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Riassunto della tesi

La presente tesi di Laurea Magistrale in Ingegneria Matematica è il risultato di un
anno di lavoro svolto presso il Dipartimento di Matematica del Politecnico di Mi-
lano e in stretta collaborazione con il Prof. Marco Sampietro e l'Ing. Dario Natali
del Dipartimento di Elettronica e Informazione per quanto riguarda i contenuti di
Fisica ed Elettronica. La ricerca si inserisce nell'ambito generale delle energie rinno-
vabili e si focalizza sulla modellazione matematica e la simulazione numerica di celle
fotovoltaiche di nuova generazione. La tesi si articola in sei capitoli il cui contenuto
viene descritto nel seguito.

Capitolo 1: An introduction to photovoltaics

Motivazioni socio-economiche

Uno dei problemi più importanti che l'umanità dovrà a�rontare nel corso di questo
secolo è quello della produzione di energia poiché, di fronte alla continua crescita della
popolazione globale e all'industrializzazione dei paesi in via di sviluppo, il fabbisogno
energetico sarà in aumento e le attuali modalità di produzione non sono sostenibili
per l'ecosistema della Terra. Per questo motivo la comunità internazionale con il
Protocollo di Kyoto e l'Unione Europea con l'accordo del 2007 [58] si sono impegnate
nella riduzione alle emissioni di diossido di carbonio, rispettivamente entro il 2012
e il 2020. In particolare il Consiglio Europeo ha stabilito che tale riduzione debba
essere del 20% e che entro il 2020 i Paesi membri debbano produrre almeno il 20%
dell'energia della quale necessitano da fonti rinnovabili.
Nonostante le menzionate linee guida legislative, la tecnologia del rinnovabile non ha
ancora raggiunto maturità e un livello di avanzamento tali da rendere conveniente il
ricorso a questo tipo di energia rispetto alle convenzionali fonti fossili e molta attività
ricerca è prevista per il futuro, anche sotto la spinta di congrui �nanziamenti dei
governi nazionali e di investimenti delle aziende del settore.
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L'energia solare

L'energia solare riveste un ruolo importante tra le varie fonti rinnovabili ed è forse
quella che presenta i migliori margini di miglioramento in termini di riduzione dei
costi e utilizzabilità. Esistono principalmente due modalità per ottenere energia dalla
radiazione solare e sono:

• il solare termodinamico a concentrazione nella quale una grande quantità di
luce è concentrata in uno spazio limitato per generare calore, utilizzato per
riscaldare acqua che, a seconda della dimensione dell'impianto, può essere
destinata ad uso domestico o ad azionare le turbine di una centrale per la
produzione di energia elettrica;

• l'e�etto fotoelettrico proprio di alcuni metalli e semiconduttori. Questa tec-
nologia ha il vantaggio di essere l'unica �nora impiegata per la permettere la
produzione diretta di elettricità.

Le prime celle sviluppate sono state quelle basate sul silicio cristallino e al giorno
d'oggi esse hanno raggiunto un elevato livello di e�cienza, accompagnato però da un
elevato costo, soprattutto dovuto ai materiali necessari, che ne limita la di�usione.
Nel tentativo di ridurre i costi di produzione la ricerca ha portato al concepimento
di celle costruite con materiali alternativi al silicio, dette di seconda generazione, che
utilizzano una tecnologia a �lm sottile e hanno raggiunto e�cienze tali da permet-
terne la commercializzazione.
Le celle di più recente sviluppo, dette appunto di terza generazione, hanno approcci
meno convenzionali per la produzione dell'elettricità e utilizzano materiali radical-
mente diversi da quelli delle generazioni precedenti. All'interno di quest'ultima classe
si possono individuare due principali tipologie di celle: celle solari dye-sensitized e
celle solari organiche.

Capitolo 2: Dye sensitized solar cells

Le celle elettrochimiche di tipo Dye Sensitized Solar Cell (DSSC) sono state proposte
da M. Graetzel nel 1991 [60]. Il dispositivo è costituito principalmente da uno strato
nanoporoso di semiconduttore, solitamente ossido di titanio, rivestito da un colorante
e immerso in una soluzione di ioni iodio (I−) e triiodio (I−3 ), il tutto racchiuso tra due
vetri conduttori, che fungono da anodo e catodo. Quando la cella viene illuminata
avvengono i seguenti fenomeni illustrati in Fig. 2.3:

1. i fotoni vengono assorbiti dalle molecole di colorante le quali aumentando il
proprio livello energetico passano a uno stato eccitato;
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2. la molecola eccitata inietta un elettrone nella banda di conduzione del semi-
conduttore. La carica fotogenerata di�onde attraverso l'ossido di titanio �no a
raggiungere l'anodo, dal quale esce dalla cella e raggiunge il catodo per mezzo
del carico collegato al dispositivo;

3. l'elettrone rientra nella cella attraverso una reazione di ossidoriduzione con il
triiodio (secondo la relazione (2.1)) generando una molecola di I−;

4. lo ione iodio viene trasportato all'interno dell'elettrolita �no a contatto con il
catione della molecola di colorante, riportandola allo stato neutro.

A tutt'oggi il funzionamento delle DSSC è oggetto di studio in quanto i fenomeni
che avvengono localmente all'interfaccia sono particolarmente complessi e necessita-
no di ulteriori analisi [26]. La particolarità che contraddistinge queste celle rispetto
ai convenzionali dispositivi al silicio è che il ciclo di funzionamento è rigenerativo
e i meccanismi di generazione e trasporto della carica fotogenerata non avvengono
interamente nel semiconduttore.
I modelli utilizzati nella presente tesi per la descrizione del funzionamento dei dispo-
sitivi elettrochimici sono costituiti da sistemi di equazioni alle derivate parziali non
lineari di tipo di�usione-trasporto-reazione fortemente accoppiati completati dall'e-
quazione di Poisson per il calcolo di un campo elettrico consistente con la distribu-
zione di carica e da equazioni alle derivate ordinarie che descrivono la cinetica delle
reazioni chimiche che avvengono all'interno della soluzione elettrolitica. Per celle di
particolare struttura (caratterizzate da un non trascurabile spessore dell'elettrolita),
l'equazione di Poisson può essere legittimamente ridotta a una semplice condizione
di elettroneutralità. Consistentemente con la natura rigenerativa delle celle elettroli-
tiche considerate, è necessario imporre condizioni di tipo integrale che esprimono la
conservazione delle varie specie ioniche presenti nella soluzione. L'imposizione di tali
condizioni nell'ambito della formulazione debole del problema considerato è discussa
in dettaglio nel Capitolo 4.

Capitolo 3: Organic solar cells

Il carbonio e il silicio presentano una con�gurazione elettrica molto simile in quanto
hanno lo stesso numero di elettroni nell'orbitale più esterno, e per questo motivo
particolari composti molecolari e polimerici del carbonio manifestano apprezzabili
proprietà conduttive. Tali materiali hanno la caratteristica, detta coniugazione, di
avere orbitali molecolari delocalizzati e ciò si veri�ca quando gli atomi di carbonio
sono legati tra loro attraverso doppi legami covalenti alternati a legami semplici.
L'orbitale non occupato avente il livello energetico più basso è detto LUMO mentre
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con HOMO si indica quello occupato a energia più alta. Tali livelli energetici agi-
scono rispettivamente alla stessa maniera della banda di conduzione e di quella di
valenza dei semiconduttori inorganici, permettendo lo spostamento degli elettroni
all'interno della molecole stesse mentre il passaggio intermolecolare è dovuto a un
fenomeno denominato hopping, composizione degli e�etti di vibrazioni fononiche e
tunneling quantistico. I semiconduttori organici hanno lo svantaggio di presentare
basse mobilità per i portatori di carica ma hanno costi molto contenuti e sono facil-
mente solubili, cosa che permette la produzione di celle con tecniche a basso costo
utilizzate dall'industria della stampa.
Quando colpiti da radiazione visibile o ultravioletta, a di�erenza dei semicondut-
tori inorganici, i materiali organici non rilasciano una coppia di portatori di carica
di segno opposto, ma sono caratterizzati dalla seguente complessa fenomenologia
descritta in Fig. 3.8(a), Fig. 3.8(b) e Fig. 3.9:

1. formazione di stati eccitati detti eccitoni nei quali le cariche si attraggono
vicendevolmente per mezzo di forti interazioni coulombiane;

2. moto degli eccitoni per di�usione verso l'interfaccia dei due materiali con di�e-
rente a�nità elettronica, possando a un nuovo stato, detto polarone nel quale
tra le cariche vi è ancora un legame ma di minore energia rispetto a quello
degli eccitoni.

3. dissociazione dei polaroni intrappolati alla super�cie in due cariche di segno
opposto nei due materiali, i quali assumono i nomi di donore e accettore;

4. moto delle cariche per di�usione e convezione verso gli elettrodi.

È possibile raggruppare i tipi di morfologie utilizzati per l'organizzazione interna di
accettore e donore in tre categorie. La più semplice tra di esse è quella delle celle
bilayer nelle quali i due materiali sono disposti a strati planari a formare un dispo-
sitivo di facile produzione ma caratterizzato da bassa e�cienza. Più avanzata è la
morfologia a eterogiunzione di volume (BHJ) nella quale donore e accettore sono
mescolati �no a livello nanometrico a formare una struttura convoluta che assicura
una grande area di interfaccia per la separazione dei portatori ma che, al contem-
po, è caratterizzata da una bassa mobilità degli stessi. Dispositivi di più recente
concepimento prevedono la nanostrutturazione dello strato fotoattivo al �ne di mas-
simizzare generazione e trasporto di carica.
I modelli utilizzati nella presente tesi per la descrizione del funzionamento dei dispo-
sitivi organici sono costituiti da sistemi di equazioni alle derivate parziali non lineari
di tipo di�usione-trasporto-reazione fortemente accoppiati completati dall'equazione
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di Poisson per il calcolo di un campo elettrico consistente con la distribuzione di ca-
rica e da equazioni alle derivate ordinarie che descrivono la cinetica della densità di
polaroni. Nel caso particolare dei dispositivi bilayer per tenere conto di fenomeni con
scale spaziali caratteristiche molto diverse, vengono introdotte appropiate relazioni
che legano i �ussi di portatori di carica attraverso l'interfaccia fra i diversi materia-
li alla densità (per unità di area) di polaroni intrappolati a cavallo dell'interfaccia
stessa.

Capitolo 4: Numerical methods

La struttura matematica di tipo multi�sica e multiscala che caratterizza i modelli
�sici discussi nei Capitoli 2 e 3 si presta bene a una formulazione uni�cata che
comprende:

• un sistema di N equazioni alle derivate parziali di tipo parabolico con termini
di convezione in forma di gradiente che rappresentano altrettante equazioni di
continuità per le N specie chimiche in gioco;

• un'equazione di Poisson per la descrizione autoconsistente del campo elettrico
associato alle N specie chimiche di cui sopra;

• un sistema di M equazioni di�erenziali alle derivate ordinarie per tenere conto
di eventuali reazioni chimiche volumetriche e/o di interfaccia;

• un sistema di Q ≤ N condizioni integrali che esprimono la conservazione delle
specie ioniche.

A fronte di questa complessa formulazione di�erenziale-algebrico-integrale del pro-
blema, nel presente capitolo vengono illustrati i procedimenti numerici appropriati
per gestire in modo e�ciente e accurato ciascuna delle peculiarità sopra menzionate.
In particolare:

• nella Sezione 4.1 viene descritto il metodo di Rothe utilizzato per la semidi-
scretizzazione in tempo di ciascuna equazione parabolica accoppiato con l'u-
so di metodi BDF, scelti per la loro capacità di trattare sistemi di�erenziali
caratterizzati da scale temporali variabili;

• nella Sezione 4.2 viene descritta l'iterazione funzionale di Newton per la linea-
rizzazione del sistema di equazioni ellittiche derivante dalla semidiscretizzazio-
ne di cui al punto precedente;
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• nella Sezione 4.3 viene descritto il metodo di discretizzazione Galerkin elementi
�niti di tipo EAFE utilizzato per l'approssimazione numerica del problema di
di�usione-trasporto-reazione in forma conservativa;

• nella Sezione 4.4 viene descritta la metodologia di Substructuring impiegata per
la gestione del problema di di�usione-trasporto-reazione introdotto al punto
precedente all'interno di un dominio di calcolo fortemente eterogeneo. Parti-
colare attenzione viene posta al trattamento delle condizioni di trasmissione
all'interfaccia tra i due sottodomini;

• nell'ultima Sezione 4.5 viene in�ne descritta la formulazione debole con mol-
tiplicatore di Lagrange per l'imposizione delle condizioni integrali che esprimo
la conservazione della carica.

Capitolo 5: Numerical simulations

In questo capitolo si a�ronta una approfondita analisi di validazione dei modelli e
delle metodologia di risoluzione illustrati nei Capitoli 2, 3 e 4, attraverso la simula-
zione a calcolatore di numerosi casi test relativi a celle fotovoltaiche elettrochimiche
e a polimeri organici. Nel condurre questa analisi si è costantemente tenuta in con-
siderazione la letteratura scienti�ca più aggiornata del settore.
Precisamente, per quanto riguarda le celle elettrochimiche è stata condotta una det-
tagliata simulazione del dispositivo studiato in [61]. Trattasi di una schematizzazione
unidimensionale di una struttura costituita da uno strato nanoporoso di ossido di
titanio e uno strato di elettrolita posti in contatto con l'esterno tramite due elettrodi
che fungono rispettivamente da catodo e anodo. Il trasporto di massa e il trasporto
degli elettroni fotogenerati vengono descritti dal sistema di equazioni alle derivate
parziali corredato dalle condizioni integrali di elettroneutralità oggetto del Capitolo
2. In una preliminare validazione degli algoritmi computazionali viene condotta una
analisi dettagliata delle prestazioni della cella in funzione del rate di illuminazione
fotonica. Successivamente, l'analisi viene estesa al caso in cui sia incluso il traspor-
to delle cariche fotogenerate. I risultati ottenuti mostrano l'importanza di disporre
di un su�ciente strato di elettrolita per incrementare le reazioni di ossidoriduzione
all'interfaccia con la struttura nanoporosa di ossido di titanio, importanti per l'e�-
ciente funzionamento del dispositivo.
Relativamente allo studio delle celle fotovoltaiche a polimeri organici, sono state
condotte simulazioni di due con�gurazioni morfologiche, corrispondenti al caso di
celle BHJ e di celle bilayer interdigitate.
Per quanto riguarda le prime, trattasi di calcoli atti a convalidare le prestazioni del
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codice bidimensionale sviluppato nella tesi rispetto ad analoghe simulazioni condot-
te in una geometria monodimensionale in un precedente lavoro di tesi [23] e in [20].
Vengono in particolare analizzati i transitori di accensione della cella in funzione
di diverse condizioni di illuminazione e illustrati gli andamenti delle principali gran-
dezze che determinano il comportamento elettrico del dispositivo (concentrazioni dei
portatori fotogenerati e campo elettrico). I risultati ottenuti confermano pienamente
le conclusioni tratte nei precedenti riferimenti bibliogra�ci.
Per quanto riguarda le celle bilayer, trattasi di un importante contributo originale
di questa tesi. Il modello considerato è una estensione e ri-interpretazione di quanto
proposto recentemente in letteratura in [78] dove si a�ronta la simulazione nume-
rica di blend polimerici separati da una super�cie di interfaccia a larga dimesione
allo scopo di aumentare l'e�cienza di conversione della cella. I complessi fenome-
ni che governano il processo di fotogenerazione interfacciale vengono descritti nella
tesi attraverso opportune condizioni di trasmissione non lineari, mentre il trasporto
della carica fotogenerata nelle relative regioni accettore e donore del dispositivo è
regolato dal classico modello Drift-Di�usion, caratterizzato da mobilità dipendenti
dal campo elettrico secondo la relazione fenomenologica di Poole-Frankel. I risultati
ottenuti sono in ottimo accordo con quanto illustrato nell'articolo di letteratura pre-
cedentemente citato e mostrano come l'e�cienza della cella dipenda in modo critico
dall'aumento della profondità di interdigitazione tra materiale accettore e materiale
donore, e/o dall'in�ttimento dell'interfaccia medesima.

Capitolo 6: Concluding remarks and future work

Questo capitolo conclusivo è dedicato a riassumere i principali contributi forniti
in questa tesi alla modellazione e simulazione numerica di dispositivi avanzati per
la conversione elettrica dell'energia solare, individuando inoltre alcuni spunti per
sviluppi futuri di ricerca, tra cui:

• descrizione completa della distribuzione della radiazione elettromagnetica al-
l'interno dei dispositivi, al �ne di migliorare il potere predittivo del modello;

• confronto dei risultati ottenuti tramite simulazioni numeriche con dati speri-
mentali, in modo da validare il modello e calibrare i parametri;

• simulazione multidimensionale delle celle DSSC considerando in maniera det-
tagliata le reazioni chimiche che avvengo all'interfaccia;

• considerazione degli e�etti del disordine energetico sull'iniezione e il trasporto
di carica nelle celle OSC.
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Abstract

The aim of this Master thesis work is the development and the implementation of
computational models for third-generation solar cells.
The thesis is organized in six chapters whose content is shortly described below.
Chapter 1 contains a brief presentation of renewable energies market, solar power
in general followed by an introduction to the two main families of third generation
cells, namely Dye Sensitized Solar Cells (DSSCs) and Organic Solar Cells (OSCs).
In Chapter 2 the physical phenomena driving the operation of DSSCs are presented
in detail and two mathematical models are proposed for them.
Chapter 3 is devoted to introduce the basic physics of OSCs. Two model are pro-
posed for di�erent types of morphologies along with several parameter models.
Chapter 4 describes the mathematical methods used to discretize and to solve the
equations of the models.
In Chapter 5 the numerical results of the simulations are described for both DSSCs
and OSCs, considering di�erent operating conditions and parameter values.
Finally in Chapter 6 some conclusions and perspectives for future activities are
presented.
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Chapter 1

An introduction to photovoltaics

In 2003, during a lecture at Rice University, the Nobel prize Richard Errett Smalley
drew up a list of which would have been the humanity's top ten problems in the
following �fty years [70]. The list read:

1. energy

2. water

3. food

4. environment

5. poverty

6. terrorism and war

7. disease

8. education

9. democracy

10. population.

It is noticeable that energy is at the �rst place despite the much more important
attention that media and public �gures reserve to the other issues that occupy the
following places, but this is somehow obvious from a rational point of view, since
many of the them, above all environment, depend on or are related with it. Interna-
tional community and national governments are well aware that many e�orts have
to be made on this topic and Kyoto Protocol is the main attempt in that direc-
tion, in which developed countries committed to reduce the emissions of greenhouse
gases (carbon dioxide, methane, nitrous oxide, sulphur hexa�uoride), hydro�uoro-
carbons and per�uorocarbons of 5.2 percent from 1990 levels by 2012. However its
e�ectiveness is in serious doubt since United States still have not rati�ed it and the
conference held in Copenhagen in 2009, whose purpose was to establish the objec-
tives of a post-2012 agreement, ended without binding decisions. The main source
of greenhouse gases is fossil fuel combustion and for this reason the goal of limiting
emissions is equivalent to �nding new methods for using renewable energy along
with avoiding energy waste. In the meanwhile, in 2007, European Community es-
tablished its own rules on the matter [58], deciding that carbon dioxide emissions
should decrease by 20 percent and that 20 percent of the energy produced in EU
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should originate from renewable energy sources not later than 2020.

1.1 Renewable energy

According to the International Energy Agency, renewable energy is the one derived
from natural processes that are constantly replenished. This de�nition then includes
electricity and heat generated from wind, sunlight, biomass, geothermal resources,
hydropower, oceans, biofuels and hydrogen derived from renewable resources. These
energies are unlimited on the human time scale, so that their use does not harm
the natural resources for future generations. Non-renewable energies, instead, have
very long renewal time compared to the actual consumption rate (e.g. fossil fuels
as oil, coal, natural gas) or are not inexhaustible on the human time scale (as 235U
isotope for nuclear energy), so they are expected to reach their limit in the near
future. When the term alternative sources is used the reference is to all the sources
di�erent from fossil fuels, then grouping renewable energy and nuclear one.
Fig. 1.1 shows a comparison between fuel shares for primary energy, which includes
every form of energy used in the world that has not been subjected to any conver-
sion or transformation process between 1973 and 2008. Even if increased in absolute
value, the amount from renewable sources remained constant in percentage (around
12.5%) for 35 years. Data are taken from [1]. Fig. 1.2, instead, shows the same com-
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Figure 1.1: Comparison of fuel shares of world primary energy supply between 1973
and 2008.
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Figure 1.2: Comparison of fuel shares for electricity production between 1973 and
2008.

parison, referred to electricity production data. This is, in fact, the �eld in which
renewable sources are the most suitable to be used and this is testi�ed by the rise in
percentage of the �eld in red, which does not include hydropower, whose contraction
is mostly due to the fact that the best locations for the plants have already been
occupied.
Anyway the two �gures we showed cannot represent the latest progress of renewables
di�usion, work which is done better by Fig. 1.3 and Fig. 1.4 [28]. The number of
countries with renewable policy targets is continuously rising and despite the global
crisis the investments have not experienced a reduction. The total power capacity
from renewables (not including the one from big hydro plants) raised of more than
the 20 percent just in 2009, from 250 to 305 GW, and for the second year in a row,
in both the United States and Europe, more renewable power capacity was added

SELECTED INDICATORS 2007 2008 2009

Investment in new renewable capacity (annual) 104 130 150 billion USD

Renewables power capacity (including only small hydro) 210 250 305 GW

Renewables power capacity (including all hydro) 1,085 1,150 1,230 GW

Hydropower capacity (existing, all sizes) 920 950 980 GW

Wind power capacity (existing) 94 121 159 GW

Solar PV capacity, grid-connected (existing) 7.6 13.5 21 GW

Solar PV production (annual) 3.7 6.9 10.7 GW

Solar hot water capacity (existing) 125 149 180 GWth

Ethanol production (annual) 53 69 76 billion liters

Biodiesel production (annual) 10 15 17 billion liters

Figure 1.3: Several indicators for renewables in the period 2007-2009.
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Figure 1.4: Global investments in renewable energy.

Figure 1.5: Renewable power capacities (excluded large hydro plants) by country.

than conventional one [28]. Great contribution is due to the increased commitment
of China that added 37 GW of renewable power capacity, more than any other coun-
try in the world, mostly in hydro (31 GW) and wind power (13.8 GW), doubling in
one year the capacity for the latter. Solar photovoltaics additions registered a record
too with 7 GW with Germany as the top market, followed by Italy and Japan.
Solar thermal capacity increased too with a rate of 20%. A very important aspect
for the di�usion of renewable energies, probably the most important one, which is
responsible of the boost of the latest years, is that the state governments imple-
mented convenient tax subsides, rebates and �nancings to encourage the consumers
and the companies to switch to them. For example in Italy, feed-in tari� incentives
�conto energia� and �nuovo conto energia� gave great impulse to the installation of
solar plants in the country with more than new 100000 systems for a total power of



1.2 Solar power 25

1750MW [38].
Renewable technologies are more versatile than conventional ones since they are suit-
able for both large scale projects and small o�-grid applications, e.g. in rural and
remote areas, where common supply lines are not present and energy is a crucial
problem. Moreover solar photovoltaic and thermodynamic systems are addressed
among the best solutions for developing countries [27].
Forecasts for the future see a progressive growth of the importance of renewable en-
ergies. Fig. 1.6 [1] shows the projections for the fuel shares of total primary energy
supply, the data we presented at the beginning of this section, in 2030 according
to two di�erent scenarios. The reference scenario (RS) is based on current energetic
world policy, while the other takes into account a plausible climate policy post-2010
targeting 450 ppm CO2-equivalent greehouse gases concentrations. Notice that in
the reference scenario the total amount of energy needed is continuously increasing
with the shares very similar to the ones in Fig. 1.1 since in actual policy, which is
assumed to hold for the future too, the renewable increase rate is not greater than
the conventional one. In the second scenario, instead, the most important fact to
be noticed is the limitation of energy need (15 percent less than reference scenario)
that would be achieved with the application of the regulations against energy waste
of the international protocols. Moreover the progressive substitution of conventional
sources with alternative ones would lead to a share greater than 20% for renewable
energies.

1.2 Solar power

Solar radiation can be used to produce electrical and thermal energy and from this
point of view the sun can be regarded as an inexhaustible source on the human time
scale. In fact, since the incident radiation amounts to 125000 TW [69], it supplies to
the Earth in just seven minutes the equivalent of the electricity used by the whole
mankind in one year. The main technologies used to harvest this kind of energy are:

• Concentrating solar power (CSP). The working principle of this technol-
ogy is to concentrate solar beams into a small area in order to produce high
levels of heat that, depending on the target of the plant, can be used to boil
water for direct utilization of for activating a turbine in an electric plant.

• Photovoltaics (PV). Photovoltaic solar cells convert sunlight into electricity
by means of photoelectric e�ect, a phenomenon typical of metals and semi-
metals in which electrons are emitted as a consequence of absorption of energy
from electromagnetic radiation of very short wavelength, such as visible or
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Figure 1.6: Forecast of fuel shares for world primary energy supply.

ultraviolet light. These devices have the unique characteristic of direct pro-
duction of electricity, while all the other technologies used in this �eld need
for an alternator to convert mechanical energy into electric one.

The concept of solar concentration has been applied to solar cells too (Concentrating
photovoltaics) and recent devices couple the production of electricity and heat in
the perspective of cogeneration.
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We now present the two main types of solar plants for electricity production, high-
lighting their advantages and disadvantages.

1.2.1 Thermodynamic solar power plants

As we already reported, in this kind of plants light is focused from a large area to
a small one using mostly systems of lenses or mirrors that follow the sun by means
of tracking systems that adapt their orientation during the day hours. The main
advantage for these plants is the fact that they utilize the turbine technology typical
of conventional energy, which is cheap and reliable. A disadvantage is instead that
to reach high production levels a plant has to be located in high irradiation areas
which are often deserts and hence far from consumers and water, necessary for the
operation of turbines. In addiction the size of the plant has to reach a minimum
level required by the turbines to work at regime and for this reason their �exibility
is limited.
Nowadays the most important markets for these facilities are US and Spain where
between 2005 and the end of 2010 the capacity installed nearly doubled to reach 662
MW [28]. As obvious, the biggest plants are located in those nations and are respec-
tively for the parabolic technology the Solar Energy Generating System (SEGS) in
the Mojave Desert (California, US) with a capacity of 354 MW, and for solar towers
the PS20 (Seville, Spain) with 20MW. Two pictures of these plants are shown in
Fig. 1.7. A great expansion of the sector is forecast in the next years, under the

Figure 1.7: SEGS plant in the Mojave Desert, US and PS10 solar power tower in
Andalusia, Spain.

impulse of the two international leader but also in other European countries and
in North Africa and Middle East, where this technology has enormous potential.
Storage technologies are also advancing, for example, two plants in Spain were built
with a thermal energy storage systems, which allow continued power generation after
sundown for a seven hours period [28].
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1.2.2 Photovoltaic solar power plants

In the past decades photovoltaics were used mainly to produce electrical energy in
areas not served by providers and the development of grid-connected systems of var-
ious dimension is quite recent, see Fig. 1.8. This kind of technology has two main

Figure 1.8: Solar PV existing world capacity and country shares.

advantages with respecto to CSP. First, no water is needed for electricity produc-
tion, since the transformation of radiation energy into electric one is direct, and
this greatly simpli�es installation and integration of the systems. Secondly, there is
no minimum or standard dimension for the plants and in this way they can easily
be dimensioned in accordance with their speci�c requirements and needs. The most
important defect of this technology is price and perhaps this, in addition to the as-
pects we mentioned previously, makes it more suitable for small applications rather
than big energy plants. In any case the market for both small and large plants is
constantly growing since cumulative global PV installations are now nearly six times
than at the end of 2004 and analysts expect even higher growth in the next four to
�ve years [28]. To convey the idea of the size of large plants, Fig. 1.9 reports the
largest one which was built in germany in 2010 and has a capacity of 80.7 MW.
Germany is, in fact, the country that has �rst believed in photovoltaics giving great
contribute in research and development for cost reduction and still it has almost
half of the world total capacity. Many states are now following the German example
with ambitious programs also boosted by feed-in tari�s directed to prompt privates
to adopt this tecnhology.
As we said before, despite the average size of PV projects increases, there is growing
interest in very small-scale, o�-grid systems, particularly in developing countries.
These systems account for only some 5 percent of the global market, but since in
many remote areas the price of PV electricity is already at parity with fossil fuels
they represent an important tool for development and improvement [28].
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1.3 Solar cells

We already introduced solar cells and their working principles in a very basic way
and we also described the recent sudden booming of their market. But at the same
time we showed the fuel shares of primary energy sources and electricity sources
in Fig. 1.1 and Fig. 1.2 and the renewable power capacities in Fig. 1.5 where the
percentage of solar PV plays a marginal role in the total market of energy. What
limits the di�usion of photovoltaic cells to this day, is the lack of competitiveness
with respect to fossil fuels and other renewable source that can be synthesized by
three main factors, namely cost, durability and e�ciency.
Looking at the aspect of costs, in order to be convenient, a particular kind of pho-
tovoltaic solar cell has to produce electricity to a price similar, or at least close to
be so, to the ones obtained from other sources, that it represented by the purchase
price from the providers. This concept is known in the economical �eld as grid parity
[36, 37]. Nowadays the grid parity for photovoltaics has been reached only in a few
areas of the world in presence of very non common situations, such as in the Hawaii
State, where both high irradiation and minor availability energy from conventional
plants acted towards parity. In the rest of the world the achievement of grid parity
is necessarily bounded to incentives and improvement of characteristics and perfor-
mance by means of research.
Nevertheless, even though cost is the most important factor in determining the suc-
cess of a photovoltaic technology, as we already stated product lifetime and e�ciency
play a role. A product succeeding in just two of these factors will only be suitable
for niche applications.

Figure 1.9: Finsterwalde Solar Park, Germany.
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The e�ort of scienti�c research during the last decades then focused on these three
aspects to improve cell performance and many paths were explored, bringing to a
series of devices that can be grouped into three main generations that we will now
brie�y describe.

1.3.1 First generation solar cells

When addressing to �rst generation solar cells, one refers to devices with a the orig-
inal silicon-based technology that nowadays hold a share of about 84 percent on the
global market, see Fig. 1.10. It is possible to further divide these cells in two groups,
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Figure 1.10: Market shares of photovoltaic technologies in 2008 and forecast for 2012.

di�ering in the production process.
Monocrystalline silicon cells are produced with an expensive and complex pro-
cedure in which a very pure crystal is obtained and cut in slices. After that its
surfaces are doped to enhance charge separation and treated for preventing re�exes
and permit current harvesting. These cells are characterized by very high e�ciency
(14-17%) and long durability but their price is very high.
Poly- or multicrystalline silicon cells are obtained with the same procedure as
monocrystalline ones but in place of pure silicon, electronic production scraps are
used instead. These cells have a characteristic striped surface and lower e�ciency
than mono-Si cells (12-14%) but this comes with a cheaper price. Durability and
performance maintaining are still high.
In Fig. 1.11 the appearance of these two kinds of cells is compared and the higher
purity of monocrystalline ones is clear.
Producers estimate that mono-Si and poly-Si solar cells will reach e�ciencies of
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respectively 20 and 18 percent by 2020, and hence very close to the theoretical
limit of 31% [79], with a consistent decrease of production costs but even in those
situations, materials will have high impact on the �nal price. For this reason new
approaches were attempted for �nding alternatives to replace crystalline silicon in
the production of solar cells.

1.3.2 Second generation solar cells

The family of second generation solar cells is based on the thin �lm technology and
it possible to distinguish three main groups depending on the materials used in the
�lms.
Amorphous silicon (a-Si) solar cells are produced with the technique of vapor
deposition of a thin (1-2 µm) layer of silicon on a �exible grass or plastic substrate.
These cells have a e�ciency of about 8%, but they experience a sudden decrease in
such a parameter after the �rst period of operation.
Cadmium telluride (CdTe) solar cells replace silicon with cadmium telluride which
has a lager absorption spectra and hence a potentially higher e�ciency. Cadmium
would be toxic if released but its percentage of the total weight is very low and the
compound used is very stable and non soluble. Registered e�ciencies are between
10 and 11 percent.
Copper indium gallium selenide (CIGS/CIS) solar cells use several ternary com-
pounds that present crystal lattices suited for charge transport. Their e�ciency is
about 11% and cost reduction is expected in the future.
These devices, despite having lower e�ciency, exhibit several advantages with re-
spect to silicon based solar cells. First of all, the very small thickness of the layers
allow to save a great quantity of material and hence lower the �nal cost. Secondly,

Figure 1.11: Comparison between mono- and polycrystalline solar cells.
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with thin �lm technology it is possible to integrate on a �exible substrate the pro-
duction of more than one cell in a unique step, process that is not feasible in the
case of silicon cells. From an industrial point of view this could lead to automated
continuous processes instead of batch ones with consequent lower unitary prices. In
addiction, �exibility and transparency are very important aspects for architectural
integrability, also in consideration of the rapid expansion of Building Integrated Pho-
tovoltaics, see Section 1.3.4. Finally, these devices have better performances at high
temperatures and, as a consequence of disordered interior structure, in presence of
di�use light. An example of this kind of cells is reported in Fig. 1.12.

Figure 1.12: Thin �lm and organic solar cell. They share �exibility and transparency
properties.

Even if these devices represent a hot topic for researchers, there are several industrial
products on the market and their cumulative share amounted to 14% in 2008, see
Fig. 1.10. According to [37] this technology could experience a rapid success, reach-
ing a percentage of 33% by 2012, with a-Si and CdTe cells leading with respectively
15 and 12%.

1.3.3 Third generation solar cells

Third generation solar cells family groups together a various number of technological
attempts, whose common denominator is the use of semiconducting organic mate-
rials. Carbon is the base element of these latter and since it has the same outer
electric con�guration as silicon, they share some properties. Three main groups can
be signed out, di�ering in the working principles and the measures in which carbon
compounds are used.
Dye sensitized solar cells (DSSC) are electrochemical solar cells in which absorp-
tion of light occurs by means of dye molecules bounded to a substrate of TiO2. A
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fundamental role is played by some negative ions free to move into a liquid phase
that are involved in photon absorption and are regenerated at one of the electrodes.
Organic solar cells (OSC) embrace all the devices in which the photoactive part
is made of organic material, usually two di�erent polymers, with several possibilities
for internal morphology.
Hybrid solar cells are very close to OSCs since working principles and device
structure are in common but one organic material is replaced by an inorganic one.
These devices can be manufactured as thin �lm cells of �exible and low cost sub-
strates (see Fig. 1.12) but in addition organic polymers are mostly soluble and for
this reason make viable the exploitation of very cheap industrial processes like ink-
jet printing, radically decreasing the costs. Moreover, the advantages we reported for
thin �lm cells still hold for OSCs. Anyway, it is important to highlight that by now
there are no commercial products based on these technologies and prototypes are
still con�ned in the laboratories. It is possible to estimate in 3 to 5 years the period
before their availability on the market and the expected prices are interestingly low.

1.3.4 Other recent technologies and applications

Recently it has been proposed to use the concept of light concentration, proper of
solar thermodynamic, on photovoltaic cells too, in order to reduce the quantity of
materials needed and as a consequence the cost. This particular technology is called
Concentrating Photovoltaic (CPV) and concentrating systems can be based on
mirrors (re�ection), lens (refraction) or light guides, see Fig. 1.13. Since a great
amount of light is concentrated in a small spot, high e�ciency solar cells like sili-
con ones are commonly used since they give much better results in absorption. A
negative feature of these devices is their poor architectural integrability due to the
presence itself of the optical system.

Over the last years the attention of the operators of the sector focused on an another
technology, Building Integrated Photovoltais (BIPV) that consists in substitut-
ing conventional materials with photovoltaic ones in the production of architectural
elements. These devices have then to ensure both electrical production and struc-
tural performances, as thermal insulation, wind and rain resistance and rigidity.
This concept has not to be confused with Building Applied Photovoltaics (BAPV),
which is the traditional system of placement of photovoltaic modules on the already
existent structures.
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Figure 1.13: Concentrating systems in PVC devices.



Chapter 2

Dye sensitized solar cells

2.1 Historical background

The �rst recorded observation of a photoelectrochemical phenomenon was made by
Henry Becquerel [8] in 1839, who noted the photocurrent and photovoltage produced
by illumination of a silver chloride-coated platinum electrode in various electrolytes.
His research was motivated by the �rst photographic images made by Daguerre in
1837 and by Fox Talbot's studies made in 1839 on halide process, although the art
of emulsion became a science only with the theoretical analysis of the process by
Gurney and Mott [39] in 1938. Initially, �lms were insensitive to mid-spectrum and
red-light, because the semiconductor energy diagram of the silver halide grains has a
band gap ranging between from 2.7 to 3.2 electron volts (eV). In 1883 Vogel discov-
ered that silver halide emulsion could be sensitized by adding a dye, which extended
the photosensitivity to longer wavelengths [76]. The concept of dye enhancement was
carried over by Moser [55] from photography to photoelectrochemical cells using dif-
ferent dyes on silver halide electrodes. However, the clear recognition of the parallels
between the two procedures, photography and photoelectrochemical, is dated only
to the 1960s, when Gerischer and Tributsch [33] discovered that the same dyes could
be used in both systems. It was also recognized that the dye should be absorbed on
the semiconductor electrodes in a closely packed monolayer for maximum e�ciency
[56]. The concept of using dispersed particles to provide a su�cient interface area
then emerged, and was employed for the photoelectrodes.
After 1970 the interest in photoelectrochemical cells increased; in particular, research
was carried out on dye photophysics, electrolyte redox chemistry and on morphology
of semiconductors, until the announcement in 1991 by Graetzel and co-workers of
the construction of a sensitised electrochemical photovoltaic device with e�ciency of
7.1% under solar illumination [60]. That evolution has continued progressively since
then, with certi�ed e�ciencies over 11% by now.
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2.2 Photoelectrochemical cells

A photoelectrochemical cell (PEC), is a device which generates electrical energy or
hydrogen from solar light, in a process similar to the electrolysis of water. Basic com-
ponents are a semiconducting photoanode and a cathode immersed in an electrolyte.
The main feature of this type of cell is the junction between a semiconductor and
an electrolyte. In most cases the electrolyte is a liquid.
Over the last years, research has focused on two types of PECs, illustrated in Fig.
2.1. The �rst type is the regenerative cell, which converts light into electric power
leaving no net chemical change behind. Photons of energy exceeding that of the band
gap generate electron-hole pairs, which are separated by the electron �eld present in
the space charge layer between semiconductor and electrolyte. The negative charge
carriers move through the semiconductor to the current collector and the external
circuit. The positive holes are driven to the surface where they are collected and
removed by the reduced form of the redox relay molecule, indicated in �gure with
R, oxidizing it: h+ + R → O. The oxidized form O is reduced back to R by the
electrons that re-enter in the cell through the counter electrode, from the external
circuit.
The second type, denoted photosynthetic cells, are inspired to the natural photo-
synthesis. The operation is similar to the �rst type except that there are two redox
systems: one reacting with the holes on the surface of the semiconductor and the
second reacting with the electrons entering the counter-electrode. In the example
shown in Fig 2.1(b), we can observe a cell that generates a chemical fuel, in partic-
ular hydrogen, through the photo-cleavage of water. In this case water is oxidized
to oxygen at the semiconductor surface (anode) and reduced to hydrogen at the
cathode.
Titanium dioxide (TiO2) is the most used semiconductor in PECs, although it has
a large band gap and absorbs only the ultraviolet part of solar emission. This lim-
itation implies a low e�ciency of the cell, because the semiconductor is insensible
to the visible spectrum. The problem was resolved by the separation of the optical
absorption and charge generation phenomena, using an electron transfer sensitizer
absorbing in the visible spectrum to inject charge carriers across the semiconductor-
electrolyte junction into a substrate with a wide band gap. The addition of a dye on
the semiconductor surface led to the birth of a new type of cell that is called dye-
sensitized solar cell (DSSC) or Grätzel Cell. We can say that DSSCs operate and
consist of materials di�erent of a common solar cell, but with the same scope convert
solar energy into electricity. To understand how a DSSC works, we compare it with
a standard silicon solar cell, or p/n cell, and emphasize what are the main di�erence
and similarities between them. The main di�erence with respect to a conventional
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e-

Figure 2.1: Operation of photoelectrochemical cells. a. Regenerative type cell pro-
ducing electric current from sunlight; b. cell that generates a chemical fuel, hydrogen.

p/n cell are the following:

• light absorption occurs in the semiconductor, this leads to photogeneration of
electrons directly in the semiconductor;

• in the semiconductor minority and majority carriers are present. In the n-type
silicon layer, the free electrons are called majority carriers whereas the holes
are called minority carriers. Conversely, in the p-type silicon layer, electrons
are termed minority carriers and holes are termed majority carriers;

• charge separation is driven by the electric �eld in the space charge region. The
electrical �eld is formed at the interface between the n-doped and p-doped
semiconductor;

• the photovoltage is equal to the reduction of the built-in electric potential;

• the semiconductor surface must be free of impurities and grain.

The only important feature shared by the two types of cells is that the recombina-
tion rate at and near the photovoltaically active junction should be minimized to
maximize the e�ciency of the cells.
The summary of the di�erence of the two devices leads to the question how such a
DSSC can work at all as a photovoltaic cell. This will become clear from the following
section.
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Figure 2.2: Diagram of a liquid electrolyte dye-sensitised solar cell.

2.3 Operating principle of the DSSC

A DSSC consists of four main components: a nanoporous semiconductor coated with
a dye, an electrolyte and two transparent conducting electrodes. The device can be
constructed using di�erent combinations of materials choosing among a set of them
that are known to facilitate the motion of charges within the device. In our work we
address the most conventional con�guration, which consists of a layer of nanopar-
ticles of TiO2, a N3-ruthenium (Ru) dye complex and an iodide/triiodide (I−/I−3 )
electrolyte system. The diagram of a DSSC and its operating principle are shown
in Fig. 2.2. The manufacture of the cell is performed through several steps. The
�rst step is the preparation of TiO2 by hydrolysis, which is subsequently treated
to increase the porosity of its surface. Then, the semiconductor is deposed onto a
glass plate which is coated with a layer of a transparent conductive oxide (TCO),
for example SnO2. The thickness of the TiO2 is about 10 µm and its nanoporous
structure leads to a surface area increased by a factor of one thousand compared
to a smooth surface. Characteristic values for porosity are 50% and 65% [34]. The
large internal surface area of the �lm is coated with a monolayer of dye capable
of charge transfer that in the case we consider is ruthenium (Ru) dye complex, by
soaking the nanoporous �lm in dye solution until the desired coverage is achieved.
The dyed nanoporous �lm constitutes the DSSC anode. After, this operation the
TiO2 is �ooded with the electrolyte, which consists of a redox couple solution, in
present case made of iodide (I−) and triiodide (I−3 ). The counter electrode is formed
by sandwiching the semiconductor-dye-electrolyte between the existing transparent
conducting electrode (TCE) and another TCO coated glass plate. The counter elec-
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Figure 2.3: Schematic operating system. Photoexcitation of the sensitizer dye is
followed by electron injection into the conduction band of the mesoporous semicon-
ductor, and electron transport through the metal oxide �lm to the TCO-coated glass
working electrode. The dye molecule is regenerated by the redox system, which is
itself regenerated at the platinised counter electrode by electrons passing through
the external circuit.

trode adjacent to the electrolyte is covered by platinum, which acts as a catalyst for
the redox reaction between electrolyte and the TCO.

During operation, the solar cell is illuminated bye the side of the electrode contact
with the semiconductor, which acts as a collector for the current of electrons the
current collector, as shown in Fig. 2.3. The photons hitting the cell are absorbed by
the molecules Dg of the dye, which are excited to a new state, D∗e :

Dg + hν → D∗e .

The excited molecules inject electrons at high rate (0.1 ps) into the conduction band
of the semiconductor, and they are oxidized to cation state, D+

c . The electrons in the
TiO2 di�use through the solid to the glass electrode and out of the cell. Then, they
then reach the counter electrode, after passing through the external circuit where a
load is placed. Here they reduce the redox species via the following reaction:

I−3 + 2e− → 3I−.

Ions I− are transported through the electrolyte and in contact with the oxidized dye
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molecules they react, bringing back the dye to the initial state or ground state Dg:

D+
c + e− → Dg.

Due to the energy level positioning in the system, the cell is capable of producing
voltage between its electrodes and across the external load. The maximum theoretical
value for the photovoltage at open circuit condition is determined by the potential
di�erence between the conduction band of the TiO2 an the redox potential of the
electrolyte [15]. The operation of the cell is regenerative in nature, since no chemical
substance are neither consumed nor produced during the working cycle.

2.4 Detailed analysis of chemical reactions

We now analyze in detail the reactions that occur at the interfaces between electrolyte-
counter electrode, electrolyte-dye and electrolyte-semiconductor.
At regime operation, under irradiation, at the platinized counter electrode the return
of electrons in the device occurs via the reaction

2e−(Pt) + I−3 → 3I−, (2.1)

where e−(Pt) is an electron from the platinum electrode where the metal acts as a
catalyst. I− ions di�use through the solution reaching the semiconductor, and reduce
the oxidised dye molecules via the electron returning reaction

2D+
c + 3I− → 2Dg + I−3 . (2.2)

It is clear from reactions (2.1) and (2.2) that I−3 ions are consumed at the counter
electrode and produced at the TiO2.
The surface of the semiconductor may not be fully covered by the dye, so there may
be locations where electrolyte and semiconductor are in direct contact. This produces
a loss mechanism within the DSSC, in particular a net oxidation-reduction reaction,
where an electron in the conduction band of the TiO2 reduces the I−3 , namely

I−3 + 2e−(TiO2) 
 3I−. (2.3)

The reduction reaction of the I−3 ions is still under investigation, and several theories
have been proposed in literature. A �rst possible scheme that describes in more detail
the reaction (2.3) that occurs at the interface between electrolyte and semiconductor
is a two electron reaction [24]:

2I• 
 2I + 2e−



2.4 Detailed analysis of chemical reactions 41

2I 
 I2 (2.4)

I + I2 
 I−3 , (2.5)

where I• is an intermediate species. The chemical reactions (2.4) and (2.4) are fast
and are assumed to be in equilibrium [24].
An alternative scheme is based on the introduction of an intermediate species, the
anion radical I•−2 . This species appears in the electron returning reaction (2.2) and
in the oxidation-reduction reaction (2.3). In [42] the following scheme of reactions
is proposed for the net reaction given in (2.3) at the back electrode and at the
semiconductor-electrolyte interface:

I−3 
 I− + I2

e− + I2 → I•−2

2I•−2 → I−3 + I−

This pattern of chemical reactions can be expanded as shown in [7]:

D+
c + 2I− → Dg + I•−2

2I•−2 → I−3 + I− (2.6)

I•−2 + e− → 2I− (2.7)

I−3 + e− → I•−2 + I−.

The lifetime of the radical ion is very short and this is due to the high rate of the
reactions (2.6) and (2.4).
The introduction of the intermediate species has led to further studies, in particular
on the reactions at the interface between dye and semiconductor. In relation to this
problem the following reaction system was proposed [26]:

D+
c + I− → Dg + I•

I• + I− → I•−2

2I• → I−3 + I−.

Transport of these charged species within the electrolyte depends on the solvent used
and also on the tortuous nature of the �lm. We conclude from the above presentation
that the interactions of the electrolyte species at the interfaces within the DSSC are
not well understood and their mathematical characterization is still under scrutiny;
for this reason, we will model them in a simpli�ed manner in the following section.
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2.5 Electrode transport in the semiconductor

As we previously said, electron transport occurs in the TiO2 electrode and we now
address the its features.
The semiconductor nanoparticle network works not only as a large surface area sub-
strate for the dye molecules but also as a transport media for the electrons injected
from the excited dye. The nanoporous structure of the electrode can be viewed as a
network of individual particles through which electrons percolate by hopping from
one particle to the next. Measurements indicate that di�usion of electrons is char-
acterized by a distribution of di�usion coe�cients, which have been related to the
hopping of electrons via surface traps of di�erent depths. These electron traps are
localized at energy states just below the conduction band edge of the TiO2 and they
play a signi�cant role in the electron transport. Trapping of electrons at the TiO2

surface may be a pathway for recombination, resulting in photocurrent losses and
therefore photovoltage losses, due to kinetic reasons.
The di�usion coe�cient of electrons depends on the light intensity. At low light
intensity only deep traps participate in the electron transport determining a low
di�usion coe�cients. Increasing the intensity, deep traps are �lled at steady state
condition, while shallow traps contribute to the electron motion, resulting in a larger
di�usion coe�cient [40].
Understanding the transport of electrons in the electrode in DSSC is very important
for the further development of the device, especially to increase the e�ciency of the
cell.

2.6 Kinetics of operations

We said that the main di�erence between DSSC and a conventional p/n junction
solar cell is the existence of a dye monolayer between semiconductor and electrolyte.
This con�guration does not require excitation in the bulk semiconductor to drive
charge separation. Though this may be an advantage, there are many loss mech-
anisms in DSSCs caused by the porous nature of the semiconductor and the high
contact area between it and the electrolyte. The electrons that are formed after
separation from the dye have a high probability of recombining at the electrolyte-
dye-TiO2 interface. This probability is in�uenced not only by the contact surface,
but also by the rate of the chemical reactions. Within the device, it is desirable to
have very fast rates for the ones that contribute to charge movement in the desired
direction and to have limited or slow rates for reaction that contribute to losses.
Another loss mechanism that occurs in the cell is due to the incomplete coverage of
the surface of the semiconductor by the dye. The current generated by these inac-
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Figure 2.4: State diagram representation of the kinetics of DSSC function. Forward
processes are indicated by blue arrows. The competing loss pathways are shown in
grey.

curacies is called dark current, which may be opposite to the operating current of
the cell. The cell e�ciency increases if the value of dark current is as low as possible
[72].
Figure 2.4 is a photochemical view of the working principle of a DSSC, illustrating
the sequence of electron transfer and charge-transport processes which result in pho-
tocurrent �ow. This �gure also illustrates several competing loss pathways, shown as
blue arrows. These latter include decay of the dye from excited to ground state and
charge recombination of injected electrons with dye cations and with the redox cou-
ple. E�cient electron injection requires the rate of electron injection to exceed the
rate of decay of the dye excited state which is in the range 107 - 1010 s−1. The rate of
electron injection depends on the electronic coupling between the dye excited-state
LUMO orbital and accepting states in the TiO2, and on the relative energetics of
these states. Electron injection rates larger than 1012 s− have been reported for a
range of sensitizer dyes, consistent with e�cient electron injection [22]. However it
should be noted that fast electron injection dynamics requires both strong electronic
coupling of the dye LUMO orbital to the metal oxide conduction-band states, and
a su�cient free energy di�erence to drive the reaction. As such, electron-injection
dynamics are dependent on the energetics of the TiO2 conduction band, and there-
fore on the concentration of potential-determining ions (e.g. Li+) in the electrolyte.
Omission of such ions from the electrolyte can result in an insu�cient energetic
driving force, reducing the quantum yield of charge injection, and thereby reducing
device photocurrent.
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E�cient dye regeneration requires the rate of re-reduction of the dye cation by the
redox couple to exceed that of charge recombination of injected electrons with these
dye cations. This recombination reaction has been shown to be strongly dependent
on the electron density in the TiO2 electrode and therefore on the light intensity
and cell voltage. The regeneration reaction is dependent on the iodide concentration,
electrolyte viscosity and dye structure. For the commonly used sensitizer dye, and
employing a low-viscosity electrolyte, the regeneration reaction has a half-time of
about 1µs, su�ciently fast to compete e�ectively with the recombination reaction
and ensuring that the regeneration reaction can be achieved with unit quantum ef-
�ciency [35].
E�cient charge collection by the external circuit requires the time constant for elec-
tron transport within the TiO2 matrix to be faster than charge recombination of
injected electrons with the redox couple. Electron transport is a di�usive process,
strongly in�uenced by electron trapping in localised sub-bandgap states, resulting
in the dynamics being strongly dependent on position of the TiO2 electron Fermi
level. Typical electron-transport times under solar irradiation are of the order of
milliseconds [63],[30].
Given the relatively slow timescale for charge transport in DSSCs compared with
most other photovoltaic devices, and the extensive interfacial area available for
charge recombination in the device (due to its mesoscopic structure), it is remark-
able that the quantum e�ciency of charge collection can approach unity. The key
factor enabling this high e�ciency is the slow rate constant for the interfacial charge
recombination of injected electrons with the oxidised redox couple. This reaction is
a multi-electron reaction, most simply being described by (2.3) or (2.1). The inter-
mediate states of the mechanism of this reaction have been extensively studied 2.4,
and while the details remain somewhat controversial, it is apparent that without
a catalyst as platinum at the counter electrode, one or more of the intermediates
steps exhibits a signi�cant activation barrier, resulting in a slow overall rate con-
stant for this reaction. The low rate constant for this recombination reaction on
TiO2 is a key factor behind the remarkable e�ciencies achieved to date for DSSCs.
Nevertheless, reaction (2.3) is the primary recombination pathway in DSSCs. The
�ux of this recombination pathway increases with increasing electron density in the
semiconductor electrode.
The kinetics competition between charge transport and recombination in DSSC can
be analysed in terms of e�ective carrier di�usion length Le, given by

Le =
√
Deffτ (2.8)

where Deff is the e�ective electron di�usion length, and τ is the electron lifetime
due to the charge-recombination reaction given by reaction (2.3) [63]. The di�usion
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length increases with light intensity, due to the increased electron density in the
TiO2 �lm, whilst τ shows a proportional decrease, resulting in a value for Le that is
almost independent of light intensity. Typical values for Le are 5-20 µm.
It is important to emphasise that the energetics and kinetics of DSSC may not be
considered interdependently. The kinetics of the interfacial electron-transfer dynam-
ics strongly depend on the energetics of the TiO2/dye/electrolyte interface and on
the density of electrons in the TiO2. Raising the energy of the TiO2 conduction band
reduces recombination losses, and therefore may give a high cell output voltage, but
at the expense of a lower free energy driving force for charge separation, which may
result in a lower quantum e�ciency for charge generation and therefore a lower
output current. In practice, modulation of this energetics and kinetics to achieve
optimum device performance remains one of the key challenges in DSSC research
and development.
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2.7 Mathematical models for DSSCs

We will now present the mathematical models of the physical phenomena, described
so far. These phenomena are quite complex because there are many parameters,
interfacial reactions and chemical species to be taken into account complicating the
formulation of a mathematical model that can describe the device at best.
Over the last decade, several papers concerning with the mathematical simulation
of transport and physical phenomena in DSSCs have been published which provide
valuable insight into the functioning of the cell. We can divide the numerical mod-
els into three groups. The �rst group includes models that do not consider neither
electron transport in the TiO2 network nor the back reaction between electrons and
the electrolyte at the cathode [61]. These simpli�ed models are used to explore the
in�uence of various parameters on the device operation but also allow to compute
the optimal iodide and triiodide concentrations in the cell electrolyte. In fact, the
main e�ect that can be studied with them is mass transport of the ionic species
present between the electrodes in the liquid either in the pores of the mesoporous
material or in the bulk.
The second group of models include the electron transport and the possibility to
study the dependency on time of the various phenomena. As a matter of fact, if
the model is time dependent, the electrons transport through the semiconductor
is a�ected by the trapping/detrapping e�ect, that improves the simulation result
but, at the same time, complicates the numerical solution. In any case, if trap-
ping/detrapping e�ect is accounted for, the the simulation includes only electron
transport [48].
In this way the result of the simulation will be the density distribution of the species
at the end of transition [25], [9].
The last group of model studies the semiconductor-dye-interface representation of
each interfacial charge injection and recombination reaction within the DSSC [62].
This type of model is very complex, but it allows an accurate comparison with ex-
perimental data, in particular to understand the kinetics reaction.

In our work, we analyse the �rst two types of models: in particular, we study a
modi�ed model proposed by Grätzel and co-workers [61] and a model that includes
electron transport. All these models will be considered in stationary conditions.

2.7.1 Mass transport model for a DSSC

The model proposed in this section is an improvement of the model presented in
[61]. We are interested in the steady state operation of the device and we want to
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Figure 2.5: Schematic representation of the domain of the model for a dye-sensitised
solar cell.

investigate the mass transport within the cell. The parameters that in�uence mass
transport are various and the most important ones are the thickness the cell and its
liquid bulk layer, but also species di�usion coe�cients, the light irradiation and the
ion migration play an important role.
We assume the same simpli�cations as in the model proposed in [61], in particular:

• the cell is irradiated perpendicularly to its electrodes;

• under open-circuit operation, no successful injection takes place;

• electrons are produced by illuminating the region of the device where the dyed-
TiO2 is present;

• the I−3 production and I− the consumption rate are proportional to the number
of photons absorbed for unit time at any location;

• the in�uence of TCO, TCE and glass are neglected.

The cross-section of the device is schematically depicted in Fig. 2.5. The domain
Ω ≡ Ωs ∪ Ωb representing respectively a section of the cell is divided in two sub-
regions: Ωs where the dyed-TiO2 nanoporous layer is mixed uniformly with the
electrolyte and Ωb where there is only the bulk electrolyte layer. The boundary of
the domain, Γ ≡ ∂Ω, is divided in four subregions ΓI , Γout, Γin and ΓN , representing
the interface between the two subregion, the anode, the cathode and interior arti�-
cial boundaries respectively. The subregions connected with anode and cathode are
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indicated with Γout and Γin because at Γout the electrons leave the cell, while at Γin

they enter back into the device.
With nI− and nI−3 we indicate the negatively charged carrier densities (ionic frac-
tion per volume (m−3)) while with nC we denote positively charged carrier density
(cations). We refer to ni,s and ni,b for the restrictions respectively on Ωs and Ωb. In
other works instead, such as in [61], the ionic concentrations in the electrolyte (mM)
are considered.
Considering �rst Ωs, taking into account the stechiometric coe�cients of the reac-
tions (2.2) and (2.3), the densities of the redox ions and cations obey to:

−1

q
divJI−, s =

3

2
G

−1

q
divJI−3 , s = −1

2
G

1

q
divJC, s = 0

in Ωs, (2.9)

In the system (2.9) JI−, s, JI−3 , s and JC, s denote the iodide, triiodie and cation
charge �ux densities respectively, while G is the generation term, that is the number
of electrons successfully injected in the TiO2 per unit of time and volume. It is
related to the current, I, that �ows out of the cell, via:

G =
I

qηls
, (2.10)

where q is the value of the elementary charge, ls the thickness of the semiconductor
layer and η the TiO2 porosity. From this relation, we can observe an important aspect
of this unusual electronic device model: the current that �ows out of the device is an
input parameter and not, as usually happens in the design of an electronic circuit,
an output computed quantity.
The drift-di�usion model is used for the charge density �uxes:

JI−, s = qDI−,s∇nI−,s − qµI−nI−,s∇ϕs

JI−3 , s = qDI−3 ,s
∇nI−3 ,s − qµI−3 nI−3 ,s∇ϕs

JC, s = −qDC,s∇nC,s − qµCnC,s∇ϕs

in Ωs, (2.11)

where the parametersDi,s and µi,s are the charge carrier di�usion coe�cients and the
carrier mobilities respectively, while ϕ is the electric potential. The relation between
the di�usion coe�cient and the mobility for each species can be described through
the Einstein relation

Di,s = µi,sVTH , (2.12)



2.7 Mathematical models for DSSCs 49

where VTH is the thermal voltage, de�ned as VTH = KBT/q, KB being the Boltz-
mann constant and T the absolute temperature. The electric potential ϕ is assumed
to satisfy Poisson equation

− div (ε0εr,s∇ϕs) = q(nC,s − nI−,s − nI−3 ,s) in Ωs, (2.13)

where ε0 is the vacuum permittivity and εr,s is relative dielectric constant for the
mixture of dyed-TiO2 and electrolyte.
Next, we consider the equations in Ωb. In this region there is only the bulk liquid,
then the continuity equations for the carriers are expressed as follows:

−1

q
divJI−, b = 0

−1

q
divJI−3 , b = 0

1

q
divJC, b = 0

in Ωb. (2.14)

We observe that the continuity equations for to the cations that appear in both
systems (2.9) and (2.14) are homogeneous, then we can conclude that this species is
not involved in charge transfer. As in Ωs, the charge �ux densities Ji, b are assumed
to obey the Drift-Di�usion model:

JI−, b = qDI−,b∇nI−,b − qµI−nI−,b∇ϕb

JI−3 , b = qDI−3 ,b
∇nI−3 ,b − qµI−3 nI−3 ,b∇ϕb

JC, b = −qDC,b∇nC,b − qµCnC,b∇ϕb

in Ωb. (2.15)

Again, the ionic di�usion coe�cient Di,b and the ionic mobility µi,b are mutually
related via the Einstein relation:

Di,b = µi,bVTH . (2.16)

and for the electric potential ϕ the following Poisson equation holds:

− div (ε0εr,b∇ϕb) = q(nC,b − nI−,b − nI−3 ,b) in Ωb, (2.17)

where εr,b is the relative dielectric constant for the bulk liquid in Ωb.
To close the model, we need to specify the boundary conditions and the interfacial
conditions on ΓI . We start introducing the boundary conditions for the continuity
equation (2.9) de�ned in Ωs and we observe that at the anode, Γout, there are no
chemical reactions that involve the three species, so the net �uxes related with them
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are null and we can impose the following Neumann conditions:

JI−, s ·ν = 0

JI−3 , s ·ν = 0

JC, s ·ν = 0

on Γout, (2.18)

where ν is the outward normal unit vector along the boundary Γ. On ΓN,s and
ΓN,b, we impose Neumann homogeneous conditions, because these boundaries are
arti�cial boundaries where symmetry conditions hold. At the interface of the two
regions, we need to apply two condition for each species. The �rst condition is the
continuity of the carrier �ux densities, while in the second condition we impose that
the ionic densities change discontinuously at the interface according to the porosity
of the TiO2, that is:

JI−, s ·ν = JI−, b ·ν

JI−3 , s ·ν = JI−3 , b ·ν

JC, s ·ν = JC, b ·ν

on ΓI , (2.19)

nI−s = η ·nI−b
nI−3,s = η ·nI−3,b
nCs = η ·nCb

on ΓI , (2.20)

For the continuity equations (2.14), we have to impose the boundary condition on
the cathode, Γin, where electrons enter back into the cell. At the cathode reaction
(2.1) takes places and in particular triiodides are consumed and the iodides are pro-
duced by the re-entered electrons. Again, taking into consideration the steichiometric
parameters, the following Neumann condition holds on Γin

JI−,b ·ν =
3

2
Jext

JI−3 ,b ·ν = −1

2
Jext

JC,b ·ν = 0

on Γin, (2.21)

where Jext is the �ux of electrons that �ow out of the device, that we already said
to be an input parameter.
The only charge that �ows out of the device is that of electrons, so that for the other
ionic species within the cell the conservation of the initial mass must hold. This fact
is expressed in mathematical terms with the following integral conditions, stating
that the total number of the ionic species within the cell does not change:
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∫
Ωs

nI−,s(x)dx +

∫
Ωb

nI−,b(x)dx = n0
I−,s|Ωs|+ n0

I−,b|Ωb|∫
Ωs

nI−3 ,s(x)dx +

∫
Ωb

nI−3 ,b(x)dx = n0
I−3 ,s
|Ωs|+ n0

I−3 ,b
|Ωb|∫

Ωs

nC,s(x)dx +

∫
Ωb

nC,b(x)dx = n0
C,s|Ωs|+ n0

C,b|Ωb|

(2.22)

n0
i,s and n

0
i,b being the initial densities of the species called also dark densities. Finally,

the boundary conditions for the two Poisson equations are:

ε0 εr,s∇ϕs ·ν = 0 onΓout

ε0 εr,s∇ϕs ·ν = 0 onΓN,s

ϕb = 0 onΓin

ε0 εr,b∇ϕb ·ν = 0 onΓN,b

(2.23)

while the interfacial conditions on ΓI are

ϕs = ϕb

ε0εr,s∇ϕs · ν = ε0εr,b∇ϕb · ν
on ΓI . (2.24)

Since the potential is known up to a constant, we are allowed to set it equal to zero
at one of the boundaries.
Summarizing the model described in this section, the subproblems that have to be
solved are:

Iodide subproblem

−div
(
µI−,sVTH∇nI−,s − µI−,s nI−,s∇ϕs

)
=

3

2
G in Ωs

−div
(
µI−,bVTH∇nI−,b − µI−,b nI−,b∇ϕb

)
= 0 in Ωb(

µI−,sVTH∇nI−,s − µI−,s nI−,s∇ϕs
)
·ν = 0 on Γout ∪ ΓN,s(

µI−,bVTH∇nI−,b − µI−,b nI−,b∇ϕb
)
·ν =

3

2
Jext on Γin(

µI−,bVTH∇nI−,b − µI−,b nI−,b∇ϕs
)
·ν = 0 on ΓN,b

JI−,s ·ν = JI−,b ·ν on ΓI

nI−s = η ·nI−b on ΓI

(2.25)
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Triiodide subproblem



−div
(
µI−3 ,sVTH∇nI−3 ,s − µI−3 ,s nI−3 ,s∇ϕs

)
= −1

2
G in Ωs

−div
(
µI−3 ,bVTH∇nI−3 ,b − µI−3 ,b nI−3 ,b∇ϕs

)
= 0 in Ωb(

µI−3 ,sVTH∇nI−3 ,s − µI−3 ,s nI−3 ,s∇ϕs
)
·ν = 0 on Γout ∪ ΓN,s(

µI−3 ,bVTH∇nI−3 ,b − µI−3 ,b nI−3 ,b∇ϕb
)
·ν = −1

2
Jext on Γin(

µI−3 ,bVTH∇nI−3 ,b − µI−3 ,b nI−3 ,b∇ϕb
)
·ν = 0 on ΓN,b

JI−3 ,s ·νs = JI−3 ,b ·νb on ΓI

nI−s,3 = η ·nI−3,b on ΓI

(2.26)

Cation subproblem



−div
(
µC,sVTH∇nC,s + µC,s nC,s∇ϕs

)
= 0 in Ωs

−div
(
µC,bVTH∇nC,b + µC,b nC,b∇ϕs

)
= 0 in Ωb(

µC,sVTH∇nC,s + µC,s nC,s∇ϕs
)
·νs = 0 on Γout ∪ ΓN,s(

µC,bVTH∇nC,b + µC,b nC,b∇ϕb
)
·νb = 0 on Γin ∪ ΓN,b

JC,s ·νs = JC,b ·νb on ΓI

nCs = η ·nCb
on ΓI

(2.27)

Electric potential subproblem



−div
(
ε0εr,s∇ϕs

)
= q(nC,s − nI−,s − nI3

−,s
) in Ωs

−div
(
ε0εr,b∇ϕb

)
= q(nC,b − nI−,b − nI3

−,b
) in Ωb

ε0 εr,s∇ϕs ·νs = 0 on Γout,

ε0 εr,s∇ϕs ·νs = 0 on ΓN,s,

ϕb = 0 on Γin,

ε0 εr,b∇ϕb ·νb = 0 on ΓN,b,

(2.28)
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Integral conditions∫
Ωs

nI−,s(x)dx +

∫
Ωb

nI−,b(x)dx = n0
I−,s|Ωs|+ n0

I−,b|Ωb|∫
Ωs

nI−3 ,s(x)dx +

∫
Ωb

nI−3 ,b(x)dx = n0
I−3 ,s
|Ωs|+ n0

I−3 ,b
|Ωb|∫

Ωs

nC,s(x)dx +

∫
Ωb

nC,b(x)dx = n0
C,s|Ωs|+ n0

C,b|Ωb|

(2.29)

2.7.2 Electron transport model for a DSSC

In the previous section we introduced a mass transport model for DSSC, which does
not include the treatment of the electron transport in the semiconductor electrode.
Now, we present a model in which both motion of the photo-generated electrons and
ionic species are considered. Cations provide the charge neutrality to the electrolyte,
nevertheless they are not involved in the charge transport process in the device. In
comparison with the system of the equations (2.25)�(2.29), we have to add a conti-
nuity equation, with the electron density �ux once again modeled by Drift Di�usion
model and two new terms for electron generation and recombination. In addition, the
integral conditions, related to the iodide and triiodide species, need to be changed
since instead of mass conservation we have to consider the stoichiometric balances
of the redox reactions.
We divide the structure of the DSSC in the same way as in the previous section
and we use the same notation for the domain, the boundary and the ionic species
densities. In addition, we introduce the electron densities ne and the charge carrier
density Je.
The �rst important equation that we introduce is the continuity equation for con-
duction band electrons

− 1

q
divJe = G(x)−R in Ωs, (2.30)

where G(x) and R(x) denoting respectively photo generation and recombination by
the back-reaction (2.3) of electrons. There are many ways to model the generation
term. A �rst approach is based on an optical model of the device, which leads to
very accurate results, see [75], but we do not consider it in our work. A simpler way
is to use a generation term of the following form

G(x) =

∫ λmax

λmin

α(λ) Φ(λ) e−α(λ)x dλ. (2.31)
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In this relation, α denotes the absorption coe�cient, Φ is the spectral incident photon
�ux density, λmin and λmax are the wavelengths that limit the absorption band of
the DSSC.
We assume that only electrons from the conduction band can recombine with the
triiodide in the electrolyte (see reaction (2.3)). We also assume that recombination
is linearly dependent on the electron density, so that we can write the relative term
as [26]

R(x) = ke(ne(x)− n0
e) (2.32)

Here, ke denotes electron relaxation rate constant and n0
e is the initial electron con-

centration in the nanoporous layer. We also consider another more complex model
recombination, which includes nonlinear dependence on iodides and triodides densi-
ties this model reads [10]

R(x) = ke

ne
√
nI−3 ,s

nI−,s
− n0

e

√√√√ n0
I−3 ,s

(n0
I−,s)

3
nI−, s

 . (2.33)

As in previous section we use the Drift-Di�usion equation to model for the carrier
�ux densities and in particular for electrons it reads

Je = qDe∇ne − qµene∇ϕ (2.34)

where De is electron di�usion coe�cient in the TiO2, depending on the porosity of
the semiconductor. According to [57] for porosity values such that P ∈ [0.41, 0.7] we
have

De = β|P − Pc|µ (2.35)

with the critical porosity Pc set as 0.76, the power law exponent, µ=0.82, and β

is a constant equal to 4 · 10−8 m−1s−1. For porosity values, P < 0.41, the electron
di�usion coe�cient is calculated with:

De = 1.69 · 10−8(−17.48P 3 + 7.39P 2 − 2.89P + 2.15). (2.36)

In our model we simply assume in a more classical way that Einstein relation hold
for the di�usion coe�cient, that is:

De = µeVTH . (2.37)

The continuity equation and the drift-di�usion model for the other three ionic species
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are the same as in the previous section, except for the right-hand side term of the ones
relative to iodides and triodides, since the contributions due to the recombination
reaction have to be added. For completeness we report the continuity equations for
iodides, triiodides and cations in Ωs:

−1

q
divJI−, s =

3

2
(G−R)

−1

q
divJI−3 , s = −1

2
(G−R)

1

q
divJC, s = 0

in Ωs, (2.38)

where G is given by (2.31) and R is given by one of the two relations (2.32) or (2.33).
In Ωb we can write the following equations for the three ionic species:

−1

q
, divJI−, b = 0

−1

q
, divJI−3 , b = 0

1

q
divJC, b = 0

in Ωb. (2.39)

The Drift-Di�usion relations for the iodide, triiodide and cations in the two region
are given by (2.11) in Ωs and (2.15) in Ωb respectively.
The electric potential ϕ is coupled with ionic densities by means of the Poisson
equation, the only modi�cation with respect to the previous section being on the
right hand side for the subdomain Ωs, where ne ho to be added:

− div (ε0εr,s∇ϕ) = q(nC,s − nI−,s − nI−3 ,s − ne) in Ωs, (2.40)

while in the liquid bulk we still have

− div (ε0εr,b∇ϕ) = q(nC,b − nI−,b − nI−3 ,b) in Ωb. (2.41)

Finally we introduce the boundary conditions needed to close the problem. For
electrons we impose:

ne = Nc exp

(
−ϕbar
VTH

)
on Γout (2.42)

Je ·νs = 0 on ΓI (2.43)

Je ·νs = 0 on ΓN,s (2.44)

Here Nc is the conduction band density of states, while ϕbar is the thermionic emis-
sion injection barrier height for electrons at the anode. The �rst condition (2.42) is a
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Figure 2.6: Schematic representation of the �uxes within the DSSC

typical result of the assumption of ohmic behavior of the semiconductor TCO glass
interface, while (2.44) takes into account the fact that electrons cannot �ow in the
region where there is only the liquid bulk.
For the boundary conditions of the continuity equation (2.38) de�ned in Ωs, we ob-
serve that at the anode, Γout, there are no chemical reactions that involve the three
species, so the net relative �uxes are null and we can impose the following Neumann
conditions:

JI−,s ·νs = 0

JI−3 ,s ·νs = 0

JC,s ·νs = 0

on Γout. (2.45)

For each ionic species it necessary to consider two conditions on the interface. As
before, the �rst one is given by the continuity of the charge �ux densities and the
second takes into account that the ionic densities change discontinuously at the
interface according to the porosity of the TiO2. The conditions for the �uxes on ΓI

are then:
JI−,s ·ν = JI−,b ·ν

JI−3 ,s ·ν = JI−3 ,b ·ν

JC,s ·ν = JC,s ·ν

on ΓI , (2.46)

while the conditions for the discontinuity of the ionic charges on ΓI read

nI−s = η ·nI−b
nI−3,s = η ·nI−3,b
nCs = η ·nCb

on ΓI , (2.47)

At stationary regime a current Je de�ned by

Je =
1

|Γout|

∫
Γout

Je ·ν,
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�ows out of the anode and reaches the cathode through the external circuit. Here
reaction (2.1) takes place resulting in net �uxes for iodides and triiodides that lin-
early dependent on Je with parameters equal to the stoichiometric coe�cient. We
then impose the following boundary conditions on Γin:

JI−,b ·νb =
3

2
Je

JI−3 ,b ·νb = −1

2
Je

JC,b ·νb = 0

on Γin. (2.48)

The last relation meaning as usual that cations are con�ned in the cell.
The �rst charge conservation condition expresses the fact that the total number of
cations within the cell does not change with respect to the con�guration in the dark

∫
Ωs

nC,s(x)dx +

∫
Ωb

nC,b(x)dx = n0
C,s|Ωs|+ n0

C,b|Ωb|. (2.49)

The second boundary condition we consider is the conservation of the total number
of iodine atoms. Taking into account that triodides have three atoms instead of
iodides that are composed by just one, the condition reads:

∫
Ωs

(nI−3 ,s(x) + 1/3nI−,s(x))dx+∫
Ωb

(nI−3 ,b(x) + 1/3nI−,b(x))dx = (n0
I−3 ,s

+ 1/3n0
I−,s)|Ωs|+ (n0

I−3 ,b
+ 1/3n0

I−,b)|Ωb|.

(2.50)
The third integral condition describes the balance between electrons and iodides
resulting from reactions (2.1). In this reaction every three iodide ions two conduction
band electrons, are generated so we can impose that

∫
Ωs

(1/2ne(x) + 1/3nI−,s(x))dx+∫
Ωb

(1/3nI−,b(x))dx = (1/2n0
e + 1/3n0

I−)|Ωs|+ 1/3n0
I−3 ,b
|Ωb|.

(2.51)

Finally the boundary conditions and interfacial conditions for the two Poisson equa-
tion are the same as in the previous section, namely, relations (2.23) and (2.24).
Again we summarise the model,dividing it into subproblems.
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Electron subproblem

−div
(
µeVTH∇ne − µe ne∇ϕs

)
= G−R in Ωs

ne(x) = Nc exp

(
−ϕbar
VTH

)
on Γout(

µeVTH∇ne − µe ne∇ϕs
)
·νs = Je on Γout(

µeVTH∇ne − µe ne∇ϕs
)
·νs = 0 on Γin ∪ ΓN,s

(2.52)

Iodide subproblem



−div
(
µI−,sVTH∇nI−,s − µI−,s nI−,s∇ϕs

)
=

3

2
(G−R) in Ωs

−div
(
µI−,bVTH∇nI−,b − µI−,b nI−,b∇ϕb

)
= 0 in Ωb(

µI−,sVTH∇nI−,s − µI−,s nI−,s∇ϕs
)
·ν = 0 on Γout ∪ ΓN,s(

µI−,bVTH∇nI−,b − µI−,b nI−,b∇ϕb
)
·ν =

3

2
Je on Γin(

µI−,bVTH∇nI−,b − µI−,b nI−,b∇ϕb
)
·ν = 0 on ΓN,b

JI−,s ·νn = JI−,b ·νb on ΓI

nI−s = η ·nI−b on ΓI

(2.53)
Triiodide subproblem



−div
(
µI−3 ,sVTH∇nI−3 ,s − µI−3 ,s nI−3 ,s∇ϕs

)
= −1

2
(G−R) in Ωs

−div
(
µI−3 ,bVTH∇nI−3 ,b − µI−3 ,b nI−3 ,b∇ϕb

)
= 0 in Ωb(

µI−3 ,sVTH∇nI−3 ,s − µI−3 ,s nI−3 ,s∇ϕs
)
·ν = 0 on Γout ∪ ΓN,s(

µI−3 ,bVTH∇nI−3 ,b − µI−3 ,b nI−3 ,b∇ϕb
)
·ν = −1

2
Je on Γin(

µI−3 ,bVTH∇nI−3 ,b − µI−3 ,b nI−3 ,b∇ϕb
)
·ν = 0 on ΓN,b

JI−3 ,s ·νs = JI−3 ,b ·νb on ΓI

nI−s,3 = η ·nI−3,b on ΓI

(2.54)
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Cation subproblem

−div
(
µC,sVTH∇nC,s + µC,s nC,s∇ϕs

)
= 0 in Ωs

−div
(
µC,bVTH∇nC,b + µC,b nC,b∇ϕb

)
= 0 in Ωb(

µC,sVTH∇nC,s + µC,s nC,s∇ϕs
)
·νs = 0 on Γout ∪ ΓN,s(

µC,bVTH∇nC,b + µC,b nC,b∇ϕb
)
·νb = 0 on Γin ∪ ΓN,b

JC,s ·νs = JC,b ·νb on ΓI

nCs = η ·nCb
on ΓI

(2.55)

Electric potential subproblem

−div
(
ε0εr,s∇ϕs

)
= q(nC,s − nI−,s − nI3

−,s
) in Ωs

−div
(
ε0εr,b∇ϕb

)
= q(nC,b − nI−,b − nI3

−,b
) in Ωb

ε0 εr,s∇ϕs ·ν = 0 on Γout

ε0 εr,s∇ϕs ·ν = 0 on ΓN,s

ϕb = 0 on Γin

ε0 εr,b∇ϕb ·ν = 0 on ΓN,b

(2.56)

Integral conditions∫
Ωs

(nI−3 ,s(x) + 1/3nI−3 ,s(x))dx+∫
Ωb

(nI−3 ,b(x) + 1/3nI−3 ,b(x))dx = (n0
I−3 ,s

+ 1/3n0
I−3 ,s

)|Ωs|+ (n0
I−3 ,b

+ 1/3n0
I−3 ,b

)|Ωb|∫
Ωs

(1/2ne(x) + 1/3nI−,s(x))dx +

∫
Ωb

(1/3nI−,b(x))dx = (n0
e + 1/3n0

I−)|Ωs|+ 1/3n0
I−3 ,b
|Ωb|∫

Ωs

nC,s(x)dx +

∫
Ωb

nC,b(x)dx = n0
C,s|Ωs|+ n0

C,b|Ωb|

(2.57)
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Chapter 3

Organic solar cells

This chapter is devoted to the second type of solar cells we considered in our work,
namely organic solar cells (OSC). What makes OSCs di�erent from the devices de-
scribed in the previous chapter is that the photo-active layer is composed of one or
more molecular or polymeric organic materials rather than of a mixture of ions in
a liquid solution. The main advantage of a OSC over DSSCs is the increased me-
chanical and thermal robustness of such devices which, however, comes at the cost
of slightly lower energy conversion e�ciencies. Furthermore, from the physical point
of view OSCs have little in common with DSSCs as the phenomena causing energy
absorption is the transit of electrons in the photosensitive layer to higher energy
states within the same material rather than an oxidation reaction. Nonetheless, as
will be shown later, the mathematical equations stemming by the di�erent models
bear many similarities. Although organic electronics have earlier origins, the key
event in the historical development of OSCs was the discovery of conductive organic
polymers which is set to 1977 by Heeger, MacDiarmid and Shirakawa, whose work
was so important to earn them the Nobel Prize in Chemistry in 2000 [68]. In 1985
in his pioneering work [73] Tang showed the �rst organic solar cell with an e�ciency
of about 1%. Many developments have been made since then and nowadays the ef-
�ciency record is 8.3%, obtained by Heliatek laboratories [41] using small organic
molecules and a particular tandem architecture in which two cells are stacked.
In this chapter we �rst illustrate the basic concepts of organic electronics and then
we switch to the physical phenomena underlying the working principle of these cells.
After that, the various types of internal morphologies are described and �nally we
discuss the main mathematical models for OSCs presently available in the special-
ized literature and highlight some improvements that where introduced during the
development of the present thesis.
Our presentation of organic electronics is far from being exhaustive. For a thorough
details see, for example, [45] while for the state of the art in device morphology we
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refer see, e.g., [52].

3.1 Organic electronics

To introduce organic electronics we might say that the role played by silicon in inor-
ganic electronics is taken by carbon in organic materials. These two elements share
the outer electron con�guration and, as silicon compounds can be either insulators
or conductors, carbon molecules and macromolecules show the same variety of be-
haviour depending on their structure. Carbon atom has six electrons, four of which
in the outer orbitals (2s22p2). When bound together, these orbitals can hybridize
in three forms sp1, sp2 or sp3 and therefore they can give origin to three kinds of
bounds [3]. The most interesting state for organic electronics is sp2 which is shown
in Fig. 3.1. When sp2 hybridized carbon atoms are bound together, a double bond

Figure 3.1: sp2 orbitals, as linear combination of atomic orbitals.

is formed by the interaction of two sp2 orbital (σ bond) and of the two remaining p
orbitals (π bond). The �rst interaction is a strong one, which determines the struc-
ture of the molecule and the electrons involved are con�ned with high ionization
potentials. π-type bonds are instead weaker and the electrons are more delocalized
and they are responsible of the semiconducting properties of some organic molecules.
A classical example of this structure is represented by ethylene, see Fig. 3.2.
The property of an organic structure to set up delocalized molecular orbitals is called
conjugation. In particular, in carbon atom sequences like the ones in organic poly-
mers, conjugation occurs when single and double covalent bonds appear alternately.
In such a situation a series of molecular orbitals is formed by interference of electron
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Figure 3.2: σ and π molecular orbitals in case of ethylene.

wavefunctions, each with a di�erent energy level, and just half of them (π-type) are
�lled by electrons, while the remaining (π∗-type) are left unoccupied. The highest
occupied π molecular orbital is called HOMO and it is the inorganic counterpart of
the valence band in organic semiconductors, while the lowest unoccupied π∗ molec-
ular orbital is called LUMO and corresponds to the conduction band. Between them
there is a forbidden range of energies, analogous to the concept of energy gap.
When a neutral molecule gains an electron, it occupies the lowest free π∗ orbital. If
an electron is lost instead, the uncharged molecule is assumed to gain a hole, which
occupies the highest π orbital. Materials showing these two behaviors are respec-
tively called electron acceptors and electron donors and the phenomenon is strictly
connected with the concept of electron a�nity. Charges can move in the organic ma-
terial by means of two processes, motion inside each molecule and the intermolecular
hopping. The �rst is a direct consequence of the phenomenon of delocalized molecular
orbitals we explained before. Coherent intermolecular transmission is very unlikely
since in an organic solid, molecules are bound together by weak Van der Wals forces,
that lead to poor orbital overlap. Charges move instead from a molecule to another
by means of a combination of phononic vibrations and quantum tunneling, respec-
tively for overcoming energetic and spatial barriers. Fig. 3.3 reports a schematic
representation of the phenomenon. Intramolecular coherent transport is much faster
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Figure 3.3: Hopping event. A phonon has to be absorbed in order to �ll the energetic
gap. Then the spatial gap is overcome with a tunneling event.

than tunneling-based intermolecular one. For this reason the latter acts as a bottle-
neck for charge motion, bringing to the characteristic low global mobility values for
organic semiconductors, usually in the range of 10−11-10−7 m2V−1s−1.
Organic materials have other features that, in addiction to the ones we already ex-
plained, can be seen as advantages with respect to classical inorganic semiconductors
and for this reason researchers started to use them in photovoltaics. First of all they
are much cheaper and employing them in the fabrication of solar cells could bring
to an important reduction in the material cost. Secondly they are mainly soluble
an this opens to several inexpensive deposition techniques like casting, spin coating
and ink-jet printing, unsuitable for inorganic semicondutors. All these techniques
take place at low temperatures, which allows devices to be fabricated on plastic sub-
strates. Moreover they have particular characteristics of transparency, colour, light
weight and �exibility that can be exploited in many applications.
Several conjugated materials have been synthesized and in this work we focused
mainly on polymers. Some examples of molecules used in photovoltaics are reported
in Fig. 3.4 where on the �rst row are shown hole-conducting (p-type) polymers
while on the second are electron-conducing (n-type) materials, in particular PCBM,
a derivative of fullerene, a non-organic compound of carbon. All these materials can
absorb light in the visible-UV parts of the spectrum and the resulting neutral excited
state is called singlet exciton, an analogue of a bound electron-hole pair in conven-
tional inorganic semiconductors but with higher values of binding energy between
0.1-1.4 eV.
These aspects are better discussed in the next section, where the operational princi-
ples of OSCs are outlined together with the description of the device morphologies
used in producing solar cells.
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Figure 3.4: Some conjugated polymers and a soluble C60 derivative commonly applied
in solar cells.

3.2 Operating principles and device structure of OSCs

As we stated previously, when a conjugated material is illuminated with visible or
UV radiation, excited states named excitons are created but unlike what happens
in classical semiconductors, they do not spontaneously deliver an electron-hole pair.
This is due to two facts: �rst charge carriers move slowly because of the low mobilities
and, second, dielectric constants are very small (εr ∼ 3-4) and make Coulomb attrac-
tive forces more important. Singlet excitons can di�use moving from a molecule to
another or they can decay producing a photon or a long-lived and lower energy ex-
cited state called triplet. Excitons that di�use to an interface between two di�erent
materials may transition to a state which is intermediate between strong coupling
and complete dissociation, called polaron pair. In this con�guration charges are still
bound together but lie each on one side of the material interface and their coulombic
attraction is partially screened by the chemical potential drop due to the di�erence in
electron a�nity. Polarons are trapped on the interface and do not di�use. They can
either dissociate into free charges, breaking the coulombian bond under the action
of an electric �eld, or decay back to the exciton state, di�using into one of the two
materials in contact. The concept of polaron pair will be clearer when introducing
the internal device structure of OSCs.
The common design of an OSC is represented in Fig. 3.5. The photoactive layer is
usually sandwiched between two electrodes made respectively of transparent indium
tin oxide (ITO)-covered glass and aluminum. The two contacts may be modi�ed by
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Figure 3.5: Common design of an organic solar cell.

the introduction of other layers, for example as in Fig. 3.5 PEDOT:PSS and lithium
�uoride, in order to diminish the energy barrier heights and thus improve charge
injection properties. The architecture of the photoactive layer is one of the most
important factors in determining the e�ciency of the solar cell and the evolution of
the design used in practice is represented in Fig. 3.6.

Figure 3.6: Evolution of device architectures of conjugated polymer-based photo-
voltaic cells: (a) single layer, (b) bilayer, (c) disordered bulk heterojunction and (d)
ordered bulk heterojunction (reproduced from [17]).

First prototypes of OSCs had an active layer made of a single organic material
(Schottky-type devices) and charges could be dissociated at the Schottky junction,
see Fig. 3.7(a). For the reduced di�usion length of excitons in organic materials
(∼ 3-10 nm) only the ones generated closely to the small area next to the contact
(indicated by W in Fig. 3.7(a)) could contribute to the photocurrent. In addiction
opposite charges had to travel in the same material with high probability of recom-
bining back to the exciton state and hence limiting further the current.
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(a) Single layer device. (b) Double layer device.

Figure 3.7: Energy level diagrams for single and double layer devices.

As we previously reported, a signi�cant improvement in device performance is ob-
tained using two di�erent materials in the photoactive layer arranged with a biplanar
con�guration. The materials need to have di�erent electron a�nities, respectively
acting as electron-acceptor (n-type) and electron-donor (p-type). The working prin-
ciple of a biplanar device is of particular interest for the development of the mathe-
matical models used later on, therefore we analyse it here in more detail.
In the situation depicted in Fig. 3.8(a), the absorption of a photon has occurred
in either materials and an exciton has been created. After that, the exciton starts
to di�use into the organic material and since it is neutrally charged the motion is
driven only by concentration gradient with a characteristic di�usion length of a few
nanometers.

(a) Exciton generation and di�usion (b) Polaron pair creation

Figure 3.8: Photogeneration mechanism.

Fig. 3.8(b) clari�es the concept of polaron, or geminate pair. When an exciton is able
to reach the donor-acceptor interface before decaying, the potential drop stretches
it, generating a new particle, named polaron, in which charges are still coulombically
bound with a lower energy and are localized in the two di�erent materials. Polarons
do not move on the interface and in their evolution they can either recombine back
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to the exciton state or generate two free charge carriers under the action of the
electric �eld.
Once charges are free to move (Fig. 3.9) they are transported with hopping events
by drift caused by the built-in �eld, though di�usion can play an important role.
Finally charges are collected at the electrodes generating the photocurrent.

Figure 3.9: Transport of charge carriers.

As we previously said, excitons have a limited characteristic di�usion length (a few
nanometers) while the bilayer of organic materials has a thickness of 100 nm or
more. The consequence of this is that only the excitons that are generated in the
proximity of the interface are successfully dissociated, while the majority of them
decay to the ground state. Hence the active zone occupies only a minor portion of
the device area, as it is shown in Fig. 3.7(b).
To overcome this limitation bulk heterojunction (BHJ) devices were conceived, in
which donor and acceptor materials are blended together in order to maximize the
interfacial area, see Fig. 3.10. In this way the distance that excitons have to cover

Figure 3.10: Bulk heterojuncion donor-acceptor blend.

before �nding a dissociation site is intended to be of the same order of the di�usion
length and a large part of them is successfully converted into the polaron form. The
active zone extends throughout the full absorption region, as illustrated in Fig. 3.11
together with the energy levels diagram. The photoactive blends for BHJ devices
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Figure 3.11: Energy levels in bulk heterojuncion devices.

are usually produced by spin-casting the donor and the acceptor from a common
solution, that is a particular technique in which the materials are melted together
while gradually soli�ed.
This particular morphology has the positive e�ect of greatly increasing the produced
photocurrent, nevertheless there are some aspects working against e�ciency. First
of all the disorder that enhances charge dissociation also has the side e�ect of re-
ducing the e�ective mobility because carriers have to travel through a very complex
pattern before reaching the electrodes. Secondly the donor-acceptor blend can show
dead-end paths in which carriers are trapped and hence to recombine with an oppo-
site sign charge into polaron state. Moreover the hopping-based transport involves
molecular movement and this can bring to structural instabilities of the photoactive
layer with consequent loss of performance over time.
For this reason several concepts of ordered bulk heterojuctions have been recently
introduced, as an example see Fig. 3.6(d). Ordering the intermixed materials to the
nanoscale would lead to superior mobility in both of them for the more regular path
to be followed by the charge carriers. In addition the chances of charge trapping or
structural instability would be minimized without a loss in terms of active interfacial
area. Such structures can be obtained in several ways. One possible approach is to
apply highly ordered inorganic nanostructures, in which the conjugated p-type poly-
mer is �lled in with a second step [52, 29, 71]. Two general types of structures may be
distinguished, nanopores and nanorods, both produced by growth on the electrode
substrate. These would have the double task of sca�olding the photoactive polymer
and transporting the electrons to the cathode. For the reason that the n-type mate-
rial is an inorganic one, most commonly transparent titanium-oxide (TiO2) this kind
of cells are called Hybrid Solar Cells. Another possible approach for the production
of self-assembling ordered structures is to use copolymers [71], particular materials
obtained by the junction of simpler polymers. Using triblock copolymers, with two
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blocks having respectively donor and acceptor properties and the third acting as
a connection, it is in principle possible to unify all the functionalities in a unique
molecule.
Several other variants of the devices we presented are available in literature. For
example it is very common to use an inorganic material as electron-acceptor in
disordered bulk heterojunction cells in order to increase charge mobility. At the be-
ginning of this chapter we mentioned that the e�ciency record was achieved with a
device that employs small organic molecules and a tandem architecture [41]. Small
molecules are simpler than the polymers they share most electrical properties with,
but they are characterized by higher mobilities and lower stability in time. A tandem
architecture [52, 29, 71] sees two di�erent cells stacked as shown in Fig. 3.12. The

Figure 3.12: Tandem cells architecture and absorption wavelength ranges.

materials the cell is made of are chosen in such a way that the layers do not compete
in photons absorption so that a larger part of the sunlight spectrum is used.

3.3 Mathematical models for OSCs

We will now present two mathematical models of the physical phenomena we de-
scribed in the previous part of the chapter that di�er in the morphology they refer
to. The �rst model reproduces the behaviour of a bulk heterojunction device and,
although the internal architecture in this case is the most complex among the ones
we described, the underlying hypotheses make the model quite simple. The other
model deals with nanostructured devices and considers in detail the phenomena that
take place at the interface, an aspect which is not addressed in the previous case.
This latter model is suitable for bilayer devices too, since morphology is simple but
the way of handling the interface is the same.
For sake of clarity in the presentation, all the parameters appearing in the models
that require an additional de�nition are described in Sect. 3.3.3.
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3.3.1 Mathematical model for bulk-heterojunction devices

The model of bulk-heterojunction devices we report here is the one presented in the
papers [20, 44] and in the Master Thesis [23], which we will refer to for details on
parameter formulation.
The model has two main underlying hypotheses. First, mixing between donor and
acceptor materials occurs even at very small characteristic lengths so that it is pos-
sible to consider the polymer blend as an uniform medium with model parameters
obtained by averaging over the entire structure. Secondly, as the major part of ex-
citons reach a dissociation site and are transformed into polaron pairs, it is possible
to refer to them as synonyms.
Since we suppose the photoactive layer to be homogeneous and there are no phenom-
ena that promote asymmetry in the behaviour of the cell, the e�ects in the directions
perpendicular to the one in which current �ows, that is from one electrode to the
other, are unimportant. For this reason the model is basically one-dimensional. Nev-
ertheless, as we decided to use a bidimensional code for the implementation in order
to allow later improvements, we state the model in a 2D environment. Let Ω = [0, L]2

be the domain representing a section of the cell, with the boundary Γ ≡ ∂Ω divided
in three disjoint subregions ΓA, ΓC and ΓN respectively representing the anode,
the cathode and the interior arti�cial boundaries, see Fig. 3.13. The additional x-

z

x

Ω

hν

ΓA

ΓC

ΓN ΓNL

Figure 3.13: Schematic representation of the domain of the model for a bulk hetero-
junction solar cell.

dimension is treated as a dummy one and homogeneity is obtained by applying null
�ux conditions on the arti�cial boundariy ΓN .
The equations of the model that describe the evolution of the spatial densities of
electrons and holes, that we denote respectively with n and p (m−3), can be de-
rived from the conservation law for the electric charge. The continuity equations
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expressing it are:
∂n

∂t
− 1

q
divJn = Gn −Rn

∂p

∂t
+

1

q
divJp = Gp −Rp

in Ω× (0, Tf ), (3.1)

where Tf > 0. Using from now on the symbol η to indicate either of n or p, Jη
indicate the carrier �ux densities, Gη are the carrier generation rates and Rη are the
recombination rates. Although originally proposed for inorganic devices, the drift-
di�usion model [46] for carrier �ux densities still holds in this application and reads Jn = qDn∇n− qµnn∇ϕ

Jp = −qDp∇p− qµpp∇ϕ
in Ω× (0, Tf ), (3.2)

ϕ being the electric potential, Dη the charge carrier di�usion coe�cients and µη

the carrier mobilities, which were found to be electric �eld dependent [65]. The �rst
terms in (3.2) refer to gradient-driven di�usion while the other ones are due to an
electrostatic drift.
Einstein relation [6, 44] is assumed to hold, meaning dependence of di�usivity on
mobility,

Dη = µηVTH (3.3)

where the thermal voltage is de�ned as VTH = KBT/q, KB being the Boltzmann
constant, T the absolute temperature and q the elementary charge, although it has
been shown that di�usion coe�cients can be enhanced at high charge densities [66].
Taking into consideration what we reported in the previous section, the source for
carrier density is the dissociation of polaron pairs. Let us indicate with X the spatial
density of polaron pairs (m−3) and with kdiss their dissociation rate, the generation
terms then read Gη = kdissX with the dissociation rate showing dependence on
electric �eld too. We will later discuss some models for this parameter in section 3.3.3.
The terms Rη account instead for the phenomena of bimolecular recombination, in
which electrons and holes bound back together under the action of mutual attraction.
The process is modeled using Rη = γnp with the coe�cient γ described according
to the Langevin theory [53]. Also for this parameter more details will be stated later
on.
The electrostatic potential ϕ appearing in (3.2), satis�es the Poisson equation

− div
(
ε0εr∇ϕ

)
= q(p− n) in Ω× (0, Tf ), (3.4)

where ε0 is the electric constant and εr is the averaged relative dielectric permittivity
of the blend. We remind that for the electric �eld it holds

E = −∇ϕ.
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The last equation entering in the model is the ordinary di�erential equation describ-
ing the evolution of exciton density X, that is

∂X

∂t
= G− krecX + kdiss(E)X + γnp in Ω× (0, Tf ). (3.5)

The variation of this quantity is the sum of a source and reaction term. Positive
contributes are given by the incident photon �ux which determines an exciton gen-

eration rate G and by the balance of the recombination term γnp in equations (3.1).
As we said in the previous section, exciton can either dissociate into charge carriers,
see the term −kdissX appearing in equations (3.1), or decay to the ground state with
a recombination rate krec.
The model has then to be closed with a proper set of boundary and initial condi-
tions. On ΓA and ΓC , representing the metal electrodes in contact with the semi-
conducting blend, boundary conditions must describe the complex phenomenon of
charge thermionic injection and recombination. In the work by Scott and Malliaras
[16], starting from the Shottky barrier theory and considering the change of barrier
height under the e�ect of the applied electric �eld and the image potential acting
on charge carriers, Robin-type boundary conditions are obtained in the form

γn
1

q
Jn ·ν = βn − αnn

−γp
1

q
Jp ·ν = βp − αpp

on
(
ΓA ∪ ΓD

)
× (0, Tf ), (3.6)

where ν is the outward normal unit vector along the boundary Γ. The parameters
γη are non negative while βη are the rates at which charges are injected into the
device and αη are the rates at which electrons and holes recombine with their image
charges at the contacts, respectively [20]. However, modeling these parameters is
still an issue of research and the description proposed in [16] needs to be modi�ed
empirically to avoid unphysical behaviour of the computed solution [44]. For more
details on the parameters appearing in (3.6) see [23].
For the electric potential ϕ, the application of a voltage between the electrodes is
considered and it is modeled using the Dirichlet conditions

ϕ = Vappl − Vbi on ΓA × (0, Tf )

ϕ = 0 on ΓC × (0, Tf ),
(3.7)

where the chatode is assumed to be at ground potential. Vappl is the externally
applied voltage while Vbi is the built-in potential, given by the di�erence between the
workfunctions of the electrodes

Vbi = q(φA − φC).



74 Organic solar cells

As we previously reported, homogeneity along the dummy direction x is obtained
with the imposition of null Neumann conditions on the arti�cial boundaries ΓN

Jn ·ν = 0

Jp ·ν = 0

ε0εr∇ϕ ·ν = 0

on ΓN × (0, Tf ). (3.8)

Finally positive initial conditions for the densities are added to the model

n(x, 0) = n0(x), p(x, 0) = p0(x), X(x, 0) = X0(x) in Ω.
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We now summarise what we described in this section restating the model in a more
concise way. The subproblems that have to be solved are:

∂n

∂t
− div

(
µnVTH∇n− µnn∇ϕ

)
= kdissX − γnp in Ω× (0, Tf )

γn
(
µnVTH∇n− µnn∇ϕ

)
·ν = βn − αnn on

(
ΓA ∪ ΓC

)
× (0, Tf )(

µnVTH∇n− µnn∇ϕ
)
·ν = 0 on ΓN × (0, Tf )

n(x, 0) = n0(x) in Ω,

(3.9)

∂p

∂t
− div

(
µpVTH∇p+ µpp∇ϕ

)
= kdissX − γnp in Ω× (0, Tf )

−γp
(
µpVTH∇p+ µpp∇ϕ

)
·ν = βp − αpp on

(
ΓA ∪ ΓC

)
× (0, Tf )

−
(
µpVTH∇p+ µpp∇ϕ

)
·ν = 0 on ΓN × (0, Tf )

p(x, 0) = p0(x) in Ω,

(3.10)
∂X

∂t
= G− krecX + kdiss(E)X + γnp in Ω× (0, Tf )

X(x, 0) = X0(x) in Ω,

(3.11)



−div
(
ε0εr∇ϕ

)
= q
(
p− n

)
in Ω× (0, Tf )

ϕ = Vappl − Vbi on ΓA × (0, Tf )

ϕ = 0 on ΓC × (0, Tf )

−ε0εr∇ϕ = 0 on ΓN × (0, Tf ).

(3.12)

Remark 3.3.1. A simpler approach for charge carrier boundary conditions can be
considered in place of Scott-Malliaras boundary conditions (3.6). Since electrons
at the anode experience a high barrier between the workfunction of the ITO layer
and the LUMO of the acceptor and the same holds for holes regarding the metallic
cathode and the HOMO of the donor, very few particles would overcome this gap
contributing to the injection current. The result of this is are small dark current
values. Assuming contact to be of ohmic type, implying that the Fermi levels line
up to the ones of the materials of the blend, and the validity of Maxwell-Boltzmann
statistics, we get the following boundary conditions

n = N0exp
(
− Vbi
VTH

)
p = P0

n = N0

p = P0exp
(
− Vbi
VTH

)
on ΓA × (0, Tf )

on ΓC × (0, Tf )

(3.13)
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These modi�cations have little impact on the results of the model in stationary
regime, since charge carrier density magnitudes are mostly determined by the ex-
ternal generation term. Output current is not a�ected either because it depends on
the slope of the density solution next to the electrodes and changes in the boundary
value have small impact on it. For this reason we often adopted these boundary
conditions, especially for exploratory simulations.

3.3.2 Mathematical model for nanostructured heterojunction

devices

We now focus on the devices whose morphology is characterised by a sharp distinc-
tion of the areas occupied by the acceptor and the donor materials, namely planar
double layer solar cells and nanostructured heterojunction ones.
The milestone work for modeling these kind of cells is [6] in which a 1D model for
bilayer devices is developed, including continuity equations for charge carriers and
Poisson equation for the electric potential. Excitons are identi�ed for simplicity with
polaron pairs and since they are assumed to exist only at the interface, which in this
case comes to be just a point, their evolution is described by a 0-D model (ODE).
Coupling between excitons and free carriers is achieved by means of a term acting
only in a neighbourhood of the interface of a given width H, where all the phenom-
ena of dissociation, decay and recombination are assumed to take place. Apart of
this, the approach is very similar to the one of our model for bulk heterojunction
cells we described in the previous section, using Einstein relation, Scott-Malliaras
boundary conditions and Langevin-type recombination.
The �rst attempt for a bidimensional model was made in [14]. In that work polaron
pairs are still treated as a synonym of excitons but they are assumed to exist over
the entire device and the relative continuity equation is added to the model. Never-
theless the handling of the terms modeling the interface phenomena is unclear and
lacking of mathematical rigour.
The previous two references were further developed in [78, 77] by Willams and
Walker, whose model represented the starting point in the de�nition of ours. In
their production the key modi�cation was the distinction between excitons, which
are assumed to live and calculated all over the domain, and polaron pairs, supposed
to be trapped on the interface. In that way the model is more consistent with the
physics of the problem. Nevertheless the dissociation and recombination phenom-
ena are still modeled with a term acting in a thin slab across the interface in the
same fashion as [6], making implementation a bit tricky. Our work focused on the
improvement of this aspect, transferring the e�ects of the active area term directly
into the interface conditions, resulting in a more mathematically elegant and rigor-
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ous representation.
There are two main assumptions at the basis of our model. First, all the phenomena
that bring to the generation or the loss of a polaron pair are located at the inter-
face between the acceptor and the donor. Anyway, a parameter H, representing the
characteristic distance from the interface that all the phenomena take place within,
is kept from the formulation in [78, 77]. The second hypothesis comes from the fact
that donor material has low values for both electron a�nity and mobility. For this
reason electron density is very likely to assume negligible values and it is reasonable
to suppose it equal to zero in the whole acceptor area. The same argument holds for
holes in the donor material.
We consider a domain Ω divided into two parts Ωp and Ωn, which represent respec-
tively the area occupied by the p-type donor material and by the n-type acceptor
one, with a separating interface Γ = Ωp∩Ωn of arbitrary pro�le, see Fig. 3.14. Anode

y

x

Ωp

Ωn

Γ

ΓN

ΓN

ΓA ΓC

Figure 3.14: Schematic representation of the domain of the model for a nanostruc-
tured heterojunction solar cell.

and cathode are represented respectively by the portions of the boundary named co-
herently to the BHJ model with ΓA and ΓC . The parts indicated as ΓN are instead
arti�cial boundaries where symmetric conditions are applied.
Keeping n and p for spatial carrier densities as in the model of the previous section
and using the second of the two hypotheses we previously stated, the evolution of
electrons and holes is determined again by the continuity equations


∂n

∂t
− 1

q
divJn = 0 in Ωn × (0, Tf )

n = 0 in
(
Ωp \ Γ

)
× (0, Tf ),

(3.14)



78 Organic solar cells


∂p

∂t
+

1

q
divJp = 0 in Ωp × (0, Tf )

p = 0 in
(
Ωn \ Γ

)
× (0, Tf ).

(3.15)

Notice that the right hand sides of the continuity equations di�er with respect to
(3.1) since polaron pair dissociation and charge pair recombination are assumed to
occur only on the interface Γ and the associated terms are supposed to appear in
the corresponding boundary condition. Again, drift-di�usion model is used for the
de�nition of carrier �ux densities Jn = qDn∇n− qµnn∇ϕ in Ωn × (0, Tf )

Jp = −qDp∇p− qµpp∇ϕ in Ωp × (0, Tf )
(3.16)

and Einstein relation (3.3) is assumed to hold in both materials.
For a clearer presentation of the model we now anticipate with respect to what we did
for the previous one the description of boundary conditions to be applied for charge
densities equations. Following the simpler approach of Remark 3.3.1, Dirichlet-type
boundary conditions are applied at the electrodes

n = N0 exp

(
− φcbn
kBT

)
on ΓC × (0, Tf )

p = P0 exp

(
−
φabp
kBT

)
on ΓA × (0, Tf )

(3.17)

with the equivalent state densities N0 and P0 de�ned by

N0 = NC exp

(
−
Ea
gap

2kBT

)
P0 = NV exp

(
−
Ed
gap

2kBT

)
(3.18)

φcbn and φabp being the thermionic emission injection barrier height respectively for
electrons at the cathode and for holes at the anode, NC and NV are the conduction
and valence band densities of states and Ea

gap and Ed
gap are the bandgaps in the

acceptor and in the donor materials.
As a consequence of the �rst hypothesis we stated at the beginning of this pre-
sentation, the carrier �ux densities on the interface Γ are the sum of the positive
contribution due to dissociation of polaron pairs, whose spatial density is indicated
by X (m−2), and the negative term of bimolecular recombination

Jn ·νn = kdiss(E)X − γnpH on Γ× (0, Tf )

−Jp ·νp = kdiss(E)X − γnpH on Γ× (0, Tf ).
(3.19)

This feature represents one of the improvements with respect to the model in [78, 77]
since it allows to handle the physical phenomena modeling without introducing a
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boundary layer that would lead to a more di�cult numerical implementation. Notice
the parameter H that is inherited from [78, 77], acting for both dimensional balance
and accounting for the extension of the photoactive area.
On the arti�cial boundaries null �ux is imposed to enforce symmetry conditions

Jn ·ν = 0 on
(
∂Ωn ∩ ΓN

)
× (0, Tf )

−Jp ·ν = 0 on
(
∂Ωp ∩ ΓN

)
× (0, Tf ).

(3.20)

The electrostatic potential ϕ appearing in the drift-di�usion model (3.16) satis�es
Poisson equations that slightly di�er from (3.4) since charge carriers live in distinct
areas of the domain and that read

−div (ε0εrn∇ϕ) = −qn in Ωn × (0, Tf )

−div (ε0εrp∇ϕ) = qp in Ωp × (0, Tf ),
(3.21)

with εrη as the relative dielectric permittivity of the material in the subdomain Ωη.
Boundary conditions for ϕ are the same as in the previous model, namely

ϕ = Vappl − Vbi on ΓA × (0, Tf )

ϕ = 0 on ΓC × (0, Tf )

(−ε0εrη∇ϕ) ·ν = 0 on (∂Ω ∩ ΓN)× (0, Tf ).

(3.22)

At the interface Γ two more conditions are needed. The �rst comes from potential
continuity and the second is derived from the continuity of the normal component
of the electric displacement �eld

D = ε0εrηE = −ε0εrη∇ϕ.

De�ning the jump operator between two sets Ω1 and Ω2 for a scalar quantity θ as

[[θ]]Γ = θ|Ω1 − θ|Ω2

and for a vector one ψ
[[ψ]]Γ = ψ|Ω1 ·ν1 +ψ|Ω2 ·ν2

the interface conditions are{
[[ϕ]]Γ = 0

[[−ε0εrη∇ϕ]]Γ = 0
on Γ× (0, Tf ). (3.23)

As in [78, 77] excitons are considered separately from polaron pairs and, while these
latter are calculated only on the interface, a continuity equation in the whole domain
for excitons is added to the model. By indicating exciton spatial density with S, it
reads

∂S

∂t
+ divJS = G− S

τS,dec
in (Ωn ∪ Ωp)× (0, Tf ) (3.24)
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where in the right hand side G denotes the exciton spatial generation rate and the
second term models the exciton decay with characteristic lifetime τS,dec.
Excitons have no charge and for this reason the associated �ux is not in�uenced by
electric �eld E and it is driven only by di�usion with parameter DS

JS = −DS∇S in (Ωn ∪ Ωp)× (0, Tf ). (3.25)

At the electrodes excitons are assumed to be perfectly separated [77] so

S = 0 (ΓA ∪ ΓD)× (0, Tf ), (3.26)

but since both charges are harvested by the same contact, no contribution to pho-
tocurrent is given. This aspect is however still not fully understood and controversial,
needing for further modeling e�ort in future work.
Excitons are supposed to be continuous across the interface Γ and the jump of the
relative density �ux is given, accordingly to the description of the physical phenom-
ena, by the sum of a term due to their dissociation into polaron pairs and another
one referable to the decay of these latter

[[S]]Γ = 0

[[JS]]Γ =
HS

τS,diss
− ηstkrecX

on Γ× (0, Tf ). (3.27)

Here τS,diss is the characteristic time of the transition from exciton to polaron pair
state and krec is the rate at which the opposite phenomenon takes place. It is impor-
tant to highlight that only singlet excitons can play an active role in the photogen-
erative process [31]. The parameter ηst accounts exactly for the fraction of singlet
excitons over the total number of them and since they are in a ratio 1:3 [31], ηst is
set equal to 0.25.
The second condition in (3.27) is a novel feature of our model which di�ers from the
one in [78, 77] as in that work excitons were supposed to be perfectly dissociated at
the interface too, leading to a Dirichlet-type null condition like the one of (3.26).
The last equation of the model is again the one describing the evolution of polaron
pairs which has a form similar to (3.5)

∂X

∂t
=

HS

τS,diss
− krecX + kdiss(E)X + γnpH in Γ× (0, Tf ) (3.28)

with the di�erence that now this equation is considered only along the interface Γ.
The �rst and the last term at the right-hand side are the positive contributions due
to the state transition from exciton state and bimolecular recombination while the
remaining ones model the opposite phenomena.
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At last, positive initial conditions for the densities are needed to close the model

n(x, 0) = n0(x) in Ωn

S(x, 0) = S0(x) in Ωn ∪ Ωp

p(x, 0) = p0(x) in Ωp

X(x, 0) = X0(x) on Γ.
(3.29)



82 Organic solar cells

Again we summarise the model in compact way, dividing it into subproblems.



∂n

∂t
− div (µnVTH∇n− µnn∇ϕ) = 0 in Ωn × (0, Tf )

n = N0 exp

(
− φcbn
kBT

)
on ΓC × (0, Tf )

(µnVTH∇n− µnn∇ϕ) ·νn = kdiss(E)X − γnpH on Γ× (0, Tf )

(µnVTH∇n− µnn∇ϕ) ·ν = 0 on
(
∂Ωn ∩ ΓN

)
× (0, Tf )

n(x, 0) = n0(x) in Ωn

(3.30)

∂p

∂t
− div (µpVTH∇p+ µpp∇ϕ) = 0 in Ωp × (0, Tf )

p = P0 exp

(
−
φabp
kBT

)
on ΓC × (0, Tf )

− (Dp∇p+ µpp∇ϕ) ·νp = kdiss(E)X − γnpH on Γ× (0, Tf )

− (Dp∇p+ µpp∇ϕ) ·ν = 0 on
(
∂Ωp ∩ ΓN

)
× (0, Tf )

p(x, 0) = p0(x) in Ωp

(3.31)

∂S

∂t
− div (DS∇S) = G− S

τS,dec
in (Ωn ∪ Ωp)× (0, Tf )

S = 0 on (ΓA ∪ ΓD)× (0, Tf )

[[S]]Γ = 0 on Γ× (0, Tf )

[[−DS∇S]]Γ =
HS

τS,diss
− ηstkrecX on Γ× (0, Tf )

S(x, 0) = S0(x) in Ωn ∪ Ωp

(3.32)


∂X

∂t
=

HS

τS,diss
− krecX + kdiss(E)X + γnpH on Γ× (0, Tf )

X(x, 0) = X0(x) on Γ

(3.33)



−div (ε0εrn∇ϕ) = −qn in Ωn × (0, Tf )

−div (ε0εrp∇ϕ) = qp in Ωp × (0, Tf )

ϕ = Vappl − Vbi on ΓA × (0, Tf )

ϕ = 0 on ΓC × (0, Tf )

(−ε0εrη∇ϕ) ·ν = 0 on (∂Ω ∩ ΓN)× (0, Tf )

[[ϕ]]Γ = 0 on Γ× (0, Tf )

[[−ε0εrη∇ϕ]]Γ = 0 on Γ× (0, Tf )

(3.34)
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3.3.3 Modeling parameters

As we already reported, charge carrier mobilities assume in organic materials much
lower values than in classical inorganic semiconductors and they are found to be
dependent on the electric �eld E [65] and weakly on the carrier density [74] due to
the presence of disorder. As in most works in literature [6, 14, 44, 77, 78] we opted
to use a simpli�ed Poole-Frenkel model

µη = µη0 exp
(
ξη
√
E
)

(3.35)

where µη0 is the zero-�eld carrier mobility, E is the magnitude of the electric �eld
vector and ξη is a material dependent parameter.
The Langevin model [50] for γ in homogeneous materials can be expressed by

γ =
q(µn + µp)

3ε0εr

where the sum of mobilities is used since both carriers are free to move towards each
other. For this reason the fastest carrier type determines the recombination rate.
This approach was used in [6, 14] even though the phenomena in bilayer and bulk
heterojunctions seems to act di�erently. In fact, when recombination occurs at an
interface between two materials and the carriers are con�ned in distinct regions, a
charge has to wait for an opposite sign one to approach and hence the slowest carrier
determines the recombination rate. This is reproduced using the following formula
for γ proposed in [78, 77]

γ =
qmin(µn, µp)

3ε0εr
(3.36)

in which the smaller of the two carrier mobilities is considered.
For polaron dissociation rate kdiss, instead, di�erent approaches are used for the
two models we presented. In the case of bulk-heterojunction devices the parameter
is modeled as in [23] following Onsager's theory [59] which was later extended by
Braun in [11]. It is calculated by using the formula

kdiss (E) =
3γ

4πa3
exp

(
− VB
VTH

)(
1 + b+

b2

3
+
b3

18
+

b4

180

)
(3.37)

where γ is the Langevin constant, a is the distance between the bound charges and
VB and b are de�ned by

VB =
q

4πε0εra
b =

qE

8πε0εrVTH
,

being respectively the polaron pair binding potential and a proper scaling of the
electric �eld strength.
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In bilayer and nanostructured devices polarons can instead be dissociated only in one
direction, while in BHJs the convoluted nature of the interface makes separation to
occur in every direction, and for this reason the phenomenon is enhanced for negative
values of the electric �eld. An appropriate model for kdiss has to take these facts into
consideration and the model proposed in [6] and later used in [78, 77] goes in that
direction. The polaron pair dissociation rate is hence given by

kdiss (E) =


2kdiss(0)

M

[
exp(M)

(
1− 1

M

)
+

1

M

]
for En < 0

4kdiss(0)

M2

(
1− exp

(
−M

2

4

))
for En ≥ 0

(3.38)

where kdiss(0) is the value at zero �eld, M is de�ned by

M =
q

kBT

√
q|En|
πε0εr

and En is the averaged normal electric �eld across the interface Γ

En =
1

2

(
EΩn ·νn − EΩp ·νp

)
.

In Fig. 3.15 the dependence of the two considered models on the electric �eld is
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Figure 3.15: Normalized dependence of polaron pair dissociation rate.

depicted, clearly showing the enhancement of kdiss for negative values of the �eld
and the reduction of kdiss for positive ones, in the case of for the modi�ed model with
respect to Onsager's theory. In addiction, notice the symmetry of the behaviour for
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Onsager's approach due to the fact that direction is not considered in that model.
The last parameter to be described is the exciton generation rate G and several
choices are available for it. Some works in literature used uniform in space generation
rates [44, 20, 23] and, although this represents a quite rough approximation of the
phenomenon of absorption, the results are satisfactory. In [78, 77] and [14] the e�ect
of progressive absorption in the material, with the consequent decrease of exciton
generation, is considered using a Lambertian pro�le of the type

G(x, y) = Φα exp (−α(x− x)) (3.39)

where Φ is the incident photon �ux, α the absorption coe�cient and x is the x-
coordinate of the closest point to the transparent electrode at which absorption
occurs. These two approaches are the ones we considered in our work. More compli-
cated models can be used, as for example see [78, 77] or [75], in which light re�ection
and refraction phenomena are considered, but we didn't analyse these aspects of the
modeling which will be subject of future work.
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Chapter 4

Numerical Methods

In this chapter we present the numerical techniques used to solve the mathematical
models introduced in Chapters 2 and 3. For a comprehensive numerical and analyti-
cal discussion of the BHJ model we refer to the works [23] and [20]. Here, in the �rst
part, we will refer to the model for nanostructured device since the DSSC models,
from the mathematical point of view, are a special instance of it. Later on, in the
chapter we will consider simpli�ed model problems, in order to lighten the notation
and make concepts easier to handle and describe.

Our approach is based on Rothe's method (also known as method of horizontal
lines) which consists of three main steps: �rst, the time dependent problem is trans-
formed into a sequence of stationary di�erential problems by approximating the time
derivatives with a suitable di�erence formula; then, the resulting non-linear elliptic
problems are linearized by the Newton-Raphson method; �nally, the obtained linear
di�erential problems are solved numerically using the edge average �nite element
method (EAFE) [80, 32, 5], a very popular scheme in the numerical simulation of
semiconductor devices.

4.1 Time Discretization

In the �rst step of Rothe's method we transform the time dependent problems into
a sequence of stationary elliptic problems, replacing the partial time derivative with
a �nite di�erence approximation. The approximation can be chosen among several
methods; speci�cally, we adopt Backward Di�erencing Formulas (BDF [2]) of order
m ≤ 5. To de�ne the resulting stationary problem, let 0 = t0 < · · · < tK < Tf be
a strictly increasing, not necessarily uniformly spaced, �nite sequence of time levels
and assume the quantities n, p, X, S and ϕ to be known functions of x for every
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tk, k = 0 ... K - 1. Then we obtain

m∑
k=0

θknK−k −
1

q
divJn(nK , ϕK) = 0

m∑
k=0

θkpK−k +
1

q
divJp(pK , ϕK) = 0

m∑
k=0

θkSK−k + divJS(SK)− UK = 0

m∑
k=0

θkXK−k −WK = 0

−div (ε0εrn∇ϕ) + qn = 0

−div (ε0εrp∇ϕ)− qp = 0

(4.1)

where fk = f(x,tk) for any generic function f(x,t), while UK and WK are the right-
hand sides of the equations (3.24) and (3.28). Equations (4.1), together with the
constitutive relations for the �uxes given in (3.16) and (3.25) and the set of bound-
ary conditions, constitute a system of nonlinear elliptic di�erential equations coupled
with two algebraic constrain equations ((4.1)5−6).
In our work, the selection of the successive time level tk and of the formula's order
m, as well as the computation of the coe�cients θk, k = 0, ..., m, is performed
adaptively in such a way to minimize the time discretisation error while minimizing
the total number of time steps.

4.2 Linearization

Given a nonlinear PDEs system, it is very di�cult, and in most cases impossible, to
determine an analytical solution for the problem itself. A possible way out to over-
come this di�culty is to apply an iterative procedure. Functional iterations provide
an explicit approach to translate the original nonlinear system into a sequence of
linear problems, the solution of which should converge to a corresponding solution
of the original problem.
We adopt the Newton-Raphson method as functional iteration technique for the lin-
earization and successive solution of problem (4.1). To ease the notation, throughout
this subsection the subscripts denoting the time level will be dropped. Denoting by
y = [n, p, S, X, ϕ]T be the vector of dependent variables, the nonlinear system (4.1)
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can be written in compact form as

F(y) = 0, with F(y) =



fn(n, p,X, ϕ)

fp(n, p,X, ϕ)

fS(X,S)

fX(n, p, S,X)

fϕn(n, ϕ)

fϕp(p, ϕ)


, (4.2)

where fi is the nonlinear operator associated with the i-th equation of system (4.1).
One step of the Newton-Raphson method can be written as

J(y)∆y = −F(y), (4.3)

where J is the Jacobian matrix and ∆y := [∆n, ∆p, ∆S, ∆X, ∆ϕ]T is the unknown
increment vector. The Jacobian entries are given by the Frechét derivative ∂a(f)
with respect to unknown a. The exact computation of all the derivatives in the
Jacobian can become quite complicated if the full model for all the coe�cients is
taken into account, since most coe�cients are electric �eld dependent. To solve this
problem, we adopt a quasi-Newton method where, rather than the exact Jacobian
J(y), we use an approximation J̃(y) in which the dependence of the mobilities, of
the di�usion coe�cients and of the dissociation coe�cient on the electric �eld is
neglected. This approach has the further advantage of consuming less memory when
implemented numerically and facilitating the software library we adopt.

4.3 Spatial Discretization

Once the linearization is applied, the resulting linear system of PDEs is numerically
approximated by means of the Galerkin-Finite element method (G-FEM). Standard
G-FEM are in general not suitable for problems where the drift terms become domi-
nant since numerical solution may be a�ected by the presence of spurious oscillations
if the mesh size is not small enough. Many special techniques have been developed
to avoid the occurrence of this inconvenient, including �nite volume methods [21],
streamline di�usion �nite volume methods [47] and the hybrid streamline-upwinding-
Petrov-Galerkin method [12, 43]. We decide not to adopt any of these approaches,
rather, we use the Edge-Averaged Finite Element (EAFE), a multidimensional exten-
sion to �nite elements of the Scharfetter-Gummel di�erence scheme, which provides
an exponential �tting �nite element discretization [5, 32, 80, 51]. The advantage of
emploing the EAFE method is that if a maximum principle holds for the problem
on the continuous level then discrete counterpart holds too [80]. A scheme that sat-
is�es a maximum principle is referred to as a monotone scheme [80]. A well-known
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Figure 4.1: Problem Domain

Figure 4.2: Parameters associated with triangle K

su�cient condition for a scheme to be monotone is that the corresponding sti�ness
matrix is an M -matrix. It can be shown that the sti�ness matrix obtained with
this method is an M -matrix under the sole assumption that the triangulation of
the domain is of Delaunay type [80]. This fact is very important since if the EAFE
is applied to a carrier continuity equation in the Drift-Di�usion model, it ensures
that the computed carrier concentration is strictly positive. In addition, this method
preserves the current, along the edges of the triangulation.
We consider the EAFE method applied to the following model continuity equation
for u, on a domain Ω ⊂ R2 with boundary ∂Ω = Γ (see Fig.4.1):

{
−divJ(u) = f in Ω

u = 0 on Γ
(4.4)

where J = µ(∇u − u∇ψ), µ ∈ C0(Ω) is a strictly positive real function such that
µ = µ(x) ≥ µ0 ≥ 0 for every x ∈ Ω, ψ is a continuous linear piecewise function over
Ω and f ∈ L2(Ω).
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Upon introducing the following change of variable

u := neψ. (4.5)

Using (4.5) into the de�nition of the �ux yields

J(n) = µeψ∇n (4.6)

from which the weak formulation of problem (4.4) is: �nd n ∈ H1
0 (Ω) such that

B(n, v) = 0 ∀v ∈ H1
0 (Ω), (4.7)

where
B(n, v) =

∫
Ω

J(n) · ∇v dΩ (4.8)

is the bilinear form associated with the problem. It can be easily checked that the
bilinear form is continuous and coercive on H1

0 , then the application of the Lax-
Milgram Lemma ensures that problem (4.7) has a unique solution, this automati-
cally implying that also (4.4) admits a unique weak solution u ∈ H1

0 (Ω).
We now apply the G-FEM with piecewise linear �nite elements on a regular trian-
gulation Th of the domain Ω, such that

Ω =
⋃
K∈Th

K (4.9)

and with the following properties:

• int (K) 6= ∅

• int (K1) ∩ int (K2) = ∅ for each distinct K1, K2 ∈ Th

• if F = K1 ∩ K2 6= ∅ (with K1 and K2 distinct elements of Th) then F is a
common side or vertex of K1 and K2

• diam(K) ≤ h for each K ∈ Th.

For simplicity of exposition we assume that the triangulation covers Ω exactly. Given
K ∈ Th, we introduce some local notation for triangles. As pictured in Fig. 4.2, we
label the vertices vi, i = 1, 2, 3 in counterclockwise order. Let the edge opposite
vi be denoted ei and oriented such that it connects vi+1 to vi−1. Let li denote its
length, and ti the unit tangent vector oriented in the same direction. Denote the unit
outward normal vector to edge e i by ni and denote the segment from the midpoint
of ei to the intersection of the perpendicular edge bisectors by s i. We will also need
a di�erence operator along ei de�ned, for each continuous functions, as

δi(η) = η(vi−1)− η(vi+1). (4.10)
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Finally, let Vh = {v ∈ C0(Ω) : v|K ∈ P1}⊂ H1
0 be the piecewise linear �nite element

space and denote the nodal basis functions by φi which are one at vi and zero at the
other vertices.
The equation associated with the generic test function φh over K for the problem
(4.7) reads: ∫

K

J(nh) · ∇φh = 0, φh, nh ∈ Vh. (4.11)

The approximation of Jh with standard G-FEM leads to the following discrete weak
formulation ∫

K

JGALh (nh) · ∇φh = 0, φh, nh ∈ Vh. (4.12)

where JGALh (nh) = ā ∇nkh. The quantity ā is the integral average of µeψ over the
element K:

ā =

∫
K

µeψ dx

|K|
(4.13)

then, from the choice of the �nite element space, the �ux JGALh (uh) is constant over
the single triangle of the mesh. Compared to standard G-FEM, the EAFE method
is characterized by a di�erent treatment of the �ux over K, in fact the di�usion
coe�cient of the di�erential operator is not simply approximated through an integral
average but with an harmonic average along the triangle sides ei.
Given a function η ∈ C0(K), we de�ne the harmonic average of η along the edge ei

as follows

η̂ :=


∫
ei

η−1 ds

li


−1

. (4.14)

Taking into account relation (4.14), we derive the EAFE discrete weak formulation
of (4.7) ∫

K

JEAh (nh) · ∇φh = 0, φh, nh ∈ Vh (4.15)

where

JEAh (nh) =
3∑
j=1

JEAj (nh) jj. (4.16)

The �rst term in the last relation can be explicitly written as

JEAj = âj∇nh · tj = âj
δj(nh)

lj
(4.17)
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where âj is the harmonic average of µeψ along ej, in this case equal to:

â :=


∫
ej

(µeψ)−1 ds

lj


−1

= µeψj−1Be(ψj−1 − ψj+1), (4.18)

Be(ψj) being the inverse Bernoulli function, de�ned as

Be(x) :=
x

ex − 1
(4.19)

The choice of piecewise linear �nite elements is crucial, because in this way the
�ux projection JEAj along each triangle edge is a constant value, which can be used
to construct the approximation of J over K. The second term of (4.16) is a basis
function set for the �ux approximation along the edge:

jj =
ljsj
|K|

tj. (4.20)

The above description shows that the JEAh (nh) is a constant approximation of J(n)

over the element K and a linear operator that allows to reconstruct a vector �eld
over K starting from its tangential components along the triangle edges [5].
For the numerical implementation of the method and to analyze its monotonicity, it
is essential to derive the sti�ness matrix associated with to each element K. Substi-
tuting in (4.15) the test function φh with the basis function φi (i = 1, 2, 3) de�ned
on the triangle K we obtain∫

K

JEAh (nh) · ∇φi =
3∑
j

JEAj (nh)

∫
K

jj · ∇φi

= JEAi−1(nh)

∫
K

li−1si−1ti−1

|K|
· ∇φi

+ JEAi (nh)

∫
K

lisiti
|K|

· ∇φi

+ JEAi+1(nh)

∫
K

li+1si+1ti+1

|K|
· ∇φi.

(4.21)

Recalling that the following relationships hold on an arbitrary triangle K [4]:

∇φi = −ni
hi

(4.22)

liti · ∇φi = 0 (4.23)

li±1ti±1 · ∇φi = ±1, (4.24)
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from (4.21) it follows that:∫
K

JEAh (nh) · ∇φi = JEAi−1(nh)

∫
K

li−1si−1ti−1

|K|
· ∇φi + JEAi+1(nh)

∫
K

li+1si+1ti+1

|K|
· ∇φi.

(4.25)
In order to continue in the calculation of the local sti�ness matrix we introduce an
important property of (4.16) (see Lemma 4.1 [5])∫

K

JEAh (nh) · ∇φi dx = JEAi+1(nh)si+1 − JEAi−1(nh)si−1. (4.26)

Therefore the explicit form of the �ux integration over K can be easily written
highlighting the contribution of each basis function:∫

K

JEAh (nh) · ∇φ1 = JEA2 (nh)s2 − JEA3 (nh)s3

=
(
â2
s2

l2
+ â3

s3

l3

)
n1 − â3

s3

l3
n2 − â2

s2

l2
n3∫

K

JEAh (nh) · ∇φ2 = JEA3 (nh)s3 − JEA1 (nh)s1

= − â3
s3

l3
n1 +

(
â3
s3

l3
+ â1

s1

l1

)
n2 − â1

s1

l1
n3∫

K

JEAh (nh) · ∇φ3 = JEA3 (nh)s1 − JEA1 (nh)s2

= − â2
s2

l2
n1 − â2

s1

l1
n2 +

(
â1
s1

l1
+ â2

s2

l2

)
n3,

(4.27)

that in algebraic form reads:

AKnK = fk (4.28)

where

AK =


â2
s2

l2
+ â3

s3

l3
−â3

s3

l3
−â2

s2

l2

−â3
s3

l3
â3
s3

l3
+ â1

s1

l1
−â1

s1

l1

−â2
s2

l2
−â1

s1

l1
â1
s1

l1
+ â2

s2

l2

 nK =

n1

n2

n3

 (4.29)

Summing the above local contributions over each mesh triangle K, we can assemble
the global sti�ness matrix A of the problem. It is immediate to check that A is a
M -matrix because its entries satisfy the following conditions:

Ajj > 0 ∀j; Aij ∀i, j : i 6= j;

Ajj ≥
Nh∑

i=1,i 6=j

|Aij| ∀j; Ajj >

Nh∑
i=1,i 6=j

|Aij| for at least one j.
(4.30)
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Under the regularity assumptions on the problem coe�cients and if the triangulation
Th is of Delaunay type, then A is an irreducibleM -Matrix with respect to its columns
and the discrete maximum principle holds. For a more general di�usion-convection
equation, if we assume that the coe�cients are piecewise smooth functions, the dif-
fusion term is non-negative and the triangulation is weakly acute, then the sti�ness
matrix is an M -Matrix [80].
Returning to the original u variable, we have to invert (4.5) at each mesh node,
obtaining:

AKn =

AK

e−ψ1 0 0

0 e−ψ2 0

0 0 e−ψ3


u (4.31)

that gives back the two-dimensional Scharfetter-Gummel method on triangular meshes.
For the error analysis of the method and its generalization to di�usion-convection-
reaction problems see [80].

4.4 Substructuring Methods

In both DSSC and bilayer OSC models the solution of PDEs in two di�erent domains
are involved. To handle this problem, we applied a substructuring method properly
designed for systems of partial di�erential equations. To simplify the presentation
we introduce the following model boundary problem:

−divJ(u) = f in Ω

u = ϕD on ΓD

J ·ν = ϕN on ΓN

(4.32)

In (4.32), Ω is supposed to be a two-dimensional domain with Lipschitz boundary
∂Ω = ΓD ∪ ΓN , such that ΓD ∩ΓN = ∅, whose outer normal direction is denoted by
ν. We assume the operator J(u(i)) = µ(∇u+u∇ψ), f ∈ L2(Ω), µ ∈ ∞(Ω), 0 < δ < µ

in Ω, ψ ∈ H1(Ω) and ϕD, ϕN ∈ L∞(∂Ω). The assumptions are made to ensure the
of the problem to admit a unique solution (c.f. Sect. 4.3).
To proceed with the multi-domain formulation, we introduce a partition of the com-
putational domain Ω into two non overlapping subdomains Ω1 and Ω2. The interface
Γ = Ω1∩Ω2 is supposed to be a Lipschitz (n− 1)-dimensional manifold (see Fig.4.3).
In the following we indicate by u(i) the restriction on Ωi (i = 1, 2) of the solution u,
and by νi the outward pointing normal on ∂Ωi.
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Figure 4.3: Example of possible computational domain

Then, our multi-domain reference problem is:

−divJ(u(i)) = f in Ωi

J(u(i)) ·νi = ϕN on ΓN ∩ Ωi

u(i) = ϕD on ΓD ∩ Ωi

[[u]]Γ = 0

[[J ·νi]]Γ = 0

(4.33)

The last two equations are called the transmission conditions at the interface Γ. In
order to present the variational forms for problem (4.33) we introduce the bilinear
form:

aΩi
(w(i), v(i)) =

∫
Ωi

J(w(i)) · ∇v(i) dΩi (4.34)

and the linear functionals

FΩi
(v(i)) =

∫
Ωi

fv(i) dΩi (4.35)

GΩi
(v(i)) = FΩi

(v(i)) +

∫
∂Ωi

Hv|∂Ωi
dσi (4.36)

where H = J(u(i)) ·νi is the �ux across the boundary ∂Ωi (i.e H = ϕN on ΓN).
The weak multidomain formulation of problem (4.33) can be obtained using the
extension operators in order to describe interface conditions, in this way we obtain:
�nd u(1) ∈ U1, u(2) ∈ U2 such that:

u(1)
∣∣
Γ

= u(2)
∣∣
Γ

(4.37)

2∑
i=1

[
aΩi

(
u(i),R(i)η

)]
+GΩi

(
R(i)η

)
= 0 ∀η ∈ Λ (4.38)
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aΩ1

(
u(1), v(i)

)
= GΩ1

(
v(1)
)
∀v(1) ∈ V1,0 (4.39)

aΩ1

(
u(2), v(2)

)
= GΩ2

(
v(2)
)
∀v(2) ∈ V2,0 (4.40)

where

V := H1
ΓD

:= {v ∈ H1(Ω) : v|ΓD
= 0} (4.41)

Vi,0 := {v ∈ H1
ΓD

(Ωi) : v|ΓD
= 0}

Λ :=
{
φ ∈ H1/2 (Γ) : φ = v|Γ for a suitable v ∈ H1

ΓD
(Ω)
}

Ui :=
{
v ∈ H1(Ωi) : v|ΓD∪∂Ωi

= ϕD and v|ΓD
= 0
}

(4.42)

and R(i)η denotes an extension of η ∈ Λ to Ui. We observe that for i �xed the term

aΩi

(
u(i),R(i)η

)
−GΩi

(
R(i)η

)
(4.43)

represents the �ux through the interface Γ. It is thus clear that (4.47) represents a
conservation law across the interface.
To introduce the discretization multidomain formulation of equations (4.37)-(4.40)
we consider the same �nite decomposition of the computational domain introduced
in Sect. 4.3. Let then Uh

i,0 and V h
i,0 denote �nite dimensional subspaces of Ui,0 and

Vi,0 de�ned as:

Uh
i,0 := X1

h(Ω) ∩ Ui,0 :=
{
vh ∈ C0(Ωi) : vh|Ki

∈ P1(Ki)∀Ki ∈ Th
}
∩ Ui,0 (4.44)

V h
i,0 := X1

h(Ω) ∩ Vi,0 (4.45)

i.e. the space of continuous piecewise-linear polynomial functions over each subdo-
main Ωi.
Finally we derive the discretized form of system (4.37)-(4.40) applying the same
method presented in Sect. 4.3 (omitting the EAFE superscript), obtaining:

u
(1)
h

∣∣∣
Γ

= u
(2)
h

∣∣∣
Γ

(4.46)

2∑
i=1

[
aΩi

(
u

(i)
h ,R

(i)
h η
)]

+GΩi

(
R(i)
h η
)

= 0 ∀η ∈ Λh (4.47)

aΩ1

(
u

(1)
h , v

(i)
h

)
= GΩ1

(
v

(1)
h

)
∀v(1)

h ∈ V
h

1,0 (4.48)

aΩ1

(
u

(2)
h , v

(2)
h

)
= GΩ2

(
v

(2)
h

)
∀v(2)

h ∈ V
h

2,0 (4.49)

where

Λh :=
{
φ ∈ H1/2 (Γ) : φ = v|Γ for a suitable v ∈ X1

h(Ω)
}
.
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Now, it is possible to write the algebraic counterparts of (4.46)-(4.49). For each
subdomain we can divide the nodes of the computational grid into three disjoint
subsets:

u(i) =


u

(i)
I

u
(i)
D

u
(i)
Γ

 (4.50)

where u(i)
Γ are the nodes belonging to Γ, u(i)

D are the ones belonging to ΓD ∩ Ωi and
u

(i)
I are the internal ones. The algebraic version of the problem for i = 1, 2 is

A(i)


u

(i)
I

u
(i)
D

u
(i)
Γ

 =


b

(i)
I

b
(i)
D

b
(i)
Γ

+M (i)


0

H
(i)
D

H
(i)
Γ

 . (4.51)

In the above notation H(i)
D represents the �ux on the Dirichlet sides as well as H(i)

Γ

represents the �ux on Γ. The matrix:

A(i) =


A

(i)
II A

(i)
ID A

(i)
IΓ

A
(i)
DI A

(i)
DD 0

A
(i)
ΓI 0 A

(i)
ΓΓ

 (4.52)

refers to the discretization of the term aΩi
( · , · ), while:

M (i) =


0 0 0

0 M
(i)
DD 0

0 0 MΓΓ

 (4.53)

is a 3 × 3 sparse block matrix that takes into accounts the quadrature rule adopted
for the computation of integral on the right hand side of (4.46)-(4.49). Notice that
MΓΓ does not have any domain index, because we have assumed the conformity of
the two grids over Γ, therefore it must be M (1)

ΓΓ = M
(2)
ΓΓ . The interface conditions are

simply:
u

(1)
Γ = u

(2)
Γ , (4.54)

H
(1)
Γ + H

(2)
Γ = 0. (4.55)

As u(i)
D is a given datum, we can reduce (4.66) to the following system:A(i)

II A
(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ

[u(i)
I

u
(i)
Γ

]
=

[
b

(i)
I

b
(i)
Γ

]
−

[
A

(i)
IDu

(i)
D

0

]
+

[
0

MΓΓH
(i)
Γ

]
. (4.56)

Equation (4.56) is the starting point for the derivation of two di�erent approaches
to the solution of (4.33) namely the �Schur complement approach� [64] and the one



4.5 Treatment of nonlocal boundary conditions 99

we call �Global approach� that we actually employ in our work. In order to construct
the Schur-complement matrix it is necessary to consider some inverse matrices. The
method we use in our implementation is based on an opposite point of view, without
imposing the transmission conditions ((4.33)4−5) in explicit way. In fact, using (4.54)-
(4.56) we obtain:

A
(1)
II 0 A

(1)
IΓ

0 A
(2)
II A

(2)
IΓ

A
(1)
ΓI A

(2)
ΓI

2∑
i=1

A
(i)
ΓΓ



u

(1)
I

u
(2)
I

uΓ

 =


b

(1)
I − A

(1)
IDu

(1)
D

b
(2)
I − A

(2)
IDu

(2)
D

2∑
i=1

b
(i)
Γ

 . (4.57)

Problem (4.57) has a de�nitely larger size but with respect to the �Schur complement
approach� it is not necessary to deal with inverse matrix approximation.

4.5 Treatment of nonlocal boundary conditions

In this last section we describe the technique we employ to impose the nonlocal
integral conditions that appear in the models for DSSCs devices. These particular
conditions can account for various physical phenomena in several contexts (e.g. chem-
ical engineering, thermoelasticity, population dynamics, heat conduction processes,
control theory, medical science) and for this reason they gained much attention in
recent years, in the mathematical community.
We consider the following model problem:

−divJ(u) = f in Ω

J(u) ·ν = 0 on ∂Ω∫
Ω

u dx = 0

(4.58)

with J(u) = µ∇u, f ∈ L2(Ω), Ω being a two-dimensional domain with Lipschitz
boundary ∂Ω and outer normal unit vector ν de�ned on it. For simplicity of pre-
sentation we assume both null boundary �ux condition and null average over the
domain. A compatibility condition has then to be satis�ed by f , in fact, integrat-
ing over the domain, applying the divergence theorem and using the boundary �ux
condition we have:∫

Ω

f dx = −
∫

Ω

divJ(u) dx = −
∫
∂Ω

J(u) ·ν dx = 0 (4.59)

meaning that f has to be a null average function too.
Let us introduce the space V = H1(Ω) and the bilinear form

a(u, v) =

∫
Ω

∇u · ∇v dx ∀u, v ∈ V. (4.60)
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Then problem (4.58) is equivalent to the constrained minimization problem

inf
v∈V∫
Ω v=0

1

2
a(v, v)−

∫
Ω

fv dx. (4.61)

Let Q be the space of constant functions over Ω and introduce the augmented La-
grange functional

F(v, λ) =
1

2
a(v, v)−

∫
Ω

fv dx+ λ

∫
Ω

v dx (4.62)

with λ ∈ Q acting as a Lagrange multiplier associated with the null average con-
straint. In this way (4.58) is in turn equivalent to the saddle point problem

inf
V ∈V

sup
q∈Q
F(v, λ) = inf

V ∈V
sup
q∈Q

1

2
a(v, v)−

∫
Ω

fv dx+ λ

∫
Ω

v dx (4.63)

from which we get the following in variational form: �nd (u, λ) ∈ V ×Q such that:
a(u, v) + λ

∫
Ω

v dx =

∫
Ω

fv dx ∀v ∈ V

q

∫
Ω

u dx = 0 ∀q ∈ Q.
(4.64)

To switch to the discrete form we introduce the �nite element spaces

Vh =
{
v ∈ C0(Ω) : v|K ∈ P1(K)∀K ∈ Th

}
Qh = Q

and the variational problem straightforwardly turns into: �nd (uh, λh) ∈ Vh×Qh s.t.
ah(uh, vh) + λh

∫
Ω

vh dx =

∫
Ω

fvh dx ∀vh ∈ Vh

qh

∫
Ω

uh dx = 0 ∀ qh ∈ Qh

(4.65)

where
ah(uh, vh) =

∫
Ω

∇uh · ∇vh dx ∀uh, vh ∈ Vh.

denoting as usual φi the basis function associated with node vi, A the sti�ness matrix
associated with a( · , · ) and vectors B and f whose elements are de�ned by

Bj =

∫
Ω

φj dx fj =

∫
Ω

fφj dx ∀j

the algebraic form of problem (4.65) isA BT

B 0

[u
λ

]
=

[
f

0

]
. (4.66)



Chapter 5

Numerical simulations

In this �nal chapter we report and discuss the results of the simulations we per-
formed considering several con�gurations of the devices we described in Chapters
2 and 3. Particular attention has been devoted to determine the e�ects of varying
material parameters, external conditions and morphology in order to obtain some
indications for optimal device design.

Before focusing on the analysis of the results of simulations for each family of devices,
it is necessary to introduce some parameters and quantities that are commonly
considered when characterizing photovoltaic cells. Figure 5.1 shows the shape of a

Figure 5.1: Graph of cell output current (solid line) and power (dashed). Points
show short-circuit current (Jsc), open-circuit voltage (Voc) and maximum power op-
erational point (Vmp, Imp).

common current-voltage characteristic for a solar cell under illumination. The short
circuit current density Jsc is de�ned as the current density at zero applied bias
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when the potential di�erence between the electrodes is given just by the built-in
voltage drop Vbi. The open circuit voltage Voc is instead the applied bias at which the
photogenerated current equals the injected current and therefore the total current
is zero.
We implemented our models using Octave, an open-source language quite popular
since it is almost full-compatible with the commercial suite Matlab. This was de-
termined by the availability of some computer code developed in previous works for
the generation and handling of meshes (octave package msh [19]) and for assembling
the matrices resulting from the discretizations determined by EAFE method (pack-
age bim [18]). Stationary and evolutionary problems are solved respectively with the
nonlinear solvers fsolve and daspk, for details see [13, 49]. Again, in the intent
of employing just open-source software, the plots referring to bidimensional simula-
tions were obtained using Paraview, a multi-platform data analysis and visualization
application.
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5.1 Simulation of DSSC devices

The �rst set of simulations is aimed to analyze ion mass transport within the cell,
the target being to reproduce the results obtained in [61]. A second set of simulations
is then performed referring to the complete transport model of Chapter 2 which also
includes charge transport by means of electric drift.

5.1.1 Mass transport model

In order to perform an appropriate comparison with the results presented in [61] we
use the same values for the model parameters which are reported in Table 5.1. In
this analysis we focus our attention on:

• the spatial distribution of ionic species concentrations;

• the in�uence of the ionic species and of the bulk layer on the cell performance;

• the behavior of saturation current as a function of the bulk layer thickness;

• the e�ect of the direction of illumination on the current density and the ionic
concentrations.

The concentration pro�les of the various species resulting from a simulation with
output density current set to 160 Am−2 are displayed in Fig. 5.2 and they are in
complete agreement with Fig. 6 of [61]. The change of porosity between the two re-
gions, gives rise to a discontinuity in the slope of the distribution curves. We observe

Parameter Symbol Numerical value

Initial concentration of iodide n0
I− 3.01 · 1026 m−3, 0.50 mol

Initial concentration of triiodide n0
I−3

2.40 · 1025 m−3, 0.04 mol

Initial concentration of cations n0
C 3.41 · 1026 m−3, 0.54 mol

Iodide di�usion constant DI− 3 · 10−10 m2 s−1

Triiodide di�usion constant DI−3
2.8 · 10−10 m2 s−1

Porosity η 0.3
Thickness of TiO2 layer ls 10 · 10−6 m

Thickness of bulk layer lb 4 · 10−6 m

TiO2 relative dielectric constant εs 50
Bulk relative dielectric constant εb 36
Temperature T 298 K

Table 5.1: Model parameters.
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Figure 5.2: Ionic species concentration pro�les within the cell with output current
of 160 A m−2.

that the concentrations of the ionic species vary with respect to the initial condition
under illumination. The reason of this is to be found in the chemical reactions (2.2)
and (2.1) that take place within the cell. According to the former, in the vicinity of
the porous material, the triiodide is generated and as a consequence its concentration
increases while the iodide decreases because it is consumed in the dye regeneration.
On the contrary, in the second reaction, the I− is regenerated at the cathode and its
pro�le increases.
We then focus the investigation on the dependence of ion distributions on the light
intensity, or, equivalently for this simpli�ed model, the output density current. We
consider three values of this latter, namely 200, 240 and 260 A m−2 and the results
are shown in Fig. 5.3. We observe that rising the value of the current, the minority
species I−3 has concentrations close to zero at the cathode, resulting in the limitation
of the regenerative process of I−. When this phenomenon occurs the current deliv-
ered by the cell saturates to a maximum value called limiting current. This aspect
is very important since it highlights that the ionic species I−3 plays the role of the
limiting factor for the performance of the device. A physical motivation has been
proposed in [61]. According to this, since the ratio between the initial concentration
of triiodide and iodide is 0.08, the majority species could behave as a barrier to the
motion of the I−3 .

The nonuniform distributions of the charged species are responsible for a potential
drop and associated electric �eld within the cell. These quantities are displayed in
Fig. 5.4, where we observe that the electric �eld exhibits a discontinuity at the in-
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Figure 5.3: Ionic species concentration pro�les within the cell with output currents
of 200, 240 and 260 mA m−2.

terface between the porous material and the bulk.
The potential and electric �eld are in absolute value much smaller than the ones
that are usually observed in a standard p/n junction device. This has a positive im-
pact on device operation because the ions involved in the reactions are all negatively
charged and high values of the electric �eld would imply migration towards the cath-
ode, in particular for the limiting carrier I−3 , then limiting the performance of the cell.

The maximum current density is related to the overpotential φ of the counter elec-
trode, that is the di�erence in its electrode potential between its equilibrium potential
and the operating one when a current is �owing. The electrode potential is the elec-
trical potential di�erence between an electrode and a reference electrode. Instead,
the equilibrium potential is the electrical potential of an electrode measured with re-
spect to a reference electrode when there is a current �owing through the electrode.
Assuming that the cathode potential is given by the Nernst expression, using the
concentration in the vicinity of the counter electrode and taking into account the
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Figure 5.4: Potential and electric �eld in the cell with an output current of 160 mA
m−2.

stoichiometric parameters of (2.1), we have:

φ =
RT

2F

{
ln

(
nI−3
n0
I−3

)
− 3 ln

(
nI−

n0
I−

)}
, (5.1)

where R and F are the gas and Faraday constants respectively. This quantity rep-
resents the extra energy needed to force the electrode reaction (2.1) to proceed at a
required rate. Consequently, the operating potential of the cathode is always more
negative than its equilibrium potential. It is clear from (5.1) that the overpotential
decreases when the concentration of nI−3 tends to zero and this occurs when the
current density increases. To study the concentration overpotential we perform a
set of simulations focusing on the in�uence of ionic migration, by either including
it in the model or considering pure di�usive transport, and of the presence of a
bulk layer. The comparison of the obtained pro�les for φ is displayed in Fig. 5.5
and again a very close correspondence is achieved with respect to Fig. 6 in [61].
We observe that, as the current density approaches the saturation value, migration
plays against performance for both the con�gurations of cell (with or without bulk
layer), decreasing slightly the limiting current. Apart from this, it is important to
point out that the inclusion of a bulk layer just 4 µm thick in the structure of the
device is su�cient to improve its performance in a considerable way. The increase of
saturation current is in fact of about 45% with respect to the case with no bulk layer.

In order to determine the optimal bulk layer length for the considered device we
perform a series of simulations modifying the morphology of the cell. In Fig. 5.6 we
report the behavior of overpotential as a function of the output current density for
several values of the bulk layer thickness in the range between 0.1 and 0.8 µm. By this
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Figure 5.5: Overpotential as a function of output current density for several con�g-
urations.
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Figure 5.6: Comparison of overpotential for di�erent bulk lengths.

representation it is clear that some con�gurations are more performing than others
and in particular the saturation current does not exhibit a monotone behavior, see
Fig. 5.7, showing a maximum for a value around 0.4 µm.

In all the simulations we previously performed, the generation of excited states has
been considered constant all over the cell since photon absorption was assumed to be
negligible. Now we assume instead that light attenuation occurs inside the cell and
we use formula (2.31) for excited states generation. In view of the asymmetry of the
cell we expect illumination on either the front electrode and the counter electrode to
determine di�erent situations which we refer to as photoelectrode (PE) and cathode
(CE) side illumination, respectively.
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Figure 5.7: Limiting current density as a function of bulk thickness.
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Figure 5.8: Overpotential as a function of the current density for the three modalities
of illumination considered.

Using this relation we obtain the results shown in Fig. 5.8, where we compare the
overpotential pro�le and maximum current density delivered by cell with uniform
illumination against the other two con�gurations PE and CE. Results indicate that
it is more convenient to irradiate the cell from the cathode since this allows to
overcome the problem of the limitation of I−3 species on the counter electrode.

5.1.2 Model with electrons

In this section we present the results obtained with the complete model described
in Chapter 2. The values of model parameters are the same as in Tab. 5.1 and
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we add the ones in Tab. 5.2 for the electron part. Here we consider two cases in

Parameter Symbol Numerical value

Initial electron concentration n0
e 1 · 1016 m−3

Electron mobility µe 3 · 103 m2V−1s−1

Electron recombination constant ke 1 · 104 s−1

Table 5.2: Model parameters to be added in the complete model.

which illumination is applied from either the cathode or the anode with an the
electron generation term following formula (2.31). In each of these con�gurations we
simulate the behavior of the cell at short circuit condition and at another one in
which a current �ows, that is chosen to be 160 A m−2 for both illumination pro�les.
The recombination model we consider is the one de�ned by (2.32).
We then focus our attention on the analysis of the distributions of the electrons
into the semiconductor, see Fig. 5.9. At short circuit condition electron distribution
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Figure 5.9: Electron concentrations for two di�erent direction of illumination.

results in a non constant pro�le in both illumination regimes attaining higher values
where the peak of generation occurs. The higher slope of the pro�le in the PE case
is a consequence of the fact that electric �eld driven migration acts on the direction
where generation is more intense. In the current �owing condition instead, a very
interesting event occurs in the case of PE illumination. Electron density shows a
maximum in the area about 4 µm far from the anode, meaning that from there to
the interface between the TiO2 and the bulk layer, di�usion driven transport and
electric �eld migration act in competitive way. Since electric �eld is known to attain
small values in DSSCs, it is most likely that the area of the cell included between 4
and 10 µm is inert with all the generated electrons experiencing recombination.
Since the ionic species concentrations are several orders of magnitude higher than the
values we found for the electron density, we can conclude that their distribution are



110 Numerical simulations

not a�ected by the introduction of the electrons into the model. As a consequence,
neither the potential nor the electric �eld are modi�ed in an appreciable way and
we do not report them.
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5.2 Bulk-heterojunction devices

In this section we present the results of a few simulations we performed considering
the model for bulk-heterojunction cells. In any way a detailed analysis of the behav-
ior of this model, performed by testing its sensitivity on the variation of the values
for the model parameters, is not the focus of this thesis work. For works oriented in
that direction see [44, 20, 20].
Here we considered this model as a mean to introduce ourselves into the �eld of solar
cells, intending to face to it in order to practice on a well known problem. Moreover,
another 1D code implementing this model is already existing so we used the problem
as a testing ground for our 2D code by performing a comparison of the results. For
this reason, since we are not interested in a detailed description of the phenomena,
we consider simpli�ed constant model parameters and Dirichlet boundary condi-
tions in the form (3.13) that represent a good compromise in terms of mathematical
complexity and modeling power. We set model parameters to the values shown in
Table 5.3 and calculations are performed for two situations di�ering for the exciton
generation rates, namely equal to 4.3 · 1026 m−3s−1 and 4.3 · 1030 m−3s−1, under short
circuit condition, simulating the transient of the cell in the time interval (0, T ) with
T = 10µs with an initial time step of 10−9 s. Results for the electron and exciton
densities at several time steps are reported in Fig. 5.10. Since model parameters are
set to the same values for both positive and negative carriers, the results relative to

Parameter Symbol Numerical value

Conduction band states density NC 1027 m−3

Valence band states density ND 1027 m−3

Temperature T 298 K
Built-in voltage Vbi 0.5 V
Blend relative dielectric constant εr 4
Electron mobility µn 2 · 10−8 m2 V−1 s−1

Hole mobility µ0,p 2 · 10−8 m2 V−1 s−1

Bimolecular recombination constant γ 1.8182 · 1016 m3 s−1

Exciton dissociation rate kdiss 2.588 · 106 s−1

Exciton recombination rate krec 1 · 106 s−1

Cathode injection barrier height φcbn 0.5 eV
Anode injection barrier height φabp 0.5 eV
Space scaling L 70 · 10−9 m
Carrier scaling n 1 · 1027 m−3

Table 5.3: Model parameters.
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Figure 5.10: Electron and exciton densities with exciton generation rate
G = 4.3 · 1026 m−3s−1 (left) and G = 4.3 · 1030 m−3s−1 (right) at short circuit con-
ditions.

the holes exhibit exactly the same behavior as electrons with a re�ection along the
central vertical axis and for this reason we omitted their representation. We highlight
the di�erence in the orders of magnitude of the densities in the two cases, that is due
precisely for the di�erent values of exciton generation. Also the qualitative pro�le
vary in a signi�cant way, in particular for the electron density a maximum close
to the harvesting electrode can be clearly delineated at light illumination intensity
while in other condition electrons are more distributed along the cell. The reason
of this has to be found in bimolecular recombination. In fact, in the �rst case low
densities bring to minimal recombination events and hence most of the generated
electrons are successfully driven to the cathode. In the other case, in which densities
are much higher and so recombination events, the number of electrons is somehow
limited bringing to �atter pro�les.
In Fig. 5.11 we report the photocurrent transients for the cell under the irradiation
conditions considered. Values of about 3.2 and 8500 Am−2 for the current are ob-
tained at stationary regime which is reached in a very short time.
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Figure 5.11: Photocurrent transient for generation rate values of
G = 4.3 · 1026 m−3s−1 (left) and G = 4.3 · 1030 m−3s−1 (right) at short circuit
conditions.

5.3 Nanostructured heterojunction devices

The �rst set of simulations is aimed to verify the consistency of the results of our
model with respect to what is reported in the main works in literature on the sub-
ject. To be more precise, we consider references [78, 77] and we try to reproduce
some of the graphs proposed therein describing carrier densities, electric �eld and
current-voltage characteristics.

Since charge generation is enhanced with high contact surfaces and transport is pro-
moted by regular paths towards the electrodes, we consider the ideal morphology
for the device, shown in Fig. 5.12. The same geometry was used in [78, 77], and in a
previous work [14] it has been shown to be more e�cient than both planar bilayer
and bulk-heterojunction structures. Since the interface pattern of Fig. 5.12(left) can
be seen as the periodic re�ection of the geometric module, shown in Fig. 5.12(righ),
we consider the latter as the computational domain, applying periodic conditions
on the arti�cial boundary ΓN . In this way the algebraic systems to be solved will be
much smaller with a consequent reduction of cpu-time needed.
In Table 5.4 we report the values of the model parameters we used in the simulation
that, in order to perform an appropriate comparison, are taken from [78, 77]. In Ta-
ble 5.6, instead, the geometrical details of the morphology of the device are shown.
We de�ne 1 Sun the power density in the range 459-460 nm in the AM 1.5 spec-
trum, that is the solar spectrum after the solar radiation has traveled through the
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Figure 5.12: Geometry of the considered device and representation of unit domain
module on which simulations are carried out.

atmosphere. We also consider the cells of our simulations to be illuminated with
monochromatic light of that wavelength and this, in the case of 1 Sun irradiation,
is equivalent to an incident intensity of 2.3 · 1018 m−1s−1. Since the cell we analyzed
in the �rst case is 150 nm thick, the corresponding exciton generation parameter G
is equal to 1.53 · 1025 m−3s−1.
We consider three operation conditions characterized by di�erent applied potentials,
namely short circuit (Vappl = 0), �at-band (Vappl = Vbi) and another one very close
to open circuit with Vappl − Vbi = 0.3 V. The results for the charge carrier densities
and the x-component of the electric �eld are reported in Fig. 5.13 and they show a
complete agreement with the corresponding ones of Fig. 3.55 in [77]. At short circuit,
carrier densities are relatively low and Ex is approximately constant to the value for
zero �eld screening,

Econ = (Vappl − Vbi)/Lcell = −4 MVm−1.

At �at band condition the peaks of charge carrier densities are similar in magnitude
to the ones for short circuit, but depletion in the area of the electrodes is much
more visible. For this reason and because the electrodes are at the same potential,
the magnitude of the �eld is small. At the situation close to open circuit, instead,
densities are signi�cantly increased and this is the consequence of charge injection
from the electrodes. In Fig. 5.14 we report the y-component of the electric �eld and
it is possible to appreciate that the qualitative behavior is the same for all the con-
�gurations, with a rapid change of sign across the interface. Its magnitude instead,
while being negligible at short circuit, increases with Vappl and for values close to Voc
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is of the same order as Ex.

We now want to obtain the current density characteristics of another device consid-
ered in [78, 77] that di�ers from the one of the previous simulations in the length of
the electrodes and the �nger width, see Table 5.6 for details. The current values are
obtained performing a series of simulations for a several number of applied voltages
in the range between 0V and the maximum value at which convergence is reached
by the numerical method. We also tried to implement the model by Williams and
Walker [77], following the details reported therein, and the comparison between the
outputs of the two models is shown in Fig. 5.15. The behaviors are in very close
agreement especially for an applied voltage between Vbi and Voc, that in this case
assumes the value of 0.87 V. The current decreases with the increase of applied bias
because the electric �eld is increasing, which, in turn, reduces polaron pair dissoci-
ation, see Section 3.3.3. In addition, for a bias above Vbi, there will be a signi�cant

Parameter Symbol Numerical value

Acceptor relative dielectric constant εr,a 4
Donor relative dielectric constant εr,d 4
Built-in voltage Vbi 0.6 V
Temperature T 298 K
Electron zero-�eld mobility µ0,n 3 · 10−10 m2 V−1 s−1

Hole zero-�eld mobility µ0,p 1 · 10−10 m2 V−1 s−1

Acceptor mobility material parameter γa 1.55 · 10−4 V−1/2 m1/2

Donor mobility material parameter γd 3 · 10−4 V−1/2 m1/2

Cathode injection barrier height φcbn 0.5 eV
Anode injection barrier height φabp 0.5 eV
Exciton di�usion DS 1 · 10−7 m2s−1

Exciton decay time τS,dec 1 · 10−9 s
Exciton dissociation time τS,diss 1 · 10−12 s
Polaron pair recombination rate krec 1 · 106 s−1

Polaron pair zero-�eld dissociation rate k0,diss 1 · 105 s−1

Active layer half-width H 1 · 10−9 m
Conduction band states density NC 1027 m−3

Valence band states density ND 1027 m−3

Space scaling L 150 · 10−9 m
Carrier scaling n 1 · 1022 m−3

Exciton scaling X 1 · 1012 m−2

Table 5.4: Model parameters with units and values.
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Size Symbol Numerical value

Cell length LC 150 · 10−9 m
Electrode length Lelec 440 · 10−9 m

Finger length LF 79 · 10−9 m

Finger width WL 55 · 10−9 m

Table 5.5: Geometrical parameters of the cell relative to the �rst series of simulations.

Figure 5.13: Color plots for base 10 logarithm of charge carrier densities [m−3] (left
column) and for the x-component of the electric �eld [MVm−1] under 1 Sun illumi-
nation. From the top to the bottom, the applied voltages are, Vappl = 0, Vappl = Vbi

and VAppl = Vbi + 0.3 V.

amount of charge injected into the device, increasing recombination and hence re-
ducing the current. The predicted values for the short circuit current are respectively
for the two models 1.25 and 1.28 mAm−2 that is a small di�erence just about 2%.
This is most probably due to the di�erent assumptions that are stated in the models
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Figure 5.14: Color plots for the y-component of the electric �eld [MVm−1] under 1
Sun illumination at applied voltages Vappl = 0, Vappl = Vbi and VAppl = Vbi + 0.3 V.

Size Symbol Numerical value

Cell length LC 150 · 10−9 m
Electrode length Lelec 50 · 10−9 m

Finger length LF 79 · 10−9 m

Finger width WL 6.25 · 10−9 m

Table 5.6: Geometrical parameters of the cell relative to the second series of simu-
lations.

regarding the transition phenomena from exciton to polaron state at the interface.
While in [77, 78] complete quenching of excitons at the interface is assumed, and is
obtained by imposing the density to be null there, in our model conditions (3.27)
lead to non null values and hence to a slightly reduced production of polarons, that
in turn determines less charge dissociation.

Taking into consideration the same device, we obtained the current-voltage charac-
teristics for several irradiation conditions, extending the range of applied biases to
the negative ones. We remark that the values well above 1 Sun, that could at �rst
sight seem unfeasible and considered just as numerical exercises to test the behavior
of the method, are actually achievable by using concentrating photovoltaic systems.
We expect saturation to occur at negative applied biases and this behavior is actu-
ally reproduced by our model, see Fig. 5.16, with the saturation currents J0 showing
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Figure 5.15: Comparison of the current-voltage characteristic lines obtained with our
model and Williams-Walker one.

a non linear increase with the logarithm of the incident power. This is a conse-
quence of the phenomenon of bimolecular recombination of electrons and holes that
is greatly enhanced for intense illumination in the locations where charge densities
attain high values. Again in Fig. 5.16 the open circuit voltage increases linearly with
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Figure 5.17: Open circuit voltage as a function of illumination intensity.

the logarithm of light irradiation and this behavior is better reproduced in Fig. 5.17.

In addiction, for a deeper comprehension of the information given by the current-
voltage characteristics, we consider the internal quantum e�ciency ηIQE, that is
the ratio between the number of electrons injected in the external circuit and the
number of absorbed photons

ηIQE =
number of electrons injected in the external circuit

number of absorbed photons
=

J

qLcellG
, (5.2)

and that can be interpreted as a measure of the ability of the cell in generating
photocurrent from the photons that are successfully absorbed by the materials.
We consider a cell with the geometrical characteristics reported in Table 5.4 and
a range of illumination intensities from 10−4 to 104 Suns and we obtain the results
of Fig. 5.18. With irradiations up to 1 Sun the cell presents high internal quantum
e�ciency for almost the entire range of the considered applied voltages since the
dissociation of excitons is performed e�ciently and their decay has a limited impact
for the relatively low densities. Only in situations close to open circuit e�ciency
decreases since the unfavorable electric �eld promotes charge recombination and re-
duces the polaron pair dissociation. The behavior at high light intensity is instead
very di�erent, showing at 100 Suns a decrease even before short circuit and values
below 5% all-over the voltage range for 104 Suns. In this latter case the reason of
such low values is to be found in the decay of excitons to the ground state that is
a consequence of their high density. At 100 Suns, instead, the negative impact of



120 Numerical simulations

the electric �eld is the main reason of the reduction of the cell performance since it
dampens the dissociation rate of polaron pairs.

Before focusing on other investigations, we conclude the comparison between the
models showing that the one proposed in this thesis is asymptotically equivalent to
the one of [78, 77] in the limit τS,diss → 0. As a matter of fact, in [78, 77] instanta-
neous transition of excitons into polaron pairs is assumed and values of the polaron
pair creation characteristic time closer and closer to zero approximate this behavior.
To support this statement, in Fig. 5.19 we report the results of a series of simulations
in which the parameter τS,diss is taken in the range 10−21∼10−9, and compared to the
pro�le obtained with the Williams-Walker model. All the parameters are set to the
values used in the previous simulations, the cell is 150 nm thick and the illumination
considered is 1 Sun. Numerical results are in agreement with our expectations since
the values of the solution on the interface (which is located in x = 75 nm) approach
zero with decreasing τS,diss.

We then shift the analysis on the impact that morphology has on the performance
of the cell and in order to do so, we consider a reference square-shaped device with
side length of 150 nm, illuminated at 1 Sun. We perform two series of simulations
in which the number of �ngers in the cell, i.e. the width of each of them, and their
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Figure 5.19: Zoom of exciton density (base 10 log scale) in the area across the
interface in a biplanar device, for the Williams-Walker model and the one proposed
in this thesis, for several values of τS,diss.

length are respectively varied. In both these ways the contact area between donor
and acceptor is increased, keeping constant the dimensions of the device, and we
expect this to enhance the chance for excitons to reach a dissociation site. Neverthe-
less we are also aware that more interface could lead to more recombination events
and thus to a saturation of the output current.
We �rst analyze the response of the output current when increasing the photoactive
interface area by diminishing the width of the rods. The limiting con�gurations are
the biplanar one and one with 15 rods of each material. This latter is known to be
beyond the limit of current technology since at this day nanostructures with 10 nm
length scale (7-8 �ngers in our case) represent the best achievable result [54]. We
refer to each morphology by means of the parameter N which is the number of rods
of each material and we set the rod-length to the value 79 nm that we always used in
the previous simulations. The results are reported in Fig. 5.20. As we expected, the
biplanar con�guration in the less performing one and the output current increases
monotonically with the number of nodes. Again, in accordance with the second of
our guesses, current experiences saturation with a high number of rods and to sup-
port this we also present the calculated exciton densities in Fig. 5.21. If compared to
the situation relative to the biplanar device, top-left in Fig. 5.21, densities in inter-
digitated structures attain lower values as a consequence of the boosted transition to
polarons and in particular it is di�cult for them to di�use in the areas between the
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Figure 5.21: Color plots for the exciton density [m−3] under 1 Sun illumination at
short circuit Vappl=0 with several morphologies, biplanar and N = 4, 7, 15.

�ngers. Hence, most part of the active sites do not experience high exciton �ux and
the number of generated polarons is limited, leading to saturation of the current.
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Figure 5.22: Current voltage characteristics for acceptor-donor interpenetrating mor-
phologies with rods of various length.

Anyway we highlight that the current voltage characteristic relative to the con�g-
uration with rods approximately 10 nm wide, is very close to the ones with more
complex morphologies and hence the achievable improvement employing such mod-
i�cations would be very limited.

We �nally analyze the other strategy aimed to increase the interface area and we
consider a morphology consisting in two layers that interpenetrate with four rods
each of length that varies from 0 (biplanar device) to 90% of the device length Lcell.
Results are shown in Fig. 5.22 and once again the simulated behavior is consistent
with our prediction. Current increases linearly with the length of the rods, and hence
with the interface length, since this latter is given by the formula

Lint = Lelec + 2LF .

A lower increase in output current can be obtained with �nger lengths approaching
Lcell but this is far from the saturation phenomenon observed for the other set of
simulations.
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Chapter 6

Concluding remarks and future work

The present Master thesis work has been focused on the mathematical modeling and
numerical simulation of third generation solar cell. Various models proposed in liter-
ature have been analyzed, some improvements have been successfully implemented
and numerical simulations helped to understand in deeper detail the in�uence of
parameters and phenomena on the cell performance.
Future research is warranted in order to achieve full description of the behavior of
these complex devices. In particular the following issues deserve highest priority in
the e�ort for improving the physical accuracy of the models:

• as the structures under the consideration have geometrical features of size
comparable with the wavelengths in the visible spectrum, a full description
of the distribution of electromagnetic radiation energy in the device would be
included to accurately predict the absorption rates and thus e�ciency;

• a thorough comparison of numerical simulation results to experimental data
in order to fully validate the models and calibrate the parameters.

More in detail, for the model relative to the DSSCs some possible improvements are:

• transient simulations would be useful to estimate the e�ect of trap assisted
charge transport and quantitatively the rates of all chemical reactions occur-
ring in the electrolyte;

• a rigorous derivation of porosity dependent transport coe�cients via homoge-
nization procedures would be in order;

• multidimensional simulations needed to address devices with ordered nanos-
tructured morphology, would require to reformulate the models so that all
reactions are localized at the material interfaces.

On the side of OSCs further activity could deal with:
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• constitutive relations for model parameters are still subject of active research,
a systematic set of simulation to compare the various models and to assess
this properties in term of physical accuracy and numerical e�ciency would be
in order.

• energetic disorder and its impact on charge injection and transport has been
so far neglected in our simulation, but has been shown in the literature to have
non-negligible impact on device performance.
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