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Sommario

La complessità dei sistemi informatici è aumentata esponenzialmente negli

ultimi decenni. Ingegneri del software e programmatori fronteggiano ogni

giorno sistemi che richiedono parecchio tempo e notevoli conoscenze tec-

niche per essere ottimizzati al fine di offrire prestazioni ottimali. È ormai

evidente che non è più possibile contare esclusivamente sull’intervento

umano per regolare ed ottimizare un sistema: le condizioni di esecuzione

cambiano costantemente, rapidamente e in maniera imprevedibile. Per far

fronte a questi nuovi scenari è necessario che i sistemi siano in grado di

adattarsi automaticamente alle mutazioni dell’ambiente in cui sono inseriti.

Questa tesi analizza questa problematica di ricerca partendo da un approc-

cio radicalmente nuovo e ponendo le basi per un framework che permetta

a sistemi software ed hardware di autoregolarsi a runtime.

L’architettura qui presentata estende gli attuali sistemi tramite l’impiego

del loop Observe–Decide–Act (ODA); questo meccanismo fornisce la ca-

pacità di osservare stato e performance di un dato sistema, di decidere quali

modifiche pianificare al fine di ottimizzare determinate operazioni e di at-

tuare dette modifiche. L’analisi dello stato e delle performance del sistema

avviene attraverso l’uso di specifici componenti detti sensori, che raccol-

gono numerose informazioni relative al sistema; i cambiamenti vengono

invece concretizzati da moduli generalmente chiamati attuatori (o servizi);

infine, le decisioni vengono prese da uno specifico elemento chiamato de-

cision engine, che raccoglie tutte l’esperienza sensoriale e governa gli at-

xvi
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tuatori attraverso criteri che possono essere o semplicemente euristici o

guidati da un sofisticato agente di apprendimento a rinforzo (reinforcement

learning) in grado di adattarsi in maniera dinamica all’ambiente. L’utilizzo

dell’approccio ODA rappresenta uno dei primi passi verso la realizzazione

di sistemi in grado di reagire a situazioni sfavorevoli, imprevedibili e/o

sconosciute. Questi sistemi sono detti self-adaptive e fanno parte del cambi-

amento che sta portando verso sistemi goal-orientated; una della principali

proprietà di tali sistemi è che questi conoscono gli obiettivi da raggiungere

(ovvero, il cosa) ma potrebbero non sapere come raggiungerli o potrebbero

adattare la propria esecuzione in base al contesto specifico.

Questo lavoro fa parte del progetto di ricerca Computing In Heterogeneous

Autonomous aNd Goal-oriented Environments (CHANGE), intrapreso dal

Laboratorio di Micro-Architetture del Politecnico di Milano in collaborazione

con il Computer Science and Artificial Intelligence Laboratory (CSAIL) del

Massachusetts Institute of Technology (MIT), e si propone di presentare

l’architettura necessaria per costruire questo di sistemi self-adaptive. Il punto

di partenza è un componente di monitoring delle performance sviluppato

presso il CSAIL del MIT1 e noto come Application Heartbeats API [3, 4]. Gli

Application Heartbeats sono un semplice, leggero ma al tempo stesso potente

meccanismo in grado di misurare la performance rispetto a precisi obiettivi.

Sulla base di questo particolare tipo di sensori, abbiamo sviluppato un deci-

sion engine (chiamato Consensus Object), degli attuatori, e un’infrastruttura

1Questa ricerca ha anche collegamenti con altri progetti del CSAIL del MIT come

il Factored Operating System (fos), gli Smartlocks [1] e le tecniche di perforazione del

codice [2]; questi verranno descritti con maggiore dettaglio nel Capitolo 2 e nel Capitolo 3.

La tesi renderà esplicito quali parti sono stati realizzati dal gruppo del Massachusetts Insti-

tute of Technology e quali sono invece frutto del mio lavoro individuale. In particolare userò

i termini ‘we”, “our”, “I” e “my” in riferimento al lavoro che ho realizzato sotto la supervi-

sione del mio Relatore, il Professor Santambrogio. Attribuirò esplicitamente il lavoro svolto

dal gruppo di ricerca del CSAIL del MIT
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comunicativa per collegare questi componenti. In particolare abbiamo pro-

gettato e implementato: un’entità decisionale centralizzata, che raccoglie

tutte le informazioni riguardanti le performance di sistema e che è in grado

di decidere quali misure analizzare; i canali comunicativi attraverso i quali

le decisioni sono trasmesse; diversi elementi che provocano cambiamenti

nell’ambiente. Molta attenzione è stata dedicata all’algoritmo decisionale

che gestisce il comportamento del Consensus Object; in particolare, in se-

guito all’analisi di varie tecniche di machine learning, abbiamo deciso di

utilizzare l’apprendimento a rinforzo come base per il nostro decision en-

gine. Questo metodo non calcola a priori un modello dell’ambiente ma in-

teragisce con il sistema ottenendo rinforzi quando determinate condizioni

vengano verificate, ad esempio quando tutti gli obiettivi di performance

sono stati raggiunti; l’algoritmo impara dunque quali attuatori attivare sulla

base delle ricompense precedenti. Inoltre tutti i canali di comunicazione tra

elementi del sistema sono stati profondamente ottimizzati al fine di ridurre

l’overhead dell’intera infrastruttura.

Il contributo innovativo di questa tesi sta nel proporre un framework per

costruire sistemi adattivi che è:

• completo, perché implementa i concetti dell’ODA (monitoraggio, de-

cisione e attuazione)

• semplice ma al tempo stesso utilizzabile in scenari complessi

• leggero, come dimostrato nel Capitolo 5, poiché presenta basso over-

heard sia riguardo le applicazioni monitorate sia riguardo gli attua-

tori gestiti

• flessibile, grazie alle funzionalità di di machine learning.

Queste caratteristiche, unite a risultati sperimentali incoraggianti, dimostrano

che la soluzione proposta ha il potenziale per passare da enabling technology



xix

a vero e proprio prodotto funzionante.

La tesi è organizzata come segue. Nel Capitolo 1 viene descritto il contesto

di ricerca, viene fatta una panoramica delle discipline coinvolte e vengono

spiegati i concetti fondamentali dei sistemi adattivi. Il Capitolo 2 analizza

le ricerche relative all’argomento e descrive lo Stato dell’Arte dei sistemi

self-adaptive. Il loop ODA, insieme a tutte le sue componenti (sensori, at-

tuatori e decision angine), vengono spiegato in dettaglio. Vengono inoltre

trattati i diversi approcci all’inserimento dei sensori nelle applicazioni (sup-

ported e forced instrumentation). Il Capitolo 3 descrive nel dettaglio la

soluzione proposta. Partendo dalla relazione con il loop ODA delineiamo i

tratti principali del decision angine (Consensus Object) ed infine spieghiamo

i suoi canali di comunicazione e le sue capacità di machine learning. Inoltre

le interfacce con i sensori e con gli attuatori (quest’ultima è chiamata Ser-

vices API) vengono descritte e giustificate in dettaglio. Nel Capitolo 4 ven-

gono presentate le implementazioni: il Consensus Object, il suo algoritmo

di apprendimento a rinforzo, la Services API e una libreria self-adaptive

che realizza le funzionalità del Data Encryption Standard (DES). Sono in-

oltre elencate le linee guida per gli sviluppatori che volessero estendere

l’implementazione. I risultati dei test che valutano a livello sperimentale

l’implementazione del Consensus Object, della Services API e della libreria

self-adaptive sono invece presentate nel Capitolo 5. Qui vengono quan-

tificati gli overhead dell’implementazione dell’architettura self-adaptive.

Il Capitolo 6 conclude la tesi con alcune considerazioni relative al lavoro

svolto e a possibili sviluppi futuri.



Abstract

Nowadays the complexity of computing systems is skyrocketing. Program-

mers have to deal with extremely powerful computing systems that take

time and considerable skills to be instructed to perform at their best. It is

clear that it is not feasible to rely on human intervention to tune a system:

conditions change constantly, rapidly, and unpredictably. It would be desir-

able to have the system automatically adapt to the mutating environment.

This dissertation analyzes the stated problem, embraces a radically new ap-

proach, and lays the foundations of a framework that enables software and

hardware systems to adjust during execution.

The architecture presented in this paper augments current computing sys-

tems through the Observe–Decide–Act (ODA) loop mechanisms, which

provide the capability of observing the status and the performance of a given

system, of deciding which modifications to undertake in order to optimize

certain operations, and of enacting such modifications. Observation is car-

ried out through the use of specific components called sensors, which gather

various types of information about the system; actions are undertaken by

modules usually called actuators (or services); decisions are taken by a pre-

cise element called decision engine, which gathers all sensorial experience

and steers actuators through a policy that might be a simple heuristic or

a more sophisticated reinforcement learning agent capable of dynamically

adapting to the environment. The adoption of the ODA approach stands as

one of the first steps towards making it possible to build systems capable of

xx



xxi

reacting to unfavorable, unpredictable, and unknown situations. Such sys-

tems are called self-adaptive or autonomic systems and they are part of the

paradigm shift towards goal-orientation; one of their property in fact is that

they know their objectives (the what) but they might not know the way (the

how) to reach them or they might adapt their execution path depending on

the context.

This work introduces the complete architecture to build such types of sys-

tems in the context given by the Computing In Heterogeneous Autonomous

aNd Goal-oriented Environments (CHANGE) project, a research initiative

of the Laboratory of Micro-architectures at the Politecnico di Milano in col-

laboration with the Massachusetts Institute of Technology (MIT) Computer

Science and Artificial Intelligence Laboratory (CSAIL). The starting point

is an open-source performance monitoring facility developed at the MIT

CSAIL2 called Application Heartbeats API [3, 4]. The Application Heartbeats

are a simple, lightweight, yet powerful mechanism to supervise the per-

formance of given targets. Building on the top of that particular kind of

sensors, we have developed a decision engine (called Consensus Object), ac-

tuators, and the communication infrastructure to link such components.

In particular we have designed and implemented: a centralized decision

entity, which gathers all the information about system performance and

which is able to decide which measures to enact; the communication chan-

nels through which the decisions are conveyed; the elements that commit

changes to the environment in different possible ways. Much attention is

2My work has also some blander links with other MIT CSAIL project such as the

Factored Operating System (fos), Smartlocks [1], and Code Perforation techniques [2]. All of

these will be discussed in more detail in Chapter 2 and Chapter 3. In this dissertation I

will explicitly disambiguate the work carried out by the Massachusetts Institute of Technol-

ogy group and my individual work. In particular I will use the terms “we”, “our”, “I”,

and “my” to refer to the work I have done under the supervision of my advisor, Professor

Santambrogio. I will explicitly attribute work done by MIT CSAIL group
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provided to the decision algorithm that drives the behavior of the Consen-

sus Object; in particular, after analyzing several different machine learn-

ing techniques, we have chosen to embrace reinforcement learning as the

foundation for the decision engine. This approach does not precompute a

model of the environment; it interacts with the system obtaining rewards

when certain conditions are achieved (i.e., all the performance goals are

accomplished) and learning which actuators to enable from past rewards.

Moreover all the communication channels between elements of the system

have been deeply optimized in order to reduce the overhead of the whole

infrastructure.

The novel contribution of this thesis is to provide a framework to build

autonomic systems that is:

• complete, since it implements the ODA concepts (monitoring, deci-

sion, and enactment)

• simple yet capable of being used in complex scenarios

• lightweight, as demonstrated in Chapter 5, since it has a low over-

head both on the monitored applications and on the handled actua-

tors

• flexible, as a result of the machine learning capabilities, in order to be

able react to changing conditions.

Such characteristics, along with the encouraging experimental results, prove

that the proposed solution has the potential to be extended and to transi-

tion from an enabling technology to a working product.

The remainder of dissertation is organized as follows. In Chapter 1 the re-

search context is described and some of the basic concepts of autonomic

computing are introduced; moreover, an overview of the involved disci-

plines is given. Chapter 2 reviews related researches and describes the
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State-of-the-Art in self-adaptive systems. The ODA loop is explained in de-

tail as well as its components: sensors, actuators, and the decision engine.

Supported and forced instrumentation are presented to explain the differ-

ent approaches to inserting sensors in applications. Chapter 3 describes in

detail the proposed solution. In particular we start from the relation with

the ODA loop and then delineate the main traits of the decision engine

(Consensus Object): its machine learning capabilities and its communication

channels are explained. In particular, the interface with the sensors and the

interface with the actuators (called Services API) are traced and justified. In

Chapter 4 the implementations are described: the Consensus Object, its rein-

forcement learning algorithm, the Services API, and a self-adaptive library

that realizes the Data Encryption Standard (DES) encryption and decryp-

tion functionalities. Moreover guidelines for developers that might want to

extend the implementation are outlined. The results of the tests that experi-

mentally evaluate the implementations of the Consensus Object, the Services

API, and the self-adaptive library are presented in Chapter 5. The overhead

of the implemented self-adaptive architecture is quantified. Finally, Chap-

ter 6 ends this paper with some considerations on the work carried out and

proposing potential future works.



Chapter 1

Introduction

“...Bond. James Bond.”

Dr. No (1962)

This Chapter provides an introduction to the context in which this disserta-

tion is settled and to the basic concepts that will be referred to throughout

all the other Chapters.

1.1 Introduction to the problem

Nowadays computer systems are rapidly evolving and are becoming

increasingly complex. Complexity is upturning difficulties in keeping a

system maintainable. In fact, even before a certain product is launched,

some issues, such as bugs and security issues, might already be known. The

system has then to be updated in a fast cost-efficient manner. This drasti-

cally shortens the life-cycle of products and makes both hardware and soft-

ware subject to an unprecedented rate of change. There is a strong need to

make future computer systems not only easily upgradeable but also able

to:

1
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• reduce (ideally to zero) down-time caused by updates. At present

down-time is in fact reducing dependability and availability of sys-

tems. Some steps in this direction are represented by the work done

in K42 [5].

• be proactive and suggestive towards changes. The stimulus for an im-

provement or optimization should not only be driven by an external

entity but might be advocated by the system itself. This is a ferment

field of research that will be discussed in Section 2.

The problem has been approached from two different perspectives: hard-

ware and software adaptability. As we will see, these two approaches are

usually considered unrelated. Section 5 will show a novel fusion of the two.

1.1.1 Hardware adaptability

Hardware adaptability has been actively researched since the introduc-

tion of Field Programmable Gate Array (FPGA) at the beginning of the

1990’s [6]. FPGAs are usually part of hardware-software co-systems where

the computationally critical parts (also called kernels [7]) are implemented

in hardware to boost performance while the rest (usually controller-related

tasks) is implemented in software. The most studied and probably most

innovative feature of FPGAs is dynamic reconfigurability [8, 9]: FPGAs are

configured with one or more configuration files called bitstreams that de-

scribe a certain circuit to be implemented on the board.

While a complete reconfiguration usually interfere with functionality (for

this reason the service provided by the FPGA is suspended), it is also possi-

ble to only partially reconfigure the board. Partial Dynamic Reconfiguration

(PDR) enables reconfiguration of a part of the device at runtime without

disrupt of functionality [10].
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As outlined in [7] there is now a shift from reconfigurable architectures to au-

tonomic systems capable of configuring, healing, optimizing, and protecting

themselves. An instance of FPGA-based online adaptive system has been

described in [11] where PDR is used to change the architectural implemen-

tation with the aim of optimizing power consumption.

Although interesting, powerful, and extremely fast compared to software

solutions, FPGAs have not become as widely adopted as expected. Cases

of FPGA-based autonomic computing remain rare and it is contended that

radically different architectures will soon be available and predominant:

multi-cores are already extensively embraced and some expect silicons with

thousands of cores to make their appearance in the next ten years [12].

FPGAs are not the only examples of adaptable hardware. Current archi-

tectures offer several other mechanisms that alter the status of the hard-

ware and, consequently, performance. For instance, frequency scaling [13]

is a technique that reduces processor clock by some multiple of the max-

imum [14] with the aim of making the CPU consume less power (at the

expense of performance). Clock throttling is a technique that does not alter

the frequency yet it gates the clock signal for some number of cycles at regu-

lar intervals, slowing down the computation. While frequency scaling does

not require a change in voltage, Dynamic Voltage Scaling (DVS) [15] lowers

power consumption by lowering both the operating voltage and (propor-

tionally) frequency.

1.1.2 Software adaptability

Software is a key element of modern computing systems: it drives the

hardware and enables exploitation of its full power. The complexity of

software is growing exponentially [16]: programs are often developed by

several programmers, built of several inter-communicating components,
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and run in unknown and mostly unpredictable contexts. Even with mod-

ern testing techniques, this scenario often leads to software being deployed

with relevant issues. Bugs and security issues have to (or should be) patched

in a fast cost-efficient manner through update mechanisms built in the shipped

software. But this is only part of the whole problem: in fact, not only soft-

ware has to be polished and perfected after installation but it has to be

designed in order to accommodate needs and fulfill requirements that be-

come evident only time after deployment.

In order to understand this aspect it is useful to review the evolution of

software design.

Software engineering was born in the late 1960’s when the study of a series

of techniques to approach software design, development, and maintenance

arose [17]. The goal was desirable: being able to improve the quality of

products building them in a more systematic and disciplined way. For the

first time a solid alternative to the “code-and-fix” approach (Figure 1.1.a)

was proposed: creating software was not synonym for programming any-

more. In particular software started to be developed through the following

phases (also shown in Figure 1.1.b):

• Definition of stable requirements. It starts with the analysis of the context

in which the product will be used, the users that will make use of it,

and the needs to be fulfilled.

• Software design. It is usually driven by tools such as the Unified Mod-

eling Language (UML) and it is used to architect the software before

it is implemented: the purpose it to make the software maintainable,

modular, expandable, and reusable.

• Software implementation. It is the final step in engineering a software

and it is based on the given design. It usually consists of program-

ming and testing.
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It was indeed argued that a conscientious definition of requirements could

avoid radical changes in response to the demand for possibly simple new

features: this clearly was a big step towards better quality.

Yet, after just a few years, this approach became not satisfactory because it

was based on the arguable assumption that such thing as “stable require-

ments” existed [18]. When software products became something more than

static, monolithic, and centralized tools internal to organizations the so-

called closed world assumption [18] did not hold anymore. Evolution is in-

deed intrinsic to software [19] and for this reason software engineers must

design programs that can easily accommodate future changes. As outlined

by [20] programs must be designed for change.

If in the previous years one single change could have implied recompilation

and redeployment of the whole system, changes gradually became easier to

introduce, also thanks to object-oriented programming languages. Software

became modular, dynamic and distributed (also across networks). This has

been shown in Figure 1.1.c.

Yet the growth in the dynamism of change has not shown signs of stop-

ping any time soon. Even though most softwares developed in the past

few years are easily updatable and have little downtime, new application

and new domains demand more flexibility and performance. For instance,

VisaNet, a network that handles credit card payments, is updated an aver-

age of 20000 times a year yet it is always above 99.5% availability [21].

Software still requires a lot of (costly) manual intervention, it sometimes

still fails, and it has almost no knowledge about itself: the problem lays

in the open-loop structure [22] followed in the engineering of the software.

There is a wide consensus on the fact that new paradigms have to be ex-

plored and new frameworks have to be developed. Among those, autonomic

computing systems seem to be the response to most of the problems previ-

ously described [22]. They introduce a new framework based on the closed-
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loop approach, which, through a feedback loop, adjusts the software while

it is running (Figure 1.1.d). This kind of system needs to monitor itself and

its context, discern significant changes, determine how to react, and exe-

cute decisions. The life-cycle of self-adaptive softwares does not stop after

its development and initial setup but it indeed continues to handle changes

on several possible levels.

The evolution of software engineering as described in this section is delin-

eated in Figure 1.1.

1.2 Autonomic software systems

1.2.1 Terminology

Inspired by the lexicon embraced in [23] and by the willingness of not

introducing useless complexity in the adopted vocabulary, in this disser-

tation I will interchangeably use the terms “autonomic”, “self-adaptive”,

“self-managing”, and “organic”.

1.2.2 Motivation

As briefly described in Section 1.1.2, the primary motivation for auto-

nomic computing is rooted in the fact that the costs of handling the com-

plexity of software systems to achieve their goals is drastically increas-

ing [24]. In particular, traditional software has to face great challenges[22]

such as:

• complexity of management and maintainance: manual operations are

still required to supervise, update, fix,. . . a system.

• changing priorities and policies governing the goals
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Figure 1.1: The evolution of software engineering
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• resistance to unexpected conditions at runtime, which include:

– hardware failures

– software failures (such as severe bugs, security breaches, etc, . . . )

– contexts and conditions that are unknown to the software be-

cause they have not been considered in their design and imple-

mentation

The long-term goal is not only to build a system that does not have to be

stopped in order to be updated but also to make it autonomous and intelli-

gent enough to be able to trigger by itself the best possible changes.

We contend that software self-adaptability is becoming an important topic

of research and is gradually earning relevance. As delineated in Chap-

ter 2 there are many instances and contexts where self-adaptability is be-

ing investigated and implemented. In particular autonomic computing is

becoming increasingly common in large-scale systems. We envision simi-

lar characteristics spread also among less comprehensive systems, such as

consumer software.

We strongly believe that augmenting software with organic attribute will

lead to a new era of computing.

1.2.3 Definition and history

Several definition of self-adaptive software have been provided through

the years. Among the firsts:

• “Self-adaptive software evaluates its own behavior and changes be-

havior when the evaluation indicates that it is not accomplishing what

the software is intended to do, or when better functionality or perfor-

mance is possible” [25]

• “Self-adaptive software modifies its own behavior in response to changes

in its operating environment. By operating environment, we mean
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anything observable by the software system, such as end-user in-

put, external hardware devices and sensors, or program instrumen-

tation” [26]

But autonomic computing was well formalized only in 2001 by IBM with its

“Autonomic Computing Manifesto” [16], first presented by Dr. Paul Horn’s

during the National Academy of Engineering meeting of the same year.

Horn outlined eight key properties (“elements”) of autonomic computing

systems:

1. Self-Awareness or Introspection — the system must know itself in

detail: components, layers, statuses, connections, extents,. . . are nec-

essary parts to be monitored and kept under inspection.

2. Self-Reconfigurability — the system must be able to dynamically

change its behavior at runtime.

3. Continuous Self-Optimization — the system must never settle but it

must continuously monitor itself to discover possible optimizations.

4. Self-Healing Capabilities — in case of failures (caused by routine or

extraordinary events) the system must be able to recover.

5. Self-Protection Techniques — the system must detect, identify and

protect itself against various types of attacks to maintain overall sys-

tem security and integrity.

6. Context-Awareness — the system must know the environment (de-

fined as: everything in the operating environment that affects the sys-

tem’s properties [22]) and the context that surround its activity and

take it into consideration when acting.

7. Openness — the system must be able to interact with heterogeneous

components that might not be under its control.



10 CHAPTER 1. INTRODUCTION

8. Anticipation and Support — the system must be able to provide and

anticipate the correct status to handle future changes.

This “flat” description has evolved in the discussion provided by [22],

which proposes a hierarchical view of the so-called self-* properties (see also

Figure 1.2). Three levels are defined:

General level This level contains global properties of self-adaptive soft-

ware. Self-adaptiveness is a very general term that includes self-managing,

self-governing, self-maintenance, self-control, self-evaluating, and self-

organizing.

Major level These properties have been defined in accordance to biolog-

ical self-adaptation mechanisms. For this reason autonomic systems

are often said “organic”. An “organism” with such properties has to

adapt to the context (just like the human body does, for instance in

reaction to a temperature change) or the system itself. Those are the

properties of this level in detail, which have been described previ-

ously:

• Self-reconfiguring

• Self-healing

• Self-optimizing

• Self-protecting

Primitive level This level features the most basic properties onto which all

the others build on.

• Self-awareness

• Context-awareness

• (optional) Openness and anticipation
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Autonomic computing is now researched by several groups around

the world and has also witnessed considerable success in the commercial

realm [27, 28, 29, 30].

1.3 Involved disciplines

As highlighted by [22], autonomic computing is intrinsically interdis-

ciplinary. It does not belong to any particular field but it is indeed cross-

cutting research.

Some of the involved areas are:

• Software Engineering, which offers several concepts that can be used

in self-adaptive computing, such as: indicators to measure the quality

of the software, requirements engineering (formal methods might be

used to define and properties the system must satisfy), Component-

Based Software Engineering (CBSE) might be applied to obtain mod-

ularity and reusability, Service-Oriented Architecture (SOA) might be

employed to help the composition of loosely coupled service

• Artificial Intelligence might be applied to make self-adaptive softwares

flexible and able to learn from the experience. It might make soft-

ware able to recognize patterns and boost its ability to decide apply-

ing planning, reasoning, and learning techniques. For instance, goal-

oriented requirements might be achieved through the use of agent and

multi-agent systems; Machine Learning and Soft Computing might lend

the concept of the “achieving” approach, which learns the best way

to act analyzing the stream of sensed data; Reinforcement Learning has

already been used for dynamic action selection [31] and decentralized

collaborative self-adaptive software [32]; moreover decision theory and

decision theoretic planning (such as the Markov Decision Process and
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Bayesian Networks) can enhance the decision process.

• Control Theory lends the important notion of “feedback loop” that is

the base for the sense-plan-act loop described in Section 2.1.1.

• Network and Distributed Computing can contribute to self-adaptive com-

puting with the concepts and theory developed in highly-scattered

systems. P2P networks, policy-based management and Quality-of-Service

(QoS) management, virtualization, hearbeat and pulse monitoring [33] are

interesting ideas that might be reused in the context of autonomic

computing.

• Computer architecture is particularly involved when considering hardware-

based solution for adaptivity.



Chapter 2

State of the Art

“Nothing is wonderful when

you get used to it.”

Ed Howe

In this chapter we analyze the way autonomic computing systems are in

general implemented and what work has been carried out in the last few

years in this field. Many researched have developed interesting projects

that have some similarities with the work that will be presented in the next

chapters.

2.1 Characterizing autonomic computing systems

2.1.1 General concepts

In Figure 1.1.2 we have introduced the concept of closed-loop approach,

meaning that autonomic software executes and, at the same time, monitors

itself and the surrounding environment. This technique is used for multi-

ple reasons: for example, a certain condition might be checked periodically

and, if met, a certain action might be triggered; or maybe a certain opti-

14
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mization has been introduced and the systems want to inspect whether it

is fulfilling the expectations.

In general we can say that there are certain elements that are intrinsic to

autonomic computing systems:

Sensors They are the elements that gather the certain information about

the system and the environment. They usually transmit it (i.e.: to a

buffer, over the network, etc. . . ) and, before doing that, they some-

times also elaborate it.

Monitoring process It gathers information from different sensors. It might

preprocess the collected data in order to delineate patterns and dis-

cover indicators.

Detecting process It analyzes what has been gathered by the monitor and

discovers conditions, problems, etc. . . It basically determine when and

where a response is required.

Deciding process Given the results provided by the detector it chooses an

action to perform (it might stay idle). It basically determines what to

do and how to act.

Acting process Given the context it picks the most appropriate actuator. It

is in charge of translating actions into tasks for the actuators.

Actuators They are the components that actually perform a certain change

on the system.

These components form the loop shown in Figure 2.1. This description is

very general and it fits the case of a centralized implementation. A distributed

implementation has the same components but a different setup that poses

an incredibly vast and interesting research topic: reaching a reasonably near

optimal resolution in absence of a central entity. It is beyond the scope of
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Module

System

Environment

Sensors
Actuators

Figure 2.1: Self-adaptation loop

this dissertation to discuss and describe in detail the distributed case, which

is left as future work.

The loop in Figure 2.1 is usually called adaptation loop [22]. There are sev-

eral other names that can be used instead: MAPE-K loop [34] (shown in Fig-

ure 2.2), which stands for Monitoring, Analyzing, Planning and Executing

functions, that works thanks to a shared Knowledge-base; or Observe–Decide–

Act (ODA) loop. The three definitions (adaptation loop, Monitor, Analyze,

Plan, and Execute with Knowledge (MAPE-K), and ODA) will be considered

equivalent.
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2.1.2 Autonomic objects

This discussion leads to the concept of autonomic object, as expressed

in [35]. This notion unquestionably helps the modularization of an auto-

nomic computing system. An autonomic object exports at least four inter-

faces:

1. a control interface, which exposes sensors and actuators. It allows ex-

ternal entities to control and monitor the object.

2. an access interface, which regulates access to sensors and actuators in

order to enforce security. Users are assigned certain privileges de-

pending on the state of the object and on the role of users.

3. a rule interface, which makes it possible to add, remove, or edit rules.

A rule consists of a condition, an action (defined in terms of control

interface, e.g.: sensors and actuators) to be performed in case the con-

dition is fulfilled, and an action to be performed in case the condition

is not fulfilled.

4. one or more functional interfaces

2.1.3 Sensors

Design principles

Sensors always perturb (sometimes only slightly) the system that they

help to monitor [36]. For this reason an important principle is to minimize

the measurement overhead. Some other rules to keep in mind are:

• Sensors should be lightweight

• Sensors should be accessible (potentially remotely accessible)
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• Sensors should be reusable

Varieties of sensors

As outlined in many researches [37, 38] there are several types of sen-

sors:

sensors They are small, efficient pieces of code residing within the routine

being monitored [39]. There are different kinds of sensors:

tracing sensors They are usually implemented with one piece of code

that reside directly in the monitored application. They report

every single occurrence of an event within a certain interval of

time. This usually happens synchronously with the occurrence

of the event. Tracing sensors are used when all occurrences of

an event must be known or when actions must be triggered in

real-time following the manifestation of a certain event.

sampling sensors They are usually implemented with small piece of

code that reside directly in the monitored application. They col-

lect information at the request of the monitor. This usually hap-

pens asynchronously with the occurrence of the event. Sampling

is used when knowing all the occurrences of an event and react-

ing immediately to a manifestation are not necessary properties.

extended sensors These kind of sensors augment tracing or sampling

sensors with the capability of preprocessing, analyzing, and com-

puting results. They usually are used in less centralized scenar-

ios where the computation is spread and parallelized in order to

reduce the burden on the central monitor.

probes Probes slightly differ from all kinds of sensors that have been pre-

sented. They consist of two small, efficient pieces of code: one resides



20 CHAPTER 2. STATE OF THE ART

within the monitor and one within the routine being monitored [39].

The fact that probes are implemented as code fragments that reside in

the monitoring facility instead of the monitored application provides

at least three advantages over sensors:

• They might have a more general view of the system

• The monitored application code is unchanged so that informa-

tion to be probed can be dynamically defined at run-time

• Some researches show that program perturbation, compared to

sensors, is reduced [38]

2.1.4 Actuators

When a certain condition is met certain parts of the system might need

to be changed. For a change to be effective there must be a component who

knows what to modify and how to do that. Such elements are called actua-

tors.

As described in [22] there are a few aspects that can be involved in the

change performed by the actuator. The where and what aspects of the change

can be summarized by the following characteristics:

layer an actuator might affect one or more layers of the system.

functionality an actuator might affect one or more specific functionality of

the system.

granularity the degree of change might be fine or coarse. It might involve

whole components or smaller elements part of a component.

cost and impact Cost describes the impact on execution time, required re-

sources, and complexity of change while impact describes the scope
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of the repercussions. Depending on how much the cost and how big

the impact we can identify two major kind of adaptivity:

• Weak adaptation, which performs low-cost or limited-impact ac-

tions. Examples of weak adaptation are: modification of param-

eters, data caching, compressions, load balancing, change of al-

gorithm.

• Strong adaptation, which performs high-cost or extensive-impact

actions. Examples of strong adaptation are: replacement of whole

components, change of architecture, provision of additional re-

sources, redeployment of part of the system.

Monitoring involves obtaining and analyzing performance information from

one or more components of the system. Optimization involves using the in-

formation to affect either the application or the system. Some examples of

actions and actuators include:

• Just In Time (JIT) compiler optimizations [40]

• hot swapping operating system components [41, 42]

• dynamic update of an operating system [5]

• tuning of linear algebra [43, 44]

• redistributing application workloads

• selecting different algorithms based on input data [45] or on more

complex factors (such as availability of processors and memory band-

width) [46, 47]

• loop perforation [2]

• various parameters optimization: available memory, page size [48],

OS page replacement policy [49]
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• changing cache associativity

Even if we have explicitly divided sensing and acting, both activity usually

occur at the same time in order to constantly evaluate the system and the

effects of a change.

2.1.5 Characteristics of adaptation

The are several ways to embrace adaptation. The following lists, first

proposed by [22], outlines the major differences:

static versus dynamic decision making The decisions might be statically

defined (e.g.: encoded in a decision tree) or dynamically established

at runtime. The parameters that can be involved in a dynamic sce-

nario are: policies [50], rules [51], and QoS definitions [52, 53].

external versus internal adaptation Adaptation, in some cases, can be han-

dled entirely by the application itself. This approach is rarely flexible,

extensible, evolvable, and scalable. Adaptation often needs global in-

formation and for this reason an external approach is often adopted.

Moreover an external adaptation engine can be more easily reused.

This concept is shown in Figure 2.3.

making versus achieving adaptation Self-adaptivity can be introduced in

a system at development time, when the system is engineered, or

after deployment, through adaptive learning [16]. These situations

are referred to with the terms “making” and “achieving”, introduced

by [54]. The two approaches are not mutually exclusive.

close versus open adaptation Close adaptation has a fixed number of ac-

tions to be performed on the system while open adaptation provides

the possibility of introducing new behaviors and alternatives.
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Figure 2.3: Comparing internal and external adaptation

model-based versus free adaptation When the adaptation process is eval-

uating a change it might make hypothesis based on a model of the

environment and of the system. The model can be extracted in sev-

eral ways: queueing models [55], architectural models [56], domain-

specific models [57], etc. . . . Sometimes no model is needed and the

adaptation process simply knows the goals and the possible alter-

natives. An example of model-free reinforcement learning has been

shown in [32].

specific versus generic adaptation The adaptation engine might either ad-

dress only specific situations or applications or be more generic and

not focus on a restricted part of the system.

reactive versus proactive adaptation The adaptation engine might either

react after an event has happened or try to predict it and behave ac-

cordingly. In particular the proactive solution is particularly useful

when QoS is involved [53]. However many solutions still do not offer
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real-time monitoring with QoS guarantees [58, 59, 60].

continuous versus adaptive monitoring The monitoring facility might ei-

ther continuously observe the system or sample a few sensors and

enable full monitoring only when irregularities are detected

human-performed versus automated actuation Humans might be required

to perform some modification on the system. Obviously when the

system can actuate most of the changes by itself it becomes more

independent and, if trustworthy, more valuable. Manual interven-

tion is extremely common in the enterprise domain; many rich mon-

itoring solutions are available (i.e.: HP’s OpenView [61] and IBM’s

Tivoli [62]) but they still require humans to actuate the changes.

2.2 Monitoring and acting in autonomic systems

Autonomic systems as described above are based on the idea of moni-

toring and analyzing their performance and behaviors. Despite the rapid

evolution of programming models and computer systems, performance

analysis is still based on these steps [36]:

1. Application instrumentation, which enables, either manually or auto-

matically, sensors and probes on the application of interest

2. Performance data extraction, which captures data coming from all sen-

sors and probes

3. Analysis and visualization of extracted data

4. Reasoning about the extracted data and subsequent application opti-

mization
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In the last decades we have assisted to a shift from a posteriori to online

optimization. At first, applying (or actuating) a change on a system in or-

der to improve its performance required humans intervention and for this

reason it used to be called steering. Steering has a long history, especially

in the field of super-computers where a complex system had to be moni-

tored and managed along with its long running, resource intensive applica-

tions [63, 64]. With the intent of automating such changes, application steer-

ing has first evolved into auto-tuning: the controlled entity started to self

optimize at runtime adjusting statically defined parameters. Auto-tuning

has then evolved to support dynamically defined parameters, joining the

large family of autonomic application adaptation.

The scientific context has been the most exciting for this advancement since

it was the first to adopt parallel systems, which proved to be extremely hard

to tune. In this scenario, a good choice of parameters could really boost

performance. Moreover, the rising complexity, the always growing users

community, the diversity of applications, the number of radically different

platforms and architectures targeted for optimization, and the consequent

issues in portability and maintainability push toward the automatization

of optimizations [65]. For all these reasons parallel systems have long been

studied [66, 67] and many projects have been developed: Application Pro-

gramming Interfaces (APIs) to support both steering and autonomic mon-

itoring [35, 64], a dynamic global resource management system [68], an

adaptive application control of distributed applications [36], an instrumen-

tation language for specifying tunable parameters [65], etc. . . .

In this field there is now a trend towards applying all the experience gained

in the scientific field to consumer-level products.
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2.3 Instrumentation

One of the problem that is linked with the monitoring of a system is in-

strumentation. Instrumentation is the act of inserting either in the monitored

application or in the monitor the fragments of code that represent sensors

and probes. The term “instrumentation”, even if referred to the placement

of sensors and probes, will often implicitly implicate the presence of a sup-

porting monitoring architecture.

There are basically two approaches to instrumentation:

• supported instrumentation, where the executable is built with the pos-

sibility of executing statically or dynamically defined instrumenta-

tion code. It will be discussed in Section 2.3.3

• forced instrumentation, where the executable is unaware of the instru-

mentation which is pushed either statically or at runtime. It will be

discussed in Section 2.3.1

There are some projects that provide profiling without making use of instru-

mentation. Two well known examples are:

Oprofile [69] It collects system-wide profile information without requir-

ing any instrumentation (or any modification at all) to the compiled

executables. It is based on hardware counters and for this reason it

suffers the following shortcomings [7, 3, 4]:

1. restricted number of counters

2. sampling delay

3. lack of address profiling

4. even on modern system, impossibility of reacting to single events

5. low level view does not easily translate into high-level applica-

tion performance indicators
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dproc [70] It extends Linux’s /procwith an efficient, hierarchically-organizer,

cluster-wide, application-specific view of monitoring information about

both local and remote cluster nodes. Even if its implementation of-

fers high-performance it is not capable of meeting expectations for

usages like program steering and adaptation. dproc has also been

extended to become a highly-configurable QoS-capable monitoring

system [53].

2.3.1 Supported instrumentation

This kind of instrumentation is supported by the availability of an API.

Programmers place function calls (or code fragments) in the source code of

their applications; such snippets will call certain API functions with one of

the following purposes:

1. having a certain event logged

2. sending an “I am alive” signal more often called heartbeat or reflex

signal

3. asserting an expectation, for instance a performance expectation

Tracing infrastractures

In the past years the most common research projects provided an ar-

chitecture to log events. An example of this is relayfs [71], a kernel API to

transfer data from kernel to user space. Relayfs offers a lock-free implemen-

tation that scales well on multi-processor systems.

One of the first most-known tracing facility is the Linux Trace Toolkit (LTT)

[72] that helps recording and analyzing complete system behavior. Through
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LTT every system event is recorded, making it possible to analyze the func-

tioning of the system itself. LTT provides static instrumentation that causes

a non-zero (yet small) probe effect; it defines only a limited number of stat-

ically defined events and it cannot take arbitrary actions. Moreover the

events have fixed length and timestamp acquisition is inefficient [73].

Even if implemented efficiently (< 2.5% when observing core kernel events),

LTT has been outclassed by the K42 tracing facility. K42 [74] is an operat-

ing system developed by IBM and the University of Toronto since 1998.

K42 is open-source OS which targets 64-bit multiprocessor systems (espe-

cially PowerPC architectures). It uses an object-oriented design to achieve

good performance, scalability, customizability, and maintainability. K42 im-

plements each system resource (i.e., an open file or a running process) as

an object. Each object reference is stored in a global table, called Object

Translation Table (OTT), and this facilitates hot-swapping [42], since ev-

ery object can be changed on-the-fly. This enables dynamic reconfiguration

and adaptability of the system and, when combined with a kernel module

loader, supports dynamic update [5] and hot patching of the OS.

K42 features a tracing facility [73, 75] that, just like LTT, has statically de-

fined events. Yet it presents some more advanced characteristics, such as:

extreme scalability, variable size events, circular buffer to avoid overflows,

per-CPU buffer to perform efficiently on multi-processor systems, lock-less

implementation, monotonically increasing timestamp mechanism, events

classes, etc. . . . The K42 monitoring infrastructure is not considered safe be-

cause the integrity of traced data is not guaranteed.

DTrace [76] is probably the most advanced tracing technique available at

present. It has zero probe effect, it can dynamically instrument both user-

level and kernel-level code in a unified and completely safe way. Moreover

it is scalable and it supports highly customizable actions (which are de-
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scribed through a C-like language) at any given point of instrumentation.

DTrace has been included in three operating systems: Sun Solaris, FreeBSD,

and Mac OS X.

Assertions

Assertions augment tracing infrastructures creating a framework that

not only collects performance-related data but that also verifies whether

performance expectations have been met. Assertion-based projects in fact

usually provide an API to be used when programming the target applica-

tion: through such API users can describe their predictions and their hopes

about their application running behavior. For each assertion the runtime

system gathers the necessary data and calculates whether the assumption

is verified. In an autonomic scenario the system might change its configura-

tion in order to fulfill a certain assertion or it might change its configuration

if one or more expectations are not met.

An assertion-based framework is not a new concept: it has been employed

in a variety of older [77, 78] and newer projects (such as a self-healing

framework [79]).

One of the most prominent assertion-based project is the Performance Assertions

(PA) [80] system. PA was born from the need (also described in Section 2.2)

of innovating performance analysis techniques: manual reasoning about

raw performance data has proved to be tedious, difficult, error-prone, and

inadequate considering the scale and the complexity of modern systems.

For this reason PA has proposed a new methodology: programmers plant

their expectations directly in the source code and the runtime environment

gathers the necessary information to verify the assertions. Expressions can

contain an assortment of tokens that represent empirically measured per-

formance metrics, constants, variables, mathematical operations, a subset
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of intrinsic operations, and format specifiers. Responses to failed assertions

can take a number of different forms and are customizable through the

specification of a user-defined subroutine. PA is dynamic, (quite) portable,

and has a limited overhead on runtime execution.

2.3.2 Heartbeats

Many of the solutions presented before provide good flexibility in mon-

itoring a system but they do so at the expenses of simplicity and, some-

times, portability. Starting from this assumption the idea of simplifying

sensors, probes and assertions as much as possible was born; this concept

evolved into the Application Heartbeats (or, more simply, Heartbeats) [3, 4],

which are a portable, general method of monitoring an application’s actual

progress towards its goals.

This framework implements a simple yet extremely powerful monitoring

infrastructure (the API is made of a small set of functions that makes it

straightforward to use). Any application making use of its API has then a

standardized method to:

• assert its performance goals registering to the Heartbeats and specify-

ing a certain number of parameters: minimum and maximum heart

rate, size of the window of observation, size of the heartbeats history

buffer, and others.

• update at runtime the progress through the call to a function that sig-

nifies an heartbeat. The framework automatically updates all the nec-

essary information about the global heart rate, the windowed heart

rate and other internal information.

• monitor the progress of the execution. The calculated information is

made available to either external observers or the application itself
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Figure 2.4: Heartbeat API, the two adaptation scenarios: (a) self-optimization of an applica-

tion; (b) optimization of global parameters by an external observer in a setting with one or

more applications.

(as shown in Figure 2.4).

A typical example of use is a video encoder, which might want to be

able to deliver 35 frames per second. It then communicates this information

to an Heartbeat API function and it issues an heartbeat for every produced

frame, informing the framework of its progress. An external observer can

consequently improve (or reduce) performance through the modification

of some parameters, such as the number of cores assigned to the video en-

coder application.

As shown in Figure 2.4, if needed, the application can impersonate the ex-

ternal observer and monitor itself. Obviously a monitor that resides outside

of the application might have access to global information and parameters

that are unavailable inside of the application.

The Heartbeat API is thread-aware, meaning that applications can set their

performance goals either per-application, per-thread, or both.

The idea of “heartbeat” has its roots in Grid Computing[33], where pulses
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where used to constantly monitor the most crucial parts of a system through

the emission of a regular “I am alive” signal. The Application Heartbeat API

builds on this very simple mechanism, leaving untouched its simplicity,

lightness, and generality.

2.3.3 Forced instrumentation

Forced instrumentation is a general technique that brings instrumen-

tation to programs without recompiling them and, so, without requiring

access (or any modification at all) to the source code. It useful when the

source code itself is not available or when there is no willingness or re-

sources to rework it.

For this reason forced instrumentation is the only available option in case

we intend to retrofit old applications [81] with self-adaptive characteristics.

One example of forced instrumentation can be developed in the context of

the Application Heartbeat API (already described in Section 2.3.2), where it

might be desirable to instrument application that will not be reworked to

support the framework. Instrumentation might be automatized with the

use of Intel Pin [82]. This tool can inject arbitrary code (written in C or C++)

in arbitrary locations of an executables. Unlike other solutions, Pin does not

statically rewrite the executable with the instrumentation code but it rather

adds it dynamically while the software is running.

Pin’s approach has been ported in kernel-space by the KernInst framework [83,

84], which allows dynamic splicing of (almost) arbitrary code into an (al-

most) arbitrary location of an executing kernel (Solaris or Linux) without

recompilation. This framework work thanks to the kerninstd daemon,

which dynamically instruments the kernel, and to the /dev/kerninst

kernel module. In order to write a custom application that interact with

kerninstd, it is necessary to use the Kerninst C++ API. Kerninst has zero
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probe effect when disabled but it has higher overheads than the K42 tracing

facility [73] and it is considered “unsafe” [76] because it might cause fatal

errors (in fact it allows users to instrument routines that cannot be instru-

mented).

Dprobes is a project similar to KernInst and it brings dynamic instrumenta-

tion not only to the kernel but, virtually, to any executable. It has zero probe

effect when not enabled and it provides a language and a small virtual ma-

chine to execute actions in response to certain conditions. Even if DProbes

has shown to have some concerns about safety (i.e., invalid loads are han-

dled through an exception mechanism), the way dynamic instrumentation

is implemented proves to be lossy when a condition is hit simultaneously

on different CPUs. Moreover misemploying DProbes can lead to a system

crash. DProbes is mainly used as a (Linux) debugger through which soft-

ware probes are dynamically inserted into executing programs. When a

probe is fired, a user-written probe-handler is executed. DProbes is partic-

ularly useful in extreme conditions since it makes it possible to read all the

hardware registers, read/write some of them, and read/write any area in

the virtual address space that is currently in physical memory.

An analogous project is DynInst [85, 84], which aims at manipulating pro-

grams at runtime. DynInst is a C++ API that is used to attach to a program

and add new bits of code to it. The program being modified does not need

to be re-started, re-linked or re-compiled. The API also permits changing

subroutine calls or removing them from the application program. The pur-

pose of the DynInst API is to provide a machine independent interface to

permit the creation of tools and applications that use runtime code patch-

ing.

A relatively recent tool is the Performance Counter Subsystem (PCS), also

known as perf, that has been introduced in the Linux kernel version 2.6.31.
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perf aims at helping both kernel and user-space developers in improving

performance of their code, providing a range of mechanisms to determine

code portions that need to be changed and highlight bottlenecks in current

implementations. The PCS provides an abstraction of special performance

counter hardware registers available on most modern CPUs. These regis-

ters count the number of certain types of hardware events, such as exe-

cuted instructions, cache misses, mis-predicted branches, and so on. This

happens with a minimal impact on kernel and applications. These regis-

ters can also trigger interrupts when a threshold number of events have

passed and can thus be used to profile the code that runs on that CPU. In

the current release the x86 and PPC architectures are fully supported while

support for S390 and FRV is in the works.

Forced instrumentation can also be applied to web applications, just like

the case of AjaxScope [86], which parses and instruments JavaScript on-the-

fly before it is sent to users’ browsers. AjaxScope builds on the idea of in-

stant redeployment which is intrinsic to web applications (since every the

application is dispatched when the user opens it); in the extreme every sin-

gle user might have a different version of the application. This is particu-

larly useful for A/B testing, where some users are presented with “version

A” of the program and some others with “version B”, and for distributed

testing, where the burden of logging information for debugging purposes

is spread along all the users. This proves extremely useful to gain visibility

into errors occurring in users’ browsers that would otherwise remain un-

known to the developers. This move the debugging capability to the end-

user desktop, making it possible to obtain all the information that are avail-

able only at the moment of failure [87]. AjaxScope, being implemented as a

proxy server, does not require changes on the server-side and does not re-

quire installation of plug-ins on the end-user desktop. AjaxScope features

drill-down monitoring which is a technique that iteratively and dynamically



35 CHAPTER 2. STATE OF THE ART

analyzes the badly performing functions in order to isolate the causes be-

hind a potential malfunctioning. Static analysis might be employed as well

in similar situations: even if not as powerful as dynamic analysis, it is use-

ful to reduce sensors overhead removing some instrumentation points [88].

A statistical and dynamical approach might be adopted to diminish the bur-

den of dynamic analysis.

Other projects (in particular, BrowserShield [89] and CoreScript [90]) rewrite

JavaScript “on-the-fly” but with the different purpose of enforcing browser

security and safety properties: they might represent an important step in

the direction of the self-protecting property.

2.4 Adaptation engine

While almost all of the researches presented before address the prob-

lems of instrumenting an application with sensors and developing an ar-

chitecture that supports runtime dynamic changes, the engine that should

make decisions based on sensors data and should command the actuators

is not as defined.

Many different approaches have been followed and, in general, it seems

hard to design an engine that stay flexible over time. For this reason, AI-

related techniques are more and more often employed.

As described in Section 1.3 many different fields might contribute in the

creation of an adaptation engine. These are some of possible techniques

that might be adopted:

• the rule-based approach is very common [80, 35] and it allows for a

good degree of flexibility if the operating environment is well known

and can be described through rules. Rules guarantee a fairly deter-

ministic behavior and allow actions to be taken in response to the
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occurrence of an event.

• decision trees are generally more static and more hardly extendable

than rules but they are usually more efficiently evaluated at runtime.

• pattern-matching is an AI concept used [68] to make the program at-

tune to a context that is ever-changing yet is exhibiting some kind of

periodic behavior.

• reinforcement learning is a sub-area of machine learning that might be

used to implement the application as an agent aiming at maximizing

the long-term reward. Reinforcement learning has already been used

in some notable projects [32, 31].

• Fuzzy logic is known for working particularly well in the context of

conflicting goals and poorly understood optimization spaces [36].

• Game theory might also be used to implement a non-centralized sys-

tem.



Chapter 3

Proposed methodology

“No matter how big and touch a problem

may be, get rid of confusion by taking

one little step toward solution. Do something.”

George F. Nordenholt

“When I am working on a problem I never think about beauty.

I only think about how to solve the problem. But when

I have finished, if the solution is not beautiful, I know it is wrong.”

Buckminster Fuller

This Chapter provides a general description of autonomic systems and in-

troduces the proposed methodology. We present the design of a modular

and flexible decision engine capable of interacting with sensors, from which

various information about the system are observed, and actuators, which

can influence the environment in several different ways.

37
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3.1 Our vision

3.1.1 Overview

Related works show many examples of autonomic implementations:

most of them are stand-alone projects, in that they are not part of a com-

plete autonomic system.

Massachusetts Institute of Technology (MIT)’s Computer Science and Artificial

Intelligence Laboratory (CSAIL), along with the Politecnico di Milano, is work-

ing to create such complete system in the next few years. The vision is to

modify and extend a Linux distribution with the aim of obtaining an oper-

ating system aware of the applications’ performance goals and capable of

performing changes to itself both in user and kernel space. In this scenario

there are many components that are going to be affected:

Kernel-level actuators The kernel might be extended to support mecha-

nisms such as hot-swap [41, 42], which allows modules to be swapped

at runtime.

User-space libraries New libraries might be added in order to support

performance monitoring. The Application Heartbeats [3, 4] are a no-

table example of implemented frameworks, which can be used as the

backbone of the monitoring infrastructure.

System libraries In order to improve performance some user-level libraries

might be ported to the kernel. Obviously this would make them less

portable.

User-level services There exist several software components that have the

capability of improving and reducing performance (i.e., CPU frequency

scaling). Such actuators, which are extremely different and numerous,

suggest a standardization of their control interface.
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Application They might have to be modified to make use of the new sys-

tem libraries. There exist approaches (described in Chapter 2) that

can be used to avoid to update any single application in the system:

instead, monitoring sensors might be injected either statically or at

runtime.

3.1.2 A system based on observing, deciding, and acting

In the theoretical view, an autonomic system can be called such when it

implements the ODA model, described in Figure 2.1.1. In such model three

roles have to be defined and will be described in the following three Sec-

tions.

The general realization of this system is shown in Figure 3.1.

Observe

Observation is what makes a system aware of itself. Through observa-

tion a system understands its state, its current progress, and its possible

future actions. This introduces at least three levels of awareness:

1. awareness through the data gathered by sensors

2. awareness of the availability and potential of actuators

3. awareness of the possible targets of actions

Since the aim of the autonomic system is the improvement of applications

performance, there needs to be a monitoring infrastructure that gathers the

necessary data and fulfills the first kind of awareness described above. To

keep track of performance the Application Heartbeats (already described in

Chapter 2) seem today as the best possible choice: it is a simple yet pow-

erful framework that allows software components (such as applications) to
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assert performance goals and keep track of the progress.

Other options, such as Autopilot [36] (an infrastructure for dynamic tun-

ing of heterogeneous system), Harmony [68] (an infrastructure to efficiently

execute parallel applications in large-scale, dynamic environments), and

Orio [91] (extensible annotation-based tuning system which triggers low

level performance optimizations depending on the annotations present in

the source code) have been considered but either aim at enterprise environ-

ments or are not as portable and as flexible as desired.

Regarding the second type of awareness described above, there needs to be

a way for the system to find the available actuators and understand their

potential in terms of system-wide or application-specific effect. Currently

a similar mechanism has not been implemented; yet it will be necessary to

introduce it for the autonomic system to be complete.

Similarly, the possible targets aimed at by the actuators must be defined:

such information might change dynamically and a mechanisms for deter-

mining them at runtime must be developed in order to provide autonomic

capabilities.

Decide

The decision engine stands at the center of the ODA loop. It is the ele-

ment that exploits the awareness given by the observation mechanisms to

elaborate a plan for future behavior. The aim is to improve performance

as much as possible making each software component achieve its perfor-

mance goals.

In particular, the decision engine: determines the monitored applications;

gathers the information coming from one or more of them; if necessary, up-

dates the list of available actuators; analyzes the performance-related data

in order to understand whether to enact a correction policy; possibly de-
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cides which actuators to activate or modify; submits the final plan to the

actuators.

The role of the decision engine has not been implemented at present; yet it

will be necessary to introduce it for the autonomic system to be complete.

Act

Once a strategy has been decided, it must be enacted. There are many

kinds of actuators that might be available and that might affect perfor-

mance in different ways: some might affect performance, accuracy, or both;

some might impact on the whole system while others might target one or

more applications; some might require changes in the application while

others operate without the target being aware.

For instance: Unix niceness enhances performance leaving accuracy intact

while techniques such as loop perforation enhance performance altering ac-

curacy, frequency scaling affects performance of the whole system while loop

perforation can target a single application, and so on.

In an autonomic system we can define two main categories of actuators:

Blind Actuators This kind of actuators enact their actions without know-

ing the actual effect on the system

Conscious Actuators This kind of actuators have an feedback mechanism

to be aware of the results of their action
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Figure 3.1: Consensus Object role: (1) dynamically update the list of available actuators and

possible targets; (2) decide which actuator to enable on which target
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3.2 Consensus Object: design and surrounding archi-

tecture

3.2.1 The need for a Consensus Object

Section 3.1.2 describes the general autonomic architecture and high-

lights what still has to be implemented.

Those are the components that have to be created to have a complete auto-

nomic architecture:

• A mechanism to discover and dynamically update availability and

characteristics of actuators.

• A mechanism to discover and dynamically update the possible tar-

gets aimed at by the actuators.

• A central element that: (1) analyzes data coming from the applica-

tions, (2) decides which applications need to be targeted, (3) chooses

which actuators to activate or to modify, and (4) submits the plans to

the actuators.

• A standardized interface to easily interact with different actuators.

This dissertation aims at making the first steps in the direction of complete

autonomic environments. In this context we believe that a central element

is needed not just to “conclude” the system but also to orchestrate the var-

ious services that would otherwise run independently and, possibly, with

very few coordination.

The aim of this Chapter is to design the architecture of a system made of a

decision engine, a set of services, the interface to the services, and a mech-

anism to discover new actuators.
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3.2.2 Terminology

This Section presents some crucial definitions. Such terminology is ex-

tremely important and will be used throughout this dissertation.

System All the software and hardware components currently in use.

Thread It is an executable element contained inside a process. Multiple

threads can exist within the same process; in such case they share

resources (i.e., memory), while different processes are independent.

The thread is the atomic entity in an operating system that can be

given CPU time.

Application An application is a piece of software written to accomplish a

specific task.

Process A process is an instance of an application; it might be composed

of several threads that execute in parallel.

Monitored Process A process that is making one or more entities of the

system aware of its performance goals and actual progress. This is

possible, for instance, adopting the Application Heartbeats. Monitored

Process are what has so far been called targets in that their perfor-

mance is altered by actuators.

Service It is an extension of what has so far been called actuator. Not only

does it represent a component capable of performing changes on one

or more applications or on the system (affecting their performance)

but it also includes the interface to interact with the decision engine

and with the application.

Consensus object It is what has so far been called decision engine. It has a

number of roles:

• It reads the heartbeats coming from one or more applications
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• It has a mechanisms to retrieve a list of currently available ser-

vices; it also is able of updating such list at runtime

• It features a mechanism to choose which services should be used

on which terms

Adaptive object Any component in the system that operates through an

ODA loop.

In the context where applications set their performance goals, the Consen-

sus Object orchestrates the available service boosting (or reducing) perfor-

mance in order to make it possible to achieve the given goals.

3.2.3 Execution scenario

It is possible to envision two different scenarios, where one is the natu-

ral evolution of the other:

A. One application (a) and multiple service (si with 1 6 i 6 n)

B. Multiple applications (aj with 1 6 j 6 m) and multiple services (si with

1 6 i 6 n)

Other scenarios such as one application and one service or multiple applica-

tions and one service are special cases of A and B. Within this dissertation

we will start our analysis from A and we will mainly focus on such sce-

nario. We will try to extend the findings to B. The adaptive framework is

designed to support multiple applications and multiple services from the

very beginning. Nevertheless opposite goals or scarcity of resources might

make it impossible to reach the given aims: in these scenarios the proposed

methodology will try to maximize the number of applications that are in-

side the desired heart rate; unfortunately there will be no guarantees that

the correct balance of resources among applications will be reached.
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3.2.4 A non-centralized approach

The Consensus Object represents a centralized approach: it is the cen-

tral element that gathers all the performance information coming from the

applications and coordinates services. Although it represents a single point

of failure, it is the only approach that allows to have a global overview of

the system performance. Moreover, through “smart” decision engine algo-

rithms, it can really boost performance learning the effects of each service

from experience. As a last consideration we would like to say that the Con-

sensus Object will be designed in a way that, in case of crash, the whole

system can keep on running almost normally. For this reason the services

will be very independent in many aspects and this makes it possible for

them to run also after the Consensus Object has abnormally quit. This char-

acteristic is known as mitigation of the single point of failure.

An alternative to the centralized approach is a game-theory-like scenario

where each service acts independently but can collaborate and communi-

cate with other services in order to try to reach an optimal solution. This

scenarios is certainly much more complex and currently seems overly elab-

orate to be implemented effectively. For this reason the centralized ap-

proach has been embraced and it has been chosen to develop a first imple-

mentation of a complete autonomic system. The game-theory-like scenario

has not been discarded but it might be considered again once the imple-

mentation of the centralized version is complete: we believe that this is the

necessary approach to understand which of the two actually works better.

3.2.5 A consideration about performance goals retrieval

In such scenario one uncertainty might arise: who establishes perfor-

mance goals? And who is in charge of updating the progress towards such

goals?
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The proposed solution makes use of the Application Heartbeats: this means

that each application that adopts this framework autonomously sets the

goals and updates the progress. This solution is perfectly reasonable since

only the application knows what its goals are and when it has finished the

computation of a fraction of information.

One might raise the potential problem of applications that deceive the sys-

tem with intentionally wrong information. This might happen if the appli-

cation wants as much resources as possible.

Even though this is not an impossible situation, in our opinion it is not an

issue because of the following:

• issuing less heartbeats, or providing an impossibly high performance

goal defeats the purpose of self-adaptive computing

• the role of the Consensus Object is to mediate resources among pro-

cesses; for this reason enough resources can usually be guaranteed

even when one of the processes is particularly demanding

• even in current non-autonomic systems a similar argument might be

raised; in fact, a process can create hundreds or thousands of threads,

can fork hundreds or thousands of times, or it can “nice” itself to

obtain as much resources as possible

In response to these potential issue we have developed Pacemaker, which is

tool based on Intel’s Pin. It analyzes the execution patterns of a given pro-

cess, finding the loops where most of the execution time is spent; it then

injects the code to produce heartbeats, making the given application (even

if closed-source) heartbeats-capable. This way it is possible to circumvent

the issue of an application issuing fraudulent heartbeats.
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3.2.6 Services

There are several different elements that can affect performance on a

system. Such elements usually come in different forms and bring different

consequences. This Sections presents a list of possible services and pro-

poses a first classification.

Application “knobs” They are parameters in an application that can be

changed, causing an alteration in performance. An example is the

number of threads: there is not a best value overall but, depending on

the load of the system and on the availability of computational cores,

a wisely chosen value can improve performance. This usually is an

application-specific optimization.

Application implementations Many applications make use of certain al-

gorithms to carry out their duties; depending on the scenario a differ-

ent implementation might lead to better results. For this reason a way

to enhance performance could consist in changing the implementa-

tions of a certain algorithm. A new implementation of the swapping

algorithms certainly needs to take into account the experience with

K42 [42, 74, 92, 93]. This usually is an application-specific optimiza-

tion.

Core allocation Under modern operating systems it is possible to force a

given process to be run only on certain processors or cores. Ideally,

when each process is coupled to a certain core and when the number

of cores is sufficiently high, there would be no need for time sharing

among processes. This optimization is enabled on a per-application

basis.

Memory allocation The core allocation service is particularly useful when

used on processes that are CPU-bound or CPU-intensive. There exist
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another category of processes that requires, instead of processing re-

source, memory. Such programs are said memory-bound or memory-

intensive: in order to be optimized they require memory to be allo-

cated easily and efficiently. This optimization is enabled on a per-

application basis.

Niceness adjusting Modifying the niceness (which is the priority of a pro-

cess) can enhance or reduce performance of a given application. This

optimization is enabled on a per-application basis.

Locks Changing the policies on the management of locks might also affect

performance , as shown in [1].

Frequency scaling It is a widely popular service that reduces processor

clock frequency slowing down the computation on the entire system.

When using such optimization it is of course necessary to take into

account its global effect.

Dynamic perforation Some optimizations increase performance to the detri-

ment of accuracy of calculation. For instance, this is the case with

dynamic loop perforation [2]. This optimization is enabled on a per-

application basis.

Those service can be classified in the simplest possible way: using the no-

tion of application-awareness. Two categories emerge:

• services that can be enabled without the application being aware of

them. Most of the services listed above are categorized this way. Ser-

vices belonging to this category are: application implementations, core

allocation, niceness adjusting, locks, frequency scaling, dynamic perforation.

• services that require the program to be aware of them. At present

the only service that has been identified to be part of this category is

represented by the application “knobs”.



50 CHAPTER 3. PROPOSED METHODOLOGY

One might not understand because application implementations are part of

the first category. These two definitions will become straightforward once

the communication infrastructure is analyzed in Section 3.2.7.

3.2.7 Communication infrastracture

In order to understand the communication infrastructure it is necessary

to highlight the information flows (which will be called FN from now on)

that have to take place in this autonomic system

F1. the Consensus Object has to know which applications make available

their performance goals and their progress towards them

F2. the Consensus Object has to know about the heart rate of the application

F3. the Consensus Object has to know which services are available

F4. the Consensus Object has to control the services

F5. the application has to advertise the parameters (application knobs) that

it intends to expose

F6. each service has its own way to actuate a change. Some involve the

communication of some kind of information back to the application;

in the application knobs example the values of one or more parameters

has to be communicated.

F7. possible implementations of a functionality must be known to some

component in the system

The described information has to be delivered in order for the auto-

nomic system to be effective. Flows F1 and F2 will be described in Sec-

tion 3.2.7. Flows F3 and F4 are delivered through apposite interfaces which

will be discussed in Section 3.2.7. Flows F5, F6, and F7 can be delivered
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Figure 3.2: General concept behind informations flows F1, F2, F3, F4, and F6 in a multi-

service and multi-application scenario

introducing two libraries (Implementations library and Parameters API) that

will be discussed in Section 3.2.8.

Information flows F1, F2, F3, F4, and F6 are shown in Figure 3.2 (F5 and F7

are not shown because they require concepts that will be introduced only

later).

Monitored applications information flows

For an application to be able to communicate its goals two steps have

to be performed:

1. the Consensus Object has to become aware of the fact that one or more

processes are making use of the Application Heartbeats to set their goal

and update their progress; this is possible thanks to F1



52 CHAPTER 3. PROPOSED METHODOLOGY

2. the Consensus Object has to be able to access the information recorded

through the Application Heartbeats; this is possible thanks to F2

F1 is also known as application registration and it might be implemented ex-

ploiting the fact that, for each application that makes use of the framework,

the Applications Heartbeats create a temporary file that is deleted when the

process either terminates or unregisters from the Applications Heartbeats.

F2 is straightforward since the Applications Heartbeats share a memory seg-

ment where data is stored and makes it possible to access such information

with an apposite set of functions: through them it is possible to set an “heart

rate monitor” that enables the Consensus Object to read the collected data

and statistics.

Service registration and control interface

Any given service can become active only after two steps are performed:

1. the service must advertise its existence to the Consensus Object

2. the service must implement a standard interface in order to receive

commands from the Consensus Object

In the two following Sections these two steps will be thoroughly explained.

Service registration The Consensus Object has to be aware of the services

that are available in the system and it also has to know a few information

to characterize them. It should in fact know the main traits of the service,

such as: name, granularity (whether it affects the whole system or can tar-

get single applications), and so on. In order to exchange this preliminary

information a common location must be defined. Given that:

• the Consensus Object and the services run as separate process
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• their startup order is not known (we do not assume the Consensus

Object to be already running when one or more services start)

• the PID of the Consensus Object and the services are not known a priori

it is necessary to hard-code in both the Consensus Object and the service a

common location. This can be accomplished exploiting files or named pipes:

for instance, in a folder one file per each available service might be writ-

ten (similarly to what also happens in the Applications Heartbeats for the

monitored applications); or a named pipe might be used to write and read

available services.

Through this preliminary communication channel the service might inform

the Consensus Object of its name, PID, and all the information needed to es-

tablish a new channel where to exchange control directions. The chosen

solution should be flexible in that it should work independently from the

startup order of the Consensus Object and the services: files and pipes seem

to be a good answer since the service advertises its existence right after

startup. The Consensus Object periodically reads from it and updates the

list of available services. If the Consensus Object has not started already it

will read the list right after its startup.

The registration mechanism is identical among each service: such charac-

teristic is necessary to keep the implementation as modular, expandable,

and flexible as possible.

Service interface Registration is necessary to establish the communica-

tion channel through which the Consensus Object controls the service. Such

channel might be arranged as a shared memory segment. In this scenario

the initial communication should be used to exchange the key to be used

to access the shared memory segment, which has already been allocated

by the service. When the Consensus Object needs to control the service it
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Figure 3.3: Service registration and service interface

simply writes to such segment, specifying a high-level command and a

target. Examples of commands might be increase_performance and

decrease_performance or enable_service and disable_service.

An example of target might be the Process Identifier (PID) of a process,

which has to be affected by the service.

The PID has to be communicated because the service, in most cases, will

be very general and might target different processes in different ways. For

instance, dynamic perforation might be used on a process and not used on

others. Obviously, this kind of information is not needed in case the service

has an impact on the whole system.

Each service, regardless of the kind of optimization it performs, is treated

in the same way by the Consensus Object, which commands the service

through high-level commands. This way the definition of service remains

particularly general and allows a great degree of modularity: future services

can be implemented without necessarily updating the Consensus Object.

Figure 3.3 shows what was explained in this Section.
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3.2.8 Autonomic libraries

Information flows F5, F6, and F7 can be explained after a short premise.

One of the purposes of autonomic computing is to reduce the burden on

programmers, hiding some of the complexity they would have to deal with

if they had to implement a self-adaptive system from scratch. Some possi-

ble uses of autonomic computing seem particularly promising: for instance,

the capability of self-tuning some crucial parameter of the system (i.e., the

number of threads in an application); or the capability of choosing at run-

time the best implementation of a given functionality.

These two examples should be made available to the programmer with the

least effort on his or her side. Our vision is to provide such functionali-

ties introducing two libraries: the Implementations library and the Parameters

API. Following this approach, newly built applications can make use of

them and easily become part of the autonomic system.

Libraries are services themselves. In order to make the optimal choice they

have to communicate with a central entity, the Consensus Object, that has a

global view on the system. For this reason both the libraries register to the

Consensus Object and implement the service interface. The Consensus Object

commands will then be translated in meaningful parameters or in a possi-

ble implementation switch.

Implementations Library is a general term to refer to a library that exposes

some functionalities and has the capability of switching among implemen-

tations. Suppose an application needs to sort a very big set: instead of writ-

ing the code to perform such action the programmer might rely on an ex-

ternal library (that obviously exposes the required methods). Since there

are many algorithms that order a set and they all perform differently, it

would be desirable to have the library automatically pick the best one. Ob-

viously abstracting such complexity from the programmer is highly advan-

tageous. Yet, for a correct choice of the implementation the library must
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have data regarding performance. For this to be possible it has to open a

channel with the Consensus Object, register as a “normal” service, receive

the commands, and obtain the necessary information about performance

exploiting the heart rate monitor. The Consensus Object will then control the

library just like it would do with any other service, through high-level com-

mands. The library knows the available implementations (F7 is then totally

internal to the library) and, given such information, picks the best one.

The mechanism that handles the change of implementation is called hot-

swap. Hot-swap can be defined as the dynamic insertion and removal of

code in running systems. It usually consists of two pieces:

• Interpositioning, which involves inserting additional components be-

tween existing ones; such components usually assist the transition.

• Replacement, which allows an active component to be switched with

another component while the system is running, and while applica-

tions are using the resource managed by the component. This allows

components suited to a particular environment to be switched as con-

ditions change and allows new upgraded components to replace ex-

isting ones.

Hot-swap is a technique that has been widely discussed in recent research

studies, especially those concerning the K42 Operating System [42, 74, 92,

93, 73]. Its aims can be numerous: security patches, bug fixes, introduction

of additional system monitoring, testing, and so on. In our work we will

make use of hot-swap only to deal with implementation changes.

The whole K42 makes an extensive use of object-oriented technologies and

each resource is managed as an object instance. Each object in K42 is mapped

in a particular table known as OTT. Such table is the basis for hot-swap since

simply replacing the reference to an object makes it possible to change the

implementation of the given object. Yet there are many aspects that have to
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be taken into account to ensure that the transition is smooth and guarantees

data integrity. For this to be possible K42 researches have identified three

essential issues:

Quiescent state Before it is possible to hot-swap the involved components

must be brought into a safe state. The swap can only be done when

the component is not currently being used. One way to achieve a

quiescent state is to require all clients of the component to acquire

a reader-writer lock in read mode before any call to the component.

However, this would certainly add overhead for the common case

and the lock could not be part of the component itself.

State transfer When it is safe to perform the hot-swap, the system has to

decide what state needs to be transferred and how to transfer it to the

new component. Such transferral should not only be safe but also as

efficient as possible.

References swap In case the swapped element is referred by its clients (for

instance, to allow bidirectional communication), the system has to

know how to swap all of the references held by the clients of the com-

ponent so that the references refer to the new component. In a system

built around a single, fully typed language (for instance, Java), this

could be done using the same infrastructure used for the implemen-

tation of the garbage collector. However, this might prove to be pro-

hibitively expensive when dealing with few components switches.

An alternative would be to partition a hot-swappable component into

a front-end component and a back-end component, where the front-end

component is referenced (and invoked) by all the clients, and its only

function is to to forward requests to the back-end component. There

would then be only a single reference (inside the front-end compo-

nent) to the back-end component that would require to be changed



59 CHAPTER 3. PROPOSED METHODOLOGY

when a component is swapped. This kind of implementation seems

reasonable but it of course adds extra overhead to the common case.

K42’s proposed methodology is then based on the following steps:

1. instantiate the replacement component

2. establish a quiescent state for the component to be replaced

3. transfer state from the old component to the new component

4. swap the new component replacing all references

5. deallocate the old component

A simple representation of this procedure is shown in Figure 3.5.

An example of Implementations library has been described, implemented,

and tested as part of this work: as it will be described in Section 4.2, the

context of use provides the opportunity of simplifying the swap mecha-

nism making use of a shared data structure and thus moving away from

the more general case.

Similarly the Parameters Library is an API to expose certain parameters to

have them controlled by an external entity. Since it is not advisable that

the Consensus Object knows every possible parameter (and the effect that

each of them can have on the system), the library will simply register to the

Consensus Object as a service and implement the service interface to be con-

trolled by the Consensus Object. It will then translate high-level Consensus

Object commands into changes in the parameters. F5 is then a flow going

from the application to the library and F6 is going in the opposite direction.

Figure 3.3 shows the interaction between the Consensus Object and the two

proposed libraries. Figure 3.6 summarizes what has been discussed so far:

for each information flow identified above a possible implementation is

given.
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3.3 Decision engine

The Consensus Object has the responsibility of deciding which services

to activate on a given target. It should also be able to decide when to dis-

able a service. The Consensus Object does not know which is the potential

of each service (i.e., , how much a given service can improve performance)

and, more in general, it does not have a thorough description of the ser-

vice characteristics. The Consensus Object at most knows whether the ser-

vice can improve performance (in such case it is an UP service), decrease

performance (in such case it is an DOWN service), or both (in such case

it is an UPDOWN service). This means that, at least at the beginning of

the execution, all services are equal to the Consensus Object. The ideal al-

gorithm would have to evince from past behavior what services are most

appropriate in a certain situation. This would of course make it easier and
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transparent to the services to identify services clashes, caused, for instance,

by a contention on resources.

Such “smart” algorithm would have deep roots in Machine Learning tech-

niques and would certainly requires quite a big effort to develop. Since the

focus of this dissertation is on developing the infrastructure for a complete

autonomic system, we have first implemented a simple decision engine

based on a heuristic; we have then designed and implemented an substitu-

tive algorithm that is more complex, flexible, and capable of learning from

experience.

3.3.1 Decision tree

The first algorithm that has been designed and implemented is based on

a simple set of rules: we believe that it works well in the base case and help

us to deliver not a finished product but an enabling technology that can be

used as the foundation for future projects. The functioning of the algorithm

is based on a static decision tree (shown below):

• The Consensus Object goes through all the available processes; please

note that, as explained in previous Sections, this implementation of

the Consensus Object is multi-application aware but it does not make

any particular consideration when more than one application is mon-

itored. This means that in the multi-application scenario an optimal

solution is not guaranteed.

• When an application is under-performing (or over-performing), all

the available services are scanned to see whether there exists at least

one that can be enabled (or disabled) to make performance return in

the application’s range of heart rate. If it exists, the Consensus Object

sends an appropriate command to it.
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There exist several types of commands that the Consensus Object can issue:

ON Turns the service on. The service usually starts its action and also starts

monitoring the heart rate in order to try to make its action conciliate

with the obtained results

OFF Turns the service off.

DOWN_BY (and UP_BY) They are commands that might be useful in the

multi-application scenario. The purpose of DOWN_BY, for instance,

is to ask the service to reduce its action. This might be useful to either

make the service release resources or make it intentionally underper-

form to reach a global optimum. In fact, when multiple applications

are running, some applications might not be able to reach their goals:

in this case one application might have to be penalized in order to

make the others closer to their minimum heart rate. The way this

commands work is by forcing the service to believe that the heart

rate goals has been reduced by a certain percentage.

Is the current heart rate between min and max?

No

Is it below min?

No

Pick a DOWN/UPDOWN service

Yes

Pick a UP/UPDOWN service

Yes

Wait and retry
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3.3.2 Reinforcement learning

Machine learning is an extremely wide field and it has given birth to

many techniques that contribute to making current computing systems ca-

pable of interacting and learning from the surrounding environment. Such

techniques include, for instance, supervised learning algorithms, which work

by trying to mimic the training set; the given training input is indeed used

to infer a general policy for generating outputs. An example of a supervised

learning algorithm might be the prediction of house prices in a certain city;

in this case the training set would be a made of examples of house prices

(associated to certain characteristics needed to infer the model).

On the other hand unsupervised learning algorithms are able to gain knowl-

edge about the environment without being explicitly guided by a training

set; the algorithms in this category infer a general policy from observation,

not from examples. An instance of a unsupervised learning algorithm could

be the clustering of data in order to classify different kinds of elements.

A different approach is given by reinforcement learning, which discovers

the best actions to undertake through evaluation of the performance. Re-

inforcement learning differs from supervised learning because no right or

wrong answers are given: the learning process is guided only through a

reward function that indicates when the agent is doing well or when it is

performing poorly. For instance, if we were considering the control system

for an inverse pendulum, initially we might not know the “correct” actions

not to make it fall; in this case the reward function might give the robot

positive rewards for standing still or moving forward and backward, and

negative rewards for falling over. The algorithm will then figure out how

to choose actions over time so as to obtain large rewards. Reinforcement

learning has been successfully applied to many problems in many differ-

ent fields and we believe it might suit the self-aware self-adaptive context.

We start by defining the Markov Decision Process (MDP), which is a funda-
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mental formalism to understand reinforcement learning. A MDP is a tuple

(S, A, {Psa}, γ, R), where:

• S is the set of states. It is important that the state includes both infor-

mation about current sensors measurements and past “memories”.

While it is of course not required that the state represents everything

about the environment, information about past observations might

be retained to improve the quality of decisions. In short, “we don’t

fault an agent for not knowing something that matters, but only for

having known something and then forgotten it” [94].

• A is the set of actions

• {Psa} define the probability of shifting from a state s to a state s’ when

a certain action a is taken. Basically {Psa} gives the distribution over

what states we will transition to if we take action a in state s

• γ ∈ [0, 1) is the discount factor

The dynamics of a MDP proceed this way: an initial state s0 ∈ S is picked

and some action a0 ∈ A is chosen; after taking the action the state will tran-

sition (following the distribution probability defined by {Psa}) to a new

state s1. From here a new action a1 is chosen, and so on. This can be de-

scribed by the sequence:

s0
a0−→ s1

a1−→ s2
a2−→ ... (3.1)

Whenever a new state is reached, a reward might be given to the learn-

ing agent. The reward accumulated over all the states transition can be ex-

pressed as:

R(s0,a0) + γR(s1,a1) + γ
2R(s2,a2) + ... (3.2)

Since we aim at optimizing the obtained reward we might say that we want

to maximize this quantity:

E[R(s0,a0) + γR(s1,a1) + γ
2R(s2,a2) + ...] (3.3)
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Some important definitions are:

• A policy is a function π : S 7→ A that maps states into actions

• The state-value function for policy π, known as Vπ(s), is the expected

sum of rewards (discounted by the factor γ) received from starting

from state s and then following the policy π

• The action-value function for policy π, known as Qπ(s,a), is the ex-

pected value of the sum of rewards (discounted by γ) starting from a

state s, taking action a, and then following policy π

• given a policy π, its state-value function satisfies the Bellman equation,

which states that Vπ is made of two components: the immediate re-

ward and the expected sum of future discounted rewards

Vπ(s) = R(s) + γ
∑
s ′∈S

Psπ(s
′)Vπ(s ′) (3.4)

• the optimal state-value function is defined as:

V∗(s) = max
π
Vπ(s) (3.5)

which is the best possible expected sum of discounted rewards

• the optimal policy is defined as:

π∗(s) = arg max
a∈A

∑
s ′∈S

Psa(s
′)V∗(s ′) (3.6)

Given the problem described in the previous sections we can make the fol-

lowing considerations:

• the states S are given by the current performance states of applications

(i.e., above performance, below performance, in range, and so on) and

by the current states of services (i.e., service S1 is globally enabled,

service S2 is enabled only on a certain application, and so on)
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• the actions A are all the possible activation/deactivation of services

either globally or on a specific application. Please note that the set of

available actions depends on the current state since, for instance, if

a service is already enabled on a certain target, it might only be dis-

abled. Moreover it might be necessary to consider a null action which

represents the decision of not taking any action

• the transition probabilities {Psa} are not known and they have to be

estimated at runtime

• a balance between exploration (choosing actions almost randomly in

order to discover potential benefits) and exploitation (choosing actions

that in the past have brought high rewards) has to be reached. Two

methods are typically used:

ε-greedy With probability ε this algorithm chooses to explore in-

stead of exploit; exploration actions are chosen randomly and

are all given the same probability

Softmax Each action has a probability of being chosen that is propor-

tional to the value of the action-value

• the reward might be given by a function of the performance of appli-

cations

In this context the R-learning [95] algorithm seems to fit particularly well

our problem. R-learning has the following characteristics:

• it is part of the Temporal Difference algorithms family, which works

without needing a model of the environment

• it is an off-policy algorithm, which means that the policy used to gen-

erate behavior (known as behavior policy) might be unrelated to the

policy that is evaluated and improved (known as estimation policy)
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• it does not divide experience into episodes, allowing for continuous

learning (even when terminal states are reached). This also means

that there is no need to discount

• the behavior policy can either be ε-greedy of Softmax; in our imple-

mentation we have chosen Softmax

The pseudo code of the algorithm is given below:

1 I n i t i a l i z e Q( s , a )

2 I n i t i a l i z e rho

3 Repeat f o r e v e r :

4 s <− current s a t e

5 choose a c t i o n a in s using behavior po l i cy ( softmax )

6 take a c t i o n a , observe r and s ’

7 Q( s , a ) <− Q( s , a ) + alpha [ r − rho + max +

8 max Q( s ’ , a ’ ) − Q( s , a ) ]

9 I f Q( s , a ) = max Q( s , a ) then :

10 rho <− rho + b [ r − rho + max Q( s ’ , a ’ )

11 − max Q( s , a ) ]

Listing 3.1: Pseudo code for the R-learning algorithm

3.3.3 Decision policies

An important topic that has not been raised in previous Sections is the

need for good decision policies that should drive both the Consensus Object

and the services. In fact there are many decisions that can be taken either

with an heuristic or with a more elaborated calculation.

The core allocator example is certainly emblematic. When performance drops

under a certain threshold (i.e., the minimum heart rate specified by the

application) it is needed to decide how to react to improve performance.

To increase performance more cores could be allocated to the application;

unfortunately the new number of cores assigned to the application is not
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Figure 3.7: The API that gathers decision policies

straightforward. It might be enough to allocate one core in addition to the

ones already allocated; yet maybe the decision policy might exploit what is

known from the control theory and use a PID controller.

It seems reasonable to gather all these decision policies in an additional API

that the Consensus Object and services can access. Figure 3.7 illustrates the

idea.



Chapter 4

Proposed Implementation

“When the solution is simple,

God is answering.”

Albert Einstein

In this Chapter the proposed implementation will be thoroughly described.

First of all, an example of Implementations Library will be outlined. Then,

more details on the Consensus Object and Services API will be provided.

4.1 Implementation considerations

Throughout this Chapter some principles will be constant in every im-

plemented program. Whenever possible the realizations will be as modu-

lar, extensible, flexible, portable, and maintainable as possible.

70
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4.2 Data Encryption Standard (DES): an example of

Implementations Library

This Section presents an FPGA-based implementation of an autonomic

system which features several self-* properties: self-awareness, self-reconfigurability,

and self-optimization.

4.2.1 General description

This implementation of an FPGA-based self-aware adaptive comput-

ing system blends techniques developed in different research fields, such

as monitoring, decision making, and self adapting. The chosen approach

merges the potential brought by reconfigurable hardware with the state-

of-the-art in performance assertions, monitoring, and adaptation: FPGAs

offer tremendous computational power while the possibility of running an

operating system on top of it makes it possible to observe performance and

take actions that can involve both software and hardware adaptation.

We have developed a mixed hardware/software system that monitors per-

formance through apposite software components while providing both hard-

ware and software implementations of the same functionality.

The system is in charge of choosing at runtime among the set of possible

implementations (hardware or software among the available implementa-

tions) according to different criteria, such as expected performance, avail-

able area (set of resources) on the FPGA, input data type and size, function-

alities already implemented and available as hardware components.

The purpose of the proposed architecture is to encrypt data using the DES

algorithm as fast as possible. For this to be possible the system must be

aware of the possible paths of executions and must choose not only with

the static information that it might have but also with the total set of dy-
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namic (calculated at runtime) data and statistics. A complete ODA-based

(refer to Section 2.1.1 for more information) system was designed:

• observation is carried out through the Application Heartbeats

• decisions are taken through a simple adaptation engine, which is fed

with the data gather through the Heartbeats

• actions are obtained through the hot-swap of the available implemen-

tations

In particular the system features two different implementations of the DES

algorithm: a software and a hardware implementation.

The three ODA phases have been implemented within the proposed sys-

tem, by using different software libraries. Figure 4.1 presents the overall

structure of the proposed system.

Adaptive Hardware Architecture

Operating system (Linux-based)

Heartbeats API

FPGA Architecture

Implementation
Switch Service

Hardware 
implementation(s)

Software 
implementation(s)

Application

Device Driver

System
Figure 4.1: Self-Aware Adaptive computing system
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4.2.2 Implementation Switch Service

In the presented implementation the component capable of analyzing

the data gathered through the Heartbeats, taking decisions, and performing

actions is called Implementation Switch Service (ISS). It queries the Applica-

tion Heartbeats framework to have knowledge of the progress of the execu-

tion and obtain an overall history of the heart rate. Fed with such informa-

tion, the decision mechanism chooses at runtime the best implementation

to use in accordance to given constraints (such as the need to avoid oscilla-

tions) and goals (such as the desired heart rate).

The need for a dynamic choice between available implementations is given

by the fact that the system is live and lives in an unpredictable environment:

for such reason it is impossible to decide statically which implementation

proves to be the most convenient. For instance, a static analysis might show

that for any given input data size there exists an implementation which

outperforms the others; yet many other factors (such as the variable sys-

tem load) might prevent the static analysis to get real. For this reason the

system must monitor the surrounding context and take decisions accord-

ingly hence dynamically balancing all the constraints.

For self-aware adaptive computing system the ability to switch between

different implementations of the same functionality while the system is

running proves to be fundamental. The process through which this hap-

pens is called hot-swap. The hot-swapping of an implementation with an-

other one is a non-trivial process; threads within a single process can ac-

cess data structures concurrently and different implementations can use

completely different data structures; state quiescence and state translation

are the most visible problems the hot-swap process generates. As already

described in Section 3.2.8, in self-adaptive computing literature this is a

well-known problem and a general framework to solve it has already been

proposed in [93]. This general framework inspired our hot-swap mecha-
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nism which is divided in 3 sub-phases as illustrated in Figure 4.2. These

three sub-phases are:

a) a prior phase representing a common working condition;

b) a transfer phase in which new requests are blocked in order to reach a

quiescent state which is translated to fit another data structure;

c) a final phase in which both blocked and new requests are allowed to

proceed.

ISS

I1

DS1

(a)

ISS

I1

DS1

I2

DS2

(b)

ISS

I2

DS2

(c)

Figure 4.2: Hot-Swap mechanism

Even though such approach is inspired by the state-of-the-art it differs from

it since it works solely on data structures instead of objects. This is due to

the fact that not all implementations of a certain functionality must con-

form to a single interface. Furthermore, this approach defines a technology

able to manage also the adaptation of the underlying physical architecture

using, where possible, hardware implementations.

4.2.3 System overview

It is indeed true that many problems are more efficiently solved using

hardware implementations instead of software implementations. Yet this
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claim actually depends on the expected QoS hence a software implemen-

tation might perform sufficiently well with respect to given constraints.

Therefore two DES implementations were designed, one in software and

one in hardware. The applications specify an expected performance goal

over time (e.g., 1000 blocks per second), the library translates the goal into

an expected heart rate while the current heart rate is updated every time

a block is computed. The Application Heartbeats makes it possible to check

if the current heart rate fits the expected goal enabling the library to take

decisions in accordance using an heuristic that avoids short-term oscilla-

tions. When the throughput (i.e., heart rate) over a certain window of time

drops under or excessively overcomes the expectations (and when other

more subtle conditions are true) the library acts to improve performance.

Since it is aware of the presence of two implementations the action consists

in an hot-swap between them.

To avoid incurring in the state translation problem described in the pre-

vious section the library has been carefully designed in that the two DES

implementations use the same underlying data structure. Moreover, since

there is no need to change the underlying data structure the state quies-

cence problem is not raised and the library is not required to force the data

structure into a stable state before the hot-swap is performed.

In more complicated applications the underlying data structure cannot be

kept the same across different implementations. When this happens the

state translation problem becomes real (e.g., the translation from a list to a

tree and vice versa is not straightforward and it strongly depends on how

algorithms manages these data structures) and might become even worse

if data structures are accessed by more than one thread concurrently since

the state quiescence problem raises too.

The advantage of this library is that it hides complexity from the applica-

tions which are unaware of the presence of multiple implementations and
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are only required to set an expected performance goal.

4.2.4 des-fpga program

We have developed a stand-alone proof-of-concept application called

des-fpga to evaluate our approach. Such program provides several com-

mand line options through which to control many of the underlying imple-

mentation parameters.

1 You can launch with no parameters : the program w i l l run

2 i n d e f i n i t e l y and encrypt/decrypt the same data over and over

3

4 Those are the p o s s i b l e parameters :

5 −− i t e r or − i : s p e c i f y the number of i t e r a t i o n s of the program

6 −−min or −m: minimum h e a r t b e a t r a t e

7 −−max or −M: maximum h e a r t b e a t r a t e

8 −−window or −w: window s i z e

9 −−b u f f e r or −b : b u f f e r depth

10 −−swap or −s : minimum swap time among implementations

11 −−hbevery or −e : s p e c i f i e s the number of blocks a f t e r which an

h e a r t b e a t i s issued

12 −−allow or −a : allow mult ip le switches

13 −−nohwreconfig or −r : does not t r y to a c c e s s hardware

r e c o n f i g u r a t i o n

14 −− t r i p l e or −t : use T r i p l e DES

15 −−decrypt or −c : decrypt a f t e r encrypting

16 −−log or − l : p r i n t s h e a r t b e a t r a t e on screen

17 −−debug or −d : enables e x t e n s i v e logging

18 −−nohb or −z : d i s a b l e s h e a r t b e a t s

19 −−onlypr int t ime or −p : suppresses most p r i n t s ( not execut ion

time )

20 −−time or −x : measure execut ion time

21 −−vers ion or −v : p r i n t s vers ion and e x i t s

22 −−help or −h : p r i n t s t h i s help and e x i t s

Listing 4.1: Embedded help of des-fpga
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4.3 Services API

4.3.1 Functions

The Services API is made of several functions to initialize, register, re-

ceive commands, unregister, and shut down the service that makes use of

them. In order to boost modularity of the system the functions are the same

one for each possible service. Those are the cardinal ones:

init_service() This function takes care of the many details that have

to be setup for the service before it can operate. It initializes all the

data structures (in particular, service_state which hold the state

of the service) and allocates the memory where the Consensus Object

will write its commands.

register_service() It opens the default named pipe (currently /tmp/

consensus) and write its registration details: name of the service,

PID of the service, memory key to access the interface where the

Consensus Object will write its commands, type of the service (UP,

DOWN, or UPDOWN). This function is blocking in that until the Con-

sensus Object does not start up and read from the pipe the write does

not return.

rename_service() It allows to change the default name, which is “service-

PID”

read_command() This function allows the service to check whether the

Consensus Object has issued a new command. This function returns

true or false depending on whether there is a new command or

not. The commands coming from the Consensus Object are high-level

commands since they are common to all services. A command can

enable a service, disable it, or ask it to release resources. In the lat-

ter case a special technique is used to reduce the heart rate that the
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service sees.

remove_all_dead_processes() This function is used to constantly up-

date the list of processes on which the service has effect. This is needed

to avoid accessing a shared memory segment (the one where all the

heart rate information is stored) that does not exist anymore (and that

would probably lead to a crash) because the process has quit. This is

very likely to happen since the service might still be accessing this

portion before the Consensus Object manages to turns the service off

on that particular target.

unregister_service() and shut_down_service() Those two func-

tions are used to when the service is going to quit. Through the former

function the Consensus Object removes the service from its internal

list; through the latter function shared memory is cleaned up (which

proves to be essential on systems such as Mac OS X where the default

maximum shared memory size is particularly small).

4.3.2 Service guidelines

To adopt the Services API, a service has to correctly use a certain num-

ber of functions. This Section aims at guiding developers in build a service

which is complaint to the proposed architecture:

• it is suggested that the service handles ctrl+c and, more in general,

the SIGTERM and SIGINT signals. The signal handler should be used

to set a flag (possibly of type sig_atomic_t, so that an atomic as-

signment is guaranteed); the main loop of the program should check

it and, when set, exit the loop. This kind of procedure is necessary

to correctly unregister the service (even if the Consensus Object con-

stantly checks all registered services and processes to ensure that they
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have not quit without warning) and deallocate memory correctly

• the service should declare a variable of type service_state_t and

initialize it

• the service should register with the apposite function

• the service should enter the main loop of execution. At each iteration

the following actions have to be performed:

– check whether there is a new command available

– update the list of processes taking into account that some of

them might have quit

– obtain the lock to access information about the processes

– for each targeted process obtain the heart rate information and

enact the action policy typical of the service

– release the lock

– check whether the signal handler has been invoked

• when the service exits the loop (i.e., , because the user has pressed

ctrl+c) unregister the service and shut it down

The code for an “template” service is shown below. In the future we hope

to make the functioning of the Services API more automatic.

1 / *
2 * S e r v i c e example

3 * /

4

5 # include " s e r v i c e s . h"

6 . . .

7 # define SERVICE_ACTION_INTERVAL 1000000

8 # define VERSION " 1 . 0 "

9

10
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11 / * G l o b a l v a r i a b l e t o s t o p e x e c u t i o n * /

12 / * I t i s v o l a t i l e b e c a u s e gcc was p e r f o r m i n g

13 weird o p t i m i z a t i o n s ( t h a n k s F i l i p p i e l l o ) * /

14 v o l a t i l e s ig_a tomic_ t should_quit = 0 ;

15

16

17 / * Handles SIGINT adn SIGTERM ( c a t c h e s c t r l +c ) * /

18 void k i l l _ h a n d l e r ( i n t signal_number ) {

19 should_quit = 1 ;

20 }

21

22

23 / * Main * /

24 i n t main ( i n t argc , char * * argv )

25 {

26 p r i n t f ( " S t a r t i n g example s e r v i c e − vers ion %s . . . \ n" , VERSION) ;

27 boolean return_value = 0 ;

28

29 / * L o c a l v a r i a b l e s * /

30 s e r v i c e _ s t a t e _ t * s e r v i c e _ s t a t e = ( s e r v i c e _ s t a t e _ t

* ) malloc ( s i ze of ( s e r v i c e _ s t a t e _ t ) ) ;

31 service_command_t * latest_command = NULL;

32 p r o c e s s _ s e r v i c e _ r e c o r d _ t * current_process = NULL;

33 double windowed_rate ;

34 double min_rate ;

35 double max_rate ;

36 double d e s i r e d _ r a t e ;

37 double g l o b a l _ r a t e ;

38

39 / * C a t c h e s c t r l +c and s h u t s down c l e a n l y : ) * /

40 s t r u c t s i g a c t i o n sa ;

41 memset (&sa , 0 , s i ze of ( sa ) ) ;

42 sa . sa_handler = &k i l l _ h a n d l e r ;

43 s i g a c t i o n (SIGTERM, &sa , NULL) ;

44 s i g a c t i o n ( SIGINT , &sa , NULL) ;

45

46 / * I n i t i a l i z a t i o n * /

47 return_value = i n i t _ s e r v i c e ( s e r v i c e _ s t a t e ) ;

48 i f ( re turn_value == f a l s e ) {

49 p r i n t f ( " Could not i n i t i a l i z e s e r v i c e . . . \ n" ) ;



81 CHAPTER 4. PROPOSED IMPLEMENTATION

50 e x i t (−1) ;

51 }

52 e lse {

53 p r i n t f ( " S e r v i c e s u c c e s s f u l l y i n i t i a l i z e d . . . \ n" ) ;

54 }

55

56 / * S e r v i c e − s p e c i f i c i n i t i a l i z a t i o n * /

57 . . .

58

59 / * Change s e r v i c e name * /

60 rename_service ( s e r v i c e _ s t a t e , " se rv ice−example " ) ;

61

62 / * R e g i s t e r t o t h e c o n s e n s u s o b j e c t * /

63 return_value = r e g i s t e r _ s e r v i c e ( s e r v i c e _ s t a t e ) ;

64 i f ( re turn_value == f a l s e ) {

65 p r i n t f ( " Could not r e g i s t e r s e r v i c e . . . \ n" ) ;

66 e x i t (−1) ;

67 }

68 e lse {

69 p r i n t f ( " S e r v i c e s u c c e s s f u l l y r e g i s t e r e d . . . \ n" ) ;

70 }

71

72 / * Main l o o p * /

73 p r i n t f ( " Enter ing main loop of s e r v i c e . . . \ n" ) ;

74 while ( 1 )

75 {

76 / * * /

77 i f ( t rue==read_command ( s e r v i c e _ s t a t e , &latest_command ) )

78 {

79 / * Analyze command and p o s s i b l y change b e h a v i o r * /

80 / * S e r v i c e s p e c i f i c c o d e h e r e * /

81 . . .

82 }

83

84 / * Obtain l o c k b e c a u s e s e r v i c e i s go ing t o modi fy t h e s h a r e d

segment * /

85 pthread_mutex_lock (&( s e r v i c e _ s t a t e −>

86 i n t e r f a c e −>s e r v i c e _ i n t e r f a c e _ m u t e x ) ) ;

87

88 / * Updates l i s t o f p r o c e s s e s * /
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89 remove_all_dead_processes ( s e r v i c e _ s t a t e ) ;

90

91 / * Act − f o r e a c h p r o c e s s s t i l l a l i v e * /

92 i n t n=0;

93 for ( n=0; n < s e r v i c e _ s t a t e −>i n t e r f a c e −>index ; n++) {

94 current_process = &( s e r v i c e _ s t a t e −>i n t e r f a c e −>processes [ n ] ) ;

95

96 / * Sk ip dead p r o c e s s e s * /

97 i f ( current_process −>process_pid < 0) {

98 continue ;

99 }

100

101 / * Obtain h e a r t b e a t s i n f o r m a t i o n * /

102 windowed_rate = hrm_get_windowed_rate (

&( current_process −>h e a r t b e a t s _ i n f o ) ) ;

103 min_rate = hrm_get_min_rate (

&( current_process −>h e a r t b e a t s _ i n f o ) ) ;

104 max_rate = hrm_get_max_rate (

&( current_process −>h e a r t b e a t s _ i n f o ) ) ;

105 g l o b a l _ r a t e = hrm_get_global_rate (

&( current_process −>h e a r t b e a t s _ i n f o ) ) ;

106 d e s i r e d _ r a t e = ( max_rate + min_rate ) /2;

107

108 / * S e t s e r v i c e s p e c i f i c v a l u e s * /

109 . . .

110

111

112 i f ( windowed_rate <= max_rate && windowed_rate >= min_rate )

{

113 p r i n t f ( " Process %d i s within e x p e c t a t i o n s (m:% f w:% f

M:% f , g:% f ) \n" ,

114 current_process −>process_pid , min_rate ,

115 windowed_rate , max_rate , g l o b a l _ r a t e ) ;

116 }

117 i f ( windowed_rate > max_rate ) {

118 p r i n t f ( " Process %d i s above e x p e c t a t i o n s (m:% f w:% f M:%f ,

g:% f ) \n" ,

119 current_process −>process_pid , min_rate ,

120 windowed_rate , max_rate , g l o b a l _ r a t e ) ;

121 }
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122 e lse i f ( windowed_rate < min_rate ) {

123 p r i n t f ( " Process %d i s below e x p e c t a t i o n s (m:% f w:% f M:%f ,

g:% f ) \n" ,

124 current_process −>process_pid , min_rate ,

125 windowed_rate , max_rate , g l o b a l _ r a t e ) ;

126 }

127

128 / * S e r v i c e s p e c i f i c a c t i o n on p r o c e s s * /

129 . . .

130

131 } / / end o f f o r

132

133 / * R e l e a s e l o c k * /

134 pthread_mutex_unlock (&( s e r v i c e _ s t a t e −>i n t e r f a c e −>

135 s e r v i c e _ i n t e r f a c e _ m u t e x ) ) ;

136

137 / * Has u s e r p r e s s e d c t r l +c ? * /

138 i f ( should_quit ! = 0 )

139 {

140 p r i n t f ( " Qui t t ing . . . \ n" ) ;

141 break ;

142 }

143

144 / * I f n e c e s s a r y , s l e e p b e f o r e a c t i n g a g a i n * /

145 usleep (SERVICE_ACTION_INTERVAL) ;

146 }

147

148 / * Clean up and shut down * /

149 return_value += u n r e g i s t e r _ s e r v i c e ( s e r v i c e _ s t a t e ) ;

150 return_value += shut_down_service ( s e r v i c e _ s t a t e ) ;

151 i f ( re turn_value == t rue ) {

152 p r i n t f ( " S e r v i c e has properly shutdown . . . \ n" ) ;

153 }

154 e lse {

155 p r i n t f ( " S e r v i c e cleanup not completed . . . \n" ) ;

156 }

157

158 / * S e r v i c e − s p e c i f i c c l e a n u p * /

159 . . .

160
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161 return 0 ;

162 }

Listing 4.2: Template for service development

4.3.3 Portability

The Services API, just like the Heartbeats API, has been compiled, run,

and tested on Linux. As long as the service does not make use of any Linux-

specific feature, the same code can be run also under Mac OS X.

4.4 Consensus Object

4.4.1 Functions

The Consensus Object API provides a certain number of function to han-

dle service registration, to issue commands, and so on. Those are the most

important functions:

init_consensus_object()

This functions initialize the data structure containing the status and

creates the named pipe used for service registration.

update_list_of_monitored_apps()

This function handle programs registration. It checks whether new

Heartbeat-capable applications have started up or whether previously

existing applications have quite. This is performed checking the files

in the HEARTBEATS_ENABLED_ FOLDER: in fact the Application Heart-

beats create there one file per monitored application. The files are

named after the PID of the process and are removed only if the appli-

cation quits normally.
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update_list_of_services()

This function checks whether any new service has registered or un-

registered. This task is carried out reading from the named pipe.

attach_consensus_object_to_service_memory()

This function attaches the Consensus Object to the shared memory seg-

ment allocated by a service. Such segment is where commands are

written.

dump_list_of_services_to_file() and

read_list_of_services_from_file

These functions are used to periodically save the list of services to file.

This is needed since when the Consensus Object reads from the named

pipe and registers a service, the only trace for the registration is in the

Consensus Object’s memory. If the Consensus Object quits or crashes,

after the following start up, it will not know which services are avail-

able. For this reason it has to save the list to file and, at start up, check

whether those services still exist. This procedure is not necessary for

applications because their registration is not handled through a named

pipe but through files (which are persistent).

shut_down_consensus_object()

Cleanly shuts down the Consensus Object by deallocating resources.

enable_service(), disable_service(),

release_resources_faking_heart_rate(), and

make_service_overperform()

Those are the possible commands that the Consensus Object can issue.

The Consensus Object specifies whether a service should be enabled

(first function), disabled (second function), asked for resources (third

function), or asked to make the target overperform (fourth function).
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Since most services can target one application at a time, all these func-

tions also require a target parameter.

get_service_state_for_process()

This function can be used to check whether a service is active on a

given process.

4.4.2 Consensus Object guidelines

Thanks to the provided API it is possible to easily re-implement the

Consensus Object. Those are the guidelines:

• allocate a data structure of type consensus_state_t and use the

given initialization function before starting

• periodically check whether new services have registered/unregistered

(the API automatically attaches the segment of the new services or

detaches the segment of an old service)

• periodically check whether new processes have registered/unregis-

tered

• periodically check that registered processes and services are still func-

tioning and have not crashed

• given the information about a process performance decide which ser-

vice to enable or disable

• at the end of execution call the function to release resources

4.4.3 Portability

The Consensus Object API, just like the Heartbeats API, has been com-

piled, run, and tested on Linux and Mac OS X. It will work on Macs as long
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as services do not make use of Linux-specific features.

4.4.4 Decision engine

The pseudo-code shown in Listing 3.1 is implemented as shown below.

1 /** * Functions * * * /

2 /** * Reinforcement learn ing Function prototypes * * * /

3

4 /* Produces binary r e p r e s e n t a t i o n ( in a s t r i n g ) of a byte */

5 const char * byte_to_binary ( i n t x ) ;

6

7 /* P r i n t s binary r e p r e s e n t a t i o n of an array of char ; f o r each

8 * char the binary r e p r e s e n t a t i o n i s shown ; o p t i o n a l l y a c h a r a c t e r

9 * can be passed and w i l l be pr inted before the r e p r e s e n t a t i o n */

10 void p r i n t _ b i n a r y _ s t a t e _ w i t h _ c h a r ( char * array , char c ) ;

11

12 /* As above but with no option f o r p r i n t i n g a char before the

13 * binary r e p r e s e n t a t i o n */

14 void p r i n t _ b i n a r y _ s t a t e ( char * array ) ;

15

16 /* Set to one a BIT in the s t a t e matrix */

17 void set_ to_one ( unsigned char * array , unsigned i n t row , unsigned

i n t column ) ;

18

19 /* Set to zero a BIT in the s t a t e matrix */

20 void s e t _ t o _ z e r o ( unsigned char * array , unsigned i n t row , unsigned

i n t column ) ;

21

22 /* Backs up s t a t e matrix , s e t s to zero a b i t in the copy and

23 * re turns the copy */

24 unsigned char * copy_and_set_to_zero ( unsigned char * matrix ,

unsigned i n t row , unsigned i n t column ) ;

25

26 /* Backs up s t a t e matrix , s e t s to one a b i t in the copy and

27 * re turns the copy */

28 unsigned char * copy_and_set_to_one ( unsigned char * matrix ,

unsigned i n t row , unsigned i n t column ) ;
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29

30 /* Set an e n t i r e column of the s t a t e matrix to one

31 * Useful during i n i t i a l i z a t i o n */

32 void set_column_to_one ( unsigned char * array , unsigned i n t column ) ;

33

34 /* R e t r i e v e s from the s t a t e matrix which r e l a t i o n s h i p l i n k s a

s e r v i c e

35 * ( s p e c i f i e d as a column ) and a process ( s p e c i f i e d as a row ) .

36 * For i n s t a n c e "ON" , i f the s e r v i c e i s a c t i v e on t h a t process */

37 command_t get_current_command ( unsigned char * array , unsigned i n t

row , unsigned i n t column ) ;

38

39 /* Takes the apps_performance array ( part of the s t a t e ) and build

40 * an a l t e r n a t i v e r e p r e s e n t a t i o n using an i n t . I t i s necessary

41 * to c r e a t e a key f o r the hash t a b l e */

42 unsigned i n t conver t_ to_ int_key ( unsigned shor t i n t * array ) ;

43

44 /* P r i n t s the Q matrix with a char before each l i n e

45 * The Q matrix holds the s t a t e −a c t i o n value */

46 void print_q_matr ix_with_char ( double * array , char c ) ;

47

48 /* P r i n t s the Q matrix as above but no option to

49 * p r i n t a char before each l i n e */

50 void pr int_q_matr ix ( double * array ) ;

51

52 /* Function t h a t i t e r a t e s on the s t a t e hash t a b l e */

53 void s t a t e _ i t e r a t o r ( gpointer key , gpointer value , gpointer

user_data ) ;

54

55 /* A l l o c a t e s and return a new Q matrix ( a l l zeros ) */

56 double * malloc_q_matrix ( ) ;

57

58 /* Backs up the current Q matrix , modif ies i t and then

59 * re turn the copy */

60 double * copy_and_update_value ( double * matrix , unsigned i n t row ,

61 unsigned i n t column , double value ) ;

62

63 /* Function to i t e r a t e on the performance has t a b l e */

64 void per formance_ i te ra tor ( gpointer key , gpointer value , gpointer

user_data ) ;
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65

66 /* P r i n t the complete s t a t e ( performance hash tab le , s t a t e

67 * hash t a b l e and Q matr ixes ) */

68 void p r i n t _ c o m p l e t e _ s t a t e ( GHashTable * performance_hash ) ;

69

70 /* P r i n t s t a t e matrix and l inked Q matrix */

71 void pr in t_s ta te_and_q ( GHashTable * s ta te_hash ) ;

72

73 /* Updates apps performance given current hear t r a t e s */

74 void update_apps_performance ( unsigned i n t * apps_performance ,

75 process_record_t * current_process ) ;

76

77 /* A l l o c a t e s a new s t a t e matrix properly i n i t a l i z e d */

78 unsigned char * mal loc_s ta te_matr ix ( ) ;

79

80 /* Find maximum value in a Q matrix and return a pointer to i t */

81 double * find_max_q ( double * matrix ) ;

82

83 /* Given a s t a t e ( as performance hash plus s t a t e matrix )

84 * r e t r i e v e the Q matrix and return the maximum value

85 * contained in i t (NOT a pointer to the value ! ) */

86 double f ind_max_q_given_state ( GHashTable * performance_hash ,

87 unsigned i n t * apps_performance ,

88 unsigned char * s t a t e _ m a t r i x ) ;

89

90 /* Sum a l l elements of a Q matrix and return the t o t a l */

91 double sum_of_al l_qs ( double * matrix ) ;

92

93 /* Backups a Q matrix , normalize i t with r e s p e c t to the t o t a l

94 * sum of i t s elements ( see previous funct ion ) and return i t */

95 double * normalize_matrix ( double * matrix ) ;

96

97 /* Choose a c t i o n using the SOFTMAX method */

98 double * s o f t m a x _ a c t i o n _ s e l e c t i o n ( double * matrix , unsigned i n t

* r , unsigned i n t * c ) ;

99

100 /* Performs the f i r s t part of the R−l earn ing algorithm ,

101 * choosing a proper act ion , updating some values and returning

102 * a number of v a r i a b l e : an updated s t a t e matrix , a command to

103 * be sent to the consensus o b j e c t ( p lease note t h a t PID
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t r a n s l a t i o n

104 * i s required ) , a po inter to the maximum values of Q and a

pointer

105 * to the Q of the chosen a c t i o n */

106 char * s e l e c t _ a c t i o n ( GHashTable * performance_hash ,

107 unsigned shor t i n t *
apps_performance ,

108 unsigned char * s ta te_matr ix ,

109 double * * old_max_q , double * *
chosen_q ,

110 service_command_extended_t *
command) ;

111

112 /* This funct ion def ine the re inforcement given by the environment

113 * I t fo l lows a simple h e u r i s t i c */

114 unsigned i n t get_re inforcement ( unsigned i n t * apps_performance ) ;

115

116 /* Given the index of a s e r v i c e t h i s funct ion re turns the

117 * PID of the s e r v i c e */

118 s e r v i c e _ r e c o r d _ t * give_pointer_to_service_number ( pid_t serv ,

s e r v i c e _ r e c o r d _ t * s ) ;

119

120 /* Given the index of a process t h i s funct ion re turns the

121 * PID of the process */

122 pid_t give_pid_of_app_number ( pid_t t a r g e t , process_record_t * p ) ;

123

124 unsigned i n t count_processes ( process_record_t * processes ) ;

125 unsigned i n t c o u n t _ s e r v i c e s ( s e r v i c e _ r e c o r d _ t * s e r v i c e s ) ;

126

127 /* . . . */

128

129 i n t main ( ) {

130

131 /* . . . */

132

133 while ( . . . ) {

134

135 i f ( . . . ) {

136 s e l e c t _ a c t i o n ( performance_hash , apps_performance ,

137 s ta te_matr ix , &old_max_q , &chosen_q , &command) ;
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138

139 /* Convert indexes to PID */

140 s e r v i c e _ r e c o r d _ t * temp_service = NULL;

141 temp_service =

give_pointer_to_service_number (command . serv ice ,

consensus_state −> l i s t _ o f _ s e r v i c e s ) ;

142 command . t a r g e t = give_pid_of_app_number (command . t a r g e t ,

consensus_state −>l i s t _ o f _ p r o c e s s e s ) ;

143

144 i f (command . command == ON)

145 e n a b l e _ s e r v i c e ( temp_service , command . t a r g e t ) ;

146 e l s e

147 d i s a b l e _ s e r v i c e ( temp_service , command . t a r g e t ) ;

148

149 usleep (CONTROL_ACTION_INTERVAL) ;

150

151 update_apps_performance ( apps_performance ,

consensus_state −>l i s t _ o f _ p r o c e s s e s ) ;

152

153 reward = get_re inforcement ( apps_performance ) ;

154 }

155 }

156

157 /* . . . */

158 }

Listing 4.3: Source code (simplified) for the R-learning algorithm



Chapter 5

Experimental results

“No amount of experimentation can ever prove me right;

a single experiment can prove me wrong.”

Albert Einstein

“A state-of-the-art calculation requires

100 hours of CPU time on the state-of-the-art

computer, independent of the decade.”

Edward Teller

In this Chapter I present the experimental results that support the validity

of the use of the Application Heartbeats and the Consensus Object in a real im-

plementation. In particular this Chapter first analyzes the overhead of the

Application Heartbeats on the execution time of two example applications

(Section 5.1); it then presents the results linked to the hardware/software

implementation of an Implementations Library; finally some Consensus Object

and Services API tests outcomes are shown.
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5.1 Application Heartbeats overhead with des-fpga

In this Section the analysis of the overhead on execution time of appli-

cations adopting the Heartbeats framework is presented. Such investigation

is extremely important in the context of autonomic systems since the mon-

itoring infrastructure must be as lightweight as possible: as already pre-

sented in Figure 2.1.3 the performance gain given by the implemented self-

properties cannot be nullified by the necessary monitoring architecture.

Such overhead is due to a series of system calls that the Heartbeats frame-

work makes in order to initialize its data structures and update the global

heart rate. Moreover, the overhead seems to decrease while the number of

blocks increases due to the fact that the weight of the initialization tends

to decrease. The initialization of the Heartbeats make use of getpid(),

shmget(), and shmat() while the global heart rate is updated by means

of two calls to clock_gettime() inside the heartbeat() call.

Two examples are presented: both execute the same code and are run under

a Linux-based Operating System but while one executes on a Xilinx Virtex-

II Pro FPGA board (more details can be found in Section 5.2.1) the other runs

on a common x86-based computer.

The chosen application is a software implementation of the DES crypto-

graphic algorithm [96]. While there are many other algorithms that would

have served the same purpose and that would have reasonably brought to

similar results, DES has a relatively simple implementation and requires

the simplest possible input: text.

To benchmark the impact of the Heartbeats on the execution time I devel-

oped a C program that implemented the DES algorithm and that could be

instructed not to use the Application Heartbeats. The application is called

des-fpga and it starts a timer just before encrypting the first block and

stops it right after encrypting the last one. The experiment has been orga-

nized this way:
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• almost 30 different input sizes were tested in the range 1 to 1000

blocks.

• in order to balance slow downs and fortuities on the system the exe-

cutions were repeated 10 times and then averaged

• the execution times were compared and the average percentage im-

pact was calculated

5.1.1 Benchmarks on a FPGA-based system

Table 5.1 shows a sample of the data gather for the FPGA-based solu-

tion while Table 5.2 shows the averaged values that have been used to plot

the graph shown in Figure 5.1.

The average impact on the execution time is 3.52%, which is both moderate

and seems to become even lower the greater the number of blocks.

5.1.2 Benchmarks on a x86-based system

After running the same test on an x86-based computer (Intel Core 2 Duo

running at 2.4GHz, 2MB L2 cache, 4 GB RAM) an extremely puzzling result

is obtained: not only the overhead is higher, but it is circa 66% of the execu-

tion time. At first glance the Heartbeats seem to have performed well in the

FPGA-based scenario just because their overhead was “hidden” by a slow

CPU. The truth is quite different, though. In des-fpga by default issues

one heartbeat per encrypted block. Considering that one DES block is made

of 64 bits (8 Bytes) and that on the x86 machine used for the experiment its

encryption takes less that 1µs, the overhead of system calls becomes huge.

This happens because system calls can be considered as a fixed cost to be

paid and issuing thousands of heartbeats per second both defeats the pur-
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Number of encrypted blocks

1 2 3 4 . . .

604 369 641 634 832 1036 1264 977 . . .

379 371 646 623 847 838 1002 966 . . .

376 600 679 887 842 818 1245 1198 . . .

Execution 628 367 641 631 840 815 999 965 . . .

time (µs) 407 373 847 627 835 821 1017 1208 . . .

381 374 642 625 844 807 1007 981 . . .

384 375 640 626 1020 817 1001 975 . . .

378 564 655 642 861 812 1234 1201 . . .

378 374 640 619 1050 817 995 991 . . .

384 376 667 623 836 811 1013 994 . . .

Average (µs) 429.9 414.3 669.8 653.7 880.7 839.2 1077.7 1045.6 . . .

Impact (%) 3.6287 2.4037 4.7121 2.9785 . . .

Table 5.1: Table showing a sample of the gathered data for the FPGA-based example
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Figure 5.1: Application Heartbeats API overhead in the FPGA-based scenario
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# blocks 1 2 3 4 5 6 7 8 9 10

Average

impact 3.628 2.403 4.712 2.978 2.021 3.981 2.743 6.574 1.743 2.116

(%)

Average

execution 430 670 881 1078 1251 1447 1603 1859 1967 2083

time (µs)

# blocks 20 30 40 50 60 70 80 90 100 200

Average

impact 5.228 2.695 5.614 6.528 5.646 5.019 5.109 5.585 4.426 3.959

(%)

Average

execution 4183 6244 8591 11078 13641 16290 19065 22304 25400 64240

time (µs)

# blocks 300 400 500 600 700 800 900 1000 10000 100000

Average

impact 3.166 2.850 1.587 1.775 1.057 2.302 0.969 2.203 9.123 13.350

(%)

Average

execution 117.5 185.6 267.1 365.3 476.3 604.6 744.8 908.6 2688.2 20822.9

time (ms)

Table 5.2: Table showing the average execution time and the percentage average impact on

it caused by the the Application Heartbeats in the FPGA-based scenario
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pose of the framework and generates a huge amount of system calls.

Obviously, since the CPU was much slower, this did not happen in the

FPGA-based scenario.

Taking into account these considerations it has been necessary to slightly

reduce the number of heartbeats. For this experiment heartbeats were is-

sued every 256 blocks: this quantity seems particularly reasonable since it

is a multiple of the usual smallest dimension of files under Linux.

The results obtained encrypting a number of blocks multiple of 256 are

extremely similar to the ones obtained before. The experiment has been or-

ganized this way:

• 15 different input sizes were tested in the range 256 to 102400 blocks.

• in order to balance slow downs and fortuities on the system the exe-

cutions were repeated 10 times and then averaged

• the execution times were compared and the average percentage im-

pact was calculated

Sample data is shown in Table 5.3, while final results are displayed in Ta-

ble 5.4 and Figure 5.2.

5.2 Implementations Library: putting DES to test

In this Section we put to test the Implementations Library that has been

described in Sections 3.2.8 and 4.2.

5.2.1 Environment

For the implementation a Xilinx University Program Virtex-II Pro (XUPV2P)

board featuring an XC2VP30 FPGA used to provide the basic architecture



98 CHAPTER 5. EXPERIMENTAL RESULTS

Number of encrypted blocks

256 512 768 1024 . . .

189 187 352 341 519 502 676 717 . . .

189 180 347 340 513 501 675 661 . . .

189 180 352 342 519 543 671 684 . . .

Execution 234 277 364 344 514 502 675 684 . . .

time (µs) 191 180 352 380 516 523 693 663 . . .

189 185 351 341 731 503 671 682 . . .

222 180 399 343 511 508 674 662 . . .

189 180 351 340 507 505 675 662 . . .

188 198 356 341 516 502 832 663 . . .

191 180 365 343 513 504 675 662 . . .

Average (µs) 197.1 192.7 358.9 345.5 535.9 509.3 691.7 674 . . .

Impact (%) 2.2323 3.7336 4.9636 2.5589 . . .

Table 5.3: Table showing a sample of the gathered data

# blocks 256 512 768 1024 2048 3072 4096

Average

impact 2.2323 3.7336 4.9636 2.5589 0.9450 3.5766 4.5273

(%)

Average

execution 197.1 358.9 535.9 691.7 1396.7 2055 2809.6

time (µs)

# blocks 5120 6144 7168 8192 9216 10240 51200 102400

Average

impact 5.0312 1.2884 7.0051 6.0787 1.6619 6.6600 4.6812 3.9150

(%)

Average

execution 4501.9 4742 5989.9 8347.1 6576.7 8168.1 44230.1 711086.1

time (µs)

Table 5.4: Table showing the average execution time and the percentage average impact on

it caused by the the Application Heartbeats in the x86-based scenario
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Figure 5.2: Application Heartbeats API overhead in the x86-based scenario

and I/O ports to run and interact with the operating system. The FPGA

comes with an integrated hard processor, a PowerPC 405 with a maximum

frequency of 300 MHz with 16 kB of instruction cache and 16 kB of data

cache; the PowerPC 405 is used as the General Purpose Processor (GPP) of

our embedded system and is allowed to access 256 MB of DDR-266 used as

system memory through the Xilinx Multi-Port Memory Controller (MPMC)

Double Data Rate (DDR) memory controller. On top of this architecture

we loaded the Linux vanilla-kernel version 2.6.33.1 and a reduced root file

system built upon busybox version 1.16.0 and both the kernel and the root

file system are compiled with a toolchain featuring gcc version 4.2.4 and

uClibc version 0.9.30.1. When the board is powered-on the bitstream im-

plementing the architecture is taken from the first partition of the onboard

flash memory and used to program the FPGA while the kernel and the root

file system are taken from the second partition of the same flash memory.

The flash memory is accessible thanks to Xilinx SystemACE storage con-
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troller. The console of the kernel is redirected to the Xilinx UARTLite serial

controller and the embedded system is controller by means a Telnet ses-

sion passing through the Xilinx Ethernet Lite network interface controller.

The architecture contains also an IP-Core with a Wishbone interface imple-

menting DES encryption and decryption capabilities and is connected to

the rest of the system by means of an IP-Core implementing a Processor

Local Bus (PLB) version 4.6 to Wishbone bridge. A schematics of the archi-

tecture is proposed in Figure 5.3. In a real scenario the FPGA might need to

FPGA

DES

Ethernet Lite

PLB/WB 
bridge

System ACE MPMC

UART Lite

PowerPC 
405

Figure 5.3: FPGA architecture

be reconfigured before having the Core DES available.

5.2.2 Static analysis

The first result of our work is to statically analyze the ideal behavior of

the two DES implementations. We run both the implementations varying
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the input data size and averaging the results on tens of different trials. The

results are shown in Figure 5.4: the hardware implementation (square) is

faster than the software implementation (circle) when the input size is big-

ger than 50 blocks. The hardware implementation might need to be config-

ured hence the hardware implementation considering the reconfiguration

time (triangles) gets faster than the software implementation when the in-

put size is bigger than 400 blocks.

This analysis might seem to prove that, depending on the input size (num-
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Figure 5.4: Execution times

ber of blocks), it is possible to choose the best implementation statically. Yet

in a dynamic scenario such execution times might change completely due

to the system load or to runtime constraints (e.g., power consumption): in

this case a statical approach might fail. Since many other factors cannot be

predicted it is necessary to monitor the throughput of the active implemen-

tation and decide at runtime when to switch one in favor of the other.
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5.2.3 A dynamic scenario

Figure 5.5 shows a execution scenario of the Implementations Library.

Even though in (t0, t1) the application heart rate is dropping due to the

context switches we are not observing any change in the implementation

because the current heart rate is still inside the desired heart rate window.

In (t1, t2) the computed heart rate exits this window for more than ∆ time

instants hence the ISS decides to spend (t2, t3) reconfiguring the FPGA and

to switch to the hardware implementation. The∆ time depends on the deci-

sion mechanism used within the system while the reconfiguration time R is

spent only when the desired hardware implementation is not already con-

figured on the FPGA. In (t3, t4) the heart rate increases entering the desired

heart rate window. The sudden decrease of the heart rate in (t4, t5) proceed-

ing in (t5, t6) is caused by resources contention (e.g., buses, memory, etc. . . ).

Therefore, after waiting for ∆ time instants the software implementation is

swapped in to try to increase the heart rate as it happens in (t6, t7).

The execution scenario of the DES Implementations Library stands as an in-

stance of enabling technology in the field of autonomic computing: the pro-

posed methodology is valid since the information gathered at runtime en-

ables the system to react to unpredictable and unknown conditions.

Even if at present it is not possible to guarantee in any situation a fulfill-

ment of the QoS, the Implementations Library here introduced brings a clear

improvement over static implementations.
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m

Heart rate

R

Δ1

Δ2

RΔi Observation deltas Reconfiguration time

M

t0 t1 t2 t3 t5 t6 t7

M, m Maximum and minimum heart rate

t4 time

Figure 5.5: Application execution behavior. The interval between m and M defines the de-

sired heart rate window

5.3 Consensus object and Services

5.3.1 Testing the overhead of the framework

The purpose of the following test is to quantify the overhead brought

by the infrastructure designed and implemented in the previous Chapters.

As we have seen throughout this dissertation, self-adaptive systems bring

tremendous advantages over modern computing system. Of course we do

not want this advantages to vanish because of overhead: the infrastructure

must be lightweight.

We have proven in Section 5.1 that the Application Heartbeats bring a low

overhead. It is now the time to analyze the Consensus Object and the Ser-

vices API: we first analyze the time needed to initialize, register a service

and read a command (Section 5.3.1); we then measure the time needed

to register a process and write a command (Section 5.3.1); as a final step

we analyze an implemented service and we compare performance of the
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Figure 5.6: Service initialization. Ten executions, average is in red.

stand-alone version against the Consensus Object-driven one (Section 5.3.1).

The test platform is the same one used in Section 5.1.2 and consists of an

Intel Core 2 Duo running at 2.4GHz, 2MB L2 cache, and 4 GB RAM.

The used methodology is the same across all tests: the same experiment has

been repeated ten times and then averaged.

Services overhead tests

In this series of tests we analyze the absolute time required to initialize

a service, register it to the Consensus Object, and read a command from the

Consensus Object.

Initialization (Figure 5.6) is shown on a logarithmic scale because it takes

an extremely variable amount of time. Debugging the few lines of code

that are part of the initialization function, the “culprit” immediately stands

out: ftok(). ftok() is the function that has to generate a unique memory

key to be used to address the shared memory segment. It takes a variable

amount of time to execute and, sometimes, the initialization function has

to call it repeatedly (up to a maximum of three times) before it successfully
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Figure 5.7: Service registration. Ten executions, average is in red.

returns a valid memory key.

Registration (Figure 5.7) is much easier to explicate (please also note that it

is not on a logarithmic scale) since the time to write to the named pipe can

easily vary.

Reading a command coming from the Consensus Object (Figure 5.8) re-

quires the service to obtain an exclusive lock, read the shared memory seg-

ment, release the lock, and update its internal structures.

Consensus Object overhead tests

Process registration (Figure 5.9) is performed by the Consensus Object,

which scans for files in the HEARTBEAT_ENABLED_DIR, considers only

files entirely made of numbers, and adds or removes processes from its list.

It is easy too see that access to the file system has a certain degree of unpre-

dictability.

Writing a command (Figure 5.10) has proved very efficient and the time

to perform such action is extremely stable. This happens only because the

driven service only obtains the exclusive lock when necessary and releases
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Figure 5.8: Reading a command. Ten executions, average is in red.

it right after: if the service were less efficient and less optimized (and would

then keep the lock much longer) the time to write a command would dra-

matically increase.

The reason why writing a command requires less time that reading one is

that when a service reads a command it also has to update its internal struc-

tures.

Nevertheless shared memory proves to be an extremely fast for of Inter-

Process Communication (IPC).

Overhead on core allocator service

Summarizing the results obtained in Section 5.3.1 it is possible to say

that the centralized autonomic infrastructure has an average overhead of

2996µs, which is almost all due to initialization. Please note that this is a

non recurring allowance (it is only required at service startup) and it can be

considered negligible.

We now analyze the overhead (Figure 5.12 and Figure 5.13) brought by the

proposed Consensus Object-driven approach on the execution of an imple-
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Figure 5.9: Process registration. Ten executions, average is in red.

mented service: the core allocator. We have developed two versions:

• a stand-alone version that automatically starts monitoring one Heartbeat-

enabled application and enacts one of its policy of core allocation

• a Consensus Object-driven one that initializes, registers, and reads com-

mands using the Services API; when enabled it enacts the same policy

as the other version

The results over ten executions are quite stable and clear: the overhead on

the maximum possible throughput of the service is 15.81%. Such result is

encouraging since the core allocator constantly reviews and modifies its ac-

tion; many other services “sleep” for a few microseconds before starting

to consider changes in their policy. This means that on many services the

overhead will be much less than 15.81%.

5.3.2 Machine learning-based decision engine

As explained in Section 3.3.2 and 4.4.4 the decision engine of the Con-

sensus Object is based on machine learning and, in particular, on the rein-
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Figure 5.10: Writing a command. Ten executions, average is in red.
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forcement learning algorithm called R-learning. Without any doubt it is the

most delicate part of the whole framework since it is responsible for the

activation and deactivation of services.

The implemented algorithm makes use of Softmax for the choice of actions;

such method is not deterministic and it makes the whole behavior non de-

terministically definable. For this reason we have repeated our tests several

times and we now show how reliable the decision engine is.

We present seven different tests, which have been carried out:

• on an x86-64 machine featuring an Intel Core i7-870 processor (2.93

GHz) used as GPP, 4 GB of SDRAM DDR3-1333 of main memory, and

an NVIDIA GeForce GT 240 graphic card used as Graphics Processing

Unit (GPU)

• using the core-allocator multi-application service

• running one or more instances of the x264 program, possibly with

different parameters, a different number of threads, and different heart

rate goals

Free execution

This first test has been carried out to explore the heartbeats’ generation

by the x264 program and see whether it has major cycles or major varia-

tions. As shown in Figure 5.14 the heart rate is almost constant. Its average,

with the given parameters and the given number of cores, is 85.49 heart-

beats per second.
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Figure 5.14: Heart rate of an instance of x264. Neither the Consensus Object nor the core

allocator service are running.
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Learning to enable a service

This scenario shows x264 running with the core allocator service con-

trolled by the Consensus Object. x264 states a minimum of 20 and a maxi-

mum of 30 hearbeats per second. In the first seconds of the execution the

heart rate increases since the Consensus Object is still learning to maximize

the reinforcement. After 5-6 seconds circa the Consensus Object finds the ac-

tions that maximize the reinforcement (and that bring the heart rate in the

required range). Such actions are:

• enables the core allocator service whenever above the stated perfor-

mance goals

• do not disable the core allocator whenever the performances are be-

tween the minimum and maximum heart rate
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Figure 5.15: The Consensus Object learns to use a service when it is useful to achieve the

given performance goal. Desired heart rate range is in gray.
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Learning to disable a service

This scenario shows again one instance of x264 running with an ad-

hoc service controlled by the Consensus Object. x264 states a minimum of

35 and a maximum of 50 heartbeats per second. In the first seconds of the

execution the heart rate decreases since the Consensus Object is still learning

how the service alters the heart rate. After 5-6 seconds circa the Consensus

Object finds the action that maximizes the reinforcement (and that brings

the heart rate in the required range), which is to disable the service when-

ever the heart rate is below the required performance.
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Figure 5.16: The Consensus Object learns to disable services that are not helping in achieving

the performance goals. Desired heart rate range is in gray.
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Adaptation to new runtime conditions: two applications with the same

performance goal

In this test we have analyzed the reaction of the system to the entry of

a new application. As shown in Figure 5.17, the decision engine first learns

how to handle one application and it then understands how to keep both

applications in their performance range. The heart rate oscillates a little bit

because of the way the core allocator decides how many cores to assign to

each process. Such behavior can certainly be improved and it is a hint for

future works.
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Figure 5.17: Two instances of x264 with different performance goals. Desired heart rate

ranges are the yellow (for the first instance) and gray (for the second instance) bands.
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Adaptation to new runtime conditions: two applications with different

performance goals

This test verifies that the behavior highlighted in the previous test is

still valid when the performance goals for the two instances of x264 are

different.
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Figure 5.18: Two instances of x264 with the same performance goals. Desired heart rate

range is in gray.

Adaptation to new runtime conditions: four applications

In this scenario four instances of x264 are started five seconds one af-

ter the other. With respect to the previous test, the solution space is much

bigger. Yet the heart rate of the four applications converges in a matter of

seconds.
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Figure 5.19: Four instances of x264 started five seconds one after the other. They have all

declared that they wish to produce 20 to 30 heartbeats per second (shown in gray).

Analyzing huge solution spaces: eight applications

This test shows that even when the solution space is huge the decision

engine is still able to choose actions in order to make the heart rate of the

applications converge.
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Chapter 6

Conclusions and future works

“I came to the conclusion that

I am not a fiction writer.”

Tim LaHaye

In this last Chapter the obtained results are summarized and future work

is planned.

The aim of this thesis has been to design and implement a system-wide

self-adaptive self-aware infrastructure. Today’s systems complexity is sky-

rocketing and there is a strong need for transferring into modern comput-

ing systems some of the knowledge that programmers have: the aim is to

reduce the burden on them and automate several optimization without re-

quiring manual intervention.

In this context we propose an autonomic architecture capable of monitor-

ing its current status and its progress towards certain goals, capable of per-

forming optimizations on itself, and capable of adapting to unpredictable,

unknown, and unfavorable conditions through a decision engine that can

learn from experience and optimize the performance of the system.

After stating the problem in Chapter 1 and extensively discussing the State

118
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of the Art in the field of autonomic computing in Chapter 2, we outline and

throughly describe our solution in the remaining Chapters.

In Chapter 3 we present the idea behind our architecture: we aim at build-

ing a system that observes, decides, and act. We start from the Applications

Heartbeats as a simple, flexible, and lightweight monitoring facility and we

have literally built around it. We have developed two novel components:

the Consensus Object and the Services API. The Consensus Object is the cen-

tral entity that gathers all the information coming from Heartbeats-enabled

applications and decides which actions to undertake in order to make the

processes reach the desired goals; its decision engine is based on R-learning,

a machine learning algorithm that makes it possible for the Consensus Ob-

ject to learn from experience. The Services API is a programming interface

suggested for those processes that can improve or decrease performance

(either at system level and at application level): services adopting such in-

terface are controlled by the Consensus Object which can enable them, dis-

able them, or alter their behavior. The Services API is equal among all pos-

sible services and the Consensus Object uses the same commands to control

each service. The decision engine will then understand which services to

enable and when. In this way new services can be added extremely easily

and the whole architecture proves to be modular, flexible, and extensible.

The Consensus Object and the Services API implementations have been dis-

cussed in great detail in Chapter 4.

In Chapter 5 the entire architecture is put to test. Through a series of tests

it has been proved that the whole infrastructure is lightweight and ready

to be expanded in the future. In particular, the Applications Heartbeats over-

head has been quantified as extremely small (∼ 4% of the execution time).

The overhead of the Consensus Object and of the Services API is also quite

small: for a relatively simple service such as the core allocator the overhead

is ∼ 15% of the execution time. Considering that most other services are
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either more complex (that is, they take longer to perform one iteration) or

“sleep” for a few milliseconds between one iteration and the other, the av-

erage overhead will probably be even smaller. In fact the overhead on one

iteration is constant and spending more time computing one iteration re-

duces the proportions of the overhead.

Moreover, we have built and tested an example of Implementations Library

that explores some of the concepts developed in Chapter 3 and proves the

usefulness of porting an autonomic infrastructure to reconfigurable hard-

ware.

Finally the potential of the decision engine is tested: with either one or more

Heartbeats-enabled programs running and either with the core allocator or

an ad-hoc service, the Consensus Object is always capable of bringing the

heart rate in the desired range.

Even if there is still a lot of work to do before the described architecture

is mature, we have designed and built an enabling technology that is both

novel and very promising. The developed APIs are complete and ready to

be used. Future works include:

• the implementations of more services

• the extension of the Applications Heartbeats to support dynamic per-

formance goals. This step is necessary to avoid situations like the one

presented in Section 5.1.2; in such scenarios it is easy to imagine that

the performance goals (and the issued heartbeats) divided by a factor

in order to bring the Applications Heartbeats overhead at a minimum

• the porting of the framework to the Linux kernel, in order to have

more control on the scheduling of threads and processes

• the development of a non-centralized scenario where the Consensus

Object is distributed among the services instead of being central
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