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Abstract

This Master thesis in Ingegneria Matematica is the result of a six months collabo-
ration between the Dipartimento di Matematica of Politecnico di Milano and the
ABB Switzerland Ltd Corporate Research Center of Baden, under the supervision
of the principal scientists Francesco Agostini and Thomas Gradinger. The aim of
this work is the computational modeling of a specific condenser as part of a two-
phase thermosyphon power electronic cooling system.
The thesis is divided into the following five parts devoted to:

Part I: overview and comparison of three types of power electronics cooling de-
vices and description of the specific thermosyphon cooler analyzed in this
work;

Part II: mathematical modeling of the three physical coupled domains involved
in the condenser device: external air, aluminum panel and two-phase refrig-
erant fluid;

Part III: description of suitable numerical approximation method for each domain
involved in the computation, with emphasis on the stabilized methods used
to deal with dominating convective flow regimes;

Part IV: discussion of the numerical results of the simulations for the two-phase
condenser;

Part V: conclusive considerations and perspectives for future activities.
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Riassunto della tesi

Introduzione

Il lavoro presentato in questa tesi è il risultato di una internship di sei mesi presso
ABB Corporate Research Center di Baden, in Svizzera, sotto la supervisione e il
supporto del Dipartimento di Matematica del Politecnico di Milano.
Lo scopo di questo collaborazione è la modellazione dal punto di vista matematico-
fisico e la simulazione numerica di un particolare sistema di raffreddamento per
componenti elettrici, ideato dai ricercatori ABB. Trattasi di un sistema di raffred-
damento con struttura a termosifone che sfrutta l’elevato coefficiente di scambio
termico dovuto all’utilizzo di fluidi bifase, ovvero fluidi presenti sia in fase liquida
che in fase gassosa.
Nel Capitolo 1 forniremo prima una breve descrizione e confronto dei sistemi di
raffreddamento utilizzati maggiormente nelle applicazioni industriali. In seguito,
nella Sezione 1.2 descriveremo dettagliatamente la geometria e i fenomeni fisici
coinvolti nel sistema di raffreddamento in questione. Potremo, infatti, interpreata-
re la struttura del condensatore come l’unione di tre domini ben distinti, ma allo
stesso modo in stretta comunicazione tra di loro: il flusso di aria esterna, i pannelli
metallici e il fluido bifase che scorre nel canale.

Modelli Matematici

Il primo passo per l’analisi dei fenomeni fisici coinvolti è la derivazione di un mo-
dello matematico appropriato a descriverne le dinamiche. Questo compito verrà
eseguito dominio per dominio nei tre capitoli della seconda parte di questo lavoro.
Nel Capitolo 2, sotto opportune ipotesi, ricaveremo il modello matematico relativo
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al flusso di aria esterno e tra i pannelli. Prenderemo in considerazione solo il ca-
so di scambio di calore tramite convezione forzata, dove il flusso d’aria è imposto
dall’esterno attraverso un ventilatore o soffiante. Nella Sezione 2.2.1 introdurremo
il concetto di correlazione empirica e lo applicheremo al calcolo del coefficiente di
scambio termico tra il dominio dell’aria e il pannello. In seguito, nella Sezione 2.2.2,
descriveremo la tecnica per il calcolo della caduta di pressione del flusso di aria,
parametro necessario per determinare la potenza minima della ventola utilizzata,
introducendo il parametro detto friction factor e le corrispondenti correlazioni.
Nel Capitolo 3 ricaveremo il modello matematico per lo scambio di calore relativo
alla parete metallica del pannello condensatore. Il pannello riceve il calore ceduto
dal fluido bifase che si condensa, parte di esso è diffuso all’interno del pannello
stesso e parte è disperso nell’aria.
Infine nel Capitolo 4, ricaveremo il modello termo-fluidodinamico del fluido bifa-
se che scorre nel canale, considerando in primis l’ipotesi di incomprimibilità poi
eliminata in seguito. Nella Sezione 4.2.1 introdurremo le relazioni constitutive ne-
cessarie per la descrizione delle propietà termofisiche della miscela liquido-vapore
considerata. Anche in questo caso dedichiamo l’intera Sezione 4.3 alla descrizione
delle correlazioni utilizzate per il calcolo del coefficiente di scambio termico bifase
e della perdita di pressione dovuta all’attrito tra fluido e parete del canale.

Metodi Numerici

Nella terza parte di questo lavoro introdurremo i metodi di discretizazione appro-
priati per l’approssimazione numerica dei tre modelli descritti precedentemente.
Nel Capitolo 5 mostreremo una interpretazione dei modelli per i domini di aria
e pannello come problemi bidimensionali di diffusione, trasporto e reazione. Per
quanto riguarda la discretizzazione numerica proporremo un approccio ad ele-
menti finiti misti, usando i metodi di stabilizzazione upwind e fitting esponenziale
per i regimi a trasporto dominante.
Nel Capitolo 6 descriveremo un metodo di discretizzazione valido sia per la risolu-
zione delle equazioni di bilancio che per le relazioni costitutive del liquido bifase.
Lo schema numerico descritto nel caso di fluido incomprimibile ha la particolarità
di riuscire una arbitraria configurazione geometrica del canale, comprese le bifor-
cazioni.
Infine nel Capitolo 7 analizzaremo le formulazioni algebriche corrispondenti ad
ognuno dei tre problemi considerati, utilizzando un approccio di tipo Nodal Ana-
lysis per l’assemblaggio delle matrici relative al dominio fluido bifase. Proporre-
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mo, inoltre, l’algoritmo iterativo utilizzato per risolvere le nonlinearità delle sud-
dette formulazioni algebriche e la procedura di iterazione funzionale tra domini
impiegata.

Risultati Numerici

Nel Capitolo 8 presenteremo ed analizzeremo una serie di risultati numerici ot-
tenuti con il risolutore implementato. Mostreremo dapprima nella Sezione 8.1 i
risultati ottenuti nel caso dei domini accoppiati di aria e pannello, confrontando i
valori assunti dai due coefficienti di scambio termico coinvolti: tra aria e pannello
e tra pannello e fluido bifase.
In seguito, nella Sezione 8.2.1 mostreremo i risultati ottenuti per il caso di fluido
incomprimibile con una geometria del canale avente biforcazioni, mostrando la
corrispondenza tra ogni segmento del canale e una specifica resistenza elettricha
equivalente, pari alla resitenza idraulica.
Al contrario, i risultati ottenuti nel caso di fluido comprimibile e bifase verrano
mostrati per un canale senza biforcazioni e utilizzando il fluido refrigerante R134a.
Analizzeremo la variazione di vapor quality del fluido refrigerante in uscita dal ca-
nale in funzione della temperatura del pannello e della velocità del fluido, in modo
da indagare sulle le condizioni iniziali di ottimalità.

Conclusioni

Nel capitolo conclusivo riassumiamo i principali risultati ottenuti in questo lavoro
di tesi, evidenziando gli aspetti innovativi e i possibili futuri sviluppi di ricerca.
Relativamente a questi ultimi, si individua l’esigenza di:

• includere il regime di trasporto a convezione naturale;

• rimuovere l’ipotesi di flusso bifase omogeneo;

• introdurre l’effetto delle cadute di pressione concentrate in corrispondenza
di punti di curvatura o giunzione del canale.
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1
Description of an electronic cooling system and

technological motivations

Since the early 1980s the growing of new technologies and applications shifted the
scientific interest on the power electronics field. The necessity of industry to de-
velop micro devices with a high heat dissipation per unit of volume justifies the
need of more compact and high heat flux cooling systems.
In this thesis we will focus on the description, mathematical modeling and numer-
ical discretization of a specific cooling system designed by the scientists of the ABB
Corporate Research Center of Baden, Switzerland. The work presented is the result
of a six-months internship in the mentioned research center, under the supervision
and the support of the Department of Mathematics of Politecnico of Milano.
In this introductory chapter we will make a description and comparison of the
most used power electronics cooling systems and a detailed description of the
cooler analyzed in this work.

1.1 Cooling systems overview

Each power electronic device must be cooled to avoid excessive increase in tem-
perature, which leads to failure of the device. Typically this kind of applications
features high rates of heat generation and high power densities, hence making
straightforward the necessity of developing optimal cooling systems.
All the cooling procedures exploit the convection heat transfer phenomenon, which
occurs between a fluid in motion and a bounding surface when there is a gap of
temperature between them. According to the Newton’s law of cooling [IDW02, p. 8]

q = Ah (Ts − T∞) , (1.1)
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CHAPTER 1. DESCRIPTION OF AN ELECTRONIC COOLING SYSTEM AND

TECHNOLOGICAL MOTIVATIONS

(a) Fan less water cooler (b) Heat sink

Figure 1.1: Examples of water and air-cooled electronic devices.

the convective heat power q is proportional to the difference between the surface
and the fluid temperature, Ts and T∞ respectively. The proportionally constant h is
called convection heat transfer coefficient and A is the heat exchange surface.
There are different possibilities in the structure of cooling devices, the most used
are presented below.
The water-cooled and air-cooled systems are the most exploited in power elec-
tronics applications, as shown in Figure 1.1 with an application of both systems to
computer CPU cooling.
Water-coolers are used commonly for cooling combustion engines in automobiles
and electrical generators. The water flowing in the pipes transports away the heat
from the heat source to a secondary cooling surface. These systems are usually
quite expensive because they need a moving pump that has a finite life and must
be periodically serviced. The water cooling systems, compared to the air cool-
ing systems, need less volumetric flow and reduced temperature differences for
transmitting heat over greater distances, having higher specific heat capacity and
thermal conductivity.
The convectional air-cooled systems, called heat sink, consist of an array of fins,
extended from a plate base connected to the electronic device, as in Figure 1.1(b).
If a fan is used for increasing the air flow, the heat transfer phenomenon is due
to forced convection and no longer to natural convection. The first purpose of the
fin is to enhance the heat exchange surface, because, according to the law (1.1),
at a fixed temperature difference the increase of surface A is proportional to the
increase of heat flux. In fact, following this approach also the surface of each fin
is enhanced by increasing the roughness of the surface, as shown in Figure 1.2.
However, reducing the thickness and increasing at the same time the fin surface
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Figure 1.2: Example of an heat sink system.

Figure 1.3: Thermosyphon.

we obtain a progressive reduction of the fin efficiency, due to the increase of varia-
tion of temperature in the extended surface.
The second purpose of the fin is to reduce the air cross section, in order to increase
the air velocity and, consequently, the heat transfer coefficient.
To conclude this short review we analyze the two-phase cooler based on the ther-
mosyphon criterion, described in Figure 1.3. As two-phase flow we denote a fluid
where both liquid and vapor phases are present. The thermosyphon consists of an
evaporator and a condenser connected by a pipe. The heat dissipated by electronic
devices, in contact with the evaporator, is collected by means of an evaporating
fluid. The vapor phase fluid, rising in the pipe, passes through the condenser
where it returns to the liquid phase. No pumps are needed to move the refrigerant
fluid from the evaporator to the condenser and in the way back, because this sys-
tem takes advantage from the natural circulation of the inside two-phase fluid.
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TECHNOLOGICAL MOTIVATIONS

Figure 1.4: Comparison of the heat transfer coefficient values varying the cooling system.

Figure 1.5: Geometry of the condenser.

The changing phase phenomena has an high thermodynamic efficiency: the two-
phase fluid heat transfer coefficient value is significantly higher compared to the
values corresponding to the medium fluids used in the cooling systems illustrated
above, as shown in Figure 1.4, and the flow temperature is nearly constant due to
the saturated nature of the liquid-vapor mixture.

1.2 A thermosyphon cooler

The cooling system designed by the scientist of the ABB Research Center is a two-
phase thermosyphon cooler, whose condenser device is depicted in Figure 1.5.
The evaporator, represented by the box at the bottom, and the condenser, repre-
sented by a series of panels, interact through two pipes: one for the vapor phase
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Figure 1.6: Examples of condenser panels.

raising from the evaporator to the condenser and one for the liquid phase which
bring back the liquid at the evaporator inlet.
In this work we will focus on the description and analysis of the condenser de-
vice used in this particular example of thermosyphon cooler. From the geometrical
point of view, the device is constituted of a series of aluminum panels connected in
parallel to each other. Each panel consists of two aluminum plates bonded together
for most of the surface, with the non bounded area being crossed by a channel, as
depicted in Figure 1.6. The fluid flowing through the condenser panel is a refriger-
ant fluid.
We can consider now the thermo-physical phenomena occurring in this device.
First of all we notice that there are three different physical domains involved: two-
phase refrigerant fluid, aluminum panel and external air flow.

Two-phase refrigerant fluid. The refrigerant fluid at the inlet of the channel is al-
most totally vapor-phase. Flowing through the channel, it hands over heat
to the panel metallic wall and returns to the liquid-phase. Figure 1.7 shows
the main flow patterns assumed by the two-phase flow during the conden-
sation. Each pattern corresponds to a specific distribution of the liquid and
vapor phases in the channel, for details see [Wha96].

Aluminum panel wall. The panel wall is heated by the heat released by the re-
frigerant fluid flowing in the channel during the condensation precess. This
heat is spreaded in the panel wall itself and is handed over to the external air
flow.

External air flow. The series of panels is subjected to an external air flow, that can
be naturally caused by the difference of temperature between the air and the
panels or imposed by an external device like a pump or a fan. An increased
air flow velocity generally enhances the heat transfer between the heated
aluminum panels and the external air.
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Figure 1.7: Two-phase flow patterns.

As described above the three physical domains are fully coupled, with the heat
handed over by one of this domains corresponding to the heat received by an other
domain.
Comparing this type of condenser to the air-cooled heat sink, we can notice that
each panel acts as a fin, expanding the contact surface between the three domains.
However, in this case the fin efficiency is close to one, because for any choice of
panel dimension the aluminum temperature is more homogeneous, i.e. there is no
significant temperature drop in the panel domain. This homogeneous distribution
of temperature is the effect of the reduced panel thickness and of the high heat
exchange between the panel and the two-phase fluid.

1.3 Technological motivations

The purpose of this collaboration project is to devise and implement a computa-
tional simulation solver for the condenser previously described. To fulfill this task,
the first step is the mathematical modeling of the three thermo-physical problems
involved, one for each domain mentioned previously. Consequently, we have to
select and apply a suitable stable, conservative and accurate discretization method
for each involved mathematical model. The last step is to end up with the proper
computational routines for the numerical simulations.
The interest of the research scientists to develop this kind of simulator stems from
the necessity of investigating the optimal configuration of this condenser, i.e the
optimal geometry of the channel crossing the panels and the optimal input values
of the air flow and of the two-phase refrigerant flow.
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2
Description of the air subsystem

We will consider now the physical models for the description of the air subdomain.
Assuming the same channel geometry and the same air flow condition for each
panel, we can focus our study on the air domain included between two condenser
panels.
Only the case of forced convection is considered in this work, which means that
the air flow is imposed by an external pump or fun. In this case the air domain,
that is physically three-dimensional, can be restricted to two dimensions; the heat
exchange occurring in the thickness between two panels is neglected.

2.1 Air physical model

Let us consider the domain described in Figure 2.1. Ω is the three-dimensional
domain embedded between two condenser panels located at z = 0 and z = S, re-
spectively. Σw are the contact walls between air and panel, lying in the planes z = 0
and z = S respectively. Σin and Σout are the inflow and outflow surfaces, lying in
the planes y = 0 and y = H, respectively.
The model is derived under the assumptions of constant air density ρ, homoge-

neous flow, and constant average air speed v. The last assumption is the conse-
quence of dealing with forced convection.
Only the three-dimensional energy balance equation must be solved

∂t(cpρT) − div(k∇T − ρcpvT) = 0 (x, y, z) ∈ Ω, (2.1)

with the boundary condition

−k∇T · n = haw(T − Tw) (x, y, z) ∈ Σw. (2.2)

11
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z

y

x

flow

Σin

Σout

Σw

Σw

z = S

y = H

x =W

Figure 2.1: Air domain.

T is the air temperature, cp is the air specific heat capacity at constant pressure
and k is the thermal air conductivity. On the contact surfaces Σw the outflow heat
flux is proportional to the difference between the air temperature T and the wall
temperature Tw, through a coefficient haw accounting for the heat transfer coefficient
between air and condenser wall. n is the outward unit vector along the eternal
surface of the domain.
Assuming equal conditions in the upper and lower contact surfaces Σw, we can de-
fine an adiabatic plane at z = S/2. Therefore, by symmetry, we can limit ourselves
to consider only the domain between the adiabatic surface and one of the contact
surfaces Σw, for example the one located at z = 0.
As previously mentioned, in the case of forced convection, we can neglect the heat
transfer in the thickness between two panels, so we decide to use separation of
variables to approximate the temperature distribution as

T(t, x, y, z) = T̃(t, x, y)T̂(z). (2.3)

T̃(t, x, y) expresses the variation of temperature in the x, y plane, while T̂(z) is a
dimensionless shape function accounting for the variation of temperature between
the contact surface and the adiabatic plane located in z = S/2.
Integrating the energy balance equation in the vertical direction

∫S/2
0

[∂t(cpρT) − div (k∇T − ρcpTv)]dz = 0
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and using (2.3), we obtain[∫S/2
0

T̂dz

]
∂t(cpρT̃)−

[∫S/2
0

T̂dz

]
∇x,y ·

(
k∇xyT̃ − ρcpvT̃

)
−T̃

∫S/2
0

∂z

(
k∂zT̂

)
dz = 0.

(2.4)
Defining

I =
∫S/2
0

∂z

(
k∂zT̂

)
dz,

we get

I =
[
k∂zT̂

]S/2
0

= −k ∂zT̂
∣∣∣
z=0
,

because k ∂zT̂
∣∣∣
z=S/2

= 0 under the assumption of adiabatic surface.

We can rewrite condition (2.2) as

−k∇T · n
∣∣∣
Σw

= kT̃
(
∂zT̂
∣∣∣
z=0

)
= haw

(
T̃ T̂

∣∣∣
z=0

− Tw

)
.

Therefore the last term of equation (2.4) is equal to

T̃I = −kT̃
(
∂zT̂
∣∣∣
z=0

)
= haw

(
Tw − T̃ T̂

∣∣∣
z=0

)
.

Defining now the parameter λ as

λ :=

∫S/2
0

T̂dz, (2.5)

equation (2.4) is

λ∂t(cpρT̃) − λ∇x,y ·
(
k∇xyT̃ − ρcpvT̃

)
− T̃I = 0,

hence

∂t(cpρT̃) −∇x,y ·
(
k∇xyT̃ − ρcpvT̃

)
+

haw
λ

(
T̃ T̂
∣∣∣
z=0

− Tw

)
= 0.

λ is the thickness of the thermal boundary layer at the interface between air and
panel. It is a fitting parameter such that λ ≤ S/2. We now rescale the shape func-
tion in such a way that T̂

∣∣∣
z=0

= 1, this means that

T(t, x, y, 0) = T̃(t, x, y).

To ease the notation we will use the symbol T instead of T̃ and set

h̃aw =
haw
λ
.
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In our model we neglect the development in transitional phase, focusing on the
steady state solution, so that the physical model of the air phase reads

∇ · (−k∇T + ρcpvT) + h̃aw(T − Tw) = 0 (x, y) ∈ (0,W)× (0,H),

T = Tin y = 0,

(−k∇T) · n = 0 y = H,

(−k∇T + ρcpT) · n = 0 x = 0, x =W.

(2.6)

The solution of the air domain problem (2.6) is coupled to the wall domain prob-
lem through the wall panel temperature Tw.
We have obtained that, neglecting heat exchanges through the air thickness be-
tween two condenser panels, the air domain is the planar intersection between the
three-dimensional air area and the panel wall.
The first equation of system (2.6) is the divergence of the total heat flux per unit
volume

q = −k∇T + ρcpvT,

this quantity is the sum of two contributions:

• conduction heat flux: −k∇T , according to the Fourier’s law

• convection heat flux: ρcpvT , proportional to the air velocity.

The boundary conditions associated with the air problem described in (2.6) are:

• Dirichlet boundary condition at the inflow boundary y = 0,

• null conduction heat flux at the outflow boundary y = H, i.e for y > H the
air flow is no more in contact with the panel surface,

• homogeneous Neumann condition on the remaining boundary.

It is important to notice that the air physical properties k and cp are functions of
the temperature, hence the system (2.6) is nonlinear.

2.2 Air correlations

To complete the description of the air domain model we have to provide a math-
ematical law for the heat transfer coefficient haw and introduce the pressure drop
quantity.
We define an empirical correlation as a functional relation between two or more
physical variables, usually validated by a series of experimental tests.
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Figure 2.2: Geometry of the air problem.

In the engineering world, correlations are helpful to account of complex physical
phenomena . There is a long list of correlations derived and studied in the litera-
ture, but each of them has a corresponding range of validity.

2.2.1 Air heat transfer coefficient correlation

The heat transfer coefficient can be expressed as a function of:

• Prandtl number: ratio of the kinematic viscosity ν and thermal diffusivity α

Pr =
ν

α
,

• Reynolds number: ratio of the inertia and viscous forces

Re =
|v|L

ν
,

where L is the characteristic length of the problem.

Notice that ν and α are, in general, parameters depending on the temperature of
the medium. In the particular case of the heat flux between air and panel wall

haw = haw(T,Re,Pr).

Through empirical correlations the local Nusselt number Nu is calculated as Nu =

f(Re,Pr) and is related to the heat transfer coefficient by the following formula:

haw =
Nuk
L
.

The Nusselt number is a dimensionless parameter equal to the ratio of convective
to conductive heat transfer across the exchange surface. We can also define the
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average Nusselt number Nu, obtained integrating Nu over the heat exchange sur-
face.
In the case of the air domain defined in Figures 2.1 and 2.2, two different ap-
proaches can be used to derive the formula of Nu.
First we can consider the air flow surrounding the panel as a flow on a flat plate
at constant temperature, neglecting the roughness of the panel due to the projec-
tions of the channel. In this case the characteristic length L is equal to the size of
the panel in the direction of the air flow H, so that the formula to calculate the
Reynolds number becomes

ReH =
|v|H

ν
.

In the literature we can find several correlations for Nu specifically developed for
the case of flat plate. Few of the most well known correlations are here reported:

- flat plate correlation for laminar flow [IDW02, p. 393]

NuH = 0.332
√

ReHPr1/3,

for ReH ≤ 104 and Pr ≥ 0.6,

- Churchill-Ozoe for laminar flow [IDW02, p. 395]

NuH =
0.3387ReH1/2Pr1/3[
1+ ( 0.0468Pr )2/3

]1/4 ,
for ReH ≤ 104 and ReHPr ≥ 100,

- Chilton-Colburn for turbulent flow [IDW02, p. 395]

NuH = 0.0296ReH4/5Pr1/3,

for ReH ≥ 104 and 0.6 ≤ Pr ≤ 60.

As a second interpretation, we can consider the air flow through two panels as an
intube flow. The correlations derived in the case of circular tubes can be adapted
to tubes of each shape, using the hydraulic diameter Dh, defined as four times the
flow cross sectional area divided by the wet perimeter

Dh =
4WS

2(W + S)
.

In this case the characteristic length L = Dh and then

ReDh =
|v|Dh

ν
.

Few of the most known correlations for Nu in intube flow are:
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- Dittus-Boelter for turbulent flow [IDW02, p. 491]

NuDh = 0.023ReDh4/5Prn, (2.7)

for ReDh ≥ 104, 0.7 ≤ Pr ≤ 160 and pipes long at least ten times Dh, n = 0.4

for heating and n = 0.3 for cooling,

- Petukov for turbulent flow [KSA87, Chap. 4]

NuDh =
(f/8)ReDhPr

C+ 12.7(f/8)1/2(Pr2/3 − 1)
,

where
C = 1.07+

900

ReDh
−

0.63

1+ 10Pr
,

for 4000 ≤ ReDh ≤ 5× 106 and 0.5 ≤ Pr ≤ 106,

- Gnielinski for turbulent flow [KSA87, Chap. 4]

NuDh =
(f/8)(ReDh − 1000)Pr

1+ 12.7(f/8)1/2(Pr2/3 − 1)

for 2300 ≤ ReDh ≤ 5× 106 and 0.5 ≤ Pr ≤ 2000.

f is the friction factor, a dimensionless parameter. A detailed description of this
parameter will be provided in Section 2.2.2.

Entrance region correction

All of the previous cited intube flow correlations are suitable for fully thermally
developed flows, hence far from the entrance region. If they are used in the transition
flow regions, the convection coefficient is underestimated.
Bhatti and Shah propose [KSA87, Chap. 4] the following entrance region correction
for the average Nusselt number Nu, calculated at the distance l from the entrance
of the tube,

Nu
Nufd

= 1+
c

(l/Dh)m
if

l

Dh
> 3, (2.8)

where Nufd is the fully developed Nusselt number. The corresponding value of
Nufd is calculated using the intube correlations described above.
The values of the coefficients c and m depend on the entrance configurations
[KSA87, Chap. 4]. The two configurations that are more similar to the air flow
entrance region, Figure 2.3, are:

• long calming section: thermal boundary layer in the first part of the channel,
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adiabatic surface
flow

(a) Long calming section

flow

(b) Square entrance

Figure 2.3: Two entrance region configurations. The black thick line denotes the adiabatic
surface and the green arrows the heat exchanges.

configuration c m

long calming section 0.9756 0.76
square entrance 2.4254 0.676

Table 2.1: Values of the coefficients of the Bhatti and Shah entrance correction correlation,
for the two cases considered.

• square entrance: flow contraction at the inflow entrance.

We decide to use an arithmetic mean of the fully developed Nusselt number Nu
calculated in the two mentioned configurations, the respective values of the coef-
ficients are summarized in Table 2.1.

2.2.2 Pressure drop

In the solution of the air domain problem we are interested in the value of the pres-
sure drop, because this parameter determines pump or fun power requirements.
The air pressure drop can be post-calculated once system (2.6) has been solved
[IDW02, p. 470]. We first introduce the Moody friction factor

f = −
(dp/dx)Dh

ρv2/2
,

this parameter is dimensionless and assumes constant values in the fully devel-
oped regions. This parameter must not be confused with the friction coefficient Cf:



2.2. AIR CORRELATIONS 19

A B m

ReDh < 2100 0 16 1

2100 ≤ ReDh ≤ 4000 0.0054 2.3× 106 −2/3
4000 < ReDh 1.28× 10−3 0.1143 3.2154

Table 2.2: Bhatti and Shah friction factor correlation coefficients.

the relation between the two parameters is Cf = f/4.
Using the definition of f, the pressure drop ∆p for a fully developed flow from the
axial position x1 to x2, along the flow direction, can be expressed as

∆p = −

∫p2
p1

dp = f
ρv2

2Dh

∫x2
x1

dx = f
ρv2

2Dh
(x2 − x1). (2.9)

This is valid under the assumption of constant pressure gradient dp/dx, which is
approximately true if we consider a small enough gap between x1 and x2.
The pump power required to overcome the resistance to the flow can be calculated
as

P = ∆p
ṁ

ρ

where ṁ/ρ is the mass flow rate.

Friction factor

The values of this dimensionless parameter can be calculated through empirical
correlations. Few well known correlations available in literature are here reported:

- Petukov for turbulent flow [KSA87, Chap. 4]

f = (0.79 ln (ReDh) − 1.64)
−1 ,

for 3000 ≤ ReDh ≤ 5× 106

- Bhatti and Shah for turbulent flow [KSA87, Chap. 4]

f = 4Cf = 4
(
A+

B

(ReDh)1/m

)
, (2.10)

for the values of the coefficients A, B andm, see Table 2.2.





3
Description of the panel subsystem

In this chapter we will describe the physical model of the panel wall domain. The
model will account for the distribution of the temperature in the panel, due to the
diffusion heat flux in the aluminum wall. The heat sources are due to the heat flux
between the two-phase flow and the panel and between the panel and the external
air flow. The panel wall acts as an intermediary. In the zones where the panel
is crossed by the channel, it receives the heat handed over by the cooling fluid
through convection. Then this heat is spread in the panel itself by conduction and
is handed over through convection to the air.

3.1 Panel physical model

To derive the two-dimensional model, we start from the three-dimensional energy
balance equation

∂t(ρcpT) + div(−k∇T) = 0 in Ω, (3.1)

associated with the condition

−k∇T · n = haw(T − Ta) on Σe. (3.2)

Σe are the contact surfaces between the panel and the air in Figure 3.1.
Since the size in the z direction is negligible compared to the size of the panel in

the other directions, we can neglect the heat transfer in the thickness S of the panel.
Using the same approach described in Section 2.1, we assume

T(t, x, y, z) = T̃(t, x, y)T̂(z).

The plane z = S/2 is a plane of symmetry for the panel domain problem, hence we
can limit ourselves to consider only one of the regions separated by such a plane,

21
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z

y

x

z = S

y = H

x =W

Σe

Σe

Figure 3.1: Panel domain.

z = S

z = 0

z = S/2

Figure 3.2: Thickness of the panel. The concavities on the panel surfaces coincide with the
zones crossed by the channel. The dashed line denotes the plane of symmetry.

Figure 3.2.
If we call Λ the surface of the domain in the plane z = S/2, Λ can be divided in
two different regions: Λc is the part of the surface crossed by the channel andΛa is
such thatΛa∩Λc = ∅ andΛa∪Λc = Λ. An example of this partitioning procedure
is illustrated in Figure 3.3.
In this case the term I, following the same procedure used in the case of the air
domain, is equal to

I =
[
k∂zT̂

]S/2
0
,

so that we have

−k ∂zT̂
∣∣∣
z=0

= haw
(
T̂
∣∣∣
z=0

− Tw

)
and

k∂zT̂
∣∣∣
z=S/2

=

 0 if (x, y) ∈ Λa,

hwc

(
T̂
∣∣∣
z=S/2

− Tc

)
if (x, y) ∈ Λc,

where Tc is the fluid temperature. This means that we have an adiabatic condition
on Λa, while the input heat steam on Λc is equal to the heat handed over by the
fluid.
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(a) Λ = Λa ∪Λc (b) Λa (c) Λc

Figure 3.3: An example of partition of surface Λ.

From the above assumptions we can rewrite the energy equation as

∂t(cpρT̃) −∇x,y ·
(
k∇xyT̃

)
+

haw
λ

(
T̃ T̂
∣∣∣
z=0

− Ta

)
+

hwc
λ

(
T̃ T̂
∣∣∣
z=S/2

− Tc

)
= 0.

where we assumed hwc = 0 on Λa. Neglecting the heat transfer in the panel thick-
ness, as previously described, we can consider T̂ constant and rescale it to be equal
to one.
To simplify the notation we will use the symbol T to denote T̃ and we introduce

h̃aw =
haw
λ

and h̃wc =
hwc
λ
,

where λ is defined as in (2.5). The two-dimensional steady state problem for the
panel domain is{

∇ · (−k∇T) + h̃aw(T − Ta) + h̃wc(T − Tc) = 0 (x, y) ∈ Ωw,
−k∇T · n = 0 (x, y) ∈ ∂Ωw,

(3.3)

whereΩw = (0,W)× (0,H).
The associated boundary conditions are homogeneous Neumann, this means that
the edges of the panel are perfectly isolated, hence the total outgoing heat flux is
null. System (3.3) is coupled to the air and channel models through the air temper-
ature Ta and the channel temperature Tc.
The heat transfer coefficient hwc is zero in the plate zone where the panel wall is not
crossed by the channel, otherwise it is calculated using the two-phase correlations
that we will describe in the following chapter. The heat transfer coefficient haw is
calculated using single-phase correlations as described in Section 2.2.1.





4
Description of the channel subsystem

In this chapter we will focus on the study of the motion of the two-phase fluid in
the condenser channel. We will deduce the model to describe the problem accord-
ing to a physical procedure of increasing complexity. The first considered model is
under the assumption of incompressible and homogeneous flow of a single phase
fluid. Then we will introduce the compressible flow assumption and the two-phase
constitutive relations.

4.1 Single-phase incompressible fluid

The first physical model analyzed will assume incompressible flow, i.e constant
density. We denote by v the vector of the fluid velocity and by ρ the fluid density
and as a starting point we will focus on the motion in a horizontal channel. As a
second step we will introduce the gravity acceleration effect in a vertical channel.

4.1.1 Horizontal channel

We consider the domain shown in Figure 4.1, where L is the length of the trunk of
channel, Σ is the channel cross section surface, Σe is the external surface and n is
the outward unit normal vector along Σe.
The three-dimensional physical model is deduced from the conservative form of

the Navier-Stokes equations:


ρdiv(v) = 0

div(−µ∇v+ ρv⊗ v) +∇p = 0

div(−k∇T + ρvh) = 0

(x, y, z) ∈ Ω, (4.1)

25



26 CHAPTER 4. DESCRIPTION OF THE CHANNEL SUBSYSTEM

z
y

x

flow Σin Σout

Σe

x = 0 x = L

Figure 4.1: Horizontal channel domain.

i.e. the mass, momentum and energy balance equations. The specific enthalpy h is

h =

(
cvT +

1

ρ
p

)
.

No-slip boundary condition are imposed on the external surface

v = 0 (x, y, z) ∈ Σe

and

−k∇T · n = hwc(T − Tw) (x, y, z) ∈ Σe,

i.e. the outflow component of the diffusion heat flux is equal to a source energy
contribution, due to the temperature difference between the fluid temperature T
and the panel wall temperature Tw. hwc is the heat transfer coefficient between
the panel wall and the fluid. We introduce the symbols µ for the fluid dynamic
viscosity, k for the fluid thermal conductivity and cv for the specific heat capacity
at constant volume.
We now describe the approximations needed to pass from the three-dimensional
model to a one-dimensional model along the x coordinate, parallel to the direction
of the channel. The componentwise version of system (4.1) is

ρ div(v) = 0

div(−µ∇vx + ρvxv) + ∂xp = 0

div(−µ∇vy + ρvyv) + ∂yp = 0

div(−µ∇vz + ρvzv) + ∂zp = 0

div

(
−k∇T + ρv

(
cvT +

1

ρ
p

))
= 0

(x, y, z) ∈ Ω. (4.2)
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Assuming that the velocity is only in the x direction

v =

 vx0
0

 ,
the mass balance equation becomes

ρdiv(vx) = ∂xvx = 0,

so we deduce that vx = vx(y, z): the velocity in the x direction is constant but it
changes in the channel cross section. We introduce the mean of vx in the channel
cross section surface

< v >:=
1

|Σ|

∫
Σ

vxdydz

and we integrate the mass balance equation on Σ, to obtain∫
Σ

ρ∂xvxdydz = ρ∂x(|Σ| < v >) = 0

from which we can introduce the new variable ṁ, flux of mass, defined as

ρ |Σ| < v >= const = ṁ.

The three scalar components of the momentum equations become
−µ(∂2y + ∂

2
z)vx + ∂xp = 0,

∂yp = 0,

∂zp = 0,

from which we deduce that the pressure of the fluid is constant over the cross
section of the pipe, p = p(x).
Since vx = vx(y, z), there exists a constant value K such that{

∂xp(x) = −K,

−µ(∂2y + ∂
2
z)vx(y, z) = K.

The solution of the problem{
−µ(∂2y + ∂

2
z)vx(y, z) = K in Ω,

vx = 0 on Σe

is
K = R(Σ, µ, ρ)ṁ,
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accordingly we deduce that

∂xp = −R(Σ, µ, ρ)ṁ. (4.3)

The function R(Σ, µ, ρ) is the hydraulic resistance of the pipe to the mass flow. In the
case of a pipe with circular cross section of radius r the following relation holds

R(Σ, µ, ρ) =
8µ

ρπr4
,

hence ṁ is proportional to the fourth power of r, for details see [LL87, p. 51].
Finally we can analyze the energy balance equation.
We split the divergence operator in the two main directions of the problem:

• (·)� denotes the restriction of the operator in the direction parallel to the
channel, that is x,

• (·)⊥ denotes the restriction in the plane perpendicular to the channel, that is
the plane yz.

Integrating along the surface Σwe obtain∫
Σ

div�

[
−k∇�T + ρv

(
cvT +

1

ρ
p

)]
dydz+

∫
Σ

div⊥ (−k∇⊥T)dydz =

div�

[
−k∇�

∫
Σ

T dydz+

∫
Σ

ρv

(
cvT +

1

ρ
p

)
dydz

]
+

∫
∂Σ

−k∇⊥T · ndσ '

div�

[
−k|Σ|∇� < T > +ṁ

(
cv < T > +

1

ρ
p

)]
+ |∂Σ|hwc (< T > −Tw) = 0

where we have defined the average temperature

< T >:=
1

|Σ|

∫
Σ

T dydz,

quantity constant in each surface Σ, and we have assumed T '< T > on each cross
section surface and on ∂Σ.
Since the direction parallel to the motion is x, the energy balance equation obtained
for the one-dimensional approximate problem is

∂x
(
− k|Σ|ρ∂x < T > +ṁρcv < T > +ṁp

)
+ |∂Σ|ρhwc(< T > −Tw) = 0,

that can be rewritten as

∂x (−α∂xT + βT + ṁp) + γ(T − Tw) = 0
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upon introducing the parameters
α = kρ|Σ|,

β = ṁρcv,

γ = |∂Σ|ρhwc.

With a slight abuse of notation, we will use the symbol T instead of < T >.
In conclusion, starting from the three-dimensional problem (4.2) we have derived
the following one-dimensional physical model to simulate the motion of an incom-
pressible, homogeneous and single-phase fluid in a horizontal channel{

∂xp+ R(Σ, µ, ρ)ṁ = 0

∂x (−α∂xT + βT + ṁp) + γ(T − Tw) = 0
x ∈ (0, L), (4.4)

where ṁ = const. The equations in system (4.4) are uncoupled so that the first
equation can be solved first, and the computed pressure p can be plugged in the
second equation that becomes a diffusion, advection and reaction equation for the
dependent variable T .
The natural boundary conditions associated with problem (4.4) are

p = pin x = 0,

T = Tin x = 0,

−α∂xT = 0 x = L,

i.e. Dirichlet conditions for T and p at the inlet, and Neumann conditions at the
outlet boundary. We impose that the outlet heat flux is only equal to the convection
contribution, hence the diffusion contribution is equal to zero, this is equivalent to
assuming that the contact between the fluid and the heated channel wall ends after
x = L. The value of ṁ is an input datum of the problem.

4.1.2 Vertical channel

We discuss now the changes to be applied to the model (4.4) in the case of a vertical
trunk of channel, like in Figure 4.2.
The three-dimensional Navier-Stokes equations in conservative form are:

ρ div(v) = 0

div (−µ∇v+ ρv⊗ v) +∇p = ρg

div(−k∇T + ρvh) = 0

(x, y, z) ∈ Ω, (4.5)

where g is the acceleration of gravity vector

g =

 0

0

−gz

 .
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Figure 4.2: Vertical channel domain.

The associated boundary conditions are, as in the horizontal case, given by{
v = 0

−k∇T · n = hwc(T − Tw)
(x, y, z) ∈ Σe. (4.6)

Compared to the horizontal case, the specific enthalpy in the vertical case has and
additional term due to the gravity effect, proportional to the coordinate z

h =

(
cvT +

1

ρ
p+ gzz

)
.

The componentwise form of (4.5) becomes now

ρ div(v) = 0

div(−µ∇vx + ρvxv) + ∂xp = 0

div(−µ∇vy + ρvyv) + ∂yp = 0

div(−µ∇vz + ρvzv) + ∂zp = −ρgz

div

(
−k∇T + ρv

(
cvT +

1

ρ
p+ gzz

))
= 0

(x, y, z) ∈ Ω. (4.7)

The signs of the contributions due to the gravity acceleration refer to the domain
in Figure 4.2, where z and g have an opposite orientation.
Assuming that

v =

 0

0

vz
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and applying to system (4.7) the same approach described in the previous section,
we obtain the following one-dimensional physical problem for the vertical chan-
nel: {

∂zp+ R(Σ, µ, ρ)ṁ+ ρgz = 0

∂z (−α∂zT + βT + ṁ(p+ ρgzz)) + γ(T − Tw) = 0
z ∈ (0, L). (4.8)

The two unknown variables are the pressure p and the temperature T . The appro-
priate boundary conditions for (4.8) are

p = pin z = 0,

T = Tin z = 0,

−α∂zT = 0 z = L.

4.2 Two-phase compressible fluid

We consider now the physical model of the fluid motion removing the assumption
of incompressible flow, so the density ρ is no more constant.
Starting from the three-dimensional Navier-Stokes equations and following the
same steps of the Sections 4.1.1 and 4.1.2, we get the one-dimensional problem

∂xGx = 0

∂x (Gxvx) + ∂xp = fx

∂x(hGx) + |∂Σ|hwc(T − Tw) = 0

x ∈ (0, L), (4.9)

where x is the direction of the flow and we have defined Gx = ρvx. The quantity
that is constant in the evolution of the motion is no more vx, because ρ is no more
constant, but Gx. The model is derived under the assumption of neglecting the
diffusion contribution in the energy balance equation. We notice that in the mo-
mentum equation the viscous term depending on the parameter µ is included in
the right hand side.
Problem (4.9) has three equations for five dependent variables vx, Gx, T , p and h,
so that the solution of the problem is not uniquely determined and it is necessary
to add at least two constitutive equations.
Compared to the incompressible case, the mathematical expression of fx is no more
easily obtainable, but we need to use specified two-phase flow correlations. This is
necessary also for the two-phase expression of h and ρ.
System (4.9) is a general formulation of the problem valid in both cases of horizon-
tal and vertical channels, the difference being an extra term in f e in the constitutive
relation for h. The associated boundary conditions are of Dirichlet type at the in-
flow boundary because (4.9) is a system of hyperbolic equations.
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4.2.1 Two-phase liquid-vapor flow

We have to consider now that in the condenser channel a liquid-vapor mixture of
the same refrigerant fluid is present.
To describe the mixture of the two phases we introduce two significant quantities.

Vapor quality:

x =
mv

mV +mL
,

a dimensionless variable equal to the rate of vapor phase mass mV and re-
spect to the total mass flowing in the pipe. The subscript (·)V denotes the
quantity of the vapor-phase, likewise the subscript (·)L refers to the liquid-
phase of the fluid,

Void fraction:

ε =
VV

VV + VL
,

where VV is the volume of channel occupied by the vapor-phase and VL is
the corresponding volume occupied by for the liquid-phase.

To clarify the difference between ε and x, consider a bottle half full of a liquid and
the remaining part occupied by its vapor. If we assume that the density ratio of
liquid is 5 : 1, then the vapor quality x is equal to 1/6, while, regardless of the
density of the liquid or vapor in the bottle, the void fraction is always equal to 1/2.
To describe the thermo-physical dynamics of the two-phase flow, we need to add
x and ε to the unknowns variables T , p, v and h.
In order to end up with a closed system of equations, we have to add the two-phase
constitutive relations 

ρ = ρ(ε, T) = ρL(1− ε) + ρVε,

h = h(x, T) = hL(1− x) + hVx,
ε = ε(x, T),
p = p(T),

(4.10)

to the three conservation equations (4.9).
The two-phase density ρ and enthalpy h are calculated through the empirical in-
terpolation between all liquid flow and all vapor flow quantities. The single phase
values are respectively weighted by the void fraction or by the vapor quality. We
remark that all the single-phase quantities for liquid or vapor flow depend implic-
itly on the temperature T , hence system (4.10) is nonlinear. The void fraction is
expressed through an empirical correlation, for example, one of the most popular
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in the case of horizontal channels is the Rouhani-Axelsson [RA70]. We assume that,
during the change of phase, the development of temperature follows the satura-
tion curve, hence the pressure depends only on the temperature and vice versa.
For a detailed description of the two-phase constitutive relations, we refer to [CT96],
[Tho06] and [Wha96] .

Homogeneous model

In this thesis we consider the special case of a homogeneous two-phase model, under
the assumption of the two phases traveling with the same velocity. In this case
there is an explicit formula for the homogeneous void fraction

ε =
x/ρV

(1− x)/ρL + x/ρV
,

which allows us to eliminate one equation from system (4.10) and to express ρ as
a weighted average of ρL and ρV through x. The variable ε can then be eliminated
from the variable set, to obtain the following homogeneous two-phase constitutive
relations 

ρ =
ρVρL

ρV(1− x) + ρLx
,

h = hL(1− x) + hVx,
p = p(T).

(4.11)

Henceforth, when we will refer to the two-phase constitutive relations we will
always consider system (4.11).

4.3 Two-phase flow correlations

As we have done for air and panel, we dedicate a section to the description of the
empirical correlations used in two phase flow. This expression will be for the heat
transfer coefficient hwc and for the pressure drop.
The choice of suitable correlations in the case of a two-phase flow is quite more
complicated than for a single-phase flow, because the range of validity of the cor-
relations depends on the flow patterns of the cooling flow. Ideally, one should use
a different correlation for each part of the pipe.

4.3.1 Two-phase heat transfer coefficient correlation

After analyzing the review of the most recent correlation of the heat transfer coef-
ficient for condensation inside tubes [CCDC+03] and [GV03], we have decided to
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use the Shah correlation [Sha79] valid for film condensation pattern. According to
Shah the heat transfer coefficient can be expressed as

hwc = hwcL

[
(1− x)0.8 +

3.8x0.76(1− x)0.04

pr0.38

]
for x < 0.85, (4.12)

where hwcL is the condensing heat transfer coefficient assuming the liquid phase
flowing alone in the tube. This value is approximated with single-phase correla-
tions, see as reference Section 2.2.1. The symbol pr denotes the reduced pressure,
equal to

pr =
p

pc
,

where pc is the pressure at the critical point. The value pc is a function of the fluid
type, for example in the case of the refrigerant fluid R134a is equal to 4.06MPa.
The critical point is the point above which the liquid phase of the material ceases
to exist.
This correlation is valid for both cases of horizontal and vertical pipes. The trend
of the expression (4.12) is such as for x = 0 the two-phase coefficient converges to
the corresponding single phase one. Instead for x = 1, value out of the validated
range of x < 0.85, the predicted values of hwc converge abruptly to zero.
We propose a modified Shah correlation

ĥwc = hwc + xα hwcV , (4.13)

in such a way that for x = 1 we have ĥwc = hwcV . The values of the coefficient α
modulate the weight of hwcV in the formula. Decreasing the value of αwe increase
the weight of the term hwcV in the formula (4.13) and the difference between hwc
and ĥwc in the range x > 0.8, as shown in Figure 4.3.

4.3.2 Pressure drop

Considering now the momentum conservation equation

div(ρv2x) + ∂xp+ ρgz = fx,

we have to investigate the expression at the right hand side.
Consulting the works focused on the study of multiphase flow [QT05, Chap. 4] and
[Tho06, Chap. 13], we find the following expression for the total pressure drop

∆p = ∆pm + ∆ps + ∆pf,

consisting of the sum of three terms: the momentum pressure drop, static pressure
drop and frictional pressure drop.
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Figure 4.3: Trend of the Shah correlation (4.12) in blue and of the modified correlation (4.13)
in red and dashed line, with α = 12 and in the range 0.8 < x < 1. R134a refrigerant fluid
at temperature of 60oC and velocity of 0.6m/s flowing in a circular pipe of radius 0.6cm.
The single-phase heat transfer coefficients hwcL and hwcV are calculated trough the Dittus-
Boelter correlation.

There is a perfect match between the two equations, with the following correspon-
dence between the terms

- total pressure drop:
∆p→ ∂xp,

- momentum pressure drop: reflects the changes in the kinetic energy

∆pm → −div(ρv2x),

- static pressure drop: reflects the changes in the potential energy

∆ps → −ρgz,

- frictional pressure drop: due to the friction on the channel wall

∆pf → fx.

Hence fx can be expressed through a specific empirical correlation for the fric-
tional pressure drop. According to [MSH86] the Müller-Steinhagen and Heck fric-
tional pressure gradient correlation is the most convenient to use in general.
Under the assumption of a homogeneous model, the frictional pressure gradient
can be expressed as

∆pf =
2Cfρ|vx|

2

Dh
,
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where the friction coefficient is expressed by the Blasius equation

Cf =
0.079

Re1/4
.

The Reynolds number is expressed by

Re =
ρ|vx|Dh

µ
.

and the two-phase dynamic viscosity as

µ = µVx + µL(1− x).



Part III

Numerical Methods
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5
Mixed finite volume discretization of 2D diffusion,

advection and reaction models

In this chapter we describe the numerical techniques used for solving the air and
panel physical models, presented in Chapters 2 and 3.
Whit this aim we will consider an advection, diffusion and reaction model prob-
lem to be solved on a rectangular domain and we will describe in detail a finite
volume discretization method, properly designed for a stable, conservative and
accurate approximation. The scheme will be interpreted as a dual mixed finite
element method where suitable quadrature rules are adopted for the numerical
computation of the flux mass matrix and the convective term.
A numerical validation of the accuracy and stability of the proposed scheme will
be carried out on the solution of convection-diffusion test cases exhibiting steep
boundary and internal layers.

5.1 The model problem

The air and panel wall physical models (2.6) and (3.3) can be expressed in the
following general form{

div(−α∇u+ βu) + γu = f in Ω,

+ boundary conditions on Γ,
(5.1)

on the rectangular domain Ω, with the appropriate boundary conditions on Γ =

∂Ω. System (5.1) is an advection, diffusion and reaction problem where
div(−α∇u) → conduction or diffusion term,

div(βu) → convection term,
γu → source or reaction term.

39
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u is the unknown variable, α is the diffusion coefficient, β is the given convection
field and γ the absorption coefficient.
We assume that f ∈ L2(Ω) and the following regularity constraints on the coeffi-
cients: α ∈ L∞(Ω) and α(x) ≥ α0 > 0, γ ∈ L2(Ω) e γ(x) ≥ 0 in Ω, β(x) ∈ [L∞(Ω)]2

. Assuming coercivity of the differential problem

−
1

2
div(β) + γ ≥ µ0 > 0 inΩ,

the existence and uniqueness of the solution u of (5.1), in the distributional sense,
immediately follow from the Lax-Milgram Lemma. For a proof see [Qua08, Chap.
5] and [Sal04].
The problem (5.1) can be written as a first order system

div(J) + γu = f in Ω,

J+ α∇u− βu = 0 in Ω,

b.c. on Γ,

(5.2)

where we have introduced the vector variable J called flux.

5.2 Finite volume discretization

In this section we will describe a stabilized cell-centered finite volume discretization
of problem (5.2), general form of the air and panel models.
We have decided to discretize the two dimensional domains involved in our prob-
lem using a cartesian rectangular mesh. This choice has pros and cons. An ad-
vantage of this choice is that working with rectangular cells we can avoid the use
of mesh generator programs and the numerical solver can be implemented in ad
hoc fashion. In addition, this choice allows an immediate interpretation of the
discretized partial differential equations as balance equations in each rectangular
cell. A disadvantage of this choice is that working with rectangular grids it is not
straightforward to refine the grid only in some specifically targeted regions, so
that, if a uniform refinement is adopted, the computational effort may increase sig-
nificantly.
We introduce a decomposition Th of the domainΩ inN rectangles K, called control
volumes or cells, such that ∪K = Ω. Furthermore, we assume that the cells are pair-
wise disjoint.
Integrating the first equation of (5.2) in each cell K we obtain the system of equa-
tions ∫

∂K

J · n∂K +
∫
K

γu =

∫
K

f ∀ K ∈ Th, (5.3)
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Figure 5.1: Computational stencil.

where n∂K is the outward unit vector on ∂K as shown in Figure 5.1. Denoting with
eq, for q = 1, ..., 4, the four edges of K, equation (5.3) can be rewritten as

4∑
q=1

∫
eq

J · nKq +
∫
K

γu =

∫
K

f ∀ K ∈ Th,

where nKq is the outward unit vector on the q-th edge of K.
Using a cell-centered finite volume method, the numerical solution uh has only one
degree of freedom for each cell, located in the center of gravity. We define Qk the
space of polynomials that are of degree less than or equal to kwith respect to each
single variable x and y, then uh

∣∣
K
∈ Q0(K). We call uK the constant value of the

numerical solution in the cell K, i.e. uh
∣∣
K
= uK.

The flux J|∂K can be approximated as the sum of four contributions, one for each
edge of K, such that

4∑
q=1

jKq(uh) |eq|+ γKu
K |K| = fK |K| ,

where jKq(uh) is the numerical flux through the q-th edge of K, γK and fK are the
values of the respective quantities evaluated in the center of gravity of K.
We will use the stabilized numerical flux

jKq(uh) = −
αq

dq

[
B
(
βqdq

αq

)
uKq − B

(
−
βqdq

αq

)
uK
]

q = 1, ..., 4, (5.4)
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t

B(t) =
t

et − 1

Figure 5.2: Trend of the inverse Bernoulli function.

derived from the Scharfetter and Gummel method (SG). Kq indicates the cell commu-
nicating with K across the edge eq and dq is the distance between the correspond-
ing centers of gravity, as in Figure 5.1. The quantity αq is the diffusion coefficient
evaluated on eq and βq is defined as

βq := β · nKq ,

i.e., it is the projection of the convective field on the outward unit vector nKq on
eq. Since we decided to approximate α and β with piecewise-constant functions,
to evaluate them on each edge we approximate αq with the harmonic mean of α
between K and Kq

αq '
(
1

dq

∫ζq
ζ

α−1dζ

)−1

,

where ζ and ζq are the corresponding centers of gravity. Instead, we approximate
βq with the arithmetic mean between K and Kq

βq '
βK + βKq

2
· nKq .

The inverse Bernoulli function is defined as B(t) =
t

et − 1
t 6= 0,

B(0) = 1 t = 0,
(5.5)

and it is depicted in Figure 5.2. Notice that B(t) is always positive, tends to zero for
large positive values of t and is asymptotic to the line f(t) = −t for large negative
values of t.
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In conclusion, the system of finite volume equations to solve is 4∑
q=1

αq

dq
B
(
−
βqdq

αq

)
|eq|+ γK |K|

uK − 4∑
q=1

αq

dq
B
(
βqdq

αq

)
|eq|u

Kq = fK |K|

∀K ∈ Th. The corresponding algebraic problem is

MUh = Fh,

whereUh ∈ RN is the vector of unknown values of uh, one for each K, and Fh ∈ RN

is the vector of the right hand side term values. The matrix M ∈ RN×N has the good
property of being an M-matrix [QSS08, Chap. 1], effect of the stabilized method.
In the discretization procedure of the air and panels model we do not need a high
order discretization method, because of the contribution to the approximation even
introduced by the empirical correlations. For this reason a piecewise-constant nu-
merical solution uh is a sensible choice, moreover the cell-centered finite volume
approach favors the solver implementation.

5.3 Mixed finite volume discretization

In this section we will interpret the finite volume discretization just described, as a
stabilized Mixed Finite Volume (MFV) method, extending the same approach used
in [SS97] to the case of a cartesian rectangular mesh.
The mixed formulation of problem (5.1) is

aJ+∇u− aβu = 0 in Ω,

div(J) + γu = f in Ω,

u = 0 on Γ,

(5.6)

where we assume for simplicity homogeneous Dirichlet boundary conditions and
a := α−1 to be a constant quantity. In this formulation we have two different
unknown variables, in addition to the scalar variable u there is a vector variable J.
Define the spaces

V ≡ Hdiv(Ω) =
{
v : v ∈ [L2(Ω)]2, div(v) ∈ L2(Ω)

}
,

Q ≡ L2(Ω),

so that the dual mixed formulation of problem (5.6) reads:
find J ∈ V and u ∈ Q such that

∫
Ω

a J · τ−
∫
Ω

u div(τ) −

∫
Ω

au β · τ = 0 ∀τ ∈ V,

∫
Ω

Φ div(J) +

∫
Ω

γuΦ =

∫
Ω

fΦ ∀Φ ∈ Q.

(5.7)
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The existence of the solution of (5.7) in the distributional sense is a consequence of
the existence of a weak solution for (5.1). The coercivity, hence the uniqueness of
the solution, is ensured assuming

‖β‖L∞(Ω)

inf
Ω
(γ) inf

Ω
(α)

< 4.

In view of the numerical approximation of (5.7), we consider Th a regular decom-
position ofΩ intoNel rectangles K and we denote by θh the set of edges of Th and
by Ned the number of total edges of the mesh. Then, we denote by

Pk1,k2(K) :=

p(x, y) : p(x, y) = ∑
l≤k1, m≤k2

bi,jx
lym


the space of polynomials that are of degree less than or equal to k1 with respect to
x and less than or equal to k2 with respect to y. From this we deduce that

Qk(K) = Pk,k(K) ∀k ≥ 0.

Finally, we introduce the k-th order Raviart-Thomas (RT) mixed finite element space

RT[k](K) := Pk+1,k(K)× Pk,k+1(K) k ≥ 0.

Introducing the discrete subspaces of V and Q

Vh =
{
vh ∈ V : vh

∣∣
K
∈ RT[0](K) ∀K ∈ Th

}
,

Qh =
{
qh ∈ Q : qh

∣∣
K
∈ Q0(K) ∀K ∈ Th

}
,

the discrete dual mixed problem reads:
find uh ∈ Qh and Jh ∈ Vh such that

∫
Ω

a Jh · τh −
∫
Ω

uh div(τh) −

∫
Ω

auh β · τh = 0 ∀ τh ∈ Vh,

∫
Ω

Φh div(Jh) +

∫
Ω

γuhΦh =

∫
Ω

fΦh ∀ Φh ∈ Qh.

(5.8)

The pair of finite element spaces Q0/RT[0] satisfies the inf-sup compatibility condi-
tion [QV08, Chap. 7].
The basis functions of the lowest-order RT finite element space are λl ∀l ∈ θhin, i.e.
for each internal edge of Th. If we consider an internal vertical edge l, represented
in Figure 5.3, the expression of λl is

λl =


x− x+

|K+|
i x ∈ K+,

−
x− x−

|K−|
i x ∈ K−,

0 elsewhere,
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Figure 5.3: Two neighboring elements.

where i is a unit vector in the direction x. This function is nonzero only in the two
rectangles K+ and K−, which communicate through the edge l. With regard to the
internal edges in the horizontal direction, there is an equivalent expression of λl
as a function of y in the direction of j, the unit vector in direction y. Instead, χm
∀m ∈ Thin, i.e. for each internal volumes of Th, are the basis functions of Q0, equal
to one on them-th cell and zero elsewhere.
Hence, we can express Jh and uh as

Jh(x) =

Ned∑
l=1

jlλl(x),

uh =

Nel∑
m=1

umχm(x).

(5.9)

The second equation of system (5.8), choosing as test functions χk, becomes∫
∂K

Jh · n∂K + uk
∫
K

γdK =

∫
K

fdK ∀K ∈ Thin,

and defining

γk :=
1

|K|

∫
K

γdK and fk :=
1

|K|

∫
K

fdK,

finally we get ∫
∂K

Jh · n∂K + γk |K|u
k = fk |K| ∀K ∈ Thin. (5.10)

The equation (5.10) is a discrete conservation law. In this way, the original conser-
vation equation (5.1) is expressed in integral form cell by cell. Indeed, the first term
of (5.10) is the outgoing flux through ∂K, the second is the absorption contribution
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in K and the right hand side is the source term contribution in K.
If we choose λl as test functions of the first equation of (5.8), for all the internal
vertical edges we get∫

K+∪K−

aJhxλlx −

∫
K+∪K−

uh∂xλlx −

∫
K+∪K−

auhβxλlx = 0, (5.11)

where the subscript (·)x denotes the component in the x direction of the corre-
sponding vector quantities. Fist of all, we notice that∫

K+∪K−

uh∂xλlx =

[
uK

+

∫
K+

∂xλlx + u
K−

∫
K−

∂xλlx

]
.

Then, we introduce two suitable quadrature rules in order to express the flux jl on
the internal edge l as a function of uK

+
and uK−. The first approximation is∫

K+

uhλlx +

∫
K−

uhλlx ' ul
[∫
K+

λlx +

∫
K−

λlx

]
, (5.12)

where ul is average value across the l-th edge, defined as

ul :=
uK

+
+ uK

−

2
.

The second quadrature rule is∫
K+∪K−

Jhxλlx ' hy

{[
(Jhxλlx)

∣∣
x=x+

+ (Jhxλlx)
∣∣
x=xl

] h+x
2

}
+ hy

{[
(Jhxλlx)

∣∣
x=xl

+ (Jhxλlx)
∣∣
x=x−

] h−x
2

}
,

(5.13)

which amounts to applying the trapezoidal quadrature rule in each volume con-
sidered. h+x and h−x are the sizes in the x direction of K+ and K− respectively, while
hy is the size of both in direction y, see Figure 5.3.
Then, using the first expression of (5.9) and the two approximations (5.12) and (5.13),
equation (5.11) becomes

jl
2
hy

(
h+x
h2y

+
h−x
h2y

)
− α

(
uK

+
− uK−

)
− βxul

(
h+x + h−x

2

)
= 0,

hence the local flux contribution through each internal vertical edge is

jl =

[
−α

(
uK

−
− uK+

Hx

)
+ βx

(
uK

+
+ uK−

2

)]
hy,

where Hx is the distance between the centers of gravity of K+ and K−, defined as

Hx :=
h+x + h−x

2
.
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The same steps can be retraced in the case where l is an internal horizontal edge,
obtaining a similar result but in terms of the direction y.
In conclusion, the MFV approximation of problem (5.6) is

∑
l∈∂K

jl + u
Kγk |K| = fk |K| ∀ K ∈ Thin,

jl =

[
−α

(
uKl − uK

dl

)
+ βl

(
uK + uKl

2

)]
|el| l ∈ ∂K,

(5.14)

reformulated using the notation of Section 5.2 and Figure 5.1. The Dirichlet bound-
ary conditions are imposed through the condition

uKl = 0 ∀l ∈ Γ.

Notice that the numerical method described so far does not require the continuity
of the solution Jh in Th, but only the continuity of its normal component on each
edge of the mesh. Furthermore, the approximation error of this method has an
optimal convergence order, equal to the maximum achievable with the regularity
of the approximation functions used [BFM93].
The numerical flux in (5.14) is derived using a centered finite volume discretiza-
tion, then the solution of (5.14) can exhibit an oscillatory behavior if the local Péclet
number, defined as

Pel :=
|β · nl|dl
2α

∀l ∈ θhin,

is greater than one. In the case of dominating convection regime, one possible
remedy to this instability is the reduction of the grid step dl, increasing however
the numerical complexity of simulations.
Alternatively, to end up with a stable and monotone numerical solution we can
use the following appropriately modified version of (5.8)

∫
Ω

a Jh · λl −
∫
Ω

uh div(λl) −

∫
Ω

auh β · λl −
∑
l∈θhin

∫
l

JuhKl · λlρlds = 0∫
Ω

χm div(Jh) +

∫
Ω

γuhχm =

∫
Ω

fχm ∀ l ∈ θhin, ∀m ∈ Thin.

The added stabilization term is

−

∫
l

JuhKl · λlρlds ∀ l ∈ θhin

where JuhKl is the jump of uh across the edge l, defined as

JuhKl := uKnKl + u
KlnKl

l ,
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and the stabilization function is ρl = ρl(Pel), to be specified later.
Following the same approach used for (5.8), the MFV discretization of the modified
problem is

∑
l∈∂K

jl
stab + uKγk |K| = fk |K| ∀ K ∈ Thin,

jl
stab =

[
−α (1+ ρl)

(
uKl − uK

Hl

)
+ β · nl

(
uK + uKl

2

)]
|el| l ∈ ∂K,

(5.15)
Two possible choices of the stabilization functions are:

• ρl(Pel) = Pel,

• ρl(Pel) = Pel − 1+ B(2Pel).

The first one corresponds to the upwind method, while the second corresponds to
the SG method. In fact, replacing ρl(Pel) = Pel − 1+ B(2Pel) in (5.15), the numer-
ical flux obtained coincides with the expression (5.4) introduced in the previous
section. Both methods are artificial viscosity methods, in the next section we will
make a comparison between them.

5.4 Comparison between upwind and SG methods

For simplicity we consider a one-dimensional restriction of the advection, diffusion
and reaction problem (5.1). The domain Ω is the interval (0,L), we define N + 1

nodes x0 = 0, ..., xN = L, dividing the intervalΩ into N segments.
The centered finite volume discretization of the first derivative term at node i is

u′i '
ui+1 − ui−1

2δ
i = 1, ..,N− 1,

where δ = L/N is the discretization step and ui is the value of the unknown vari-
able in the node i.
In this case the local Péclet number can be expressed as

Pe =
|β|δ

2α
.

The stabilized problem, using the upwind or SG method, is an advection, diffusion
and reaction problem of the form (5.2), with a modified flux

J̃(u) = −αh∇u+ βu.

The coefficient αh is
αh = α (1+ φ(Pe)) ,
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while the correction factor introduced αh − α is called artificial viscosity. Then the
local Péclet number for the modified problem is

Pe∗ =
|β|δ

2αh
=

Pe
1+ φ(Pe)

< 1 ∀δ > 0.

We can observe thatφ(Pe) is the one-dimensional stabilizing function correspond-
ing of ρl(Pe).
The discretization matrix associated with the stabilized method is always an M-
matrix irrespectively of δ, therefore the numerical solution is monotone without
oscillations.
We can make a comparison between the properties of consistency, stability and
convergence order of the three numerical methods introduced so far:

- centered difference method:

1. consistent

2. not stable if Pe > 1

3. convergence order O(δ2)

- upwind method:

1. weakly consistent, α is replaced by αh

2. stable, Pe∗ < 1 ∀δ

3. convergence order O(δ)

- SG method:

1. weakly consistent, α is replaced by αh

2. stable, Pe∗ < 1 ∀δ

3. convergence order

{
Pe → 0 O(δ2)

Pe →∞ O(δ)

The convergence order in the above analysis is always referred to the L2(Ω) norm
of the projection error Phu − uh, where Phu is the L2-projection of the exact solu-
tion of (5.1) onto Qh. The SG method is called the upwind scheme with optimal
viscosity, because it adds the minimum amount of artificial viscosity required to
have a stable method. In a full dominating convection regime, i.e. Pe→∞

Pe − 1+ B(2Pe) ' Pe,

so that, accordingly, the upwind method can be regarded as a limiting case of the
SG method. For these reasons the SG scheme has been considered in the software
implementation.
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5.5 Validation of the discretization scheme

First of all we test the discretization errors of the upwind and SG methods, dis-
cussed in Section 5.4, on the following advection, diffusion and reaction model
problem {

div(−α∇u+ βu) + γu = f in Ω

u = g on ∂Ω
(5.16)

whereΩ = (0, 1)× (0, 1). We impose the exact solution equal to

uex = cos x siny,

and the values of the parameter β = [0, 1]T and γ = 1, while the diffusion param-
eter is varying in

α = {1, 10−1, 10−2, 10−3, 10−4},

in order to analyze both dominating convection or diffusion regimes. The right
hand side f is imposed such that uex is solution of (5.16). We solve the prob-
lem (5.16) using both stabilization methods with computational cartesian grids of
dimension varying from 4× 4 to 64× 64.
In Figure 5.4 we plot the discrete maximum norm of the errors between the numer-
ical and exact solution for each value of α and discretization step h.
For low values of the Péclet number Pe, corresponding for example to α = 1,
the SG method has a convergence order of O(h2), that decrease to O(h) for dom-
inating convection regimes , as for α = 10−4. On the other hand, the estimated
convergence error of the upwind method is never greater than O(h).
To validate the robustness of the SG method we use it to solve the numerical ex-
amples studied in [XZ99, p. 1442]. The first test problem is{

div(−α∇u+ [−y, x]T u) = 1 (x, y) ∈ Ω,
u = 0 (x, y) ∈ ∂Ω,

(5.17)

where the domain is Ω = (0, 1) × (0, 1). Problem (5.17) allows to check how the
numerical method is able to avoid the onset of spurious oscillations in the bound-
ary layer region.
The second example studied is

−div(α∇u+ u∇ψ) = 0 x ∈ Ω,
u = l x ∈ ΓD,
∂u
∂n + ∂ψ

∂nu = 0 x ∈ ΓN,
(5.18)
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Figure 5.4: Test of convergence order for upwind and SG methods, problem (5.16). Loga-
rithmic plot of the maximum norm of the errors between the numerical and exact solution,
as a function of the discretization step h.
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on the same domainΩ as in problem (5.17). The Dirichlet boundary conditions are
imposed on ΓD as follows

l =

{
0 {x = 0, y ∈ [0, 0.25]} ∪ {x ∈ [0, 0.25], y = 0} ,

2.1 {x = 1, y ∈ [0.75, 1]} ∪ {x ∈ [0.75, 1], y = 1} ,

and the potential function ψ is defined as

ψ =


0 0 ≤ d+ x < 0.55,

2(d− 0.55) 0.55 ≤ d+ x < 0.65,

0.2 0.65 ≤ d+ x ,

where d = (x2 + y2)1/2. Through this example we want to test the ability of the SG
method to deal with internal layers.
The numerical solutions obtained in these two examples are shown in Figure 5.5,
in both cases α = 10−6 and h = 2−6. For graphical purposes, the computed values
of uh have been interpolated through a nodally continuous function.
Results are in complete agreement with physical intuition and show the robustness
of the scheme with respect to dominating convection problems.



5.5. VALIDATION OF THE DISCRETIZATION SCHEME 53

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

x

u
h

y

(a) problem (5.17)

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

2

2.5

3

y

u
h

x

(b) problem (5.18)

Figure 5.5: Surface plot of the numerical solutions using the SG method, problems (5.17)
and (5.18).





6
Galerkin and Petrov-Galerkin discretization of 1D fluid

equation

In this chapter we will focus on the description of the numerical techniques used
for the discretization of the two-phase fluid equations.
The models, derived in Chapter 4, are only in the case of horizontal or vertical
trunk of pipes, while the geometry of the channel crossing the condenser panel
consists of a set of vertical and horizontal segments, curves at right angles and T-
junctions respectively. The last type of elements is present only if the channel splits
in two or more branches.
The idea is to consider, also for the whole channel, a one-dimensional approxima-
tion of the physical problem along the curvilinear coordinate. Using this interpre-
tation, the vertical and horizontal models derived in Chapter 4 are the two basis
cases.
For the incompressible flow model we will analyze the discrete problem consid-
ering both cases of channel with splits in branches or without. Instead for the
compressible fluid case we only analyze the case of channel without splitting.

6.1 Single-phase incompressible fluid

We consider now a channel with an arbitrary geometry Ω, constant cross section
and crossed by a single-phase incompressible fluid. We remark that the density is
assumed constant under the assumption of incompressibility.
As a first approximation, we neglect the gravity effect in the vertical trunks of
channel, in order to have the same physical problem in each segment. However,
we include the possibility of channel splitting, hence the variable ṁ is no more
globally constant, but only locally in each segment.
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To derive the mathematical model, we start from (4.4) and we get ṁ from the mo-
mentum equation as

ṁ = −
1

R(Σ, µ, ρ)
∂sp.

Substituting this relation in the mass balance equation, we obtain a Laplace problem
for p

∂sṁ = ∂s

(
−

1

R(Σ, µ, ρ)
∂sp

)
= 0.

Under the assumptions of constant cross section, the hydraulic resistance R(Σ, µ, ρ)
is constant in each trunk, so that the mathematical model can be written as −

1

R
∂2sp = 0

∂s (−α∂sT + βT + ṁp) + γ(T − Tw) = 0
inΩ, (6.1)

where s is the curvilinear coordinate.
If we consider for a moment to reintegrate the gravity effect in the trunks where the
coordinate s is equal to the vertical one, the first equation of (6.1) can be replaced
by a more general Poisson problem for the pressure

−
1

R(Σ, µ, ρ)
∂2sp = f,

where the right hand side is due to the gravity force.
Problem (6.1) is a system of two advection, diffusion and reaction equations, the
first one being a particular case of only diffusion. For this reason we can describe
in detail the discretization of only the energy balance problem

(−αT ′ + βT + ṁp)′ + γT = γTw inΩ, (6.2)

where derivatives are taken with respect to the curvilinear coordinate s.
We define a segmentation of the channel Ω in a set of horizontal and vertical
trunks, which we will call elements. For each element there are two boundary
points which we call nodes; if there is a division in branches the splitting point
corresponds to a node of the discretization. We denote with s0 = Γin ≤ s1 ≤, ....,≤
sN = Γout the points of the segmentation, where Γin and Γout are the inlet and outlet
nodes respectively. Even if we have N + 1 nodes the number of elements Nel can
be larger than N, because of the splittings.
The weak formulation and the respective Galerkin formulation of problem (6.2) are
a particular case of the general advection, diffusion and reaction problem, already
analyzed in Chapter 5.
We will consider piecewise-linear approximations ph and Th of the variables p and
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Figure 6.1: An example of piecewise-linear base function for a splitting node case.

T respectively, i.e. in each element of the discretization ph ∈ P1 and Th ∈ P1, where
we denote with Pk the space of polynomials that are of degree less than or equal to
kwith respect to the variable s.
The piecewise-linear continous basis functions φi, for i = 0, ...,N, are non zero
only in the two or more elements communicating through the node xi. To clarify
the idea, a representation of φi is shown in Figure 6.1, where there are three seg-
ments of channel communicating through one single point.
If we use φi as test functions in the Galerkin method applied to (6.2), we get∫

Ω

αT ′h φ
′
i −

∫
Ω

(βTh + ṁph)φ
′
i +

∫
Ω

γ(Th − Tw)φi = 0 i = 1, ...,N− 1. (6.3)

Referring to Figure 6.1, we can analyze each single term in (6.3). The diffusion term
is equal to ∫

Ω

αT ′h φ
′
i =

1

Ll

∫xi
xi−1

αT ′h −
1

Lk

∫xi+1

xi

αT ′h −
1

Lm

∫xi+2

xi

αT ′h,

where Ll, Lk and Lm are the size of the respective elements. Assuming the coeffi-
cients α, β, γ and ṁ piecewise-constant functions and noting that

Th(s) =

i=N∑
i=0

Tiφi(s),

we get ∫
Ω

αT ′h φ
′
i = αl

Ti − Ti−1
Ll

− αk
Ti+1 − Ti
Lk

− αm
Ti+2 − Ti
Lm

.

The same can be done for the convective contributions:

−

∫
Ω

βThφ
′
i = −βl

Ti + Ti−1
2

+ βk
Ti + Ti+1

2
+ βm

Ti + Ti+2
2

,
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and an identical one received for the ṁph contribution. In conclusion, if we use
the trapezoidal quadrature rule for the contribution due to the reaction and source
terms, we get∫

Ω

γ(Th − Tw)φi ' γl
Ll
2
(Ti − Twi) + γk

Ll
2
(Ti − Twi) + γl

Lm

2
(Ti − Twi).

Then we can write the discrete balance equation of fluxes at node i as:

ji,l + ji,k + ji,m = 0,

where ji,l is the contribution at the node i due to the element l, expressed as

ji,l (Th, ph) = αl
Ti − Ti−1
Ll

− βl
Ti + Ti−1

2
− ṁl

pi + pi−1
2

+ γl
Ll
2
(Ti − Twi),

and where the contributions due to the elements k andm have a similar expression.
Using the same approach for each node, we end up with the following system of
algebraic equations

Nel∑
l=1

ji,l(Th, ph) = 0 i = 1, ...,N. (6.4)

To derive a general expression of the contribution j(i,l), we define the connectivity
matrix C ∈ R2×Nel: the column index corresponds to an element of the mesh and
each column contains the two indexes of the nodes belonging to the corresponding
element. For example, if we refer to Figure 6.1

C(·, l) =

[
i− 1

i

]
, C(·, k) =

[
i

i+ 1

]
and C(·,m) =

[
i

i+ 2

]
. (6.5)

Using this convention, for each element k = 1, ...,Nel the local contributions are

jC(1,k),k =

(
−
αk
Lk

+
βk
2

)
TC(2,k) +

(
αk
Lk

+
βk
2

+ γk
Lk
2

)
TC(1,k)

+
ṁk

2
pC(2,k) +

ṁk

2
pC(1,k) − γj

Lj

2
TwC(1,k),

jC(2,k),k =

(
αk
Lk

−
βk
2

+ γk
Lk
2

)
TC(2,k) +

(
−
αk
Lk

−
βk
2

)
TC(1,k)

−
ṁk

2
pC(2,k) −

ṁk

2
pC(1,k) − γj

Lj

2
TwC(1,k).

The derived discretization can exhibit oscillatory numerical solutions, so that to
remedy this instability problem we adopt the upwind stabilization method, al-
ready described in Chapter 5 for the case of the air and panel discretization. The
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corresponding stabilized contribution of each element k = 1, ...,Nel are

jC(1,k),k =

(
−
αk
Lk

+ β−
k

)
TC(2,k) +

(
αk
Lk

+ β+
k + γk

Lk
2

)
TC(1,k)

+ṁ−
k pC(2,k) + ṁ

+
k pC(1,k) − γj

Lj

2
TwC(1,k),

jC(2,k),k =

(
αk
Lk

− β−
k + γk

Lk
2

)
TC(2,k) +

(
−
αk
Lk

− β+
k

)
TC(1,k)

−ṁ−
k pC(2,k) − ṁ

+
k pC(1,k) − γj

Lj

2
TwC(1,k),

(6.6)

where we define 
ṁ+
k =

ṁk + |ṁk|

2

ṁ−
k =

ṁk − |ṁk|

2

(6.7)

and a similar expression for βk.
Applying the same approach to the Laplace problem in the variable ph we get

Nel∑
l=1

qi,l(ph) = 0 i = 1, ...,N, (6.8)

where the contributions of each element are
qC(1,k),k = −

pC(2,k) − pC(1,k)

RkLk
,

qC(2,k),k =
pC(2,k) − pC(1,k)

RkLk
,

(6.9)

being Rk the constant value of R in the k-th element.
Till now we have neglected the gravity effect in the vertical trunks of channel; if
we now include this effect in the elements k that are vertical, the corresponding
local contributions are

jvC(1,k),k = jhC(1,k),k + ρg
(
ṁ−
k yC(2,k) + ṁ

+
k yC(1,k)

)
,

jvC(2,k),k = jhC(2,k),k − ρg
(
ṁ−
k yC(2,k) + ṁ

+
k yC(1,k)

)
,

and 
qvC(1,k),k = qhC(1,k),k − ρg

yC(2,k) − yC(1,K)

RkLk
,

qvC(2,k),k = qhC(1,k),k + ρg
yC(2,k) − yC(1,K)

RkLk
,
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Figure 6.2: Upwind Petrov-Galerkin linear basis functions.

where g is the acceleration of gravity in the vertical direction and y are the co-
ordinates of the nodes in the vertical direction. The superscript v or h denotes
the contributions in the horizontal or vertical cases, the expressions of jh and qh

are (6.6) and (6.9).
We notice that, in the way we have expressed the contributions jv and qv, they are
also valid in the horizontal elements kwhere yC(2,k) − yC(1,K) = 0.
We will discuss later, in Chapter 7, how to impose the corresponding boundary
conditions to the obtained algebraic systems.

Remark The upwind stabilization method can be interpreted as the following
Petrov-Galerkin Method

find uh ∈ Vh : a(uh, vh) = Fh(vh) ∀vh ∈Wh, (6.10)

where the space of the test functions Wh does not coincide with the space Vh where
we search the solution. For a detailed analysis of this interpretation see [BH82] and
[QV08]. The basis function of Wh can be written as

ψi = φi + λi ∀i,

where φi are the basis functions of Vh and λi are suitable bubble functions.
In Figure 6.2 we compare the upwind Petrov-Galerkin basis function ψi to the
linear finite element basis function φi of Vh.

6.2 Two-phase compressible fluid

In this case we have to describe separately the discretization of the differential
equations (4.9) and of the algebraic constraints due to the two-phase liquid-vapor
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constitutive relations ( 4.11).
Problem (4.9) is a system of one-dimensional parabolic differential equations, as
for the incompressible flow. As previously mentioned we will focus on the case
of no splitting channel, hence the variable Gs is constant in all the channel and
is equal to the input variable, where s is the curvilinear coordinate. To ease the
notation we remove the subscript s, but all the quantities and derivatives are to be
considered in the curvilinear direction.
We first deal with the discretization of the system (4.9) solving{

G v′ + p′ − f = 0

G h′ + η(T − Tw) = 0
inΩ, (6.11)

where η = |∂Σ|hwc, and using the upwind Petrov-Galerkin method. The discrete
solution of vh, ph, Th and hh are assumed to be piecewise-linear in Ω, while the
test functions are ψi shown in Figure 6.2.
Using the same technique of discretization applied in Section 6.1 for the energy
equation (6.2) to each equation of system (6.11), we get the following discrete alge-
braic system 

Nel∑
l=1

ri,l(vh, ph, Th) = 0 i = 1, ...,N,

Nel∑
l=1

si,l(hh, Th) = 0 i = 1, ...,N,

(6.12)

where 

rC(1,k),k =
(
vC(2,k) − vC(1,k)

)
G− +

(
pC(2,k) − pC(1,k)

) G−

G

−
Lk
2
f
(
G, xC(1,k), TC(1,k)

) G−

G
,

rC(2,k),k =
(
vC(2,k) − vC(1,k)

)
G+ +

(
pC(2,k) − pC(1,k)

) G+

G

−
Lk
2
f
(
G, xC(2,k), TC(2,k)

) G+

G
,

and 
sC(1,k),k =

(
hC(2,k) − hC(1,k)

)
G− − ηk

Lk
2

(
TC(1,k) − TwC(1,k)

) G−

G
,

sC(2,k),k =
(
hC(2,k) − hC(1,k)

)
G+ − ηk

Lk
2

(
TC(2,k) − TwC(2,k)

) G−

G
.

G+ and G− are defined as (6.7) and the quantity ηk denotes the parameter η evalu-
ated constant in each element, as the arithmetic mean between the values of ηk in



62
CHAPTER 6. GALERKIN AND PETROV-GALERKIN DISCRETIZATION OF 1D

FLUID EQUATION

the two nodes.
The two-phase constitutive relations (4.11) can be approximated ∀i as

G = vi

(
ρV(Ti)ρL(Ti)

ρV(Ti)(1− xi) + ρL(Ti)xi

)
,

hi = hL(Ti)(1− xi) + hV(Ti)xi,

pi = p(Ti),

(6.13)

where all the single-phase quantities ρl, ρV , hL and hV and p functions are evalu-
ated using the fluid temperature at the node.



7
Computational algorithms

The aim of this chapter is the description of the main implementation features of
the numerical solver developed in this thesis.
As mentioned previously, all the computer routines were implemented ad hoc us-
ing the MATLAB environment and programming language. In addition, we have
exploited the Optimization Toolbox of MATLAB for the iterative solution of the
nonlinear algebraic systems, arising from the three differential problems discussed
in the previous chapters. The nonlinear dependence is mostly due to the physical
properties of the air, aluminum wall and refrigerant fluid.
In practice, we have introduced this nonlinearity in the implemented routines us-
ing the program REFPROP, which uses the most accurate equations available in
the literature to determine the thermodynamic and transport properties of fluids
or mixtures. This program is authored, maintained and distributed by the National
Institute of Standards and Technology (NIST).

7.1 Algebraic systems

We describe the nonlinear algebraic system associated with each subsystem con-
sidered, focusing on the properties of the matrices.

7.1.1 Air

The algebraic equation for the air problem (2.6) are

AaTa +Raw (Ta − Tw) = 0, (7.1)

where Ta, Tw ∈ RNel×1 are vectors containing the values of the air temperature and
wall temperature respectively, evaluated at the center of gravity of each control
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volume. The total number of control volumes is Nel. The matrix Aa ∈ RNel×Nel

is the discrete analogue of the divergence term. The matrix Raw ∈ RNel×Nel is a
diagonal matrix, such that

Raw[i, j] =

{
h̃aw (Ta[i]) if i = j,
0 if i 6= j.

(7.2)

The problem (7.1) is a nonlinear algebraic system, the nonlinearity coming from the
fact that all the elements of the matrices Aa and Rwa depend on the values of the
unknown variables. In fact, Raw = Raw(Ta) through the empirical correlation of
the heat transfer coefficient between air and panel haw and Aa = Aa(Ta) through
the air physical properties k, cp and ν.
To solve this nonlinear system we have used the Newton method described in [QSS08,
p. 222]. In order to optimize the computational effort of the procedure, we adopt
the following first-order approximation of the Jacobian matrix

Ja = ∂Ta [AaTa +Raw (Ta − Tw)] ' Aa +Raw.

Without this approximation it would be necessary to use numerical techniques to
approximate the Jacobian, slowing significantly the simulations. Using this rough
approximation of the Jacobian matrix increases in general the number of iterations
necessary to reach convergence; despite this, the gain in the computational effort
is significant.
For example, solving only the air domain problem imposing the wall temperature
constant Tw and a cartesian rectangular mesh of dimension 20 × 20, we can com-
pare the two results. Using the Jacobian matrix Ja, fixed a tolerance of 10−12, the
iterative method reaches convergence in ten iterations for a total of 0.91s, instead
approximating the Jacobian matrix using finite difference methods the number of
iterations necessary to reach convergence is only five but the computational time
is 33.38s. Therefore we deduce that even if the number of iterations is twice, the
computational profit is almost 97%.
We notice that, actually, the physical and thermodynamical properties of the air
are functions of air temperature and pressure. We neglect the dependence on the
pressure assuming p = 1atm, the atmosphere pressure. Accordingly, the air pres-
sure drop is post-calculated through the expression (2.9) and the friction factor
empirical correlations.

Nu Correlations

Related to the implementation of the air model correlations, we have found some
difficulty for the Bhatti and Shah entrance region correction of the Nusselt number
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described in Section 2.2.1.
The definition (2.8) is written in terms of the averaged corrected Nusselt number
Nu, while we are interested to calculate the corresponding local one Nu.
If we consider for simplicity a duct of length L, in this case the definition of the
average Nusselt number is

NuL =
1

L

∫L
0

Nu dx.

Dividing the interval (0, L) in n points such as x0 = 0 < x1 ≤ ... ≤ xn = L, then we
can approximate the local Nusselt number in the node xi as

Nui '
Nuixi − Nui−1xi−1

xi − xi−1
=

∫xi
0 Nudx−

∫xi−1

0 Nudx
xi − xi−1

=

=
1

xi − xi−1

∫xi
xi−1

Nudx,

where
Nui =

1

xi

∫xi
0

Nu dx.

In other words, we approximate the local Nusselt number at the distance xi from
the entrance of the tube with the average Nusselt number calculated at the distance
xi − xi−1, i.e. the size of the i-th element of discretization.
Another problem during the implementation of this entrance correction is the limi-
tation l

Dh > 3, where l is the distance from the entrance of the pipe. This limitation
is due to the fact that for l→ 0 accordingly Nu→∞.
We define as inlet cells all the cells of the domain where the maximum distance
from the entrance is lower that three times the hydraulic diameter. For the inlet
cells we assume that Nu is equal to the value in the first next cells not belonging to
the inlet. Through this approximation we limit the over-prediction and the gap of
the heat transfer coefficient between the control volumes.

7.1.2 Panel

The nonlinear algebraic equations for the two-dimensional aluminum panel prob-
lem (3.3) are

AwTw +Raw(Tw − Ta) +Rwc(Tw − Tc) = 0 (7.3)

where Aw, Rwa, and Rwc ∈ RNel×Nel and Tc ∈ RNel×1 is the vector of two-phase
fluid temperature in the center of gravity of each element, hence equal to zero in
the panel cells not crossed by the channel. The diagonal matrix Rwc has the same
structure as Raw in (7.2), but in this case the rows corresponding to the panel cells
not crossed by the channel are completely null.



66 CHAPTER 7. COMPUTATIONAL ALGORITHMS

Also the algebraic system (7.3) is non linear, the corresponding approximate Jaco-
bian for the Newton method is

Jw = Aw +Raw +Rwc.

The only physical property of the aluminum involved in the model is thermal con-
ductivity, in this case its value is calculated interpolating the Table A.1 [IDW02, p.
905] as a function of temperature Tw.

Noting the similarity in the structures of the air and panel algebraic systems, we
have decided to solve the coupled problem[

Aa +Raw −Raw
−Raw Aw +Raw +Rwc

]
·

[
Ta

Tw

]
=

[
0

RwcTc

]
, (7.4)

where the two-phase refrigerant temperature T c is assumed to be known. Using
the same approach, the approximate Jacobian matrix is

Jaw =

[
Aa +Raw −Raw
−Raw Aw +Raw +Rwc

]
.

In this case, if we rewrite the system (7.4) as

F (Z) = 0 where Z =

[
Ta

Tw

]
,

given an initial solution Z0, at each iteration k the Newton method, with approxi-
mated Jacobian matrix, amounts to solving the linear system

Jaw
(
Zk
)
δZk = −F

(
Zk
)
,

from which we update the solution vector through

Zk+1 = Zk + δZk.

7.1.3 Channel

As explained in detail in Chapter 4, each ordinary differential equations and each
two-phase constitutive relations, in both cases of compressible and incompressible
fluid, have a corresponding algebraic system of the form

N (U) =M (U)U = 0, (7.5)
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whereU ∈ RN is the vector of the corresponding unknown variables. N are the to-
tal degree of freedom of the discrete solution considered. N ∈ RN andM∈ RN×N

are implicitly expressed as function ofU.
To solve this nonlinear implicit system, the nonlinearity being always introduced
by the definition of the single and two-phase physical and thermodynamical prop-
erties, we apply the Newton method. At the k-th iteration it solves the linear sys-
tem

J
(
Uk
)
δUk = −N

(
Uk
)
,

whereUk+1 = Uk + δUk and the Jacobian matrix is defined as

J [h, l] = ∂N[h]

∂U[l]
h, l = 1, ...,N.

If we consider the algebraic system in form (7.5) corresponding to any discrete
constitutive relations of (6.13),M and consequently the Jacobian matrix have a di-
agonal pattern.
Instead, in the case of discretized ordinary differential equation, as (6.4), (6.8) and (6.12),
the structure of the corresponding matrix M is less immediate to obtain. In this
case, to assemble the matrices we have used the approach of the Nodal Analy-
sis [HRB75], primarily used in problems concerning electrical circuits. When the
equations are expressed as discrete balance of the contributions sum in each node,
element by element we can calculate the local contribution to M and then plug
it in the global matrix. This approach can be used both for M and J . To better
explain this procedure, we consider the first system of equations of (6.12):

Nel∑
l=1

ri,l(vh, ph, Th) = 0 i = 1, ...,N,

where Nel is the total number of element and N is the total number of nodes.
Recalling the definition of connectivity matrix (6.5), the local contribution of the
element l to the matrixM is

Ml =

[
rC(1,l),l

rC(2,l),l

]
.

Therefore, the local contribution can be plugged in the global matrix as

M [C(g, l), l] = Ml [g, 1] g = 1, 2.
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Also for the Jacobian matrix, at the local level we compute the derivative of Ml

with respect to all the unknown variables at each node of the element. For example

∂Ml

∂vh
=


∂rC(1,l),l

∂vC(1,l)

∂rC(1,l),l

∂vC(2,l)

∂rC(2,l),l

∂vC(1,l)

∂rC(2,l),l

∂vC(2,l)


that is plugged in the global matrix as

∂M
∂vh

[
C(h, l), C(g, l)

]
=
∂Ml

∂vh

[
h, g

]
h, g = 1, 2.

Unlike the domain of air and panel, in the Jacobian matrix of the channel problem
the only neglected derivatives are those of the terms calculated through empirical
correlations, hence the approximation is more accurate.
All the single-phase physical properties of the refrigerant fluid are interpolated as
a function of the temperature from saturation tables generated using the REFPROP
software.

7.2 Boundary conditions

In this section we describe how to practically implement the boundary conditions
for each problem.
Usually at the inflow boundary of each domain we have Dirichlet boundary con-
ditions, there are two possible techniques of implementation [Qua08, p. 382]. We
will compare them referring to a general algebraic problemAx = B, where the l-th
node is an inflow node and the value imposed at the boundary is x0.
The first more classical technique consists of deleting the l-th row of the matrix A
and moving the l-th column multiplied for x0 to the right hand side.
The second approach is well known as Irons trick and consists in setting to zero the
l-th row of A, except the diagonal element set to one, then setting the l-th value of
B equal to the value of the solution at the boundary. This means that the Dirichlet
boundary conditions are imposed as algebraic constrains x[l] = x0 in the equations.
The first technique described reduces the dimension of the matrix to solve, but at
the same time changes significantly the pattern of the matrix. Instead the second
method maintains the original size of A, but affects the symmetry of the matrix
which, in turn, can give rise to scaling problems.
We consider now the Neumann boundary conditions. The homogeneous one are
settled automatically by the numerical method, while the non homogeneous one
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begin

channel

interpolation

air and panel

interpolation

Tw

end

Tc, x

Figure 7.1: Iteration algorithm between domains.

are implemented adding a diagonal term to the matrix A. For example, in the air
problem at the outflow boundary we impose the condition of null outgoing con-
duction heat flux, from the implementation point of view this results in adding to
the diagonal term of the m-th row, a contribution equal to the outgoing diffusion
flow ifm-th is an outgoing node.

7.3 Iteration between domains

The idea is to divide the whole domain of the condenser in two parts, the first part
is the air and panel coupled domain and the second is the channel domain, and
iterate between them until convergence.
The iterative algorithm is described in Figure 7.1: the two main steps, denoted
by blue boxes, are the iterative solutions of the nonlinear algebraic systems, one
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for each part, while the intermediate steps, denoted by red boxes, represent the
interpolation process of the solution of a part in the domain corresponding to the
other part. We notice how the two parts communicate through the values of two-
phase fluid temperature Tc and vapor quality x and panel wall temperature Tw.
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8
Results

In this chapter we present the numerical results obtained using the numerical
solver and algorithms described in Chapter 7. We will first discuss the simula-
tion for the coupled air and panel domains and then we will focus on the channel
domain for both cases of incompressible single-phase and compressible two-phase
fluid.

8.1 Test for air and panel subsystems

We present and analyze the numerical results concerning the coupled system made
by the air and panel domains coupled. The associated nonlinear algebraic system
has been described in Section 7.1.2.
We consider a series of condenser panels spaced by the air thickness S = 1cm, each
panel has the structure depicted in Figure 8.1: the panel is a rectangular domain of
size 0.49m× 0.252m, crossed by a circular channel of radius r = 0.3cm.
First of all we consider the features of the discretization mesh used. In practice we
have two separate meshes one for the channel domain, where each element is a
vertical or horizontal trunk of channel, and a single cartesian rectangular mesh for
the air and panel domains. To couple the two meshes we used the following crite-
rion: if we superimpose the channel mesh to the air-panel mesh, each rectangular
element that is partially covered by a channel mesh element is considered joining
both meshes. In Figure 8.2 we can make a comparison between the two meshes
used in the simulation, we have refined the channel mesh in such a way that the
size of each trunk is less than or equal toH = 1.7cm and used a 100×100 air-panel
mesh.
We consider the R134a refrigerant fluid flowing in the channel at constant tem-
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Y1 = 0.033

D = 0.35

H = 0.017

Y2

L = 0.45 X1 = 0.02X1

liquid flow

ai
r

flo
w

Figure 8.1: Air and panel coupled test case: geometry. The thick black line denotes
the channel path in the rectangular panel domain, splitting in branches are considered.
Lengths are measured in meters. The blue arrows denote the inlet and outlet boundary of
the channel and the green arrows denote the air flow direction.

perature Tc = 60oC, constant velocity of v = 0.63m/s and constant vapor quality
x = 0.5. The physical two-phase properties of this particular refrigerant fluid will
be discussed in detail in Section 8.2.2.
Under these assumptions the heat transfer coefficient between the refrigerant fluid
and the aluminum wall is constant hwc = 5.1727 × 103W/m2K, this value being
obtained using the Shah two-phase correlation (4.12) and the Dittus-Boelter corre-
lation (2.7) for the single-phase heat transfer coefficients.
Concerning the air domain conditions, we fix a velocity of 10m/2 from left to
right, as depicted in Figure 8.1, and we impose the inlet boundary condition of
Ta = 45oC.
In Figure 8.3 we show the distribution of the air temperature Ta and of the wall
temperature Tw and in Figure 8.4 the associated contour plot. The Newton method,
used for solving the non linear algebraic system (7.4), in 27 iterations and 57.64s
reaches convergence, setting the tolerance to 10−6. The computed values of tem-
perature have been interpolated through a nodally continuous function.
We can notice how the air temperature increase gradually flowing on the heated
panel wall and how the distribution of the panel wall temperature is influenced by
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(a) channel mesh

(b) air-panel mesh

Figure 8.2: Air and panel coupled test case: channel and air-panel meshes. Channel mesh
has an element size less than or equal to H = 1.7cm and the air-panel mesh has size 100×
100.
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(a) air temperature

(b) panel temperature

Figure 8.3: Air and panel coupled test case: air temperature and panel wall temperature
solution.
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(a) air temperature

(b) panel temperature

Figure 8.4: Air and panel coupled test case: contour plot of air temperature and panel wall
temperature solution.
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the channel geometry, highlighted in the contour plot of Figure 8.4.
As mentioned in the introductory Chapter 1 and shown in Figure 1.4, the advan-
tage of using two-phase cooling systems is provided by a higher value of the heat
transfer coefficient. Indeed, the heat transfer coefficients hwc = 5.1727×103W/m2K

has two orders of magnitude more than haw, depicted in Figure 8.5(a). Conse-
quently, the panel wall temperature is almost constant and very close to the two-
phase flow temperature of 60oC. This confirms the interpretation of the condenser
studied as a heat sink, where each panel is a fin with efficiency equal to one, having
almost constant temperature in all the extended surface.
All the results shown till now are computed using the Dittus-Boelter (2.7) cor-
relation, the entrance region correction of Bhatti and Shah (2.8) for haw and the
approximation at the inlet cells described in Section 7.1.1. In Figure 8.5 we can
notice how the fully developed Dittus-Boelter correlation under-predicts the heat
transfer coefficient haw in the inlet transition flow region by a factor of 17%.
Concerning the air pressure drop, in Figure 8.6 we can analyze the exponential
increase of the total pressure losses upon varying the air velocity from 1m/2 to
20m/s. By total air pressure drop we mean the difference between the air pressure
at the inlet and outlet boundary for x = 0m and x = 0.49m respectively. The corre-
sponding values of the friction factor f are calculated through the Bhatti and Shah
correlation (2.10).

8.2 Test for channel subsystem

In this section we report the results of the numerical simulation concerning the
cases of incompressible single-phase and of compressible two-phase fluid flow.

8.2.1 Single-phase incompressible fluid

We consider liquid-phase water flowing in the channel domain. The pattern of the
channel is the same as in the previous test case, shown in Figure 8.1, where inlet
and outlet boundaries are denoted by blue arrows, while the radius of channel cir-
cular cross section is r = 0.6cm. We will solve only the channel domain problem,
imposing constant panel wall temperature Tw = 45oC and using the same mesh as
in Figure 8.2(a).
Concerning the inlet boundary condition, we impose fluid temperature of 60oC
and fluid velocity of 1m/s, hence the corresponding mass flow is G = 0.1112kg/s.
Moreover, we assume constant water physical properties equal to the values listed
in Table 8.1, corresponding to the water at the inlet temperature of 60oC.
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(a) entrance correction

(b) no entrance correction

Figure 8.5: Air and panel coupled test case: heat transfer coefficient haw using or not using
the Bhatti and Shah (2.8) entrance correction.
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Figure 8.6: Air and panel coupled test case: total air pressure drop varying the inlet air
velocity va.

ρ = 983.2 kg/m3 density
µ = 0.4668× 10−3 Pas dynamic viscosity
cv = 3981.5 J/kgK specific heat capacity at constant volume
k = 0.6 W/mK thermal conductivity

Table 8.1: Water physical properties at the temperature of 60oC.

In Figure 8.7 we show the solution obtained for the mass and momentum balance
equation, where we denote by G the mass flow ṁ. The mass balance equation is
satisfied because the mass flux at the outlet boundary is equal to the value imposed
at the inlet. Instead, in Figure 8.7(b) the pressure drop calculated in node is the dif-
ference between the pressure in the node and the pressure at the inlet boundary
of the channel, hence the value of ∆p at the channel outlet boundary is the whole
channel pressure drop.
Also in the case of single-phase fluid we can interpret the total pressure drop as
the sum of three contributions: static, momentum and frictional pressure drops,
as described in Section 4.3.2 for the two-phase fluid. These contributions can be
computed a posteriori, in the test case considered the results are depicted in Figure
8.8. We notice that the whole static pressure drop is null, since the inlet and outlet
boundary are located at the same height. Instead, the order of magnitude of the
momentum pressure drop verifies the assumption of the model used, in fact this
effect has been neglected in equation (4.3). The frictional pressure drop contribu-
tion is the only relevant and is equal to the term -Rṁ of equation (4.3), where R is
the hydraulic resistance of the whole channel.
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(a) mass flow

(b) total pressure drop

Figure 8.7: Incompressible single-phase test case: mass flow G and total pressure drop ∆p.
In each node the pressure drop is equal to the difference between the pressure of the node
the inlet water pressure.
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(a) static pressure drop

(b) momentum pressure drop

(c) frictional pressure drop

Figure 8.8: Incompressible single-phase test case: three contributions to the total pressure
drop. In each node the pressure drop is equal to the difference between the pressure of the
node the inlet water pressure.
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To validate the robustness of the results shown in Figure 8.8(c) we can calculate the
hydraulic resistance of the channel using the analogy with an electric circuit: each
trunk of channel is equivalent to an electric resistance and at the inlet and outlet
boundary are connected two suitable current or voltage generators.
The expression of the resistance corresponding to the whole channel is

Rtot = R

Y1+ 1

RL +
1

L

+ Y3+ Y2

 ,
where the value of Y1, Y2, Y3 and L are the same as in Figure 8.1 and RL = 0.1422m−1

is the continued fraction [2H; 1/L], i.e. expressed recursively as
RL
1 = 2H+ L,

RL
i+1 = 2H+

1

1

L
+

1

RL
i

∀i ≥ 1.

RL is the contribution to the total resistance due to the part of the channel where are
all the splitting in branches, i.e. y ≥ Y1. In conclusion, being R = 932.876m−2s−1,
the theoretical value of friction pressure losses at the outlet boundary is

∆pf = −RtotGout = −432.878m−1s−1 × 0.1112kgs−1 = −54.3619Pa,

almost equal to the computed value of −54.3622Pa.
In Figure 8.9 we show the distribution of water temperature in two cases:

• hwc constant: the fixed value is calculated through the Dittus-Boelter correla-
tion at the inlet fluid temperature of 60oC,

• hwc varies linearly: hwc depends on the water temperature through the Dittus-
Boelter, this trend is approximated by a linear fitting.

In the second case the water flowing in the channel cools more slowly because hwc
decrease linearly reducing the water temperature. Consequently, we decided to in-
vestigate the variation of the outlet water temperature as a function of the constant
Tw in both cases of hwc constant or linearly varying. Figure 8.10 shows the impor-
tance of the dependence of the heat transfer coefficient by the water temperature,
otherwise there is a significant under-prediction of the outlet water temperature,
i.e. a over-prediction of the cooler efficiency.
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(a) hwc constant

(b) hwc Dittus-Boelter

Figure 8.9: Incompressible single-phase test case: temperature distribution with hwc con-
stant or that varies linearly as function of the water temperature, through the Dittus-
Boelter (2.7) correlation.
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Figure 8.10: Incompressible single-phase test case: variation of the outlet water temper-
ature Tout as a function of the fixed wall temperature Tw, with hwc constant or varying
according to Dittus-Boelter (2.7) correlation.

Y2 = 0.015
Y1 = 0.033

D = 0.35

H = 0.017

L = 0.45

H

liquid flow

y

x

Figure 8.11: Compressible two-phase test case: geometry. The thick black line denotes the
channel path no splitting in branches are considered. Lengths are measured in meters. The
blue arrows denote the inlet and outlet boundary of the channel.
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(a) two-phase density

(b) two-phase enthalpy

Figure 8.12: Compressible two-phase test case: R134a two-phase properties.

8.2.2 Two-phase compressible fluid

We consider now the R134a refrigerant fluid flowing in the circular channel of ge-
ometry described in Figure 8.11: there are no splittings in branches and the channel
cross sectional radius is r = 0.6cm. First of all, in Figure 8.12, we analyze the de-
pendence of the R134a two-phase density and enthalpy on the vapor quality x
and on the refrigerant temperature, accordingly to the first two the constitutive
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Figure 8.13: Compressible two-phase test case: R134a saturation pressure-temperature
curve.

relations of (4.11). As expected, fixing the water temperature these two-phase
properties grow increasing with the vapor quality x: the density exhibits an expo-
nential growth and the enthalpy a linear one. The trend of the third constitutive
equation of (4.11) for the R134a fluid is plotted in Figure 8.13: on the saturation
curve the pressure has an exponential trend when temperature is varying.
In the next simulation results we have fixed the wall temperature equal to Tw =

50oC and we have solved only the channel domain problem using a mesh such
that the size of each element is less then or equal to H = 1.7cm. We impose an
inlet refrigerant temperature of 60oC, hence the corresponding inlet pressure is
1.6818 × 106Pa according to the saturation curve in Figure 8.13. We impose also
the inlet boundary the fluid velocity v = 5m/s and the inlet vapor quality x = 1,
consequently the inlet mass flux ρv and the inlet two-phase enthalpy are uniquely
determined.
Under this working assumptions, the numerical solutions obtained are depicted
in Figures 8.14 and 8.15. From the computational point of view, the Newton
method reaches convergence in 19 iterations and 83.277s, setting the tolerance to
10−6. All the unknown variables show a decreasing trend, effect of the cooling
phenomenon. In fact, at fixed temperature the liquid-phase properties are lower
than the corresponding vapor-phase properties, as illustrated in Figure 8.12.
In Figure 8.14(a) we can notice the small gap between the inlet and the outlet re-
frigerant temperature, verifying one advantage of the two-phase cooling system.
Indeed, the heat handed over by the refrigerant fluid produces a change of phase,
hence a relevant variation of vapor quality x and only an irrelevant decrease of the
fluid temperature.



88 CHAPTER 8. RESULTS

(a) temperature

(b) pressure

Figure 8.14: Compressible two-phase test case: R134a temperature and pressure.
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(a) velocity

(b) vapor quality

(c) enthalpy

Figure 8.15: Compressible two-phase test case: R134a velocity, vapor quality and two-
phase enthalpy.
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Figure 8.16: Compressible two-phase test case: outlet vapor quality as a function of the
inlet fluid velocity for three different cases of constant wall temperature.

To investigate which are the optimal conditions of this condenser, in Figure 8.16 at
three different panel wall temperatures we show the variation of the outlet vapor
quality as a function of the inlet flow velocity. We can conclude that for the lowest
values of velocity we obtain the lowest value of outlet x. In the case of Tw = 45oC

the vapor quality is negative, this phenomenon is called subcooling, which means
that the two-phase flow once achieved totally the liquid face continues to cool itself
being in contact with the aluminum wall.
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9
Conclusions and future work

In the present Master thesis we have addressed the mathematical modeling and
numerical simulation of a specific air-cooled condenser, part of the ABB industrial
research on the optimal design for a two-phase thermosyphon cooling system.
The main targets and obtained results can be summarized in three parts:

Mathematical models: a reduced-order modeling approach has been extensively
used to derive simplified mathematical descriptions of the various subsys-
tems involved in the device setting and configurations. Such reduced-order
models represent a good compromise between physical accuracy and com-
putational effort, and can be regarded as an original and significant contri-
bution of the present thesis.

Numerical methods: conservative discretization schemes have been adopted in
order to maintain the conservative form of the equations on the discrete
level. Furthermore, the corresponding compact computational stencil en-
sures good properties of the algebraic systems. Suitable stabilization tech-
niques have been introduced in order to avoid the onset of spurious oscilla-
tions in dominating convection regimes, even in the limit of vanishing vis-
cosity. An approximate Jacobian matrix has been introduced in the itera-
tive Newton method; extensive computational experiments show that, at the
price of slightly increasing the number of iterations required to reach conver-
gence, there is a substantial reduction of the elapsed CPU time, compared to
a full exact Newton solution.

Numerical results: a simulation tool has been implemented in view of a day-by-
day design of advanced cooling system in power electronics. The ultimate
requirement for ABB designers, which has constantly driven the research ac-
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tivity of this thesis, has been the computational efficiency and robustness
with respect to physical model parameters and, last but not least, a high
user friendliness of the computer routines. All of these constraints have been
successfully satisfied and implemented in the final version of the software
developed for numerical simulation. The discussed results are aimed to val-
idate the performance of the proposed computational model in the study
of the main device configurations; all simulations have been performed us-
ing always realistic values of geometrical data and parameters and all the
corresponding outcome of the computations agree with engineering based
physical predictions.

Future research is, of course, needed in order to provide a better description of the
very complex multiscale/multiphysics problem addressed in the present thesis.
Among possible developments, we mention:

Natural convection: in the current model and in the numerical simulation we have
always assumed the air convection field to be fixed, i.e., that device operate
in forced convection regime. In practice it is often useful to consider the case
of natural convection, i.e., the convection be self consistently dependent on
the panel wall temperature, to incorporate this phenomenon in our model
requires extending the simple iteration algorithm of Section 7.3 to cope with
the stronger coupling among the air, panel and channel subsystems.

Different two-phase flow regimes: as mentioned in Section 1.2 the properties of
the two-phase flow strongly depend on the particular pattern of the flow, see
Figure 1.7. To take into account the effect of the flow regime change on the
vapor/liquid mixture properties requires relaxing the homogeneous flow as-
sumption of Section 4.2.1, which also requires adding an additional unknown
to the system namely void fraction.

Singular pressure losses: to more correctly model the junctions and bends in the
channel requires including specific empirical correlations for the frictional
pressure drops depending on the particular geometry of non straight channel
segments. A comprehensive catalog of such correlations can for example
be found in [IF86], alternatively full three-dimensional simulations could be
used to obtain correlations for geometries that have not yet been considered.
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