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Sommario

La continua necessità dell’industria aerospaziale di ridurre i costi, ma di
mantenere alti standard di sicurezza ha portato allo sviluppo di applicazioni
di Structural Health Monitoring (SHM). L’obiettivo di un sistema di SHM
è quello di permettere una rilevazione facile ed economica dei danni pri-
ma che possano raggiungere livelli critici. Siccome la diffusione di materiali
compositi pone problemi di tolleranza al danno e osservabilità del danno, lo
SHM si presenta come una delle tecniche più promettenti per lo sviluppo di
strutture più leggere, più efficienti ed affidabili. Una delle tecniche più inte-
ressanti per l’identificazione dei danni è quella che usa le onde guidate, che
possono essere prodotte ed osservate in-situ e per la possibilità di correlare
le anomalie nella propagazione con i danni della struttura. La possibilità di
modellare queste onde attraverso uno strumento versatile come gli Elementi
Finiti (EF) permette di migliorare notevolmente la ricerca nel campo dello
SHM, perchè si possono ridurre le analisi sperimentali e quindi i costi di svi-
luppo di un sistema di SHM. Tuttavia, data la natura complessa di queste
onde, soprattutto in laminati compositi, bisogna fornire una validazione dei
modelli ad EF. Questo è l’obiettivo della tesi. Per raggiungerlo si sono con-
frontati i risultati dei modelli ad EF con quelli di un’altra tecnica numerica,
sviluppata specificatamente per modellare le onde nelle piastre, nota come
Semi-Analytical Finite Element (SAFE). Questo confronto è possibile solo
dopo aver applicato una particolare tecnica di elaborazione, che implica l’uso
ricorsivo della trasformata di Fourier, agli spostamenti ricavati dai modelli
ad EF. Infine questi risultati sono confrontati con quelli ottenuti dall’analisi
sperimentale di tre diversi tipi di laminato. Siccome i risultati degli EF, del
SAFE e quelli sperimentali sono molto simili tra loro, è stato dimostrato che
i modelli ad EF analizzati riproducono correttamente la propagazione delle
onde in piastre di materiale composito.





Abstract

The necessity of the aerospace industry to reduce the cost, but to keep
good safety standards has brought to the improvement of Structural Health
Monitoring (SHM) applications. The objective of a SHM system is to allow
an easily an low-cost detection of damages, before critical levels. As the dif-
fusion of composite materials poses relevant problem regarding damage toler-
ance and damage detectability, SHM is one of the most promising technique
for the development of lighter, more efficient and more reliable structures.
Guided waves are one of the most interesting instruments for damage iden-
tification, basing on in-situ actuation and acquisition and on the possibility
to correlate anomalies in wave propagation with internal damage. Modeling
this kind of waves with a versatile approach as the Finite Elements (FE) al-
lows great improvements in the SHM field of research, because this approach
can reduce the experimental analyses and thus the development costs of a
SHM system. Since the complex nature of the guided waves, especially in
composite laminates, a validation of these FE models must be provided. This
is the objective of this thesis. To accomplish this task the results obtained by
the FE models are compared with the ones provided by another numerical
technique expressly developed to model waves in plates. Such a technique is
known as Semi-Analytical Finite Element (SAFE). This comparison is only
possible after a particular post-processing technique, which involve the re-
cursive use of the Fourier transform, of the displacements measured in the
FE models. Finally these data are compared with the ones obtained from
an experimental analysis of three different type of laminates. Since the re-
sults of the FE, of the SAFE and of the experiments are very similar, it is
demonstrated that the FE models provided are well-suited to represent wave
propagation in composite plates.
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Introduzione

Le sempre più stringenti esigenze di riduzione dei costi a cui è sottoposta
l’industria aerospaziale hanno portato all’utilizzo sempre più diffuso di ma-
teriali compositi. Questi materiali, dotati di elevati rapporti resistenza-peso
e rigidezza peso, consentono di realizzare strutture sempre più leggere ed ef-
ficienti, in grado di aumentare il carico pagante e ridurre i consumi. Tuttavia
le strutture in materiale composito sono molto vulnerabili ai danni, soprat-
tutto alla delaminazione che può essere introdotta sia in fase di realizzazione,
sia durante la vita operativa. La presenza di delaminazione può portare, se
trascurata, anche al cedimento catastrofico di un’intera struttura

La sicurezza non può mai passare in secondo piano rispetto alla riduzione
dei costi. Per questo motivo negli ultimi anni la ricerca si sta impegnando
nella realizzazione di sistemi di monitoraggio del danno sempre più sofisticati,
in grado di dare valutazioni in tempo reale dello stato di integrità strutturale.
Questo filone di ricerca è noto con il termine di Structural Health Monitoring
(SHM), letteralmente monitoraggio della salute strutturale.

La ricerca condotta in questa tesi si inserisce in questo ambito. La possi-
bilità di utilizzare una tecnologia flessibile come quella fornita dagli Elementi
Finiti (EF) per la modellazione di un potente strumento di identificazione
del danno, come quello fornito dalle onde guidate, ha ispirato questo lavoro.
La creazione di modelli numerici in grado di predire la corretta propagazione
delle onde permetterebbe di implementare sistemi di SHM in grado di moni-
torare l’eventuale presenza di danno nelle strutture oltre alla sua posizione e
dimensione.

Data la complessità dell’argomento trattato si è scelto di indirizzare la
ricerca su un semplice elemento strutturale, quale la piastra. L’obiettivo
principale di questo lavoro è quello di verificare che la propagazione ondo-
sa ottenuta nei modelli ad EF rispecchi il reale andamento delle onde, che
sono governate da leggi molto complesse, soprattutto nei materiali compo-
siti. Questa verifica viene condotta anche per piastre modellate utilizzando
una particolare tecnica sviluppata al Politecnico di Milano ed utilizzata per
studiare la propagazione del danno nei materiali compositi. Questa scelta è

1



Introduzione

stata fatta in previsione di un possibile sviluppo futuro in cui lo stesso modello
numerico danneggiato possa essere ulteriormente analizzato per la progetta-
zione di un sistema di SHM. Per la realizzazione di questi obiettivi si rende
necessaria l’implementazione di un altro strumento di analisi numerica noto
come tecnica degli elementi finiti semi-analitici, in inglese Semi-Analytical
Finite Element (SAFE). I risultati ottenuti dall’analisi ad EF devono quindi
essere confrontati con quelli forniti dall’approccio SAFE. Per questo motivo
si rende necessario lo sviluppo di una particolare tecnica di elaborazione dei
dati che consenta di ottenere dei risultati confrontabili. Infine i dati nume-
rici, provenienti sia dall’analisi ad EF che da quella SAFE, devono venire
confrontati con i risultati misurati sperimentalmente.

Il percorso seguito da questa tesi per raggiungere questi obiettivi si svi-
luppa in quattro capitoli. Il primo capitolo definisce in maggior dettaglio lo
SHM, riportato lo stato dell’arte a riguardo e fornisce una breve introduzione
sulla teoria delle onde nei materiali solidi.

Nel secondo capitolo viene descritta la tecnica di modellazione e il model-
lo ad EF sia per la piastra in materiale isotropo, sia per quella in materiale
composito. Viene descritta poi la tecnica particolare, sviluppata al Politec-
nico, per la modellazione dei compositi e vengono quindi riportati i risultati
ottenuti.

Il terzo capitolo sviluppa la tecnica chiamate SAFE, viene descritta la
procedura e vengono riportati i risultati ottenuti. Viene poi sviluppato il
metodo di elaborazione dei dati che consente di confrontare i risultati forniti
dagli EF con quelli calcolati per mezzo dell’approccio SAFE. Infine vengono
riportati i risultati del confronto.

Il quarto capitolo è centrato sull’analisi sperimentale eseguita presso il
Georgia Institute of Technology di Atlanta. Viene spiegata la procedura
sperimentale e vengono forniti i risultati ottenuti. Quindi viene riportato il
confronto tra i dati sperimentali e quelli forniti dal SAFE.
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Introduction

Aerospace industry is characterized by continuously growing cost safe
requirements. This fact leads to the exponential increase in the use of com-
posite materials. With such feature as high strength-to-weight and stiffness-
to-weight ratios, these materials allow the manufacturing of lighter and more
efficient structure, with respect to aluminum alloys, in order to increase the
payload and to reduce the fuel consumption. However composite structures
are very vulnerable to structural damage, in particular the delamination that
can be introduced during manufacturing or service. The occurrence of delam-
ination could potentially leads to a catastrophic failure of the whole structure
if it accumulates above a critical level.

Cost saving must never be considered without safety. For this reason
in the last years researchers are developing ever more sophisticated damage
monitoring systems, which are able to evaluate the health of a structure in
real-time. This branch of research is known as Structural Health monitoring
(SHM).

The present thesis is inserted in this field of research. The motivation
that inspired this work lies in the possibility to utilize a flexible instrument,
such as the Finite Elements (FE), to model a powerful damage identification
tool, such as the guided waves. A numerical model that can predict the
exact propagation of waves in material, could lead to the implementation of
SHM systems able to monitor the presence of defects in the structure, their
positions and dimensions.

Because of the complexity of this argument, it is chosen to focus the
attention on a simple structural element, such as the plate. The main objec-
tive of this work is to verify the correctness of the wave propagation modeled
with the FE. This is not a trivial task because of the complex nature of
wave propagation in plates, especially for the composite materials case. This
verification is done also for a FE plate modeled using a particular technique
developed at Politecnico di Milano and utilized to predict the damage prop-
agation in composite materials. This choice is done according to an eventual
future development, in which the same damaged numerical model could be

3



Introduction

further analyzed for a SHM system design. To pursue this objectives an-
other instrument of numerical analysis must be developed. This instrument
is the technique known as Semi-Analytical Finite Element (SAFE). The re-
sults coming from the the FE analyses must be compared with the results
given by the SAFE approach. For this reason a special post-processing tech-
nique must be developed in order to produce comparable results. Finally
the numerical data, from FE and SAFE, must be compared with the results
experimentally measured.

The approach followed in this thesis is divided into for chapter. The first
one presents a description of the SHM, along with the state of the art on
this technique. Moreover a brief introduction to the theory of waves in solid
materials is provided.

In the second chapter the modeling technique of the FE models adopted is
extensively described, for both the isotropic and the composite material case.
Then the description of the particular technique, developed at Politecnico,
for the modeling of composite materials is provided, along with the obtained
results.

The third chapter develops the technique known as SAFE, a description
of the procedure is provided and the obtained results are reported. Then it
is developed the post-processing technique that allows the confrontation of
the data, coming from the FE, with the results calculated with the SAFE
approach. Finally this confrontation is reported.

The fourth chapter is centered on the experimental analysis carried out
at the Georgia Institute of Technology of Atlanta. An explanation of the
experimental setup is provided along with the obtained results. Then the
confrontation between experimental data and SAFE approach is reported.
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Chapter 1

Structural Health Monitoring and

wave propagation

The process of implementing a damage identification strategy for aerospace,
civil and mechanical engineering infrastructure is referred to as Structural
Health Monitoring (SHM). This process involves the observation of a struc-
ture or mechanical system over time using periodically spaced measurements,
the extraction of damage-sensitive features from these measurements and a
statistical analysis of these features to determine the current state of system
health. This process can be repeated periodically, to monitor the aging of the
structure and damage accumulation, or, in case of an extreme event, it can
be used for a rapid condition screening. This possibility shows the benefits
that SHM can bring to safety, by monitoring the presence of damages and
to operative costs, by reducing maintenance. Moreover SHM may allow to
reduce the safety margin of structure, because any damage can be identified
at its creation, allowing an immediate planning of maintenance. For all these
reason, in the last decade, the interest in SHM is growing further.

The damage identification may be performed by different techniques such
as ultrasonic testing, radiographic testing, electromagnetic testing, etc. In
SHM applications a damage identification technique must satisfy require-
ments of implementability, reliability, speed and cost. One of the most
promising technique, which satisfy all these requirements, is the one based
on the guided waves. This technique consists in exciting the structure in
order to generate waves in the material. Then, through the measurements
of these waves, by means of a series of transducers, it is expected to identify
the presence of damage, its dimension and its position. The correct mod-
eling of waves in structure has a fundamental importance for the definition
of a damage identification strategy based on guided waves. For this reason
the present work is focused on the possibility to correctly model the wave
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propagation in composite plate through the use of the finite element method.
Since the argument of waves is widely discussed in this work, it is necessary
to present an introduction to wave theory, dealing with the main aspects
that will be treated. This introduction is presented in the second sections of
the chapter, whereas a review on the state of the art of SHM techniques is
reported in the first section.

1.1 Brief review of state of art in SHM tech-

nique

The past 10 years have seen a rapid increase in the amount of research re-
lated to SHM, as quantified by the significant escalation of papers published
on this subject [1]. Another indicator of the increased interest in this tech-
nology is the constantly growing number of international conferences that
focus directly on SHM. In this sections the state of art of this technology is
briefly summarized.

Since SHM may involve different domain of research, especially for the
damage identification phase, such as wave propagation, heat-transfer, x-rays,
the interest must be focused on one particular technique. Guided waves are
one of the most encouraging tool for SHM applications. In plates these waves
can propagate for large distances, they are sensible even to small defect and
they involve the whole material thickness, meaning that a defect can be
identified also if it is in the middle of the plate. One distinction that can
be done on papers dealing with SHM by means of Lamb waves, lies in the
selection of the mode used for the investigation. The chosen mode should
be able to offer a very low dispersion, low attenuation with the distance,
high sensitivity to damages, easy excitability and good detectability. Some
authors [2] consider the S0 mode as the proper one, for its low dispersion, low
attenuation in amplitude and its velocity of propagation. Other authors [3,4]
prefer the A0 mode, because, even if it is more dispersive for low frequencies,
it has lower wavelength than the S0 mode, thus it can detect smaller defects.

Since the use of composite materials is increasing in many industrial fields,
in particular in the aerospace sector, the interest of Lamb waves based SHM
is focusing on these materials, which have a much more complex behavior
with respect to the homogeneous materials. Moreover composite structures
are more vulnerable to structural damage, in particular the delamination that
can be introduced even during manufacturing. A review on the state of art of
SHM using guided waves in composite plates is given in reference [5]. In this
article every step in the SHM process are reviewed, such as the excitation of
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the specimen, the techniques adopted to model the propagation of the Lamb
waves, the processing of the signal and the algorithms used for the damage
identification.

The present work is focused is the possibility to model wave propaga-
tion in composite plates by means of Finite Elements (FE) method. The
first papers, in which this application of FE is presented, use very simple
bi-dimensional models, of simple structure, such as beams [6], made of ho-
mogeneous materials. With the increasing computational power available,
the complexity of the model is increasing too, from bi-dimensional to three-
dimensional. These days it is possible to study the wave propagation even in
large structures. These structures can be simple plates [7] or more complex
structures as stiffened plates [8] made in isotropic or composite materials.
Another interesting aspect that is modeled through the FE method is the
real behavior of a piezoelectric actuator on a composite plate [9]. In this
article a simple summary of the characteristics that a FE model should have
to correctly represent the waves it is presented, even though nothing is said
about some important aspects as the aspect ratio of the solids elements.

The state of art in FE modeling, is the investigation of the scattered
waves that originate when Lamb waves hit a defect. To model the defect
different technique are available, in isotropic material it is possible to remove
the elements simulating a crack in the material [10] or a through-thickness
hole [11], while in composite materials it is possible to reduce the elastic
properties of the elements forming the damage [12]. The objective of all
these investigations is to define a standard that allows the modeling of any
structure, of any material, in order to identify the behavior of the guided
waves and their reaction to the presence of a damage. With such a standard it
should be possible to predict what answer should be expected from sensors in
the case of damage in one particular region of the structure. The availability
of such a numerical instrument could significantly reduce the experimental
analyses and thus the costs. Moreover it could lead to the implementation
of an efficient SHM system that could improve the safety and reduce the
operative costs of structures.

1.2 Theory of waves in solid media

In this section a brief description of the main aspects of the wave theory
in solid media is presented. The approach adopted by the authors of two
reference book [13,14] is followed. Waves in a taut string are first investigated
because they require a simple mathematical approach and because nearly all
the basic concepts of propagation, such as dispersion and group velocity,
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are introduced. Then the waves in plate, such as the Lamb waves, will be
investigated.

1.2.1 Waves in taut string

The governing equation for a taut string is now developed. Since bound-
aries introduce complication an infinite length string is considered. The dif-
ferential string element under tension F of Fig.1.1 is considered. It is assumed

ds

q

θ

F

F

θ + ∂θ

∂x
dx

y

xdx

Figure 1.1: Differential element of taut string

that any variation in the tension due to string displacement is negligible.
The mass density per unit length is ρ and the external loading is q(x, t). The
equation of motion in the vertical direction y is Eq.1.1.

− F sin θ + F sin

(

θ +
∂θ

∂x
dx

)

+ q ds = ρ ds
∂2y

∂t2
(1.1)

The arc length ds is given by
√

1 + y′ 2 dx. If small deflection are assumed
ds ≈ dx, sin θ ≈ θ and θ ≈ ∂y/∂x, the preceding equation becomes Eq.1.2.

F
∂2y

∂x2
+ q = ρ

∂2y

∂t2
(1.2)

Of particular interest is the form of the homogeneous equation obtained by
setting q = 0, giving Eq.1.3.

∂2y

∂x2
=

1

c20

∂2y

∂t2
c0 =

√

F

ρ
(1.3)

This equation is known as the wave equation and the term c0 denotes the
velocity of wave propagation.
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Now, using the separation of variable approach, the propagation of a
simple harmonic wave is investigated. The term y = Y (x)T (t) is substituted
in Eq.1.3 giving Eq.1.4.

Y ′′

Y
=

T ′′

c20 T
= −k2 (1.4)

The resulting solution for y(x, t) is expressed in Eq.1.5

y = (A1 sin kx+ A2 cos kx)(A3 sinωt+ A4 cosωt) (1.5)

where the radial frequency is given as ω = kc0. Regrouping and multiplying
Eq.1.6 is obtained.

y = A1A4 sin kx cosωt+A2A3 cos kx sinωt+A2A4 cos kx cosωt+A1A3 sin kx cosωt
(1.6)

Using trigonometric identities as sin(α + β) = sinα cos β + cosα sin β the
solution can be put in the form of Eq.1.7.

y = B1 sin(kx+ωt)+B2 sin(kx−ωt)+B3 cos(kx+ωt)+B4 cos(kx−ωt) (1.7)

Any of the four terms of this equation, as the one in Eq.1.8.

y = A cos(kx− ωt) = A cos k(x− c0t) (1.8)

Each term can show the wave propagation in the direction of positive x.
Considering the argument of Eq.1.8 as the phase, which is defined in Eq.1.9,
the wave can be visualized as in Fig.1.2.

φ = kx− ωt = k(x− c0t) (1.9)

It can be noted that for increasing time, increasing values of x are required
to maintain the phase constant. The shape of the deflections at successive
instants of time should be represented as in Fig.1.2. The propagation velocity
of the constant phase is c0 and it is defined as phase velocity. Constancy of
phase for increasing time requires x = c0t. Referring to Fig.1.2, the distance
between two successive points of constant phase is called wavelength and
indicated by the symbol λ. The wavelength is related to the parameter k by
Eq.1.10.

k =
2π

λ
(1.10)

The parameter k is called wavenumber. It is inversely proportional to the
wavelength and it represents the number of waves in the unit length. Having
considered the characteristics of a typical harmonic wave, it is seen that the
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A

-A

y

x

t1 t2 t3

c0

λ

Figure 1.2: Deflections of an infinite long string at successive times

remaining terms of Eq.1.7 are similar in nature. The major point of difference
is that terms having the argument (kx+ωt) are propagating in the negative
x direction.

Another solution to the wave equation is given by D’Alembert and it is
reported in Eq.1.11.

y(x, t) = f(x− c0t) + g(x+ c0t) (1.11)

This equation satisfies Eq.1.3 for any arbitrary function f and g, as long as
the initial and boundary conditions can eventually be satisfied. The functions
f and g represent propagating disturbance. Whatever the initial shape of the
disturbances, that shape is maintained during the propagation, so the waves
propagate without distortion, as represented in Fig.1.3. The undistorted

x

y

c0

Wave at t1 Wave at t2

Figure 1.3: Undistorted propagation of wave envelope

nature of wave propagation represents a fundamental characteristics of the
one-dimensional wave equation.
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1.2.2 String on an elastic base - Dispersion

The wave equation Eq.1.3 considered up to this point is simple. More-
over, in the system described by this equation, the pulses propagate without
distortions. Now a more complicated situation, in which the string rests on
an elastic foundation, is considered. This situation is represented in Fig.1.4.
The external load may be interpreted as due to the elastic foundation, as

q(x, t)

F

F

y

x

K (Elastic spring constant)

Figure 1.4: Differential element of a string on an elastic base

expressed by Eq.1.12
q(x, t) = −Ky(x, t) (1.12)

where K is the elastic modulus of the foundation. The resulting governing
equation, in the absence of other external forces, is given by Eq.1.13.

∂2y

∂x2
−

K

F
y =

1

c20

∂2y

∂t2
c0 =

√

F

ρ
(1.13)

This equation is no longer of simple wave equation form. Thus a solution of
the form f(x± c0t) may not satisfy it. Since the major characteristic of such
a solution is undistorted wave pulse propagation, it is now logical to expect
some type of distortion. This phenomenon is known as dispersion.

Now the necessary conditions for the propagation of harmonic waves are
determined. Assuming the solution Eq.1.14

y(x, t) = Aei(kx−ωt) (1.14)

and substituting in Eq.1.13, it gives the expression Eq.1.15, which is called
characteristic equation or dispersion equation.

(

−k2 −
K

F
+

ω2

c20

)

ei(kx−ωt) = 0 (1.15)
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This equation must fulfill Eq.1.16 in order to admit non-trivial solutions

ω2 = c20

(

k2 +
K

F

)

ω = ω(k) (1.16)

or, alternatively, Eq.1.17.

k2 =
ω2

c20
−

K

F
k = k(ω) (1.17)

Here the phase velocity cp is different from the c0 of the taut string. Indeed,
substituting ω = kcp in Eq.1.16 or Eq.1.17, the result of Eq.1.18 is obtained.

c2p = c20

(

1 +
K

Fk2

)

cp = cp(k) (1.18)

Alternatively, one can obtain the results in Eq.1.19.

k2 =
K/F

(c2p/c
2
0)− 1

k = k(cp) (1.19)

Another set of relations can be obtained by eliminating k from Eq.1.17 or ω
from Eq.1.19, to give Eq.1.20

ω2 =
KFc2p

(c2p/c
2
0)− 1

ω = ω(cp) (1.20)

and Eq.1.21.

k2 =
ω2c20

ω2 − (kc20/F )
k = k(ω) (1.21)

The results show that an harmonic wave of frequency ω can propagates only
at a specific velocity cp as it is indicated by the relation ω = ω(cp). Con-
sidering a pulse shape at a given time t = t0 as a Fourier superposition of
harmonic waves, as the time advance, each Fourier component of the original
pulse will propagate with its own individual velocity. The various compo-
nents will become increasingly out-of-phase relative to their original position
so that the original pulse shape will became increasingly distorted, as shown
in Fig.1.5. In the taut string, where K = 0, this phenomenon is not present.

Another important result comes from the analysis of the roots of Eq.1.17
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x

y

cp(ω)

Wave at t1 Wave at t2

Figure 1.5: Distorted propagation of a wave envelope

which are reported in Eq.1.22.

k = ±

√

ω2

c20
−

K

F
(1.22)

The roots are real if ω2/c20 > K/F , thus the propagation is possible to the
right or left, depending on which sign is selected, as expressed by Eq.1.23.

y = Ae−i(±kx+ωt) (1.23)

On the other hand, if ω2/c20 < K/F then the wavenumber k is imaginary.
Defining k̄2 = −k2 the motion of the string is given by Eq.1.24.

y = Ae±k̂xe−iωt (1.24)

This corresponds to a spatially varying but non-propagating disturbance.
Since the interest is on the conditions under which an harmonic wave can
exist, the results for imaginary wavenumbers are not considered in the study
of propagating waves, since they are non-propagating. Finally, the case
ω2/c20 = K/F represents the transition from propagation to non-propagation.
Defining ωc = c0

√

K/F , the string motion is the one reported in Eq.1.25.

y = Ae−iωct (1.25)

The frequency ωc is called cutoff frequency of the propagating mode. There
is no spatial variation in the motion, so the string is vibrating as a simple
spring-mass system.

The basic factors governing propagation in a string on an elastic foun-
dation have been presented. Now these results are displayed in graphical
form. Typically two types of displays are used: the plot of frequency versus
wavenumber which is called frequency spectrum of the system and the plot
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of phase velocity versus wavenumber, which is called dispersion curve of the
system. To plot the frequency spectrum the Eq.1.22 should be considered.
Assuming the frequency as real and positive, it is possible to get both real
and imaginary wavenumbers if ω < ωc and ω > ωc respectively. The results
are shown in Fig.1.6. The curves on the real plane are hyperbolas, while the

ω

ωc

K = 0

Re(k)Im(k)

Figure 1.6: Frequency spectrum for a string on an elastic foundation

imaginary curves are ellipses. The line K = 0 is the non-dispersive result for
the taut string. It is possible to extract the phase velocity from the frequency
spectrum by the relation ω = cpk. Graphically, taking a point on the real
curve of the spectrum, the slope of the chord between the point and the origin
is the phase velocity cp = ω/k. This relation is shown in Fig.1.7. In this fig-

k

ω

Slope = cp

Re(k)Im(k)

ω

ωc

Figure 1.7: Two-dimensional representation of the frequency spectrum showing
relation between chord slope and phase velocity

ure it is also shown an alternative way to represent the frequency spectrum.
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Since the spectrum is usually symmetric with respect the Re(k) = 0 and the
Im(k) = 0 planes, it is sufficient to present a two-dimensional plot of the
ω on the Re(k) > 0 and Im(k) > 0 axes. Phase velocity is often presented
independently by dispersion curves. Although it is possible to consider cp
as positive, negative, real and imaginary, depending on k, the most physical
meaningful information is contained in a plot which has as axes Re(cp) > 0
and Re(k) > 0, as shown in Fig.1.8. The horizontal line is the result of the

k

cp

c0

Figure 1.8: Dispersion curve for a string on an elastic foundation

non-dispersive string, where all the wavelength propagate at the same veloc-
ities c0. Usually in structural health monitoring applications the dispersion
curves present the phase velocity as function of frequency ω.

1.2.3 Group velocity

Group velocity is associated with the propagation velocity of a group
of waves of similar frequency. In reference books this concept is always
introduced by means of the pool example. A stone dropped in a pool of still
water creates an intense local disturbance which does not remain localized,
but spread outward over the pool as a train of ripples. In this phenomenon
can be observed that, when a group of waves advance into still water, the
velocity of the group is less than the velocity of individual waves of which it is
composed. The waves appear to originate at the rear of the group, propagate
to the front and disappear.

A simple analytical explanation is to consider two propagating harmonic
waves of equal amplitude, but slightly different frequency, ω1 and ω2. Such
harmonic wave will have the expression of Eq.1.26,

y = A cos(k1x− ω1t) + A cos(k2x− ω2t) (1.26)

where ω1 = k1cp1 and ω2 = k2cp2. Using trigonometric identities this expres-
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sion can be written as Eq.1.27.

y = 2A cos

[
1

2
(k2 − k1)x−

1

2
(ω2 − ω1)t

]

cos

[
1

2
(k1 + k2)x− (ω1 + ω2)t

]

(1.27)
Since the frequencies are only slightly different, the wavenumber k = ω/cp
also will slightly differ, as expressed in Eq.1.28.

ω2 − ω1 = ∆ω k2 − k1 = ∆k (1.28)

Similarly the average frequency, wavenumber and velocity are defined in
Eq.1.29.

ω =
1

2
(ω1 + ω2) k =

1

2
(k1 + k2) cp =

ω

k
(1.29)

Thus Eq.1.27 can be written as Eq.1.30.

y = 2A cos

[
1

2
∆kx−

1

2
∆ωt

]

︸ ︷︷ ︸

Low−frequency term

· cos [kx− ωt]
︸ ︷︷ ︸

High−frequency term

(1.30)

In this equation the cosine term containing the difference terms ∆k and ∆ω is
a low-frequency term, since ∆ω is a small number. The propagation velocity
of the low-frequency term is expressed in Eq.1.31,

cg =
∆ω

∆k
(1.31)

which in the limit becomes Eq.1.32.

cg =
∂ω

∂k
(1.32)

This velocity is called group velocity. On the other hand the cosine term con-
taining the average wavenumber k and frequency ω will be an high-frequency
term, propagating at the average velocity cp. The low-frequency term acts as
a modulation on the high-frequency carrier as shown in Fig.1.9. The individ-
ual harmonics travel with different phase velocities cp, but the superimposed
packet travels with the group velocity cg. The velocity of the high-frequency
carrier may actually be greater than, equal to, or less than the velocity cg.
The actual relation will depend on the dispersion characteristics of the elas-
tic system. Graphically the various cases can be represented considering
Eq.1.32, which states that the group velocity is equal to the local slope of
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cp

x

y(x,t)

Modulation envelope

(lower frequency)

Group

cg

Carrier wave

(high-frequency)

Figure 1.9: Group velocity example

the frequency spectrum curve, as shown in Fig.1.10. Recalling that the slope

Re(k)

ω

cg < cp cg > cp

θp

θg

Figure 1.10: Group velocity variation with phase velocity

of a chord to a point is the phase velocity, if that slope is higher than the
local slope of the curve (θp > θg), then cg < cp, otherwise if the slope of the
chord to a point is lower than the local slope of the curve (θp < θg), then
cg > cp.
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1.2.4 Wave in plates - Lamb waves

Now a more practical aspect of the wave propagation is presented. First
it is necessary to distinguish between bulk waves and guided waves. They
are both governed by the same set of partial differential wave equations (re-
ported in [13, 14]), but they differ in the boundary conditions. Bulk waves
travel in the bulk of the material, hence away from the boundaries, for this
reason mathematically there are no boundary conditions that need to be sat-
isfied by the proposed solution. In contrast, the solution to a guided wave
problem must satisfy the governing equation as well as some physical bound-
ary conditions. The introduction of boundary conditions makes the guided
waves problem difficult to solve analytically. However some special cases of
guided waves problems have been solved and these solutions take the names
of the investigator. The Rayleigh waves are free waves on the surface of a
semi-infinite solid. Stonely waves are free waves that occur at an interface
between two media. Lamb waves are waves of plain strain that occur in a
free plate.

Another difference between bulk waves and guided waves is that bulk
waves have just two mode of propagation that are the longitudinal mode and
the transverse mode, whereas the guided waves have an infinite number of
modes. Longitudinal waves, also called volumetric wave, imply no rotations
of medium particles, whereas transverse waves, also called rotational waves,
do not imply volume change in material. These waves propagate in infinite
media at two different speeds, which are cL for the longitudinal mode and cT
for the transverse mode. The expressions of these velocities are reported in
Eq.1.33,

cL =

√

E(1− ν)

ρ(1 + ν)(1− 2ν)
(1.33a)

ct =

√

E

2ρ(1 + ν)
(1.33b)

where E is the Young’s modulus, ν is the Poisson’s ratio and ρ is the density
of the material. A graphical representation of the particle motion for the
longitudinal and transverse mode is shown in Fig.1.11. The interactions of
these two basic modes with the boundaries generate reflections, refractions
and mode conversions [13, 14]. The superpositions of all these waves cause
the formation of guided wave modes in the plate, which are infinite. The
interest in the present work is focused on plates. Thus guided wave in plates
are now analyzed, these waves are also known as Lamb waves.
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λ

Direction of wave

propagation

Direction of

particle motion

(a) Longitudinal wave

λ

Direction of wave

propagation

Direction of

particle motion

(b) Transverse wave

Figure 1.11: Directions of particle motion for the case of harmonic waves in
infinite media

Lamb waves, like other elastic waves, can be described in a form of carte-
sian tensor notation, as expressed in Eq.1.34,

µui/jj + (λ+ µ)uj/ji + ρfi = ρüi (1.34)

where i, j = 1, 2, 3, ui and fi are the deformation and the body force in
the i direction, respectively. These equations of motions, which contain only
the particle displacements, are the governing partial differential equations for
displacement. They are defined through the use of Lamé constants λ and
µ, which can be expressed in terms of Young’s modulus and Poisson’s ratio
through the relations reported in Eq.1.35.

E =
µ(3λ+ 2µ)

λ+ µ
(1.35a)

ν =
λ

2(λ+ µ)
(1.35b)
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To well-define the problem of Lamb waves in plates, boundary conditions
must be applied at both free surfaces of the plate. On these surfaces the
traction must vanish. Moreover, the assumption of plain stress must be
done. Under these conditions it is possible to find a solution to Eq.1.34,
which describe Lamb waves in an homogeneous plate. To solve this problem
the method of the displacements potentials can be used [15]. The solution
can be split into two parts with symmetric and anti-symmetric properties.
Each part leads to a different Lamb wave mode, one symmetric and one
anti-symmetric, as expressed in Eq.1.36,

tan(qh)

tan(ph)
= −

4k2qp

(k2 − q2)2
for symmetric modes (1.36a)

tan(qh)

tan(ph)
= −

(k2 − q2)2

4k2qp
for anti− symmetric modes (1.36b)

where p and q are defined in Eq.1.37,

p2 =
ω2

c2L
− k2 (1.37a)

q2 =
ω2

c2T
− k2 (1.37b)

and h, k and ω are the half-thickness of the plate, wavenumber and fre-
quency respectively. The graphical representation of the symmetric and the
anti-symmetric modes is shown in Fig.1.12, the arrows represents the dis-
placements of the material. Equations Eq.1.36 can be solved analytically
just for very simple cases. At a given frequency, there are an infinite num-
ber of wavenumbers, either real or purely imaginary, that can solve Eq.1.36.
To each wavenumber corresponds a wave mode, but just the modes deriving
from real wavenumber are considered. Hereinafter the symbols Si and Ai are
used to define the symmetric and the anti-symmetric modes, respectively,
with the subscript indicating the order of the mode. Equations in Eq.1.36
also indicate that the Lamb waves, regardless of mode, are dispersive, be-
cause velocity is dependent on frequency. For this reason dispersion curves
can be plotted. This curves represent how the phase velocity cp = ω/k or
the group velocity vary with the frequency. An example of dispersion curves
plotting the phase velocity, as function of the frequency-thickness product,
for an aluminum plate is shown in Fig.1.13. In this figure are reported both
the symmetric and the anti-symmetric Lamb waves modes up to the second
order. It can be noticed that for lower frequencies just two Lamb waves mode
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(a) Symmetric mode

(b) Anti-symmetric mode

Figure 1.12: Symmetric and anti-symmetric Lamb wave modes
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Figure 1.13: Phase velocity dispersion curves for an aluminum plate

are present. This means that the other modes, for those frequencies, have
imaginary wavenumbers.

In a plate, in addition to the Lamb waves modes, there also exists a
set of wave motions known as shear horizontal (SH) modes. The particle
displacements caused by any of these SH modes are in a plane that is parallel
to the surface of the plate, as shown in Fig.1.14. In this figure the wave
propagates in direction x1 and the particles displacements are in the direction
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Figure 1.14: SH wave mode propagation

x3. Also the SH modes derive from the superpositions of the fundamental
bulk waves. However these modes do not have such an important role in
SHM applications, so the interest in this work is focus mainly on Lamb
waves modes.

1.3 Objective of the present work

Because of the importance of the guided waves in plates for SHM appli-
cations and their complex nature, especially in composite laminates, a FE
model of this phenomenon can not present flaws. Thus a validation of this
modeling technique must be provided in order to guarantee the correct wave
propagation in every direction of the plate. The wave should propagates
with correct wavenumber and with the correct wavefront, even in compos-
ite materials, which could present any orientation of the plies and a strong
orthotropic behavior for each ply.
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Finite Element modeling for wave

propagation in isotropic and

anisotropic plates

The first step in the present work is to create a model using Finite El-
ements (FE) that can represents how the waves move into a plate. This is
not a simple task because the phenomenon involved is very fast, the spatial
scale is small and, especially for composite materials, the results in literature
are few. For these reasons the first FE model created has the objective to
find the sensibility of the results to different kinds of parameters and to set
up these parameters. The material adopted for the first model is aluminum,
which is isotropic, because it gives simpler results than composite materials
and because there are a certain number of references in literature. The sec-
ond FE model developed represents an anisotropic plate, made of composite
laminates. Both plates are modeled by using solid elements and compos-
ite plate model employs one solid layer for each ply. The solid composite
model is then used as a reference for assessing a new modeling technique,
which was developed at Dipartimento di Ingegneria Aerospaziale (DIA) of
the Politecnico di Milano, that uses both shell and solid elements to model
a composite material. The sequence of lamination, the number of plies, the
material adopted for these anisotropic plates have been selected basing on
the characteristic of the panels that have been produced at Politecnico in or-
der to carry out experimental measurements. All the numerical analyses are
carried out by the explicit finite element software Abaqus/Explicit, whose
details are defined in the first section of this chapter.
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2.1 Overview of Abaqus/Explicit

The explicit dynamic analysis software Abaqus/Explicit is part of the
Abaqus suite of programs. This kind of analysis is computationally efficient
for large models with relatively short dynamic response times and for the
analysis of extremely discontinuous events or processes. The explicit dynam-
ics procedure performs a large number of small time increments efficiently.
An explicit central-difference time integration rule is used [16]. Each incre-
ment is relatively inexpensive because there is no need for solving a set of
simultaneous equations. The explicit central-difference operator satisfies the
dynamic equilibrium equations at the beginning of the increment t. Then the
accelerations calculated at time t are used to advance the velocity solution to
time t+∆t/2 (Eq.2.1) and the displacement solution to time t+∆t (Eq.2.2).

u̇(i+ 1

2
) = u̇(i− 1

2
) +

∆t(i+1) +∆t(i)
2

ü(i) (2.1)

u(i+1) = u(i) +∆t(i+1)u̇(i+ 1

2
) (2.2)

where u̇ is the velocity and ü is the acceleration. The explicit integration rule
is simple but by itself doesn’t provide the computational efficiency associated
with the explicit dynamics procedure. In fact, the possibility to speed up the
solution process is provided by the arrangement of mass and inertia properties
of the model into a diagonal mass matrix.

The central difference operator is not self-starting because at t = 0 the
value of the mean velocity u̇(− 1

2
) needs to be defined. So the condition Eq.2.3

can be asserted.

u̇(+ 1

2
) = u̇(0) +

∆t(1)
2

ü(0) (2.3)

Substituting Eq.2.3 into Eq.2.1 yields the definition of u̇(− 1

2
) reported in

Eq.2.4.

u̇(− 1

2
) = u̇(0) −

∆t(0)
2

ü(0) (2.4)

The central difference operator is conditionally stable, that is the maxi-
mum value of the time increment ∆t must be limited to assure stability. This
limit, for a case without damping is related to the highest eigenvalue in the
system, according to Eq.2.5.

∆t ≤
2

ωmax

(2.5)

If some kind of damping is introduced in the model, the stable time increment
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is reduced accordingly to Eq.2.6.

∆t ≤
2

ωmax

(√

1 + ξ2 − ξ
)

(2.6)

Abaqus/Explicit estimates the maximum frequency of the entire model and
with this information it automatically chooses the right time increment to
use in the integration. Actually this estimation is continuously updated.
However for some analysis the time increment can be manually inserted.
Practical procedures to choose the right value will be described in the next
section.

2.2 Model of an isotropic plate

The FE model of a plate is created using Abaqus/CAE (Complete Abaqus
Environment), the modeling software in the Abaqus suite of programs. Since
the purpose of the present work is the study of the propagation of guided
waves, that is the study of the local effects due to material deformation in
three dimensions, solid elements are adopted for the model. This choice is
preferable to the use of shell elements, which anyhow can not model the
symmetric mode, because of the contemporaneous extension or compression
of both sides of the plate. Moreover a more detailed propagation of the wave
through the thickness could be achieved. The next paragraphs report the
parameters adopted for the FE models and how they influence the results.

Orientation: The plate is positioned in the x-z plane, so the y axis is
normal to the plate. The origin of the axis is located in one of the vertex of
the plate. The displacements along the three axes are reported in Tab.2.1.

Name

Displacement along x axis U1
Displacement along y axis U2
Displacement along z axis U3

Table 2.1: Displacements along the axes of the model

Element type: The elements adopted to model the plate are the ones
called C3D8R by Abaqus (Fig.2.1). This abbreviation denotes a solid (Con-
tinuum) element, in 3D space, defined by 8 nodes, with reduced integration.
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Actually this is the classical linear brick element, with reduced integration
and hourglass control, which is used in explicit dynamic FE computations.
Stress or displacement analyses, using linear reduced integration elements,
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(a) Nodes and faces numeration
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(b) Integration points

Figure 2.1: Linear brick element with reduced integration and hourglass control
(C3D8R)

can lead to hourglass problems. Since the elements have only one integration
point it is possible to distort them in such a way that the strains calculated
at the integration point are all zero, which in turn leads to uncontrolled dis-
tortion of the mesh. To control hourglass in C3D8R elements the artificial
stiffness method and the artificial damping method, described in [17], are
used. Despite this inconvenient the reduced integration is useful in reducing
the computational cost, that could be very high for this kind of problems
and prevents the phenomenon of the locking, that affects bending problems,
as the one dealing with the propagation of flexural mode A0.

The mesh for wave propagation analysis should be the most regular as
possible to avoid spurious dispersions and reflections [18]. For this reason the
plate is modeled by a structured mesh and, to further increase the regularity,
elements square in plan are adopted.

Material: The material used for this first model is aluminum, that is
isotropic. This property imply that the guided wave in the plate, which
are generated by the excitation of a point of the plate, must propagate with
a perfect circular front, because the characteristics of the material are the
same in each direction. This phenomenon is a first indicator of the model
quality. If the propagating wave, which is represented by the analysis, does
not assume a circular shape around the excitation point, that means that
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the model must be corrected. The properties of aluminium are reported in
Tab.2.2. To insert these data in Abaqus the material ISOTROPIC is used. In

Units Value

Young’s modulus [MPa] 72000
Density [kg/m3] 2700
Poisson’s ratio 0.33

Table 2.2: Properties of aluminum adopted for the isotropic model

this work the consistent system of units adopted for all the models is tons,
millimeters, seconds. In this way the force units are newton and stresses are
expressed in mega-pascal (MPa).

Internodal distance: Element size has a great importance in wave prop-
agation analysis because it affects the minimum wavelength that can be rep-
resented in the analyses. Accordingly, the element size along the direction
of propagation, must be small enough to catch the shortest wavelength pro-
duced. Moreover the number of nodes per wavelength should be at least 6,
to get a good representation of the wave. For a structured mesh the length
to be considered is not the distance between two adjacent nodes, but the dis-
tance between the opposite nodes (along the diagonal of the brick element,
in a FE scheme), so the term internodal distance is used instead of element
size. To determinate the maximum internodal distance Lmax the Eq.2.7 can
be used [9].

Lmax <
λmin√
2nmin

=
cgmin√
2nminf

(2.7)

The term f is the frequency, the nmin is the number of nodes per wavelength,
at least 6 and cgmin

is the minimum group velocity expected, which actually
depends on the frequency. The group velocity dispersion curves of the alu-
minum can be found in literature as it is reported in Fig.2.2. Researchers in
the field of Lamb wave propagation for health monitoring usually consider
frequencies of the order of some hundreds kilohertz [2, 9]. In this work a
frequency of 200 kHz is used, so the expected cgmin

is about 2300 m/s for a
plate 1 mm thick. With this value of cgmin

the Lmax, using nmin = 8, must be
shorter than 1.44 mm, that means the longest side of an element, square in
plan, must be shorter than 1.02 mm. As a consequence the element adopted
in this isotropic model has the dimension of 1 mm in the plane of wave prop-
agation, whereas to define the thickness the aspect ratio must be taken into
account.
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Figure 2.2: Group velocity dispersion curves of Lamb waves in Aluminum

Aspect ratio: A quite detailed mesh in the through-the-thickness direction
is required to investigate wave propagation in a plate. This is not only true
for composite material, in which each ply can be modeled with a layer of
elements, but also for isotropic materials, in order to get more accuracy.
However the thickness of the plate can be very small with respect to the
other dimensions, so if cubic elements, with an optimal FE performance are
used, the dimension of the problem becomes too large and computational cost
becomes unacceptable. The problem can be solved using stretched elements,
in which the thickness is smaller than the other dimension. The ratio between
the longer side of the element and the shortest is referred as aspect ratio
(AR), as can be seen in Fig.2.3. For the same number of elements through

b

a

a

Figure 2.3: The aspect ratio of the element is AR=a/b

the thickness, the number of elements in the model is inversely proportional
to AR. Accordingly, high AR’s imply shorter time for the analysis, but an
excessively high AR can produce inaccurate results. The maximum value of
AR that can be used safely for a specific model must be determined after
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a series of trials. Some preliminary tests lead to accept, for the model of
the isotropic plate, an aspect ratio of 3. As said in the previous paragraph,
the size of the element in the plane of wave propagation is 1 mm, so an
AR of 3 means that the thickness is discretized by 3 elements 0.333 mm
thick. Actually, the employment of three solid elements through the plate
thickness with a reduced integration scheme is not completely adequate to
capture bending behavior of a plate. Nevertheless, the model should be able
to capture the essential aspect of propagation and comparison with more
refined model will be provided. A table reporting the dimensions of the
element adopted to model the isotropic plate is Tab.2.3.

Units Value

Width [mm] 1
Length [mm] 1
Thick [mm] 0.333

Table 2.3: Dimensions of the element in the isotropic model

Time step: The central-difference integration scheme is conditionally sta-
ble, so the time increments, also called time steps, must be shorter than a
determined value in order to get convergence. Abaqus/Explicit automati-
cally calculate the time step, but it is possible to insert its value manually
in order to have more control of the analysis. The value of ∆t is given by
Eq.2.8

∆t ≤
Lmin

Cd

(2.8)

where Cd is given by Eq.2.9

Cd =

√

1

ρ

E(1− ν)

(1 + ν)(1 − 2ν)
(2.9)

that is the dilatational wave speed, that for aluminum is 6286m/s. The time
step adopted for this first model should be shorter than 3.977e-8 seconds, the
values adopted are reported in Tab.2.4. The observation time is calculated
to allow the slowest wave, that is the anti-symmetric mode A0, to reach the
boundaries and to be reflected back to the excitation point.

Input: The application of a load normal to the plate can be used to sim-
ulate the effect on an excitation, which in structural health monitoring is
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Units Value

Time step [s] 3.500e-8
Observation time [s] 4.000e-5

Table 2.4: Time step and observation time

often accomplished by means of piezoelectric actuators (PZT), even if more
accurate models can be found, as the one described in [9]. The load can be
applied just on one side of the plate, exciting both the symmetric S0 and
anti-symmetric A0 modes of Lamb wave. Applying the force on both sides
of the plate can be used to produce either pure shear or pure bending, re-
spectively if the forces have the same or different directions. Therefore the
symmetric and anti-symmetric modes of Lamb waves can be generated sepa-
rately, as can be seen in Fig.2.4. Such an approach, based on two separated

F

F

(a) Anti-symmetric mode A0

F

F

(b) Symmetric mode S0

Figure 2.4: Pure modes by excitation of the plate on both sides

excitation sources, is mainly used in FE models rather than in lab, because
of technical difficulties in positioning the two actuators perfectly, in checking
that the force generated is the same and in synchronizing them properly. In
the model the load is applied in the center of the plate and just on one side.
The value of the load has no importance, because the interest is focused on
how the Lamb wave propagates rather than the real value of displacement.

Another important parameter is the frequency of excitation, because the
behavior of the Lamb wave significantly changes with the frequency. The
5.5 cycles sinusoid signal is modulated by the Hanning window to reduce the
leakage, as reported in literature [2,7–9,19]. The excitation signal in time and
frequency domain is shown in Fig.2.5. The signal is defined in tabular mode,
as a series of 75 coordinates of time and amplitude. The value of the force,
assumed to be 10 N, is multiplied by the amplitude to get the input signal.
The force is applied normally to the plate and it is distributed over 9 nodes
around the point of application to better represent a finite dimension source
of excitation, like a PZT and to reduce the local effects of a concentrated
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Figure 2.5: Input excitation signal in time and frequency domain, 5.5 cycles at
200kHz

load in a FE model. The characteristics of the input signal are summarized
in Tab.2.5.

Units Value

Function Sine
Cycles 5.5
Windowing Hanning
Frequency [kHz] 200
Force [N ] 10

Table 2.5: Characteristics of the input signal

Boundary conditions: For a wave propagation analysis the plate is free.
There is no constrains of any kind, that because Lamb wave propagates in
plate with free boundaries. Also it is worth noting that the free boundary
condition is in accordance with the experimental set up of chapter 4.
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Output: The information obtained from the analysis of the FE model are
the time histories of the displacements of the nodes over the upper and the
lower side of the plate. These histories, that will be processed later, are the
values that the displacements of the nodes assume during the observation
time. Each node of the upper and lower side of the plate can have more time
histories, one for each degree of freedom of interest. The degree of freedom
used mostly in this work is the out-of-plane displacement U2 because, thanks
to the force adopted, the main displacement is in this direction and because
both the symmetric and the antisymmetric modes has a component in U2.
The time interval used to describe these histories has a different duration with
respect the time step required for the analysis. Usually the time interval
is chosen in order to get a number of intervals that is a power of two, to
improve the efficiency of the Fast Fourier Transform (FFT), that will be
used to process the data. Accordingly in this work all the time histories have
512 intervals. Another information that comes from the analysis of the FE
model is the so called field output. This output gather the displacements
U1, U2 and U3 of all the nodes, to produce a graphical representations of
the deformed model at a particular time, or to represent the displacements
by colors, or both. The representations of the field output are very useful
because they give an idea of how the wave propagates, but they produce a
remarkable amount of data. For this reason the field output is taken at no
more than 50 intervals during the observation time. The Tab.2.6 reports the
characteristics of the output file. Obviously the time histories and the field

Units Value

Intervals for time history 512
Information for the time history U2
Intervals for field output 50
Information for the field output U1,U2,U3

Table 2.6: Characteristics of the output file

output can be used with other data, as the components of the stress or the
strain in the element, the velocities or the accelerations of the nodes, and so
on.

Dimension of the plate: The choice of the dimensions of the plate comes
after the definition of all the parameters of the FE model. In fact, the model
has the purpose to properly describe the propagation of Lamb wave and
not to create a model of an existing plate. Accordingly, dimension of the
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model must be the largest possible in order to have the wave as developed as
possible and to avoid reflection at the boundaries. Moreover a large FE plate
has an high spatial resolution in case of a spatial Fourier transform, as the one
performed in chapter 3.6. On the other hand the dimensions of the model
directly affect the computational cost. Therefore a trade-off between the
largest dimension possible and the computational power available is made
in order to obtain enough space for the propagation and an analysis time
of the order of hours using an average personal computer. With all these
premises a plate of the dimensions reported in Tab.2.7 is created. In Fig.2.6

Units Value

Plate width [mm] 72
Plate length [mm] 96
Plate thick [mm] 1

Table 2.7: Dimensions of the plate

the dimensions of the plate and the position of the concentrated load are
reported. These dimensions, except for the thickness, will be maintained

96mm

72mm

48mm

36mm

z

xy

Figure 2.6: Dimensions of the plate and position of the load

also for composite plates models.

Model: The choices of all parameters leads to the FE model that is re-
ported in Fig.2.7. The red dots indicates where the load is applied. The
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Figure 2.7: Model of the plate

dimension of the finite element analysis for the isotropic plate is reported
in Tab.2.8 along with the computational time required. The computational

Units Value

El. number 20736
Degrees of freedom 84972
Computational time [s] 57

Table 2.8: Dimension of the FE problem and computational time for the isotropic
plate

time is very short because the isotropic model is simple and just three ele-
ments are used to discretize the thickness. This time is much greater for the
anisotropic plates, even if the width and the height are the same.

2.3 Wave propagation in an isotropic plate

In this section the output of the finite element model defined previously
is examined. Now the attention is on the field output, to have a graphical
representation of the out-of-plane displacement U2 in the whole plate. This
component measures more efficiently the anti-symmetric mode A0, that has
the largest part of its displacement in this direction, whereas the symmetric
mode S0, that has mainly an in-plane displacement, has a reduced visibility.
The expected result is a wave that circularly propagate around the excitation

34



FE modeling for wave propagation in isotropic and anisotropic plates

point, because the isotropic material has the same mechanical properties in
all directions. The results in Fig.2.8 are referred to wave propagation in the
plate at different times. The wave propagates circularly as expected. The
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Figure 2.8: Field output of the out-of-plane displacement U2 for the isotropic
plate

only wave visibile in these results is the anti-symmetric A0, as can be seen
looking at the deformed cross-section along the long side of the plate, Fig.2.9.
The S0 waves exist, but their component of displacement in the out-of-plane
direction is very low. Moreover, the type of excitation, which employs only
a force on one side of the panel, generate A0 waves with large amplitudes,
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Figure 2.9: Cross-section deformation along the long side of the plate at 20µs

which tend to hide the S0 content. A confirm of the ability of this model
to reproduce also the S0 mode is given in Sec.2.4, where the excitation is
expressly designed to produce symmetric waves.

2.3.1 The aspect ratio behavior

As said previously an high aspect ratio can reduce significantly the num-
ber of degree of freedom of a FE problem, reducing also the computational
time, but an AR too high produces inaccurate results as the one that is
shown in this example. Two plate, of the same size and material defined
in the previous section, are discretized with element of AR 3, using four
elements in the thickness and a size in plan of 0.75 mm, and AR 6, using
eight element in the thickness and the same size in plan. The out-of-plane
U2 field output of the two model is reported in Fig.2.10. For AR 6, as
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Figure 2.10: Field output of the out-of-plane displacement U2 for isotropic plate
at different aspect ratios
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can be seen in Fig.2.10(b),even if the size in plan is the same of AR 3 and
the number of element through the thickness is the double, the A0 wave do
not propagate circularly, as it ought to be for isotropic materials, but it is
stretched along the directions of the diagonals of the elements. This is not
a problem of element size, because the maximum internodal distance must
be 1.44 mm and in these models it is 1.05 mm, but a problem of element
distortion. The element distortion can be accepted until a certain value, its
maximum is determined after a series of tries. The presented results indicate
that the issues regarding the aspect ratio can be considered more important
than the through-the-thickness mesh refinement. A trade-off must be pur-
sued, which can provide an adequate description of through-the-thickness
behavior, avoiding the distortion due to aspect ratio and obtaining, at the
same time, a reasonable computational time.

2.4 Other application of wave propagation in

isotropic plates

The hints given so far for the proper realization of a FE model for an
isotropic material, can be used also to create a model to study the scattering
of a Lamb wave after its impact with a discontinuity in the material. The
waves that are scattered can be of different kind with respect the impacting
one, moreover they do not propagate uniformly, but their amplitude change
with the direction. The study of scattered waves allows not only to determine
the possible presence of a defect in the structure, but also its position, its
dimension and eventually its shape. The research about these possibilities is
still in progress, however in this work the main objective is to validate FE
methods to model the correct propagation of Lamb waves, so the application
of the FE described in this section is made just to test if any sort of scattering
is reproduced and no validation analyses is done on this argument.

Several articles are available on this argument; the one chosen as reference
is [20], which presents an analytical three dimensional theory to describe the
scattering of a symmetric Lamb wave S0 due to a circular partly through-
thickness hole in a plate. This theory is based on adimensional measures to
define the frequency and the dimensions of the hole, but finite dimensions
can be defined starting from the thickness of the plate and the definition
of the material. Different results are reported for different nondimensional
parameters, related to the frequency of excitation and the depth of the hole,
but in this work it is chosen to create only one FE model for a specific combi-
nation of the parameters proposed. The characteristics of the chosen model
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are reported in Tab.2.9. Accordingly to [20] the scattered waves are both

Units Value

Material Aluminum
Plate thickness [mm] 1.27
Excitation frequency [kHz] 316.77
Hole radius [mm] 5.08
Hole depth [mm] 0.635

Table 2.9: Characteristics of the model for the scattering analysis

A0 and S0 Lamb waves and the shear wave SH0. The available theoretical
results are the maximum amplitudes of this waves at a defined distance from
the hole for every direction.

To get the same kind of results using a FE technique it is necessary to
create two models, one with the partial hole and one without. By applying
the same excitation to both models and measuring the displacements in the
three directions at a series of nodes, at the same distance from the hole and
on both the sides of the plate, it is possible to clean the values measured
in the damaged plate by subtracting the values measured in the undamaged
one. Such a procedure allows the identification of the behavior of the scat-
tered waves. Thanks to the feature of the chosen pre-processing tool for the
creation of the model (Abaqus/CAE) it is possible to change just a small
part of the model instead than modeling from the beginning another plate.
Accordingly the model of the plate is created by inserting a small plate in the
main plate, exactly in the center. It is just this small plate that is modeled
differently to create the two models required, whereas the other parts of the
model are identical. Moreover, to reduce the dimensions of the problem, just
half of the plate is modeled, basing on symmetry consideration. A symmetry
boundary condition is applied to the nodes on the symmetry plane to im-
pose the constrains: U1=0, for the displacements and UR2=UR3=0 for the
rotations. A sketch of this FE model is represented in Fig.2.11. In order to
obtain meaningful results the plate should be large enough to avoid that the
waves reflected by the edges could interfere with the scattered waves from
the partial hole. Such a requirement actually represents a problem, becasue
a large plate requires a very large number of elements, more than that can be
handled with normal PC. For this reason a technique based on a numerical
absorbing surface is adopted [21, 22]. This surface is composed of 20 layers
of different materials, to whom a damping coefficient is applied, which grows
gradually from the inner to the outer layer following a quadratic law, to avoid
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Excitation point

Partial hole

Measuring points

Absorbing layer

Symmetry plane

Figure 2.11: Model of the plate for the scattering analysis

any reflection due to the excessive diversity between two adjacent layers. The
use of an absorbing surface reduces the number of elements, but also reduces
the time step that is used in the explicit analysis. The dependency of stable
time step, which has been introduced in section 2.2, on damping coefficient
is expressed by Eq.2.10:

∆t =
1

ωmax

(√

1 + ξ2max − ξmax

)

(2.10)

where ωmax is the highest frequency of the system, and ξmax is the fraction
of critical damping in the mode with the highest frequency. The values
of damping coefficients that are assigned to the elements in the absorbing
surface are chosen empirically, after a trade-off between the computational
time and the effective damping of the reflected signal, which is measured as
the ratio between the excitation signal and the reflected signal. In Tab2.10
are reported the tested values. With a damping of 4.5e-7 s the obtained

Maximum damping [s] Computational time Damping ratio

1.8e-7 1h 6
4.5e-7 2h 10m 30
9.0e-7 4h 20m 1000

Table 2.10: Values of computational time and damping ratios for different damp-
ing coefficients

results are good, the enhancement of the resulting signal due to doubling the
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damping is negligible, so this value is chosen as a good compromise between
quality and computational speed. To define the other characteristics of the
FE model are taken into account the same considerations of the isotropic
model of Sec.2.2. These characteristics are summarized in Tab.2.11.

Units Value

Material Aluminum
Plate height [mm] 350
Plate width [mm] 175
Element size [mm] 0.75 × 0.75 × 0.318
Aspect ratio 2.36
Elements in thickness 4

Table 2.11: Characteristics of the FE model for the scattering analysis

As already said, measuring the displacement histories in the three direc-
tions on some nodes, it is possible to reconstruct the values of the scattered
waves, by subtracting the results of the undamaged model to the results of
the damaged one. Since the nodes in which the displacements are measured
are positioned on a circumference centered in the hole, it is possible to rep-
resent the scattered waves using polar plots that reports, for each direction,
the maximum amplitude of each waves in that direction. To distinguish the
different waves it is necessary to understand which displacement is consid-
ered at the node. Accordingly, from the displacements in the three main
directions, are computed the displacements along the radius Ur, along the
tangent of the circumference Uθ and normal to the plate Uz. The maximum
displacement Ur is due to the S0 wave; the maximum displacements Uθ is due
to the SH0 wave, and the maximum displacement Uz is due to to the A0 wave.
The histories of these displacements, for the node along the 90◦ direction, are
plotted in Fig.2.12(a), whereas in Fig.2.12(b) the Hilbert envelope of those
displacement histories is plotted and the maximum values are marked. This
envelope enclose the absolute values of the displacements. In signal analysis
it shows the modulated signal neglecting the carrier one. These plots con-
firm the assertion made above about the maximum displacements and the
corresponding waves. Indeed the first oscillations that present a maximum
peak are the ones of Ur displacement; this means that they belong to the
fastest wave, the S0 type. The second peak is due to the displacement Uθ,
which is associated to the SH0 wave. Finally the last peak, which belongs to
the Uz displacement indicates that such displacement are associated to the
slowest wave, the A0. The observation time for this model should be calcu-
lated in order to allow the complete passage of the slowest wave, A0, through
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Figure 2.12: Time histories of the displacements along the radius Ur and the
tangent Uθ of the circumference of the transducers and perpendicular to the plate
Uz

the circumference where measures are taken. These values are reported in
Tab.2.12. The results calculated analytically in the reference article are re-

Units Value

Radius of the transducers [mm] 110
Observation time [s] 1.1e-4
Number of transducers 37

Table 2.12: Position and number of the transducers and observation time

ported in Fig.2.13, the incident wave in these plots arrives from left, that
is from the 180◦ direction. The results computed numerically with the FE
model described in this section are presented in Fig.2.14, the values are nor-
malized with respect the maximum value between the three displacements.
These two figures show clearly that the FE model adopted can correctly rep-
resent the scattered S0 and SH0 waves, whereas some problems come from
the representation of the A0 wave, though such problems are attenuated at
lower frequencies.

2.5 Model of an anisotropic plate

Solid finite element schemes of composite plates can be created by repre-
senting each ply of composite by means of conventional solid elements, stack
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Figure 2.13: Analytical results calculate by Grahn [20] for a partial hole half
plate deep
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(c) Scattered A0 wave

Figure 2.14: Scattering polar plots for a partial hole of 5 mm of diameter, half
plate thickness deep and excitation frequency of 316 kHz

all the plies and then merge the coincident nodes. Each ply of composite ma-
terial is assumed to be an unidirectional laminate, so an orthotropic behavior
is assumed. Each layer of solid is characterized by an orientation, which ro-
tates the stiffness properties of the material in the direction consistent with
the lamination sequence. In this section the anisotropic plates analyzed in
this work are described and the characteristics that the standard FE model
must have to reproduce correctly the wave propagation are presented.

Material: The material adopted for the plies are unidirectional laminae
made of carbon and glass fibers both in epoxy resin. Each lamina has an
orthotropic behavior whose characteristics are reported in Tab.2.13 for the
carbon fiber [7] and in Tab.2.14 for the glass fiber (data from DIA). The
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Units Value

Name T700/SE84HT
E11 [MPa] 131100
E22, E33 [MPa] 8000
G12, G13 [MPa] 4230
G23 [MPa] 3077
ν12, ν13 0.337
ν23 0.3
Density [kg/m3] 1560
Thickness [mm] 0.144

Table 2.13: Characteristics of the carbon fiber lamina

Units Value

Name S2/CYCOM5216
E11 [MPa] 45670
E22, E33 [MPa] 13600
G12 [MPa] 5700
G12 [MPa] 4000
G23 [MPa] 3000
ν12, ν13 0.257
ν23 0.3
Density [kg/m3] 1650
Thickness [mm] 0.23

Table 2.14: Characteristics of the glass fiber lamina

subscript 11 is referred to a quantity along the direction of the fiber, the
subscript 22 to a quantity directed normal to 11, but in the same plane of
the lamina and the subscript 33 to a quantity normal to the plane of the
lamina.

Lamination sequence: The 0◦ direction of the laminate is assumed to
be along the longest side of the plate. The lamination sequence chosen for
the carbon fiber plate is [0◦, 45◦, 90◦,−45◦]2s, which corresponds to 16 plies
symmetrically distributed. The lamination sequences used for the fiberglass
plates are [0◦8] and [0◦2, 90

◦

2]s, both made of 8 plies. These three plates are
chosen as they are representative of reference sequences employed in compos-
ite manufacturing. The first sequence is quasi-isotropic, due to the uniform
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distribution of reinforcement fibers in four directions (0◦, 45◦, 90◦,−45◦), the
second presents a strong discontinuity, because it has the maximum angle
possible between two adjacent plies, that is 90◦ and the last one is unidirec-
tional, thus presents an orthotropic behavior. Calling these plates respec-
tively Plate1, Plate2 and Plate3, Tab.2.15 resumes their characteristics.

Units Value

Plate1

Material T700/SE84HT
Sequence [0◦, 45◦, 90◦,−45◦]2s
Number of plies 16
Total thickness [mm] 2.3

Plate2

Material S2/CYCOM5216
Sequence [0◦2, 90

◦

2]s
Number of plies 8
Total thickness [mm] 1.84

Plate3

Material S2/CYCOM5216
Sequence [0◦8]
Number of plies 8
Total thickness [mm] 1.84

Table 2.15: Summary of the anisotropic plates analyzed in this work

FE model: The FE model is similar to the one used for the isotropic plate:
the orientation is the same, the elements are still C3D8R, the boundary
conditions are the same, as well as the dimensions of the plate, the input
signal and the output requests. The only differences are the material adopted
and the through-the-thickness refinement.

In fact, to describe the orthotropic behavior of the single ply, the or-
thotropic elastic material model, that is available in Abaqus, requires the
Young’s modulus in the three directions, the three shear moduli and the
three Poisson’s moduli. This material is defined once, then, for each ply,
an orientation is given to define the stiffness matrix of the elements of the
layer. The adopted internodal distance is calculated by means of Eq.2.7.
Accordingly to the values that can be found in literature [?,23] the minimum
group velocity in the carbon fiber plate is set at 1600 m/s and the one in
the fiberglass plate at 1400 m/s. Eq.2.7 calculates that the longest side of
an element, it must be 0.94 mm and 0.82 mm, in the carbon fiber and in
the glass fiber respectively. These results are obtained for a number of nodes
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per wavelength of 6, which is the minimum value to get accurate results.
Thus the dimension in plan adopted for the anisotropic plate elements is
0.75 mm, whereas the thickness is the one of the ply. A smaller dimension
of the elements would increase excessively the size of the problem.

The aspect ratios that result from these dimensions are AR 5 for the
carbon fiber plate an AR 3 for the fiberglass plates. With respect to the
isotropic plate, a conceptual visualization of the propagation front is not
immediate, so that no reference solution exists to evaluate the correctness
of the model. Accordingly AR is kept the lowest level, which is compatible
with the, available computational power.

The maximum time steps are calculated using Eq.2.8, for the carbon
fiber plate is 1.27e-8 s whereas for the fiberglass plates is 3.964e-8 s, which
is similar to the time step of the isotropic plate. This is due to the fact that
the ratio of the Young’s modulus to the density for the aluminum and the
fiberglass is almost the same, whereas for the carbon fiber is more than three
times.

All these characteristics can be reported, for the sake of simplicity, in two
tables. Tab.2.16 gathers the data common in the three anisotropic plates
and Tab.2.17 the data specific of each plate.

Units Value

Plate width [mm] 72
Plate length [mm] 96
Elements type C3D8R
Excitation freq. [kHz] 200
Cycles 5.5

Table 2.16: Common characteristics of the anisotropic plates

2.5.1 Wave propagation in quasi-isotropic carbon lami-
nate

The results that are obtained by applying the previously described tech-
nique will be reported considering the first plate (quasi-isotropic carbon lam-
inate). Such analyses will represent a reference for the validation of an alter-
native modeling technique, which will be employed for all plates and will be
described in the next section. As it can be seen in Fig.2.15 the anti-symmetric
A0 wave travels at a slower speed with respect the wave in aluminum, and the
shape of the wavefront is not circular, but slightly stretched along a direction
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Units Value

Plate1

El. size [mm] 0.75 × 0.75 × 0.144
Aspect ratio 5
Time step [s] 1.2e-8
El. number 196608

Plate2-3

El. size [mm] 0.75 × 0.75 × 0.23
Aspect ratio 3
Time step [s] 3.5e-8
El. number 98304

Table 2.17: Specific characteristics of the anisotropic plates

that form a small angle with the direction of z axis. The results that are ob-
tained with different aspect ratio show that the distortion of the wavefront
can be indeed attributed to material orthotropy, rather than to numerical
effects, as the ones discussed in sub-section 2.3.1.

2.6 Alternative modeling technique

At the Dipartimento di Ingegneria Aerospaziale (DIA) of the Politecnico
di Milano a modeling technique has been developed and assessed for model-
ing damage in the interlaminar layers of composite by means of FE explicit
computations. Such technique has been developed to study the onset and
the development of delamination both under static or impact loads. This
technique differs from the approaches that are based on the use of cohesive
elements, because creates less expensive models and does not use penalty
stiffness or others non-physical parameters. The technique, which is exten-
sively explained in [24], is briefly reviewed in the following sub-section.

2.6.1 Alternative hybrid 2D/3D modeling technique

The approach that is followed to model composite is a modification of the
cohesive approaches, which are nowadays employed to model delamination in
composites [16]. The final objective is providing the possibility to represent
in detail the morphology of interlaminar damage in the simulation of guided
Lamb propagation. Although the present work will only try to validate the
technique for a material without damage, it will be explained how the ap-
proach will be able to model a pattern of interlaminar cracks in the laminate.
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Figure 2.15: Field output of the out-of-plane displacement U2 for Plate1, modeled
with the standard technique

Future works will investigate the possibilities and the limits offered by the
techniques.

In the proposed approach composites are represented as a collection of
sub-laminates that are modeled by bi-dimensional elements connected by
means of solid interlaminar elements. Such a modeling technique is based
on the different structural roles that are played by in-plane and out-of-plane
stress components in a composite laminate, which can be highlighted by
considering some simplifying assumptions.
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For the laminate sketched in Fig.2.16 it it assumed that its axes also
represent the principal bending directions and that only the shear force Vx

and the bending moment Mxx act on the laminate without a gradient in the
y direction. The general indefinite equilibrium equations in the x direction

τxz

τxz

σxx

th
∗

dx

Vx + dVx

Mxx + dMxx

Vx

Mxx

x
y

z

Figure 2.16: Forces and stresses that act on the composite laminate and on the
sub-laminate in bending

is given by Eq.2.11

∂σxx

∂x
+

∂τyx
∂y

+
∂τzx
∂z

= 0

∂σxx

∂x
= −divτ (2.11)

The symmetry of the stress tensor implies that the shear components in
Eq.2.11 also act in the plane normal to the x axis. So the shear vector in
Eq.2.12 can be considered.

τ = τxyj + τxzk (2.12)

Now the cross-section area of the considered sub-laminate, which has a width
of ∆y, can be defined as th∗∆y = A∗; its boundary is Γ∗ and its normal
nΓ∗ . The upper and lower surfaces of the sub-laminate are represented by
interlaminar layers at z and z+dz. In the x direction, the equilibrium of a
sub-laminate element with a length dx must take into account the axial flows,
N∗

xx and N∗

xx+dN∗

xx, which represent the integral of σxx over the thickness th∗

at x and x+dx, respectively. Variations of N∗

xx turn out to be equilibrated by
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the resultant flow of the shear stress that acts in the interlaminar layers that
bound the sub-laminate: τzx(z) and τzx(z+dz). The equilibrium equation of
such a sub-laminate element can be obtained by integrating Eq.2.11 over A∗.
Applying the Green theorem at Eq.2.11 the integration of the shear vector
divergence can be expressed as the flux of τ across the boundary Γ∗, as in
Eq.

∫

A∗

divτdA∗ =
∂

∂x

∫

th∗

σxxdA
∗ =

∂

∂x
σxxdth

∗∆y

1

∆y

∫

Γ∗

τ · nΓ∗dΓ∗ = −
∂N∗

xx

∂x
(2.13)

The left-hand term of Eq.2.13 represent the flow per unit width of the shear
vector τ across the boundary Γ∗ which is defined in Eq.2.14.

φ∗ =
1

∆y

∫

Γ∗

τ · nΓ∗dΓ∗ (2.14)

The flow across Γ∗ is composed of two terms that correspond to the flow per
unit width across the boundary at z and at z+dz, respectively.

Eq.2.13 formalizes the translational equilibrium of a generic sub-laminate
during the bending of a composite laminate. The variations of the in-plane
stress component resultants, which are the membrane forces that are carried
by the plies, are equilibrated by the flows of the out-of-plane shear com-
ponents that are transmitted through the interfaces with the adjacent sub-
laminates. Both in-plane as well as out-of-plane stress components generally
vary over the cross-section of the laminate but a structural scheme that is
based on their mean values can be considered to approximately represent the
laminate. As far as the in-plane stress components are considered, the mean
value over A∗, that is N∗

xx/th
∗, can be taken into account, so that the sub-

laminate cross-section can be considered to be lumped at the sub-laminate
neutral plane, which, in symmetric sub-laminates, coincide with the geomet-
ric mid-planes. Hence, the in-plane response of the sub-laminate turns out
to be represented by a bi-dimensional structural element. To approximately
model the interaction between the sub-laminates, only the mean value of
out-of-plane shear components between the mid-planes of two adjacent sub-
laminates can be considered. Such a value represents an approximation of
the stress state at the interface that is idealized by the interlaminar layers
and will be carried by a connection that only has an out-of-plane response be-
tween the sub-laminate mid-planes. According to the proposed scheme, the
laminate is modeled by the superimposition of bi-dimensional and connection
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elements that interact at the neutral planes of the sub-laminates. Such ele-
ments can be interpreted as different material phases that carry in-plane and
out-of-plane stress components, respectively. The simplified scheme is shown
in Fig.2.17. This discussion can be repeated for equilibrium in y direction,

N
xx

x

Figure 2.17: Scheme of the composite laminate in the alternative modeling tech-
nique

so the connection between the bi-dimensional structural elements transmit
both τzx = τxz as well the τzy = τyz stress components.

A finite element scheme that is suitable to represent the proposed ideal-
ization can adopt bi-dimensional elements to represent the in-plane response
of sub-laminates, whereas the connection between sub-laminates can be mod-
eled by elements that have a null in-plane response. The average deformation
in the connection element can be linked to the relative displacement between
two adjacent sub-laminates, as represented in Fig.2.18. The vector of such a

x
y

Figure 2.18: Displacements between two adjacent sub-laminates

displacement is defined in Eq.2.15.

∆ =
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x
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y − S−
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(2.15)
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Within the small strain assumption, the vector ∆ can be linked to the average
value of the out-of-plane strains that act in the material volume between the
sub-laminates expressed in Eq.2.16, where tk is the distance between the
neutral planes.

ǫ = ǫzz ǫxz ǫyz

ǫ = ∆/tk (2.16)

If a linear 8 nodes solid element, with a reduced integration scheme, is
adopted as a connection element between the two bi-dimensional elements,
the out-of-plane strain components at its single integration point matches
the average strain state that is represented in Eq.2.16. The Abaqus C3D8R
represents an adequate choice for the connection element. However, just an
out-of-plane response must be included in its constitutive behavior. More-
over, a material orientation has to be attributed to the solid elements so that
the local z axis turns out to be normal to the connected sub-laminates. As a
consequence of Eq.2.16, the elastic response for such elements can be directly
identified by considering the physical out-of-plane stiffness of the material.
Eq.2.17 presents a general form of the constitutive behavior that must be
employed for solid connection elements.
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(2.17)

In this form is included a scalar damage variable to model the onset and
propagation of interlaminar damage by degrading the capability to transmit
out-of-plane stress components between the connected sub-laminates. The
stress state in linear membrane and solid elements with a reduced integra-
tion scheme is constant throughout the elements, so that the equilibrium at
each node of the scheme can be easily formalized by considering the sketch
in Fig.2.19. The shear stress that acts on the cross-section, which passes
through the considered node, can be evaluated as the mean value between
the values before and after the node. It can be observed that the variation
of τxz = τzx along the x direction is actually possible only if an external
transverse shear force acts on the node. The nodal equilibrium in x direction
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Figure 2.19: Detail of a FE scheme for the alternative modeling technique

for the proposed scheme is expressed in Eq.2.18.

(τ i,k+1
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xz )
∆x

2
− (τ i,kxz + τ i+1,k

xz )
∆x

2
= −

(
N i+1

xx −N i
xx

)

τ̄k+1
xz − τ̄kxz =

∆Nxx

∆x
(2.18)

Eq.2.18 is the discrete counterpart of Eq.2.13 since the left-hand term rep-
resents the flux per unit width φ∗, across a boundary that includes the total
area, A∗, of the sub-laminate, which has been lumped at the neutral plane
by means of the bi-dimensional element. Hence, the proposed scheme al-
lows the translational equilibrium of the sub-laminates to be fulfilled. A
continuum damage mechanics approach that is applied to the constitutive
response of a connection element can be employed to model interlaminar
damage. The modeling technique does not introduce free surfaces that do
not exist at the beginning of the computation and does not require ele-
ments that have infinitesimal or zero-thickness. As a consequence, all of the
material characteristics can be directly determined on the basis of physical
considerations. Moreover, to model N interlaminar layers, only N+1 nodes
are required, meanwhile other techniques, that are based on separated con-
nection elements, require 2(N+1) nodes.

Element type: This technique adopts bi-dimensional elements to carry
the in-plane stress and connection element to carry out-of-plane stress. The
firsts are modeled using the Abaqus S4R shell element, but also membrane
elements can be used, whose thickness is the one of the ply. The solids, as
already said, are modeled using C3D8R solid elements with reduced integra-
tion rule. The cut out view of the 16 plies Plate1 model in Fig.2.20 shows
the disposition of the elements. As it can be observed the number of solid
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Figure 2.20: Cut out view of Plate1 modeled according to alternative technique

elements through the thickness is 15 because these elements are just the con-
nections between the sub-laminates, whose cross-section can be considered
lumped at its mid-plane (which coincide with the neutral plane because the
sub-laminate is symmetric), as sketched in Fig.2.21.

Solid elements Alternative modeling technique

C3D8R

C3D8R

C3D8R

C3D8R

C3D8R

C3D8R

C3D8R

S4R

S4R

S4R

S4R

Figure 2.21: Cross-section of the standard and the alternative FE technique to
model composites

Material: Each ply is made of orthotropic material, in standard model-
ing technique is represented by solid elements whose Abaqus material type
is ENGINEERING CONSTANTS, that requires the nine components of Young’s
moduli, shear moduli and Poisson’s moduli. In the alternative modeling tech-
nique the characteristics of the material, reported in Tab.2.13 and Tab.2.14,
are introduced for bi-dimensional elements. Therefore the material model
adopted to describe their behavior is a bi-dimensional model (LAMINA type
in Abaqus), which requires just the two in-plane components of Young’s mod-
ulus, the Poisson’s modulus ν12 and the three shear moduli of the material.
Actually, G13 and G23 are also required to define the transverse shear behav-
ior for the shells. The benchmark reported in [24] shows that the responses
are very similar if shell or membrane elements are adopted. Shell elements
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are preferred as they substantially eliminates the risk of hourglass in the
computation. Then each lamina is rotated accordingly with the material
orientation of the plies.

In the alternative modeling technique the connection elements between
the laminae are solids, whose costitutive law has just the out-of-plane re-
sponse. Moreover a damage can be assigned to this elements by degrading
the capability to transmit out-of-plane stresses, as expressed in Eq.2.17, but
the axial stiffness Ezz is never modified in the case of compressive values of
ǫzz, which model the contact between adjacent sub-laminates, even when the
interlaminar layer is completely damaged. This behavior is obtained through
a VUMAT subroutine, written in FORTRAN, whose inputs are the components
of the stiffness tensor, but only D3333, D2323 and D1313 have non-zero values
and the initial damage, that in this work is always considered zero. This user-
defined material is assigned to C3D8R elements. In Tab.2.18 are summarized
the characteristics for each type of element.

Units Value

S4R
Young’s moduli [MPa] E11, E22

Shear moduli [MPa] G12, G13, G23

Poisson’s moduli ν12

C3D8R
Young’s moduli [MPa] E33

Shear moduli [MPa] G13, G23

Poisson’s moduli ν12

Table 2.18: Material characteristics for each type of element in the alternative
modeling technique

Another important parameter is the density that is attributed to the
elements. The two phases, that are modeled by the bi-dimensional and con-
nection elements, are actually superimposed in the FE scheme because they
exist in the same volume. Abaqus/Explicit code lump masses and inertia
properties at nodes, to obtain a diagonal mass matrix and to simplify the
numerical procedure at each integration step. Therefore only the total mass
that is attributed to each node of the FE scheme matters. As a consequence,
the mass can be freely distributed among bi-dimensional and connection ele-
ments. Distribution can be chosen by considering the stiffness of the elements
to maximize the stable time step that is required by the computation. Such
a choice leads to most of the mass being attributed to the connection ele-
ment, 9/10, the remaining 1/10 to the bi-dimensional elements, the values
are reported in Tab.2.19.
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Units Value

Plate1
Density C3D8R [kg/m3] 1404
Density S4R [kg/m3] 156

Plate2-3
Density C3D8R [kg/m3] 1485
Density S4R [kg/m3] 165

Table 2.19: Densities adopted for the alternative modeling technique

FE model: The parameters of the FE model using the alternative modeling
technique are the same of the anisotropic plate modeled in the standard way:
same dimension of the plate, same AR, same time steps, same excitation
signal and same request for the output. The dimensions of the solid elements
are the same too. The dimensions of the bi-dimensional elements, that have
the nodes co-located with the ones of C3D8R, are reported in Tab.2.20 and
are the same for all the plates considered. The dimensions of the FE models

Units Value

Width [mm] 0.75
Length [mm] 0.75

Table 2.20: Dimensions of the bi-dimensional element in the alternative modeling
technique

of the three plates and the computational times are reported in Tab.2.21.
These data concern to models that use membrane elements M3D4R, as it

Plate1 Plate2 Plate3

El. number 380928 184320 184320
Degrees of freedom 600624 300312 300312
Computational time 1h 27m 15m 15m

Table 2.21: Dimensions of the FE problem and computational times for the plates
modeled with the alternative technique

can be noticed by the number of degree of freedom that is almost double
with respect to the number of elements. The long computational time for
Plate1 is due to the very short time step.
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2.6.2 Validation of the alternative modeling technique

This technique has been tested to verify the correct representation of the
basic behavior of composite laminates in [25]. In that article a carbon fab-
ric plate has been clamped at the one end and loaded at the opposite end
by a transverse shear load. A reference model was created by using only
standard Mindlin shell elements. The technique has then been assessed by
comparing the results of the reference model with the ones of models includ-
ing an increasing number of interlaminar layers and adopting different types
of bi-dimensional elements (shells S4R and membrane M3D4R), whereas the
interlaminar layers have always been modeled with C3D8R elements. Two
types of analyses have been carried out with two different time histories of
the applied load: a triangular impulse with a duration of 1 ms and an ampli-
tude of 50 N (case A) and a terminated ramp, raising from 0 to 50 N in 5 ms
(case B). The numerical time histories of the free end displacement are given
in Fig.2.22. It can be observed that the differences between the bending re-

Case A

Case B

Figure 2.22: Free end displacements of the validation model for different refine-
ments levels

sponses of the models are absolutely negligible. Hence, the obtained results
indicate that the application of the technique does not modify the bending
stiffness of a laminate.

In the work reported in [26] a plate, made of carbon fiber unidirectional
laminae, has been modeled with the alternative technique to verify the cor-
rectness of the elastic response. The model is made of 24 shell connected by
23 interface elements C3D8R. The plate has been analyzed in a three-point-
bending condition and the validation has been based on the confrontation
of the force-displacement curves with the one of a reference model. Such a
reference model has been modeled with just C3D8R elements, one layer for
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each ply. The load has been applied at the center of the plate, by means
of a rigid cylinder, which has been set in contact with the laminate surface.
Two other cylinders have been used to model the lateral supports. Although
an explicit computation has been performed, velocity conditions has been
applied with a very smooth time history, in order to avoid the excitation of
the free vibration of the plate and to mimic a quasi-static test. The force-
displacement curves are reported in Fig.2.23. Force represents the reaction

Reference model

24 shell

Displacement

F
o

rc
e

Figure 2.23: Force-displacement curves for the reference and alternative models

at central cylinder,which has been assigned the velocity boundary condition.
The validation activity which has been carried out in [26] also included the
comparison of the values of various stress components for each lamina. The
most significant results are reported in Fig.2.24, Fig.2.25 and Fig.2.26.
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Figure 2.24: Stress component σ11 for the reference and alternative models
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Figure 2.25: Stress component σ12 for the reference and alternative models
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Figure 2.26: Stress component σ22 for the reference and alternative models

So far the validations proposed for the alternative modeling technique
are limited to almost-static and dynamic analyses in a relatively low-velocity
transient. The dynamics involved in the present work are much faster than
the one used for the validation, for this reason a confrontation between the
standard and the alternative model of Plate1 is considered in sub-section
2.7.1.

2.6.3 Motivation for the use of the alternative modeling

technique

As already said the alternative modeling technique, has been developed
at the DIA to investigate upon the onset and the propagation of interlam-
inar failures due to static or impact loads. The good results obtained in
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determining the correct load for the onset of a crack and the correct pattern
of damage development in originally undamaged plates make this approach
quite interesting. In particular, damage onset and propagation has been
captured without any a-priori assumption on the location of possibile delam-
ination. Since a future development of the analyses done with this technique
is expected, it can be interesting to use the resulting FE models to study how
the guided waves behave in presence of damage to design the best structural
health monitoring system. The future scenario can be the following: the
design of a SHM system to minimize the maintenance cost and to reduce the
safety factors in design and, at the same time, the possibility to analyze the
risks of failure of critical component of a composite structure that is heavily
loaded or that can be impacted. The numerical non-linear analyses could
predict the extent of a damage due to a low energy impact or could evaluate
the severity of the damage conditions by means of an estimation of residual
load carrying capability. Subsequently, a series of wave propagation analyses
could be performed considering the previously analyzed damage scenarios.
Such wave propagation analyses, which are the object of the present work,
could be employed to study what is the behavior of the waves with the pres-
ence of a delamination in order to design the best configuration of a SHM
system. Several parameters of the SHM system could be assessed in order to
find the best excitation signal, the best position of actuators and sensors in
order to get a system that can identify the presence of damage, its position
and potentially its entity.

2.7 Wave propagation in anisotropic plates

In this section the results of wave propagation analyses are reported.
Analyses are performed using the alternative modeling technique to develop
the FE models of the three composite plates defined in section 2.5. The
reported results are the field output representation of the out-of-plane dis-
placements U2 in four time instants, to represent the shape of the wavefront
and its evolution. The visualized wave is the one corresponding to the anti-
symmetric mode A0. The alternative modeling technique can not be repre-
sents correctly the symmetric mode S0 because such representation requires
capturing the expansion/contraction effects which are due to the presence of
Poisson moduli ν13, ν31, ν23 and ν32, which link the in-plane displacements
with the out-of-plane ones. The connection elements have only the shear
moduli G13 and G23 and the Young’s modulus in the direction normal to the
plate E33 that can transmit only an anti-symmetric out-of-plane displace-
ment. Applying a force normal to the plate it can be observed a compression
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or extension of the thickness, due to E33, but this phenomenon is not coupled
with the in-plane extension or compression of the laminae. Such coupling is
fundamental to correctly reproduce the symmetric mode S0.

The results for Plate1 are displayed in Fig.2.27. As can be seen the results
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Figure 2.27: Field output of the out-of-plane displacement U2 for Plate1, modeled
with the alternative technique

are similar to those of the same plate modeled with the standard technique
in Fig.2.15, but a more specific confrontation is done in sub-section 2.7.1.

The results for Plate2 are reported in Fig.2.28. In this case the shape of
the wavefront is slightly stretched along the 0◦ direction. This is not due to
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Figure 2.28: Field output of the out-of-plane displacement U2 for Plate2, modeled
with the alternative technique

the wrong value of aspect ratio, but to the 0◦ plies on the upper and lower
surfaces of the plate. Since the wave generated by the actuator are mainly
flexural waves, the most stressed plies are the external ones that can impose
their behavior to the whole plate. The higher value of stiffness along the 0◦

direction leads to an higher speed of the wave along that direction.

This effect is even more visible in Plate3, the unidirectional plate, in
Fig.2.29. The stretching of the wave front is higher than in Plate2 because
the mechanism of the wave is always bending, but in this case all the plies
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Figure 2.29: Field output of the out-of-plane displacement U2 for Plate3, modeled
with the alternative technique

are oriented along the 0◦ direction.

2.7.1 Confrontation of standard and alternative tech-
nique

As said in sub-section 2.6.2 the alternative modeling technique of com-
posite materials has been validated for almost-static and slow-dynamic exci-
tations. Now a confrontation of the results is proposed between the standard
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and the alternative modeling technique of Plate1. The shape of the wave-
front, the velocity of the wave, the out-of-plane displacement and the stress
histories in the same point are evaluated and compared. The point in which
the measurements are taken is at a distance of 6 mm from the excitation
point, as it can be seen in Fig.2.30. This point is coincident with a node,

96mm

72mm

48mm

36mm

z

xy

6mm

Excitation

Measure

Figure 2.30: Position of the measure point in the plate

on the upper surface of the plate. The U2 displacement time histories are
referred to such surface node. The stress histories come from the column of
elements that have as nodes the ones coincident with the point just defined.

The shape of the wavefront at 20µs are compared in Fig.2.31, considering
the out-of-plane displacements U2. The wavefront in the two models is the
same, which is a little stretched along a small angle, but the alternative
technique gives a more uniform wave in all directions. Hence, the alternative
modeling technique seems obtaining a lower numerical dissipation of the wave
content.

The velocity of the wave can be already deducted by Fig.2.31, in fact
the dimension of the two wavefronts are virtually the same, but a more pre-
cise analysis is offered by the out-of-plane displacement histories, in Fig.2.32,
taken from the upper node of the plate, at the position that has been pre-
viously described. Fig.2.32 shows an almost perfect correlation during the
excitation phase and the identical prediction for the traveling time of the
wave before reflection. This correlation becomes less evident after the ar-
riving of the reflected wave. Moreover the alternative technique presents a
smoother curve, whereas the curve of the standard model is noisy. Such a
noise is likely to be produced by the symmetric mode S0, which is less evident,
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Figure 2.31: Confrontation of the field output of the out-of-plane displacement
U2 for Plate1 at 20µs for the standard and alternative modeling technique

Time [s]
0.00 0.02 0.04 0.06 0.08 0.10 [x1.E−3]

D
is

pl
ac

em
en

t U
2 

[m
m

]

−0.010

−0.005

0.000

0.005

0.010

Plate1 Standard. Node 106217
Plate1 Alternative. Node 550556

Figure 2.32: Out-of-plane U2 displacement histories for standard and alternative
technique

but is faster than A0, and it is reflected numerous times by the boundaries
during the simulation time.

The stresses in the elements are calculated in the integration points. Ac-
cordingly the stresses in the C3D8R element of the standard model can be
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confronted with the stresses of the S4R of the alternative model because
their integration points are in the same position, as shown in Fig.2.33. This

Integration point

Standard model Alternative model

Figure 2.33: Integration points for the standard and alternative technique

confrontation can only be done for the in-plane components of the stress,
because the bi-dimensional elements do not have out-of-plane stress compo-
nents. The σ11 histories of the element on the lower surface of the plate is
reported in Fig.2.34. The correlation of the two models is perfect until the
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Figure 2.34: σ11 stress histories for standard and alternative technique. Lower
element

arrival of the reflected wave. The alternative technique is not affected by
noise. The histories of σ22 component, for the lower element, are represented
in Fig.2.35. In this case the correlation is good, until reflection, but the val-
ues of the standard model appear more affected by noise than in the previous
cases, because the value of the stress is almost of the same order of the level
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Figure 2.35: σ22 stress histories for standard and alternative technique. Lower
element
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Figure 2.36: σ12 stress histories for standard and alternative technique. Lower
element

of noise. The shear stress σ12 of the lower element is presented in Fig.2.36.
In this case the correlation is totally lost because the noise of the measure for
the standard model is greater than the its value, even the alternative tech-
nique presents noise. But this lack of correlation is not a problem because
the values involved are 1/100 the values of σ11.

The confrontation of the two technique shows clearly that the alternative
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technique to model composites material achieves the same results of the
model done with standard solid elements as far as the effect of A0 waves
are concerned. The main drawback of this approach is the impossibility to
represent the symmetric mode S0 because of the particular characterization
of the connection elements.

2.8 The need for model validation

A confrontation between the two modeling technique does not guarantee
that the results obtained are physically correct. Although for the isotropic
plate some information, namely the velocity and the propagation of the
waves, can be achieved from literature, the variability of composite proper-
ties and the dependency on the particular material and lamination sequence
makes more complicate a validation of the results through literature data.
In fact there is no certainty that the FE model represents the correct wave-
lengths, velocities and shapes of wavefront. A possible strategy for validation
can initially rely on a completely different analysis approach. Finally an ex-
perimental analysis of the plates can give the true characteristics of the wave
propagating in composite plates. The comparison between different numer-
ical techniques and the experiments can provide a reliable validation of the
data. The alternative technique to model wave propagation is proposed in
chapter 3, whereas the experimental analyses are reported in chapter 4.
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Chapter 3

Semi-Analytical Finite Element

for the dispersion analysis of

composite plates

The need for model validation leads to the application of another ap-
proach to model the wave propagation. This approach is the Semi-Analytical
Finite Element (SAFE) method, which is also referred to as spectral or waveg-
uide finite element method, which has emerged for modeling the guided wave
propagation in 1973 [27]. This method has been progressively improved dur-
ing the years, as in its first form was able to model just the propagative
modes (real wavenumber). Then the method was extended [28] to calculate
non-propagating mode, also called evanescent modes (complex wavenumber).
These modes do not transport any energy along the structure, but are impor-
tant from a theoretical viewpoint to satisfy the boundary conditions. More
recently, SAFE methods were applied to thin-walled waveguides [29], railroad
tracks [30] and wedges [31]. Anisotropic materials were also investigated by
means of this method [32–34]. Latest works about SAFE extend the method
to account for material damping [35]. In this study, starting from the articles
of Lanza di Scalea and Datta [33,36] a SAFE method is developed to model
wave propagation in a infinitely wide laminated plate, though the formula-
tion is applicable to arbitrary cross-section. The original work from [33, 36]
has been implemented in a Matlab script in order to obtain the wavenumbers
in the wave propagation in composite plate at different excitation frequen-
cies. The first sections describes the original method, the basic aspects of
Matlab implementation and the results obtained by applying the numerical
tool to the considered composite plates. Finally a confrontation between the
FE results and the SAFE results is proposed.
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3.1 Overview

A multilayered infinite plate with time-harmonic motion is considered.
The plate consists in N parallel, homogeneous or orthotropic layers which are
perfectly bonded together. A global rectangular coordinate system (X,Y,Z)
is adopted, such that X and Y axes lie in the midplane of the plate and Z
axis is parallel to the thickness direction of the plate (see Fig.3.1(a)). The
SAFE approach for the extraction of dispersive solutions, uses a finite ele-
ment discretization of the cross-section of the waveguide, which is considered
immersed in vacuum. The displacements along the wave propagation direc-
tion are described analytically as harmonic exponential functions. The wave
propagates with wavenumber k and frequency ω. The harmonic displace-
ment, stress and strain field components at each point of the waveguide are
expressed by Eq.3.1.

u =
[
u v w

]T
(3.1a)

σ =
[
σx σy σz σyz σxz σxy

]T
(3.1b)

ǫ =
[
ǫx ǫy ǫz ǫyz ǫxz ǫxy

]T
(3.1c)

The constitutive relations at a point are given by Eq.3.2

σ = Cǫ (3.2)

where C is the stiffness matrix of the material. For a wave propagating
along a direction oriented at any angle θ with respect to the fiber direction,
the SAFE model simply requires the rotation of the stiffness matrix of each
lamina trough Eq.3.3

Cθ = R1CR−1
2 (3.3)

where C is the stiffness matrix in the lamina principal directions and R1 and
R2 are the rotation matrices, which are reported in Eq.3.4 and Eq.3.5.

R1 =











m2 n2 0 0 0 2mn
n2 m2 0 0 0 −2mn
0 0 1 0 0 0
0 0 0 m −n 0
0 0 0 n m 0

−mn mn 0 0 0 m2 − n2











(3.4)
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R2 =











m2 n2 0 0 0 mn
n2 m2 0 0 0 −mn
0 0 1 0 0 0
0 0 0 m −n 0
0 0 0 n m 0

−2mn 2mn 0 0 0 m2 − n2











(3.5)

Equations of motion for the cross-section in [36] are formulated by in-
serting the kinetic and potential energies into Hamilton’s equation. The
conservative form of Hamilton’s principle is used because, in this work, dis-
sipation is not taken into account. The variation of the Hamiltonian of the
waveguide, which vanish at all material points, is Eq.3.6,

δH =

∫ t2

t1

δ(Φ−K)dt = 0 (3.6)

where Φ is the strain energy given by Eq.3.7

Φ =
1

2

∫

V

ǫ
TCǫ dV (3.7)

and K is the kinetic energy given by Eq.3.8,

K =
1

2

∫

V

u̇Tρu̇ dV (3.8)

where ρ is the material density. By taking the variation of the Hamiltonian
and integrating by parts the kinetic energy, equation Eq.3.6 can be written
as Eq.3.9.

∫ t2

t1

[∫

V

δǫTCǫ dV +

∫

V

δuρü dV

]

dt = 0 (3.9)

3.2 Cross-sectional discretization

The waveguide cross sectional domain Ω can be represented by a sys-
tem of finite elements with domain Ωe. Mono- or bi-dimensional elements
can be used with this SAFE method, but in this work a mono-dimensional
discretization of the cross-section is adopted because the waveguide is an in-
finitely wide plate. To discretize Ω a Matlab routine is created to divide the
thickness of the plate into a number of elements, as can be seen in Fig.3.1(a).
The adopted element has three nodes and its degree of freedom are repre-
sented in Fig.3.1(b). The local coordinate system axes (x,y,z) are parallel to
the global coordinate axes. Each ply is modeled by two elements. Actually a
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(a) Thickness discretization
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the i-th element

Figure 3.1: SAFE discretization of an infinitely wide plate using mono-
dimensional three-node elements. In the triangle there is the ID of the element

two-element discretization can be considered adequate for a whole isotropic
plate, because such a refinement corresponds to 5 nodes through the thick-
ness, which can quite adequately represent the first mode shapes. If more
precision, or higher modes, are needed, it is enough to increase the number
of plies per layer, by assigning the same property and the same orientation.

3.3 Modeling and shape functions

The cross-section is modeled by a finite element discretization, by using a
given set of shape functions. As the elements adopted have three nodes, the
isoparametric shape functions are quadratic and are represented in Fig.3.2.
The expressions of these function are reported in Eq.3.10,

s=-1 s=0 s=1

(a) N1

s=-1 s=0 s=1

(b) N2

s=-1 s=0 s=1

(c) N3

Figure 3.2: Shape function for the quadratic mono-dimensional elements.
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N1 =
1

2
(1− s)−

1

2
(1− s2) (3.10a)

N2 = 1− s2 (3.10b)

N3 =
1

2
(1 + s)−

1

2
(1− s2) (3.10c)

where s is the adimensional coordinate. If these functions are organized into
vector as in Eq.3.11,

N =
[
N1 N2 N3

]T
(3.11)

then the matrices, which are reported in Eq.3.12 can be defined.

E1 =











N . .
. . .
. . .
. . .
. . N

. N .











E2 =











. . .

. N .

. . .

. . N

. . .
N . .











E3 =











. . .

. . .

. . N/z

. N/z .
N/z . .
. . .











Nn =





N . .
. N .
. . N





(3.12)

The displacement at a point within an element is given by Eq.3.13,

u(x, y, z, t) = N(z)ue(x, y, t) (3.13)

where ue is a column vector (Eq.3.14) containing the displacements at the
three nodes of the element.

ue =
[
u1 u2 u3 v1 v2 v3 w1 w2 w3

]T
(3.14)

The strain tensor in the element can be represented as function of nodal
displacements as in Eq.3.15.

ǫ
(e) = E1ue/x + E2ue/y + E3ue (3.15)

Now substituting Eq.3.14 and Eq.3.15 into the variational form, which is
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represented in Eq.3.9, yields to the Eq.3.16,

∫ t2

t1

[ ∫

y

∫

x

(

+ δuT
e/xk

(e)
11 ue/x + δuT

e/xk
(e)
12 ue/y + δuT

e/xk
(e)
13 ue

+ δuT
e/yk

(e)
21 ue/x + δuT

e/yk
(e)
22 ue/y + δuT

e/yk
(e)
23 ue

+ δuT
e k

(e)
31 ue/x + δuT

e k
(e)
32 ue/y + δuT

e k
(e)
33 ue

+ δuT
e m

(e)üe

)

dxdy

]

dt = 0

(3.16)

where the mass and stiffness matrices are reported in Eq.3.17.

k
(e)
11 =

∫ h

−h

ET
1CE1dz k

(e)
22 =

∫ h

−h

ET
2CE2dz

k
(e)
33 =

∫ h

−h

ET
3CE3dz k

(e)
12 = k

(e) T
21 =

∫ h

−h

ET
1CE2dz

k
(e)
13 = k

(e) T
31 =

∫ h

−h

ET
1CE3dz k

(e)
23 = k

(e) T
32 =

∫ h

−h

ET
2CE3dz

m(e) =

∫ h

−h

ρNT
nNdz

(3.17)

For the following passages is advisable to use a displacements vector of the
form Eq.3.18.

ue =
[
u1 v1 w1 u2 v2 w2 u3 v3 w3

]T
(3.18)

Indicating by nel the total number of cross-sectional elements, a standard fi-
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nite elements assembling procedures can be employed, as expressed in Eq.3.19,

K11 =

nel⋃

e=1

k
(e)
11 K12 =

nel⋃

e=1

k
(e)
12 K13 =

nel⋃

e=1

k
(e)
13

K21 =

nel⋃

e=1

k
(e)
21 K22 =

nel⋃

e=1

k
(e)
22 K23 =

nel⋃

e=1

k
(e)
23

K31 =

nel⋃

e=1

k
(e)
31 K32 =

nel⋃

e=1

k
(e)
32 K33 =

nel⋃

e=1

k
(e)
33

M =

nel⋃

e=1

m(e) U =

nel⋃

e=1

ue

(3.19)

where U is the column vector of assembled nodal displacements ue. The
resulting equations of motion with global matrices, due to the arbitrariness
of δU is the Eq.3.20.

K11U/XX +K22U/Y Y +
(
K12 +K21

)
U/XY +

(
K13 −K31

)
U/X

+
(
K23 −K32

)
U/Y +K33U−MÜ = 0

(3.20)

For a wave propagating in the X-Y plane is more comfortable working with
the Fourier transform (Eq.3.21) of the displacements vector U(X, Y, t),

Û(kx, ky, ω) =

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

U(X, Y, t)ei(kxX+kyY−ωt)dXdY dt (3.21)

where kx and ky are the wavenumbers in the X and Y directions respec-
tively and ω represent the circular frequency. Applying the Fourier transform
Eq.3.21 to Eq.3.20 leads to the Eq.3.22.

[

k2
xK11 + k2

yK22 + kxky
(
K12 +K21

)
+ ikx

(
K13 −K31

)

+ iky
(
K23 −K32

)
+K33 − ω2M

]

Û = 0
(3.22)

For a wave propagating in an arbitrary direction in the X-Y plane, which is
characterized by an angle θ with the X axis, the relation expressed in Eq.3.23
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can be considered,

kx = k cos θ (3.23a)

ky = k sin θ (3.23b)

where k is the wavenumber in the direction of the propagating wave. The
Eq.3.23 leads to the Eq.3.24

K1 = K11 cos
2 θ +K22 sin

2 θ +
(
K12 +K21

)
cos θ sin θ (3.24a)

K2 =
(
K13 −K31

)
cos θ +

(
K23 −K32

)
sin θ (3.24b)

K3 = K33 (3.24c)

The stiffness matrices K1 and K3 are symmetric, while matrix K2 is skew
symmetric. The mass matrix M is real, symmetric and positive definite.
Matrix K1 models the out-of-plane deformation behavior, whereas matrix
K3 is related to the planar deformations, so it describes the generalized
plane strain behavior or cross-sectional warpage. Finally, using the relations
Eq.3.24, the Eq.3.22 can be rewritten as Eq.3.25

[

k2K1 + ikK2 +K3 − ω2M
]

Û = 0 (3.25)

Solving the Eq.3.25 will determinate the dispersion relation for guided waves
in infinite plates.

3.4 Solution

To eliminate the imaginary unit in Eq.3.25 a transformation T is intro-
duced. The elements of T corresponding to the displacements along X and
Y directions are equal to 1, while those along Z direction are equal to the
imaginary unit, as it can be seen in Eq.3.26.

T =














1
1

i
. . .

1
1

i














(3.26)
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This matrix has the properties reported in Eq.3.27,

TT = T∗ (3.27a)

T∗T = TT∗ = I (3.27b)

where T∗ is the complex conjugate of T. If the terms of Eq.3.25 are pre-
multiplied by TT and post-multiplied by T, the matrices K1, K3 and M will
not be altered (Eq.3.28) since they do not mix displacements along Z with
displacements along X or Y.

TTK1T = K1 TTK3T = K3 TTMT = M (3.28)

The matrix K2, instead, mixes the displacements along Z with the ones along
X and Y but it does not mix the displacements along X and Y with each
other, so it follows the Eq.3.29,

TTK2T = −iK̂2 (3.29)

where K̂2 is a symmetric matrix. The final form of the eigenvalue problem
is the Eq.3.30. [

k2K1 + kK̂2 +K3 − ω2M
]

Û = 0 (3.30)

Nontrivial solutions can be found by solving a twin-parameters generalized
eigenproblem in k and ω. The frequency ω is a real and positive quantity,
whereas the wavenumber k can be real or complex and can have either posi-
tive and negative signs. For lossless materials, as the ones investigated in this
work, the stiffness matrix C is real, so the use of the operator T simplifies
Eq.3.30 to a real and symmetric system. Thus, by assigning real values to k,
the Eq.3.30 can be solved as a standard eigenvalue problem in ω(k) and the
solutions for this case correspond to propagative waves. So if the dimension
of the problem is nDOF , for each wavenumber ki there are nDOF propagating
modes (ki, ωi) and nDOF Ûi cross-sectional mode shape, which are also called
wavestructure.

The resolution of the Eq.3.30 for a given frequency ω is necessary for
the study of the full complex spectrum for both propagative and evanes-
cent modes, but in this work it is used for computing the polar plot of
the wavenumber, which is the representation of how the wave propagates
along the different directions of a composite plate. To obtain the unknown
wavenumbers k(ω) the Eq.3.30 must be solved as a second-order polynomial
eigenvalue problem. A classical technique to solve this kind of problems con-
sists of recasting the Eq.3.30 to a first-order eigensystem by doubling its size
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as in Eq.3.31, [

A− kB
]

Q = 0 (3.31)

where the matrices A, B and the vector Q are defined in Eq.3.32.

A =

[
0 K3 − ω2M

K3 − ω2M K̂2

]

, B =

[
K3 − ω2M 0

0 −K1

]

, (3.32a)

Q =

{
Û

kÛ

}

(3.32b)

A and B are real symmetric matrices. Solving the Eq.3.31 at each frequency
ω, 2nDOF eigenvalues ki and 2nDOF eigenvectors are obtained. In this work
the wavenumbers of interest are those with just the real part, that occur as
pairs of real numbers (±kRe), representing the propagative waves in the ± X
directions. The phase velocity can then be evaluated by cph = ω/kRe.

Recently it has been proposed a technique [37] for computing the group
velocity cg = ∂ω/∂k for undamped waveguides, which is worth of noting. The
conventional approach uses the differences of the values for adjacent points
of the same mode, so that the accuracy of the cg is sensitive to that of the
(k,ω) solutions. Moreover, the tracking of the modes is not straightforward
when one mode approaches another. The method that is proposed in [37]
adopted calculates the cg directly at each (k,ω) solution point without any
contribution from adjacent points. The procedure starts by evaluating the
derivative of Eq.3.30 with respect to the wavenumber, as it can be seen in
Eq.3.33,

∂

∂k

([
K(k)− ω2M

]
ÛR

)

= 0 (3.33)

where K(k) is given by Eq.3.34

K(k) = k2K1 + kK̂2 +K3 (3.34)

and the ÛR represents the right eigenvector. Pre-multiplying the Eq.3.33 by
the transpose of the left eigenvector ÛL gives the Eq.3.35

ÛT
L

[
∂

∂k
K(k)− 2ω

∂ω

∂k
M

]

ÛR = 0 (3.35)

Since ∂ω/∂k is a scalar, the group velocity is given by Eq.3.36.

cg =
∂ω

∂k
=

ÛL (K2 + 2kK1) ÛR

2ωÛT
LMÛR

(3.36)
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With this relation the group velocity can be evaluated for each individual
solution (k,ω) of the dispersion relations at a time independently of any
adjacent solution. The group velocity definition is not possible in damped
waveguides because the wavenumbers become complex and the differentiation
cg = ∂ω/∂k is no longer possible. In such a case the energy velocity Ve is
used, but this property is not taken into account in this work.

3.5 Implementation and examples

A MATLAB code is developed to apply the SAFE method to plates made
with both isotropic and orthotropic layers. Each plate consists of N layers,
stacked along the Z direction and for each layer information are provided
about its thickness, orientation and characteristics of the material. The
thickness of the plate is calculated by summing the thicknesses of all lay-
ers. For isotropic plates even a single layer, with the thickness of the whole
plate, can be used, but, in order to increase the definition in modeling the
mode shapes, the plate can be divided in more layers with the same orienta-
tion, thickness and material. The orientation of the layers is only important
for orthotropic materials. The orientation is given as an angle θ between the
orientation of the fibres of that layer and the X direction. The characteristics
of the material are given as Young’s moduli Ex, Ey, Ez, shear moduli Gxy,
Gxz, Gyz and Poisson’s ratios νxy, νxz, νyz. The Poisson’s ratios are related
by the Eq.3.37.

νij
Ei

=
νji
Ej

(3.37)

The stiffness matrix of the element is given by Eq.3.38,

C =















1−νyzνzy
EyEz∆

νyx+νzxνyz
EyEz∆

νzx+νyxνzy
EyEz∆

0 0 0
νxy+νxzνzy

ExEz∆
1−νzxνxz
ExEz∆

νzy+νzxνxy
ExEz∆

0 0 0

νxz+νxyνyz
ExEy∆

νyz+νxzνyx
ExEy∆

1−νxyνyx
ExEy∆

0 0 0

0 0 0 2Gyz 0 0

0 0 0 0 2Gxz 0

0 0 0 0 0 2Gxy















(3.38)

where ∆ is given by Eq.3.39.

∆ =
1− νxyνyx − νyzνzy − νzxνxz − 2νxyνyzνzx

ExEyEz
(3.39)
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For each orthotropic layer, with an orientation different from 0◦, the stiffness
matrix C must be rotated through the Eq.3.3.

Now the dispersion curves are presented and the polar plots for the same
plates are analyzed using the finite element method. For each plate the
course of the wavenumber, phase velocity and group velocity versus the fre-
quency are reported. Moreover, a polar plot is produced, which represents
the wavenumber and the phase velocity of the wave for different orientation
of propagation.

Isotropic aluminum plate The dispersion curves for the aluminum plate,
whose finite element model has been presented in section 2.3, are reported
in Fig.3.3. As expected for an isotropic material the wave propagates in all
directions in the same way, as it can be seen looking at the polar plots in
Fig.3.3(f) and Fig.3.3(e). These plots are perfectly circular, that means that
the wavenumber, and consequently the phase velocity, of the propagating
wave is the same for each direction θ.

Unidirectional fiber glass plate In composite plates the waves propa-
gate with different wavenumber, phase and group velocity for each direction
θ. The wavenumber and phase velocity dispersion curves of the unidirec-
tional [0◦8] fiber glass plate are presented in Fig.3.4 for three different values
of θ (0◦, 45◦, 90◦). For a given frequency the polar plot shows better how
the wave number and the phase velocity change with the angle θ. In these
plots for each angle θ there are three points representing the wavenumbers,
in Fig.3.5(a), or the phase velocities, in Fig.3.5(b), of the symmetric S0, an-
tisymmetric A0 and the shear SH0 modes. For each lamination sequence,
which includes material, orientation and thickness of the plies in the plates,
there exist just one polar plot for a given frequency. The polar plot univo-
cally characterize the plate. Looking at Fig.3.5(b) it can be noted that the
phase velocity of both A0 and S0 Lamb waves is the highest along θ = 0◦

direction, which is the direction of the plate fiber, whereas along the θ = 90◦

direction the speed is the lowest. This is an expected result because along
the fiber the stiffness of the plate is higher, as well the velocity of the wave.
The shear mode SH0 presents a different behavior, it has the same minimum
velocity for θ = 0◦ and θ = 90◦, whereas the highest one is around θ = 60◦.
The group velocity also change with θ (Fig.3.6), but the polar plot of this
quantity is not considered.

[0◦2 90◦2]s fiber glass plate The wavenumber, phase and group velocity
dispersion curves for the [0◦2 90◦2]s fiber glass plate are reported in Fig.3.7
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(a) Wavenumber θ = 0◦
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(b) Wavenumber θ = 0◦ (detail)
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(c) Phase velocity θ = 0◦
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(d) Group velocity θ = 0◦
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(e) Polar plot wavenumber at 200KHz
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(f) Polar plot phase velocity at 200KHz

Figure 3.3: Wavenumber, phase and group velocity dispersion curves of the
isotropic, 1mm thick, aluminum plate

only for θ = 0◦, because the interest in this work is mainly focused on the
polar plots. The Polar plots, which univocally characterize the considered
laminate, are reported in Fig.3.8. The polar plot of the phase velocity in
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(a) Wavenumber θ = 0◦
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(b) Phase velocity θ = 0◦
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(c) Wavenumber θ = 45◦
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(d) Phase velocity θ = 45◦
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(e) Wavenumber θ = 90◦
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(f) Phase velocity θ = 90◦

Figure 3.4: Wavenumber and phase velocity dispersion curves of the unidirec-
tional [0◦8] fibre glass plate at different angle θ

Fig.3.8(b) shows that the the symmetric mode S0 has almost the same ve-
locity for each direction with maximum both at θ = 0◦ and θ = 90◦ and
minimum at θ = 45◦. This behavior can be explained by the use of an equal
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(a) Polar plot wavenumber at 200KHz
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(b) Polar plot phase velocity at 200KHz

Figure 3.5: Wavenumber and phase velocity polar plots of the unidirectional [0◦8]
fiber glass plate

number of plies at 0◦ and 90◦ orientation and by considering the mode of
propagation, that involves mostly the in-plane displacements along the wave
propagation direction. Since along the directions of the fibers the stiffness is
higher, the phase velocity of the S0 mode is higher too and since the cross-
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(a) Group velocity θ = 0◦
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(b) Group velocity θ = 45◦
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(c) Group velocity θ = 90◦

Figure 3.6: Group velocity dispersion curves of the unidirectional [0◦8] fiber glass
plate at different angle θ

section area is half covered by θ = 0◦ fibers and half by θ = 90◦ fibers, the
phase velocity along those directions is the same. On the other hand the
polar plot of the phase velocity of the antisymmetric mode A0 presents an
elliptical shape with a maximum along θ = 0◦, even though the difference
with the minimum velocity is not as relevant as the one in the unidirectional
case. This is due to the fact that the A0 mode is flexural and the external
fibers of the plate are oriented along the 0◦ direction, so their flexural stiff-
ness is higher than the one along the 90◦ direction and the wave propagates
faster along θ = 0◦. Finally the shear mode SH0 presents peaks of velocity
for θ = 45◦.

Quasi-isotropic carbon fiber plate The wavenumber, phase and group
velocity dispersion curves for the [0◦ 45◦ 90◦ − 45◦]2s carbon fiber plate are
reported in Fig.3.9 for just θ = 0◦. The wavenumber and phase velocity polar

84



Semi-Analytical FE for the dispersion analysis of composite plates

0 500 1000 1500 2000
0

500

1000

1500

2000

2500

3000

Frequency [KHz]

W
av

en
um

be
r 

[r
ad

/m
]

S
0

A
0

SH
0

(a) Wavenumber θ = 0◦
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(b) Wavenumber θ = 0◦ (detail)
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(c) Phase velocity θ = 0◦
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(d) Group velocity θ = 0◦

Figure 3.7: Wavenumber, phase and group velocity dispersion curves of the
[0◦2 90◦2]s fiber glass plate

plots, reported in Fig.3.10, are almost circular indicating that both the Lamb
waves A0 and S0 and the shear wave SH0 have almost the same behavior for
all the directions. The quasi-isotropic sequence provides identical membranal
stiffness in all the directions. Anyway, flexural stiffness are not identical,
because they depend on the position of the layers through the thickness.
Propagation directions of A0 waves are influenced more by the orientation of
the external layers than by the internal ones. This behavior is emphasized
by the number of plies, sixteen, that is double with respect to the other two
composite plates. In the wavenumber polar plot of Fig.3.10(a) the A0 mode
is the one that changes more with the angle of propagation, even though
the variation in wavenumber is minimal. The shapes that depicts is a sort
of ellipse with the major axis aligned along the direction at about −60◦.
Consequently this mode, on the phase velocity polar plot Fig.3.10(b), has the
major axis along the 30◦ direction, even if is not visible as in the wavenumber
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(a) Polar plot wavenumber at 200KHz
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Figure 3.8: Wavenumber and phase velocity polar plots of the [0◦2 90
◦
2]s fiber glass

plate

polar plot.
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(b) Wavenumber θ = 0◦ (detail)
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(c) Phase velocity θ = 0◦
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(d) Group velocity θ = 0◦

Figure 3.9: Wavenumber, phase and group velocity dispersion curves of the
[0◦ 45◦ 90◦ − 45◦]2s carbon fiber plate

3.6 Validation through spatial Fourier Analysis

There is now the need for a comparison between the results achieved by
the FE analyses and the ones obtained from the SAFE approach. The FE
method returns the displacements of the model nodes for each time step,
whereas the SAFE method returns, among others quantities, the wavenum-
bers of the Lamb waves for each direction of propagation. For this reason it
is required a technique to pass from one kind of data to the other. This is
possible thanks to the Fourier transform that allows a transformation from
the space domain to the wavenumber domain. Usually Fourier transform is
used to pass from the time domain to the frequency domain, but it can be
used in space as well. If displacement histories of more than one point are
considered it is possible to extract, from those signals, the frequency content
and the wavenumber content which is the spatial frequency, i.e. the number
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(a) Polar plot wavenumber at 200KHz
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Figure 3.10: Wavenumber and phase velocity polar plots of the [0◦ 45◦ 90◦ −
45◦]2s carbon fiber plate

of waves in the unit length. In this section it is explained how the Fourier
transform (FT) is used to generate homogeneous data to compare the two
techniques and then a confrontation between the SAFE approach and the
FE one is presented.
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3.6.1 Fourier transform

The purpose of this sub-section is not the rigorous mathematical explana-
tion of the Fourier transform, that can be found in every analysis book [38],
but the practical use of this tool to achive the desired results. The expression
of the FT in its most general form is Eq.3.40,

F (ξ) =

∫ +∞

−∞

f(x)e−j2πξxdx (3.40)

where x is the independent variable and ξ is the transform variable. How-
ever working with discrete signal, i.e. a sampled continuous signal of finite
duration, requires the use of the Discrete Fourier Transform (DFT), which
is described by Eq.3.41.

F (p) =
N−1∑

n=0

f(n)e−j 2π
N

p n (3.41)

By applying DFT algorithm, a sequence of N real numbers n is transformed
into a sequence of N complex numbers p. The relation between the DFT and
the FT is that the Fourier coefficients F (p) are samples of F (ξ) as expressed
by Eq.3.42

F (p) = F (ξ)

∣
∣
∣
∣
ξ=p/N

p = 0, 1, ..., N − 1 (3.42)

All the DFTs of this work are computed using the Fast Fourier Transform
(FFT) algorithm of MATLAB [39].

Practically the FT returns the values of the periodic contents of the in-
put, that is how much content for every single periodicity is present in the
signal. The single periodicity could be a frequency or a wavenumber, which
is a spatial frequency. When the independent variable x of Eq.3.40 represents
the time (in seconds), the transform variable ξ represents the frequency (in
hertz). The displacement history of a node (underlined in Fig.3.11) of the
aluminum plate FE model of Chap.2, which is represented in Fig.3.12(a),
is used as an example. The FFT algorithm of the displacement signals re-
turns the frequency content of Fig.3.12(b). In this figure it is evident the
prevalence, in the analyzed signal, of the frequencies around the excitation
frequency of 200 kHz, even though a reflection against the edge occurred.
The frequencies that compose the abscissae axis are all multiples of the fun-
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Figure 3.11: Node at coordinated x=36 mm, z=24 mm on the top surface
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Figure 3.12: Displacement history of a node and its frequency content for the FE
model of the aluminum plate

damental frequency that is defined as Eq.3.43,

f0 =
1

Tf − Ti
(3.43)

where Ti is the initial time of the history and Tf is the final time. For such
a reason the longer is the observation interval, the higher is the resolution of
the frequency domain. The maximum frequency that can be represented is
given by Eq.3.44,

fmax =
1

Ts
(3.44)

where Ts is the sampling time, that is the time between one measurement of
displacement and the other. However the highest useful frequency is 1/2Fmax

because of the Nyquist-Shannon sampling theorem that states that a signal
can be totally reconstructed only if its highest frequency is at least 2 times
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lower than the maximum frequency. So the shorter is the sampling time,
the higher is the maximum frequency that can be observed. In this work
attention is given mostly to the resolution instead than maximum frequency,
because the frequency content is known and it is about the one of the excita-
tion, whereas it is more interesting how this frequency content is distributed.
Increase frequency resolution is possible using the zero-padding technique,
which consist in adding zeros at the end of the history. Accordingly, by dou-
bling the observation time, the resolution is doubled. This technique does
not add any information to the signal, but increase the resolution giving
smoother curves. Finally it should be remembered that the FFT algorithm
obtains the best computational performance when the number of samples
is a power of 2, but MATLAB FFT algorithm works even if the number of
sample is prime, though using more CPU time. The number of time samples
for all the analyses of this work is 512, as reported in Chap.2.

The FT can be used also considering the position as independent variable
x of Eq.3.40. The application of FT algorithm gives, in such a case, the
transform variable ξ, which is the wavenumber content of that displacements
for that instant. For example the displacements of the nodes along the 0◦ line
(z coordinate) of the aluminum plate FE model, Fig.3.13, can be considered
at a given instant. Such instant is fixed at half the observation time, 25 µs.
The displacements of the nodes at 25 µs are reported in Fig.3.14(a). The FT

Figure 3.13: Line of nodes along the 0◦ direction on the top surface of the FE
model

values, which are indeed the contents in wavenumber of the displacements
along the line, are reported in Fig.3.14(b). In this figure a peak around 1000
rad/m that is almost the value for an A0 Lamb wave for the aluminum plate
at 200 kHz, as it can be seen in Fig.3.3(b). This means that, at a given
instant of time along a line of the plate, the wave, which has been generated
by excitation, has the correct wave number, which correspond to the one of
an anti-symmetrical Lamb wave. The same considerations that have been
made for the frequency resolution and maximum frequency are valid also for
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Figure 3.14: Displacement along the 0◦ line and its wavenumber content for the
FE model of the aluminum plate

wavenumber resolution, which has the expression reported in Eq.3.45

w0 =
1

zf − zi
(3.45)

and maximum wavenumber which is given by Eq.3.46.

wmax =
1

zs
(3.46)

Eq.3.45 and Eq.3.46 mean that the bigger is the plate, the higher is the
wavenumber resolution, and the higher is the number of point in which the
displacement is recorded, the higher is the wavenumber that can be mea-
sured. The zero-padding technique can also be used in this case to increase
the wavenumber resolution, by adding zeros at the coordinate vector, as
though the plate was larger than it really is. Once more, this technique gives
smoother results, but does not increase the level of information.

Now the concept of the FT can be extended to more than one dimension.
In fact, the presented approach to extract the wavenumber content is valid
just for one line of points and for a specific time, but the interest in this
work is to find the wavenumber content for every directions and for a specific
frequency.
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3.6.2 Two and three dimensional Fourier transform of
numerical data

To obtain more useful results from the displacements histories of the FE
model, the use of the FT must be extended to more than one dimension.
If the input is a function of two variables f(t, z), e.g. time and coordinates
of the nodes along one line, the expression for the DFT should be given by
Eq.3.47

W (ω, kz) =

N∑

t=1

M∑

z=1

w(t, z)e−j(ωt+kzz) (3.47)

where ω = 1, 2, ..., N and kz = 1, 2, ...,M . Considering the displacements
time histories of a line of nodes, as the ones that have been underlined in
Fig.3.13, and organizing the data in a matrix that has, as columns, the
displacement history of a single node of the line, it is possible to compute
a bi-dimensional DFT on that matrix. Such bi-dimensional transformation
is obtained by simply computing a DFT along the rows and then a DFT
along the columns of the resulting matrix. The final result is a matrix that
contains the complex values of the bi-dimensional FT, the fourier coefficients.
Their absolute values can be plotted in a bi-dimensional graph, that has
frequencies on abscissae axis and wavenumbers on ordinates axis. The values
of the corresponding coefficients can be represented by isolines, which can be
colored proportionally to their level (red: high, blue:low). The higher is the
value, the more is the content, in the analyzed signal, of that combination of
frequency and wavenumber. The plot that is obtained for the FE analyses of
the aluminium plate, which is described in section 2.2 is reported in Fig.3.15.
As it can be seen, there is a peak in the plot for the frequencies around the
excitation one and for the wavenumbers corresponding to an anti-symmetric
Lamb wave A0 for an excitation at the same frequency. This peak means that
the wave that has been generated on the FE plate behaves as a Lamb wave,
at least along the 0◦ line. The value of the peak has no importance because
it is related to the amplitude of the wave. The significant information lies in
the position of the peak in the frequency-wavenumber plot.

The same consideration about maximum frequency/wavenumber and fre-
quency/wavenumber resolution can be done for the mono or bi-dimensional
FT.

The zero-padding technique can be used for the bi-dimensional FT as
well. Actually, it is necessary to pad two times with zeros the matrix that
has as columns the time histories of the line nodes: the first along the rows,
and, when the first DFT has been done, a second time along the columns. If
the number of rows and columns is doubled (2X) the resolution is doubled,
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Figure 3.15: Frequency-wavenumber plot for FE model of aluminum plate along
0◦ line

if is quadrupled (4X) the resolution is four times higher. An example of this
improvement can be seen in Fig.3.16. The enhancement with respect to the
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Figure 3.16: Frequency-wavenumber plots for FE model of aluminum plate along
0◦ line at different zero-padding expansions

plot with no zero-padding of Fig.3.15 is evident, though the enhancement
between the 2X and 4X zero-padding is less evident. For this reason all the
frequency-wavenumber plots in this work are made using a 2X zero-padding
to improve the resolution, thus avoiding an excessive computational cost.

Now the FT can be extended once more to obtain the wavenumber content
in every direction. When this result is achieved, considerations can be made
on the reliability of FE to model Lamb waves. The application of a three
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dimensional FT (two times in space and one in time), using the DFT of
Eq.3.48,

W (ω, kx, kz) =

N∑

t=1

M∑

x=1

P∑

z=1

w(t, x, z)e−j(ωt+kxx+kzz) (3.48)

requires the organization of the data in a particular structure. The displace-
ment histories of all the nodes on the top surface of the FE model, which
are highlighted in Fig.3.17, are organized in a sort of three dimensional ma-

Figure 3.17: Nodes on the top surface of the FE model

trix. Matrix width is the number of nodes along the x axis, whereas matrix
height is the number of nodes along the z axis. The depth is the number
of time samples as represented in Fig.3.18. For each instant there is a bi-
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Figure 3.18: Organization of the data in the three dimensional structure

dimensional matrix that has as many elements as the the number of nodes on
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the top surface. The coordinates of an element in the matrix correspond to
the coordinate of a node in the FE model, so that each element of the matrix
represent the displacement of that node at that time. The computation of
the three dimensional DFT of Eq.3.48 requires the computation of the DFT
along the first dimension of the 3D structure (the rows). Once that the first
DFT has been performed, a second DFT algorithm is applied considering the
second spatial direction, which is represented by the columns of the 3D struc-
ture. After the two spatial DFT, an array of matrices with the wavenumber
content at the different instants is obtained. A final time DFT is applied
along the array direction, to get the frequency content of such wavenumbers.
The result is a 3D structure with the same dimensions of the starting one, if
no zero-padding has been applied, whose elements are the Fourier coefficients
that carry the information about the wavenumber content of the wave, for
each direction of propagation and for each frequency. The absolute values
of those coefficients can be represented, for a particular frequency, in a bi-
dimensional plot that has as axes the wavenumbers in the two directions, kx
and kz. Each absolute value of the Fourier coefficients represents the content
at one particular wavenumber along the x axis, along the z axis and at one
particular frequency. The obtained data structure is represented in Fig.3.19.
The presence of negative wavenumbers and frequencies is due to the use of

kx

kz

f

Figure 3.19: Distribution of the Fourier coefficients in the resulting 3D structure

the FT. The negative wavenumbers have been considered, because they rep-
resent waves that propagate in the opposite direction of the axes and because
they allow to get more significant plots. Negatives frequencies have not been
considered because they have no physical meaning. The bi-dimensional plot
representing the absolute values of the Fourier coefficients for the aluminum
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plate at the nearest frequency to the excitation one of 200 kHz, is reported
in Fig.3.20(a). The zero-padding technique can be applied also to this 3D
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Figure 3.20: Bi-dimensional wavenumber plots at a given frequency for FE model
of aluminum plate at different zero-padding expansions

structure, as it has been done in Fig.3.20(b) where the dimensions of the 3D
structure has been doubled. It can be observed that the improvement in the
visualization is not very significant. The plots of Fig.3.20 show clearly that
the wave generated in the aluminum plate has a wavenumbers content kx and
kz that lies on a circle for a frequency near the excitation one, as expected
for an isotropic material.

3.6.3 Comparison of numerical and Semi-Analytical Fi-

nite Elements predictions for isotropic

Now the results obtained from the Fourier analysis of the FE model
must be compared with the results obtained with the SAFE approach. The
frequency-wavenumber plots along the 0◦ line, and the bi-dimensional wavenum-
ber plots, at the nearest frequency to the excitation one, are reported for each
FE models. The first plot shows how the content of the wave changes with
the frequency. Moreover it can be checked if the entire peak lies on the
wavenumber-frequency curve that is achieved with the SAFE method. A
good correspondence of the peak position means that FE method reproduce
correctly the wavenumbers of the wave over an interval of frequencies, at least
along one direction. The second plot shows, for a given frequency reported
on its title, the wavenumber content for each directions.
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In Fig.3.21, the results of the DFT application is reported for the alu-
minum plate model that has been described in Chap.2. A zero-padding
technique has been used, by doubling the number of samples. The results
of SAFE calculations are also reported. Such results are represented by the
curves drawn through dashed lines. As it can be seen the overlapping of the
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Figure 3.21: Frequency-wavenumber along 0◦ line and bi-dimensional wavenum-
ber plot for the FE model of aluminum plate

FE plots and the SAFE curves is almost perfect for the A0 Lamb waves. In
Fig.3.21(a) the curve of the A0 mode of Lamb wave overlap perfectly over the
peak that shows the frequency-wavenumber content of the generated wave
for the frequencies around the excitation one. This means that the FE model
reproduces the correct combination of frequency-wavenumber for all the fre-
quency content of the excitation signal, that is not just a single frequency
because of the finite duration of the impulse. In Fig.3.21(b) the circular
shape obtained was expected because in an isotropic material the wave prop-
agates in every directions with the same characteristics. Also in this case the
curve obtained from the SAFE approach overlaps perfectly over the circular
peak of the plot, confirming the reliability of the FE model. In both the
plot of Fig.3.21 the curves produced by the SAFE approach for the SH0 and
the S0 waves are drawn, but there are no peaks under these curves in FE
results. One of the main reason for this discrepancy is that the displacement
considered (U2) is the out-of-plane one and these waves have a displacement
that is mainly in-plane, so they can not be identified.
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3.6.4 Comparison of numerical and Semi-Analytical Fi-
nite Elements predictions for composites

In this section the plots of the composite plates modeled through the
alternative modeling technique described in Chap.2 are presented. It is re-
called that this technique consists in the use of both solid and membrane or
shell elements to model the composites and that these elements have differ-
ent structural roles. The solids take care of the out-of-plane stresses and the
membranes/shells take care of the in-plane stresses.

For Plate1, which is the 16 plies carbon fiber plate with orientation
[0◦, 45◦, 90◦,−45◦]2s, the results are represented in Fig.3.22. The resolution is
doubled by using zero-padding technique. The overlapping of both the plots
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Figure 3.22: Frequency-wavenumber along 0◦ line and bi-dimensional wavenum-
ber plot for the FE model (alternative technique) of Plate1

with the curves obtained by SAFE approach is perfect also in this non trivial
case. Indeed each ply of the composite material has an orthotropic behavior;
furthermore the combination of numerous plies with different orientations
does not allow to determinate a priori shape of the propagating wave, a nu-
merical analysis must be performed. The frequency-wavenumber result for
Plate1 of Fig.3.22(a) is similar to the one of aluminum plate, but here the
peak is more defined and the wavenumbers values of A0 are lower. These
facts means that the waves have a smaller range of wavenumbers and longer
wavelengths. The bi-dimensional wavenumber plot of Fig.3.22(b) shows that
the waves do not propagate according to a circular front, because the locus
of peaks is not perfectly circular, but is slightly stretched along a direction
of about 100◦ (calculated starting from the positive axis of kz), as predicted
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by the SAFE approach.
The results for Plate2, which is the 8 plies fiber glass plate with orienta-

tion [0◦2, 90
◦

2]s, are reported in Fig.3.23. The resolution is doubled by using
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Figure 3.23: Frequency-wavenumber along 0◦ line and bi-dimensional wavenum-
ber plot for the FE model (alternative technique) of Plate2

the zero-padding technique. In this case the frequency-wavenumber plot of
Fig.3.23(a) is very similar to the one of Plate1, except for the wavenum-
ber values that here are higher. The bi-dimensional wavenumber plot of
Fig.3.23(b) presents a locus of the peaks for the A0 wave that is completely
different with respect the one of Plate1, because the particular orientation of
the plies produces a wave that travels considerably faster along the z axis. As
a consequence, the wavenumber kz is lower because the wavelength is higher
in that direction. This behavior is predicted correctly by both the FE model
and the SAFE approach, so the overlapping of the two methods is perfect.

The results for Plate3, which is the 8 plies unidirectional fiber glass plate
with orientation along the 0◦ line, are reported in Fig.3.24. Also in this case,
the resolution is doubled by using the zero-padding technique. In Fig.3.24(b)
the behavior already presented in Plate2 is even more evident, because all
the plies are aligned along the same direction. The wave that propagates
along that direction is as fast as in Plate2, but the wave that travels in
the perpendicular direction is much slower. Consequently the wavenumber
is much higher and the stretching of the peak locus is more evident. The
wavenumber-frequency plot of Fig.3.24(a) is very similar to the one of Plate2,
because these plots are both taken along the 0◦ line and the behavior of the
waves along that direction does not change considerably for the two cases.
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Figure 3.24: Frequency-wavenumber along 0◦ line and bi-dimensional wavenum-
ber plot for the FE model (alternative technique) of Plate3

In all these three cases just the anti-symmetric Lamb wave A0 can be
detected, because the alternative modeling technique has solid elements that
do not allow the modeling of S0 or SH0 that because they do not have the
Poisson’s modulus that connect the stretching along the direction perpen-
dicular to the plate and the ones in the plane. So when one of these solid
elements is stressed in y direction it does not create any displacements in
both x or z direction. For this reason no peaks are present under the S0 or
SH0 curve generated from the SAFE approach.
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Experimental analysis

Experimental analysis is a necessary step in this work, because no spe-
cific data can be gathered from literature about the particular composites
adopted. Moreover few comparison exist between numerical data, which
are obtained by solid models of composite plates and experimental analy-
sis about wave propagation in composites. For these reasons the numerical
data obtained, both from FE analysis and SAFE approach, must be vali-
dated through comparison with the data acquired from the real composite
plates that have been manufactured using the same materials that have been
considered for the development of numerical and semi-analytical models. In
this chapter it is described how the experimental tests are performed, what
instruments are used and how they work. The obtained results are presented
as well as the processing of data, which is carried out by means of the same
technique adopted in chapter 3. Finally the comparison of the results is
proposed.

4.1 Experimental setup

Waves in thin plates require specific measurement instruments which re-
duce to the minimum the intrusiveness, because these waves are very sus-
ceptible at every changes in mass or stiffness distribution. For this reason,
vibrations can not be measured with an accelerometer mounted on a plate,
because, though small, the sensor has a mass, which can alter the mass distri-
bution of a thin plate and it also has a finite dimension and stiffness, which
can alter the stiffness of the plate near the sensor. Moreover, to get the
displacements in enough points, in order to apply the technique based on
the Fourier analysis, which has been presented in the previous chapter, the
number of sensor should be unfeasible. Finally, the bandwidth of classical
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accelerometer does not exceed few kHz, whereas in this work almost one MHz
is required. The instrument that can solve all these problems is the Laser
Doppler Vibrometer (LDV), a very expensive and precise tool which uses a
laser beam to gather the information about the analyzed object. The experi-
mental tests have been performed at Daniel Guggenheim School of Aerospace
Engineering at Georgia Institute of Technology in Atlanta, Georgia, where a
scanning vibrometer Polytec PSV-400 is available.

The experimental setup consists of the following parts:

• The scanning vibrometer Polytec PSV-400, positioned at about 4 me-
ters away from the specimen;

• The specimen, that is the composite plate clamped on a table;

• The piezoelectric disk actuator, mounted on the rear of the plate to
generate the proper excitation wave;

• The function generator, to control the piezoelectric actuator;

• The vibrometer controller and the data management system, to control
the vibrometer and store the data.

The graphical representation of the experimental setup is in Fig.4.1. Now a

Vibrometer Controller and

Data Management System

Function

generator

LDV

Plate

Figure 4.1: Experimental setup

description of each component is provided.
In order to measure the displacements of the plate without disturbing the

dynamics of the phenomenon, a non-contact technique is required, as the one
that is allowed by as the laser doppler vibrometry adopted by the Polytec
PSV-400 system. This technique consists in comparing two laser beams, i.e.
an internal reference beam and a test beam reflected by the sample. The
comparison is made using a laser interferometer that measures the difference
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in frequency between the two beams by superimposing them. A schematic
representation of the LDV is reported in Fig.4.2. The internal laser pro-

Laser

Beam splitter

Bragg cell

Beam splitter

Beam splitterMirror

Plate

Reference

beam

Test

beamf0

f0

f0 + fb

f0 + fb

f0 + fb + fd

f0

Photo

detector

f0 + fb + fd

Figure 4.2: Schematic representation of the Laser Doppler Vibrometer

duces a coherent beam of light at frequency f0. This beam is splitted into
two by a partial reflective mirror. These two beams are the reference beam
and the test beam. The reference beam goes directly to the photo detector,
whereas the test beam passes through a Bragg cell which adds a frequency
shift fb. The Bragg cell is an acousto-optic modulator which uses sound
waves in a transparent medium, like quartz or glass, to generate a shift in
the frequencies of light passing through it. Thanks to the exploitation of the
fact that sound waves traveling into transparent material can locally change
its index of refraction, they can be thought as periodic planes of expansion
and compression acting as a diffraction grating for the incoming beam. The
properties of the light exiting from the Bragg cell can be controlled in fre-
quency, because the beam is scattered by moving planes. Thus the frequency
is shifted by multiple amount of the sound wave frequency in the cell, Eq.4.1

fexit = f0 +mfS (4.1)

where m = ...,−2,−1, 0, 1, 2, ... is the order of diffraction and fS is the fre-
quency of the sound wave. Usually, the shift is about 30-40 MHz, but it can
also be higher, up to 400 MHz. The frequency shifted beam is then directed
to the plate, whose movement adds a further Doppler shift to the frequency
fd, whose value can be calculated with Eq.4.2.

fd = 2
v(t) cos(α)

λ
(4.2)

The v(t) is the velocity of one point of the plate as function of time, α is the
angle between the laser beam and the velocity vector, and λ is the wavelength
of the beam. The beam is scattered from the plate in every direction, but
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part of the light, that now has a frequency of f0 + fb + fd, is collected by
the LDV and routed to the photo detector. Here it is combined with the
reference beam that comes directly from the laser source. However, the initial
frequency of the beam f0 is very high, of the order of 1014 Hz, much higher
than the bandwidth of the photo detector. For this reason the signal f0 is
not considered. The response of the detector comes from the beat frequency
between the two beams, which is at fb + fd, of the order of tens of MHz.
Thus the output of the photo detector is a frequency modulated signal, with
fb as carrier frequency and fd as modulation frequency. The signal can be
demodulated to derive the velocity of the plate in the point hit by the laser
beam as function of time. Modern LDV, as the Polytec PSV-400, can measure
velocities from few nm/s to some m/s and are sensible to displacements of
the order of picometers (10−12 m), whereas the sampling frequency can reach
2.56 MHz. Moreover the PSV-400 has the scanning ability, meaning that
the laser beam can be moved without moving the instrument, allowing the
automatic scanning of an entire area of the plate, just programming the right
pattern of scanning points.

The composite plates, which have been manufactured by the Diparti-
mento di Ingegneria Aerospaziale of Politecnico di Milano, have the same
characteristics of the FE models of Chap.2, except for the dimensions which
are larger in order to make the LDV analysis easier. The main characteristics
are summarized in Tab.4.1. Before starting the analysis, the plate must be

Units Value

Plate1

Material T700/SE84HT
Sequence [0◦, 45◦, 90◦,−45◦]2s
Number of plies 16
Dimensions [mm] 315 x 315 x 2.3

Plate2

Material S2/CYCOM5216
Sequence [0◦2, 90

◦

2]s
Number of plies 8
Dimensions [mm] 315 x 315 x 1.84

Plate3

Material S2/CYCOM5216
Sequence [0◦8]
Number of plies 8
Dimensions [mm] 315 x 315 x 1.84

Table 4.1: Summary of the anisotropic plates analyzed in this work

prepared. A thin adhesive reflective film is applied on one side of the plate,
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because, especially for the glass fiber plates, the translucency of the material
does not allow a correct reflection of the laser beam. This film does not sig-
nificantly alter either the mass or the stiffness of the plates because is very
light and flexible.

To excite the plate an exciter is required which must be as less intrusive
as possible. It must have enough force to adequately excite the plate and
a band of at least 200 kHz i.e. that is the frequency of excitation used
for the FE models. The only actuator that has all these characteristics is
the piezoelectric one, also called PZT. A piezoelectric ceramic disk actuator
is fixed in the middle of the each plate by glue, on the side which is not
scanned by the LDV. The characteristics of the PZT are reported in Tab.4.2.
Both the electrodes of the transducer are positioned on the same side of the

Units Value

Manufacturer Steiner & Martins
Model SMD20T21F1000R
Diameter [mm] 20
Thickness [mm] 2.1
Resonant frequency [MHz] 1 ± 5 %
Electromechanical coupling coefficient ≥ 40 %
Resonant impedance [Ω] ≤ 4
Static capacitance [pF ] 2000 ± 15 % @1kHz

Table 4.2: Characteristics of the piezoelectric disk actuator

disk. On these electrodes wires are welded. The plate prepared for the LDV
analysis is pictured in Fig.4.3. Initially this plate is clamped on one side and

(a) Plate front with reflective film (b) Plate rear with PZT actuator

Figure 4.3: Plate2 prepared for the experimental analysis

perpendicularly positioned to the laser beam, as shown in Fig.4.4. The parts
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Figure 4.4: Plate clamped and positioned perpendicular to the laser beam

of the clamp which are in contact with the plate are rubber made to avoid an
excessive alteration of the results with respect to an hypothetical free plate.

The input of the transducer is generated by the function generator, an
Agilent 33220A pictured in Fig.4.5. The signal is a series of 7 cycles of sinu-

Figure 4.5: Function generator Agilent 33220A

soid modulated by an Hanning window. The frequency of the sine function
is 200 kHz, as used in FE. With respect to the FE, the number of cycles is
a bit higher (in FE is 5.5), but this has no negative effects. On the contrary
it allows a longer time of observation, thus an higher resolution in frequency
is obtained. This instrument is synchronized with the vibrometer controller
to exactly excite the plate when required.

The vibrometer controller of Fig.4.6 manages all the instruments involved
in the experiment; it defines the pattern of points in which the LDV has to
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Figure 4.6: Vibrometer controller and data management system

measure displacements as well as the sample frequency and others param-
eters of acquisition. Moreover, it defines when the excitation signal must
be applied. Then it also provides to transfer all the data acquired to the
data management system, which allows storing them for a post-processing
analysis. The pattern of measuring points covers the inner part of the plate,
whereas the parts situated near the edges are excluded to avoid any bound-
ary effect, as represented in Fig.4.7. A scanning area 300 mm wide allows an

315 mm 300 mm

315 mm

300 mm

Figure 4.7: Representation of the scanned area of the plate

higher wavenumber resolution with respect to the FE model, which is just
96 mm x 72 mm. In order to achive an high enough maximum wavenumber
to represent all the waves in the plate, the number of scanning points must
be very high, as explained by Eq.3.46. Resolution is preferred to maximum
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wavenumber, also to reduce post-processing computational time that will de-
rive if a very high number of points is considered. For this reason it is decided
to use the maximum scanning area and a square pattern of 12100 scanning
points, 110 for each side. The experimental acquisition of the data is made
at the maximum sampling frequency of the instrument, that is 2.56 MHz and
512 samples are taken, to speed up the FFT algorithm. This means an ob-
servation time of 200 µs. The exciter repeats the 7 cycles excitation 10 times
in a second. For each measurement point, 10 time histories are recorded and
then an average operator is applied. This procedure enhance the quality of
the measurement and reduces the noise. This means that the transducer is
excited with a frequency of 10 Hz, meaning that every 0.1 seconds the exci-
tation signal described before is applied to the PZT. This frequency derives
from a trade-off between the time required for the plate to sufficiently damp
the previous excitation and the total time of acquisition, which must not be
excessive. The synchronization of the function generator with LDV is made
by vibrometer controller, in order to exactly start the acquisition when the
excitation is applied. This must be done not only for the repetition of the
measure on the same point, but also for the changing of the measuring point.
Thanks to this synchronization the final result of the analysis in every point
of the pattern is as if it had been done at the same time and not in series.
Finally the data exported to the data management system are the displace-
ments of each scanning point as function of time. The specification of the
experimental system are resumed in Tab.4.3.

Units Value

Scanned area [mm] 300 x 300
Scanning points 12100
Sampling frequency [MHz] 2.56
Observation time [µs] 200
Wavenumber resolution [rad/m] 20.9
Maximum wavenumber [rad/m] 1151
Repetition per point 10
Measuring time 3h 30m

Table 4.3: Resume of the specification of the experimental system
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4.2 Experimental results

Now the extraction from the experimental data of some measures that
can be compared with the ones obtained numerically using the FE or the
SAFE is proposed. The data obtained from the experimental analysis are
the out-of-plane displacements of the scanning points as function of time. To
these data it is possible to apply the same Fourier analysis techniques seen in
previous chapter, after organizing the data in a 3D structure as in Fig.3.18.
The application of a bi-dimensional FT to the displacement histories of the
points along the 0◦ line leads to the plot of a bi-dimensional frequency-
wavenumber graph, which represents the content of the wave generated by
the PZT actuator for a range of frequencies. This graph, for the carbon fiber
Plate1 is reported in Fig.4.8(a). In this figure it can not just be seen one peak
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Figure 4.8: Frequency-wavenumber along 0◦ line and bi-dimensional wavenumber
plot for experimental data of Plate1

for the anti-symmetric Lamb wave A0, as in the FE model, but also another
smaller peak for lower wavenumbers. This peak represents the symmetrical
Lamb wave S0 that can not be caught by the FE by applying the suggested
modeling technique. Thanks to the use of all the scanning points of the
plate, it is possible to plot the wavenumber content of the wave for every
direction at one well defined frequency, i.e. the one of the excitation signal:
200 kHz, as represented in Fig.4.8(b). Here the difference with respect to the
FE model is evident: the inner and smaller circle represents the S0 mode.
The behavior of this mode, as function of angle of propagation, is almost the
same and for this reason its representation is almost a circle. For this kind
of plot it is decided to keep the same axes limits of the previous chapter to
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simplify the comparison and to show the limited maximum wavenumber that
can be represented in experimental analysis.

Experimentally with the LDV is possible to catch also the all-in-plane
movements, as the SH0 waves. To achive this result, since the only displace-
ment seen by the LDV is the out-of-plane one, it is possible to repeat the
experiments with the plate rotated by a small angle φ with respect to the
laser beam. This allows to the in-plane displacement to have an out-of-plane
component, as shown in Fig.4.9, which can be measured. The angle chosen

Laser beam

Measured

out-of-plane

displacement

φ

SH0 displacement

Figure 4.9: Top view of the plate rotated to catch the in-plane wave SH0

for this analysis is 14◦, because it is enough to see the SH0 mode and is not
too large to alter the scanning width. As a matter of fact the amplitude
of the resulting out-of-plane component is 24% of the in-plane component,
since sin(φ) = 0.24 and the scanning width just becomes 3% shorter, because
cos(φ) = 0.97. However this technique does not allow the measurement of
the vertical in-plane displacements, because the plate is only horizontally
tilted. For this reason a part of the bi-dimensional wavenumber plot for the
SH0 wave is not visible, i.e. the part near the 90◦ direction. This particular
observation technique allows to obtain the plots of Fig.4.10. In Fig.4.10(a)
is visible another peak between the two already seen in Fig.4.8(a), which
represents the SH0 wave. Its value is higher than the one represented, but in
this work the interest is focused on the position of the peak in the frequency-
wavenumber plot and not on its value. The bi-dimensional wavenumber plot
of Fig.4.10(b) represents the behavior of the SH0 wave as function of prop-
agation angle. It is also visible what already said about the impossibility
of representing this wave for the 90◦ direction, as the locus of SH0 peaks
is open. All the composite plates provided are analyzed in a tilted position
with respect to the laser beam, in order to achive the largest amount possible
of information.
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Figure 4.10: Frequency-wavenumber along 0◦ line and bi-dimensional wavenum-
ber plot for experimental data of Plate1 14◦ tilted

4.3 Comparison with Semi-Analytical Finite El-

ement predictions for composite plates

Now the frequency-wavenumber plots and the bi-dimensional plots, de-
riving from the experimental data on all the composite plates provided, are
compared with the curves computed with the SAFE approach. These curves
have been demonstrated, in the previous chapter, to be perfectly coincident
with the same kind of plots obtained from the FE data, as far as the A0 waves
are concerned. If the agreement between SAFE and experiments is good, it
can be definitely stated that the waves generated in a FE model respect the
behavior of the real waves in every direction of propagation.

For Plate1 the frequency-wavenumber plot along the 0◦ line is reported
in Fig.4.11. In this figure it can be noticed the perfect overlapping of the
three peaks with the curves, even though the peaks relative to the S0 and
SH0 waves are smaller than the one of the A0 wave. The bi-dimensional
wavenumber plot for Plate1 is reported in Fig.4.12. As already said the
locus of the peaks of SH0 wave can not be closed because the in-plane dis-
placements can just be seen horizontally. Thus only the kz component of the
wave can be plotted and this component assumes null values along the 90◦

direction. Nevertheless the curves computed with the SAFE approach are
perfectly overlapped to the peaks for every direction. This means that the
modeling technique for the FE model of Chap.2, is valid to describe the A0

mode for an quasi-isotropic composite plate.
The frequency-wavenumber plot along 0◦ direction for Plate2 is repre-

113



Chapter 4

Frequency [KHz]

W
av

en
um

be
r 

[r
ad

/m
]

Carbon [0°, 45°, 90°, −45°]
2S

 − 14° tilt

 

 

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200
FFT 0°
S

0

SH
0

A
0

Figure 4.11: Frequency-wavenumber plot for experimental Plate1, 14◦ tilted
along 0◦ line
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Figure 4.12: Bi-dimensional wavenumber plot for experimental Plate1, 14◦ tilted

sented Fig.4.13. Here the SH0 peak is not present, because Plate2 has been
accidentally measured with an orientation of 90◦ with respect to the correct
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Figure 4.13: Frequency-wavenumber plot for experimental Plate2, 14◦ tilted
along 0◦ line

one. In fact this is not a problem, because it is as if a plate with orientation
[90◦2, 0

◦

2]s had been analyzed. This means that every information obtained is
rotated by 90◦. For this reason, the measured out-of-plane component of the
SH0 wave, that can be only horizontally measured, is relative to the SH0

wave which propagates along the 90◦ fibers. Thus in this case the SH0 peak
can be seen only around 90◦ direction, whereas around 0◦ the peak vanishes.
The frequency-wavenumber plot along 90◦ direction can be seen in Fig.4.14.
In this figure the SH0 peak is small, but visible. Moreover it can be seen that
in this case the wavenumber limit is very close to the highest wavenumber
present in the wave and this should be avoided in future analyses, by keeping
the same number of scanning points, but reducing the scanning area. Despite
this fact, the peaks in both Fig.4.13 and Fig.4.14 lie on the curves given by
SAFE approach and the overlapping is very good. The discussion about the
accidental rotation of the plate can be seen more clearly in the bi-dimensional
wavenumber plot of Fig.4.15. Here it is clearly shown that the locus of peaks
of SH0 wave is open around 0◦ direction instead of 90◦ as in Plate1. However
the comparison with the SAFE curves is very good, for every direction. Since
also the FE bi-dimensional wavenumber plot for Plate2 perfectly overlaps to
the same SAFE curves, it can be stated that the wave modeled with FE has
the same behavior of the experimentally measured wave, also in this case,
where fibers are coupled with the largest possible angle between them, that
is 90◦.
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Figure 4.14: Frequency-wavenumber plot for experimental Plate2, 14◦ tilted
along 90◦ line
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Figure 4.15: Bi-dimensional wavenumber plot for experimental Plate2, 14◦ tilted

Also Plate3, the unidirectional plate, has been accidentally analyzed ro-
tated of 90◦. For this reason it is proposed the frequency-wavenumber plot
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along the 90◦ direction in Fig.4.16. In this figure the peak for the SH0 wave
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Figure 4.16: Frequency-wavenumber plot for experimental Plate3, 14◦ tilted
along 90◦ line

is almost invisible. This is due to the fact that the component which can be
observed is part of the SH0 wave traveling perpendicularly to the fibers, so it
is more damped. Unfortunately the maximum observable wavenumber here
is not enough to contain the SAFE A0 curve, but its peak is slightly inside
the limit. This fact can be clearly seen in the bi-dimensional wavenumber
plot of Fig.4.17. The locus of the peaks for the A0 mode is just inside the
maximum wavenumber in 90◦ direction, thus it does not overlap to the SAFE
curve for that wave. On the contrary, the bi-dimensional wavenumber plot of
the FE model overlaps correctly to the SAFE prediction. This means that,
in the direction perpendicular to the fibers, the real behavior of a unidirec-
tional composite plate is slightly different to the one numerically modeled.
This behavior may be due to the damping effect of the resin, which is not
considered in the numerical analyses of this work. It can play an important
role in a direction along which no fibers are present. However, further analy-
ses should be executed with an higher maximum wavenumber to check if this
phenomenon is still present or if it is just a numerical effect. Nevertheless,
the behavior of the SH0 and S0 waves is correctly modeled, thus meaning
that also for the unidirectional plate, the FE model of Chap.2 correctly re-
produces the wave propagation, only with a little imprecision in the direction
perpendicular to the fibers. As a matter of fact, from a practical point of
view, unidirectional laminates are rarely employed in real-world structures.
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Figure 4.17: Bi-dimensional wavenumber plot for experimental Plate3, 14◦ tilted

It should be noted that damping is never considered in the numerical or
analytical predictions of this work, and that a discrepancy seems appearing
only for 90◦ direction in unidirectional laminates. It can be concluded that
resin damping effects are not important for the definition of peak locus in
laminates which are commonly used in engineering applications.
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Conclusions and future works

The objective of this work is the validation of a finite element method to
correctly represent the guided waves in plates. Initially the modeling tech-
nique has been presented along with all the hints to model this phenomenon
using conventional solid elements. Then different models of plate in isotropic
and composite materials have been created using this technique and apply-
ing explicit integration time scheme. Modeling has been carried out taking
into consideration the need of reducing the computational costs, which can
easily reach unacceptable levels. The possibility to reduce the number of
degrees of freedom has been explored by applying solid elements with an
aspect ratio greater than 1. It has been proved that the aspect ratio is in-
deed a fundamental parameters for the quality of the results. However, good
results can be obtained by using aspect ratio up to five, which represent a
dramatic reduction in the number of degree of freedom required for a ply-by-
ply modeling of a composite laminate. The numerical comparisons have been
focused on measuring the anti-symmetric Lamb waves, of A0 type. However
symmetric waves can be correctly reproduced by the developed model as has
been demonstrated in the scattering test. This test has been presented in
order to verify the possibility of the FE model to reproduce the waves that
are generated after the impact of a S0 wave against a damage i.e. a partial
hole in an aluminum plate. Even though in this thesis no deep analyses have
been performed on this argument, the obtained results are very promising
and motivate the effort for a thoughtful validation of Lamb waves propaga-
tion in composites, where the potential of health monitoring technique could
be fully exploited.

Successively a modeling technique, developed at Politecnico has been
applied. Such technique implies both the use of solid and bi-dimensional
elements to model composite material and it is well-suited to represent in-
terlaminar damages between the layers. Using this technique three mod-
els have been created, in order to reproduce the largest amount of possible
laminates. These models are: an quasi-isotropic carbon fiber plate with
orientation [0◦, 45◦, 90◦,−45◦]2s called Plate1, a fiber glass plate with orien-
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tation [0◦2, 90
◦

2]s called Plate2 and an unidirectional fiber glass plate [0◦8] called
Plate3. Because of the particular approach adopted in these models, the sym-
metric waves S0 can not propagate. This is due to the material applied to
the solid elements, which does not model the link between the strains in the
in-plane directions with the strains in the out-of-plane directions. For every
FE model, the out-of-plane displacement histories of the nodes positioned on
the top surface of the plate are measured.

To compare the obtained results another tool has been implemented in
a MATLAB code and applied to the considered test cases. This tool allows
calculating the phase velocity and the wavenumber for every direction and for
every kind of laminate. This instrument, known as Semi-Analytical Finite
Element (SAFE), can also return the dispersion curves and the frequency
spectra for every direction of the laminate. Using this tool the polar plots
reporting the wavenumbers, as function of the direction and for a given fre-
quency, have been plotted for every plate modeled with the FE method. The
behavior of the wave in composite plates is well represented by these plots.

To compare these plots and the results obtained from the FE analysis a
post-processing operation has been applied on the displacements given by the
FE analysis. Through the recursive use of the Fourier transform it has been
possible to obtain, for a given frequency, the wavenumber value as function
of the direction. The comparison between the results obtained using the
FE approach and the polar plots returned by the SAFE approach is nearly
perfect.

To definitely validate the achieved results an experimental analysis has
been performed. Three plates have been manufactured at Politecnico in
order to reproduce the laminates modeled with the FE. The experiment has
been carried out at the Georgia Institute of Technology in Atlanta by means
of a laser vibrometer. These experimental results have shown not only the
anti-symmetric mode A0, which can be seen even in the FE model, but also
the Symmetric mode S0 and the shear horizontal mode SH0. Since the
measures given by the vibrometer are the out-of-plane displacement histories
in a series of point on the plate, i.e. the same output of the FE model, thus the
same post-processing technique adopted for the FE model has been applied.
Wavenumber plots have been compared with the same plot achieved by the
SAFE approach. The overlapping of the two plots is very good for every
plate and for every mode A0, S0 and SH0. The only small difference is in the
unidirectional fiber glass plate. In this plate the experimental anti-symmetric
wave A0, along the 90◦ direction, i.e. the direction perpendicular to the
fibres, presents a smaller wavenumber with respect to the curve given by the
SAFE approach. However it should be noted that unidirectional laminates
are rarely employed in engineering applications. Since the wavenumber polar
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plots of the FE correspond to the polar plots achieved by the SAFE and that
these latter correspond to the experimental polar plots, then it can be stated
that the FE results given by the FE models correspond to the experimental
results.

It can be stated that the propagation of anti-symmetric guided waves A0

is correctly reproduced, for relevant engineering applications, by FE models
of composite plates obtained through the use of the technique developed at
Politecnico. This result has been achieved even if an aspect ratio more than
one has been applied to the solid elements to reduce the number of degree of
freedom and no damping has been considered.

Concluding, the present work has assessed and validated some modeling
technique for representing wave propagation, including an evaluation of the
possibility to employ large aspect ratio solid elements for wave propagation.
The capability of qualitatively describing the wave scattering from a defect
has been assessed. Limiting to the A0 wave, the possibility to employ hybrid
2D/3D models for wave propagation analyses has been assessed. Then a
semi-analytical method has been implemented and a comparison between
FE, SAFE approach and experimental results has been carried out confirming
that both the numerical approaches can reliably represent wave propagations.
Finally, the post-processing technique that have been employed, basing on
FFT algorithms, allowed a compact and meaningful comparison between the
numerical and experimental results.

Among the future task there is the need for the improvement of the FE
modeling technique to correctly reproduce the symmetric waves S0 and the
shear-horizontal waves SH0. Then great importance should be given to the
study of scattering by means of the FE approach, especially for composite
materials, in order to understand the behavior of guided waves in front of a
delamination. When these ideas will be assimilated practical application of
structural health monitoring could be designed.
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L’obiettivo di questo lavoro è la validazione di un metodo ad elemen-
ti finiti per la corretta rappresentazione delle onde guidate in una piastra.
Inizialmente è stata presentata la tecnica di modellazione insieme a tutti i
suggerimenti per modellare questo fenomeno usando elementi solidi. Poi sono
stati creati diversi modelli di piastre sia in materiale isotropo che in materia-
le composito usando questa tecnica e uno schema di integrazione nel tempo
esplicito. La modellazione è stata eseguita prestando particolare attenzione
alla riduzione del costo computazionale, che può facilmente raggiungere livelli
non tollerabili. È stata valutata la possibilità di ridurre il numero di gradi di
libertà utilizzando elementi solidi con un rapporto d’aspetto maggiore di 1.
Inoltre è stato provato che il rapporto d’aspetto è effettivamente un parame-
tro importante per la qualità dei risultati. Buoni risultati si possono ottenere
con rapporti d’aspetto fino a 5, che rappresenta una notevole riduzione del
numero di gradi di libertà necessari per la modellazione di un laminato strato
per strato. Il confronto numerico è stato incentrato sulla misura del modo di
Lamb anti-simmetrico A0. Le onde simmetriche S0 possono comunque essere
riprodotte correttamente dal modello sviluppato, come si è dimostrato nel
test sulla diffusione (scattering). Questo test è stato eseguito per verificare
la capacità del modello ad EF di riprodurre le onde che si generano dalla
riflessione di un’onda S0 contro un danno: in questo caso un foro parziale in
una piastra di alluminio. I risultati ottenuti, sebbene non sia stata eseguita
un’analisi approfondita dell’argomento, sono molto promettenti e motivano
gli sforzi per eseguire una ponderata validazione della propagazione delle onde
di Lamb nei compositi, dove il potenziale di una tecnica di health monitoring
può essere pienamente sfruttato.

Successivamente si è applicata la tecnica, sviluppata al Politecnico, che
impiega sia elementi solidi che elementi bi-dimensionali per la modellazione
di materiali compositi e che ben rappresenta i danni interlaminari tra le
lamine. Con questa tecnica sono stati creati tre modelli tali da riprodurre la
maggior parte dei laminati possibili. Tali modelli sono: una piastra quasi-
isotropa in carbonio con orientazione [0◦, 45◦, 90◦,−45◦]2s chiamata Plate1,
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una piastra in fibra di vetro con orientazione [0◦2, 90
◦

2]s chiamata Plate2 e una
piastra in fibra di vetro unidirezionale [0◦8] chiamata Plate3. Per il particolare
approccio adottato in questi modelli, le onde simmetriche S0 non si possono
diffondere. Ciò è dovuto al materiale assegnato agli elementi solidi il quale
non riesce a modellare le deformazioni nel piano con quelle fuori dal piano.
Per tutti i modelli ad EF analizzati si sono misurate le storie temporali degli
spostamenti fuori dal piano dei nodi posizionati sulla superfice superiore della
piastra.

Per confrontare i risultati ottenuti si è deciso di implementare in un codice
MATLAB un altro strumento in grado di calcolare, per qualunque tipo di
laminato, l’andamento di grandezze come la velocità di fase o il numero
d’onda in ogni direzione. Questo strumento noto come Semi-Analytical Finite
Element (SAFE) è anche in grado di fornire le curve di dispersione e gli spettri
di frequenza per una determinata direzione del laminato. In questo modo
sono stati generati, per ogni piastra modellata ad EF, i grafici polari degli
andamenti del numero d’onda in funzione della direzione di propagazione
per la specifica frequenza di eccitazione. Questi grafici forniscono una buona
indicazione del comportamento dell’onda in piastre di materiale composito.

Per consentire un confronto tra i grafici così ottenuti e gli spostamenti
forniti dall’analisi ad EF, è stata eseguita su quest’ultimi un’operazione di
processamento dei dati che, tramite l’uso ricorsivo della trasformata di Fou-
rier, ha permesso di ricavare, per una determinata frequenza, l’andamento
del numero d’onda in ogni direzione. Il confronto tra i risultati ottenuti dal-
l’approccio ad EF e i grafici polari forniti dall’approccio SAFE mostrano una
corrispondenza quasi perfetta.

Per poter avere una conferma definitiva dei risultati ottenuti è stata ese-
guita l’analisi sperimentale su tre piastre prodotte dal Politecnico con gli
stessi materiali e le stesse orientazioni delle piastre modellate ad EF. L’anali-
si è stata condotta al Georgia Institute of Technology di Atlanta, utilizzando
un vibrometro laser. I risultati ottenuti sperimentalmente hanno mostrato
oltre alla presenza del modo A0, visibile anche negli EF, la presenza del mo-
do simmetrico S0 e del modo di taglio orizzontale SH0. La stessa tecnica di
processamento dati utilizzata per gli EF è stata applicata a questi risultati,
poichè ciò che viene misurato dal vibrometro laser sono le storie temporali
degli spostamenti fuori dal piano su un certo numero di punti della piastra,
esattamente come nel caso degli EF. I risultati di numero d’onda in funzione
della direzione di propagazione sono stati confrontati con i grafici polari del
SAFE, riscontrando una corrispondenza molto buona per tutte e tre le pia-
stre e per tutti e tre i modi A0, S0 e SH0. L’unica piccola discrepanza è stata
riscontrata nella piastra in fibra di vetro unidirezionale, nella quale il modo
anti-simmetrico A0 in direzione 90◦, ossia perpendicolarmente alle fibre, ha
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un numero d’onda minore rispetto a quanto previsto dal SAFE. Tuttavia, bi-
sogna notare che i laminati unidirezionali in applicazioni ingegneristiche sono
raramente utilizzati. Quindi, dato che i grafici polari del numero d’onda degli
EF corrispondono a quelli dati dal SAFE e che questi ultimi corrispondono
a loro volta ai grafici polari ricavati dai dati sperimentali, si può affermare
che i risultati dati dagli EF corrispondono a quelli sperimentali.

Si può quindi affermare che i modelli ad elementi finiti di piastre in ma-
teriale composito, realizzati con la tecnica sviluppata al Politecnico, sono
stati in grado di riprodurre correttamente l’andamento delle onde guidate
anti-simmetriche A0 per le applicazioni ingegneristiche di rilievo. Questo ri-
sultato è stato raggiunto nonostante sia stato applicato agli elementi solidi
un rapporto d’aspetto maggiore di 1, al fine di ridurre i gradi di libertà e non
siano stati considerati effetti di smorzamento nei modelli numerici.

In conclusione il presente lavoro ha valutato e validato alcune tecniche
di modellazione usate per rappresentare la propagazione di onde, oltre alla
possibilità di utilizzare grandi rapporti d’aspetto per gli elementi solidi. Si
è inoltre valutata la possibilità di descrivere qualitativamente lo scattering
derivante da un difetto. Poi, limitatamente alle onde A0, è stata valutata la
possibilità di usare un modello ibrido ad elementi 2D/3D per modellare la
propagazione delle onde. In seguito un metodo semi-analitico è stato imple-
mentato, quindi è stato eseguito un confronto tra gli approcci ad EF, SAFE e
i risultati sperimentali. Questo confronto ha confermato che entrambi gli ap-
procci numerici riescono a rappresentare correttamente la propagazione delle
onde guidate. Infine la tecnica di elaborazione dati usata, basata sull’utilizzo
dell’algoritmo della FFT, ha consentito di confrontare in modo significativo
i dati numerici e quelli sperimentali.

Tra gli sviluppi futuri, figura l’ottimizzazione della tecnica di modella-
zione adottata per poter riprodurre sia le onde simmetriche S0 sia quelle di
taglio orizzontale SH0. Poi grande importanza dovrebbe essere data allo stu-
dio dello scattering attraverso l’impiego di EF, specialmente per i materiali
compositi, al fine di comprendere il comportamento delle onde guidate di
fronte alla delaminazione. Quando questi concetti saranno assimilati allora
si potrà procedere al progetto di sistemi di SHM.
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