
POLITECNICO DI MILANO
Master’s Degree in Computer Science Engineering

Department of Electronics and Computer Science Engineering

ERACLE

Wearable EMG Gesture Recognition

System

AI & R Lab

Artificial Intelligence and Robotics

Laboratory of Politecnico di Milano

Supervisor: Prof. Giuseppina Gini

Assistant supervisor: Ing. Paolo Belluco

Master’s thesis of:

Luigi Seregni, registration number 734799

Academic Year 2009-2010

To Andrea,

Maria Rosa

and Valentina

Abstract

Eracle is a hand gesture recognition system mainly designed for Hu-

man Computer Interaction. It could be employed in Virtual Reality

simulations, video games, Augmented Reality environments and Home

Automation applications.

It is focused on two different features: EMG signals processing and

wearable computer. EMG are biometric signals produced by the mus-

cle during a contraction that are mainly employed in biomedical field

for prosthesis control. The whole system has been developed using mo-

bile devices to realize a completely wearable system. In particular, the

whole sampling process has been carried out by an acquisition glove

worn by the user, while the computing core is fully implemented on

Nvidia Tegra 2.

The core of this thesis is the development of the software computing

core of Eracle system, while the acquisition glove and the EMG Board

(that provides analog to digital conversion of the sampled signal) have

been realized in previous works.

The aim of the project is to develop a wearable recognition system

based on EMG signals that is able to recognize at least four differ-

ent hand gestures. The performed tests have shown that Eracle can

correctly identify up to five movements with a performance of about

90%. The achieved results are very interesting for such kind of HCI

application, that could be effectively employed in daily life computer

interaction, making it easier and more immersive.

I

Sommario

Questa tesi documenta la realizzazione di un sistema per il riconosci-

mento dei movimenti della mano. Il nome del progetto è “Eracle”,

poichè il riconoscimento avviene grazie all’analisi dei segnali elettro-

miografici (EMG) emessi dai muscoli dell’avambraccio dell’utente. Lo

scopo consiste nel realizzare un sistema indossabile che possa essere

facilmente utilizzato per interagire con un’apparecchiatura informatica.

Le applicazioni di questo dispositivo sono molteplici e spaziano dalle

simulazioni di Realtà Virtuale, ai videogiochi, alla Realtà Aumentata

fino a domotica.

Il progetto Eracle è focalizzato su due aspetti principali: i segnali elet-

tromiografici e i dispositivi indossabili. I segnali EMG sono largamente

utilizzati in campo biomedico per il controllo delle protesi, soprattutto

per quanto riguarda i pazienti amputati a livello della mano. Inoltre,

l’analisi di questo tipo di segnali è utile per la diagnosi di lesioni ai

muscoli o ai nervi.

Il secondo punto focale della tesi è costituito dai dispositivi indossabili,

ovvero le apparecchiature caratterizzate da dimensioni tanto ridotte

da poter essere agevolmente indossate da un utente nelle attività della

vita quotidiana. L’uso di questo tipo di dispositivi semplifica alcune

attività tipicamente compiute dall’uomo (nel nostro caso, l’interazione

con un computer) oppure estende le capacità sensoriali dell’utente.

Eracle è composto fondamentalmente da due unità: il guanto di ac-

quisizione e il modulo di elaborazione del segnale. Il primo è stato

sviluppato dall’ Ing. Paolo Belluco in precedenti progetti e consiste in

un guanto di materiale elastico indossato dall’utente sull’avambraccio.

All’intero del guanto sono presenti gli elettrodi che rilevano il segnale

elettromiografico emesso dai muscoli e la scheda di acquisizione (EMG

III

Board) che fornisce la conversione analogico-digitale degli EMG. I se-

gnali di input vengono campionati da tre diversi canali in modalità

differenziale.

L’unità di calcolo è stata implementata sulla piattaforma Nvidia Tegra

2. I vari moduli software che provvedono all’elaborazione del segnale, al

filtraggio e al riconoscimento del movimento sono stati completamente

sviluppati all’interno di questo progetto. Alcune strutture matematiche

(matrici, vettori), l’algoritmo di filtraggio FastICA e la Rete Neurale

utilizzata dal sistema di riconoscimento sono state fornite dalla libre-

ria open-source LTIlib. L’intero codice sorgente è stato ricompilato ed

adattato per l’architettura ARM Cortex-A9 del processore Tegra.

I risultati sperimentali mostrano che Eracle è in grado di distinguere

fra cinque movimenti differenti con una percentuale di successo media

del 90%. I cinque movimenti utilizzati per la fase di test sono:

• chiusura della mano;

• estensione del polso;

• flessione del polso;

• apertura della mano;

• “click”: questo gesto simula il click di selezione di un mouse;

viene eseguito appoggiando il polpastrello dell’indice su quello

del pollice ed esercitando una leggera pressione.

Durante lo sviluppo del progetto ci siamo focalizzati principalmente

sulla precisione di Eracle nell’identificare correttamente il gesto com-

piuto e sulle proprietà di ripetibilità del sistema.

Quest’ultimo aspetto è essenziale, poichè solitamente la fase di adde-

stramento e di utilizzo del riconoscitore avvegono in tempi differenti,

durante i quali l’utente toglie il guanto di acquisizione.

Tutti i moduli software sviluppati sulla piattaforma Tegra sono stati

realizzati appositamente per essere il più possibile indipendenti gli uni

dagli altri. Questa scelta è ottima per quanto riguarda la fase di debug

- poichè è possibile monitorare i risultati ottenuti da ogni modulo -

tuttavia porta ad un aumento del tempo di riconoscimento del gesto

principalmente dovuto al numero di operazioni di I/O su file.

Per questi motivi, il principale sviluppo futuro di questo progetto con-

sisterà nel ridurre il tempo necessario al riconoscimento diminuendo il

numero dei campioni analizzati in fase di elaborazione e introducendo

alcune ottimizzazioni legate alla scrittura e lettura dei file. Crediamo

che, grazie a tali modifiche, sarà possibile migliorare drasticamente il

tempo di riconoscimento; inoltre, qualora le prestazioni raggiungessero

un livello real-time, sarà possibile applicare Eracle in un contesto in-

dustriale per il controllo di manipolatori robotici.

Stato dell’arte dei dispositivi mobili per riconoscimento del

gesto

Come specificato in precedenza, questa tesi è focalizzata su due temi: i

segnali elettromiografici utilizzati per il riconoscimento del movimento

e i dispositivi indossabili. Prima di delineare le tecniche utilizzate nello

sviluppo di questo progetto e l’effettiva realizzazione del sistema Eracle

è necessario descrivere l’attuale stato dell’arte di entrambi gli aspetti

chiave della tesi.

Il riconoscimento del movimento può essere effettuato con molteplici

tecniche:

• Sistemi inerziali come accelerometri o giroscopi, che forniscono

posizione e orientamento dell’oggetto controllato.

• Segnali biometrici ovvero tutti quelli generati dal corpo umano.

Questa classe include i segnali EMG utilizzati nel progetto, ma

anche gli EEG e gli EOG. La scelta degli EMG non è casuale, ma

è motivata prima di tutto dai numerosi esempi di applicazione

di questa tecnlogia al riconoscimento del movimento e dalla loro

facilità di acquisizione rispetto a tecniche quali l’ elettroencefalo-

grafia.

• Sistemi basati su analisi dell’immagine: questa classe com-

prende tutti i sistemi che utilizzano metodi di estrazione di pri-

mitive da immagini per identificare il movimento dell’utente. Me-

diante questa classe di dispositivi è possibile identificare un gran

numero di gesti (solitamente almeno dieci), tuttavia essi richie-

dono apparecchiature costose e di dimensioni tali da non poter

essere considerate indossabili.

I dispositivi indossabili appartengono fondamentalmente a due cate-

gorie: i PIC o le piattaforme SoC realizzate per Netbook e Smartphone

(fra cui il processore Tegra). I primi sono caratterizzati da un basso

costo e da una considerevole difficoltà di programmazione, mentre i

secondi sono programmabili solitamente con linguaggi di alto livello

(C++ nel caso del Tegra), ma hanno un costo piuttosto elevato. Inol-

tre, molti SoC (come il processore Tegra da noi utilizzato) non sono

disponibili sul mercato commerciale italiano, ma sono destinati solo ad

alcuni partner per sviluppi sperimentali.

E’ possibile distinguere i dispositivi indossabili anche in base al loro

Sistema Operativo, i due maggiormente utilizzati sono la piattaforma

open-source Android e quella di Microsoft Windows CE (utilizzata

nel progetto Eracle). Recentemente, Microsoft ha rilasciato l’innovativo

sistema Windows Phone 7 che dovrebbe semplificare la fase di svi-

luppo e l’eventuale porting del codice sui dispositivi mobili.

Piano generale e descrizione del progetto

Lo scopo del progetto è realizzare un riconoscitore del movimento

basato sull’elaborazione del segnale elettromiografico. Nonostante l’

utilizzo degli EMG il principale campo di applicazione di Eracle non

è quello del controllo delle protesi, ma quello della Human Computer

Interaction. Eracle potrebbe essere impiegato in simulazioni inerenti

la Realtà Virtuale o aumentata, nonchè in campi innovativi quali la

domotica. Le differenze fra Eracle e le precedenti implementazioni di

riconoscitori basati su EMG sono principalmente due:

• l’utente finale, contrariamente ad altri progetti realizzati elabo-

rando il segnale elettromiografico per pilotare una protesi, Eracle

può essere utilizzato da qualunque persona senza che sia neces-

sario un’intensa e specifica fase di addestramento;

• l’hardware utilizzato, che è completamente indossabile, grazie

al peso ridotto e alle dimensioni minime.

Independent Component Analysis

Questo algoritmo viene utilizzato fondamentalmente per ridurre il ru-

more sui segnali acquisiti e per eliminare il crosstalking. Quest’ultimo

è un fenomeno tipico legato ai segnali elettromiografici che si verifica

perchè ogni movimento compiuto dalla mano è il risultato della con-

trazione simultanea di più muscoli; per cui il segnale rilevato dagli

elettrodi è una combinazione dei segnali originariamente generati. In

campo medico questo problema viene superato utilizzando degli elet-

trodi ad ago, che tuttavia non possono essere impiegati in un’ applica-

zione di HCI.

Poichè ICA fa parte della classe di algoritmi detta Blind Source Sepa-

ration (BSS) è in grado di separare e isolare i segnali originali. ICA è

stato applicato all’analisi dei segnali biometrici solo in tempi recenti.

Dispositivi hardware

I dispositivi utilizzati per la realizzazione del progetto Eracle sono fon-

damentalmente due: la scheda EMG (EMG Board) e il Devkit Nvidia

Tegra 2.

Il primo si occupa della conversione analogico-digitale del segnale EMG

acquisito mediante tre canali differenziali. Il processo di conversione è

affidato ad un PIC16F688 Microchip.

Nvidia Tegra 2 è un System on Chip appositamente realizzato per piat-

taforme mobili quali Netbook e Smarthphone. Il sistema viene gestito

da Windows CE Embedded 6, che fornisce alcune potenzialità di un

Sistema Operativo di un PC su una piattaforma di dimensioni ridotte.

Il dispositivo è stato interamente programmato in C++ utilizzando

direttamente Visual Studio 2008 e le apposite SDK rilasciate da Mi-

crosoft.

I due elementi hardware sono connessi via USB grazie ai driver FTDI.

Sviluppo del progetto

Questa tesi è principalmente orientata alla realizzazione dei moduli

software per l’elaborazione del segnale elettromiografico campionato

mediante il guanto di acquisizione.

Tutti i moduli sono stati implementati “from scratch” sulla piattaforma

Tegra e consistono fondamentalmente in:

• serial port manager: che gestisce la comunicazione dei dati fra

l’EMG board e il Tegra;

• parser: i dati di input vengono divisi su tre file diversi, ognuno

contenente un numero prefissato di campioni;

• FastICA: che provvede al filtraggio dei segnali, alla separazione

delle sorgenti e all’eliminazione (almeno parziale) del crosstalking;

• RMS: questo modulo calcola il Root Mean Square di ogni canale

per ogni gesto acquisito;

• NN Trainer: questa unità addestra la Rete Neurale con i valori

di RMS calcolati nella sezione precedente;

• NN Recognizer: l’ultimo modulo del progetto permette il ri-

conoscimento del movimento eseguito dall’utente mediante l’ uti-

lizzo della Rete Neurale precedentemente addestrata.

Alcune strutture matematiche (matrici, vettori), l’algoritmo di filtrag-

gio FastICA e la Rete Neurale utilizzata nel progetto sono state fornite

dalla libreria open-source LTIlib che è stata adattata all’architettura

del processore ARM Cortex-A9 presente sul Devkit Tegra.

Test

I test eseguiti hanno come scopo principale quello di identificare e

migliorare l’accuratezza del sistema in fase di riconoscimento.

Eracle ha dato prova di riconoscere correttamente fino a cinque gesti

differenti con una performance media del 90%.

Inoltre, alcuni esperimenti sono stati compiuti con successo su un altro

soggetto estraneo al progetto, al fine di testare la robustezza di Eracle

e l’effettiva facilità di utilizzo.

Conclusioni e sviluppi futuri

Eracle può essere utilizzato per migliorare l’interazione nei videogiochi,

nelle simulazioni di Realtà Virtuale o Aumentata, nonchè nel campo

della domotica.

É possibile, tuttavia, introdurre numerosi miglioramenti al sistema. Fra

questi il principale riguarda la velocità di computazione che può essere

- a nostro parere - ridotta a circa la metà del valore attuale mediante

opportuni accorgimenti ed ottimizzazioni legati al numero di campioni

acquisiti e all’entità delle operazioni di I/O eseguite dai moduli di ela-

borazione.

Inoltre, viste le buone performance del sistema, crediamo sia possibile

estendere il numero di movimenti riconosciuti.

Sarebbe interessante introdurre, accanto a FastICA, alcuni algoritmi

di estrazione di features ampiamente utilizzati nell’analisi del segnale,

come ad esempio le Wavelet, per migliorare ulteriormente le prestazioni

in fase di riconoscimento.

Infine, il sistema Eracle potrebbe essere collegato ad altre periferiche

(anche mediante dispositivi wireless) quali ad esempio caschi o disposi-

tivi aptici, per rendere sempre più immersiva e coinvolgente l’interazione

con l’ambiente virtuale.

Acknowledgements

I sincerely thank my advisor Prof.ssa Giuseppina Gini and my assistant

supervisor Ing.Paolo Belluco for their advices and for all the help and

support they have given me during this project.

Many thanks to Seco s.r.l. that provides us with the DevKit Tegra,

which has been widely employed in developing this thesis.

Thanks to Ing. Dario Cattaneo for his suggestions about the biomedi-

cal features of this project. I would also thank Prof. Umberto Cugini

and Prof.ssa Monica Bordegoni for allowing me to use the laboratories

in Origoni Building of Politecnico di Milano.

I would like to express my sincere gratitude to all the personnel of

KAEMaRT group and particularly to the people of the office at the

first floor (the second near the board-room) of the Department of Me-

chanics of Politecnico di Milano, who have supported me with their

suggestions.

A very special thanks to my parents and to Valentina, who are al-

ways by my side. The fulfillment of this project is largely due to their

advices, their guidance and their continued support which has never

failed.

Ringrazio sinceramente la mia relatrice, Prof.ssa Giuseppina Gini e il

mio correlatore Ing. Paolo Belluco per i loro consigli e per tutto l’aiuto

e il supporto che mi hanno fornito durante la realizzazione di questo

progetto. Un sentito ringraziamento a Seco s.r.l. per aver fornito il

Devkit Tegra, ampiamente utilizzato in questa tesi.

Un grazie all’Ing. Dario Cattaneo per i suggerimenti relativi agli aspetti

biomedici di questo progetto.

Desidero inoltre ringraziare il Prof. Umberto Cugini e la Prof.ssa

Monica Bordegoni per avermi permesso di utilizzare il laboratorio e

le postazioni tecniche presso il padiglione Origoni del Politecnico di

XI

Milano. Vorrei esprimere la mia sincera gratitutine a tutto il perso-

nale del laboratorio KAEMaRT e in particolare ai ragazzi del secondo

ufficio adiacente alla sala Consiglio del Dipartimento di Meccanica del

Politecnico di Milano, che mi hanno supportato con i loro suggerimenti.

Un ringraziamento specialissimo ai miei genitori e a Valentina, che sono

sempre al mio fianco. La realizzazione di questo progetto è dovuta in

gran parte ai loro consigli, alla loro guida e al loro continuo supporto

che non è mai venuto meno.

Contents

Abstract I

Sommario III

Acknowledgements XI

1 Introduction 1

2 Mobile devices for gesture recognition: the state of the

art 5

2.1 Gesture recognition . 5

2.1.1 Inertial navigation methods for gesture and move-

ment recognition 6

2.1.2 Biometrics signals for gesture recognition 10

2.1.3 Image analysis for gesture recognition 18

2.1.4 Hybrid movement recognition system 19

2.2 Mobile devices . 22

2.2.1 CPUs and hardware 22

2.2.2 Operative system 27

3 Project plan and description 33

3.1 Project goals . 33

3.1.1 Recognized gestures 36

3.1.2 Differences from previous implementations . . . 38

3.2 Technological choices: EMG and mobile devices 40

3.2.1 EMG . 40

3.2.2 Nvidia Tegra: a mobile processor 41

3.3 General architecture of Eracle project 45

XV

4 Independent Component Analysis 49

4.1 Principles of ICA . 49

4.2 Fields of application of ICA 51

4.3 Estimating data model using ICA 53

4.3.1 Contrast functions 53

4.3.2 Algorithms for ICA 56

4.4 ICA for biometric analysis 59

5 Hardware devices 63

5.1 Nvidia Tegra 2 . 63

5.1.1 Tegra CPU architecture 64

5.1.2 Developing software on Tegra 67

5.2 Electromyography board 71

5.3 FTDI interface . 73

6 Project development 77

6.1 LTIlib . 79

6.1.1 Architecture of LTIlib 79

6.1.2 Recompiling LTIlib 81

6.2 Acquisition glove . 84

6.3 Tegra modules . 88

6.3.1 Serial port manager 88

6.3.2 Data parsing 89

6.3.3 Fast ICA module 94

6.3.4 Root Mean Square 98

6.3.5 NN trainer . 100

6.3.6 NN classifier . 104

7 Steps in testing and final results 107

7.1 Test procedure . 107

7.2 Results . 110

7.2.1 First set of tests: two gestures 110

7.2.2 Improving the classifier 111

7.2.3 From two to four gestures 113

7.2.4 Tests with different subject 117

7.2.5 Last set of tests: five gestures 119

8 Conclusions and future developments 121

8.1 Future developments 123

XVI

Bibliography 125

A Code listing 131

A.1 Eracle Serial Port Manager 131

A.2 Eracle Parser . 135

A.3 Eracle FastICA . 142

A.4 Eracle RMS . 152

A.5 Eracle Neural Network Train 157

A.6 Eracle Neural Network Classify 161

B Basic principles of EMG 175

Chapter 1

Introduction

“Space: the final frontier. These are the voyages of the starship Enterprise.

Its five-year mission: to explore strange new worlds, to seek out new life and

new civilizations, to boldly go where no man has gone before.”

Star Trek - The Original Series

This thesis describes a gesture recognition system mainly designed for

Human Computer Interaction. We have named the whole system “Er-

acle” since it identifies the user’s gestures analyzing the EMG signals

generated by a muscle during a contraction. These signals are sampled

with surface EMG electrodes placed on the user’s forearm. The whole

signal processing units of Eracle have been developed on Nvidia Tegra

2, a mobile System on Chip that ensures high computing performance

in small size.

Once the signals have been sampled by the surface electrodes, they are

converted to digital values by the EMG Board. This board is connected

to Nvidia Tegra 2 that is the computing core of the system. The ac-

quired samples are filtered with FastICA algorithm, which is a Blind

Source Separation method mainly employed in sound engineering and

image processing to separate overlapped signals.

Root Mean Square is computed for each input channel for every ges-

ture repetitions; afterwards, these values are employed to train a Neural

Network that will classify the movements performed by the user.

When the Neural Network has been trained, the user performs a single

gesture that will be identified by Eracle. The main aim of this project

is to develop a wearable system that is able to identify at least four

different hand gestures performed by the user.

2 Chapter 1. Introduction

EMG-based movement recognizers are mainly employed in biomedical

field to control prosthesis. Instead, Eracle is designed for Virtual Real-

ity applications like video games or Augmented Reality environments.

It could also be used in home automation field to control some appli-

ances like the air-conditioner or simply for turning the light on and off.

The performed tests show that Eracle is able to recognize at least five

different gestures with an average performance about 90%.

Interact with a gesture is simpler and more natural than using devices

like keyboard or game controllers. Benko et al in [25], demonstrated

that movement recognition can expand the “vocabulary” of HCI de-

vices, thus new features can be added to the controlled appliance.

Wearable devices and EMG signals are the keywords of Eracle project.

This system is based on EMG signals, but there are many other differ-

ent techniques to identify movements, for example: inertial navigation

system, EEG, EOG and image processing algorithms. Projects about

gestures recognition systems mainly employ EMG signals as input data

(e.g. muCIs project by Microsoft Research [47, 48]) or image processing

techniques (e.g. project Natal/Kinect by Microsoft [18]). The advan-

tage of employing EMG signals for gesture recognition is that they can

be sampled with an acquisition glove placed on user’s forearm. Think-

ing about home automation fields, there is no need to install cameras

or computer vision appliances in every room.

Eracle is also a wearable system, thus it is fully implemented on mobile

devices and no desktop PC interaction is necessary to use it. More-

over, such kind of system does not hinder the user’s movements, thus,

gestures can be performed in a very natural way.

The software running on Nvidia Tegra 2 has been fully written in C++

and has been developed from scratch; however some mathematical fea-

tures have been provided by LTIlib, a C++ library with data structures

and algorithms frequently employed in image processing. This library

is open source and has been developed by Aachen University of Tech-

nology [13]. Since the target machine of this library is different from

the ARM Cortex-A9 architecture of Nvidia Tegra 2, this library has

been fully ported and recompiled.

Another main feature of Eracle project is FastICA algorithm, that is

a Blind Source Separation method. Its employment for EMG signal

filtering has been proposed by Naik et al in [43], [42] and [41]. How-

3

ever, in the cited implementations, training and recognizing stage are

performed offline on the same set of data. In In Eracle system these

two steps take place in different times, and they are handled by two

different executable files running on Tegra. The employment of ICA

methods in handling EMG signals is a novelty, as feature extraction

algorithms such as Wavelet or Fourier Transform (STFT) have been

usually employed in this field.

The EMG Board - that provides the analog to digital conversion of

the sampled data - and the acquisition glove - that includes the EMG

Board and the surface EMG electrodes - have been previously devel-

oped by P. Belluco.

We have succeeded in realizing a wearable gesture recognizer that

achieves a good performance; however, the system could be widely

improved. The main future development concerns the reduction of

the computational speed of the recognition stage; if we would reach a

real-time performance Eracle could also be employed in an industrial

context to control a robotic arm. Moreover, we think that this system

could recognize more than five gestures with good accuracy.

Finally, it would be interesting to connect Eracle to other devices

through a wireless connection, in order to obtain a fully wearable and

mobile interaction system.

This thesis is divided into eight different chapters. Chapter 2 provides

an overview about the mobile devices mainly employed in HCI. More-

over, it describes the basic techniques employed for gesture recognition

tasks. Such methods are divided into three classes: inertial navigation,

biometric signals and image analysis. Mobile devices are described both

as hardware solutions and employed OS. Chapter 3 introduces Eracle

and describes the main project’s goals. This chapter also provides some

reasons of our choices concerning EMG and mobile devices. The last

section introduces the general architecture of the project.Chapter 4

provides some basic principles about Independent Component Analy-

sis, that is the class of algorithm employed for EMG data filtering. This

chapter also discusses the main problems we’ve encountered in employ-

ing ICA for processing this kind of signals. Chapter 5 is focused on

hardware devices employed in this projects. It describes both the com-

puting core of Eracle system (Nvidia Tegra 2) and the EMG board that

provides analog to digital conversion of biometric signals. Chapter 6

4 Chapter 1. Introduction

provides a detailed description of the whole system. It is focused both

on the sampling units - implemented on the acquisition glove - and on

the processing modules that are fully developed on Tegra Devkit. In

Chapter 7 some tests results have been discussed, outlining the diffi-

culties that we’ve encountered and the results obtained following the

proposed solutions. Finally, Chapter 8 summarizes the project’s final

considerations and describes some possible future developments.

The two appendixes provide the complete code listings of the comput-

ing core (Appendix A) and some basic principles about EMG signals

(Appendix B).

Chapter 2

Mobile devices for gesture

recognition: the state of the

art

“Scott: Computer... Computer? Ah... Hello, computer.

Dr. Nichols: Just use the keyboard...

Scotty: A keyboard, how quaint!”

Star Trek IV - The Voyage Home

This chapter provides the state of the art of the two main subjects in-

volved in this project: gesture recognition and mobile devices. The first

section describes the main techniques employed in movement recogni-

tion, highlighting that biometrics signals - mainly used for prosthesis

control - could be useful adopted in HCI.

In the second section an introduction to mobile device technology is

provided, focusing both on hardware and software aspects.

2.1 Gesture recognition

Gesture recognition technology is mainly employed in prosthesis con-

trol, but gesture is a basic and simple way to interact among people,

and it could be one of the best way to interact with a machine.

Today the main part of HCI is held by visual interaction through a

monitor, but interact with a device through gesture could be much

easier. Think about the difference between using a mouse instead of

a keyboard, or using a drawing tablet rather than an “usual” graphic

5

6
Chapter 2. Mobile devices for gesture recognition: the state of

the art

program; or consider the success of Nintendo Wii, that is the first game

console which uses movement interaction controller.

There are mainly three ways to extract movement information for a

gesture recognition application:

• inertial navigation methods;

• biometric signals;

• image analysis.

This section provides an overview of the main methods employed in

each mentioned approach.

2.1.1 Inertial navigation methods for gesture and movement

recognition

First class of gesture recognition methods is based on inertial navigation

techniques that use gyroscopes and accelerometers to measure the rate

of rotation and acceleration of the object.

Gyroscopes

Mechanical gyroscopes rely on the principle of the conservation of the

angular momentum, which is the tendency of a rotating object to keep

rotating at the same angular speed ω about the same axis of rotation

in the absence of an external torque. The angular momentum L of an

Figure 2.1: Schema of a mechanical gyroscope

object with moment of inertia I rotating at an angular speed ω is given

by:

L = I × ω (2.1)

2.1. Gesture recognition 7

Consider a rapidly spinning wheel mounted on a shaft so that it is free

to change its axis of rotation as shown in figure 2.1, if we assume that

there’s no friction due to air resistance, the rotor axis will remain con-

stant regardless of the motion of the external cage. Rate gyros (RGs)

measure the vehicle’s rotation rate (angular rate of rotation), integrat-

ing them will produce an estimate of the absolute angular displacement

of the object.

Gesture recognition devices use special gyroscopes named MEMS (Mi-

cro Electro Mechanical Systems), which are based on vibrating mechan-

ical elements to sense rotation. Vibratory gyroscopes rely on transfer of

energy between vibratory modes based on Coriolis acceleration. Cori-

olis acceleration is the apparent acceleration that arises in a rotating

frame of reference.

An object moving in a straight line with local velocity v in a frame ro-

tating at a rate Ω relative to an inertial frame will experience a Coriolis

acceleration a such that:

a = 2v × Ω (2.2)

Acceleration can be retrieved from MEMS gyroscopes by inducing some

local linear velocity and measuring the resultant Coriolis forces. Early

MEMS gyroscopes utilized vibrating quartz crystals to generate the

necessary linear motion. More recent designs have replaced the vibrat-

ing quartz crystals with silicon-based vibrators.

There are three main classes of MEMS gyroscopes:

• Tuning-fork gyroscopes

• Vibrating wheel gyroscopes

• Wine-glass resonator gyroscopes

The main advantages of MEMS gyroscope are that they haven’t ro-

tating parts, they have a low-power consumption and they are very

small [49].

Accelerometers

Accelerometers are inertial sensors that can be used to measure exter-

nal forces acting on an object, and to transduce them into a computer-

readable signal.

The mechanical accelerometer is essentially a spring-mass-damper sys-

tem as shown in figure 2.2; when some force is applied it acts on the

8
Chapter 2. Mobile devices for gesture recognition: the state of

the art

mass and displaces the spring, according to the equation:

Fapplied = Finertial + Fdamping + Fspring = mẍ+ cẋ+ kx (2.3)

where c is the damping coefficient and k the spring’s elastic coefficient.

The main drawback of mechanical accelerometers is due to the non

Figure 2.2: Schema of a mechanical accelerometer

ideal performance of the spring; another issue is that this kind of device

is particularly sensitive to vibrations.

Another class of accelerometers is based on piezoelectric materials, such

as certain crystals across which a voltage is generated when they are

stressed, a schema of such device is shown in figure 2.3. A small mass

is positioned so that it is only supported by the crystal. When forces

cause the mass to act upon the crystal, this induces a voltage that can

be measured [49].

Figure 2.3: Schema of a piezoelectric accelerometer

2.1. Gesture recognition 9

IMU

An Inertial Measurement Unit (IMU) is a device that utilizes measure-

ment systems such as gyroscopes and accelerometers to estimate the

relative position, velocity and acceleration of an object in motion.

An IMU system provides a 6 DoF estimate of the pose: 3 for position

(x-y-z axis) and 3 for orientation (usually roll-pitch-yaw frame); com-

mercial IMUs also maintain estimates of velocity and acceleration.

The basic computational tasks of IMU are shown in figure 2.4: the

Figure 2.4: Schema of an IMU

gyroscopes data is integrated to provide an ongoing estimate of orienta-

tion, at the same time data from accelerometers is used to estimate the

instantaneous acceleration of the object. In order to obtain a correct

measurement the data acquired have to be rectified with the estimated

gravity vector. Velocity and position can be achieved integrating ac-

celeration once or twice respectively.

IMUs are really sensitive to measurement errors in the underline gy-

roscopes and accelerometers. Drifts in the gyroscopes leads to errors

in vehicle orientation relative to gravity, this leads to a wrong com-

putation of the gravity vector. Besides, as the accelerometer data is

integrated twice, any residual gravity vector will result in a quadratic

error in position. Given a sufficiently long period of operation all IMUs

are eventually drift and reference to some external measurements is re-

quired to correct this [49].

A successful commercial case: Nintendo Wii

Wii console is an example of what gesture interaction means: first of

all the ease of use, but also involvement and user-friendly interaction.

10
Chapter 2. Mobile devices for gesture recognition: the state of

the art

Gesture recognition is performed tanks to the Wii primary controller,

which has been realized in several different hardware configurations.

There are different Wii controllers, everyone with different specifica-

tions, but, generally speaking, Wii controllers for gesture recognition

consist of:

• accelerometer: ADXL300 or STMicroelectronics LIS3L02AL

which measure external forces applied on the controller;

• infrared optical sensor: allowing the console to determine

where the Wii Remote is pointing;

• gyroscope: a MEMS tuning-fork gyroscope, which support the

accelerometer and infrared optical sensor capabilities of Wii.

2.1.2 Biometrics signals for gesture recognition

Gesture recognition can be achieved processing biometrics signals pro-

duced by a human body performing a movement. There are various

biometrics signals that are useful for gesture recognition, they can be

summarized in three main classes:

• EOG (Electrooculography signals)

• EEG (Electroencephalographic signals)

• EMG (Electromyography signals)

This subsection describes the main projects carried out with these tech-

nologies, especially focusing on EMG signals employment as this is the

kind of signals uses in Eracle project.

EOG

Electrooculography (EOG) is a technique for measuring the resting

potential of the retina. The main applications are in ophthalmological

diagnosis and in recording eye movements. Since eye movements can

be tracked by modern technology with great speed and precision, they

can be used as a powerful input device, and have many practical appli-

cations in HCI [38]. EOG is one of the very few methods for recording

eye movements that does not require a direct attachment to the eye

itself.

Compared with EEG (see next subsection) EOG has a higher ampli-

2.1. Gesture recognition 11

Figure 2.5: Architecture of a EOG-based HCI system

tude, and the waveform is easier to detect. There are also some draw-

backs in the employment of this kind of signals: first of all the crosstalk

due to the facial muscles activity, secondly the noise produced by head

movements [24]. A schema of a typical HCI System based on EOG is

shown in figure 2.5.

EEG

An EEG signal is obtained directly through electrodes placed on the

scalp, it is a measurement of currents that flow during synaptic ex-

citations of the dendrites of neurons in the cerebral cortex. In fact

neurons communicate by means of electrical impulses and generate bio-

electromagnetic fields, that can be measured and analyzed in order to

detect a pattern corresponding to a movement [34].

One of the most studied movements in EEG field is eye blink that can

be employed as a mouse click in a HCI application. Eye blink is easily

detected monitoring the signals of the prefrontal lobe because it has a

fixed pattern: a downward peak in the negative amplitude region shows

an eyes-open event, and then a positive peak shows an eyes-close event;

besides the amplitude of these peaks is higher compared to the normal

brain activity noticed with an EEG analysis.

A typical eye blink pattern is shown in figure 2.6.

Usually, the EEG signals acquired from the scalp are used to train an

Artificial Neural Network to perform a classification of the amplitude

pattern in order to recognize the movement executed by the user [28].

EEG technology is mainly applied in medical field, however some stud-

ies have been carried out in non-medical applications. [35].

12
Chapter 2. Mobile devices for gesture recognition: the state of

the art

Figure 2.6: Eye blink EEG amplitude pattern

Among various brain signal acquisition methods, the EEG is of partic-

ular interest to the BCI community. Brain Computer Interface (BCI) is

an emergent multidisciplinary technology that allows brain to control a

computer directly, without relying on normal neuromuscular pathways.

This technology is mainly employed with paralyzed people who are suf-

fering from severe neuromuscular disorders, as BCI potentially provides

them with communication, control, or rehabilitation tools to help com-

pensate or restore their lost abilities [24]. The main drawback of EEG

is that they’re often contaminated by the artifacts, that are both gen-

erated by body movement (internal artifacts) and by 50/60 Hz power

supply interference or electrical noise from appliances’ components (ex-

ternal artifacts). Besides, electrodes application is uncomfortable and

sometimes invasive.

EMG

An EMG signal is produced by a skeletal muscle during a contraction;

it could be acquired with an electromyography as a differential signal

between a ground and a sensor electrode. Placing electrodes on differ-

ent location it is possible to identify the movement performed by the

end-user just by evaluating the voltage acquired with the electromyo-

graphy. This method implies a good knowledge of human anatomy, in

order to place electrodes correctly.

EMG feasibility in HCI for muscle-computer interface has been widely

demonstrated by Saponas et al. [46] in 2008. They were able to differ-

entiate position and pressure of the finger presses, as well as classify

tapping and lifting gestures across all five fingers.

The main disadvantage of this method is crosstalking. A movement is

2.1. Gesture recognition 13

not the result of a single muscle’s contraction, but the consequence of a

set of muscles working together; it entails that a single muscular fiber

takes part in more than just one movement making difficult the ges-

ture distinction task. The crosstalk problem is more significant when

the muscle activation is relatively weak, because the differential signal

obtained is very low; at a low level of contraction, a precise muscular

activity is hardly discernible from background activity [24]. Besides,

the EMG signal due to muscle contraction is not locally limited, but it

spreads the MUAP activation among the nearest muscular fibers.

The main application field of EMG is the medical one: with an EMG

analysis it could be possible to identify some muscular injury.

During the last few years EMG signals have become one of the most

promising and useful way to control prosthesis, especially for the limbs

amputation. Referring to this last field of application, it is important

to define the taxonomy of the movements that can be performed with

prosthesis. For grasps actions, the most widely-used taxonomy is the

one proposed in 1989 by Cutkosky [30], that is based on function ap-

proach. As shown in figure 2.7, Cutkosky identifies 16 different types

of grasps: observing the schema from left to right the grasps become

less powerful but more precise and the handled objects become smaller.

Usually upper limb prosthesis can’t replicate all the grasps described

by Cutkosky, but only some configurations, such as:

• the key grip: is the grasp to handle a key or a CD, this is the

configuration number 16 in Cutkosky taxonomy, with the thumb

closes down onto the side of the index finger;

• the power grip: it employed for grasping a cup or a bag, it is a

full-wrap grip that involves all fingers and the thumb;

• the precision grip: it corresponds to the number 9 in Cutkosky

taxonomy and it is employed to handle small objects in a precise

way;

• the tripod grip: formed by thumb, index and middle fingers as

described in grasp 14 in Cutkosky taxonomy;

• platform: the hand is open to hold something (like a plate) on

the palm, it is depicted in grasp 15 of Cutkosky taxonomy;

• index point: only the finger is extended to point at something, or

to use a keyboard.

14
Chapter 2. Mobile devices for gesture recognition: the state of

the art

Figure 2.7: The grasps taxonomy proposed by Cutkosky

These configurations are combined to obtain the movements that can

be performed by prosthesis; the most widely-used devices can usually

perform the following tasks:

• hand closing;

• hand opening;

• wrist extension;

• wrist flexion;

• thumb abduction;

• thumb opposition;

• index extension.

In order to be applied to HCI, EMG technology has to be fitted to

non-medical needs: mainly a user will not have time or expertise to

adjust a complicated appliance just to interact with a device. In ev-

ery non-medical application it is more correct to speak about sEMG,

which means “surface EMG”, this kind of electromyography denotes

2.1. Gesture recognition 15

that biometric signals are acquired using electrodes placed on the skin

surface, instead of a needle inserted through the skin directly into the

muscle fibers. Today there are many fields in which EMG signals are

employed, one of the most curious application is the work of Mandryk

et al. [40], which uses facial EMG signals as a way to identify human

emotional state.

Considering “traditional” movement recognition Wheeler et al. [53]

used EMG sensors on the forearm to recognize joystick movement.

Every EMG acquisition procedure consists in two main steps:

1. EMG data have been acquired with an electromyography and

features are extracted in order to recognize the movement per-

formed; for this task many methods can be applied: time-domain

statistics, short-time Fourier transform, wavelet and many more.

2. data are employed to train a classifier, which is able to match each

signal’s feature vector with a particular movement. The most

employed classifiers are Artificial Neural Networks and Support

Vector Machines.

Naik et al. [41, 43] have employed Independent Component Analysis

(ICA) in the first phase described above.

It is an iterative technique, where the only model of the signals is the

independence and the distribution, this class of algorithms has two

main advantages:

• source signals separation without there being any information on

the order of the sources;

• crosstalk and noise are substantially subsided.

When the source signals have been obtained, Root Mean Square has

been calculated for every set of movement performed. Then the feature

vectors obtained are classified with a feed forward back propagation

ANN, in order to recognize the movement executed by the end-user.

The gesture considered in these experiments are: flexion of the forearm,

abduction and flexion of wrist, adduction and flexion of wrist and finger

flexion while avoiding wrist flexion; the system described is able to

identify all these hand gestures, reaching a 100% accuracy result in

some cases.

In [42] Naik et al. compare the performance of four different ICA

16
Chapter 2. Mobile devices for gesture recognition: the state of

the art

algorithms used for the movement recognition system described above.

The methods employed in this comparison are:

• TDSEP - Temporal Decorrelation Source Separation is

based on the simultaneous diagonalization of several time-delayed

correlation matrices;

• FastICA is a fixed point ICA algorithm that employs higher

order statistics for the recovery of independent sources;

• Infomax - Information Maximization algorithm is a gradient-

based neural network algorithm, with a learning rule for informa-

tion maximization;

• JADE - Joint Approximative Diagonalization of Eigen-

matrices is an algorithm based on the joint diagonalization of

cumulant matrices under the assumption that the sources have

non-Gaussian distribution (this is a requirement for ICA applica-

tion).

Figure 2.8: ICA algorithms performance comparison

The result of this comparison are shown in figure 2.8, the last bar

depicts the system’s performance using raw EMG, without any appli-

cation of ICA algorithm.

One of the most interesting applications of EMG-based HCI is mu-

CIs project by Microsoft Research [47, 48]. In this project sEMG are

used to distinguish among three different class of movements:

• hands-free finger gestures;

2.1. Gesture recognition 17

• hands-busy finger gestures;

• gestures for controlling a portable music player.

A desktop display guides the end-users through training session; it high-

lights the finger that has to been moved (for the first class of grips),

or shows the gesture to be performed, giving the user a visual feed-

back of his actions. EMG signals are acquired using a BioSemi Active

Two system; sensors are placed in a forearm muscle-sensing band (see

figure 2.9). The data acquired are splitted and converted in segments

Figure 2.9: Placement of the electrodes in Microsoft muCIs project

suitable for machine learning application. For every segment three set

of features are generated:

• Root Mean Square: correlates channel’s amplitude with mag-

nitude of muscle activity;

• Frequency Energy: computed through a FFT for each sample,

it is indicative of the temporal patterns of muscle activity;

• Phase Coherence: a measurement of the relationship among

EMG channels.

The feature vector acquired are employed to train a Support Vector

Machine, which obtains a good performance in gesture classification.

The main value of this application is that EMG signals analysis is

18
Chapter 2. Mobile devices for gesture recognition: the state of

the art

employed in an every-day activity like pause a CD-player. Future di-

rections of these projects are the creations of a low-power wireless pro-

totype muscle-sensing unit and the employment of this device for video

game interface.

An interesting demonstrative video regarding this muCIs device can be

found at the project’s main page [15].

2.1.3 Image analysis for gesture recognition

Vision identification devices have been successfully developed for ges-

ture recognition system. These devices use cameras to identify the user

gestures - applying image synthesis and analysis algorithms [31] - and

provide a visual feedback through a projector or a monitor.

The main advantage of this technology is that it can avoid wearing

electrodes or sensor band, moreover, the use of a depth-sensing camera

facilitates precise 3D hand positioning and gesture-tracking without

requiring the user to wear any type of on-body sensors. However, these

devices have several drawbacks; first, they require observable move-

ment or interaction that can be “socially awkward”, secondly they are

relatively sensitive to environment’s light and noise. Moreover, finger

contact pressure is not robustly measurable with a camera.

One of the most interesting applications in this field is PlayAnywhere

system by Wilson [54], this is a front-projected computer vision-based

interactive table system, which uses a compact commercial projection

system. The device is composed by a NEC WT600 DLP projector to

project a 40” diagonal image onto an ordinary table surface and an

infrared light source. A user employs hovers and touches to interact

with the device, such features are extracted using a technique which

exploits the change in appearance of shadows as an object approaches

the surface. The main advantages of this approach are: first of all this

input procedure doesn’t rely on special instrumentation of the surface,

secondly this solution extends the “interaction vocabulary” available

for this devices (see figure 2.10).

One of the most innovative device in this field has been recently pre-

sented by Microsoft with the code name “project Natal”. It is a

controller-free device, which combine an RGB camera, depth sensor,

multi-array microphone and custom processor running proprietary soft-

ware.

The whole system is able to track a player’s movement in 3D. The RGB

2.1. Gesture recognition 19

Figure 2.10: The two main ways to interact with Playanywhere. Left: Buttons appear

when a finger hovers over the upper left corner of this application. Right: a typical

touch interaction.

camera is able to recognize face and facial expression. Depth sensors is

an infrared projector combined with a monochrome CMOS sensor, this

devices make possible to see the room as a 3D image under any light-

ing condition. Eventually, the multi-array microphone provides speech

interaction with the device. Some information and a related video can

be found at the project main site [18].

2.1.4 Hybrid movement recognition system

As a conclusion of this section, another class of devices is shortly pre-

sented.

These appliances (named here as “hybrid”) combine EMG signal identi-

fication with some techniques presented in section 2.1.1 or some devices

such as tabletop systems. The main advantage of this configuration is

the opportunity to obtain both some data from EMG analysis - muscle

contraction and strength - and some information from an inertial de-

vice - such as relative position and orientation. The drawback of this

solution is the amount of data that have been computed and analyzed

to obtain all the information from devices.

One of the most recent projects in this field is the sensor fusion device

proposed by Benko et al. [25] which integrates a standard multi-touch

tabletop (Microsoft Surface) with EMG signals. In this scenario, touch

information sensed by MS Surface are integrated with the data of EMG

analysis, which identifies with which finger the end-user has touched

20
Chapter 2. Mobile devices for gesture recognition: the state of

the art

the tabletop. In this way, the “interaction vocabulary” available to in-

teractive surface systems is extended with the opportunity of detecting

(theoretically) ten different finger’s touches instead of one single touch.

Moreover the whole system is provided with the information of fingers’

movement when the user is not currently touching the tabletop surface.

Another mixed approach is described in [45]: in this project a video-

game control device acquires EMG signals and acceleration data from

the forearm. Analyzing the EMG signal, the force exerted by the user

can be measured and used as input signal, even when there is no ex-

plicit movement of the forearm. Besides, the device can classify hook

and straight punch motions of the forearm by analyzing the accelera-

tion data.

This device can be easily adopted in a action virtual-reality game, the

user can intuitively make various punching motions, such as punch-like

or upper cut-like motion; besides, by measuring EMG signals it is pos-

sible to identify some “special attack” completely activated by muscle

contraction.

The last cited application is described in [37]: it uses both EMG sig-

nals and accelerometer for recognizing some word in German Sign Lan-

guage, which is a communication way for hearing-impaired people. In

this case, the accuracy of the system is essential. For recording a

dataset, an Alive Heart Monitor has been employed - which originally

is a device for electrocardiogram measures - and a 3-axis accelerome-

ter has been placed on the user’s forearm. The Alive system has been

attached nearby wrist, for measuring EMG signal generated by Flexor

Carpi Radialis.

For recording the most important features from the accelerometer, a

4-order low-pass Butterworh filter and some common statistical fea-

tures (such as RMS) are calculated on the data obtained. The same

Butterworth filter is applied to the EMG signal, followed by the calcu-

lation of fundamental frequency and Fourier variance of the spectrum

obtained with a Fast Fourier Transform. The obtained feature vectors

are classified with Support Vector Machines and k-Nearest Neighbor

classifier.

Using the most relevant 15 features, an average accuracy of 99.82% is

achieved only for subject-dependent recognition; but this high accu-

racy doesn’t carry over to the subject-independent recognition.

Create a gesture recognition device that is subject-independent is one

2.1. Gesture recognition 21

of the future direction of this kind of research.

22
Chapter 2. Mobile devices for gesture recognition: the state of

the art

2.2 Mobile devices

In this second section a summary of mobile devices technology is pre-

sented.

This part is divided in two main topics: an overview of the main CPU

and hardware suitable for mobile application and some hint regarding

OS used in smart devices.

2.2.1 CPUs and hardware

CPUs are the main core of all digital platforms. In order to be employed

on a mobile device, a CPU must be both efficient and small. This

section provides a summary of the most used platforms and CPUs

for mobile devices; some of these microcontrollers have been directly

employed in Eracle project before adopting Nvidia Tegra.

PIC and dsPIC

PIC (Programmable Interface Controller) is a family of Harvard ar-

chitecture microcontrollers. They have been originally developed by

General Instrument; nowadays one of the most important manufac-

turer in this field is Microchip Technology [14].

These devices are employed both by professional developers and hob-

byists, due to their low costs, serial programming capability, large user

base and availability of free development tools like MPLab IDE.

Four configurations of microcontrollers are usually employed: 8-bit, 16-

bit, 24-bit and 32-bit. Microchip also developed a particular class of

microcontrollers named DSPic, which combines control features of a

microcontroller with the computation throughput of a Digital Signal

Processing. These characteristics allow developers to employ libraries

specific for signal processing, making computation more efficient.

One of the main news in this field is XLP (Extreme Low Power) mi-

crocontrollers: this class of products provides the same functionalities

of a PIC, including new features for low energy consumption. This

peculiarity makes this class of microcontrollers extremely suitable for

mobile device application, since battery life has been dramatically ex-

tended (see figure 2.11). Low power consumption is obtained mainly

due to optimization of instruction set, faster programs execution (that

allows the device to enable sleeping mode), sleep current of only 20 nA

2.2. Mobile devices 23

and deactivation of unused peripherals.

PIC is employed in many fields, for example:

• automotive;

• intelligent power supply;

• motor control solutions;

• mechatronics;

• battery management solutions;

• utility metering solutions;

• touch screen controllers.

Figure 2.11: Battery life improvement on a PIC24 employing XLP technology

In this field, one of the most interesting hardware solutions is UBW32 [21].

This is a small development board which includes a PIC32 and all the

external circuitry to get this microprocessor up and running. The most

relevant feature of this solution is that it can be easily connected to a

computer and programmed (in a Visual Basic-style language) via USB,

without any need of Microchip’s programmer.

As shown in figure 2.12, this board provides also a lot of I/O pins,

so it can be used as a stand-alone development platform or it can be

24
Chapter 2. Mobile devices for gesture recognition: the state of

the art

Figure 2.12: UBW board

connected with other appliances to carried out a control device.

ARM

ARM is a family of 32-bit RISC CPU developed by ARM Holdings [4],

they have been employed in many embedded systems.

The most well-known application of these kinds of CPUs is Apple

Figure 2.13: A comparison among different classes of ARM CPUs.

iPhone, which employed an ARM11 CPU. As shown in figure 2.13,

there are mainly three classes of ARM processors:

• ARM Classic Processors are market-proven devices that provide

good performance capabilities and efficiency. They are mainly

2.2. Mobile devices 25

employed in consumer and home applications.

• ARM Cortex Embedded Processors are also divided in two main

classes: M-series CPUs have been originally developed for mi-

crocontroller domain, therefore they provide highly determinis-

tic interrupt management and low power consumption; they are

mainly employed in signal processing devices and smart sensors.

R-Series processors have been developed for real-time applica-

tions, therefore they ensure strong compatibility with existing

platforms; they are mainly employed in automotive braking sys-

tem and mass storage controller.

• ARM Cortex Application Processors are designed for mobile Inter-

net devices, they provide a performance of up to 2GHz in single-

core or multi-core architecture. This class of CPUs is also sup-

plied with advanced Floating Point execution units and a new

technology for multimedia processing called NEON. ARM Cor-

tex Application Processors are mainly employed in smartphones,

eBooks readers and digital TV.

In Eracle project Nvidia Tegra has been employed (see section 5.1) ,

which combines Dual-core ARM Cortex-A9 MPCore processor and 3D

graphics processor. Nvidia Tegra is one of the most employed CPU for

mobile devices, it is a full HD ultra low-power mobile Web processor,

mainly used for:

• tablets;

• mobile Internet devices;

• smartphones;

• portable media players;

• Internet TV;

• automotive.

Due to the high graphic performance of this CPU, it is also employed

in game and graphics design applications.

Today Tegra is distributed for developers as a basic motherboard com-

prises Tegra 250 SoC and a range of ports for peripherals. Specific SDK

for developing with Windows CE or Android are available on Tegra web

site [17].

26
Chapter 2. Mobile devices for gesture recognition: the state of

the art

Arduino

Arduino is an open-source electronics prototyping platform based on

flexible, easy-to-use hardware and software.

There are many versions of Arduino board, one for each need. The

main configurations are [2]:

• Duemilanove: it is the basic Arduino USB board (see figure 2.14),

that can be easily programmed by connecting it to a computer

with an USB cable;

• Bluetooth: it contains a Bluetooth module that allows wireless

communication and programming;

• Mini: it is the most suitable solution for embedded systems, due

to its small dimensions;

• LilyPad: it is designed for wearable devices, this platform can

be sewn onto fabric;

• Fio: it is the Arduino board designed to work with wireless sig-

nals, it includes a socket for XBee radio, connector for LiPo bat-

tery, and integrated battery charging circuitry.

Figure 2.14: Arduino Duemilanove board

Arduino boards mainly uses Atmel ATmega328, an High Performance

and Low Power consumption AVR 8-Bit Microcontroller [5].

2.2. Mobile devices 27

2.2.2 Operative system

Design an operative systems for a mobile device is a difficult task,

mainly because it must handle the “usual” OS activities but in a min-

imum space and (usually) with reduced software library available.

In this section two main operative systems are presented: Windows

CE by Microsoft and Android, the most well-known open source OS

for mobile devices.

Windows CE

Windows CE is the smallest Microsoft Windows Operation System: it

is a ROM-based OS with a Win32 subset API.

Since version 4.1 it supports .NET Compact Framework, a version

of the .NET runtime for mobile and embedded devices. The Com-

pact Framework provides the same powerful .NET runtime environ-

ment with a smaller class library.

Windows CE, at its first version (1.0), was just a simple organizer op-

erating system; the second version was released in 1997 with the intro-

duction of the Handheld PC 2.0. The new version included Windows

standard network functions, a Network Driver Interface Specification

(NDIS) miniport driver model, and a generic NE2000 network card

driver, it was also the first edition of the OS to be also available sep-

arately from a specific mobile device. In Windows CE 2.01, the C

runtime library was moved from a statically linked library attached to

each EXE and DLL into the operating system itself. This change lead

to a sensible reduction of the size of both the operating system and the

applications themselves.

In mid-2000 Windows CE 3.0 was released, the most important feature

of this version was its kernel: it was optimized for real-time application

and it allowed nested interrupt. There was also many other news in

Windows CE 3.0, such as: full COM and DCOM support, file size in-

creased to 32 MB per file, media player control, XML support, remote

desktop display support and the introduction of the DirectX API.

The release of Windows CE 4.2 in 2003 was very important for mobile

devices, in fact this edition provided: PC-specific APIs that support

menu bars, soft input panel and the introduction of hardware paging

tables.

The latest release of this OS is Windows CE 6.0, this edition includes

28
Chapter 2. Mobile devices for gesture recognition: the state of

the art

some features highly oriented to mobile technologies, such as smart-

phones and mobile phones. Just as hints, this release includes: MS

Silverlight, Embedded Internet Explorer and touch screen support [26].

Some of the most important changes in Windows CE concern its archi-

Figure 2.15: Architecture of Windows CE 6.0

tecture and kernel. As shown in figure 2.15, the OS is mainly splitted

in two subsystems: user virtual machine and kernel virtual machine.

Until Windows CE 6.0, file system, device manager and graphics sub-

system were separated (they were named FileSys.EXE, Device.EXE

and GWES respectively) and they operated in user mode. This sepa-

ration made the system robust - since every subsystem was independent

and protected from one other - but also decreased performance (due to

many process switching).

The new architecture brings all the subsystem into the kernel virtual

machine, improving system performance and communication among

these three basic processes.

Nk.exe contains the OEM abstraction layer code and a compatibil-

ity layer, therefore kernel can be updated without affected OEM code.

The DLL named k.Coredll.dll mimics the old Coredll.dll (that was orig-

inally placed in user virtual machine) and helps with porting tasks from

old applications. A call to an API that requires Coredll is redirect to

k.Coredll.dll that simply reflects the request to kernel.dll for process-

ing; as the calls are all within kernel virtual machine, the overall per-

formance is sensibly improved.

The user mode drivers section provides support for third-party drivers

2.2. Mobile devices 29

execution, this allocation reduces the process performance but improves

security [22].

There are many applications that are suitable for this OS [23]:

• scanners;

• RFID readers;

• eBook readers;

• GPS devices;

• game controllers;

• VoIP phones;

• multimedia portable devices.

One of the most interesting features of Windows CE 6.0 is that it can be

flashed on NVIDIA Tegra 250 Developer Kit described in section 2.2.1.

This feature make possible to develop applications running on NVIDIA

Tegra without handle with hardware or low-level programming.

Android

Android is an open-source operative system for mobile devices, it is

based on Linux Kernel version 2.6.

Applications running on Android can be simply developed using Java

language.

Android employed Dalvik Virtual Machine, which is an optimized JVM

for mobile devices to ensure high compatibility. Moreover, it includes

media support for common audio, video, and still image formats (MPEG4,

H.264, MP3, AAC, AMR, JPG, PNG, GIF), other than SQLite for

structured data storage and modules for wireless communication like

Bluetooth and Wi-Fi.

The main architecture of Android is shown in figure 2.16.

The first layer includes the main application of a mobile device like

a Smartphone: email client, Internet browser, organizer, phone and

many more. The Application Framework layer provides the underlying

services of all applications that are also available to developers. These

services are:

• View system: which includes a set of Views that can be used in

building application, such as lists, grids, text boxes and more;

30
Chapter 2. Mobile devices for gesture recognition: the state of

the art

• Content Providers that allows an application to access data on

another computer, or shares its own information;

• Notification Manager which schedules custom alerts;

• Activity Manager that manages the lifecycle of application run-

ning on the platform.

The third layer consists of a set of C/C++ libraries, which are both

used by Android application and exposed to developers. Some of the

most important features are System Libraries (System C libraries tuned

for embedded Linux-based devices), Media Libraries (designed to han-

dle different media files) and SQLite, which allow the use of databases

on smart devices. Android Runtime layer include a set of core libraries

- that provides a set of functionalities of Java programming language

- and Dalvik Virtual Machine, which ensure the compatibility of Java

code, adding some features especially designed for mobile devices.

Last layer is Linux Kernel which handle services such as security,

Figure 2.16: Architecture of Android

process management, network stack and driver management.

2.2. Mobile devices 31

Due to open-source license and the ease of use of Java code, Android

has been used in many portable devices. The first smart device run-

ning Android was T-Mobile G1 from HTC, developed in 2008. In the

last year some devices such as HTC Desire and Samsung Galaxy S

employed Android with high technologies CPUs and hardware [1].

32
Chapter 2. Mobile devices for gesture recognition: the state of

the art

Chapter 3

Project plan and description

“Kirk: All I ask is a tall ship and a star to steer her by.

You could feel the wind at your back in those days. The sounds of the sea

beneath you. And even if you take away the wind and the water it’s still the

same... the ship is in yours. You can feel her. And the stars are still here.”

The ultimate computer

Star Trek - The original series

This chapter discusses the aims of Eracle project, the gestures that

are employed for Human Computer Interaction and outlines the main

differences between this project and previous implementations of EMG-

based recognizer devices. It gives reasons for our choices regarding

EMG signals as input data and Nvidia Tegra as the computing core of

the project.

The last section introduces the general architecture of Eracle, that will

be detailed described in chapter 6.

3.1 Project goals

Eracle is a mobile device that recognizes some basic hand gestures pro-

cessing the EMG signals generated by the forearm muscles.

Recognizers based on EMG signals are usually employed in biomedi-

cal field to control prosthesis. Eracle project has a different goal: it

is mainly designed to interact with Virtual Reality environments, like

video games or augmented reality simulations. With like Eracle, the

user can interact directly by its movements, without employing a key-

board or a mouse, making the simulation more immersive. This latter

consideration is also supported by the commercial success of devices

34 Chapter 3. Project plan and description

like Nintendo Wii or Microsoft Natal. In the first appliance, the con-

troller is mainly employed to track the position of the user’s hand, in

the second one there isn’t any controller at all, since the user gestures

are directly identified thanks to image processing algorithms.

It is important that the recognized movement emulates some gestures

that are “intuitive” for a user. This consideration is especially true for

video games: the user should perform natural and spontaneous ges-

tures to control his avatar. An example of a special charged attack in

Figure 3.1: Typical motion for a charged attack in Muscleman project

an action games is shown in figure 3.1, this movement is recognized by

the Muscleman device proposed by Park and Kim in [45]. Muscleman

has been previously described in section 2.1.4.

Eracle project could be employed in Virtual Reality simulation to track

the user’s movement. Moreover, it could be connected to a Virtual Re-

ality helmet that provides the visual feedback to the user. The devkit

described in section 5.1 provides both USB and Ethernet port, so it

could be easily linked to a wide range of appliances.

The sampling devices that provide the input data to the computing

core are completely integrated in the acquisition glove (see chapter 6,

section 6.2, for more information) that could be worn by individuals

with different body size. The computing core of Eracle is fully im-

plemented on Nvidia Tegra 2 CPU. The whole Eracle system (which

consists of the sampling unit and the data processing module) weighs

only a few grams and the computing core could be fitted in a pocket

(see figure 3.2 that depicts the Nvidia Tegra CPU compared to a one

dollar coin), so it could be employed by everyone without any mus-

cle fatigue and without any encumbrance. Everyone can use Eracle for

Human Computer Interaction, however it is necessary to train the clas-

sifier with the specific biometric signal of the real user to achieve the

best performance. As outlined in chapter 7, a Neural Network trained

to recognize gestures of a specific user is not suitable for identifying

3.1. Project goals 35

Figure 3.2: Nvidia Tegra compared to a one dollar coin. This SoC easily fit in a pocket

the movements performed by another one. This is mainly due to the

differences of arm size, sweating and muscle strength.

However - provided that the system has been set up with the appropri-

ate classifier - it could be employed by different users simply by wearing

the acquisition glove on the forearm.

This device could also be employed to control a simple program run-

ning on a PC; for example the close hand movement could identify a

user assertion (like the OK button in a dialog box) and an open hand

gesture could represents the user refusal (like the Cancel button in a

dialog box).

Recent works (such as [29]) describes how devices like Eracle can di-

rectly interact with robotic arm; this last application field could be

interesting especially in an industrial context. However, it is necessary

to improve the global performance in order to apply Eracle to an in-

dustrial assembly line.

Another employment field of Eracle is home automation: each gesture

would be used to control a domestic appliance like television or air-

conditioner. As discussed in section 3.2, EMG-based recognizers are

more suitable than image-based devices for this field of application, as

they avoid the installation of many cameras in the user’s home.

36 Chapter 3. Project plan and description

3.1.1 Recognized gestures

Eracle is currently able to recognize up to five movements with accuracy

about 90%; however - as described in chapter 8, section 8.1 - we think

that the number of recognized gestures could be increased, as well as

the global success rate of the device.

The five gestures recognized by Eracle are:

Close Hand

All fingers are clenched into a fist, as shown in figure 3.3. This gesture

could represent a user’s assertion in typical PC interaction, or an attack

movement in a video game application.

Figure 3.3: Close hand movement

Wrist extension

The fingers are stretched and the hand is flexed towards the back, as

shown in figure 3.4. This gesture could be employed to scroll some

pictures clockwise.

Figure 3.4: Wrist extension movement

3.1. Project goals 37

Wrist flexion

The fingers are stretched and the hand is flexed towards the palm, as

shown in figure 3.5. This gesture could be employed to scroll some

pictures counterclockwise.

Figure 3.5: Wrist flexion movement

Open Hand

The hand is opened as much as possible, as shown in figure 3.6. This

gesture could represent a user’s denial, or a defensive position in a video

game.

Figure 3.6: Open hand movement

38 Chapter 3. Project plan and description

Click

this gesture simulates the left click of a mouse, thus it could be used

to select an item on the screen. It is performed by putting the index

on the thumb and exerting a slight pressure, as shown in figure 3.7.

Figure 3.7: “Click” movement

3.1.2 Differences from previous implementations

There are mainly two differences between Eracle and other projects

that employ EMG for gesture recognition. The first concerns the tar-

get user. EMG systems for movement recognition are mainly employed

in biomedical field for prosthesis control. It means that the device must

be extremely precise, as the amputee employs the prosthesis in daily

life and an error in the performed gesture could lead to serious prob-

lems. Since these devices must meet the demands of everyday life, hand

prosthesis usually provide several different type of grasps, as the user

would like to handle different kind of objects. Some examples of typical

grasps adopted in hand prosthesis have been described in chapter 2,

section 2.1.2. Moreover, the training stage of prosthesis takes a long

time as it must perfectly fit the user’s needs.

Eracle, instead, is mainly designed for Human Computer Interaction

with Virtual Reality environments or video games, thus the user does

not want to take a long time to learn how to interact with the appli-

cation. It entails that the training stage must be as fast as possible,

with a minimum number of gesture repetitions. In Eracle project it is

sufficient to provide the Neural Network with ten repetitions of each

gesture in order to recognize up to five different movements (see chap-

ter 7, section 7.2).

Moreover, Eracle could be employed with good results by everyone (see

chapter 8), providing the appropriate training stage. Thus, this device

3.1. Project goals 39

is suitable for different individuals, with different physique and weight;

on the contrary, prosthesis is designed and trained to perfectly fit only

one user’s needs. This entails that prosthesis is able to recognize more

movements and different grasps; instead Eracle can only recognize some

basic gestures that make the Human Computer Interaction simpler.

The second main difference between Eracle and the typical applica-

tion field of EMG concerns the hardware devices employed to perform

the classifier’s training.

The signal processing stage of Eracle is fully developed on the Nvidia

Tegra 2 (described in chapter 5 section 5.1) that is a powerful and

efficient SoC, but it provides the computing performance of a Smart-

phones CPU. Instead, almost all the projects focusing on EMG signal

analysis employ Desktop PC for data processing. These workstations

provide superior speed performance, that entails improved accuracy for

gesture recognition tasks.

In developing Eracle, we have mainly focused on system’s accuracy in

recognizing the performed movement. All the modules of the com-

puting core have been designed to be as independent as possible; this

choice is perfect for debug purposes (as we can easily check input and

output values of each unit), but leads to an increase in computational

speed. However, in chapter 8, section 8.1 we propose some future de-

velopments that will shorten the processing time.

40 Chapter 3. Project plan and description

3.2 Technological choices: EMG and mobile de-

vices

The two keywords of Eracle project are electromyogram signals and

mobile devices, as we have developed a device that recognize hand

gestures processing the EMG signals sampled from the muscles, but

this appliance must be small enough to be worn by the user.

There are many classes of signals that can be employed to identify the

user’s movement, and there are also many different devices that can be

employed to achieve this purpose. We have decided to employ EMG

signals as input data and Nvidia Tegra as computing device, the next

paragraph provides some reasons of our choices.

3.2.1 EMG

As discussed in the previous chapter (see section 2.1.2) there are mainly

three classes of algorithms that are employed in gesture recognition:

EMG, EEG and image analysis techniques. There are some advantages

and some drawbacks in all the three cited approaches:

• EEG: they provide a huge amount of information about the user

movements, as all the signals are sampled directly from the scalp

and there is no crosstalking generated by muscles contractions.

However this kind of biometric signals are affected by artifacts,

moreover, setting up an EEG acquisition procedure is a difficult

task, as the electrodes must be placed directly on the user’s head,

making this acquisition method unsuitable for a mobile applica-

tion (see figure 3.8).

• EMG: these signals are generated by muscles contraction; as a

movement is usually performed by several muscles working to-

gether this method is affected by signal overlapping called crosstalk-

ing. This problem can be avoided employing needle electrodes

(that are actually used in medical examinations), but they are

totally unsuitable for a Virtual Reality or a Human Computer

Interaction application.

With this technique is possible to recognize about four or five

basic movements.

• Image analysis techniques: this kind of devices have been

recently employed for a game controller based on gesture recog-

3.2. Technological choices: EMG and mobile devices 41

Figure 3.8: Electrodes placement in EEG examination. It is obvious that this kind of

sampling procedure is unsuitable for HCI

nition developed by Microsoft (project Natal, for more informa-

tion see 2.1.3). Image analysis offers a wide range of information

about the user’s movements; with this technology it is possible to

recognize at least ten different gestures. The main drawback in

using this kind of devices is the number of cameras that must be

employed in order to obtain a good result.

Taking into account these simple considerations, we have decided to

employ EMG as the input signals of Eracle. Moreover, these kind of

biometric signals have already been used with good result by Naik et

al. in [41] and Benko, Saponas et al. in [25]. This last project has been

described in section 2.1.2 of the previous chapter.

3.2.2 Nvidia Tegra: a mobile processor

Eracle project is also focused on mobile devices, thus, there is no need

to connect the device to a PC in order to use it. The whole acquisition

procedure is carried out by the acquisition glove (see section 6.2), which

include the sEMG electrodes and the EMG board (see section 5.2), as

the signal processing and gesture recognition tasks are carried out by

Tegra CPU (see section 5.1). The main advantage of this SoC (System

on Chip) processor is that it offers a good computing performance in

42 Chapter 3. Project plan and description

compact size; for both these two reasons it is mainly employed in Smart-

phones and Netbooks. The main core of Nvidia Tegra is a Dual-core

ARM Cortex-A9 CPU. We have selected Nvidia Tegra among many

other CPU architectures mainly due to its high performance and low

power consumption.

There are many other processors designed for mobile computing, such

as Apple iPhone 3G, Intel Atom and Samsung S5PC110. Figures 3.9

and 3.10 depict the results obtained by ARM and Atom CPU running

CoreMark benchmark. This suite has been developed by the Embed-

ded Microprocessor Benchmark Consortium ([9]) and it is specifically

designed for approximating the real-world performance of an embed-

ded system. The number returned by this application is a global score

that summarize the processor’s performance.

Figure 3.9: Maximum and minimum performance of some embedded [8]

Figure 3.10: Performance of embedded CPU at different clock rate [8]

3.2. Technological choices: EMG and mobile devices 43

Nvidia Tegra 2 is mainly employed in Smartphones and Tablet PC,

figure 3.11 shown a performance comparison between different Smart-

phones using the Quadrant benchmark package. Netbook Toshiba

AC100 (the one named “your device” in figure 3.11) achieves the best

result in the performance comparison. This device is equipped with

Nvidia Tegra 2 and runs Android 2.1 as OS. The reduced size and the

Figure 3.11: Performance comparison of different Smartphones using the Quadrant

benchmark package. The one named “your device” is a Toshiba AC100 Netbook, that

is equipped with Nvidia Tegra 2 and Android 2.1

low power consumption of Nvidia Tegra make possible the fulfillment

of a completely wearable system. This means that the whole comput-

ing core of Eracle project can fit in a pocket, and it could be easily

connected to an external appliance through wireless technology like

ZigBee, WirelessHART or MiWi (see section 8.1 in chapter 8). Thus,

the user can perform his movements in a very natural way, without any

44 Chapter 3. Project plan and description

hindrance caused by the sampling or computing devices.

The main features of a wearable device are:

• it is designed for a continuous use and it operates always in an

active mode;

• it should improve the sensory capabilities of the user and it must

not hinder the user’s movements;

• it should adapt itself to the environment;

• as a wearable computer should be employed in daily life, it should

be easily connected to a wide range of appliances, using many

different communication protocols.

We have developed Eracle following these four guidelines, but realiz-

ing a wearable computer is a very difficult task, therefore there are

many features that can be improved. Section 8.1 in chapter 8 reports

some possible future developments following the concepts of wearable

computer.

3.3. General architecture of Eracle project 45

3.3 General architecture of Eracle project

The aim of Eracle project is to achieve a fully wearable system for

gesture recognition based on EMG analysis.

Figure 3.12 depicts the general architecture of the project. At the

beginning of the acquisition chain there is the user’s forearm, it means

that the first step consists in acquire the EMG signals generated by

the user’s movements. We have focused only on hand gestures, which

can be identified by the forearm muscles contraction; more details on

EMG signals can be found in appendix B.

The next step in the acquisition chain is the acquisition glove, that

can be easily worn by the user on the forearm. As depicted in fig-

ure 3.12, this device hosts two different modules:

• the sEMG electrodes employed for signal sampling;

• the EMG board that carries out some basic filtering on the raw

signal and converts it to digital values.

The last section is the biggest one: it provides the filtering of the EMG

signals and the recognition engine. It is fully implemented on Tegra

Devkit described in section 5.1 in chapter 5.

This last module is based on two executable files: EracleACQ and

EracleREC.

Both the applications provide the following units:

• a Serial Port Manager that handles the communication between

Devkit and EMG Board;

• the Parser module, that split the input data into three different

listings (one per channel) and removes some spurious data;

• the FastICA module that process and filter the raw input data;

• a RMS unit that computes the Root Mean Square value for each

channel.

The main difference between the two applications is in the last mod-

ule. In EracleACQ it is called NN Train, it trains the Neural Network

that will recognize the user’s movement; in EracleREC the last unit

is named NN Classify, as it handles the gesture recognition stage, em-

ploying the previously trained Neural Network.

46 Chapter 3. Project plan and description

Figure 3.12: General architecture of Eracle project. The system is mainly divided in

two different units: the acquisition glove - that carries out EMG sampling and analog

to digital conversion - and the computing core - which provides the data processing.

This last one is fully implemented on Nvidia Tegra 2

3.3. General architecture of Eracle project 47

Another difference between the two executables is that in EracleACQ

the described modules are implemented on their own, while in Era-

cleREC the last four units are implemented in the same function. The

main reason of such choice is the computational performance: every

module of EracleACQ is fully independent by the others; it means that

it takes some files as input and generates some files as output, and

there is no cooperation between them. This choice entails that every

unit could run on his own. The main drawback is that the computa-

tional speed is reduced, mainly due to the big amount of I/O operations

performed. However, this is not a lack, as the data sampling for Neural

Network training is usually executed as batch process.

Instead, EracleREC directly interacts with the user, so its computa-

tional performance can’t be too low; moreover it handles just one single

movement (instead of EracleACQ, that processes about ten acquisi-

tions for each movement). For this reason the modules that perform

signal filtering and gesture recognition (Parser, FastICA, RMS and

NN Classify) are implemented together, avoiding the huge amount of

I/O operations performed by EracleACQ. This feature improves the

computational speed, but the system can’t be consider as a real time

application.

Chapter 8, section 8.1 presents some possible future developments to

improve the recognizer performance.

As shown in figure 3.12 the three modules FastICA, NN Train and NN

Classify are developed employing the features provided by LTIlib, a

mathematical library mainly used in image processing and computer

vision. The modules of Eracle project will be detailed described in

chapter 6.

48 Chapter 3. Project plan and description

Chapter 4

Independent Component

Analysis

“McCoy: In this galaxy, there’s a mathematical probability of three million

Earth-type planets. And in the entire universe, three million million galaxies

like this.

An in all of that, and perhaps more, only one of each of us. Don’t destroy

the one named Kirk.”

Balance of terror

Star Trek - The original series

This chapter provides both a basic introduction to Independent Com-

ponent Analysis (ICA) and some technical details about the application

of this method to biometric signals elaboration.

In the first section some mathematical and statistical properties of the

algorithm are discussed, focusing both on theoretical and implemen-

tations aspects. Finally, the last section provides some hints on how

this algorithm can be applied to EMG and EEG signals and introduces

some problems related with this choice.

4.1 Principles of ICA

Independent Component Analysis is a linear transformation method:

thus, it is an algorithm that represents multivariate data as a linear

transformation of the original statistical observations. ICA algorithms

search for the transformation that minimizes the statistical indepen-

dence of the original representation’s components, highlighting the es-

sential structure of the observed data.

50 Chapter 4. Independent Component Analysis

Considering a vector x of m observations, an unmixing matrix W and

a vector s of m sources ICA can be applied to x to obtain a linear

transform s = Wx maximizing a function F (s1...sn) that measures the

independence between the si components.

This definition could also be stated in a more practical way as:

Definition 4.1 (ICA). ICA of a random vector of statistical observa-

tion x of m components consists of estimating the following generative

model for the data:

x = As (4.1)

Where s is the vector of n sources that are assumed to be independent

and A is the constant mxn mixing matrix, which describes the linear

mix of the original signals.

Applying ICA requires that at least three main constraints have

been respected:

1. all the independent components si (except for maximum one com-

ponent) must be non-Gaussian;

2. the number of m observation of vector x must be at least as large

as the number of the independent sources n of vector s (m ≥ n);

3. the mixing matrix A must be of full column rank.

The first restriction is necessary as for Gaussian random variable un-

correlatedness implies independence. In fact statistical variables are

independent if the density function can be factorized:

f(y1, ..., yn) = f1(y1)f2(y2)...fn(yn) (4.2)

Instead, statistical variables are uncorrelated if:

E {yiyj} = E {yi}E {yj} (4.3)

Statistical independence is a much stronger requirement than uncorre-

latedness, but if the y1...yn statistical variables have a joint Gaussian

distribution, this two properties are equivalent. Thus any decorrelating

representation would give independent components searched by ICA.

Anyway, it is important to remark that even though some components

of source vector s are Gaussian it is still possible to identify the non-

Gaussian independent components.

4.2. Fields of application of ICA 51

4.2 Fields of application of ICA

The main application framework of ICA is the Blind Source Separation

(BSS) problem [36], that can be intuitively described by the cocktail

party problem. In this scenario there are several people speaking simul-

taneously in the same room: the problem is to separate the different

voices using the recordings of several microphones in the area.

Referring to the ICA model:

• the microphones are the statistical observations of vector x;

• the voices are the sources of the vector s.

A schematic representation of cocktail party problem is shown in fig-

ure 4.1. Another practical and popular use of ICA is denoising, that

Figure 4.1: Representation of cocktail party problem

consists in separating the original source of signal from overlapped

noises.

One of the most promising fields of application of ICA is Feature Ex-

traction, this technique is mainly employed in neuroscience for the ex-

traction of low-level features of natural image data [44]. An interesting

comparison between the features extracted by ICA and the simple cells

52 Chapter 4. Independent Component Analysis

in primary visual cortex is reported in [50]. The authors also point out

that the best results are obtained using video sequences instead of still

images.

The quality of the results is similar to those obtained by Mallat with

wavelet in [39].

4.3. Estimating data model using ICA 53

4.3 Estimating data model using ICA

The estimation of a data model using ICA is performed in two different

steps: first, it is necessary to choose an objective (or contrast) function

to be minimized, then an algorithm for performing such minimization

must be selected.

The properties of ICA method are sensibly affected by these two choices,

in particular:

• the choice of the contrast function affected the statistical proper-

ties of the ICA method, such as robustness and variance;

• the choice of the algorithm affected properties such as convergence

speed, memory requirements and numerical stability.

4.3.1 Contrast functions

In addition to the statistical properties of ICA, the choice of contrast

function also affected the way of estimating the independent compo-

nents (ICs). There are two approaches: computing all the ICs at the

same time, or calculating only a single feature. In the second case the

procedure can be iterated to obtain several independent components.

Multi-unit contrast functions

For the first class of approach multi-unit functions are employed,

one of the most widely used is the log-likelihood function:

L =
T∑
t=1

m∑
i=1

log fi(w
T
i x(t)) + T ln |detW | (4.4)

where W is the umixing matrix and x is the vector of statistical obser-

vations.

The main advantage of this approach is that (imposing some regularity

conditions) it is asymptotically efficient. The main drawback is that it

is necessary to know the probability densities of the independent com-

ponents and estimating them is a difficult task.

54 Chapter 4. Independent Component Analysis

Another widely used contrast function is the mutual information I

of the random vector of observation y1, ..., yn, that can be defined as:

I(y1, y2, ..., ym) =
∑
i

H(yi)−H(y) (4.5)

where H denotes the differential entropy of a vector of random statis-

tical variables:

H(y) = −
∫
f(y) log f(y)dy (4.6)

The mutual information is a measure of the dependence between vari-

ables: it is zero if and only if the variables are statistically independent,

so a way to estimate the ICA model consists in finding a transform that

minimizes this value.

The main drawback of mutual information is that it is difficult to esti-

mate, because to compute entropy it is necessary to assess the density

of the observations vector.

This problem can be solved using high-order cumulants, which are con-

stants that can be computed expanding as a Taylor series the log-

arithm of the characteristic function of a scalar random variable of

zero mean. The first three cumulants have a really simple expression:

k1 = E {x} = 0, k2 = E {x2} and k3 = E {x3}. The most practical

and interesting cumulant is the fourth, called kurtosis:

k4 = E
{
x4
}
− 3(E

{
x2
}

)2 (4.7)

This cumulant can be consider as a measure of the non-Gaussianity of

x, thus for a Gaussian random variable kurtosis is equal to zero.

Kurtosis is widely used in ICA methods, as it has these two properties:

kurt(x1 + x2) = kurt(x1) + kurt(x2) (4.8)

kurt(αx1) = α4kurt(x1) (4.9)

Using cumulants the mutual information can be (approximately) com-

puted as:

I(y) ≈ C +
1

48

m∑
i=1

[4k3(yi)
2 + k4(yi)

2 + 7k4(yi)
4 − 6k3(yi)

2k4(yi)]

(4.10)

where C is a constant and the observation yi must be uncorrelated.

However, this approximation holds only if the probability density of

observations is not far from Gaussian.

4.3. Estimating data model using ICA 55

One-unit contrast functions

Instead of estimating the whole ICA model it is possible to use one-

unit contrast functions, which compute only a single independent

component; iterating the procedure it is possible to estimate all the

ICs derived from the statistical observations.

Once the first independent component has been computed, it is pos-

sible to obtain the others maximizing the contrast function under the

constraints of decorrelation with respect to the ICs already found; this

incremental approach is called deflationary.

The main advantage of one-unit contrast functions is that the com-

putational complexity of ICA is noticeably reduced, especially if the

input data has a high dimension.

With these contrast functions the differential entropy defined in equa-

tion 4.6 can’t be applied, because that expression is not invariant from

scale transformations. Therefore a linearly invariant version of such

feature is computed: it is called negentropy, which means negative

normalized entropy. This value is always non-negative and it is zero if

and only if the statistical observations have a Gaussian distribution:

J(y) = H(ygauss)−H(y) (4.11)

where ygauss is a Gaussian random vector of the same covariance matrix

as y (which is the vector of statistical observations). Once negentropy

is defined, it is possible to determine the mutual information as defined

in equation 4.5:

I(y1, y2, ..., yn) = J(y)−
∑
i

J(yi) (4.12)

As discussed with respect to multi-unit contrast functions, it is possi-

ble to compute the ICs finding a representation in which mutual infor-

mation is minimized. Unfortunately - as in multi-unit case - mutual

information is difficult to estimate, so this feature can be approximated

by high-order cumulants (whit some additional difficulties with respect

to multi-unit contrast functions [32]).

Kurtosis approximation can be applied also with one-unit contrast

functions; in this case it is defined as:

kurt(wTx) = kurt(wTAs) = kurt(zT s) =
m∑
i=1

kurt(si) (4.13)

56 Chapter 4. Independent Component Analysis

where z = ATw.

Under the constraint ‖z‖2 = 1, it is possible to obtain the ICs maxi-

mizing the expression 4.13. However this solution is far from optimal

mainly for two reasons: first, because higher-order cumulants are sensi-

tive to outliers and secondly because this features are largely indepen-

dent by the structure in the middle of the distribution and are mostly

correlated to the tails of the statistical density.

For ICA another one-unit contrast function has been introduced in [32]

as a generalization of kurtosis that tries to combine some features such

as:

• no prior knowledge of the densities of the ICs;

• simplicity of algorithmic implementation;

• interesting statistical properties.

This objective function is called generalized contrast function and it

practically a measure of non-normality; it can be constructed using

any functions G and considering the difference of the expectation of G

for the actual data and the expectation of G for Gaussian data.

4.3.2 Algorithms for ICA

Once a contrast function has been defined, it is necessary to select a

way to optimize it, choosing an appropriate algorithm.

Some preprocessing is usually applied before computing the ICs with

the selected algorithm, mainly it consists in sphering the input data. It

means that the observed variable x of the classical ICA model x = As

is transformed to a variable v

v = Qx (4.14)

such that the covariance matrix of v is equal to unity (E
{
vvT
}

= I).

This transformation is always possible and - even in cases in which it is

not strictly necessary - improves the convergence speed of the selected

algorithm.

The variable v can be defined as (from 4.1 and 4.14):

v = Bs (4.15)

where B = QA is an orthogonal matrix, because:

E
{
vvT
}

= BE
{
ssT
}
BT = BBT = I (4.16)

4.3. Estimating data model using ICA 57

remembering that a square real matrix B is orthogonal if BTB =

BBT = I.

The main advantage of preprocessing is that the problem of finding an

arbitrary matrix A defined in 4.1 has been reduced to the simpler prob-

lem of finding an orthogonal matrix B, which can be used to obtain

the ICs simply by transposing it:

ŝ = BTv (4.17)

instead of computational-expensive inversion of matrix A.

The first ICA algorithm was introduced by Jutten and Herault in [36]

and it is inspired by neural networks. The matrix of weights is updated

according to the rule:

∆Wij ∝ g1(yi)g2(yj) (4.18)

for elements outside the diagonal (thus when i 6= j) and it is zero for

the diagonal terms. The two relations g1 and g2 are odd non-linear

functions. The output terms yi are computed at every iteration as:

(I +W)−1x (4.19)

The two main drawbacks of this algorithm are that it converges only

under severe restrictions, and it is computationally expensive (mainly

due to the matrix inversion computed at every iteration).

These two disadvantages can be (partially) resolved using non-linear

decorrelation algorithms such as EASI, introduced in [27] which pro-

poses the following learning rule, that avoids the matrix inversion op-

eration:

∆W ∝ (I − yyT − g(y)yT + yg(yT))W (4.20)

Another interesting class of algorithms is based on maximization of net-

work entropy (infomax), it is similar to maximum likelihood approach.

They are mainly based on (stochastic) gradient ascent for objective

function. The main drawback of this class of algorithms is that they

converge very slowly, but speed can be improved by preprocessing data

with whitening.

One of the most practical and widely used algorithms for Independent

Component Analysis is FastICA. It is a fixed-point algorithm originally

58 Chapter 4. Independent Component Analysis

proposed in 1997 by Hyvärinen and Oja [32].

It requires sphering preprocessing and the learning rule can be imple-

mented as:

w(k) = E
{
xg(w(k − 1)Tx)

}
− E

{
g′(w(k − 1)Tx

}
w(k − 1) (4.21)

The non linear function g is the derivative of the function G defined in

general contrast function introduced in [32].

Several systems can estimate the ICs using deflationary (see 4.3.1) or

symmetric method: in this last configuration the ICs are all estimated

in parallel.

The convergence speed of the algorithm is high, as FastICA uses sample

averages computed over larger amount of data, instead of using every

data point immediately for learning. An interesting property is that

symmetric FastICA is essentially equivalent to a Newton method for

maximum likelihood estimation, that makes this method suitable both

for one-unit and multi-unit contrast functions.

4.4. ICA for biometric analysis 59

4.4 ICA for biometric analysis

In biometrics analysis ICA methods are mainly employed for denois-

ing. The main problem in using ICA methods with noisy signals is

the lack of robustness of the algorithms, however - for EMG data anal-

ysis - these approaches have been used with good results by Naik et

al. ([43], [42] and [41]). The main difficulty of EMG signals is that

they have a probability density close to Gaussian, while noises (such as

motion artifacts) have non-Gaussian distribution (as discussed in sec-

tion 4.1, ICA methods cannot deal with purely Gaussian distribution,

because in this case uncorrelatedness entails statistical independence).

It is important to underline that EMG signals have probability density

that is only close to Gaussian, so ICA methods can be successfully

employed in some denoising application using a Gaussianity-based con-

trast function, such as:

G(x) = − 1

α
exp (−α

2
x2) (4.22)

Moreover, EMG analysis for gesture recognition can be considered as

practical implementation of BSS problem (see section 4.2) where:

• the sources are the signals produced by the muscles (with refer-

ence to the cocktail party problem they are the people’s voices);

• the statistical observations are the data acquired with the elec-

trodes (with reference to the cocktail party problem they are the

microphones).

From this point of view, ICA is also used to reduce the cross-talking

between two or more muscles that are activated in the same contraction,

thus the obtained ICs are the real signals generated by each motor unit.

These two considerations are also supported by [43].

Figures 4.2 and 4.3 depict an example of ICA application in biometric

signal analysis.

Figure 4.2 shows the input source data corresponding to a wrist

extension; note that the y-axis values are the same for all the three

graphs. Figure 4.3 shows the same signals processed by FastICA algo-

rithm. First of all the amplitude values of the three signals have been

normalized. Moreover the signal sampled on channel 2 - that is very

noisy, maybe due to crosstalking - has been limited by ICA algorithm.

On the contrary, source signal sampled by channel 1 has been boosted,

60 Chapter 4. Independent Component Analysis

Figure 4.2: The raw signals generated by a user performing a wrist extension. Note

that channel 2 is really noisy, while channel 1 is extremely weak.

Figure 4.3: The input signals after FastICA filtering. Note that signal 2 (the noisiest

one) has been subsided, while signal 1 has been amplified.

4.4. ICA for biometric analysis 61

while the input signal on channel 3 remained virtually unchanged. Fig-

ure 4.4 depicts all the three signals before and after the application of

the ICA algorithm. Removing the noise from the signals it is possi-

ble to correctly extract some features (like the RMS) that identify the

gesture performed by the user.

(a)

(b)

Figure 4.4: The three input files before (a) and after (b) the FastICA filtering. Note

the amplitude difference of signal 2 and 1.

62 Chapter 4. Independent Component Analysis

There are also other drawbacks in employing ICA for EMG analysis:

first of all, the exact amplitude and sign of independent components

can’t be determined and, secondly, the order of the ICs cannot be deter-

mined. Moreover, ICA employing high-order statistics (like kurtosis)

aren’t performing well on EMG analysis. Maybe this lack of perfor-

mance is due to the need of a larger dataset, that isn’t usually available

in HCI application base on EMG analysis. This consideration is also

supported by [42], in which a second order statistic-based algorithm

(TDSEP) gives an overall efficiency of 97% in hand gesture recognition.

ICA methods have also been applied in electroencephalography for

separating the EEG from artifacts (for more information about EEG

see 2.1.2). As described in [51] the application of such method leads to

some interesting and promising results in EEG analysis, however the

task of canceling artifacts from EEG signals remains a central problem

in electroencephalography data analysis.

Chapter 5

Hardware devices

“Spock: I saw VGer’s planet. A planet populated by living machines. Unbe-

liavable technology. V’Ger has knowledge that spans this universe. And yet,

with all its pure logic... V’Ger is barren. Cold. No mystery. No beauty. I

should have... known...

Kirk: known? known what? what should you have known?

Spock: (Holding Kirk’s hand) this simple feeling ... is beyond VGer’s com-

prehension. No meaning. No hope. No answers. It’s asking questions: Is

this... all that I am? Is there nothing more?”

Star Trek - The motion picture

This chapter provides a description of the devices employed in Eracle

project.

The first section is focused on Nvidia Tegra 2, the CPU that carries out

all the signal processing and recognition procedures. The EMG board

employed for electromyogram signals acquisition and digital conver-

sion is presented in section two. The last paragraph presents a brief

description of the FTDI serial driver, which has been employed to con-

nect sEMG board to Tegra.

5.1 Nvidia Tegra 2

Nvidia Tegra 2 is the core of Eracle wearable system; it is a system-on-

Chip (SoC) mobile processor, specifically designed for high performance

computing on smart devices like tablets, smartphones and mini-laptop.

64 Chapter 5. Hardware devices

5.1.1 Tegra CPU architecture

The Nvidia Tegra 2 mobile processor is the functional combination of

eight different modules (see figure 5.1):

• Dual-Core ARM Cortex A9 CPU:

this kind of processors is an ideal choice for mobile platforms,

as they combine high-efficiency power consumption and increased

peak performance for most computational-demanding applications.

The Tegra 2 ARM CPU provides a performance of 1GHz per core;

when the processor is not in use it is turned off, to improve bat-

tery life. The last version of this CPU provides a really scalable

four-core architecture, with a performance of 2GHz per core, an

8-stage pipeline, up to 64 KB of four way associative L1 caches

and up to 8MB of L2 cache [3].

• ARM 7 processor:

this CPU is employed for tasks that have lower performance re-

quirements, or for multimedia files processing.

Figure 5.1: The eight modules of Nvidia Tegra 2

• Ultra Low-Power Graphics Processor (GPU):

it is a processor with dedicated hardware optimized for graphics

5.1. Nvidia Tegra 2 65

operations such as Flash animation rendering or decoding. It is

also capable to handle the workload requested by modern game

engines with minimal battery consumption.

• HD Video Decode Processor:

this processor decodes video streams that are played from a file

or from the network; it manages all the three types of Flash video

formats: H.264, Sorenson and VP6-E. Using this decoder instead

of a general-purpose CPU provides high quality images and im-

proves the battery life.

• HD Video Encode Processor:

this device handles encoding procedure for streams coming in from

an HD video image sensor at 30 fps.

• Audio Processor:

it provides a high quality output radio with very low power con-

sumption, for example it consumes less than 30 mW of power

while playing back a 128 Kbps MP3 file.

• Image Signal Processor (ISP):

this device provides some graphic elaboration (such as white bal-

ance, edge enhancement, and noise reduction) for pictures up to

12 megapixel resolution.

The best power management is ensured by NVIDIA Tegra Global

Power Management System, that uses hardware monitors information

(e.g. temperature and incoming request patterns) and a feed-forward

control algorithm to determine the optimal operating frequency and

voltage for the active processors.

Some examples of battery life achieved thanks to NVIDIA Tegra Global

Power Management System are shown in the following table: Tegra is

Use Case Battery life

Standby 2000 hours

128 kbps MP3 music playback 140 hours

HD video playback on external display (via HDMI port) 16 hours

HD video playback on local lcd 8 hours

Table 5.1: Tegra use-cases and related power consumptions [17]

released also as a developer kit; in Eracle project the NVIDIA Tegra

66 Chapter 5. Hardware devices

250 developer kit has been employed.

In addition to the previously described features of Tegra CPU, this de-

velopment board provides some extra interfaces and modules such as 1

GB of RAM, Wi-Fi, Bluetooth and USB input. As shown in figure 5.2,

Figure 5.2: NVIDIA Tegra 250 developer kit. The SoC is only the square in the centre,

while the other ports are expressly designed for the development board.

the devkit includes:

• 15V power jack for power supply;

• VGA jack for video output;

• HDMI jack for digital output display;

• Wi-Fi antenna jack;

• 3 USB-A input port that provide connections with basic periph-

erals like keyboard or mouse;

• “ACOK” configuration switch which is used to switch the power

behavior of the devkit between BATT or NORM configuration;

• power button to turn the device on and off;

5.1. Nvidia Tegra 2 67

• recovery button that places the devkit in recovery mode; it is a

special configuration in which the device is ready to receive a new

OS image;

• reset button for soft reset of the board;

• microphone and headphone jack for sound output;

• Ethernet jack;

• SD slot card;

• USB-mini jack to connect the devkit to the host pc.

5.1.2 Developing software on Tegra

The previously described devkit is a completely novelty in the field

of embedded CPU, mainly because it combines the reduced size (that

makes it suitable for wearable applications) and the high computing

performance.

This processor is not available for purchase on Italian market, it has

been provided to some technological partners of Nvidia Corporation.

One of these partner is Seco s.r.l.([19]), that provides the devkit em-

ployed to develop Eracle project.

The reduced spread of this kind of platform makes it suitable for the

development of a completely new project. However, building a com-

pletely new application starting from scratch is a difficult task, mainly

due to the lack of supports and information regarding this processor.

Another difficulty is the lack of libraries and code available for this

kind of architecture. This leads to two possible choices: the first is the

development of a completely new library optimized for the ARM archi-

tecture and the second consist in “fitting” a library already available

for x86 architecture. For the development of Eracle project we have

chosen the last solution, as the aim of this project is not to build a

basic library for ARM processors, but to realize a gesture recognition

system. Some details among the adaptation of a mathematical library

for ARM architecture are discussed in section 6.1.

To use the devkit it is necessary to install an appropriate OS on the

board, this operation is usually called “flashing”.

There are mainly two operative systems that can be flashed on the de-

vkit: windows CE or Android (see section 2.2.2 for more information

68 Chapter 5. Hardware devices

concerning these OS). The appropriate msi file (it depends on the OS

of the host PC) can be downloaded from the provided page on Tegra

developer site [16], where it is also possible to retrieve some useful tools

and demos. It is important to point out that almost all the provided

support and examples are referred to Android.

Once the installation procedure is complete, a fully functional OS is

available on the devkit; this feature makes the application development

easier than in devices like PIC and DsPIC.

Once the OS has been installed it is possible to develop software appli-

cations directly on the host pc and deploy them directly to the devkit.

For Windows CE the best choice is to develop a smart device appli-

cation using Microsoft Visual Studio; to realize software that runs on

Tegra, it is necessary to install the Standard Software Development Kit

(STANDARDSDK 500) for Windows CE on the host pc. This package

provides support for ARM4 and other mobile processors.

Tegra development board supports only a subset of .Net Framework,

called .Net Compact Framework; it is a mobile-oriented environment

mainly designed for mobile devices such as PDA, pocket PC, mobile

phones and embedded processors. .Net Compact Framework offers

these main functionalities:

• it provides an abstraction layer for executable files, making the

executable code independent of the specific hardware platform;

• it supports the most common network protocols and offers facili-

ties for handling connections with XML Web services;

• it provides a template for code development that is specific for

smart device applications;

• it offers some optimizations related to the limited resources of the

mobile systems.

The main advantage in developing an application on the devkit is that

it is simply created as a Windows program. It means that the program-

mer doesn’t care about the specific underlying hardware platform, but

he can write his code in pure C++ using all the structure provided by

this programming language.

Moreover, the Visual Studio Wizard already provides the main func-

tions and classes required for a Windows application (such as the Win-

Main and WndProc functions, that handle the main message loop).

5.1. Nvidia Tegra 2 69

Furthermore, Visual Studio offers a wide suite of mobile devices em-

ulators, that provide a software interface that is identical to the real

device (see figure 5.3) allowing the developer to check the behavior of

his executable file without deploy it to the physical device (although

with worse performance than in the real case). The main constraints

Figure 5.3: A pocket PC emulator, that provides the same functionalities of a “real”

Pocket PC

in developing Windows applications for a smart device is related to the

use of .Net Compact Framework that doesn’t support all the features

of the complete .Net Environment; for example the compact version

of CLR is about 12% of the complete edition and some mathematical

methods and libraries are not available for all platforms. Another ad-

vantage in using the devkit with Visual Studio is that the executable

file can be deployed directly to the board just by connecting the devkit

to the host PC with a mini-USB cable. This avoid the use of a pro-

grammer, that is essential in programming microcontroller or PIC.

The main drawback in developing for Tegra CPU is the difficulty in

reusing the already written code. The problem is mainly related with

libraries for mathematical computation. Finding an implementation of

such algorithms that can be executed on ARM architecture is a difficult

70 Chapter 5. Hardware devices

task.

One clear example of this problem is the Boost library ([6]), which is

one of the best choices for mathematical computation algorithms: even

if it is fully written in C++, it is unavailable for ARM architecture.

This is also the case with IT++ ([12]), an open source mathematical

library that implements useful structure such as matrices, vectors and

algorithms for signal processing (including FastICA).

Unfortunately these libraries are expressly developed for x86 architec-

ture, thus, for using them on an ARM machine it is necessary to port

or recompile them. Modifying such amount of code in order to make

it executable on a system which is different from the original one is

an arduous task. This difficulty is mainly due to the complexity and

the dimension of such libraries, but also to the limitations in using the

.Net Compact Framework instead of the complete version of this envi-

ronment.

Moreover, even if these libraries are successfully compiled for ARM ar-

chitecture, they performed badly with respect to their version for the

original target machine. In some cases it is also necessary to remove

some features that are incompatible with the ARM architecture or the

.Net Compact Framework, with a lack of functionalities with respect

to the original version of the library.

For more information about porting library on ARM architecture, see

chapter 6, section 6.1.

5.2. Electromyography board 71

5.2 Electromyography board

The aim of the EMG board is to provide the analog to digital conversion

of biometric signals sampled from the forearm muscles.

As shown in the architecture depicted in figure 5.4 it can sample up

Figure 5.4: Architecture of the EMG board

to three different signals in differential mode. Each channel provides

the following signal elaboration chain:

• once the signal have been sampled, it is processed by an INA

amplifier, which provides an adjustable gain between 200 dB and

2000 dB;

• the next unit is a Sallen-Key anti-aliasing filter with double pole

at 150 Hz;

• then the signal is processed by a PIC16F688 by Microchip ([14]),

that provides the analog to digital conversion using a 10 bit ADC;

• at the end of the acquisition chain there is a FT232RL module

that converts the communication from serial RS232 protocol to

USB. This unit provides a communication speed of 57600 baud/s;

• thanks to a mini-USB output port is possible to connect this

device directly to a PC; moreover - through the USB connection

- it is also possible to power the whole board.

Due to its reduced dimensions (29 mm x 45 mm x 9 mm) and weight

(35 g) the EMG board can be inserted inside the user’s clothes without

72 Chapter 5. Hardware devices

hamper his movement. Figure 5.5 depicts the EMG board compared

Figure 5.5: The EMG board compared to a 5 cent Euro coin

with a 5 Euro cent coin. The sampling rate of the board is of 270

samples/second.

An excerpt of the board output is listed below:

I:a b c

D:447 502 988

D:323 471 1011

D:327 834 816

D:220 666 567

D:438 519 530

...

...

...

I:a b c

The string I:a b c is repeated every 100 samples; the “D” character

indicates the beginning of an acquisition, that consists in a digitalized

value for every input channels.

5.3. FTDI interface 73

5.3 FTDI interface

Future Technology Devices International ([11]) provides drivers to con-

vert legacy peripherals (e.g. RS232) to Universal Serial Bus USB. Thus,

thanks to FTDI it is possible to connect two (or more) devices with

an USB cable, but the connection is simply managed as serial port

communication. Such interface is also employed to extend the basic

functionalities of standard COM port.

There are mainly two types of FTDI drivers:

• VCP: which provides only a virtual COM port on the target

device;

• D2XX: that provides both a virtual COM port and some special

features that are usually unavailable in standard COM port APIs.

Thanks to these additional characteristics, it is possible to change

the operating mode of a device, or to write data into an EEPROM.

These two drivers are merged in the Combined Driver Model package.

Both these two interfaces are supported by the common FTDI bus

which is directly connected to the USB controller managed by the OS.

The architecture of FTDI Combined Driver Model for Windows sys-

tems is shown in figure 5.6.

Figure 5.6: FTDI driver architecture for Windows

The two drivers can’t be both installed on a Windows CE system,

as they are mutually exclusive for this Operative System. FTDI inter-

face is provided as a dll file that must be employed as a driver setup

74 Chapter 5. Hardware devices

file on the host pc when the external device is plugged.

In Eracle project, the VCP version of FTDI drivers has been employed,

as we just need basic IO operations on a virtual serial port. This kind

of interface makes possible to exchange data between the EMG board

(described in section 5.2) and the devkit (described in section 5.1).

The EMG board can be connected with a USB-mini cable to the de-

vkit, which retrieves the sampled data simple by opening a serial port

as a file and reading the signal’s digital values from it. In our case,

the virtual serial port created by the FTDI interface is named COM10;

this information can be retrieved by using the Remote Registry Editor

available on the host PC.

The following code listing shows the main steps necessary to handle

the serial connection and to retrieve the data acquired by the EMG

board.

/*main variables for the serial port handling*/

HANDLE hSer;

DCB dcb;

dcb.DCBlength=sizeof(dcb);

dcb.BaudRate =57600;

/*variables for serial port reading*/

INT rc;

CHAR buffer [15000];

DWORD bytesRead;

/*create a serial port handler*/

hSer=CreateFile(TEXT("$device \\ COM10"),

GENERIC_READ|GENERIC_WRITE ,0,

NULL ,OPEN_EXISTING ,0,NULL);

/*set the COM port options*/

GetCommState(hSer ,&dcb);

SetCommState(hSer ,&dcb);

PurgeComm(hSer ,PURGE_TXABORT | PURGE_RXABORT

| PURGE_TXCLEAR | PURGE_RXCLEAR);

5.3. FTDI interface 75

/*read data from the COM port

and put them into the buffer*/

rc = ReadFile(hSer ,buffer ,

sizeof(buffer),&bytesRead ,0)

/*close the virtual serial port connection*/

CloseHandle(hSer);

76 Chapter 5. Hardware devices

Chapter 6

Project development

“ We are the Borg. You will be assimilated. Your biological and technological

distinctiveness will be added to our own. Resistance is futile.”

Star Trek VIII - First Contact

This chapter provides a detailed description of Eracle project.

As previously described in chapter 3, section 3.3, Eracle project consists

of two different modules.

The first one is implemented on the Acquisition Glove that samples the

EMG signals and converts them to digital values. The main sub-units

of this module are:

• the sEMG electrodes that acquire the input signal from the

user’s skin;

• the EMG Board that converts the input EMG signals to digital

values.

Section 6.2, provides some details about the Acquisition Glove.

The second module is fully developed on Tegra Devkit, it provides the

data processing for the acquired signals and the gesture recognition

engine. It consists of two different executable files: EracleACQ, that

provides the training stage for the classifier, and EracleREC that iden-

tifies the gesture performed by the user. The sub-units of this module

are:

• a Serial Port Manager that handles the communication be-

tween Devkit and EMG Board;

78 Chapter 6. Project development

• the Parser unit, that split the input data into three different

listings (one per channel) and erases the spurious data;

• the FastICA unit that processes and filters the raw input data;

• a RMS unit that computes the Root Mean Square value for each

channel;

• the NN Train module that trains the Multi Layer Perceptron

that will recognize the user’s gestures;

• the NN Classify unit, that classifies the user’s gesture employing

the previously trained Neural Network.

The last unit is implemented only in EracleREC, while the NN train

module is developed only on EracleACQ. Section 6.3, provides some

details about all the modules implemented on the Devkit.

Both the FastICA module and the Neural Network units are developed

using some features of LTIlib, a C++ library mainly employed for

image processing. The first section of this chapter provides some details

about LTIlib and how it has been recompiled for ARM architecture.

6.1. LTIlib 79

6.1 LTIlib

LTIlib is an open-source library that provides some basic data types

and algorithms commonly employed in image processing and computer

vision; it is fully developed in C++ language. The project is carried

out by the Chair of Technical Computer Science at the Aachen Uni-

versity of Technology.

Unlike other mathematical libraries (e.g. IT++ or Boost), LTIlib is

self-contained, thus it doesn’t require any library that supports the ba-

sic mathematical or algebraic operations. In Eracle project, LTIlib pro-

vides some mathematical structures and algorithms mainly employed

in FastICA, NN Train and NN Classify modules of the computing core

(see figure 6.1).

Figure 6.1: LTIlib structures and algorithms are mainly employed in FastICA and Neural

Network modules of Eracle’s computing core

6.1.1 Architecture of LTIlib

LTIlib provides both data structures (matrices, vectors, tensors...) and

algorithms. Both these two features can be classified in one of the

following classes:

• linear algebra: it provides matrices, vectors, and functions to

extract eigenvalues, eigenvectors and to solve linear equations;

• classification and clustering: it provides classifiers like Neural

Networks, Support Vector Machines and Fuzzy C-Means cluster-

ing algorithm;

80 Chapter 6. Project development

• Image processing: this class provides wavelets, linear filters and

other algorithms that deal with image processing problems;

• Visualization and drawing tools: these classes provide the

viewer objects to display or manipulate an image.

The architecture of LTI library is really simple and it is based on three

main entities: functors, parameters and states.

• Functors

Functors are classes containing all the functions of an algorithm.

Every functor class contains at least one apply method that exe-

cutes the algorithm on the source data provided .

Consider a Multi Layer Perceptron Neural Network as an exam-

ple: the object that represents the classifier is a functor.

• Parameters

One instance of this class is encapsulated in every functor, as it

provides the specifications of the algorithm. The user can set this

values by using the setParameters method related to the functor

class. It is also possible to employ the default parameter class

initialized when the functor class is declared.

Examples of parameters in a Neural Network are: the number of

epochs, the number of neurons in the hidden layer and the value

of the learning rate.

• States

States are attributes that are computed during the algorithm’s

execution, but that aren’t required by the user.

Considering the NN example, a state is the number of weights

computed during the training stage, that isn’t explicitly defined

by the user but is computed by the training algorithm.

The main advantages in using these three different entities are: first

of all the behavior of the algorithm is independent of its parameters,

thus the functor is completely uncorrelated from the input data and

it implements only the functionality of the procedure; secondly this

is a general interface that can be applied to every algorithm, simply

overloading the apply methods that executes the algorithm.

Figure 6.2 depicts the general architecture of LTIlib.

6.1. LTIlib 81

Figure 6.2: General architecture of an LTILIB class: the functor is the general structure

that contains both the algorithm and its options. The user sets the desired configuration

with parameters. States and Parameters implement the desired functionality of the

algorithm.

6.1.2 Recompiling LTIlib

One of the main disadvantages in using the Devkit described in chap-

ter 5 is the lack of libraries available for ARM architecture. Thus, a

developer has two possible choices: he could write from scratch the

functions and the structures he needs, or he could try to recompile an

existing library.

In Eracle project we mainly need structures, like matrices and vectors,

algorithms, like FastICA and classifiers, like Multi Layer Perceptrons.

As these features are already available in some open-source libraries

and there are some difficulties in writing them from scratch, we’ve de-

cided to convert an existing library to ARM architecture.

We have identified three libraries that could be suitable for our pur-

pose: Boost, IT++ and LTIlib. We have failed in recompiling Boost

and IT++, mainly because they are not self-contained, but they are

based on other libraries that provide optimized computing algorithms.

For example, IT++ libraries are more powerful than LTIlib, as they

manage matrices and vectors in a simpler way, moreover they offer

a wide selection of algorithms; unfortunately, IT++ libraries require

BLAS and LAPACK to handle basic mathematical and algebraic struc-

tures with the related operations. Recompile three libraries for ARM

architecture is a more difficult task than recompile only one.

82 Chapter 6. Project development

LTIlib provides less powerful features and less optimizations than IT++

or Boost, but it is self-contained and more easy-to-handle, as it is writ-

ten in “pure” C++ code. Thanks to these features it has been success-

fully recompiled for ARM architecture.

To recompile LTIlib for ARM architecture we have adopted two main

approaches:

• if the problematic feature is related to visualization, or to some

algorithms that are useless for our project, the corresponding code

is simply commented;

• in the other cases, the problematic code has been rewritten or

adapted.

Not all the features have been retained. First of all it has been neces-

sary to remove all the references to GTK libraries that are employed

for image visualization. To achieve this result, some preprocessor di-

rectives that configure GTK as standard visualization tool have been

deleted.

Another change is related to optimized assembly operations. It is a

common case that mathematical libraries implement some functions

directly in assembly: unfortunately, x86 assembler (the target CPU

of LTIlib) is different from ARM assembler. To avoid this problem,

the assembly functions have been replaced with less optimized C++

instructions.

Some preprocessor directives have been modified to be executed on

Windows CE, which is not the target OS of LTIlib.

Other changes involve the header files provided with STANDARD-

SDK 500. Some of these files don’t contain all the elements and decla-

rations required by LTIlib. For example, the header file stat.h provided

with STANDARDSDK 500, requires some additional definitions such

as:

typedef unsigned int _dev_t;

typedef unsigned short _ino_t;

typedef long _off_t;

It is important that the include paths are set in an appropriate way:

they must be referred to the include files specifically provided for Win-

dows CE and to the STANDARDSDK 500 path.

6.1. LTIlib 83

Some changes consist in pure casting operations, such as the following

one, in which the file name has been converted to LPCTSTR type:

//before...

if(! DeleteFile(fileName))

//... and after

if(! DeleteFile ((LPCTSTR)fileName))

Another important change regards threads and the process manage-

ment routines implemented in LTIlib. These two features provide func-

tions like fork and exec employed in UNIX environment, but they lead

to compilation error, so these feature has been removed.

At the end of this procedure a static library has been achieved, that

can easily be linked at compile time with the source code developed in

C++. Some modifications has been also necessary in Visual Studio,

such as enables the Run Time Type Information (RTTI) option.

84 Chapter 6. Project development

6.2 Acquisition glove

The acquisition glove is the input device of Eracle project.

It provides support both for the surface EMG electrodes and the EMG

Board, as shown in figure 6.3. The main advantage in using a glove is

Figure 6.3: The acquisition glove contains both the surface EMG electrodes and the

EMG Board that provides analog to digital conversion of the sampled signals.

that it ensures (or at least eases) the repeatability of electrodes place-

ment. Thus, if some time elapses between the training phase of the

system and the recognition stage, we must be sure that the electrodes

positions are about the same or the output results will be unreliable.

The main drawback in using a glove that encloses the whole forearm is

the temperature rise that mainly causes these difficulties ([52]):

• the signal latency is prolonged (0,2 ms/◦C);

• the amplitude and the length of EMG signal are increased;

• the impedance of the electrodes is increased.

Thus, if the user wears the glove for too long, the sampled EMG signals

are distorted.

Since the glove could be worn by people with different physique, the

final version will be realized with elastic material.

Figure 6.4 depicts a prototype of the acquisition glove. The electrodes

employed on the acquisition glove are commercial equipment of 40 mm

x 40 mm or 50 mm x 50 mm with an impedance of approximately 10

MΩ. This last value is provided only as a rough guide, since it widely

depends on physical parameters of the user (like weight or sweating)

and on general electrodes condition.

In general, larger electrodes entail more noisy signals, mainly due to

6.2. Acquisition glove 85

Figure 6.4: Prototype of the acquisition glove. The wires came out from the electrodes

placed on the user’s skin. They are connected to the EMG Board that is hooked to the

glove with Velcro strips.

crosstalking. An example of a commercially available electrode suit-

able for EMG acquisition is shown in figure 6.5. These sensors are not

designed for a prolonged use and their surface degrades quickly, this

leads to an increase in signal’s noise and in a lack of recognizer’s perfor-

mance. As the aim of the project is to recognize the hand movement,

Figure 6.5: Example of commercially available electrodes suitable for EMG acquisition.

They are usually employed for electro stimulators

the electrodes must be placed on the appropriate muscles of the fore-

arm. The acquisition glove shown in figure 6.4, provides three couples

of electrodes and a reference that must be applied on the elbow.

The electrodes must be placed in couples, as each channel is sampled

in differential mode.

As described in [52], the three muscles that are involved in the five

86 Chapter 6. Project development

hand movements recognized by Eracle are:

• Flexor Carpi Radialis - it takes part in flexion and abduction

of wrist;

• Flexor Carpi Ulnaris - it takes part in flexion of wrist;

• Extensor Digitorum Comunis - it takes part in fingers flexion

and extension.

The placement of the three couples of electrodes is shown in figure 6.6.

The electrodes are connected to the EMG board that provides the

(a) Flexor Carpi Radialis (b) Flexor Carpi Ulnaris

(c) Extensor Digitorum Comunis

Figure 6.6: Placement of the electrodes for EMG acquisition [52]

analog to digital conversion of the sampled signals. This device has

already been widely described in section 5.2, however, it is important

6.2. Acquisition glove 87

to point out that - due to its reduced weight and size - the EMG board

can be easily integrated in the acquisition glove, as shown in figure 6.4.

This feature makes possible to realize a fully wearable interface that is

easy to wear and use. Moreover, mainly due to the reduced weight of

the whole system, it doesn’t hamper the user’s movement, allowing a

natural execution of the gestures.

88 Chapter 6. Project development

6.3 Tegra modules

Once the EMG signals have been converted to digital values (with the

conversion specifications described in section 5.2) the sampled data are

processed in order to obtain both the training examples for the neural

network (EracleACQ) and the classification data (EracleREC).

The whole computing core of Eracle has been developed on Tegra De-

vkit (described in chapter 5, section 5.1) and it is depicted in figure 6.7.

Figure 6.7: Two different executable files have been developed on Tegra Devkit. Era-

cleACQ provides the units for the training stage of the classifier (serial port manager,

parsing, FastICA, RMS and NN train); EracleREC provides about the same modules

but they are optimized for the recognizing stage of the classifier.

6.3.1 Serial port manager

The first module designed for data processing is the serial port man-

ager.

This unit opens a connection toward the EMG board through a vir-

tual COM port. The virtual serial port is provided thanks to the VCP

FTDI driver previously described in section 5.3. The output data of

EMG board are received by reading a file; the retrieved samples are

placed in a CHAR buffer of 15000 elements. The buffer’s size is not a

random number, but it is defined in order to acquire the EMG signals

for 3/4 seconds; however, we think that the sampling time could be

reduced without any lack of performance (see chapter 8, section 8.1).

This acquisition time corresponds to 1050/1060 samples for each chan-

nel.

6.3. Tegra modules 89

Once the user has performed the movement, the sampling is stopped,

the virtual COM port is closed and the data held in the CHAR buffer

are written on a file for succeeding processing. The output files look

like the excerpt listed below:

501 509

D:508 509 512

D:508 507 511

D:512 501 511

D:505 507 500

...

...

...

D:498 519 504

I:a b c

D:508 504 517

D:509 507 511

D:511 5

The acquisition procedure is repeated until all the acquisition have

been performed.

The C++ code that handles data acquisition from the EMG board

is listed in appendix A, section A.1. The previous listed output is

the most general one achievable from the EMG board. There are some

spurious data both at the beginning and at the end of the file, moreover

- as already described in section 5.2 - every 100 samples the string I:a

b c is added to the output list.

The next unit deals with such spurious value in the input data.

6.3.2 Data parsing

Once the input data have been acquired from the EMG board, it is

necessary to process them, removing any spurious value. It is also

necessary to split the original input file in three different sources be-

fore processing them with FastICA algorithm. In particular, this unit

performs the main tasks outlined in figure 6.8. Before processing the

input data it is useful to copy the whole contents of the input file to

a STL container like a string. On this kind of data type it is possible

to employ some functions of the Standard Template Libraries, like find

or replace.

90 Chapter 6. Project development

Figure 6.8: The main tasks performed by the parsing module

Replace carriage returns and newline

This task can easily be accomplished thanks to the replace method

implemented in the STL Algorithms. For example the following in-

struction replaces all the occurrences of newline character with space

character in the STL container tot:

replace(tot.begin(), tot.end(), ’\n’, ’ ’);

Check for spurious data at the begin of input file

The next step consists in checking if there are some spurious data at

the beginning of the input file. This check can easily be performed

by finding the first occurrence of “D” character and by retrieving its

position in the container; if the index number is equal to zero, it means

that the input file correctly begins with a “D”, thus there are no partial

data at the top of the file. Otherwise - if the retrieved index is different

from zero - it means that all the characters before the index position

must be erased, as they are part of an incomplete samples.

The following code performs the previously described algorithm:

//find the position of the first D

posD=tot.find("D");

//if file doesn’t begin with D...

if(posD !=0){

//... erase all characters before D

tot.erase(0,posD);

}

6.3. Tegra modules 91

Erase the last line of input listing

This operation is necessary to prevent spurious data at the end of input

file.

As we acquire more samples than necessary, it doesn’t matter if one

sample vector is deleted.

To perform this task it is necessary to retrieve the positions of the

last “D” character and of the termination character “/0”, then all the

values between these two indexes are erased.

The following listing performs the described task:

size_t ultimo;

size_t fine;

//get the position of last D...

ultimo = tot.rfind("D");

//... and the position of the termination char

fine = tot.rfind("\0");

/*delete last row,

but don’t erase "\0" character*/

tot.erase(ultimo , fine -1);

This procedure could be optimized by avoiding the erasure of the last

input vector if it is a complete sample. This can easily be performed

by finding the last “D” and then counting the number of spaces before

the termination character. If the number of spaces is less than three,

it means that the sample is not complete and then it must be erased.

Counting of “D” characters

This procedure is not strictly necessary, but it is useful for error check-

ing.

Some experiments and some observations about the maximum memory

load of the Devkit lead us to the considerations that 1010 samples are

widely acceptable for performing movement recognition. This entails

that if (for any reason) the system obtains less than 1010 samples for

each channel, the acquisition procedure is invalid and must be aborted.

This check can easily be performed by counting the occurrences of “D”

92 Chapter 6. Project development

characters in the input file and ensuring that they are greater than

1010. Moreover, it is necessary that all the channels contains exactly

the same number of samples to avoid errors in the following FastICA

processing.

The following code listing implements these considerations:

//numbers of "clean" data acquired

int counter = count(tot.begin(),tot.end(),’D’);

if(counter <1010){

MessageBox(NULL , TEXT("Few samples"),

TEXT("EracleParser"), MB_OK);

exit (0);

}

Splitting the source data

The last section is the core of this unit: it splits the source data into

three different source files: one for each channel.

The main idea of the algorithm is as following:

• find the first “D” character and retrieve its index (the position

of the first one is surely zero, due to the second step previously

described);

• retrieve the position of the first space;

• copy the characters between the two indexes in the first channel

destination file;

• starting from the first space find the second one and save its index;

• copy the characters between the two indexes in the second channel

destination file;

• starting from the second space find the last space in the triple

(that always exists due to previously described steps one and

three);

• copy the characters between the two indexes in the third channel

destination file.

6.3. Tegra modules 93

This procedure is repeated until all the sampled triples have been split-

ted.

The result consists in three files filled with the sampled values, each

sample is separated only by a white space.

The code that implements this last functionality is quoted in appendix A,

section A.2.

94 Chapter 6. Project development

6.3.3 Fast ICA module

The third unit implements FastICA on the Devkit. The principles

and the purpose of this algorithm have already been discussed in 4.

For each movement repetition, this unit performs the tasks depicted

in figure 6.9. First of all it is necessary to compute the average value

Figure 6.9: Main tasks performed by the FastICA module

for each of the three input channels, then this value is subtracted from

each samples of the corresponding source. The following C++ code

shows how to implement this functionality:

/*the array that will contains

the mean values*/

double mean [3];

double temp =0;

/*compute the average value

of each source channel*/

for(int j=0;j<3;j++){

for(int i=0; i<DIM_CHANNEL; i++){

temp = temp+sourceT.at(i,j);

}

mean[j]=temp/DIM_CHANNEL;

temp = 0;

}

/*it is necessary to define a matrix

containing the mean values to subtract

them from the whole dataset*/

6.3. Tegra modules 95

lti::matrix <double > media(1,3,mean);

const double init =1;

lti::matrix <double > ones(DIM_CHANNEL ,1,init);

lti::matrix <double > matmedia;

matmedia.multiply(ones ,media);

/*subtract average values from

the whole dataset*/

sourceT.subtract(matmedia);

Then the ICA algorithm is applied, it separates the source signals that

are overlapped due to the crosstalking between the forearm muscles.

It is important to point out that the unmixing matrix is computed for

every movement repetition, thus for each element of the dataset. This

choice is in contrast with what has been proposed by Naik et al in [43],

as they compute the W matrix only with the first set of samples and

then it is applied to the other repetitions of the same movement. This

choice is unsuitable for Eracle project mainly for two reasons:

• computing the unmixing matrix considering only the first set of

data makes the whole system too much sensible to the quality of

this sample, thus if the first acquisition is performed badly, it will

invalidate all the training process.

• in the project described by Naik in [43], the data employed for

training and classification are sampled at the same time, thus

during the same session. In Eracle the user can train the device

and use it for recognition in completely different times.

So the W matrix can’t be constant, as it is different for each movement,

and selecting the more appropriate one before starting the recognition

procedure would entail that the device already knows the gesture that

the user will perform.

FastICA algorithm is a feature available in LTIlib and it can be applied

as stated in the following code excerpt:

//FastICA object

lti::fastICA <double > ica;

96 Chapter 6. Project development

//unmixing matrix

lti:: matrix <double > unMat;

/*apply the ICA algorithm to the data

saved in source matrix.

Result is stored in clean matrix*/

ica.apply(source ,clean);

//print the transformation matrix

ica.getTransformMatrix(constTransfMatrix);

The last step consists is adding the mean back to the data, more pre-

cisely it applies the following formula to the output values of FastICA

algorithm:

output = W×unMixedSignal+(W×mixedMean)×ones(1, NumOfSamples)

where:

• W is the unmixing matrix computed by ICA;

• unMixedSignal is the matrix filled with the output data of Fas-

tICA algorithm;

• mixedMean is the vector containing the average values of the

source data;

• ones(1,NumOfSamples) is a vector with number of columns equal

to the number of samples acquired, filled with the number one.

The following code listing implements the described equation:

//first member of equation

lti::matrix <double > first;

/*((1))first = W*unmixedsig*/

/*unMixedSignal matrix must be transposed

in cleanT to be multiplied*/

lti::matrix <double > cleanT;

cleanT.transpose(unMixedSignal);

first.multiply(constTransfMatrix ,cleanT);

6.3. Tegra modules 97

/*((2))v=W*mixedMean*/

lti::vector <double > v;

//retrieve the mean of input data

ica.getOffsetVector(v);

W.multiply(v);

/*v must be transposed to compute

the last multiply (but there’s no tranpose

method for vectors in LTILIB)*/

double temp [3];

for(int h=0;h<3;h++){ //"homemade" transpose

temp[h]=v.at(h);

}

/*tempMat = (W * mixedmean)

as in LTILIB doesn’t exists a column vector ,

a 3x1 matrix is employed*/

lti::matrix <double > tempMat (3,1, appoggio);

/*((3))a matrix filled with ones ,

in MATLAB it would be:

ones(1,numOfSamples)*/

const double inival =1;

lti::matrix <double > ones(1,DIM_CHANNEL ,inival);

/*((4))second = tempMat*unii

lti::matrix <double > second;

second.multiply(tempMat ,ones);

98 Chapter 6. Project development

/*((5)) output = first + second*/

lti::matrix <double > output;

uscita = primoMembro+secondoMembro;

This operation (as well as the average value subtraction described as

first step of this unit) has been suggested by the Matlab implementation

of FastICA algorithm proposed by Hyvärinen ([33]) and developed by

the Laboratory of Computer and Information Science of the Helsinki

University of Technology ([10]). Moreover - as described in chapter

4, section 4.3.2 - FastICA requires some preprocessing operations, in

order to be correctly applied.

The introduction of such changes in the standard FastICA algorithm

provided by LTIlib improves the recognizer accuracy of at least 30%.

Chapter 7 reports some experimental results achieved with and without

this modification. The complete code listing of these modules is quoted

in appendix A, section A.3.

6.3.4 Root Mean Square

The main function of this unit is to “summarize” the results obtained

in the previous module with ICA application.

Root mean square can be defined as a value that concisely represents

the muscle activity for each source channel([43]). Some experimental

results show that RMS value is higher when the corresponding muscle

is less contracted and vice versa.

Root Mean Square is computed using the following formula:

RMSi =

√√√√ 1

N

N∑
i=1

s2i (1 ≤ i ≤ 3) (6.1)

where N is the number of samples for each channel (1010).

This equation can easily be translated in C++ language as:

double RMS;

double sumOfSquare =0;

//compute RMS for each of the three channels

for(int ch=0; ch <3;ch++){

for(int k=0;k<DIM_CHANNEL;k++){

6.3. Tegra modules 99

sumOfSquare=sumOfSquare +

pow(clean_source.at(ch,k),2);

}

RMS = sqrt(sumOfSquare/DIM_CHANNEL);

RMS =0;

sumOfSquare =0;

}

where DIM CHANNEL is a constant value that defines the number of
samples for each channel.
It is computed for each channel for every movement repetition; thus, if
the user performs 20 movements, we obtain 60 RMS values. These data
are saved in a file according to the pattern: RMSch1rep1 RMSch2rep1

RMSch3rep1 . . .

The RMS values obtained from the repetitions of the same movement are stored in

a file whose name identifies the movement performed by the user. The indexes that

identify the performed movement depend on the number of gestures that the device

will recognize. For the final prototype of Eracle, we’ve proposed the five gestures

described in chapter 3, section 3.1, which are:

• close hand: which corresponds to index 0;

• wrist extension: which corresponds to index 1;

• wrist flexion: which corresponds to index 2;

• open hand: which corresponds to index 3;

• click: which corresponds to index 4.

For example, all the RMS computed for every repetition of the gesture “close hand”

are saved in a file named RMSmov0.

The complete code listing can be found in A, section A.4.

100 Chapter 6. Project development

6.3.5 NN trainer

The last module of EracleACQ provides the training stage for the Neural Network

that will recognize the user’s gestures.

More precisely, this unit performs the tasks outlined in figure 6.10. An excerpt of

Figure 6.10: The main tasks performed by the Neural Network Train module

dataset employed in training stage is stated in table 6.1:

Gesture Channel 1 Channel 2 Channel 3

Close hand

9,846 9,053 8,763

9,833 7,675 7,408

8,303 8,224 7,087

9,589 6,789 4,843

9,685 6,978 6,1623

Wrist extension

33,274 5,188 16,283

35,861 5,415 8,717

29,897 4,789 7,049

27,923 4,473 14,026

29,053 4,090 13,411

Wrist flexion

15,871 13,528 4,513

14,675 11,895 3,789

18,899 19,002 3,123

13,298 12,213 3,852

18,911 19,050 3,369

Open hand

15,125 6,750 16,249

17,146 6,926 10,424

15,765 7,321 13,237

16,765 7,543 16,145

15,072 7,369 15,992

Click

31,381 25,113 24,882

33,406 22,160 17,528

31,049 25,563 16,942

45,506 34,092 22,190

29,783 23,464 24,840

Table 6.1: An excerpt of RMS values employed for training and recognition

6.3. Tegra modules 101

The stated RMS can be roughly divided in three clusters:

• low if RMS ≤ 67;

• medium if 7 ≤ RMS ≤ 19

• high if RMS ≥ 20;

Looking at the RMS stated in the previous table it is possible to identify five differ-

ent patterns, one for each movement: Just by looking at this roughly classification

Gesture Channel 1 Channel 2 Channel 3

Close hand medium medium medium

Wrist extension high low medium

Wrist flexion medium medium low

Open hand medium low medium

Click high high high

Table 6.2: RMS patterns of the five gestures recognized by Eracle

it is clear that some patterns are more likely to be confused than others. For ex-

ample, the only difference between wrist extension and open hand is in channel 1,

that has a high value in the first gesture and a medium amplitude in the second

one. This aspect will be further investigated in the next chapter, section 7.2.

Fill the matrix of examples

To train a Neural Network it is necessary to provide a matrix with the input data

examples. These examples are the RMS values computed at the previous step.

As every movement is repeated NUM ACQ times, the input matrix has a dimen-

sion of NUM ACQ*NUM GESTURE rows and 3 columns (NUM GESTURE is the

number of recognized movements). Before filling the matrix it is necessary to cre-

ate an array of double that stores the computed RMS, according to the pattern

reported in the previous section. The matrix constructor - that builds the object

we need - and the algorithm that fills the array of double with the appropriate RMS

values are quoted below:

// examples data array for training

double RMSglobal [((NUM_ACQ)* NUM_GESTURE)*3];

//fill each input vector with data from corresponding file

//((NUM_ACQ)*3) RMS for mov0

for(int k=0;k<((NUM_ACQ)*3);k++){

fscanf(mov0 , "%lf", &RMSglobal[k]);

}

102 Chapter 6. Project development

//((NUM_ACQ)*3) RMS for mov1

for(int k=((NUM_ACQ)*3);k<(((NUM_ACQ)*3)*2);k++){

fscanf(mov1 , "%lf", &RMSglobal[k]);

}

//((NUM_ACQ)*3) RMS for mov2

for(int k=(((NUM_ACQ)*3)*2);k<(((NUM_ACQ)*3)*3);k++){

fscanf(mov2 , "%lf", &RMSglobal[k]);

}

//((NUM_ACQ)*3) RMS for mov3

for(int k=(((NUM_ACQ)*3)*3);k<(((NUM_ACQ)*3)*4);k++){

fscanf(mov3 , "%lf", &RMSglobal[k]);

}

// matrix filled with training data

lti:: dmatrix train_matrix (NUM_GESTURE*NUM_ACQ ,

3,RMSglobal);

Fill the results vector

The next step consists in filling a vector with the indexes that correspond to the

performed gestures. As every movement is repeated NUM ACQ times this vector

has a size of NUM ACQ*NUM GESTURE. This array provides the “answers” to

every data set analyzed by the NN during the training stage. Thanks to the data

type available in LTIlib it can be implemented as follows:

// answer data array for training

int RMSanswer [NUM_ACQ*NUM_GESTURE];

/*fill the array that provides

input data for answer vector */

// NUM_ACQ rms represents mov0

for(i=0; i<NUM_ACQ; i++)

RMSanswer[i]=0;

// NUM_ACQ rms represents mov1

for(i = NUM_ACQ; i<NUM_ACQ *2;i++)

RMSanswer[i]=1;

// NUM_ACQ rms represents mov2

for(i = NUM_ACQ *2; i<NUM_ACQ *3;i++)

RMSanswer[i]=2;

6.3. Tegra modules 103

// NUM_ACQ rms represents mov3

for(i = NUM_ACQ *3; i<NUM_ACQ *4;i++)

RMSanswer[i]=3;

//the results vector employed for training

lti:: ivector train_results_vector (NUM_ACQ*NUM_GESTURE ,

RMSanswer);

Neural network training and save

The most important operation performed by this unit is the training of the Neural

Network.

LTIlib provides three main classes of Artificial Neural Network that can be employed

for data classification:

• Multi-Layer Perceptron

• Learning Vector Quantization

• Radial Basis Function Network

In Eracle project the first kind of network has been employed, this choice has been

dictated mainly by two reasons: the first one is that multi-layer Perceptron (MLP)

are the most widely used Neural Network classifiers, as they are easy to use and

flexible (compared with other architectures); secondly, LTIlib provides more sup-

ports and features for MLP with respect to other architectures like Radial Basis

Networks.

Declare a MLP with LTIlib is a simple task; the hard part of using a NN con-

sists in defining the net’s parameters, such as:

• the number of training epochs;

• the number of neurons in the hidden layer;

• the activation function of the neurons;

• the training algorithm;

• the value of the learning rate;

• the number of examples that are presented to the NN during the training

stage.

With LTIlib it is possible to set all the listed parameters (as well as many other

like the momentum factor). The following code excerpt shows how to declare a

MLP and how to set some basic parameters (for more information about LTIlib

parameters see section 6.1):

104 Chapter 6. Project development

// object NN

lti::MLP ann;

//NN parameters set -up

lti::MLP:: parameters param;

lti::MLP:: sigmoidFunctor sigmoid (1);

param.setLayers (12, sigmoid);

param.trainingMode=lti::MLP:: parameters :: SteepestDescent;

param.maxNumberOfEpochs =2000;

param.learnrate =0.01;

ann.setParameters(param);

These settings defined a MLP with the following features:

• each neuron has a sigmoid activation function with a slope factor of 1.0;

• there are 12 neurons in the hidden layer;

• the employed training algorithm is Steepest Descent (Generalized Delta-

Rule);

• 2000 training epochs;

• learning rate of 0.01

The number of neurons in input and output layers is determined by the dataset

size.

As described in chapter 7, section 7.2, the quoted Neural Network is able to recog-

nize up to five different gestures with an average performance of 90%.

Once the NN has been set, it can be trained and saved; then it can be employed for

classification. The train of the MLP consists in the following simple line of code:

ann.train(train_matrix ,train_results_vector);

where ann is the MLP object, train matrix and train result vector are the matrix

of the input example and the corresponding answer vector previously described.

It takes some times to train the network: the length of this task depends on its

settings. For the Multi Layer Perceptron quoted in the previous listing, the training

time is between 10s and 15s.

Once the training stage has been completed, the network is saved in a .dat file,

ready to be employed in the recognition procedure.

The complete code of this unit is listed in appendix A, section A.5.

6.3.6 NN classifier

This unit is the last step of the recognition procedure, and it is implemented only in

EracleREC. The main task of this module is to recognize (by using the previously

trained NN) the user’s gestures.

This module receives as input the RMS generated by one single user’s movement,

then it opens the previously trained NN and tries to recognize the user’s gesture.

6.3. Tegra modules 105

Open the previously trained NN is a simple task, due to the lispStreamHandler

provided by LTIlib; it is an interface for LTIlib classes to read and write them in a

LISP-like format.

The listing below shows how to load the trained MLP:

/*NN used for recognition */

lti::MLP annc;

//path to the NN file

std:: ifstream inNN("...\\ TrainedNN.dat");

// stream handler for reading

lti:: lispStreamHandler lsh_c(inNN);

//read NN settings from file and close it

annc.read(lsh_c);

inNN.close ();

At the end of this procedure, the MLP called annc has inherited all the “experience”

of the previously trained matrix.

The next step consists in building an output classification vector and an input

feature vector with the data to process:

//the vector that will contains the MLP answer

lti::MLP:: outputVector result;

//the vector containing the feature to classify

lti:: dvector feature_to_classify (3, NN_class_data);

where NN class data is an array of double containing the three RMS generated for

the user’s movement.

Note that the output vector is not a generic array, but it is an object of outputVec-

tor class; this structure is a special data type designed to give some information

about the classification result of the network (e.g. the classification confidence).

In the last step, the MLP classify the provided dataset, filling the previously de-

scribed outputVector:

// perform classification

annc.classify(feature_to_classify ,result);

Once the performed gesture has been identified, it can be displayed on the screen

or employed to control an application.

106 Chapter 6. Project development

Chapter 7

Steps in testing and final

results

“Spock: Don’t grieve, Admiral. It is logical. The needs of the many out-

weigh...

Kirk: ... the needs of the few.

Spock: ... or the one. I never took the Kobayashi Maru test. Until now.

What do you think of my solution?

I have been, and always shall be your friend.

Live long... and prosper.”

Star Trek II - The Wrath of Khan

Once all the units of Eracle have been developed, some tests have been executed,

to estimate the system performance. The first paragraph of this chapter describes

the procedure that has been adopted for all the trials.

Many tests have been carried out during the project development (we’ve performed

about 100 different trials), however we would like to give an idea of how the project

has evolved and which are the experimental results that have lead us to the achieve-

ment of a fully mobile device that correctly identifies at least five different gestures.

The second section of this chapter provides some experimental results presented

following this point of view.

7.1 Test procedure

First of all it is necessary that the user wears the acquisition glove (described in

chapter 6, section 6.2) that will be connected to the devkit (described in chapter

5, section 5.1). The acquisition glove ensures repeatability during all the experi-

ment. It means that we have to be sure that the electrodes are always placed nearly

the same position, even if some time has elapsed between training and recognition

stage. This feature of acquisition glove will be demonstrated in the next section.

108 Chapter 7. Steps in testing and final results

Test stage is mainly divided in two different phases: training and classifying.

Training stage

This step is fully handled by EracleACQ, the executable file described in chapter

3, section 3.3.

During training stage, the user performs each movement several times to train

the Neural Network classifier. Up to five gestures have been employed to test

the application. Depending on the recognizer settings (see next section), every

movement have been executed between 5 and 20 times.

The user can perform the training movements either standing or sitting.

Eracle has been tested with five different gestures:

• close hand;

• wrist extension;

• wrist flexion;

• open hand;

• click.

These movements have already been described in chapter 3, section 3.1.

Once the user has performed the requested repetitions of one movement, he rests his

forearm since the muscular fatigue could invalidate the sampled acquired (see B).

During this break, the computing core of Eracle processes the sampled data. As

previously described in chapter 6, the whole processing chain of the training stage

consists in:

• parsing: each input data file is splitted into three different sources;

• FastICA: that filters the sampled signals;

• RMS: that computes the Root Mean Square value for each source channel of

each repetition;

Once this process has been repeated for all the gestures, the Neural Network is

trained using the previously computed RMS values. The training time depends on

the Neural Network settings; the classifier employed in the last set of tests (that is

able to recognize up to five different gestures) needs between 10s and 15s for the

training stage.

At the end of this stage EracleACQ generates a .dat file that stores the weights of

the trained Neural Network.

Recognition stage

This step is fully handled by EracleREC, the executable file described in chapter

3, section 3.3.

In this stage the user performs just one movement (among those used for training)

7.1. Test procedure 109

and the device tries to recognize it.

To test the application, the users repeat each gesture alternately for ten times.

At the end of the ten repetitions of each gesture, the average success rate of

the test is computed. Both in training and in recognition stage, the user should

performs the gestures in a natural way, it means without “force” the movement.

However, Eracle has demonstrated to be robust with respect to this feature. In

fact, all the results provided in the next section have been achieved by executing

the movement with different strength.

110 Chapter 7. Steps in testing and final results

7.2 Results

During the test stage, we mainly focused on the recognizer’s performance in order

to identify the best settings for Neural Network and FastICA algorithm. It entails

that almost all the test described in this chapter are referred to the same subject

with these characteristics:

• Gender: Male

• Age: 24

• Height: 177 cm

• Weight: 68 kg

• B.M.I: 22

The last value is the Body Mass Index that briefly describes the physique of the

user. B.M.I. between 18,5 and 25 identifies a medium-build man.

7.2.1 First set of tests: two gestures

In the first set of tests the user performs only two movements: close hand and wrist

extension.

The neural network classifier has been set as follows:

• 3 input neurons, 2 output neurons;

• 6 neurons in the hidden layer;

• 2000 training epochs;

• learning rate: 0,1;

• learning algorithm: generalized Delta Rule (Backpropagation) .

The number of neurons in the hidden layer has been set according to the following

thumb rule:

HiddenNeurons = InputNeurons × OutputNeurons (7.1)

Each movement has been repeated 10 times during the training process. In this

trial no additional preprocessing or postprocessing have been added to FastICA

module, thus we employ the FastICA algorithm provided by LTIlib “as it is”.

Matrix W has been kept constant for each gesture during all the training process.

The results of this test are shown in table 7.1.

Gesture Success/Tot Errors/Tot Test performance

Close 8/10 2/10
60%

Wrist extension 4/10 6/10

Table 7.1: Results of the first test; in FastICA algorithm matrix W has been kept

constant

7.2. Results 111

The next test has been carried out maintaining the settings of the previous one, the

only difference is that matrix W has been computed for each movement repetition

.

The results of this trial are shown in table 7.2.

Gesture Success/Tot Errors/Tot Test performance

Close 7/10 3/10
70%

Wrist extension 7/10 3/10

Table 7.2: Results of the first test, matrix W is computed for every repetition

Looking at these two results, it is clear that the second trial is better than the first

one. This result confirms what we have already discussed in chapter 6, section 6.3:

computing the unmixing matrix for each single movement repetitions makes the

system more robust.

7.2.2 Improving the classifier

However, these two results are not satisfactory, since the success rate is too low.

The Neural Network employed for recognizing these two gestures seems oversized.

Six neurons and 2000 training epochs look like too much for a classifier that simply

distinguishes between two classes of data. In the second set of tests we simplify the

Multi Layer Perceptron as follows:

• 3 input neurons, 2 output neurons;

• 2 neurons in the hidden layer;

• 100 training epochs;

• learning rate: 0,1;

• learning algorithm: generalized Delta Rule (Backpropagation) .

We increase the number of movement repetitions employed in training set from 10

to 20 (for each gesture). As in the previous set of tests, we haven’t added any

additional feature to the FastICA algorithm provided by LTIlib. Moreover, matrix

W has been kept constant (for the same class of movements).

Table 7.3 summarizes the results of this trial; the two tests have been performed in

the same day, without taking off the acquisition glove:

Gesture Success/Tot Errors/Tot Test performance

Close 10/10 0/10
95%

Wrist extension 9/10 1/10

112 Chapter 7. Steps in testing and final results

Close 7/10 3/10
75%

Wrist extension 8/10 2/10

Table 7.3: Results of the second test, matrix W is kept constant

We have repeated the experiment computing the W matrix for every movement

repetition. The Neural Network is the same of the previous test. Table 7.4 shows

the results obtained in two experiments performed without taking off the acquisition

glove:

Gesture Success/Tot Errors/Tot Test performance

Close 8/10 2/10
85%

Wrist extension 9/10 1/10

Close 7/10 2/10
80%

Wrist extension 8/10 2/10

Table 7.4: Results of the second test, matrix W is computed for every repetition

By looking at these results, it is not clear which one of the two solutions performs

better.

After a bit of time we have repeated the experiment, table 7.5 shows the results

obtained by keeping the unmixing matrix constant (for the same class of gestures):

Gesture Success/Tot Errors/Tot Test performance

Close 5/10 5/10
55%

Wrist extension 6/10 4/10

Table 7.5: Repetition of the second test, matrix W is kept constant

Instead, table 7.6 reports the results obtained by computing the unmixing matrix

W for every gesture repetition:

Gesture Success/Tot Errors/Tot Test performance

Close 10/10 0/10
75%

Wrist extension 5/10 5/10

Table 7.6: Repetition of the second test, matrix W is computed for every gesture

repetition

7.2. Results 113

By looking at these two last results it is clear that keeping the unmixing matrix

constant brings to a lack of performance of the recognizer. This result definitively

confirms the hypothesis formulated in chapter 6, section 6.3: computing the un-

mixing matrix for each single movement repetitions makes the system more robust.

7.2.3 From two to four gestures

By working with only two movements we have found that the unmixing matrix W

must be kept constant for all the repetitions of the same gesture during the training

stage. However, a gesture recognition device that distinguishes only between two

gestures is not very useful.

The next goal is to raise the number of recognized gestures from two to at least

four.

Table 7.7 shows the results obtained with the same architecture employed in the

previous test working on three gestures (close hand, wrist extension and wrist flex-

ion). There are only two differences between this solution and the previous one:

• the number of hidden neurons has been increased to 9 (following the thumb

rule quoted in equation 7.1);

• the number of training epochs has been increased to 500;

Gesture Success/Tot Errors/Tot Test performance

Close 5/10 5/10

53%Wrist extension 8/10 2/10

Wrist flexion 3/10 7/10

Table 7.7: Third test: the Neural Network tries to classify three different gestures

Performance gets even worse if we use the same recognizer on four different gestures

(adding open hand movement), as shown in table 7.8:

Gesture Success/Tot Errors/Tot Test performance

Close 3/10 7/10

38%
Wrist extension 0/10 10/10

Wrist flexion 7/10 3/10

Open hand 5/10 5/10

Table 7.8: Third test: the Neural Network tries to classify four different gestures

114 Chapter 7. Steps in testing and final results

Increasing or decreasing the number of neurons or the training epochs haven’t im-

proved the performance, so we have introduced the features discussed in chapter 6,

section 6.3 regarding the FastICA module. These additional features mainly con-

sists in preprocessing and postprocessing operations that have been suggested by

the Matlab implementation of FastICA algorithm proposed by Hyvärinen ([33]) and

developed by the Laboratory of Computer and Information Science at the Helsinki

University of Technology ([10]).

Moreover - as stated in chapter 4, section 4.3.2 - FastICA algorithm requires some

preprocessing in order to be correctly applied.

The introduction of these preprocessing and postprocessing stages have led to a

sensible improvement of Eracle’s performance.

The first interesting test has been carried out using a Neural Network with the

following settings:

• 3 input neurons, 4 output neurons;

• 12 neurons in the hidden layer;

• 500 training epochs;

• learning rate: 0,1;

• learning algorithm: generalized Delta Rule (Backpropagation) .

We have trained the Neural Network with only five repetitions of each gesture.

Table 7.9 summarizes the test results:

Gesture Success/Tot Errors/Tot Test performance

Close 10/10 0/10

63%
Wrist extension 0/10 10/10

Wrist flexion 50/10 5/10

Open hand 10/10 0/10

Table 7.9: Eracle’s performance on four gestures after FastICA modifications

Despite the average performance (that is still too low), it is important to analyze

the output of the recognizer:

• close hand and open hand have been always correctly identified;

• wrist extension has always been confused with the open hand movement;

• wrist flexion has sometimes been confused with close hand movement.

These observations perfectly fit with the hypothesis discussed in the previous chap-

ter in section 6.3, thus there are some patterns are more likely to be confused than

others. Looking at table 7.10 it is clear that the recognizer can distinguish between

Wrist extension and open hand only by looking at the first input channel, that is

7.2. Results 115

higher in the first gesture. It is also easy to make a mistake between close hand

and wrist flexion since the only difference between these two gestures is the value

of the third channel, that is higher in the first movement.

Gesture Channel 1 Channel 2 Channel 3

Close hand

9,846 9,053 8,763

9,833 7,675 7,408

8,303 8,224 7,087

9,589 6,789 4,843

9,685 6,978 6,1623

Wrist extension

33,274 5,188 16,283

35,861 5,415 8,717

29,897 4,789 7,049

27,923 4,473 14,026

29,053 4,090 13,411

Wrist flexion

15,871 13,528 4,513

14,675 11,895 3,789

18,899 19,002 3,123

13,298 12,213 3,852

18,911 19,050 3,369

Open hand

15,125 6,750 16,249

17,146 6,926 10,424

15,765 7,321 13,237

16,765 7,543 16,145

15,072 7,369 15,992

Table 7.10: An excerpt of RMS values employed for training and recognition

The described classifier (with only two neurons in the output layer) can easily

distinguish between wrist extension and close hand movements, as outlined by

table 7.11:

Gesture Success/Tot Errors/Tot Test performance

Close 10/10 0/10
100%

Wrist extension 10/10 0/10

Table 7.11: Eracle’s performance in recognizing two different gestures

The following step consists in adding a new movement to the set of gesture that

will be classified by Eracle. To distinguish among three different movements it is

116 Chapter 7. Steps in testing and final results

necessary to make the network more “sensitive” to the differences described above.

To achieve this result the training epochs have been increased and the learning

rate has been decreased. This last choice will lead to a lack in performance during

the training stage, but it avoids that the training algorithm converges to a local

minimum.

We have selected open hand as additional gesture. The Neural Network has been

set as follows:

• 3 input neurons, 3 output neurons;

• 12 neurons in the hidden layer;

• 1000 training epochs;

• learning rate: 0,01;

• learning algorithm: generalized Delta Rule (Backpropagation) .

We employ 10 repetitions of each gesture during the training stage.

The test results are summarized in table 7.12:

Gesture Success/Tot Errors/Tot Test performance

Close 10/10 0/10

93%Wrist extension 9/10 1/10

Open hand 9/10 1/10

Table 7.12: Eracle’s performance on three different movements

In the last step of this test stage, we have also added the wrist flexion gesture to the

set of movements that will be classified by Eracle. There’s practically no differences

between this classifier and the previous one except the number of output neurons

(that has been increased to four) and the number of training epochs (that has been

increased to 1000).

Table 7.13 shows the test results:

Gesture Success/Tot Errors/Tot Test performance

Close 10/10 0/10

85%
Wrist extension 9/10 1/10

Wrist flexion 10/10 0/10

Open hand 5/10 5/10

Table 7.13: Eracle’s performance on four gestures

To improve the recognizer performance we have increased the training epochs to

1500. Also in this trial, the Neural Network has been trained with 10 repetitions

7.2. Results 117

of each gesture.

Table 7.14 shows the results of two different tests; it is important to point out that

they have been performed in different days.

Gesture Success/Tot Errors/Tot Test performance

Close 10/10 0/10

98%
Wrist extension 9/10 1/10

Wrist flexion 10/10 0/10

Open hand 10/10 0/10

Close 9/10 1/10

88%
Wrist extension 10/10 0/10

Wrist flexion 8/10 2/10

Open hand 8/10 2/10

Table 7.14: Eracle’s performance with four gestures. The two tests have been executed

in different days

This last two trials show that Eracle is able to distinguish among four gestures with

a global performance of 93%.

7.2.4 Tests with different subject

The trials presented in this paragraph have been performed by a subject with these

characteristics:

• Gender: Female

• Age: 22

• Height: 156 cm

• Weight: 41 kg

• B.M.I: 17

This subject has a really different physique from the one described at the beginning

of these section.

The Neural Network settings are the same of the last test, thus:

• 3 input neurons, 4 output neurons;

• 12 neurons in the hidden layer;

• 1500 training epochs;

• learning rate: 0,01;

• learning algorithm: generalized Delta Rule (Backpropagation) .

118 Chapter 7. Steps in testing and final results

Concerning the first test, the Neural Network has been trained with the example

set of the first subject (10 repetitions for each movement). Since the physique of

the two subjects is very different, we haven’t obtained very good results, as shown

in table 7.15:

Gesture Success/Tot Errors/Tot Test performance

Close 10/10 0/10

55%
Wrist extension 10/10 0/10

Wrist flexion 2/10 8/10

Open hand 0/10 10/10

Table 7.15: Eracle’s performance with four gestures: the classifier has not been trained

with the data of the current user

Once the second subject has trained the Neural Network with its own data, we have

performed another test with the following results:

Gesture Success/Tot Errors/Tot Test performance

Close 10/10 0/10

85%
Wrist extension 9/10 1/10

Wrist flexion 9/10 1/10

Open hand 6/10 4/10

Table 7.16: Eracle’s performance with four gestures: the neural network has been

trained by the current user

In the last test we have increased the number of training epochs from 1500 to 2000,

table 7.17 shows the trial results:

Gesture Success/Tot Errors/Tot Test performance

Close 10/10 0/10

93%
Wrist extension 10/10 0/10

Wrist flexion 10/10 0/10

Open hand 7/10 3/10

Table 7.17: Eracle’s performance with four gestures: the number of epochs has been

increased

These last results outline that Eracle is able to distinguish among four different

gestures with a good success rate (about 90%). This result is really meaningful, as

7.2. Results 119

the second subject has never employed a gesture recognition system.

This trial also points out the relevance of employing a correct set of data in the

training stage.

7.2.5 Last set of tests: five gestures

In this last paragraph, Eracle has been tested in recognizing five different move-

ments.

The fifth gesture is called “click”, as it could be employed as the left click of a

mouse (as described in chapter 3, section 3.1. These tests have been performed by

the first user described at the beginning of this section.

For this set of tests, the Neural Network has been set as follows:

• 3 input neurons, 4 output neurons;

• 12 neurons in the hidden layer;

• 2000 training epochs;

• learning rate: 0,01;

• learning algorithm: generalized Delta Rule (Backpropagation) .

Every movement has been performed ten times during the training stage.

Table 7.18 shows the result of two trials that have been performed in different times.

Gesture Success/Tot Errors/Tot Test performance

Close 10/10 0/10

95%

Wrist extension 10/10 0/10

Wrist flexion 9/10 1/10

Open hand 9/10 1/10

Click 7/10 3/10

Close 9/10 1/10

88%

Wrist extension 9/10 1/10

Wrist flexion 9/10 1/10

Open hand 8/10 2/10

Click 7/10 3/10

Table 7.18: Eracle’s performance in classifying five gestures

Eracle has achieved a global performance of about 90% in recognizing five different

gestures. Note that the classifier is approximately the same employed to recognize

four gestures performed by the first subject.

This leads us to the consideration that the device should be able to recognize more

than five gestures with a good performance rate (see chapter 8, section 8.1).

120 Chapter 7. Steps in testing and final results

Chapter 8

Conclusions and future

developments

Chekov: Course heading, Captain?

Kirk: Second star to the right. And straight on ’til morning.

Captain’s log. Stardate 9529.1. This is the final cruise of the starship En-

terprise under my command. This ship and her history will shortly become

the care of another crew. To them and to their posterity we will commit our

future. They’ll continue the voyages we have began and they will journey to

all the undiscovered countries, boldly go where no man, where no one... has

gone before.

Star Trek VI - The Undiscovered Country

In this work we have described Eracle, which is a gesture recognition system based

on EMG signals. Moreover, this device is fully implemented with mobile tech-

nologies, thus the user wears the sampling unit of the device as a glove, while the

computing core can fit into a pocket.

Eracle is designed to be employed in Virtual Reality simulations like video games

or Augmented Reality applications. Due to its little size and weight, this system

could also be used by everyone in daily life Human Computer Interaction.

Providing some improvements, Eracle could also be applied in an industrial context

to control a robotic arm.

This system is also suitable for home automation, to control domestic appliances

like television or air-conditioner simply by moving a hand.

Finally, this device could be employed in hand prosthesis control field, although it

would be necessary adding some features like the detection of different grasps (see

chapter 2, section 2.1.2)

Eracle has achieved good results in test stage, since it is able to recognize five

or four gesture with an average performance of about 90%. It is interesting to

point out that the classifier has been trained with very few examples; as described

122 Chapter 8. Conclusions and future developments

in the previous chapter, only ten repetitions of each movement are necessary to

distinguish among five different gestures.

We think that the global performance will be improved if the user employs the

device for enough time. Think about using a mouse, when you move it for the first

time it is difficult that the pointer moves exactly where you want; however, after

some trial, the device become familiar and you interact with the PC without any

problem. This simple consideration holds also for Eracle: the more you employ it,

the best it performs, as the user fits his movement to obtain the best performance.

8.1. Future developments 123

8.1 Future developments

The prototype of Eracle performs well in recognizing up to five different gestures,

but there are several features that can be improved in future works.

Computational speed

This prototype of Eracle has been developed focusing on recognition accuracy.

All the units of Eracle’s computing core have been designed to be as independent as

possible, it means that every module reads some input data from files and stores the

output results in other files. This choice is mainly dictated by debugging purposes,

as we can easily monitor every step along the processing chain. The main drawback

of this solution is the loss in computational speed, mainly due to the huge amount

of I/O operations performed by each module of the computing core. By removing

some I/O operations, it is possible to improve the recognizer speed; we estimate

that the computational time could be reduced to half of the current one. Thus,

introducing some optimization and removing some I/O operations we hypothesize

that it is possible to sample and recognize each movement in about four seconds.

Moreover, we think that Eracle could correctly performs gesture recognition with

less than 1010 samples for each input channel, so we will reduce the sampling time

in order to improve the global speed.

As discussed in the previous section, this system could be employed to control a

robotic arm in industrial context. Computational speed is a key feature in this

field, as Eracle should recognize gestures in real time in order to be employed on

an industrial production line.

Classifier adaptability

Some EMG manuals ([52]) and some experiments outline that physiological ele-

ments like sweating, skin temperature or muscle fatigue can worsen the recognizer’s

performance. Changes in some of these biometric values can be easily detected with

sensors enclosed in the acquisition glove. This input data could be employed by the

computing core to adjust the settings of the classifier in order to achieve always a

good performance.

For example, some corrective formulas are already employed in medical examina-

tion as described in [52].

Another possible solution could be to train the Neural Network with two different

datasets. The first dataset will contain the data sampled from “rested” muscles,

while the other one will provide values sampled from the “stressed” muscles.

More gestures

Identifying up to five gestures is a good result for an EMG-based recognizer. Eracle

obtains an average performance of about 90% providing only ten repetitions of each

gesture as training set. This result suggests that Eracle could recognize more than

124 Chapter 8. Conclusions and future developments

five gestures with a good performance. By providing more training examples, we

think that this device could be able to handle up to seven or eight different gestures.

Acquisition glove

The acquisition glove employed in this project (described in chapter 6, section 6.2)

is a prototype. A future version of this device could be realized with elastic material

like Lycra; moreover the wires and the EMG board could be hided inside the glove.

To sample the EMG signals we use commercially available electrodes employed for

electro stimulators appliances. These electrodes are not designed for prolonged use

and their surface degrades quickly. This leads to an increase in signal’s noise and

in a lack in recognizer’s performance.

Signal’s quality could be increased by employing professional equipment like Trigno

Wireless System by Delsys ([7]). This device provides up to 16 EMG channels and

triaxial accelerometers to correctly identify the user movement. Moreover, this

device is really small (37mm x 26mm x 15mm) and provide at least 8 hours of

battery operations.

Due to its reduced size and battery life, this device could be easily integrated in

Eracle’s acquisition glove.

Wavelet transform

The accuracy performance of Eracle in recognizing up to five different gestures

is good; however - ad described both in chapter 6, section 6.3 and in chapter 7,

section 7.2 - it is easy to confuse some of the movements, since in some cases the

difference is due to just a single input channel. So, it would be interesting to add

a new unit in the computing core of Eracle that helps the recognizer in identifying

the features of the input signals. Both FastICA and Wavelet could be employed

in the filtering stage. Wavelet has been proposed by Mallat in [39] and has been

widely used for feature extraction in signal processing.

Moreover, LTIlib provides a basic implementation of Wavelet employed in image

processing.

Wi-fi connection

Currently, the output of Eracle has been displayed on a screen thanks to the VGA

output of the devkit (described in chapter 5, section 5.1). However, this device

could be connected to a wide range of appliances as the Tegra devkit provides both

USB and Ethernet output.

Moreover, an interesting future development consists in connecting Eracle to other

devices using wireless Wi-Fi technology like ZigBee. This feature will avoid wired

connection to an external device, making Eracle more wearable and easy-to-use.

8.1. Future developments 125

126 Chapter 8. Conclusions and future developments

Bibliography

[1] Android developers main page. http://developer.android.com/index.html.

[2] Arduino main page. http://arduino.cc/en/Main/Hardware.

[3] Arm cortex-a9 processor.

http://www.arm.com/products/processors/cortex-a/cortex-a9.php.

[4] Arm main page. http://www.arm.com/index.php.

[5] Atmel main page. http://www.atmel.com/.

[6] Boost libraries main page. http://www.boost.org/.

[7] Delsys trigno. http://www.delsys.com/Products/trignowireless.html.

[8] Eee journal. http://www.eeejournal.com/.

[9] Embedded microprocessor benchmark consortium main site.

http://www.eembc.org/home.php.

[10] Fastica matlab package. http://www.cis.hut.fi/projects/ica/fastica/.

[11] Ftdi home page. http://www.ftdichip.com/.

[12] It++ libraries main page. http://itpp.sourceforge.net/current/.

[13] Ltilib main page. http://ltilib.sourceforge.net/doc/homepage/index.shtml.

[14] Microchip main page. http://www.microchip.com/.

[15] Muci projects main page.

http://research.microsoft.com/en-us/um/redmond/groups/cue/MuCI/.

[16] Nvidia tegra developer main page. http://tegradeveloper.nvidia.com/tegra/.

[17] Nvidia tegra main page. http://www.nvidia.com/page/handheld.html.

[18] Project natal main page.

http://www.microsoft.com/uk/wave/hardware-projectnatal.aspx.

[19] Seco main page. http://www.seco.it/.

[20] Teleemg: Emg and nerve conductions educational site.

http://www.teleemg.com.

[21] Ubw32 main page. http://www.schmalzhaus.com/UBW32/.

127

128 BIBLIOGRAPHY

[22] Windows embedded ce 6.0 advanced memory management.

http://msdn.microsoft.com/en-us/library/bb331824.aspx.

[23] Windows embedded ce overview.

http://www.microsoft.com/windowsembedded/it-

it/products/windowsce/default.mspx.

[24] Md. R. Ashan, Mauhammad I. Ibrahimy, and Othman O. Khalifa. Emg

signal classification for human computer interaction: a review. European

Journal of Scientific Research, 3:480–501, 2009.

[25] Hrvoje Benko, T. Scott Saponas, Dan Morris, and Desney Tan. Enhancing

input on and above the interactive surface with muscle sensing. ITS ’09,

2009.

[26] Douglas Boling. Programming Microsoft Windows CE .Net. Microsof press,

2003.

[27] J.-F. Cardoso and B. Hvam Laheld. Equivariant adaptive source separation.

IEEE Transactions on Signal Processing, 1996.

[28] Brijil Chambayil, Rajesh Singla, and R. Jha. Eeg eye blink classification

using neural network. World Congress on Engineering 2010, I, 2010.

[29] T. Chanwimalueang, D. Sueaseenak, N. Laoopugsin, and C. Pintavirooj.

Robotic arm controller using muscular contraction classification based on

independent component analysis. Electrical Engineering/Electronics,

Computer, Telecommunications and Information Technology, 2008.

ECTI-CON 2008., 2008.

[30] Mark R. Cutkosky. On grasp choice, grasp models, and the design of hands

for manufacturing tasks. IEEE Transactions On Robotics and Automation,

1989.

[31] Giuseppina Gini and Vincenzo Caglioti. Robotica. Zanichelli, 2003.

[32] Aapo Hyvärinen. New approximations of differential entropy for independent

component analysis and projection pursuit. Advances in Neural Information

Processing Systems, MIT Press, 1998.

[33] Aapo Hyvärinen. Fast and robust fixed-point algorithms for independent

component analysis. IEEE Trans. on Neural Networks, 10(3):626–634, 1999.

[34] Giuseppina Inuso, Fabio La Foresta, Nadia Mammone, and Francesco Carlo

Morabito. Brain activity investigation by eeg processing: Wavelet analysis,

kurtosis and renyi’s entropy for artifact detection. International Conference

on Information Acquisition, 2007.

[35] Shin-Ichi Ito, Yasue Mitsukura, Minoru Fukumi, and Norio Akamatsu. A

feature extraction of the eeg during listening to the music using the factor

analysis and neural networks. 2003.

BIBLIOGRAPHY 129

[36] C. Jutten and J. Herault. Blind separation of sources, part1: An adptive

algorithm based on neuromimetic architecture. Signal Processing, 1991.

[37] Jonghwa Kim, Johannes Wagner, Matthias Rehm, and Elisabeth André.

Bi-channel sensor fusion for automatic sign language recognition. 2008.

[38] Zhao Lv, Xiaopei Wu, Mi Li, and Chao Zhang. Implementation of the

eog-based human computer interface system. The 2nd International

Conference on Bioinformatics and Biomedical Engineering, pages 2188 –

2191, 2008.

[39] S. G. Mallat. A theory for multiresolution signal decomposition: The wavelet

representation. IEEE Transactions on PAMI, 1989.

[40] R. L. Mandryk, M. S. Atkins, and K. M. Inkpen. A continuous and objective

evaluation of emotional experience with interactive play environments. ACM

CHI Conference, pages 1027–1036, 2006.

[41] Ganesh R. Naik, Dinesh K. Kumar, and Sridhar P. Arjunan. Multi modal

gesture identification for hci using surface emg. MindTrek 08, 2008.

[42] Ganesh R. Naik, Dinesh K. Kumar, and Hans Weghorn. Performance

comparison of ica algorithms for isometric hand gesture identification using

surface emg. 2007.

[43] Ganesh R. Naik, Dinesh Kant Kumar, Vijay Pal Singh, and Marimuthu

Palaniswami. Hand gestures for hci using ica of emg. HCSNet Workshop on

the Use of Vision in HCI (VisHCI 2006), 2006.

[44] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field

properties by learning a sparse code for natural images. Nature, 1996.

[45] Duck Gun Park and Hee Chan Kim. Muscleman: Wireless input device for a

fighting action game basedon the emg signal and acceleration of the human

forearm.

[46] T. Scott Saponas, Desney S. Tan, Dan Morris, and Ravin Balakrishnan.

Demonstrating the feasibility of using forearm electromyography for

muscle-computer interfaces. CHI 2008 Conference on Human Factors in

Computing System, 2008.

[47] T. Scott Saponas, Desney S. Tan, Dan Morris, Ravin Balakrishnan, Jim

Turner, and James A. Landay. Enabling always-available input with

muscle-computer interfaces. UIST 09, 2009.

[48] T. Scott Saponas, Desney S. Tan, Dan Morris, Jim Turner, and James A.

Landay. Making muscle-computer interfaces more practical. CHI 2010

Conference on Human Factors in Computing System, 2010.

[49] Bruno Siciliano and Oussama Khatib. Springer Handbook of Robotics.

Springer, 2008.

130 BIBLIOGRAPHY

[50] J.H. van Hateren and A. van der Schaaf. Independent component filters of

natural images compared with simple cells in primary visual cortex. Proc.

Roya Society ser., 1998.

[51] T. Vigàrio. Extraction of ocular artifacts from eeg using independent

component analysis. Electroenceph. clin. Neurophysiol., 1997.

[52] Lyn Weiss, Julie Silver, and Jay Weiss. Easy EMG. Elsevier Inc, 2004.

[53] K. R. Wheeler and C. C. Jorgensen. Gesture as input: Neuroelectric

joysticks and keyboards. IEEE Pervasive Computing, pages 56–61.

[54] Andrew D. Wilson. Playanywhere: A compact interactive tabletop

projection-vision system. 18th annual ACM symposium on User Interface

Software and Technology, pages 83–92, 2005.

Appendix A

Code listing

A.1 Eracle Serial Port Manager

/* ***

*EracleSerialPortManager.cpp:

Read data generated by sEMG board for NUM_ACQ times.

Data are stored in \\ Storage Card\\ DatiNUM_ACQ.

Every burst fill a CHAR buffer of 15000 elements.

** */

#include "stdafx.h"

#include "Eracle.h"

#include <iostream >

#include <sstream >

#include "s2ws.h"

#define MAX_LOADSTRING 100

// number of training movements

#define NUM_ACQ 10

// number of samples

#define DIM_CHANNEL 1010

using namespace std;

132 Appendix A. Code listing

void EracleSerialPortManager (){

HANDLE hSer; /*FTDI port handler */

HANDLE hFile; /*data file handler */

INT rc;

BYTE szText [10]={0x41 ,0x42 ,0x43 ,0x44 ,0x45};

CHAR buffer [15000]; /*read buffer of FTDI port*/

DWORD bytesRead;

int indice =1; // while loop index

ostringstream oss; // service stream for itoa conversion

while(indice <= NUM_ACQ){

/*this loop run for NUM_ACQ cycles ,

at every iteration one different data

file is created and filled with sEMG board data*/

/*itoa conversion of loop index ,

to mark the data file*/

oss <<indice;

string index = oss.str ();

/* create a file which emulate the FTDI / serial port.

File must be named $device\COM10 */

hSer=CreateFile(TEXT("$device \\ COM10"),

GENERIC_READ|GENERIC_WRITE ,0,

NULL ,OPEN_EXISTING ,0,NULL);

if(hSer== INVALID_HANDLE_VALUE){

MessageBox(NULL ,TEXT ("Port is not opened"),

TEXT("EracleSerialPortManager"),MB_OK);

exit (0);

}

/* serial port settings */

DCB dcb;

dcb.DCBlength=sizeof(dcb);

GetCommState(hSer ,&dcb);

dcb.BaudRate =57600;

if(SetCommState(hSer ,&dcb)) {

A.1. Eracle Serial Port Manager 133

MessageBox(NULL ,

TEXT ("Port is opened with baud rate 57600

- Ready to sEMG acquisition !!!

\nPRESS ENTER TO BEGIN ACQUISITION"),

TEXT("EracleSerialPortManager"),MB_OK);

}

PurgeComm(hSer ,PURGE_TXABORT | PURGE_RXABORT |

PURGE_TXCLEAR | PURGE_RXCLEAR);

/* check if you can read from FTDI port ...

...if ok , read and put data in buffer */

if(rc =ReadFile(hSer ,buffer ,sizeof(buffer),&bytesRead ,0))

MessageBox(NULL ,TEXT("END OF ACQUISITION"),

TEXT("EracleSerialPortManager"),MB_OK);

/* definition of data file name and path*/

string pre = "\\ Storage Card\\ Eracle_Acquisizioni \\DATI";

string suff = ".txt";

string path = pre+index+suff;

std:: wstring stemp = s2ws(path);

LPCWSTR result = stemp.c_str ();

hFile = CreateFile(result ,

(GENERIC_READ | GENERIC_WRITE),

0, NULL , CREATE_ALWAYS , FILE_ATTRIBUTE_NORMAL , NULL);

if(!(WriteFile(hFile ,buffer , sizeof(buffer),&bytesRead , 0))){

MessageBox(NULL ,TEXT("Error in file writing"),

TEXT("EracleSerialPortManager"),MB_OK);

exit (0);

}

/*close file handlers */

CloseHandle(hFile);

CloseHandle(hSer);

indice ++; // while loop variable increase

134 Appendix A. Code listing

// service stream flush

oss.str("");

oss.clear ();

}

MessageBox(NULL ,TEXT("End of acquisition procedure"),

TEXT("EracleSerialPortManager"),MB_OK);

return;

}

A.2. Eracle Parser 135

A.2 Eracle Parser

/* ***

EracleParser.cpp:

*

Read (one by one) the files generated by

EracleSerialPortManager and split them into three

different files: one file for each channel.

Input files are limited to DIM_CHANNEL samples each.

Every input files is also cleaned from spurious data at

the beginning and at the end of the stream.

Input files are stored in

\\ Storage Card\\ Eracle_Acquisizioni

Output files (three for each input file) are stored in

\\ Storage Card\\ Eracle_Parser in a subfolder

named after the acquisition step of acquisition.

** */

#include "stdafx.h"

#include "Eracle.h"

#include <fstream >

#include <algorithm >

#include <sstream >

#include "s2ws.h"

#define MAX_LOADSTRING 100

// resture repetitions

#define NUM_ACQ 10

// number of samples

#define DIM_CHANNEL 1010

using namespace std;

void EracleParser (){

int indiceParser =1;

ostringstream ossParser;

136 Appendix A. Code listing

MessageBox(NULL , TEXT("Begin of parsing"),

TEXT("EracleParser"), MB_OK);

while(indiceParser <= NUM_ACQ){

int posD =0;

fstream input_data; //input stream to get data

//the three resulting files , one per channel

fstream Channel_1 , Channel_2 , Channel_3;

/*the string that will contain all

the emg board’s output (file DATA.txt)*/

string tot = "";

/* strings for parser input*/

string parserInputPrefix =

"\\ Storage Card\\ Eracle_Acquisizioni \\DATI";

string parserSuffix = ".txt";

ossParser <<indiceParser;

// string with number of file that will be parsed

string parserNumFile = ossParser.str ();

string parserInputPath =

parserInputPrefix+parserNumFile+parserSuffix;

std:: wstring stemp = s2ws(parserInputPath);

// parser input result is the path to the file to be open

LPCWSTR parserInputResult = stemp.c_str ();

/* strings for parser output */

string parserOutputPrefix =

"\\ Storage Card\\ Eracle_Parser \\Acq";

/* create one directory for

A.2. Eracle Parser 137

each acquisition in folder Eracle_Parser */

string parserOutFolder =

parserOutputPrefix+parserNumFile;

std:: wstring stemp1 = s2ws(parserOutFolder);

LPCWSTR parserFolderResult = stemp1.c_str ();

CreateDirectory(parserFolderResult ,NULL);

string parserFileOutput1 = "\\ Channel_1.txt";

string parserFileOutput2 = "\\ Channel_2.txt";

string parserFileOutput3 = "\\ Channel_3.txt";

string parserPathOutput1 = parserOutFolder+

parserFileOutput1;

string parserPathOutput2 = parserOutFolder+

parserFileOutput2;

string parserPathOutput3 = parserOutFolder+

parserFileOutput3;

std:: wstring stemp_uno = s2ws(parserPathOutput1);

std:: wstring stemp_due = s2ws(parserPathOutput2);

std:: wstring stemp_tre = s2ws(parserPathOutput3);

LPCWSTR parserOutPath1Result = stemp_uno.c_str ();

LPCWSTR parserOutPath2Result = stemp_due.c_str ();

LPCWSTR parserOutPath3Result = stemp_tre.c_str ();

//open stream to read data file

input_data.open(parserInputResult , fstream ::in);

//open stream to the three output files

Channel_1.open(parserOutPath1Result ,fstream ::out);

Channel_2.open(parserOutPath2Result ,fstream ::out);

Channel_3.open(parserOutPath3Result ,fstream ::out);

/*check for file opening error*/

if ((input_data.fail ())||(Channel_1.fail ())||

(Channel_2.fail ())||(input_data.fail ())||

138 Appendix A. Code listing

(Channel_3.fail ())){

MessageBox(NULL ,TEXT ("Error in opening files"),

TEXT("EracleParser"),MB_OK);

exit (0);

}

/*read all the data in input stream and

store them in string tot*/

while(input_data.good ()){

getline(input_data ,tot);

}

/* **

BEGIN OF PARSING *************************

** */

/* (((1))) replace newline and carriage return with spaces */

replace(tot.begin(), tot.end(), ’\r’, ’ ’);

replace(tot.begin(), tot.end(), ’\n’, ’ ’);

/* (((2))) find and erase spurious

input vector at the begin of data*/

posD=tot.find("D"); //find the position of the first D

if(posD !=0){ //if file doesn ’t begin with D...

tot.erase(0,posD); //... erase alla charachters before D

}

/* (((3))) delete the last input vector ,

to prevent spurious data at the end of stream */

size_t ultimo;

A.2. Eracle Parser 139

size_t fine;

//get the position of last D...

ultimo = tot.rfind("D");

//... and the position of the termination char

fine = tot.rfind("\0");

// delete last row , but don’t erase "\0" charachter

tot.erase(ultimo , fine -1);

/* (((4))) count the number of D

--> this is also the number of rows

--> this is also the number of "good" data acquired */

// numbers of "clean" data acquired

int conteggio = count(tot.begin(),tot.end(),’D’);

if(conteggio <DIM_CHANNEL){

MessageBox(NULL , TEXT("Pochi campioni"),

TEXT("EracleParser"), MB_OK);

exit (0);

}

/* (((5))) split string tot in three files ,

each column to a file , each data separated

by a blank spaces (included the last one)*/

size_t begin ,end;

//get the indeces of the first number in first row

begin = tot.find("D");

end = tot.find(" ");

int index;

int row_count =0;

//run until 1010 lines have been parsed

while(row_count < DIM_CHANNEL){

140 Appendix A. Code listing

/*for the first number indeces

have already been acquired */

if(row_count >0){

begin = tot.find("D",end);

end = tot.find(" ",begin +1);

}

//first number of the triple --> to file Channel_1

for(index = static_cast <int >(begin)+2;

index <static_cast <int >(end); index ++){

Channel_1 <<tot[index];

}

Channel_1 <<" ";

// adjust indeces

begin = tot.find(" ",end);

end = tot.find(" ",begin +1);

// second number of the triple --> to file Channel_2

for(index = static_cast <int >(begin)+1;

index <static_cast <int >(end); index ++){

Channel_2 <<tot[index];

}

Channel_2 <<" ";

// adjust indeces

begin = tot.find(" ",end);

end = tot.find(" ",begin +1);

//last number of the triple --> to file Channel_3

for(index = static_cast <int >(begin)+1;

index <static_cast <int >(end); index ++){

Channel_3 <<tot[index];

}

Channel_3 <<" ";

row_count ++;

}

/*close all streams */

Channel_1.close ();

Channel_2.close ();

A.2. Eracle Parser 141

Channel_3.close ();

input_data.close ();

// parsingCheck(conteggio);

//clear the itoa buffer

ossParser.str("");

ossParser.clear ();

indiceParser ++; //loop variable ++

}

MessageBox(NULL ,TEXT ("End of Parsing"),

TEXT("eracleParser"),MB_OK);

return;

}

142 Appendix A. Code listing

A.3 Eracle FastICA

/* **

EracleFastICA.cpp:

*

Open the files previously generated by the parser and:

- compute and subtract the average value of

each channel (remmean);

- compute the unmixing matrix;

- apply FastICA algorithm;

- Add the mean back to the data.

In the output result of ICA are corrected with

a mean calculation inspired from

MATLAB implementation of FastICA.

The output vectors are stored in three separated files

in Eracle_FastICA: three files for

each sampling (one per channel).

*** */

#include "stdafx.h"

#include "Eracle.h"

#include <iostream >

#include <string >

#include <fstream >

#include <sstream >

#include "ltiVector.h"

#include "ltiMatrix.h"

#include "ltiFastICA.h"

#include "s2ws.h"

using namespace std;

#define MAX_LOADSTRING 100

// number of gesture repetitions

#define NUM_ACQ 10

// number of samples

#define DIM_CHANNEL 1010

void EracleFastICA (){

A.3. Eracle FastICA 143

MessageBox(NULL , TEXT("Begin of FastICA"),

TEXT("EracleFastICA"), MB_OK);

// variables for loop control and itoa conversion

int indiceICA = 1;

ostringstream ossICA;

while(indiceICA <= NUM_ACQ){

// stream for summary operations

fstream fastica_stream;

/*input files; one for each channel ,

these files are produced

by EracleParser () function */

FILE * Mazinga1;

FILE * Mazinga2;

FILE * Mazinga3;

// FastICA path string input building

string ICAInputfolderPrefix =

"\\ Storage Card\\ Eracle_Parser \\Acq";

ossICA <<indiceICA;

string ICANumFile = ossICA.str ();

string ICAinput1 = "\\ Channel_1.txt";

string ICAinput2 = "\\ Channel_2.txt";

string ICAinput3 = "\\ Channel_3.txt";

string ICAInputfile1Path = ICAInputfolderPrefix +

ICANumFile + ICAinput1;

string ICAInputfile2Path = ICAInputfolderPrefix +

ICANumFile + ICAinput2;

string ICAInputfile3Path = ICAInputfolderPrefix +

ICANumFile + ICAinput3;

/*it is not necessary to convert string to wstring ,

as fopen uses const char * to open file.

String can be converted to const

144 Appendix A. Code listing

char * using data() method */

// output folder creation

string ICAOutputfolderPrefix =

"\\ Storage Card\\ Eracle_FastICA \\Acq";

string ICAOutputFolder = ICAOutputfolderPrefix

+ ICANumFile;

std:: wstring ICAtemp0 = s2ws(ICAOutputFolder);

LPCWSTR ICAFolderResult = ICAtemp0.c_str ();

CreateDirectory(ICAFolderResult ,NULL);

// summary filestream string path

string ICAOutputSuffix = "\\ FastICA.txt";

string ICAOutputSummary = ICAOutputFolder

+ ICAOutputSuffix;

std:: wstring ICAtemp = s2ws(ICAOutputSummary);

LPCWSTR ICASummaryResult = ICAtemp.c_str ();

// Perform file and stream opening and check for errors

//open summary filestream

fastica_stream.open(ICASummaryResult , fstream ::out);

/*check for stream opening error*/

if (fastica_stream.fail ()){

MessageBox(NULL ,TEXT ("Error in opening filestream"),

TEXT("EracleFastICA"),MB_OK);

PostQuitMessage (0);

}

Mazinga1=fopen (ICAInputfile1Path.data(),"r");

Mazinga2=fopen (ICAInputfile2Path.data(),"r");

Mazinga3=fopen (ICAInputfile3Path.data(),"r");

if ((Mazinga1 ==NULL)||

(Mazinga2 ==NULL)||

A.3. Eracle FastICA 145

(Mazinga3 ==NULL)) {/* check for files opening error*/

MessageBox(NULL ,TEXT ("Error in opening input files"),

TEXT("EracleFastICA"),MB_OK);

exit (0);

}

/*data array declarations - one per channel

- and the "global" array tot*/

double ch1_data[DIM_CHANNEL];

double ch2_data[DIM_CHANNEL];

double ch3_data[DIM_CHANNEL];

double tot[DIM_CHANNEL *3];

//copy data from files to vectors

for(int k=0;k<DIM_CHANNEL;k++){

fscanf(Mazinga1 , "%lf", &ch1_data[k]);

fscanf(Mazinga2 , "%lf", &ch2_data[k]);

fscanf(Mazinga3 , "%lf", &ch3_data[k]);

}

/*check equal and fixed number of data acquired ,

exit if different */

if((sizeof(ch1_data)/ sizeof(double)!= DIM_CHANNEL)||

(sizeof(ch2_data)/ sizeof(double)!= DIM_CHANNEL)||

(sizeof(ch3_data)/ sizeof(double)!= DIM_CHANNEL)){

MessageBox(NULL ,TEXT ("Array size error"),

TEXT("EracleFastICA"),MB_OK);

exit (0);

}

//fill the tot vector

int i;

for(i=0;i<DIM_CHANNEL;i++){

tot[i]= ch1_data[i];

}

146 Appendix A. Code listing

for(i=DIM_CHANNEL;i<DIM_CHANNEL *2;i++){

tot[i]= ch2_data[i-DIM_CHANNEL];

}

for(i=DIM_CHANNEL *2;i<DIM_CHANNEL *3;i++){

tot[i]= ch3_data[i-DIM_CHANNEL *2];

}

/* matrix constructor: 3 rows (one per source)

and DIM_CHANNEL columns */

lti::matrix <double > source(3,DIM_CHANNEL ,tot),W,clean;

//for fastICA rows and cols must be transposed:

/*after transpose

each ROW is an acquisition(input vector),

so it contains one sample for each source

each COL is the set of data acquired by a

single channel

CH1 CH2 CH3

iV1 | | |

iV2 | | |

. | | | -->>> this is sourceT !!!

. | | |

. | | |

*/

lti::matrix <double > sourceT;

sourceT.transpose(source);

// +++

//*REMMEAN:

// compute the mean of each channel (column) and subtract

//it from the data

// before passing them to fastica */

double mean [3];

double temporale =0;

for(int j=0;j<3;j++){

A.3. Eracle FastICA 147

for(int i=0; i<DIM_CHANNEL; i++){

temporale = temporale+sourceT.at(i,j);

}

mean[j]= temporale/DIM_CHANNEL;

temporale = 0;

}

lti::matrix <double > media(1,3,mean);

const double init =1;

lti::matrix <double > ones(DIM_CHANNEL ,1,init);

lti::matrix <double > matmedia;

matmedia.multiply(ones ,media);

sourceT.subtract(matmedia);

// +++

lti::fastICA <double > pippo;

lti:: matrix <double > constTransfMatrix;

pippo.apply(sourceT ,clean);

pippo.getTransformMatrix(constTransfMatrix);

lti::vector <double > vec;

pippo.getOffsetVector(vec);

/* ***

mean correction of FastICA output

(inspired by MATLAB FastICA package)

uscita = W * unmixedsig + (W * mixedmean)

* ones (1, NumOfSampl);

** */

148 Appendix A. Code listing

lti::matrix <double > primoMembro;

/* primoMembro = W*unmixedsig

unmixedsig is FastICA output ,

it must be transposed in cleanT to be multiplied */

lti::matrix <double > cleanT;

cleanT.transpose(clean);

primoMembro.multiply(constTransfMatrix ,cleanT);

/*v=W*mixedmean:

before multiply b v contains the mean of

the input data (mixedmean);

after multilply b is the result of the operation */

lti::vector <double > v;

pippo.getOffsetVector(v);

constTransfMatrix.multiply(v);

/*v must be transposed to compute

the last multiply

(but there ’s no tranpose method

for vectors in LTILIB)*/

double appoggio [3];

for(int h=0;h<3;h++){ //"homemade" transpose

appoggio[h]=v.at(h);

}

/*as in LTILIB doesn’t exists a column vector ,

a 3x1 matrix is used

appoggioMatrice = (W * mixedmean)*/

lti::matrix <double > appoggioMatrice (3,1, appoggio);

/*a matrix full of ones , in MATLAB it would be:

unii=ones(1, DIM_CHANNEL)*/

const double inival =1;

A.3. Eracle FastICA 149

lti::matrix <double > unii(1,DIM_CHANNEL ,inival);

// secondoMembro = appoggioMatrice*unii

lti::matrix <double > secondoMembro;

secondoMembro.multiply(appoggioMatrice ,unii);

// uscita = primoMembro + secondoMembro

lti::matrix <double > uscita ,uscitaT;

uscita = primoMembro+secondoMembro;

// transposing matrix uscita , just for reading purpose

uscitaT.transpose(uscita);

/* *** */

// FastICA output file path string building

string IcaOutput1 = "\\ Clean1_ICA.txt";

string IcaOutput2 = "\\ Clean2_ICA.txt";

string IcaOutput3 = "\\ Clean3_ICA.txt";

string ICAInputFile1Path = ICAOutputFolder

+ IcaOutput1;

string ICAInputFile2Path = ICAOutputFolder

+ IcaOutput2;

string ICAInputFile3Path = ICAOutputFolder

+ IcaOutput3;

std:: wstring ICAtemp1 = s2ws(ICAInputFile1Path);

std:: wstring ICAtemp2 = s2ws(ICAInputFile2Path);

std:: wstring ICAtemp3 = s2ws(ICAInputFile3Path);

LPCWSTR ICAInputFile1Result = ICAtemp1.c_str ();

LPCWSTR ICAInputFile2Result = ICAtemp2.c_str ();

LPCWSTR ICAInputFile3Result = ICAtemp3.c_str ();

//files for EracleFastICA output

fstream clean1 ,clean2 ,clean3;

150 Appendix A. Code listing

clean1.open(ICAInputFile1Result ,fstream ::out);

clean2.open(ICAInputFile2Result ,fstream ::out);

clean3.open(ICAInputFile3Result ,fstream ::out);

//check for opening file errors

if((clean1.fail ())||(clean2.fail ())||(clean3.fail ())){

MessageBox(NULL ,TEXT ("Error in opening OUTPUT file"),

TEXT("EracleFastICA"),MB_OK);

}

/*split the clean matrix in 3 different file ,

that will be opened by EracleRMS ,

each sample is separated by a white space.

If input matrix is uscitaT -->>>>

the "mean corrected" values are printed

If input matrix is clean -->>>>

the raw values returned by apply are printed */

for(int r=0; r<DIM_CHANNEL; r++){

clean1 <<uscitaT.at(r,0);

clean1 <<" ";

clean2 <<uscitaT.at(r,1);

clean2 <<" ";

clean3 <<uscitaT.at(r,2);

clean3 <<" ";

}

/*close files and streams */

clean1.close ();

clean2.close ();

clean3.close ();

fastica_stream.close ();

fclose(Mazinga1);

fclose(Mazinga2);

fclose(Mazinga3);

//flush of ostringstream

ossICA.str("");

ossICA.clear ();

A.3. Eracle FastICA 151

indiceICA ++; //loop variable ++

pippo .~ fastICA ();

constTransfMatrix .~ matrix ();

sourceT .~ matrix ();

source .~ matrix ();

cleanT .~ matrix ();

clean .~ matrix ();

uscita .~ matrix ();

uscitaT .~ matrix ();

}

MessageBox(NULL , TEXT("End of FastICA"),

TEXT("EracleFastICA"), MB_OK);

return;

}

152 Appendix A. Code listing

A.4 Eracle RMS

/* **

EracleRMS.cpp:

*

For each acquisition opens the the three output files

generated by FastICAand compute RMS for each of them.

At the end of run there are 3* NUM_ACQ values of RMS

stored in file RMS.txt in Eracle_RMS.

These values will be used to train the NN.

*** */

#include "stdafx.h"

#include "Eracle.h"

#include <iostream >

#include <string >

#include <fstream >

#include <sstream >

#include "ltiMatrix.h"

#include "s2ws.h"

using namespace std;

#define MAX_LOADSTRING 100

// movement repetitions

#define NUM_ACQ 10

// number of sampled data

#define DIM_CHANNEL 1010

void EracleRMS (){

MessageBox(NULL , TEXT("Begin of RMS"),

TEXT("EracleRMS"), MB_OK);

int indiceRMS = 1;

ostringstream ossRMS;

// output filestream

A.4. Eracle RMS 153

fstream RootMeanSquare;

RootMeanSquare.open(

"\\ Storage Card\\ Eracle_RMS \\RMS.txt",

fstream ::out);

while(indiceRMS <= NUM_ACQ){

/*open files created by fastICA ,

read the formatted value (double)

and fill a matrix ,

one column for each channel */

string RMSInputPrefix =

"\\ Storage Card\\ Eracle_FastICA \\Acq";

ossRMS <<indiceRMS;

string RMSNumFile = ossRMS.str ();

string RMSInput1 = "\\ Clean1_ICA.txt";

string RMSInput2 = "\\ Clean2_ICA.txt";

string RMSInput3 = "\\ Clean3_ICA.txt";

string RMSInput1Path = RMSInputPrefix +

RMSNumFile + RMSInput1;

string RMSInput2Path = RMSInputPrefix +

RMSNumFile + RMSInput2;

string RMSInput3Path = RMSInputPrefix +

RMSNumFile + RMSInput3;

FILE * source1;

FILE * source2;

FILE * source3;

source1=fopen (RMSInput1Path.data(),"r");

source2=fopen (RMSInput2Path.data(),"r");

source3=fopen (RMSInput3Path.data(),"r");

/*check for files opening error*/

if ((source1 ==NULL)||

(source2 ==NULL)||

(source3 ==NULL)||

(RootMeanSquare.fail ())) {

MessageBox(NULL ,TEXT ("Error in opening input files"),

TEXT("EracleRMS"),MB_OK);

154 Appendix A. Code listing

}

/*one array for each source ,

and a global vector that will

be use to fill the matrix */

double source1_data[DIM_CHANNEL];

double source2_data[DIM_CHANNEL];

double source3_data[DIM_CHANNEL];

double source_tot[DIM_CHANNEL *3];

//copy data from files to vectors

for(int k=0;k<DIM_CHANNEL;k++){

fscanf(source1 , "%lf", &source1_data[k]);

fscanf(source2 , "%lf", &source2_data[k]);

fscanf(source3 , "%lf", &source3_data[k]);

}

/*check equal and fixed number

of data acquired , exit if different */

if((sizeof(source1_data)/ sizeof(double)!= DIM_CHANNEL)||

(sizeof(source2_data)/ sizeof(double)!= DIM_CHANNEL)||

(sizeof(source3_data)/ sizeof(double)!= DIM_CHANNEL)){

MessageBox(NULL ,TEXT ("Array size error"),

TEXT("EracleRMS"),MB_OK);

exit (0);

}

//fill the global vector

int i;

for(i=0;i<DIM_CHANNEL;i++){

source_tot[i]= source1_data[i];

}

for(i=DIM_CHANNEL;i<DIM_CHANNEL *2;i++){

source_tot[i]= source2_data[i-DIM_CHANNEL];

}

A.4. Eracle RMS 155

for(i=DIM_CHANNEL *2;i<DIM_CHANNEL *3;i++){

source_tot[i]= source3_data[i-DIM_CHANNEL *2];

}

/* matrix creation: 3 rows (one per source)

and DIM_CHANNEL column */

lti::matrix <double > clean_source (3,DIM_CHANNEL ,

source_tot);

/*apply the formula:

sqrt ((1/ DIM_CHANNEL)*SUM(i=0,i=DIM_CHANNEL)[Si^2])

for each column of the matrix

generated by EracleFastICA function.

The value of RMS are stored in a file ,

separated by a blank spaces */

double RMS;

double sumOfSquare =0;

for(int ch=0; ch <3;ch++){

for(int k=0;k<DIM_CHANNEL;k++){

sumOfSquare=sumOfSquare+

pow(clean_source.at(ch ,k),2);

}

RMS = sqrt(sumOfSquare/DIM_CHANNEL);

RootMeanSquare <<RMS *100;

RootMeanSquare <<" ";

RMS =0;

sumOfSquare =0;

}

156 Appendix A. Code listing

fclose(source1);

fclose(source2);

fclose(source3);

//flush of ostringstream

ossRMS.str("");

ossRMS.clear ();

indiceRMS ++; //loop variable ++

}

RootMeanSquare.close ();

MessageBox(NULL ,TEXT ("End of RMS calculation"),

TEXT("EracleRMS"),MB_OK);

return;

}

A.5. Eracle Neural Network Train 157

A.5 Eracle Neural Network Train

/* ***

EracleNeuralNetworkTRAIN.cpp:

*

Open the (number of movement , actually 6)

files in Eracle_NN

containing each NUM_ACQ *3 root mean square.

These values are employed to train an Artificial

Neural Network that will

be used to recognize the user’s movement.

The NN is saved in EracleNN in TrainedNN.dat

*** */

#include "stdafx.h"

#include "Eracle.h"

#include <iostream >

#include <string >

#include <fstream >

#include <sstream >

#include <ltiMLP.h>

#include <ltiLispStreamHandler.h>

#include "ltiRbf.h"

using namespace std;

#define MAX_LOADSTRING 100

// number of repetitions

#define NUM_ACQ 10

// number of samples

#define DIM_CHANNEL 1010

void EracleNeuralNetworkTRAIN (){

fstream nnTrain;

nnTrain.open("\\ Storage Card\\ Eracle_NN \\ nnTrain.txt",

fstream ::out);

/* (((1)))

open the 6 files with the movement RMS:*/

FILE* mov0;

158 Appendix A. Code listing

FILE* mov1;

FILE* mov2;

FILE* mov3;

FILE* mov4;

mov0=fopen("\\ Storage card\\ Eracle_NN

\\ RMSmov0.txt","r");

mov1=fopen("\\ Storage card\\ Eracle_NN

\\ RMSmov1.txt","r");

mov2=fopen("\\ Storage card\\ Eracle_NN

\\ RMSmov2.txt","r");

mov3=fopen("\\ Storage card\\ Eracle_NN

\\ RMSmov3.txt","r");

mov4=fopen("\\ Storage card\\ Eracle_NN

\\ RMSmov4.txt","r");

/* (((2)))

fill the global array reading from each file*/

// examples data array for training

double RMSglobal [((NUM_ACQ)*3)*5];

// answer data array for training

int RMSanswer [NUM_ACQ *5];

//fill each input vector with data from corresponding file

//((NUM_ACQ)*3) RMS for mov0

for(int k=0;k<((NUM_ACQ)*3);k++){

fscanf(mov0 , "%lf", &RMSglobal[k]);

}

//((NUM_ACQ)*3) RMS for mov1

for(int k=((NUM_ACQ)*3);k<(((NUM_ACQ)*3)*2);k++){

fscanf(mov1 , "%lf", &RMSglobal[k]);

}

//((NUM_ACQ)*3) RMS for mov2

for(int k=(((NUM_ACQ)*3)*2);k<(((NUM_ACQ)*3)*3);k++){

fscanf(mov2 , "%lf", &RMSglobal[k]);

}

A.5. Eracle Neural Network Train 159

//((NUM_ACQ)*3) RMS for mov3

for(int k=(((NUM_ACQ)*3)*3);k<(((NUM_ACQ)*3)*4);k++){

fscanf(mov3 , "%lf", &RMSglobal[k]);

}

//((NUM_ACQ)*3) RMS for mov4

for(int k=(((NUM_ACQ)*3)*4);k<(((NUM_ACQ)*3)*5);k++){

fscanf(mov4 , "%lf", &RMSglobal[k]);

}

// examples matrix for training

lti:: dmatrix train_matrix (5* NUM_ACQ ,3, RMSglobal);

//fill the answer training vector

int i;

// NUM_ACQ rms represent mov0

for(i=0; i<NUM_ACQ; i++)

RMSanswer[i]=0;

// NUM_ACQ rms represent mov1

for(i = NUM_ACQ; i<NUM_ACQ *2;i++)

RMSanswer[i]=1;

// NUM_ACQ rms represent mov2

for(i = NUM_ACQ *2; i<NUM_ACQ *3;i++)

RMSanswer[i]=2;

// NUM_ACQ rms represent mov3

for(i = NUM_ACQ *3; i<NUM_ACQ *4;i++)

RMSanswer[i]=3;

// NUM_ACQ rms represent mov4

for(i = NUM_ACQ *4; i<NUM_ACQ *5;i++)

RMSanswer[i]=4;

// answer vector for training

lti:: ivector train_results_vector (NUM_ACQ*5, RMSanswer);

// object NN

lti::MLP ann;

160 Appendix A. Code listing

//NN parametersss

lti::MLP:: parameters param;

lti::MLP:: sigmoidFunctor sigmoid (1);

param.setLayers (12, sigmoid);

param.trainingMode=lti::MLP:: parameters :: SteepestDescent;

param.maxNumberOfEpochs =2000;

param.learnrate =0.01;

//param.momentum =1.0;

//param.stopError =0.002;

ann.setParameters(param);

MessageBox(NULL ,TEXT("Begin of training"),

TEXT("EracleNeuralNetworkTRAIN"),MB_OK);

ann.train(train_matrix ,train_results_vector);

MessageBox(NULL ,TEXT("End of training"),

TEXT("EracleNeuralNetworkTRAIN"),MB_OK);

ofstream recNN ("\\ Storage Card\\ Eracle_NNù

\\ TrainedNN.dat");

lti:: lispStreamHandler lsh(recNN);

ann.write(lsh);

recNN.close ();

MessageBox(NULL ,TEXT("Trained NN saved"),

TEXT("EracleNeuralNetworkTRAIN"),MB_OK);

fclose(mov0);

fclose(mov1);

fclose(mov2);

fclose(mov3);

fclose(mov4);

// fclose(mov5);

return;

}

A.6. Eracle Neural Network Classify 161

A.6 Eracle Neural Network Classify

/* ***

EracleRecognizer.cpp:

*

read the previous data acquired corresponding to a

single movement to be classified.

Data are splitted in three files: Parser_Ch1.txt ,

Parser_Ch2.txt , Parser_Ch3.txt.

Then they are computed by fastica , the unmix matrix is

computed and directly used in fastica processing.

Fastica output vectors are used to calculate rms of the

input movement , then they are passed to the prevoiusly

trained NN , which classify the movement performed.

The ouput rms and the nn answer are saved in Rec.txt.

All handled files are stored in

\\ Storage Card\\ Eracle_Recognizer

*** */

#include "stdafx.h"

#include "s2ws.h"

#include <fstream >

#include "ltiVector.h"

#include "ltiMatrix.h"

#include "ltiFastICA.h"

#include <ltiMLP.h>

#include <ltiLispStreamHandler.h>

#include "ltiRbf.h"

#define MAX_LOADSTRING 100

#define DIM_CHANNEL 1010

using namespace std;

// variable for result index

int id;

void EracleRecognizer (){

162 Appendix A. Code listing

/*file stream for global function output */

fstream recognizer;

recognizer.open("\\ Storage Card\\ Eracle_Recognizer

\\Rec.txt",fstream ::out);

if(recognizer.fail ()){

MessageBox(NULL , TEXT("Error in opening output file"),

TEXT("eracleParser"), MB_OK);

exit (0);

}

/* (((1))) Data parser ************************************** */

int posD =0;

fstream Channel_1 , Channel_2 , Channel_3;

Channel_1.open("\\ Storage Card\\ Eracle_Recognizer

\\ Parser_Ch1.txt",fstream ::out);

Channel_2.open("\\ Storage Card\\ Eracle_Recognizer

\\ Parser_Ch2.txt",fstream ::out);

Channel_3.open("\\ Storage Card\\ Eracle_Recognizer

\\ Parser_Ch3.txt",fstream ::out);

if(Channel_1.fail ()|| Channel_2.fail ()|| Channel_3.fail ()){

MessageBox(NULL , TEXT("Error in opening parser output file"),

TEXT("eracleParser"), MB_OK);

exit (0);

}

//input stream to get data

fstream input_data;

/*the string that will contain all the emg

board ’s output (file DATA.txt)*/

string tot = "";

//open stream to read data file

input_data.open("\\ Storage Card\\ Eracle_Recognizer

\\DATI.txt", fstream ::in);

if(input_data.fail ()){

MessageBox(NULL , TEXT("Error in opening data input file"),

TEXT("eracleParser"), MB_OK);

exit (0);

A.6. Eracle Neural Network Classify 163

}

/*read all the data in input stream

and store them in string tot*/

while(input_data.good ()){

getline(input_data ,tot);

}

/* **

BEGIN OF PARSING *************************

** */

/* (((1))) replace newline and carriage return with spaces */

replace(tot.begin(), tot.end(), ’\r’, ’ ’);

replace(tot.begin(), tot.end(), ’\n’, ’ ’);

/* (((2))) find and erase spurious input

vector at the begin of data*/

//find the position of the first D

posD=tot.find("D");

//if file doesn’t begin with D...

if(posD !=0){

//... erase alla charachters before D

tot.erase(0,posD);

}

/* (((3))) delete the last input vector , to prevent

spurious data at the end of stream */

size_t ultimo;

size_t fine;

//get the position of last D...

164 Appendix A. Code listing

ultimo = tot.rfind("D");

//... and the position of the terminator

fine = tot.rfind("\0");

// delete last row , but don’t erase "\0" charachter

tot.erase(ultimo , fine -1);

/* (((4))) count the number of D

--> this is also the number of rows

--> this is also the number of "good" data acquired */

// numbers of "clean" data acquired

int conteggio = count(tot.begin(),tot.end(),’D’);

if(conteggio <1010){

MessageBox(NULL , TEXT("Pochi campioni"),

TEXT("eracleParser"), MB_OK);

exit (0);

}

/* (((5))) split string tot in three files ,

each column to a file , each data separated

by a blank spaces (included the last one)*/

size_t begin ,end;

//get the indeces of the first number in first row

begin = tot.find("D");

end = tot.find(" ");

int index;

int row_count =0;

//run until 1010 lines have been parsed

while(row_count < DIM_CHANNEL){

//for the first number indeces have already been acquired

if(row_count >0){

begin = tot.find("D",end);

A.6. Eracle Neural Network Classify 165

end = tot.find(" ",begin +1);

}

//first number of the triple --> to file Channel_1

for(index = static_cast <int >(begin)+2;

index <static_cast <int >(end); index ++){

Channel_1 <<tot[index];

}

Channel_1 <<" ";

// adjust indeces

begin = tot.find(" ",end);

end = tot.find(" ",begin +1);

// second number of the triple --> to file Channel_2

for(index = static_cast <int >(begin)+1;

index <static_cast <int >(end); index ++){

Channel_2 <<tot[index];

}

Channel_2 <<" ";

// adjust indeces

begin = tot.find(" ",end);

end = tot.find(" ",begin +1);

//last number of the triple --> to file Channel_3

for(index = static_cast <int >(begin)+1;

index <static_cast <int >(end); index ++){

Channel_3 <<tot[index];

}

Channel_3 <<" ";

row_count ++;

}

/*close all streams */

input_data.close ();

Channel_1.close ();

Channel_2.close ();

Channel_3.close ();

166 Appendix A. Code listing

/* (((2))) FASTICA *************************************** */

/*unmix matrix is computed on the (unique) movement

acquired and it is applied to the same set of data*/

lti:: matrix <double > constTransfMatrix;

lti::fastICA <double > pippo;

fstream fastica_stream; // stream for summary operations

/*input files; one for each channel ,

these files are produced by EracleParser () function */

FILE * Mazinga1;

FILE * Mazinga2;

FILE * Mazinga3;

//open summary filestream

fastica_stream.open("\\ Storage Card\\ Eracle_Recognizer

\\ FastICA.txt", fstream ::out);

/*check for stream opening error*/

if (fastica_stream.fail ()){

MessageBox(NULL ,TEXT ("Error in opening filestream"),

TEXT("EracleFastICA"),MB_OK);

exit (0);

}

Mazinga1=fopen ("\\ Storage Card\\ Eracle_Recognizer

\\ Parser_Ch1.txt","r");

Mazinga2=fopen ("\\ Storage Card\\ Eracle_Recognizer

\\ Parser_Ch2.txt","r");

Mazinga3=fopen ("\\ Storage Card\\ Eracle_Recognizer

\\ Parser_Ch3.txt","r");

if ((Mazinga1 ==NULL)||

(Mazinga2 ==NULL)||

(Mazinga3 ==NULL)) {/* check for files opening error*/

MessageBox(NULL ,TEXT ("Error in opening Fastica input file"),

TEXT("EracleFastICA"),MB_OK);

exit (0);

A.6. Eracle Neural Network Classify 167

}

/*data array declarations -

one per channel - and the "global" array tot*/

double ch1_data[DIM_CHANNEL];

double ch2_data[DIM_CHANNEL];

double ch3_data[DIM_CHANNEL];

double ICAtot[DIM_CHANNEL *3];

//copy data from files to vectors

for(int k=0;k<DIM_CHANNEL;k++){

fscanf(Mazinga1 , "%lf", &ch1_data[k]);

fscanf(Mazinga2 , "%lf", &ch2_data[k]);

fscanf(Mazinga3 , "%lf", &ch3_data[k]);

}

/*check equal and fixed number

of data acquired , exit if different */

if((sizeof(ch1_data)/ sizeof(double)!= DIM_CHANNEL)||

(sizeof(ch2_data)/ sizeof(double)!= DIM_CHANNEL)||

(sizeof(ch3_data)/ sizeof(double)!= DIM_CHANNEL)){

MessageBox(NULL ,TEXT ("Array size error"),

TEXT("EracleFastICA"),MB_OK);

exit (0);

}

//fill the tot vector

int i;

for(i=0;i<DIM_CHANNEL;i++){

ICAtot[i]= ch1_data[i];

}

for(i=DIM_CHANNEL;i<DIM_CHANNEL *2;i++){

ICAtot[i]= ch2_data[i-DIM_CHANNEL];

}

168 Appendix A. Code listing

for(i=DIM_CHANNEL *2;i<DIM_CHANNEL *3;i++){

ICAtot[i]= ch3_data[i-DIM_CHANNEL *2];

}

/* matrix creation: 3 rows (one per source)

and DIM_CHANNEL columns */

lti::matrix <double > source(3,DIM_CHANNEL ,ICAtot);

lti::matrixi <double > W,clean;

//for fastICA rows and cols must be transposed:

/*after transpose

each ROW is an acquisition(input vector),

so it contains one sample for each source

each COL is the set of data acquired

by a single channel

CH1 CH2 CH3

iV1 | | |

iV2 | | |

. | | |

. | | |

. | | |

*/

lti::matrix <double > sourceT;

sourceT.transpose(source);

// +++

//*REMMEAN:

// compute the mean of each channel (column)

//and subtract it from the data

// before passing them to fastica */

double mean [3];

double temporale =0;

for(int j=0;j<3;j++){

for(int i=0; i<DIM_CHANNEL; i++){

temporale = temporale+sourceT.at(i,j);

}

A.6. Eracle Neural Network Classify 169

mean[j]= temporale/DIM_CHANNEL;

temporale = 0;

}

lti::matrix <double > media(1,3,mean);

const double init =1;

lti::matrix <double > ones(DIM_CHANNEL ,1,init);

lti::matrix <double > matmedia;

matmedia.multiply(ones ,media);

sourceT.subtract(matmedia);

// +++

/* getOffsetVector returns the mean

of each channel of the input data*/

lti::vector <double > vec;

pippo.getOffsetVector(vec);

/* compute the transformation matrix

and apply it to the same set of data*/

if(!(pippo.apply(sourceT ,clean))){

MessageBox(NULL ,TEXT("Impossibile eseguire FASTICA"),

TEXT("Eracle REC"),MB_OK);

return;

}

pippo.getTransformMatrix(constTransfMatrix);

/* **

uscita = W * unmixedsig +

(W * mixedmean) * ones (1, NumOfSamples);

170 Appendix A. Code listing

** */

lti::matrix <double > primoMembro;

lti::matrix <double > cleanT;

cleanT.transpose(clean);

primoMembro.multiply(constTransfMatrix ,cleanT);

lti::vector <double > v;

pippo.getOffsetVector(v);

constTransfMatrix.multiply(v);

double appoggio [3];

for(int h=0;h<3;h++){ // traposta "casereccia"

appoggio[h]=v.at(h);

}

lti::matrix <double > appoggioMatrice (3,1, appoggio);

//unii=ones(1, DIM_CHANNEL)

const double inival =1;

lti::matrix <double > unii(1,DIM_CHANNEL ,inival);

lti::matrix <double > secondoMembro;

secondoMembro.multiply(appoggioMatrice ,unii);

// uscita = primoMembro + secondoMembro

lti::matrix <double > uscita ,uscitaT;

uscita = primoMembro+secondoMembro;

uscitaT.transpose(uscita);

/* ** */

fastica_stream.close ();

fclose(Mazinga1);

fclose(Mazinga2);

fclose(Mazinga3);

A.6. Eracle Neural Network Classify 171

/* (((4))) RMS dati *** */

/*apply the formula:

sqrt ((1/ DIM_CHANNEL)*SUM(i=0,i=DIM_CHANNEL)[Si^2])

for each column of the matrix generated by

EracleFastICA function.

The value of RMS are stored in a file ,

separated by a blank spaces */

/*RMS is computed on the MEAN CORRECTED data ,

if you want to use the output fastica data

just swap uscita with clean*/

double RMS;

double sumOfSquare =0;

double NN_class_data [3];

for(int ch=0; ch <3;ch++){

for(int k=0;k<DIM_CHANNEL;k++){

sumOfSquare=sumOfSquare+

pow(uscita.at(ch ,k),2);

}

RMS = sqrt(sumOfSquare/DIM_CHANNEL);

NN_class_data[ch]=RMS *100;

RMS =0;

sumOfSquare =0;

}

// MessageBox(NULL ,TEXT ("End of RMS calculation "),

TEXT("EracleRMS"),MB_OK);

172 Appendix A. Code listing

// MessageBox(NULL ,TEXT (" EracleRMS\nTUTTO OK"),

TEXT("EracleFastICA"),MB_OK);

/* (((4))) NN classify ** */

/* acquire the info of the previously trained NN*/

lti::MLP annc;

std:: ifstream inNN("\\ Storage Card\\ Eracle_NN

\\ TrainedNN.dat");

lti:: lispStreamHandler lsh_c(inNN);

if(!(annc.read(lsh_c))){

MessageBox(NULL ,TEXT("Error opening NN"),

TEXT("Eracle NN"),MB_OK);

exit (0);

}

inNN.close ();

// result generated by NN

lti::MLP:: outputVector risultato;

// vector containing the feature to classify

lti:: dvector feature_to_classify (3, NN_class_data);

recognizer <<feature_to_classify;

// classification with NN

if(!(annc.classify(feature_to_classify ,risultato))){

MessageBox(NULL ,TEXT("Impossibile classificare"),

TEXT("Eracle REC"),MB_OK);

}

recognizer <<risultato;

risultato.getId(risultato.getWinnerUnit (),id);

recognizer <<id;

A.6. Eracle Neural Network Classify 173

/* switch between possible classification results */

switch(id){

case 0:

MessageBox(NULL ,TEXT("Chiusura"),

TEXT("Eracle REC"),MB_OK);

break;

case 1:

MessageBox(NULL ,TEXT("Dorsi"),

TEXT("Eracle REC"),MB_OK);

break;

case 2:

MessageBox(NULL ,TEXT("Palm"),

TEXT("Eracle REC"),MB_OK);

break;

case 3:

MessageBox(NULL ,TEXT("Apertura"),

TEXT("Eracle REC"),MB_OK);

break;

case 4:

MessageBox(NULL ,TEXT("Pointer"),

TEXT("Eracle REC"),MB_OK);

break;

}

recognizer.close ();

id=0; //reset result index

annc.~MLP (); // destruct NN

feature_to_classify .~ vector ();

lsh_c .~ lispStreamHandler ();

return;

}

174 Appendix A. Code listing

Appendix B

Basic principles of EMG

Electromyogram (EMG) are biometric signals generated by muscles during a con-

traction.

The motor unit is the elementary functional unit of each muscle, it is composed

by a spinal motor neuron (called α-motoneuron) and by the corresponding muscle

fibers.

The motor command that activates the movement is generated by the brain and it

is transmitted through the motor neurons; once this signal is received by the cor-

responding muscular fibers a contraction is executed. The contraction generates a

magnetic field, whose temporal excursion is called activation potential. Figure B.1

depicts how the EMG signal is generated and trasmitted through the motor nerve.

The amplitude of EMG signal is directly proportional to the diameter of the mus-

cle.

The sum of the signals generated by all the muscular fiber of a motor unit is called

Motor Unit Action Potential. This value could easily be detected with an electrode,

either a needle one (mainly employed in biomedical field) or a surface electrode like

the ones used in electro stimulators.

The main drawback in using surface electrodes is that the signal amplitude and

the depth of the motor unit are inversely proportional. It means that the signal

recorded is mainly generated by the motor units located near the electrode, while

the activation potential of a muscle that is too far (or too deep) will be ignored.

This observation entails that the EMG signals sampled from the user’s skin are the

MUAP generated by the motor unit near the electrode.

This kind of biometric signals has a probability density that is close to Gaussian.

The typical frequency of EMG signal is between 15Hz and 150 Hz. The amplitude

of EMG signals depends on the muscle under observation; usually it is a value be-

tween 50µV and 20/30mV.

The main noise source in EMG signal processing is crosstalking. A single muscle

contraction is the result of several motor units working together, this means that

a single movement generates many MUAP. Crosstalking is the overlap of action

potential generated by different motor unit. In biomedical field this problem is

176 Appendix B. Basic principles of EMG

Figure B.1: Schema of EMG signal genesis. The motor command generated by the brain

is transmitted through the motor nerve. Once it reach the motor unit a contraction is

performed, that generates the activation potential.

avoided employing needle electrodes that are directly inserted into the muscle that

must be analyzed. However, needle electrodes are not suitable for an HCI applica-

tion, so they are replaced by surface electrodes; it entails that the signal processing

stage will provide the appropriate signal filtering to remove crosstalking.

Another noise source in EMG signal processing is due to the 50 Hz (or 60 Hz)

frequency interference from the mains. This kind of noise can’t be completely re-

moved, as its frequency is fully included in the EMG signal bandwidth.

EMG signal is also affected by physiological factors like muscle fatigue and temper-

ature in sampling area. This two aspects lead to a higher signal’s amplitude and a

shifting of signal’s bandwidth towards lower frequencies. As described in [52], there

are some corrective formulas that could be applied during the processing stage to

partially counteract the negative effects of these factors. In medical fields, EMG

Figure B.2: Positive Sharp Wave, this EMG pattern is usually indicative of muscular

injuries [20]

177

signal analysis is mainly employed to identify some muscular or nerve diseases. For

example, figure B.2 shows a pattern called Positive Sharp Wave: the signal has

a very sharp positive deflection off the baseline followed by a slower return to the

baseline. This pattern is usually indicative of muscular injuries and can easily be

detected when a muscle fiber is denervated.

“Success is not final. Failure is not fatal.

The courage to continue is what counts.”

