 

specific semantic interpretation in the limited context of a certain application. 

For instance, edges detected in aerial images often correspond to roads; blob 

detection can be used to identify impurities in some inspection task; etc. These 

were the first applications for which local feature detectors have been proposed. 

2. One might be interested in local features since they provide a limited set of well 

localized and individually identifiable anchor points. What the features actually 

represent is not really relevant, as long as their location can be determined 

accurately and in a stable manner over time. This is for instance the situation in 

most matching or tracking applications, and especially for camera calibration or 

3D reconstruction. 
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3. A set of local features can be used as a robust image representation that allows 

recognizing objects or scenes without the need for segmentation. Here again, it 

does not really matter what the features actually represent. They do not even 

have to be localized precisely, since the goal is not to match them on an 

individual basis, but rather to analyze their statistics. 

 

 

So as it was mentioned, each of the above three categories imposes its own constraints, 

and a good feature for one application may be useless in the context of a different 

problem. 

Notice: Interest Point and Local Feature 

In a way, the ideal local feature would be a point as defined in geometry: having a 

location in space but no spatial extent. In practice however, images are discrete with the 

smallest spatial unit being a pixel and discretization effects playing an important role. 

To localize features in images, a local neighborhood of pixels needs to be analyzed, 

giving all local features some implicit spatial extent. For some applications (e.g., 

camera calibration or 3D reconstruction) this spatial extent is completely ignored in 

further processing, and only the location derived from the feature extraction process is 

used (with the location sometimes determined up to sub-pixel accuracy). In those cases, 

one typically uses the term interest point. 

3.2.3 Properties of a Ideal Local Feature 

Followings are some properties of a Local Feature:  

 Repeatability: Given two images of the same object or scene, taken under 

different viewing conditions, a high percentage of the features detected on 

the scene part visible in both images should be found in both images. 

 Distinctiveness/in formativeness: The intensity patterns underlying the 

detected features should show a lot of variation, such that features can be 

distinguished and matched. 
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 Locality: The features should be local, so as to reduce the probability of 

occlusion and to allow simple model approximations of the geometric and 

photometric deformations between two images taken under different viewing 

conditions (e.g., based on a local planarity assumption). 

 Quantity: The number of detected features should be sufficiently large, such 

that a reasonable number of features are detected even on small objects. 

However, the optimal number of features depends on the application. 

Ideally, the number of detected features should be adaptable over a large 

range by a simple and intuitive threshold. The density of features should 

reflect the information content of the image to provide a compact image 

representation. 

 Accuracy: The detected features should be accurately localized, both in 

image location, as with respect to scale and possibly shape. 

 Efficiency: Preferably, the detection of features in a new image should allow 

for time-critical applications. 

 

Repeatability, arguably the most important property of all, can be achieved in two 

different ways: either by invariance or by robustness. 

 

 Invariance: When large deformations are to be expected, the preferred 

approach is to model these mathematically if possible, and then develop 

methods for feature detection that are unaffected by these mathematical 

transformations. 

 Robustness: In case of relatively small deformations, it often suffices to 

make feature detection methods less sensitive to such deformations, i.e., the 

accuracy of the detection may decrease, but not drastically so. Typical 

deformations that are tackled using robustness are image noise, 

discretization effects, compression artifacts, blur, etc. Also geometric and 

photometric deviations from the mathematical model used to obtain 

invariance are often overcome by including more robustness. 
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Clearly, the importance of these different properties depends on the actual application 

and settings, and compromises need to be made. 

Repeatability is required in all application scenarios and it directly depends on the other 

properties like invariance, robustness, quantity etc. Depending on the application 

increasing or decreasing them may result in higher repeatability. 

Distinctiveness and locality are competing properties and cannot be fulfilled 

simultaneously: the more local a feature, the less information is available in the 

underlying intensity pattern and the harder it becomes to match it correctly, especially in 

database applications where there are many candidate features to match to. On the other 

hand, in case of planar objects and/or purely rotating cameras, images are related by a 

global homography, and there are no problems with occlusions or depth discontinuities. 

Under these conditions, the size of the local features can be increased without problems, 

resulting in a higher distinctiveness. 

Similarly, an increased level of invariance typically leads to a reduced distinctiveness, 

as some of the image measurements are used to lift the degrees of freedom of the 

transformation. A similar rule holds for robustness versus distinctiveness, as typically 

some information is disregarded (considered as noise) in order to achieve robustness. As 

a result, it is important to have a clear idea on the required level of invariance or 

robustness for a given application. It is hard to achieve high invariance and robustness 

at the same time and invariance, which is not adapted to the application, may have a 

negative impact on the results. 

Accuracy is especially important in wide baseline matching, registration, and structure 

from motion applications, where precise correspondences are needed to, e.g., estimate 

the epipolar geometry or to calibrate the camera setup. 

Quantity is particularly useful in some class-level object or scene recognition methods, 

where it is vital to densely cover the object of interest. On the other hand, a high number 

of features have in most cases a negative impact on the computation time and it should 

be kept within limits. Also robustness is essential for object class recognition, as it is 

impossible to model the intra-class variations mathematically, so full invariance is 

impossible. For these applications, an accurate localization is less important. The effect 

of inaccurate localization of a feature detector can be countered, up to some point, by 
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having an extra robust descriptor, which yields a feature vector that is not affected by 

small localization errors. 

 

 

3.3 Harris Detector 

The Harris detector, proposed by Harris and Stephens, is based on the second moment 

matrix, also called the auto-correlation matrix, which is often used for feature detection 

and for describing local image structures. This matrix describes the gradient distribution 

in a local neighborhood of a point: 

    
        

  
                       

                  
       

  

With  

          
 

  
               

      
 

      
 
     

    

The local image derivatives are computed with Gaussian kernels of scale    (the 

differentiation scale). The derivatives are then averaged in the neighborhood of the 

point by smoothing with a Gaussian window of scale    (the integration scale). The 

eigen values of this matrix represent the principal signal changes in two orthogonal 

directions in a neighborhood around the point defined by     . Based on this property, 

corners can be found as locations in the image for which the image signal varies 

significantly in both directions, or in other words, for which both eigen values are large. 

In practice, Harris proposed to use the following measure for cornerness, which 

combines the two eigen values in a single measure and is computationally less 

expensive: 
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with        the determinant and          the trace of the matrix  . A typical value 

for λ is 0.04. Since the determinant of a matrix is equal to the product of its eigen values 

and the trace corresponds to the sum, it is clear that high values of the cornerness 

measure correspond to both eigenvalues being large. Adding the second term with the 

trace reduces the response of the operator on strong straight contours. 

 

Subsequent stages of the corner extraction process are illustrated in Figure : 

 

 

Fig. Illustration of the components of the second moment matrix and Harris cornerness 

measure. 

 

Figure ?? shows the corners detected with this measure for two example images related 

by a rotation. Note that the features found correspond to locations in the image showing 

two dimensional variations in the intensity pattern. These may correspond to real 

―corners‖, but the detector also fires on other structures, such as T-junctions, points with 

high curvature and etc.  

 



 

 

An Evaluation of Feature Matching Strategies for Visual Tracking 

 

14  

 

 

Fig. Harris corners detected on rotated image examples. 

 

As can be seen in the figure, many but not all of the features detected in the original 

image (left) have also been found in the rotated version (right). In other words, the 

repeatability of the Harris detector under rotations is high. Additionally, features are 

typically found at locations which are informative, i.e., with a high variability in the 

intensity pattern. This makes them more discriminative and easier to bring into 

correspondence. 

 

3.4 Hessian Detector 

The second       matrix issued from the Taylor expansion of the image intensity 

function      is the Hessian matrix: 

   
                  

                  
  

with     etc. second-order Gaussian smoothed image derivatives. These encode the 

shape information by describing how the normal to an isosurface changes. As such, they 

capture important properties of local image structure. Particularly interesting are the 

filters based on the determinant and the trace of this matrix. The latter is often referred 

to as the Laplacian. Local maxima of both measures can be used to detect blob-like 

structures in an image The Laplacian is a separable linear filter and can be approximated 

efficiently with a Difference of Gaussians (DoG) filter. The Laplacian filters have one 
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major drawback in the context of blob extraction though. Local maxima are often found 

near contours or straight edges, where the signal change is only in one direction. 

These maxima are less stable because their localization is more sensitive to noise or 

small changes in neighboring texture. This is mostly an issue in the context of finding 

correspondences for recovering image transformations. A more sophisticated approach, 

solving this problem, is to select a location and scale for which the trace and the 

determinant of the Hessian matrix simultaneously assume a local extremum. 

 

This gives rise to points, for which the second order derivatives detect signal changes in 

two orthogonal directions. A similar idea is explored in the Harris detector, albeit for 

first-order derivatives only. 

The feature detection process based on the Hessian matrix is illustrated in Figure ????. 

Given the original image (upper left), one first computes the second-order Gaussian 

smoothed image derivatives (lower part), which are then combined into the determinant 

of the Hessian (upper right). 

 

 

Fig. Illustration of the components of the Hessian matrix and Hessian determinant. 

 

The interest points detected with the determinant of the Hessian for an example image 

pair are displayed in Figure ????. The second-order derivatives are symmetric filters, 
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thus they give weak responses exactly in the point where the signal change is most 

significant. Therefore, the maxima are localized at ridges and blobs for which the size of 

the Gaussian kernel    matches by the size of the blob structure. 

 

 

Fig. Output of the Hessian detector applied at a given scale to example images with 

rotation (subset). 

 

3.5 Kanade-Lucas-Tomasi Detector 

The KLT algorithm is one of the selected detectors which are used in this work. In this 

section the definition of KLT feature detector is explained in detail but briefly, good 

features are located by examining the minimum eigenvalue of each 2 by 2 gradient 

matrix. In this method, it was shown how to monitor the quality of image features by 

using a measure of feature dissimilarity that quantifies the change of appearance of a 

feature between the first and the current frame. The idea is straightforward: dissimilarity 

is the feature’s rms residue between the first and the current frame and when 

dissimilarity grows too large the feature should be abandoned. 

Basic requirements for KLT 

As the camera moves, the patterns of image intensities change in a complex way. These 

changes can often be described as image motion: 
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Thus,a later image taken at time      can be obtained by moving every point in the 

current image, taken at time  , by a suitable amount. The amount of motion    

       is called the displacement of the point at        . 

An affine motion field is a better representation: 

         

Where 

    
      

      
  

 

is a deformation matrix, and   is the translation of the feature window’s center.The 

image coordinates   are measured with respect to the window’s center. Then,a point   

in the first image   moves to point        in the second image J,where          

and 1 is the     identity matrix:  

                

 

Because of image noise and as the affine motion model is not perfect, above equation 

                is in general not satisfied exactly. The problem of determining the 

motion parameters is then that of finding the   and   that minimize the dissimilarity: 

                         
 

 

 

Where   is the given feature window and      is a weighting function. To minimize 

the residual of above equation we should differentiate it with respect to the unknown 

entries of the deformation matrix   and the displacement vector   and set the result to 

zero. We then linearize the resulting system by the truncated Taylor expansion: 

                        

This yields the following linear     system: 

     

Where                                               collects the entries of the deformation 

  and displacement  . 
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  can be written as : 

    
  
   

     
 

 

 

Z would be vital for our next calculation in good feature detection of KLT. For further 

information on   and   please refer to the reference paper. 

 

   
  
     

      
   

 

In the KLT algorithm, they propose a more principled definition of feature quality. For 

selecting the reliable feature the symmetric matrix Z of the system must be both above 

the image noise level and well-conditioned.  

The noise requirement implies that both eigen values of Z must be large, while the 

conditioning requirement means that they cannot differ by several orders of magnitude. 

Two small eigen values mean a roughly constant intensity profile within a window. A 

large and a small eigen value correspond to a unidirectional texture pattern. Two large 

eigen values can represent corners, salt-and-pepper textures, or any other pattern that 

can be tracked reliably. 

 

In practice, when the smaller eigen value is sufficiently large to meet the noise criterion, 

the matrix Z is usually also well conditioned. In fact, the intensity variations in a 

window are bounded by the maximum allowable pixel value. so that the greater 

eigenvalue cannot be arbitrarily large. In conclusion, if the two eigenvalues of Z are 

  and   ,we accept a window if  

               

where   is a predefined threshold. 

It would be nice if we notice that a feature with a high texture content, as defined in the 

above equation, can still be a bad feature to track.For instance,in an image of a tree, a 

horizontal twig in the foreground can intersect a vertical twig in the background. This 

intersection occurs only in the image- not in the world- since the two twigs are at 

different depths. Any selection criterion would pick the intersection as a good feature to 
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track, and yet there is no real world feature there to speak of. The measure of 

dissimilarity defined in equation                          
 

 
 can often 

indicate that something is going wrong. Because of the potentially large number of 

frames through which a given feature can be tracked, the dissimilarity measure would 

not work well with a pure translation model. 
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4 Descriptors 

4.1 Introduction 

Interesting points on the object can be extracted to provide a "feature description" of the 

object. This description, extracted from a training image, can then be used to identify 

the object when attempting to locate the object in a test image containing many other 

objects. Image matching is a fundamental aspect of many problems in computer vision, 

including object or scene recognition, solving for 3D structure from multiple images, 

stereo correspondence, and motion tracking. A ―Descriptor‖ describes image features 

that have many properties that make them suitable for matching differing images of an 

object or scene. That features could be invariant to image scaling and rotation, and 

partially invariant to change in illumination and 3D camera viewpoint. To perform 

reliable recognition, it is important that the features extracted from the training image 

are detectable even under changes in image scale, noise and illumination. Such points 

usually lie on high-contrast regions of the image, such as object edges. More than 

above, relative positions between them in the original scene shouldn't change from one 

image to another. For example, if only the four corners of a door were used as features, 

they would work regardless of the door's position; but if points in the frame were also 

used, the recognition would fail if the door is opened or closed. Similarly, features 

located in articulated or flexible objects would typically not work if any change in their 

internal geometry happens between two images in the set being processed.  

The following section will introduce two powerful descriptors - Scale-invariant feature 

transform and speed up robust features- in detail. The speed up robust features (SURF) 

is one which is implemented and used in this work as a descriptor. 

 

4.2 SIFT: Scale-invariant feature transform 

According to David Lowe, Following are the major stages of computation used to 

generate the set of image features:  

1. Scale-space extrema detection: The first stage of computation searches over all 

scales and image locations. It is implemented efficiently by using a difference-
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of-Gaussian function to identify potential interest points that are invariant to 

scale and orientation. 

2. Keypoint localization: At each candidate location, a detailed model is fit to 

determine location and scale. Keypoints are selected based on measures of their 

stability. 

3. Orientation assignment: One or more orientations are assigned to each 

keypoint location based on local image gradient directions. All future operations 

are performed on image data that has been transformed relative to the assigned 

orientation, scale, and location for each feature, thereby providing invariance to 

these transformations. 

4. Keypoint descriptor: The local image gradients are measured at the selected 

scale in the region around each keypoint. These are transformed into a 

representation that allows for significant levels of local shape distortion and 

change in illumination. 

 

This approach has been named the Scale Invariant Feature Transform (SIFT), as it 

transforms image data into scale-invariant coordinates relative to local features. 

 

Detection of scale-space extrema 

 

The first stage of keypoint detection is to identify locations and scales that can be 

assigned in a repeatable manner under differing views of the same object. The scale 

space of an image is defined as a function         , that is produced from the 

convolution of a variable-scale Gaussian,         , with an input image,       : 

                           

where * is the convolution operation in   and  , and 

         
 

    
                  

Using scale-space extrema in the difference-of-Gaussian function convolved with the 

image,         : 
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From above equation we could reach to following approximation (the proof is described 

in the reference [Distinctive Image Features from Scale-Invariant Keypoints,by  david 

Lowe]) : 

                               

Where       is scale-normalized Laplacian of Gaussian. This shows that when the 

difference-of-Gaussian function has scales differing by a constant factor it already 

incorporates the    scale normalization required for the scale-invariant Laplacian. The 

factor         in the equation is a constant over all scales and therefore does not 

influence extrema location. An efficient approach to construction of          is shown 

in Figure ???. The initial image is incrementally convolved with Gaussians to produce 

images separated by a constant factor k in scale space, shown stacked in the left column. 

 

 

Figure ????: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to 

produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted to 

produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is down-

sampled by a factor of 2, and the process repeated. 
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Local extrema detection 

In order to detect the local maxima and minima of         , each sample point is 

compared to its eight neighbors in the current image and nine neighbors in the scale 

above and below. It is selected only if it is larger than all of these neighbors or smaller 

than all of them. The cost of this check is reasonably low due to the fact that most 

sample points will be eliminated following the first few checks. (see figure 2???) 

An important issue is to determine the frequency of sampling in the image and scale a 

domain that is needed to reliably detect the extrema. Unfortunately, it turns out that 

there is no minimum spacing of samples that will detect all extrema, as the extrema can 

be arbitrarily close together. Therefore, we must settle for a solution that trades off 

efficiency with completeness. 

 

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a pixel 

(marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked with 

circles). 

 

Accurate keypoint localization 

Once a keypoint candidate has been found by comparing a pixel to its neighbors, the 

next step is to perform a detailed fit to the nearby data for location, scale, and ratio of 

principal curvatures. This information allows points to be rejected that have low 

contrast (and are therefore sensitive to noise) or are poorly localized along an edge. 

Implementing of the above approach leads to 
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where   and its derivatives are evaluated at the sample point and              is the 

offset from this point. The location of the extremum,   , is determined by taking the 

derivative of this function with respect to   and setting it to zero, giving 

     
     

   
  
  

  
 

The function value at the extremum,      , is useful for rejecting unstable extrema with 

low contrast. This can be obtained by substituting two above, giving 

        
 

 
 
   

  
     

Eliminating edge responses 

For stability, it is not sufficient to reject keypoints with low contrast. The difference-of- 

Gaussian function will have a strong response along edges, even if the location along 

the edge is poorly determined and therefore unstable to small amounts of noise. 

The first step here, is computing The principal curvatures from a 2x2 Hessian matrix,  , 

computed at the location and scale of the keypoint: 

    
      

      
  

The derivatives are estimated by taking differences of neighboring sample points. Now, 

Let   be the eigenvalue with the largest magnitude and   be the smaller one. Then, we 

can compute the sum of the eigenvalues from the trace of H and their product from the 

determinant: 

 

                   

                   
 
    

Now, Let   be the ratio between the largest magnitude eigenvalue and the smaller one, 

so that         Then by some calculation we could reach to: 

      

      
 

      

 
 

So it shows that this quantity is at a minimum when the two eigenvalues are equal and it 

increases with  . 
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Orientation assignment 

By assigning a consistent orientation to each keypoint based on local image properties, 

the keypoint descriptor can be represented relative to this orientation and therefore 

achieve invariance to image rotation. This approach contrasts with the orientation 

invariant descriptors of Schmid andMohr (1997), in which each image property is based 

on a rotationally invariant measure. The disadvantage of that approach is that it limits 

the descriptors that can be used and discards image information by not requiring all 

measures to be based on a consistent rotation. 

Following experimentation with a number of approaches to assigning a local 

orientation, the following approach was found to give the most stable results. The scale 

of the keypoint is used to select the Gaussian smoothed image,  , with the closest scale, 

so that all computations are performed in a scale-invariant manner. For each image 

sample         at this scale, the gradient magnitude,       , and orientation,       , 

is pre-computed using pixel differences: 

                           
 
                    

 
 

                                
 
                    

 
  

 

The local image descriptor 

The previous operations have assigned an image location, scale, and orientation to each 

keypoint. These parameters impose a repeatable local 2D coordinate system in which to 

describe the local image region, and therefore provide invariance to these parameters. 

The next step is to compute a descriptor for the local image region that is highly 

distinctive yet is as invariant as possible to remaining variations, such as change in 

illumination or 3D viewpoint. One obvious approach would be to sample the local 

image intensities around the keypoint at the appropriate scale, and to match these using 

a normalized correlation measure. However, simple correlation of image patches is 

highly sensitive to changes that cause misregistration of samples, such as affine or 3D 

viewpoint change or non-rigid deformations. A better approach has been demonstrated 

by Edelman, Intrator, and Poggio (1997). Their proposed representation was based upon 
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a model of biological vision, in particular of complex neurons in primary visual cortex. 

These complex neurons respond to a gradient at a particular orientation and spatial 

frequency, but the location of the gradient on the retina is allowed to shift over a small 

receptive field rather than being precisely localized. Edelman et al. hypothesized that 

the function of these complex neurons was to allow for matching and recognition of 3D 

objects from a range of viewpoints. They have performed detailed experiments using 

3D computer models of object and animal shapes which show that matching gradients 

while allowing for shifts in their position results in much better classification under 3D 

rotation. 

Descriptor representation 

First the image gradient magnitudes and orientations are sampled around the keypoint 

location, using the scale of the keypoint to select the level of Gaussian blur for the 

image. In order to achieve orientation invariance, the coordinates of the descriptor and 

the gradient orientations are rotated relative to the keypoint orientation. A Gaussian 

weighting function with   equal to one half the width of the descriptor window is used 

to assign a weight to the magnitude of each sample point. The purpose of this Gaussian 

window is to avoid sudden changes in the descriptor with small changes in the position 

of the window, and to give less emphasis to gradients that are far from the center of the 

descriptor, as these are most affected by misregistration errors. 

The keypoint descriptor allows for significant shift in gradient positions by creating 

orientation histograms over 4x4 sample regions. It is important to avoid all boundary 

affects in which the descriptor abruptly changes as a sample shifts smoothly from being 

within one histogram to another or from one orientation to another. Therefore, trilinear 

interpolation is used to distribute the value of each gradient sample into adjacent 

histogram bins. In other words, each entry into a bin is multiplied by a weight of       

for each dimension, where   is the distance of the sample from the central value of the 

bin as measured in units of the histogram bin spacing. 

The descriptor is formed from a vector containing the values of all the orientation 

histogram entries, corresponding to the lengths of the arrows. 

Finally, the feature vector is modified to reduce the effects of illumination change. First, 

the vector is normalized to unit length. A change in image contrast in which each pixel 
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value is multiplied by a constant will multiply gradients by the same constant, so this 

contrast change will be canceled by vector normalization. A brightness change in which 

a constant is added to each image pixel will not affect the gradient values, as they are 

computed from pixel differences. Therefore, the descriptor is invariant to affine changes 

in illumination. However, non-linear illumination changes can also occur due to camera 

saturation or due to illumination changes that affect 3D surfaces with differing 

orientations by different amounts. These effects can cause a large change in relative 

magnitudes for some gradients, but are less likely to affect the gradient orientations. 

You can find all the above explanation in figure ???: 

 

Figure ???: A keypoint descriptor is created by first computing the gradient magnitude and orientation at 

each image sample point in a region around the keypoint location, as shown on the left. These are 

weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated 

into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with the 

length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within the 

region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas the 

experiments in this paper use 4x4 descriptors computed from a 16x16 sample array. 
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4.3 SURF: Speed Up Robust Features  
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5 Evaluation and Statistics Definitions 

5.1 Epipolar Geometry and the Fundamental Matrix 

According to Richard Hartley in ―Multiple view geometry in computer vision‖ chapter 

9, the epipolar geometry is the intrinsic projective geometry between two views. 

It is independent of scene structure, and only depends on the cameras internal 

parameters and relative pose. Suppose a point   in 3-space is imaged in two views, at   

in the first, and    in the second. As shown in figure ???? the image points   and   , 

space point X, and camera centers C are coplanar and lie on a plane π, called the 

epipolar plane. Moreover we may define the baseline as the line joining the two camera 

centers and the epipole as the point of intersection of the line joining the camera centers 

(the baseline) with the image plane. Equivalently, the epipole is the image in one view 

of the camera center of the other view. 

 

Figure???: The two cameras are indicated by their centers   and    and image planes. The camera centers, 

3-space point , and its images   and    lie in a common plane π. An image point x back-projects to a ray 

in 3-space defined by the first camera center,  , and  . This ray is imaged as a line    in the second view. 

The 3-space point   which projects to   must lie on this ray, so the image of   in the second view must 

lie on  . The camera baseline intersects each image plane at the epipoles   and   . 
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Supposing now that we know only  , we may ask how the corresponding point    in the 

second view is constrained. See figure ????above: the epipolar plane is determined by 

the baseline and the ray defined by  . From above we know that the ray corresponding 

to the (unknown) point    lies in π, hence the point    lies on the line of intersection    of 

π with the second image plane. 

 

This line    is the image in the second view of the ray back-projected from  . It is the 

epipolar line corresponding to  . Thus there is a mapping   to    that can be represented 

in a 3x3 matrix F such that:  

      

As we are dealing with geometric entities that are expressed in homogeneous 

coordinates. This representation permits to write a simple equation to determine if a 

point   lies on a line  , that is  

      

From above we have that the point   in the first view correspond to    in the second 

view, and    must lie on the epipolar line   . So we can write: 

  
      

Using       in the last equation leads to the most basic properties of the fundamental 

matrix F that is:  

  
       

 

This is true, because if points   and    correspond, then    lies on the epipolar line 

        corresponding to the point  . In other words                  . Conversely, 

if image points satisfy the relation          then the rays defined by these points are 

coplanar. This is a necessary condition for points to correspond. Note that, 

geometrically,   represents a mapping from the 2-dimensional projective plane of the 

first image to the pencil of epipolar lines through the epipole    on the second image. 

Thus it represents a mapping from a 2-dimensional onto a 1-dimensional projective 

space, and hence must have rank 2. Moreover, we emphasize the fact that the 

fundamental matrix is an homogeneous quantity, so it is defined up to a scale factor.  
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Now, Given sufficiently point correspondences        (more than 7 points), this 

equation can be used to compute the unknown matrix  . To explain this, we write 

             ,                 and 

    

         
         
         

  

If we explicit the product in   
       for a point correspondence we end up with this 

equation: 

                                                          

 

If we denote by f the 9-vector made up of the entries of   in row-major order then 

above equation can be expressed as a scalar product: 

 

                                   

 

From a set of   points correspondences, we obtain a set of linear equations of the form: 

 

    

                
 
    

 
    

 
      

         
               

 
    

 
    

 
     

      

 

This is a homogeneous set of equations and   can only be determined up to scale. Now, 

for a solution to exist, matrix   must have rank at most 8, and if the rank is exactly 8, 

then the solution is unique (up to scale). Please note that a solution for homogeneous 

linear system of the form        is a vector in the so called nullspace of  . The rank-

nullity theorem states that the dimensions of the rank and the nullspace add up to the 

number of columns of  . Matrix   in above matrix has 9 columns so when its rank is 8 

the nullspace is composed by only one vector   , that is the unique solution. 

Obviously the data correspondences       will not be exact because of noise and the 

rank of   may be greater or lower than 8. In the former case the nullspace is empty, so 

the only solution one can find is a least-squares solution. A method to obtain this 
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particular solution for  , is to select the singular vector corresponding to the smallest 

singular value of . 

The solution vector f is then the last column of   in the               . 

As one can see, the matrix   depends only on the points correspondences       . Thus, 

its rank also will be conditioned by the point matches. There are cases in which these 

correspondences can lead to a matrix   with rank less than 8, thus avoiding the 

existence of a unique solution (for instance when all the probing sources lie on a 

common plane, or a common line). In this case infact the nullspace of   has dimension 

greater than 1, so a solution for above matrix is a linear combination of all the vectors in 

the nullspace For instance, when all the probing sources lie on a common plane, or a 

common line. Hence, it is important to choose the positions of the probing signals as 

random as possible within the field of view of the two acoustic cameras, in order to well 

condition the problem and avoid low rank problems. 

 

5.2 Planar Homographies 

Any two images of the same planar surface in space are related by a homography 

(assuming a pinhole camera model). This has many practical applications, such as 

image rectification, image registration, or computation of camera motion—rotation and 

translation—between two images. Once camera rotation and translation have been 

extracted from an estimated homography matrix, this information may be used for 

navigation, or to insert models of 3D objects into an image or video, so that they are 

rendered with the correct perspective and appear to have been part of the original scene. 

If the camera motion between two images is pure rotation, with no translation, then the 

two images are related by a homography (assuming a pinhole camera model). 
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Fig. 

 

Consider a 3D coordinate frame and two arbitrary planes, The first plane is defined by 

the point   
     and two linearly independent vectors   

    ,   
      contained in the plane. Now, 

consider a point   
      in this plane. Since the vectors   

    and   
      form a basis in this plane, 

we can express   
      as:  

  
            

          
          

         
       

        
       

  

  

 
      

Where      
       

        
              defines the plane and             

 defines the 2D 

coordinates of   
      with respect to the basis    

       
       

The similar identification is valid for the second plane 

  
            

Where                                  defines the plane while              
  defines the 2D 

coordinates of   
      with respect to the basis                   

By imposing the constraint that point   
      maps to point   

     under perspective projection, 

centered at the origin   
    =   

   , so 

  
                   

      

Where            is a scalar that depends on   
      , and consequently on       . Combining the 

equation above with the constraint that each of the two points must be situated in its 
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corresponding plane, one obtains the relationship between the 2D coordinates of these 

points: 

                  
          

Note that the matrix A is invertible because                        are linearly independent and 

nonzero (the two planes do not pass through origin). Also note that the two vectors       

and       above have a unit third coordinate. Hence the role of            is simply to scale the 

term            
          such that its third coordinate is 1. But, we can get rid of this 

nonlinearity by moving to homogeneous coordinates: 

              

Where  h      h   are homogeneous 3D vectors.         is called a homography matrix 

and has 8 degrees of freedom, because it is defined up to a scaling factor (         

where   is any arbitrary scalar). 

 

Applications of Homographies 

Here are some computer vision and graphics applications that employ homographies: 

 mosaics (image processing): 

Involves computing homographies between pairs of input images 

Employs image-image mappings 

 removing perspective distortion (computer vision) 

Requires computing homographies between an image and scene surfaces 

Employs image-scene mappings 

 rendering textures (computer graphics) 

Requires applying homographies between a planar scene surface and the image 

plane, having the camera as the center of projection 

Employs scene-image mappings 

 computing planar shadows (computer graphics) 

Requires applying homographies between two surfaces inside a 3D scene, 

having the light source as the center of projection 

Employs scene-scene mappings 
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Now, under homography, we can write the transformation of points in 3D from two 

cameras (camera 1 to camera 2) as: 

                      

In the image planes, using homogeneous coordinates, we have 

                                                     

 

 

This means that    is equal to     up to a scale (due to universal scale ambiguity). Note 

that         is a direct mapping between points in the image planes. If it is known that 

some points all lie in a plane in the first image, the image can be rectified directly 

without needing to recover and manipulate 3D coordinates. 

Homography Estimation 

To estimate  , we start from the equation         . Written element by element, in 

homogenous coordinates we get the following constraint: 

 

   

   

   
   

            

            

            

  

  

  

  
               

In inhomogeneous coordinates     
 
 

   

     
        

 
 

   

   
  : 

 

    
  

                    
                    

 

 

    
 
 

                    
                    

 

 

In this work, we set the      ,actually without loss of generality: 
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5.3 Generalized Extreme Value Distributions 

Extreme value theory is a separate branch of statistics that deals with extreme events. 

This theory is based on the extremal types theorem, also called the three types theorem, 

stating that there are only three types of distributions that are needed to model the 

maximum or minimum of the collection of random observations from the same 

distribution. 

According to Samuel Kotz and S. Nadarajah, Extreme value distributions are usually 

considered to comprise the following three families:  

Type 1, (Gumbel-type distribution): 

 

                        

 

Type 2, (F'rCchet-type distribution): 

 

           
                                                    

      
   

 
 
  

                     
  

 

Type 3, (Weibull-type distribution): 

 

           
      

   

 
 
 

                           

                                                          

  

 

 

The generalized extreme value (GEV) distribution was first introduced by Jenkinson 

(1955).The cumulative distribution function of the generalized extreme value 

distributions is given by 
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It has also the following PDF:  

      

 

 
           

 
                          

 

 
                                                    

  

where          , and k,  ,   are the shape, scale, and location parameters 

respectively. The scale must be positive (       ), the shape and location can take 

on any real value. The range of definition of the GEV distribution depends on k: 

   
     

 
                 

                            

Various values of the shape parameter yield the extreme value type I, II, and III 

distributions. Specifically, the three cases k=0, k>0, and k<0 correspond to the Gumbel, 

Fréchet, and "reversed" Weibull distributions. The reversed Weibull distribution is a 

quite rarely used model bounded on the upper side. For example, for k=−0.5, the GEV 

PDF graph has the form: 
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When fitting the GEV distribution to sample data, the sign of the shape parameter k will 

usually indicate which one of the three models best describes the random process we are 

dealing with. 

5.4 Goodness of Fit Test 

The goodness of fit (GOF) tests measures the compatibility of a random sample with a 

theoretical probability distribution function. In other words, these tests show how well 

the selected distribution fits to the data and our test condition and hypothesis will be 

described.  

Anderson-Darling test 

The Anderson-Darling procedure is a general test to compare the fit of an observed 

cumulative distribution function to an expected cumulative distribution function. This 

test gives more weight to the tails. In this section, the definition of this test is explained 

in detail. 

Anderson and Darling (1952, 1954) introduced the goodness-of-fit statistic 

  
    

             
 

              

 

  

        

 

to test the hypothesis that a random sample          , with empirical distribution 

     , comes from a continuous population with completely specified distribution 

function      .Here       is defined as the proportion of the sample           that is 

not greater than  . The corresponding two-sample version 

   
  

  

 
 

             
 

              

 

  

        

 

was proposed by Darling (1957) and studied in detail by Pettitt (1976). Here       is 

the empirical distribution function of the second (independent) sample 

        obtained from a continuous population with distribution function     , and 

                       , with          , is the empirical distribution 
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function of the pooled sample. The above integrand is appropriately defined to be zero 

whenever         . 

The k-sample Anderson-Darling test is a rank test and thus makes no restrictive 

parametric model assumptions. The need for a k-sample version is twofold. It can either 

be used to establish differences in several sampled populations with particular 

sensitivity toward the tails of the pooled sample or it may be used to judge whether 

several samples are sufficiently similar so that they may be pooled for further analysis. 

According to F. W. Scholz and M. A. Stephens (Sep.1987); Let     be the  th 

observation in the  th sample                             ). All observations are 

independent. Suppose that the  th sample has continuous distribution function   . We 

wish to test the hypothesis 

            

without specifying the common distribution  . Denote the empirical distribution 

function of the  th sample by         and that of the pooled sample of all         

    observations by      . The k-sample Anderson-Darling test statistic is then defined 

as: 

   
      

 

   

 
               

 

              

 

   

        

 

where                     . Under the continuity assumption on the    the 

probability of ties is zero. Hence the pooled ordered sample is         , and a 

straightforward evaluation of above equation yields the following computational 

formula for    
 : 

 kN
  

 

N
 

 

ni 
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j N j 

N  

j  

k

i  

 

where Mij is the number of observations in the ith sample that are not greater than   j. 

In our test in this work, The Anderson-Darling statistic (  ) is simply defined as:  

        
 

 
        

 

   

  ln   Xi   ln     Xn i       
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Hypothesis Testing 

The null and the alternative hypotheses are:  

   : the data follow the specified distribution;  

   : the data do not follow the specified distribution.  

The hypothesis regarding the distributional form is rejected at the chosen significance 

level ( ) if the test statistic,   , is greater than the critical. The fixed values of 

(0.01, 0.05 etc.) are generally used to evaluate the null hypothesis (  ) at various 

significance levels. In general, critical values of the Anderson-Darling test statistic 

depend on the specific distribution being tested but the value of 0.05 is used for most 

tests.  

The Anderson-Darling test implemented in this work uses the same critical values for 

all distributions. These values are calculated using the approximation formula, and 

depend on the sample size only. This kind of test (compared to the "original" A-D test) 

is less likely to reject the good fit, and can be successfully used to compare the 

goodness of fit of several fitted distributions.  
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6 Proposed Methods 

6.1 Tracking Methods 

Total Comparison Point to Point Method 

In this method, we start with the first frame at time (  ). The detection algorithm is run 

on the whole frame and all the features are detected in the first frame      . Then all 

these extracted features are passed to the descriptor with the needed parameters and so 

the descriptor is ready to describe each extracted point based on information on 

detector. It means that the features of frame    are now completely detected and 

described in all related parameters such as scale, distance, laplacian parameters and 

descriptor array. 

 After the previous stage, the same procedure is done for the second frame (  ) and all 

the features in that frame is extract and described for frame    .  

For matching step, in this method, each interest point in the frame    will be compare 

with whole interest points from previous frame   ‖Point to Point‖. The method is shown 

in the figure ???.  

 

Fig.the left image is the frame    and the green dots shows the interest points (note that in real algorithm these 

interest points are much more than above image). The right image is related to frame    and the red line shows the 

comparison method 

In this method it is expected that we face to higher match points with higher calculation 

time which leads to lower frame per second value (fps).  
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Region of Interest (ROI) Point to Point Method 

In this method, the procedure of loading and detecting the interest points are same. It 

means that the detecting algorithm is run on the whole starting frame    and so the 

interest features are detected. Then the whole algorithm will be run on the second frame 

   and every interest points in this frame (current frame) will be described as well. 

On this method -as it arises from the name – a region will be defined around each 

interest point in    . This region could be in different pixel size such as       , 

             or even      . The region will be mapped accordingly from frame 

   to     and the size of the region will be strictly maintained. Then each interest points 

in frame    will be compared with the corresponded features in the defined ROI on 

frame   . This comparison will be point to point in the selected ROI. The figure ??? 

shows this method. 

 

 

Fig. the left image shows the IPs in frame   while the red square is mapped ROI from frame   . The 

green dots are the IPs in both frames. 

 

In this method it is expected that we face to lower match points in compare with 

previous method with lower calculation time which leads to higher frame per second 

value (fps). 
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Region of Interest (ROI) Group Centroid Comparison Method 

As previous, the detection algorithm will be run on the whole frame in    and all the 

features are detected in that frames, then the same algorithm will be run on the second 

frame    and the interest points are described as well on that frame. Till this step it 

would be exactly same as the two previous methods. 

Then the region of interest is defined around each IP in frame    with the arbitrary size 

of       ,              or      .  For comparison method, the selected ROI 

will be mapped accordingly in the frame    with same size. In this step, we have a 

selected ROI with   interest points inside the region on frame   . In this method the 

centroid of these   interest points are calculated from their descriptor parameters by 

simply making the average from each parameter. Then an virtual interest point will be 

created as well with new parameters from all IPs in selected ROI. The comparison will 

be done between the interest point in frame   and the Centroid in frame  . So the 

comparison will be just done between two points instead of  . It means that in this 

procedure we will have     comparison instead of     . the figure ??? shows this 

method. 

 

Fig. the left image shows the mapped ROI and its IPs. The orange dot shows the centroid of IPs in 

selected ROI.  

 

In this method it is expected that we face to more match points in compare with 

previous method with more or less the same calculation time. So the matched points 

will be increased in this method. 
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Total Comparison Point to Point Method with Two Frames 

In this method the whole algorithm is run on the frame   and the interest points are 

detected and described. Then the whole algorithm for detecting and describing is run on 

the second frame    as well but unlike the three previous methods, this is not the point 

of comparison. The detecting and describing algorithm is run for third frame    and all 

the interest points are extracted and describe. This would be the step of comparison 

between interest points. The procedure is as following; at first each interest points in 

frame    (which is called as current frame) will be compared to all described interest 

points in previous frame  , if the algorithm find any matching between the interest point 

of current frame and the previous frame so the point will be flagged as matched, 

otherwise, the current interest point in frame    will be evaluated against all interest 

points in two-previous frame    searching for any matches. If the point finds its match 

in whole interest points in two-previous frame it will be flagged as match as well. The 

interest point is called as not match if during these two frame it could not find any point 

that satisfy the threshold condition. 

The figure ???? shows this algorithm. the left frame is frame    , the middle and right 

frames are frames   and    respectively.  The two detected IPs in frame    illustrate the 

algorithm of matching in previous frame and two-previous frame. The continues black 

lines show matching in previous frame while the dash red lines shows not matching in 

previous frame and so the algorithm referral in two-previos frame    for finding 

matches. 

fig. Total Comparison Point to Point Method with Two Frames 
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Region of Interest (ROI) Point to Point Method with Two Frames  

In this algorithm, the procedure of running detection algorithm is same as previous 

method, it means the detection algorithm is run on the whole first frame    and all the 

IPs are detected. The same procedure of detection IPs is run for the second and third 

frames as well (       ).  Now the comparison stage is start. In this step, a region of 

interest (ROI) is drawn around each interest point in current frame   . The size of this 

ROI could be selected from       ,              or      . After detecting 

this window, the algorithm maps exact size ROI on the two previous frames         as 

well and the potential match points will be search in these ROI. The detail is as 

following; at first the algorithm search to find the match interest point in previous frame 

     ROI. This matching search will be Point to Point in the selected ROI. It means the 

current frame IP will be evaluated against all IPs inside the previous ROI frame (  ) in 

terms of descriptors. If any IP in the ROI passed from matching threshold , the IP in 

current frame is flagged as match, otherwise, the two-previous frame will be evaluated 

in exactly mapped ROI. If the current frame IP is matched with any IP in frame    , the 

current IP will be flagged as match and if there are not any interest points passed the 

matching threshold condition even in two-frame previous, then the current IP in frame 

   will be flagged as not matched. 

The figure ??? shows the Region of Interest (ROI) Point to Point Method with Two 

Frames algorithm. The left frame is frame    (the first frame), the middle and right 

frames are second and third frames (       ) respectively. The current two IPs in frame 

  (right frame) will matched with previous and two-previous frames in black lines and 

red dash lines respectively. 
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Fig. Region of Interest (ROI) Point to Point Method with Two Frames algorithm 

 Region of Interest (ROI) Group Centroid Comparison Method with Two Frames 

In this method, the detection algorithm is run for first three frames separately and all the 

features are detected in each frame respectively. Note that this procedure is the same as 

above method in first step and it is not run simultaneously on three frames but frame by 

frame. After detecting IPs in each frame, the ROI will be selected around each feature in 

current frame which is    in our example. Then the correspondence ROI will be mapped 

in previous frame and two-previous frame (frames        respectively). 

The difference of this method in compares with ―Region of Interest (ROI) Point to Point 

Method with Two Frames ―is based on their comparison method. In this method, the 

average of descriptor parameter will be calculated for all the IPs in mapped ROI in 

frames        , and the virtual Centroid of  these IPs will be compare with the current 

frame IP. It means that we will have     comparison instead of    . If the Centroid 

of group IP in selected ROI is matched with the current frame IP, so its flag will be 

changed to ―Matched‖ otherwise, the current frame IP must be evaluated with the 

Centroid of correspondence ROI in two-previous frame   . If the comparison between 

this group Centroid in frame   and the current frame IP in    passed the threshold 

condition then the current frame IP flag will be change to matched and if non of the 

above condition were satisfied , then the Current frame IP will not be matched with any 

previous frames IP. 

The figure??? Shows the algorithm. The left, middle and right frames are           

respectively. As it is shown, the orange points are the Centroid of group IP in selected 

ROI. If the Centroid satisfies the threshold condition in middle frame (the black line), 
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the IP in frame    will be flagged as matched otherwise the same situation will be 

evaluated for the Centroid in two-previous frame (red dash lines). 

 

Fig. Region of Interest (ROI) Group Centroid Comparison Method with Two Frames 

 

6.2 Tests Structure 

In this work, the tests structures are grouped in three sets (A, B and C). 

Set A 

In this set, five tests are embedded. All of these tests are based on the first three above 

methods. It means we used Total Comparison Point to Point Method, Region of Interest 

(ROI) Point to Point Method, and Region of Interest (ROI) Group Centroid Comparison 

Method. The properties of these tests in some parameters are same and they made us to 

group them as a set A. all of the first five tests will be common in tracking frame 

sequence which means they just evaluate the current frame with the previous frame 

finding their matching points. In other words, the matching algorithm in these three 

tests, just compare frame    as the current frame with the    as the previous frame. 

There will not be any comparison between two-previous frames and current frame   .  

The other common test parameter that made them to be grouped as set A is based on 

their detection algorithm. All the first three tests (Set A) are used the Fast Hessian as 

their feature detector. The detail of this detector was already explained in ―feature 

detection‖ chapter on this book.  
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There is another common test condition available. All of these tests are used speed up 

robust features (SURF) as their descriptor. It means all the interest points which are 

detected by Fast Hessian algorithm will be delivered to the SURF algorithm for further 

describing.  

All the tests in Set A with their result will be explained in ―Test Result‖ chapter on this 

book.  

Set B 

The next tests set are based on the last three methods which are explained in above 

section in this chapter in detail. Same as previous set (Set A), three tests are embedded 

in this Set as well. It means that the Set B tests follow the structure of Total Comparison 

Point to Point Method with Two Frames, Region of Interest (ROI) Point to Point 

Method with Two Frames and Region of Interest (ROI) Group Centroid Comparison 

Method with Two Frames. These tests would be common in their tracking algorithm 

which based on two-previous frames comparison. In other words, the tracking and 

matching algorithm will compare frame    as the current frame with frame           as 

two previous frames. The detail of this comparison was already explained in above 

section of this chapter in detail. 

 The other common test condition that made them to be grouped as set B is based on 

their detection algorithm. All the first three tests (Set B) are used the Fast Hessian as 

their feature detector exactly same as the previous set (Set A). The detail of this detector 

was already explained in ―feature detection‖ chapter on this book.  

In their descriptor algorithm, there is another common test condition available. All of 

these tests are used speed up robust features (SURF) as their descriptor. This condition 

is maintained from previous set tests (Set A).  It means all the interest points which are 

detected by Fast Hessian algorithm will be delivered to the SURF algorithm for further 

describing.  
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Set C 

In this last set, similar to previous set, three tests are embedded. The entire tests are 

based on the last three methods which are explained in above section of this chapter in 

detail. It means the tests follow the structure of Total Comparison Point to Point Method 

with Two Frames, Region of Interest (ROI) Point to Point Method with Two Frames 

and Region of Interest (ROI) Group Centroid Comparison Method with Two Frames. 

These tests would be common in their tracking algorithm which based on two-previous 

frames comparison. In other words, the tracking and matching algorithm will compare 

frame    as the current frame with frame           as two previous frames. The detail 

of this comparison was already explained in above section of this chapter in detail. 

In the both previous sets, Set A and Set B, we have used the Fast Hessian detector for 

interest point detection with Surf descriptor as point describing algorithm but after 

measuring the implementation time on each algorithm (Fast Hessian and Surf), it was 

learned that the describing algorithm will be much more time consuming part in 

compare with detecting algorithm. Actually the statistics showed that describing 

algorithm is 3.4 times more than detecting algorithm. 

On the other hand, there were not too many choices for reducing this time unless the 

new descriptor is created which was not the aim of this research and it was decided to 

maintain the SURF descriptor. More than that, it was assumed that the new descriptor 

may not make huge reduction as the time proportion between these detecting and 

describing procedures is more than 3 times.      

The other idea is to reduce the number of detected interest points which are extracted by 

detector and send to descriptor calculation. The idea is that, choosing robust and good 

feature will be more useful in compare to extracting too many features. For testing this 

idea, the KLT algorithm is chosen for feature detection as it could possibly select robust 

and good feature from all features. The algorithm of the KLT good feature detector is 

explained in detail on ―Feature Detection‖ chapter. It is expected by sending these good 

features instead of ―too many‖ features, we could reach to some reduction in descriptor 

time calculation. 
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6.3 Result Evaluation Structure 

For evaluating the result, the total interest points of all frames is calculated beside frame 

interest points and frame match points. Then the proportion of frame interest points and 

matched interest points is calculated in each frame and draw in graph.  

On the other hand, the FPS (frame per second) in whole test will be computed and 

drawn in a graph. It might be useful to have evaluation for matched IP (interest points) 

per second which could be the result of multiplication of matched IP and FPS. 

For reducing the effect of outlier in output, the database was divided into eight sections 

and for each section the standard deviation is computed separately. The FPS and 

matched IP are computed in all section separately as well and their graphs are drawn. 

For calculating Error, two concepts are defined. The first concept is based on the 

subtraction of frame interest points and frame matched points: 

                                

Then the average of this error is computed as well. The whole Error graph based on this 

concept is drawn in results’ report. The other diagram on this Error would be the PDF 

graph on whole error based on Anderson-Darling distribution fitting test. 

The second concept on Error evaluation is based on the Fundamental matrix and 

Homography matrix which was explained in detail on ―Evaluation and Statistic 

Definitions‖ chapter of this book. 

In this Error type calculation, we try to compute True Positive (TP), False Positive (FP), 

True Negative (TN) and false Negative (FN) of each frame in matching procedure. 

From the frame match points we have the summation of TP and FP:  

                       

So if we want to compute each TP and FP separately , we could use the Fundamental 

Matrix in which The epipolar geometry is described by the following equation:  
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where     is fundamental matrix,     and     are corresponding points in the first and the 

second images, respectively. The fundamental matrix shows us the true positive (TP) 

value between two frames. By having the TP , the value of FP will be easily raised from 

the following subtraction: 

                       

For calculating the TN, the Homography matrix is used.  Actually from the        

function we could reach to the summation of TN and FN as: 

             

For Homography matrix, we have to find the perspective transformation  between the 

source and the destination planes: 

   
  

 

  
 

 

      
  

  

 
  

So that the back-projection error : 

    
  

               

               
 
  

 

    
 
 

               

               
 
 

 

 

is minimized. However, as not all of the point pairs                        fit the 

rigid perspective transformation (i.e. there are some outliers), this initial estimate will be 

poor. Solving this problem we could use, RANSAC and LMeDS methods, which try 

many different random subsets of the corresponding point pairs, estimate the 

homography matrix using this subset and a simple least-square algorithm and then 

compute the quality/goodness of the computed homography (which is the number of 

inliers for RANSAC or the median re-projection error for LMeDs). The best subset is 

then used to produce the initial estimate of the homography matrix and the mask of 
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inliers/outliers. The method RANSAC can handle practically any ratio of outliers, but it 

needs the threshold to distinguish inliers from outliers. The method LMeDSdoes not 

needs any threshold, but it works correctly only when there are more than 50% of 

inliers.  

The next step after finding Homography matrix is based on projection approximation 

for all the points in the        plate. So for each point in this domain we check the 

following condition : 

      

Where   the destination point in current is frame and   is the source point in previous 

frame. If the above condition satisfied, then we flagged this point as FN. Which means 

it was actually rejected in our algorithm as a matched point but it must be matched.  

Please notice that the homography matrix could not count the exact FN as it uses the 

estimation in its projection algorithm but it could give us an acceptable view on total 

FN.  

After computing the FN , we could easily calculate TN from:  

   

             

In this research, comparing total standard deviation on matched point distribution for 

each test, the Anderson-Darling test is used to find the best fitting distribution. Most of 

the tests are fitted with Generalized Extreme Value which was described in the 

―Evaluation and statistic definitions‖ chapter. And finally, the whole distribution PDF 

curve was drawn for each test with their computed parameters. 
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7 Numerical Test Results 

In this chapter, the complete tests and their result will be sown. First, each test will be 

explained and then its results will be followed as well. Please notice if you just interest 

in the comparison between tests you could skip this chapter and refer to the next chapter 

on ―Discussion on Results and Conclusion‖. 

7.1 Set A 

7.1.1 1st Test – Total Point to Point 

In the first test procedure the total numbers of extracted features (interest points) in 

current frame compare with the entire extracted feature in previous frame ―Point to 

Point‖.   

The interest points (IP) in each frame             are detected by Fast Hessian 

detector and will prepare for descriptor component. Then the SURF descriptor’s array is 

weighted against each other and the error will be extracted as well ―Point to Point‖.  

Results:  

Total extracted IP in 766 frames dataset = 128,930 

Average frames’ Interest Points (FIP) = 168.315 

Average frames’ Match Points (MIP) = 102.1788512 

Average frame per second (FPS) = 9.021562846 

Output Graphs 

Following you can find the graph for frame interest points (FIP), matched interest points 

(MIP) and frame per second (FPS).  
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Error Graph  
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Calculating Error with Fundamental and Homography Matrices (TP, FP, TN and 

FN) 

The average for TP: 51.59451697 % 

The average for FP: 8.7343342 % 

The average for TN: 38.96362924 % 

The average for FN: 0.052467363 % 
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Calculating err function with local standard deviation of each distribution  
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Calculating err function with Overall standard deviation of each distribution  

 

  

Static Calculation and Graphs 

The Matched IP output data are fitted to distribution with Anderson Darling and fitting 

tests. 

Assuming Continues dataset:  

The best fitting distribution is for ―Gen. Extreme Value‖ distribution and the parameters 

are: 
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7.1.2 2nd Test –Total Point to Point with Euclidean distance 

comparison 

 

In this test the previous condition is held, so we have the Surf descriptor array 

comparison, the only thing that will change our situation is the Euclidean distance 

comparison with two points which will be added in this test.  

It means we consider two parameters for making two points match. First the SURF 

descriptor array as previous test and second the Euclidean coordinates distance 

limitation       between these two selected points between frame   and frame   . 

Results 

Total extracted IP in 766 frames database = 128,925 

Average frames’ Interest Points =  68.3 59 69 

Average frames’ Match Points = 50.7689 95 

Average FPS = 8.852107076 

Output Graphs 
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Error Graph 

 

                               

                             

 

Static Calculation and Graphs 

The Matched IP output data are fitted to distribution with Anderson Darling and fitting 

tests. 

Assuming Continues dataset:  
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The best fitting distribution is for Gen. Extreme Value distribution and the parameters 

are: 
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7.1.3 3rd Test - Region of interest (ROI-Points) 

In this test, a region of interest ROI is defined with the size of 20*20 around each 

extracted interest point. Then we just compare the IP of current frame with their  

correspond extracted ROI interest points in previous frame and chose the best matched 

IP point to point in the ROI. In this comparison we just use the Surf Descriptor array for 

basic comparison. Note that the detector is Fast Hessian same as previous tests. 

 

Results 

Total extracted IP in 766 frames database = 128,773 

Average frames’ Interest Points =  68.3307 

Average frames’ Match Points = 99. 09 745 

Average FPS = 10.74704119 

Output Graphs:  
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Error Graph  

 

                               

                             

 

Calculating Error with Fundamental and Homography Matrices (TP, FP, TN and 

FN) 

The average for TP: 50.83745098 % 

The average for FP: 7.81169935 % 

The average for TN: 40.79738562 % 

The average for FN: 0.033287582 % 
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Calculating err function with local standard deviation of each distribution 

 

 

Calculating err function with Overall standard deviation of each distribution  

 

  

Static Calculation and Graphs 

The Matched IP output data are fitted to distribution with Anderson Darling fitting tests. 

The best fitted distribution is for Gen Extreme Value, the parameters are:  
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7.1.4 4th Test - ROI with Scale comparison 

In this test we exactly follow the third test procedure besides adding another comparison 

parameter. We use the ―Scale‖ parameter of each IP beside the array error to make the 

matched point more restrict. Other conditions are exactly the same as previous test. 

Results 

Total extracted IP in 766 frames database = 128,768 

Average frames’ Interest Points =  68.337 83 

Average frames’ Match Points = 4 .5 5490  

Average FPS = 10.53350344 

Output Graphs 
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Error Graph  

 

                               

                             

 

Static Calculation and Graphs 

The Matched IP output data are fitted to distribution with Anderson Darling fitting tests. 

Assuming Continues dataset:  

The best fitted distribution is for Gen. Extreme Value, the parameters are:  
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7.1.5 5th Test - ROI group points 

 

In this test we use an innovative way for selecting the matched points. At first we define 

the ROI around each IP , then instead of comparing the point to point inside the relevant 

ROI in previous frame, we define a centroid for all the points inside the previous frame 

ROI and then the comparison for matching process is calculated with current frame IP 

and the centroid ROI point in previous frame. The comparison is based on Surf 

descriptor 64bit array as well. 

 

Results 

Total extracted IP in 766 frames database = 128,768 

Average frames’ Interest Points =  68.3307 9 

Average frames’ Match Points =  0 .8653595 

Average FPS = 10.62197058 

 

Output Graph 
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Error Graph 

 

                               

                             

Static Calculation and Graphs 

The Matched IP output data are fitted to distribution with Anderson Darling fitting tests. 

Assuming Continues dataset:  

The best fitted distribution is for Gen.Extreme Value, the parameters are:  
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7.2 Set B 

In the following three tests, we compare the current frame not only with previous frame 

but also with two previous frame as well. It means if we are in frame ― ‖, the IP will 

compare with frame ―   ‖ at first, and if any points don’t flagged as match point then 

the same matching search will be held for frame ―   ‖ with current frame ― ‖.  

The other set tests’ conditions are exactly same as set A. it means with Fast Hessian 

detector and Surf descriptor. The tests 6, 7 and 8 are exactly correspondence to tests 1, 3 

and 5 respectively. 
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7.2.1 6th Test – Total Point to Point-2frames  

 

As it was explained in previous chapter, the test is exactly same as the 1st test with the 

difference of checking 2 previous frames for matching the IP. 

Results 

Total extracted IP in 766 frames database = 128,930 

Average frames’ Interest Points =  68.3 59 69 

Average frames’ Match Points =    . 736 9  

Average FPS = 8.49976936 

 

Output Results 
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Error Graph 

 

 
 

                               
                            

 

Calculating Error with Fundamental and Homography Matrices (TP, FP, TN and 

FN) 

 

The average for TP: 58.5570235 % 

The average for FP: 13.60660574 % 

The average for TN: 27.05362924 % 

The average for FN: 0.134927 % 
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Calculating err function with local standard deviation of each distribution  

 

 
 

Calculating err function with Overall standard deviation of each distribution  
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Static Calculation and Graphs 

 

The Matched IP output data are fitted to distribution with Anderson Darling Smirnov 

fitting tests. 

The best fitted distribution is for Gen.Extreme Value, the parameters are: 
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7.2.2 7th Test - ROI Points 2frames 

 

In this test, we used the two previous techniques as sixth test. The basic model here is 

on ROI for each IP same as 3rd test. 

It means after extracting the IP in current frame, an ROI is defined for current, it will be 

used for previous and two previous frames as well              . So if an IP doesn’t 
match to a point in previous frame       then we search in       ROI frame for new 

matching. 

 

Results 

Total extracted IP in 766 frames database = 128,768 

Average frames’ Interest Points = 168.324183 

Average frames’ Match Points =    .4960733 

Average FPS = 10.57236191 

 

Output Results 
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Error Graph 

  

 
 

                               
                             

 

 

 

Calculating Error with Fundamental and Homography Matrices (TP, FP, TN and 

FN) 

The average for TP: 102.3795812 

The average for FP: 19.11649215 

The average for TN: 46.4934555 

The average for FN: 0.325916 
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Calculating err function with local standard deviation of each distribution  

 

 
 

Calculating err function with Overall standard deviation of each distribution  

 

 
 

 

Static Calculation and Graphs 

The Matched IP output data are fitted to distribution with Anderson Darling fitting tests. 

 

The best fitted distribution is for Gen. Extreme Value and the parameters are:  
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7.3 Set C  
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8 Discussion, Conclusion and Future Development 
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