POLITECNICO DI MILANO
V Facolta di Ingegneria

Corso di Laurea Specialistica in

INGEGNERIA INFORMATICA

Optimization Methods for
Piecewise Affine Model Fitting

Tesi di Laurea Specialistica di

Leonardo Taccari

Relatore:

Prof. Edoardo Amaldi

Correlatore:

Ing. Stefano Coniglio

Anno Accademico 2009/2010



Contents

1 Introduction 6
1.1 Classical approach . . . . . ... ... ... ... ... 8
1.2 Novelty of our approach . . . . . .. ... ... ... ..... 10
1.3 k-Piecewise Affine Model Fitting . . . . ... ... ... ... 12
1.4 Subproblems . . . . . . . ... 14

1.4.1 Hyperplane Clustering . . . . . . . .. ... ... ... 15
1.4.2  Hyperplane Clustering and Piecewise Affine Model Fit-

ting . . . . . 17
1.4.3 Classification . . . . . .. .. .. ... ... ... 21
1.4.4  Multi-category Classification: M-RLP . . . . . . . . .. 23

2 Exact MILP formulations for k-PAMF 29

2.1 Mixed integer formulation . . . . . .. .. ... ... 30
2.1.1 TIssues of the formulation . . . . . . ... ... ... .. 34
2.2 Symmetry breaking techniques . . . . . .. ... ... ... 35
2.2.1 Lexicographic ordering . . . . . ... .. .. ... ... 37
2.2.2  Orbitopes: notation and definitions . . . . . . . . . .. 39
2.2.3 Shifted Column Inequalities . . . . . . . ... ... .. 41
2.2.4 Separation algorithm for SCIs . . . . . . ... ... .. 43
2.2.5 Extended formulation for orbitopes . . . . . .. . ... 44



Contents

2.3 Dealing with Big-M . . . . . . .. ... oo
2.3.1 Introduction to Combinatorial Benders’ Cuts. . . . . .
2.3.2 Combinatorial Benders’ Cuts for k-PAMFEF . . . . . ..
2.3.3 TIrreducible Infeasible Subsystems . . . . . .. ... ..

3 Heuristics

3.1.1 k-Plane Clustering . . . . .. ... ... ... .....
3.1.2 3-PAMF . . . . ..
3.1.3  Algorithm analysis . . . .. ... ... ... ... ...
3.1.4 Complexity . . . .. .. ...
3.1.5 Multi-start . . . . ... o
3.1.6 3-PAMF Variants . . . . . .. ... ... ... ... ..
3.2 Adaptive Point-Reassignment Heuristic . . . . . . . ... ...
3.2.1 PR-Local Search . . .. ... ... ... .. ......
3.2.2 Adaptive Metaheuristic. . . . . . ... ... ... ...
323 APR Variant . . . ... ... ... L.

4 Computational results
4.1 Instances. . . . . . . ..o
411 Wave . . .. .o
4.1.2 Semi-random . . . . ... ...
4.1.3 Noncontinuous regression . . . . . . . . . ... .. ...
4.2 Exact formulations . . . .. ...
4.2.1 Implementation of symmetry breaking techniques . . .
4.2.2  Symmetry detection in CPLEX . . . . ... ... ...
4.2.3 Choiceof big-M . . . . . . .. ... L.

4.2.4 Remarks about notation . . . . . . . ... .. ... ..



Contents

iii

4.2.5 Exact formulations on wave instances . . . . . . . . ..
4.2.6 Exact formulations on semi-random instances . . . . .
4.2.7 Exact formulations on nc-r instances . . . . . .. . ..
4.2.8 Implementation of CBC procedure . . ... ... ...
4.2.9 Combining CBC and SCI . . . . ... ... ... ...
4.3 Heuristics . . . . . . .. Lo
4.3.1 TImplementation . . . . . .. ... ... ... ..
4.3.2 3-PAMF vs classic approach . . . . .. ... ... ...
4.3.3 Heuristics on wave instances . . . . . . . . . ... ...
4.3.4 Heuristics on semi-random instances . . . . . . . ...
4.3.5 Heuristics on nc-r instances . . . . . .. ... .. ...
4.4 Comparison of heuristic variants . . . . . . ... .. ... ...
4.4.1 3-PAMF variants . . . . . .. .. ...
4.42 APR Variants . . . . . .. .. ...
4.5 UCI Machine Learning Instances . . . . .. .. .. ... ...
451 WPBC. ... ...
4.5.2 Machine-CPU . . . . . . ... ...

5 Concluding remarks

A SCI separation algorithm

B Code

77
78
79
80
81
82
82
82
84
85
86
89
89
94
95
95
95

97

99

102



Abstract

Given numerical data sampled from a real, unknown process the problem of
Model Fitting is to find a model that best fits the data, i.e., a mathematical
function which is able to approximate the data as accurately as possible.

In this work we investigate Piecewise Affine Models, which are attracting
considerable attention in a variety of fields. A Piecewise Affine Model is
described by £ affine functions each one associated to a subdomain D; C R",
with 1 < j < k, where {Dy,..., Dy} is a partition of R”. The problem of
k- Piecewise Affine Model Fitting (k-PAMF) amounts to identifying k linear
submodels fj : Dj — R, together with their definition domains Dj, so as to
minimize an objective function which represents the overall approximation
error with respect to the data.

Typically the problem is solved in two distinct phases. In the first phase
the data points are partitioned in k£ subsets and a linear submodel is fitted to
each subset, while in the second phase the subdomains D; are defined. We

propose a novel approach that combines the two aspects in a single phase.

The thesis is organized as follows. In Chapter 1 we give an overview of
previous work on the subject and explain the novelty of our approach. The
problem of k-PAMF is described in detail and the subproblems Hyperplane

Clustering and Multi-category Classification are discussed. In Chapter 2 we
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propose a novel Mixed-Integer Linear Programming formulation for k-PAMF.
We describe the generation of ad-hoc cuts in a Branch&Cut framework to
break symmetries and speed up the solution time. Moreover, we use a Com-
binatorial Benders’ Cuts approach to get rid of the big-M coefficients. In
Chapter 3 we propose two heuristics to tackle large-size instances: an adap-
tation of k-means and an adaptive point reassignment algorithm. In Chapter
4 we report and discuss computational results obtained from randomly gen-
erated and real-world instances, and we compare the methods we propose.
The refined exact formulations yield optimal solutions for instances up to
150 points in low-dimensional spaces while the adaptive point reassignment
method provides good solutions in a short computing time. Finally, in Chap-

ter 5 we draw some conclusions and mention ideas for future work.



Riassunto

Nel problema del Model Fitting, dato un insieme A di punti a; € R™ e i
loro cosiddetti valori osservati y; € R, si vuole identificare un modello, cioe
una funzione f : D C R" — R, che approssimi nel miglior modo possibile il
processo reale f(-) che ha generato i dati y;.

In questa tesi si studia il problema di k- Piecewise Affine Model Fitting, che
prevede 'approssimazione di funzioni non lineari con modelli lineari (affini)
a tratti. Il problema e di attuale rilevanza in molti ambiti applicativi, ad
esempio nei modelli Piecewise AutoRegressive eXogenous (PWARX).

Un modello f lineare a tratti (in generale non continuo) & descritto da un
numero k di funzioni lineari ciascuna delle quali e associata ad un proprio
dominio D; € R™. Il problema di k-PAMF consiste nel trovare k sottomodelli
affini fj : D; = R che minimizzano una funzione obiettivo che rappresenta
I’errore di approssimazione sui dati. Una tipica funzione che viene usata allo
scopo € la somma dei moduli delle differenze fra le osservazioni y; e il valore
calcolato dal modello: 327 |f;(a;) — wi|?, dove f; & il sottomodello lineare
nel cui dominio giace il punto a;. La scelta nel nostro caso ¢ la norma /4,
p = 1, ovvero la minimizzazione della somma dei valore assoluti degli errori
di approssimazione per ogni punto.

Il problema da risolvere comprende non solo la stima dei parametri dei

sottomodelli lineari, ma anche l'identificazione dei loro domini D;. Cio che
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viene tipicamente fatto nell’approccio classico e dividere il problema in due
fasi: nella prima vengono partizionati i punti e si trovano gli iperpiani che
meglio approssimano tali sottoinsiemi di punti, mentre la determinazione dei
domini dei sottomodelli lineari viene svolta solamente in seconda battuta.
L’approccio che proponiamo in questo lavoro prevede un’unica formulazione
che contemporaneamente lavora sulla minimizzazione dell’errore sui dati e
sulla partizione del dominio continuo in k regioni corrispondenti ai sotto-

modelli lineari.

Nel Capitolo 1 & descritto il problema di k-Piecewise Affine Model Fit-
ting con rimandi a precedenti lavori sull’argomento, mostrando la novita
dell’approccio proposto. Inoltre vengono introdotti due problemi ad esso
collegati, I'Hyperplane Clustering e la Multi-category Classification. In ef-
fetti k-PAMF puo essere visto come una loro combinazione. Nel Capitolo
2 viene presentata una formulazione esatta di k-PAMF come un problema
di programmazione lineare misto-intera. Esso prevede allo stesso tempo la
detereminazione dei parametri e dei domini dei modelli lineari. Descriviamo
lo studio e I'implementazione di metodi che cercano di ridurre la complessita
del problema affrontando due aspetti critici della formulazione: le simme-
trie e i big-M. Nel primo caso consideriamo la generazione di una classe di
tagli che permettono la rottura delle simmetrie con un netto miglioramento
dell’efficienza. Nel secondo caso evitiamo 1'utilizzo dei coefficienti big-M
medienta una decomposizione basata sui Combinatorial Benders’ Cuts. Nel
Capitolo 3 sono proposte due euristiche: una procedura iterativa simile a
k-means ed un algoritmo che ¢ basato sull’individuazione di punti candidati
ad essere riassegnati. Entrambi gli algoritmi, che prevedono diverse varianti,
forniscono delle soluzioni (subottimali) di buona qualita in tempi brevi. Il

Capitolo 4 riporta e discute i test computazionali che sono stati effettuati su
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istanze reali e generate aleatoriamente. Infine, nel Capitolo 5 sono contenute

delle conclusioni ed alcuni sviluppi futuri.



Chapter 1

Introduction

Given a set A of m points a;, € R" and their corresponding observations
f(a;) = y; € R, where f(-) is an unknown, possibly nonlinear, function, the
problem of Model Fitting is to find a mathematical function f (+) which best
approximates the unknown function by minimizing the error on the data
points.

The fundamental issue of Model Fitting is the choice of the model and its
complexity. Typically real-world data exhibit nonlinearties and are affected
by errors (see Figure 1.1). A model which is too simple (e.g., affine models)
might lack the ability to extract all the information provided by the data. On
the other hand, a model which is too involved might be too complicated to use
efficiently or overfit the data (e.g., reproduce even noise). This is consistent
with Occam’s principle, which states that, when a choice is possible, the
simplest model has to be preferred.

In this work we investigate Piecewise Affine Models, also called Piecewise
Linear Models. The choice of piecewise affine models is motivated by the
difficulty that lies in the identification and the use of nonlinear models. While

basic affine models are often too simple to cope with the actual complexity
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of real data, piecewise affine functions are considered to be general enough
to work well in practice, while maintaining most of the practical advantages

given by linear models.
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Figure 1.1: A set of points that exhibit highly nonlinear behaviour and can
be fitted accurately with 3 affine submodels.

The Piecewise Affine Model Fitting problem requires to find a model
f : D CR" = R, composed by a given number k of affine submodels fj such
that the overall approximation error is minimized. Each affine submodel
fj i D; = R, for j = 1...k, is described by a linear function f;(x) =
Wij —7; and a definition domain D; C D: in each region one would like to
identify a hyperplane that best fits the data. We impose no constraints on
the continuity of the model. An example of piecewise linear noncontinuous
model is reported in Figure (1.2).

If the partitioning of the domain is known a priori, i.e., the definition
domains of the submodels are known, the problem can be reduced to a fixed
number of linear model fitting problems, which can be easily solved with
robust regression techniques. This however requires some deep knowledge of

the function that we are approximating, and it is not always the case. Indeed,



CHAPTER 1. Introduction 8

10

Figure 1.2: A piecewise linear discontinuous model with 3 submodels.

it is likely that we just have an indication of the number of submodels k.
Often we might have no a priori knowledge that can help in the model fitting
process, thus both the number of the linear submodels and their definition
domains D; (a polyhedral partition of the continuous domain D) have to be

completely identified from the raw data.

1.1 Classical approach

The problem of Piecewise Affine Model Fitting arises in a variety of fields, and
a number of different methods exist. Classical techniques typically work in
two phases. The first phase involves partitioning and fitting the data points:
the algorithm looks for coplanarity in the discrete space of the data points.
Then, in a second phase, the definition regions D; of the affine submodels
are derived. However, the affine subspaces that have been found in the first
phase might not induce a feasible partition on the continuous domain D:

some points might therefore be assigned to a subdomain D; that is different
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from the one that corresponds to the submodel they contributed to define.
An example is reported in Figure 1.3. This is a flaw that our novel approach

aims to repair (see Section 1.2).

Figure 1.3: Example showing two intersecting linear submodels. According
to the point-hyperplane y-distance, the black point would be assigned to the
submodel on the left. However, the resulting sets are not linearly separable
in the continuous domain (the z-axis), hence we would like the black point
to be assigned to the submodel on the right.

In the context of system identification the problem is usually referred to as
hybrid system estimation, and the models are called Piecewise AutoRegres-
sive eXogenous (PWARX) models. An overview of a number of techniques
for hybrid systems identification is proposed in [PJFTV07], that contains
references to several works on Piecewise Affine Model Fitting. Identification
procedures described in the paper include an algebraic approach, a Bayesian
procedure and a clustering-based method. The continuous domain partition
is achieved in a second phase by means of multi-category classification, that is
performed with Support Vector Machines (SVM, [Vap98|) or Robust Linear
Programming (RLP, [BB99]).

In [AMO02] the authors tackle piecewise linear model fitting as a Min-

PFS problem, which requires to find a partition of a given linear system in a
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minimum number of feasible subsystems (with a maximum noise tolerance ¢).
The problem is N"P-hard, and an effective greedy algorithm is proposed in the
paper. The method does not account for the continuous domain partition: in
[BGPVO03] the authors introduce a second phase that derives the subdomains
via multicategory classification, performed with SVM or RLP.

In [FTMLMO3] the data points are first clustered in feature space via
k-means and then the parameters for each model are computed. The par-
tition is derived at a later stage via SVM or RLP. In [FTMO02] the fitting
is performed with a 3-layers neural network which models a piecewise linear
function. The subdomains are not explicitly derived. [MB09] use an iterative
algorithm for estimating maz-affine models: even in this case the domains
of the submodels are not explicit, as a linear model is active in a region if it
is maximal compared to the other ones. The resulting piecewise model is, by
definition, continuous, while our formulation is more general since the model

can be discontinuous.

1.2 Novelty of our approach

In this thesis we propose a novel approach that follows in the footsteps of
the work in [CI06], where a single-phase formulation for k-Piecewise Linear
Model Fitting is introduced. What distinguishes this approach from most
of the previous work on the subject is the fact that we do not focus first on
fitting discrete points, then on determining the domains of the submodels.
On the contrary, we attempt to solve both problems simultaneously.

The drawbacks of previous, two-phase, approaches are evident especially
in cases where distinct submodels are almost coplanar, or when we have

intersecting submodels. As an example we display in Figure 1.4 a small
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instance that shows the advantage of our approach.
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Figure 1.4: Output of the single-phase k-PAMF formulation that we propose.

The blue and the green points lie on the same line, however they are not
part of the same submodel. Our method simultaneously partitions the points
and the domain, hence it is able to identify the three separate submodels,
and it correctly determines the three definition regions on the continuous
domain, which in this case is the z-axis.

On the other hand, if we look for linear submodels not taking into account
the continuous subdomains, we identify one model for the red points and only
one model that includes both the green and the blue points (see Figure 1.5).
In the second phase, when it comes to determining the domains for the linear
submodels, no meaningful linear partition of the domain can be found: the
two clusters are not linearly separable in D. The result will be a single linear
model with domain D; which is completely unable to correctly predict the

value of the red function.
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Figure 1.5: Output of a classical k-PAMF method working in two distinct
phases. It is unable to induce suitable definition regions for the submodels.
All points are considered part of the domain of H;.

1.3 k-Piecewise Affine Model Fitting

Let A be a set of m points a; € R™ and f(a;) = y; € R the observations
associated to the points a;, where f(-) is an unknown nonlinear function.
The problem of k-Piecewise Affine Model Fitting amounts to finding a model
f : D CR"™ — R, composed by a given number k of linear submodels fj such
that the overall approximation error is minimized. For each affine submodel
it is necessary to identify a linear function fj(x) = Wij —7; and a definition
domain D; C D.

To have a formal mathematical formulation for k.-PAMF we have to in-
troduce a metric to measure the discrepancy between the model and the data
values. Typically this objective function is defined as a norm of the vector

containing the approximation errors for each point, i.e., a function of the

form:

Z |fj(i)(ai> —yil”,
i=1
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where j(i) indicates the index of the submodel in whose domain the data
point lies.

In this work we define the objective function of k-PAMF as:
Z|fj(i)(ai> —vil, (1.1)
i=1

taking p = 1, that is the sum of the absolute values of the approximation
errors. In other words, the error function for the problem is expressed in
terms of the norm ¢; of the vector containing the approximation errors: this
translates easily into a linear mathematical program. Moreover with ¢; we
expect the formulation to be less sensitive to outliers than using a norm with
p > 1, like the ¢ norm.

According to this definition of the problem it is possible to derive a first

nonlinear mathematical formulation for k-PAMF:

k. m

=1 i=1

Y wy=1 Vie[m] (1.3)

dij = | fi(a) —wl Vi€ [ml,je k]
fila) =wja;,—~; Vie[m],je k]
r;=1<a,€D; Viem]jelk|
z;; € {0,1} Vi€ [m],j € [K]
dij,v; € R Vie[m],je [kl

w; € R" Vj € [K]

k
UDpi=D, DinDi=2 Vj#l (1.10)

7j=1
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The binary variables z;; indicate whether the point 7 is assigned to the
model j. Hence the objective function accounts for the approximation error
d;; only if x;; has value 1, since we are not interested in the error regarding the
submodels where a point does not belong. It is important to stress that the
subdomains D; are not fixed: they have to be derived so that a point a; can be
assigned to a submodel fj only if it belongs to D;. Constraints (1.10) ensure
that the subdomains are a partition of D, i.e., they are disjoint and their
union forms D. In this formulation it is still not explicit how the domains D;
should be treated in practice. Mixed-Integer Linear Programming (MILP)

formulations for the problem are the object of Chapter 2.

1.4 Subproblems

Piecewise Affine Model Fitting can be seen as the combination of three dif-
ferent subproblems.

In the first subproblem, which is combinatorial, the points have to be
partitioned so that each one is assigned to one (and only one) linear submodel,
as expressed by the binary assignment variables x;;.

In the second subproblem, which is continuous, the hyperplanes parame-
ters (w;, ;) have to be determined such that they minimize the sum of the
absolute errors between the predicted values fj (a;) and the observations y;
in each data point a;.

Together these two subproblems form a variant of what is called k-
Hyperplane Clustering [ACD09].

In the third subproblem the domain D has to be partitioned so that each
point belongs to the domain D; corresponding to the submodel fj() it is

assigned to. This can be seen as a multi-category classification problem,
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that is to find a discriminating function that induces a polyhedral partition
on the continuous domain D which is consistent with the assignments of the
data points to the submodels.

In the next sections we describe in detail the Hyperplane Clustering prob-

lem and the Multi-category Classification problem.

1.4.1 Hyperplane Clustering

Clustering is the problem of discovering clusters, or groups, of similar el-
ements in a dataset. Similarity in itself is a rather vague term, hence the
problem can be defined, and thus solved, in many different ways. Usually
two points are considered similar according to a metric defined on the space
they lie in, e.g., the Euclidean distance. The desired result of a clustering
process is generally a minimal number k of clusters with high infra-cluster
and low inter-cluster similarity.

In Hyperplane Clustering the focus is not on the proximity between points
but on their collinearity (or coplanarity). This is to say that the aim is
clustering data such that elements of the same group are close to the same
linear subspace of dimension n — 1 (a hyperplane, hence the name). In other
words, given a set of m points A = {ay, as, ..., a,} belonging to R", we seek

to determine a minimal number k& of hyperplanes
H; = {x e R"|wjx =7;,w; € R",7; € R} (1.11)

and an assignment of the points of A to the hyperplanes H; such that the
resulting clusters minimize an overall error (an objective function) which
depends on the aggregated orthogonal distance between the points and their

corresponding hyperplanes (see Figure 1.6). For a comprehensive discussion
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Figure 1.6: In KHC we look for a number k of hyperplanes that minimize the
sum of the square orthogonal point-hyperplane distances.

on most aspects of the problem see [ACD09].
A MILP formulation of Hyperplane Clustering with a fixed number £ of
clusters (k-HC) is the following:

k. m

j=1 i=1
D wy=1 Vie[m] (1.13)
j
g, = Wil e [k 1.14
ij_W i €[m],j € [k] (1.14)
712
z;; €{0,1} Vie|m],je k] (1.15)
w; € R" Vj € [k] (1.16)
dij/}/j €ER Vie [m]7j € [k] (117)

This formulation adopts a 2-norm distance:

wiai —

d;; = (1.18)
’ w2
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and an objective function that takes into account for each cluster the sum of
all point-hyperplane distances. The binary variables x;; have value 1 when
the point a; is assigned to the cluster 7 and 0 otherwise. It is necessary
to point out that this formulation is rather naive, as it involves many non-
linearties that could be avoided or reformulated in a form better suited for

mathematical programming.

1.4.2 Hyperplane Clustering and Piecewise Affine Model
Fitting

The similarities between Piecewise Affine Model Fitting and Hyperplane
Clustering are many and not difficult to see, since both require to partition
the data and to identify k£ hyperplanes.

An important difference between the PAMF and HC lies in the objective
function. In Hyperplane Clustering the aim is of minimizing an aggregate
distance function which depends on the orthogonal distance of the points

from the hyperplanes,
B |W3T(i)az' — Y

d; =
lwicoll2

(1.19)

In PAMF, on the contrary, we seek the minimum sum of the absolute values
of the residuals ), |¢;|, where ¢; is defined as the difference between the

observed value y; and the estimated value fj(i) (x;) = W;F(i)xi —j()- Formally:
e = Fiy(ai) — vi = Wjnai — v6) — Y- (1.20)

In both cases j(7) identifies the cluster that a; has been assigned to. Figure
1.7 shows the difference between the distance functions of the two problems.

By replacing the objective function of (1.12)-(1.17) we can write a pro-
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Figure 1.7: On the left we show a plane minimizing the orthogonal distance
of the blue points, but that does not translate in an optimal solution on the
y-axis (center). The plane on the right correctly minimizes the sum of the
absolute values of residuals.

gram which is very similar to k-PAMF, although it lacks the continuous

domain partitioning.

E m

j=1 i=1

d wy=1 Vie[m] (1.22)
j
Jij = |WjTaz‘ =% — Yl (1.23)

We can work to write it in a better form. This program can be rephrased as
a Mixed-Integer Linear Programming (MILP) problem removing all nonlin-

earities, first by noticing that the objective function can be written as:

kK m
min » Y " dy; (1.25)
j=1 i=1
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with the additional implications

i =1= sz‘j = |W]'Taz' - — Y (1.27)

thus making the objective linear. Now the conditional constraints can be
easily transformed in linear constraints using the well known big-M technique
(see Section 2.3 for a discussion on it). Then we can remove the absolute

norm by introducing two sets of linear inequalities

dz‘j > —WjTaz' +v Ty (1-29)

which are equivalent to the original equations provided that we are dealing
with a minimization problem. The resulting MILP problem is the following,

where for convenience we introduce the auxiliary variables d;;:
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j=1 i=1
Y =1 Vie[m] (1.31)

j
diy < Mxy; Yi€[m],j € k] (1.32)
dij > diy — M(1 — ;) Vi€ [m],je[k] (1.33)
dij >wia; —v; —y; Vie[m],jelk] (1.34)
dij > —W]-Taz‘ +7+ty; Vie€[m],j € k] (1.35)
z;; € {0,1} Vi€ [m],j € [k] (1.36)
w; € R" Vj € [K] (1.37)
dij,v; € R Vie |m],je [k (1.38)

For a pair (i,7j), given a sufficiently large value of M, when x;; = 0 the
Inequality (1.32) is active and d;; is bound to be 0. Viceversa, if z;; = 1 the
Constraint (1.33) has to be satisfied (di; > d;;).

This is a MILP which is very closely related to k-PAMF, yet it is not
enough to fully express the problem. In PAMF we intend not only to parti-
tion the given discrete dataset A, but also to guarantee that the partitioned
points be linearly separable and to compute a partition of the continuous
domain D. This is done by adding classification constraints with the pur-
pose of linearly separating the data and at the same time determining the
k subdomains where the linear submodels are defined. Such constraints are
meant to avoid the point-cluster assignments which would not translate into
a feasible linear partition of the underlying domain D. The partition of D

can be achieved through multi-category linear classification, as in [CI06], that
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will be discussed in the next section.

1.4.3 Classification

Given two sets of points A;, As in the n-dimensional space R", classification
is the problem of identifying a function capable of discriminating the data
according to their classes.

If a linear function is enough to discriminate the two classes, it is sufficient

to find an (n — 1)-dimensional hyperplane H defined as

H: wix—v=0 (1.39)

where w is the normal to the plane and ~ the distance from the origin, and

such that for each point a; it fulfils the constraints

wla, —y>0ifa; € A (1.40)

WTai -7 < 0 if a; € AQ. (141)

If such a separating plane exists, the points are said to be linearly separable.
In this case in general there are infinitely many planes that separate the two
classes.

A common approach to deal with this problem in practice is introducing

the following nonomogeneous inequalities.

wla, —vy>+1lifa; € 4 (1.42)
wlia, —y< —1lifa; € Ay (1.43)

These constraints do not only define a hyperplane separating the data
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Figure 1.8: A linear separation bound. The points on the margin p are the
support vectors.

points, but in fact two parallel hyperplanes that keep a margin between the
points belonging to different classes. In particular, the distance between
the two hyperplanes is 2/||w||, that represents in fact the minimum distance
between two points belonging to different classes. The points lying on the hy-
perplanes that define the margin between the classes are called Support Vec-
tors (see Figure 1.8), and a well-known and powerful classification method,
called Support Vector Machines (SVM), is based on the maximization of the
geometric margin p = 2/||w||.

This technique requires a quadratic minimization problem, and the obvi-
ous drawback of this method is the potential complexity of the optimization.
Moreover, when dealing with sets which are not completely separable with
a linear function, it is important to find a result that discriminates best
according to some criterion other than the maximal separation margin. A
formulation that naturally accounts for misclassification errors and just re-

quires the solution a linear problem is Robust Linear Programming (RLP,
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[BBYY]):

min ) e; (1.44)
=1

wlia, —y+e >+1 ifa; €A (1.45)
wlia, —7—¢ < —1 ifa; €A, (1.46)
weR"veR (1.47)

e; >0 (1.48)

that amounts to minimizing the sum of the misclassification errors e;.

1.4.4 Multi-category Classification: M-RLP

What was described in the previous section is valid for a binary classification,
but can be extended to multi-class problems, where k£ > 2. Given k sets
Ay, ..., Ar we want to find a classification function capable of discriminating
them.

A typical technique is subdividing the k-category classification problem
in k£ binary discrimination problems, i.e., for each set A; the method builds a
function that discriminates that class from the remaining & — 1 (one-versus-
all). Then, when a new point has to be classified, k binary decisions have
to be made, and the highest output wins. This procedure has been vastly
adopted both in SVM and RLP contexts with the name k-SVM and k-RLP
[BB99].

These methods require the identification of a set of parameters (wy,71), . . .
(W, %) such that for each class A; and for each a; € A;

wia; —v; > wla; — Vi e [k],l #j (1.49)
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J0= g wix =

W]_X _71

A A, As

Figure 1.9: Example of a piecewise discriminating function for three classes.

A point a; is classified as belonging to A; if the above inequalities hold. In
other words, the class of a point is determined by the index of the pair (w;, ;)
that maximizes the function f;(a;) = w}a; — ;. Indeed, the discriminating
function can be expressed as the piecewise linear function (an example in
Figure 1.9):

T
9(x) = rjg%gf{x w; — v}

where the classification function is

c(x) = arg max{x’w; — 7;}.
Jj€lk]

The separating plane of a class A; from a class A; can be defined as the
points satisfying

(w; —wi)'x = (7 —m) =0, (1.50)

where the parameters are computed so that (w; — Wl)Tai — 7 +v > 0 for
each points belonging to the set A; and viceversa (w; — w;)la; — v+ <0

for each point in A;.
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A, O aT (wy —w3) =Y,— 73

Figure 1.10: Example of a piecewise linear separator for three classes.

If the inequalities are perfectly satisfied, the sets of points are said to be
piecewise-linearly separable (Figure 1.10).

A different approach is proposed by Bennett and Mangasarian in [BM94].
The formulation introduced in the paper is a generalization of RLP called
M-RLP and requires only a single linear optimization in contrast to the k
problems of £-SVM and k-RLP. First we introduce the equivalent nonomo-
geneous inequalities

(w; — w;)la; — v+ >1 (1.51)

for each point a; € A; and for all [ # j. Accordingly to the proposed
inequalities, a point assigned to a class A; is considered misclassified if there
exists an | # j such as (w; — w;)Ta;, —v; +9 — 1 < 0. We can therefore
consider the negative quantity (w; —w;)?a; —v;+7 — 1 as a misclassification
error, while, if positive, it measures the “strength” of the classification. It is

straightforward to define the misclassification error for a; € A; with respect
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to A; as:

eiji = max{0, —(w; — w;)Ta; +v; — v + 1}, (1.52)

where we have inverted the sign of the expression to have a non-negative
quantity. The sum of the errors e, is the quantity to be minimized in order
to find the separator which best discriminates between the two classes .A; and
A;. This can be generalized with an aggregate error function which accounts

for the misclassification errors of each point.

minzz Z €ijl (1.53)

Jj=1 1=1 i;a;€A;
I#j

€ijl = —(Wj—Wl)Tari‘Vj—%‘f‘l Vi l#jelkl,i:a; € A;

€ijl 20 Vj,le [k],iiaiEAj

e Y s Y
_ =
ot Ot
(@) NG

~— N~ N~

w; € R" Vj € [k]

€ijly V5 eR Vj S [k]

If the optimal objective is 0, then the dataset is piecewise-linearly sepa-
rable. Otherwise, the positive values of the variables e;;; represent the mag-

nitude of the misclassification error of the point a;.

M-RLP variant: max-error

In the context of this work a slightly different objective function has been
adopted. Working within a Piecewise Affine Model Fitting context, we are
often interested in setting a misclassification error tolerance rather than min-
imizing such errors. Moreover, as will be clear further on, the classification

will be made on classes that are not fixed a priori. We adopt a formulation
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with a simpler objective function:

min Z €; (1.58)
i=1

€ >ey Vi lelklia €A, (1.59)

eiji > —(wi—w) a;+v,—n+1 Vil#jelkli:a;c A (1.60)
& >0 Vie[m (1.61)

eii1 >0 Vi lelkl,i:a €A (1.62)

w; € R" Vj e [k] (1.63)

v ER V€ [K] (1.64)

This program amounts to minimizing the sum of the maximum misclassifi-
cation errors e; for each point a; rather then minimizing the sum of all the
misclassification errors for each point [CI06].

In this formulation the presence of the classification constraints depends
on the class labels of the points a;,. As long as the sets A; are known a
priori, as it is the case in a classic supervisioned learning problem, the sys-
tem of inequalities can be written easily. We now introduce a different, but
equivalent, formulation that is better suited for the use that will be made in
k-PAMF. We add a number m X k of binary parameters z;; € {0,1} which
express the assignment of a point a; to the class A;. These assignments have

to satisfy Zj x;; = 1 and allow us to declare Constraint (1.60) as:
Tij = 1= €451 > —(Wj — vvl)Tai +v =+ 1 (165)

Again, we deal with the conditional constraint with the big-M method:
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minz €; (1.66)
i=1

€; Z €ijl — M(l — -Tij) VJ,Z € [k’],Z € [m]

—_
(@)
(0.¢]

—_
D
=]

~— ~— ~—  ~—  ~— =

e > —(wi—wi) ai+v —n+1 Vi l#jelklie[m]

€ijl >0 VJ,Z S [k],l S [m]

=
-
)]

w; € R" Vj € [K]

t_n
-
—_

(
(
e >0 Vie[m] (1.
(
(
(

v €R Vje [k]

When z;; = 0 inequality 1.67 is deactivated and €; assumes value 0. The
variable e;; is auxiliary and is used for readability purpose, but could be

omitted with a simple substitution obtaining:

e > —(Wj — wl)Tai + Vi — N +1-— M(]_ - xij) (173)

The value of M is once again crucial, as it has to be big enough (ideally

+00) but could cause numerical instabilities if too large.



Chapter 2

Exact MILP formulations for
k-PAMEF

In this chapter we present a MILP formulation for k-PAMF which includes
not only clustering and linear regression on the data points, but also multi-
category classification that directly induce a partition on the domain D.

With our mixed-integer formulation it is possible to find a global optimum
to the Piecewise Affine Model Fitting problem with no previous information
on the unknown function f(-) that we want to approximate. The only pa-
rameter that the method requires is the number k of affine submodels.

The devised MILP program is hard to solve to optimality. We show
methods which exploit the peculiarities of the formulation and apply some
promising recent results from the literature to cope with the complexity of

the problem.
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2.1 Mixed integer formulation

Our mixed integer formulation of k-PAMF combines all aspects of Piecewise
Affine Model Fitting in one single program. A first part of the formulation
follows from what has been discussed in Section 1.4.2 about Hyperplane
Clustering and how it is related to PAMF: we seek an assignment to the k
clusters such that the distance of each cluster member from the corresponding
model is minimal. In other words, we look for a partition of the discrete set
of points A in subsets associated to k& submodels. The objective function
is the sum of the absolute values of the residuals, i.e., the difference d;;
between the observed value y; of each point and the value fj (a;) given by
the affine submodel (hyperplane). In Section 1.4.2 we discussed the following
MILP, that is a modification of a k-HC program where we have replaced the

geometric fo-norm objective function with the ¢;-norm algebraic distance of
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PAMF (which we repeat for greater readability):
kK m ~
min » ) " dy; (2.1)
j=1 i=1
J

dij > dij — M(1 — xy5)
dij > WjTaz‘ % —Yj
dij > —ijaZ- + v +y;

ZL’U S {O, 1}

v ER

Vi € [m],j € [K]
Vi € [m],j € [K]
Vi € [m],j € [K]
Vi e [m],j € [k]
Vi e [m],j € [k]
vj € [K]

Vi € [m],j € [k]

What is yet to be added is a second part which performs simultaneously

a multi-category classification on the continuous domain D based on the as-

signments x;; — which are not fixed. What usually happens with supervised

learning is that we have points assigned to classes and we look for a sepa-

ration of the domain such as the points belonging to different categories are

accordingly classified. In contrast, in our formulation of k-PAMEF we have a

shift of paradigm: we do have a classification problem, but the supervision

labels, or characteristic vectors, x;; are not known a priori. Instead, they are

variables that assume a value according to the remaining constraints.

The M-RLP formulation chosen to be included in the k-PAMF program
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is the following (see Section 1.4.4):

min ) & (2.11)
=1

€ >eij— M1 —x;) Vy,lelk],iem] (2.12)

eiji > —(wi—w) a;+v; —m+1 Vil#jelkliem] (2.13)
& >0 Vie[m] (2.14)

eiji >0 Vi, lelk],ie[m] (2.15)

which is convenient because it is straightforward to change the role of the
characteristic vectors x; from parameters to binary variables. We replace the
minimization term with a tolerance n on each é;, and we obtain the following

exact MILP formulation for k-PAMF:
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kK m
min » Y " dy (2.16)
j=1 i=1
» wy=1 Vie[m] (2.17)
j
dij < Mzi; Vi€ [m],je k] (2.18)
dij > dij — M(1 — ;) Vi€ [m],je[k] (2.19)
diy >wia;—v;—y; Vie[m]je k] (2.20)
dij > —WjTai +7+y; Vi€ [ml],je K] (2.21)
& <n Vic[m) (2.22)
€ > ey — M —x5) Vj,l€[k],ie[m] (2.23)
e > — (Wi —wi)Ta;+795 =7 +1 Vil #j€[k],i€[m (2.24)
z;; € {0,1} Vi€ [m],j € [K] (2.25)
di; >0 Yic[ml],je [k (2.26)
di; >0 Vie[m],je k| (2.27)
w;, wi € R" Vj € [k] (2.28)
75,7 € R Vj € [k] (2.29)
& >0 Vie[m] (2.30)
eij1 >0 Vi, le[k],iem] (2.31)

As in [CI06] we add a superscript ¢ to distinguish the parameters of the

classification hyperplanes from the regression hyperplanes. The objective is

the minimization of the approximation error, while we impose a tolerance 7

on the error committed by the multi-category classification. The additional

RLP constraints validate only the assignments x such that the clusters in A
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can be linearly separated in the underlying continuous domain D. In other
words, a configuration x is not accepted unless it induces piecewise-linearly

separable classes on D.

2.1.1 Issues of the formulation

The formulation appears complex for several reasons, such as the strong
combinatorial aspect of the problem and the rather large amount of variables
and constraints. It can be simplified, removing unnecessary variables and

constraints, yielding a more compact formulation:

minzm: d; (2.32)
Y wy=1 Vie[m] (2.33)

dZZWjTaZ—’y]—y]—M(l—JZU) VZe[m],je[k?]

n>—(wi—wi)la;+97 =7 + 1= M(1—zy) Vjl€lk]i€[m

no
@
3

ro
o)
=)

w;, wi € R" Vj € [K]

(2.34)
(2.35)
(2.36)
z; €{0,1} Vie[m],jek] (2.37)
(2.38)
(2.39)
(2.40)

V75 €ER V) € [K]

We have m(k + 1) + 2k(n + 1) variables, mk of those are integer, and k*m +
2mk + m linear inequalities, all of them involving binary variables.

The columns of the matrix  can be permuted yielding equivalent solu-
tions: this causes issues in branching, since we can find duplicate solutions

due to symmetry. Moreover, the symmetry and the big-M terms are known
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to be responsible for weak LP relaxation: indeed the relaxation appears to
give poor results, as we experience that the problem always appears to have
a fractional solution with objective value 0.

In the next sections we describe an attempt to solve the problem as effi-
ciently as possible applying recent promising results from research on integer
programming. The focus will be on methods to break symmetries in problems
with partitioning constraints [KP08] and the use of Combinatorial Benders’
Cuts [CF06] to avoid numerical instabilities and introduce better bounds

than those obtained with big-M.

2.2 Symmetry breaking techniques

An integer mathematical program is said to be symmetric if some of its
variables can be permuted without changing the structure of the problem.
The symmetry group & of an IP problem is the set of all permutations 7 of
the n binary variables mapping each feasible solution on a distinct feasible
solution having the same objective value.

Symmetries appear in a vast number of classical problems in optimiza-
tion, especially in those that exhibit a strong combinatorial aspect (graph
coloring or partitioning, job scheduling). A symmetric group makes gener-
ally a problem harder to solve with classical branch-and-bounds algorithm:
first, symmetries lead to an unnecessarily large search tree, because equiva-
lent (isomorphic) solutions are discovered again and again. Hence great part
of the effort may be wasted enumerating instances that were already con-
sidered. Second, the quality of LP relaxations of such programs typically is
extremely poor [Margl0].

One big class of symmetric problem is related to partitioning or packing
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100 0 0010
0100 0001
100 0 0010
100 0 0010
0010 1000
(000 1] 010 0|

Figure 2.1: The two matrices are obviously different but, due to symmetry,
they describe the same clusters in k-PAMF

problems, that consists in partitioning (or packing) a set .4 in at most a
number k£ of subsets having to meet the same requirements — the subsets
have to be interchangeable. This is exactly the case in k-PAMF, where all
clusters are equivalent and we have a set of partitioning constraints (also

called row-sum equations) for the binary decision variables z;;:

» wy=1 Vie[m] (2.41)

k-PAMF is indeed symmetric: given a solution, any permutation 7 of
the clusters, i.e., the columns of z (viewed as a m - k matrix), results in a
feasible solution with the same objective function value. In other words, two
solutions are equivalent when for each pair a;,a; the two points belong to
the same cluster in a solution if and only if they belong to the same set also
in the other one. Figure 2.1 shows two equivalent x matrices for k-PAMF.
If we permute the variables x, to have an equivalent solution obviously all
the other variables have to permute in a similar way so that only the indices
related to their column change. The symmetric group & of order k£ acts
on the solutions (by permuting the columns of z) in such a way that the
objective function is constant along every orbit of the group action. Each

orbit corresponds to a symmetry class of feasible solutions.
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The weakness of the LP-bound mentioned above is due to the fact that in
many cases the symmetry is responsible for the feasibility of relaxed solutions
of poor quality. For example, in the classical IP formulation of the graph
coloring problem [GJ79], that is widely considered as one of the hardest
problems in combinatorial optimization, the LP relaxation is weak since it
gives a solution with all z}; = 1/k, where k is the maximum number of colors
that can be used: the solution represents the barycenter of the orbit of any
x that satisfies the partitioning inequalities [KP0S].

Several methods that deal with symmetries in integer mathematical pro-
gramming have been developed during the years: typically the focus is either
in detecting symmetries in general problems or in developing ad-hoc break-
ing techniques that work on specific families of problems. A good survey on
the topic is [Margl0], where the author reviews and discusses most of the
approaches that have been proposed in the recent past. The line that we
follow in this work is the idea of finding symmetry-breaking inequalities that
describe a polytope containing only non-equivalent solutions for the parti-

tioning Constraints (2.33).

2.2.1 Lexicographic ordering

A solution to the symmetry problem is trying to partition the feasible region
in equivalence classes under that symmetry and cut off as large part of the
orbits as possible. This is done by adding inequalities to the MIP problem
— yet we have to keep at least one representative of each feasible orbit lest
valid solutions be missed. In [MDZ01] Méndez-Diaz and Zabala introduce
symmetry-breaking constraints that have been proved to leave out all equiv-
alent solutions from each orbit except for one element, which is the solution

that is maximal with respect to a lexicographic ordering of the columns of x.
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1 XXX X
1D:0.0.0:0.4
1 KXXKX
1 XXX
1 XX
1 X
1
1
1
1

Figure 2.2: A matrix with columns in decreasing lexicographic order. Under
partitioning constraints (only one l-entry per row), the elements over the
main diagonal are bound to be 0.

Definition. A vector v € R" is lexicographically smaller than a vector w €
R™ if for some 1 < p < n we have v; = w; for i =1,...,p — 1 and v, < w,

(resp. v, > w, ). This is denoted by:

v<w (2.42)

A solution of the integer problem is chosen as a representative if and
only if its columns are in non-increasing lexicographic order, i.e., if it is
<-maximal® in its symmetry orbit. An example of a matrix with columns
in decreasing lexicographic order is reported in Figure 2.2. The authors
show that this kind of symmetry-breaking constraints performs well in some
situations. The strongest constraints that are introduced in the article are

the following inequalities (from now on called MZ inequalities):

1—1
i <) T (2.43)
p=1

When applied to our problem, the inequalities ensure that a point a; can

be assigned to a hyperplane H; only if all clusters j' < j contain at least a

Hexicographically maximal
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point with ¢ < i (see fig. 2.3). Assigning the first vector to the first cluster,
by imposing z7; = 1, and adding the symmetry-breaking Constraints (2.43)
we ensure that the matrix x has to be lexicographically sorted. When £ = 2,
just by fixing of the variable x; ; to 1 the matrix is obviously lexicographically

sorted.

2.2.2 Orbitopes: notation and definitions

In [KP08] Kaibel and Pfetsch derive a linear description of the convezr hull of
all <-maximal feasible solutions. It involves using an exponential number of
constraints that can be seen as both a generalization and a strengthening of
the symmetry-breaking inequalities formerly described. The convex hulls of
0/1-matrices with exactly one 1 per row and lexicographically sorted columns
are called partitioning orbitopes and are a recent research topic.

We introduce some preliminary notations and definitions. We call M,,, x
the set of m X k matrices whose elements can assume only binary values (0

or 1). Then we define:

k
My ={2 € My s Y wyy=1} (2.44)
j=1

as all matrices that satisfy the partitioning constraints (row-sum equations).

Let &) be the group of all permutations acting on M,, ; by permuting

columns (symmetric group). We denote with M"%* (&) the set of matrices

in M, that are <-maximal within their orbits under the action of their

symmetry group (i.e., the set of all 0/1 matrices that are lexicographically

sorted).

We define:

Tng:=1(0,j) € [m] x [k] : 1> j} (2.45)
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Figure 2.3: The elements in grey form the set col(i — 1, j — 1) and their sum
represents the right-hand side of the inequality in 2.43. Notice that we take
into account only the entries under the main diagonal, i.e., with with ¢ < 7.

as the set of valid indices of a matrix in M (&;) N M .. This is derived
from the observation that, in a <-maximal 0/1 matrix z satisfying the par-
titioning constraints (one l-entry per row), all entries x;; with i > j have to

be equal to 0 (see Figure 2.2). Accordingly we define:

row; := {(1,1), (,2), ..., (i, min{i, k}) } (2.46)
coly = {90, G+ 1,4), . (m,9)) (2.47)
col(i,7) == {(5,5), G +1,7), -, (1, 5) } (2.48)

For convenience, given a set of indices S C [m] x [k] and a matrix z € R™*¥,

we write:

(i,9)eS
It is now possible to formally define the object on which the following

results are based.
Definition. (Partitioning orbitope) The partitioning orbitope associated with

the group &y is:

O, 1 (B4) = conv(M7 5 () N M L) (2.50)

m.k
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ey
e

Figure 2.4: The points represent the solutions of a symmetric problems.
Darker, the feasible ones. The orbits contain distinct solutions that are
equivalent, i.e., with the same objective value. The orbitope, in yellow, de-
scribes the convex hull of the lexicographic maxima. Combining the orbitope
with the remaining constraints of the problem we have a tighter feasible set
with no symmetries. Figure from [KP08].

A partitioning orbitope O, ; (&) is the convex hull of all the <-maximal
0/1 matrices that satisfy the partitioning constraints. The orbitope con-
tains exactly one representative for each orbit with respect to the symme-
try group ®;. Combining the orbitope with the remaining constraints of a
concrete problem, we completely remove the symmetry associated with the

permutation of the columns of x (see Figure 2.4).

2.2.3 Shifted Column Inequalities

A first step towards the full description of the orbitope consists in the fol-

lowing generalization of MZ inequalities:

Definition. For a (i, j) € Z,,x and the set B = {(i, ), (i, j+1), ..., (i, min{i, q}}

called bar of (i,7), we define the Column Inequality:

z(B) < z(col(i —1,j — 1)) (2.51)

Column inequalities are tightenings of the MZ symmetry-breaking in-
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i 1 i +++ +++ +|++

(a) (b) (0) (d)

Figure 2.5: (a) shows how diagonal coordinates work. (c), (d) display two
possible shiftings of the column (¢, j—1) in (b). The shifted columns represent
the right-hand side of SCIs with leader (3, j).

equalities. It can be demonstrated that an integer solution z € {0,1}™*k
belongs to O, (&) if and only if it satisfies all column inequalities and the
partitioning constraints. Column inequalities are stronger yet they do no