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Abstract

Given numerical data sampled from a real, unknown process the problem of

Model Fitting is to find a model that best fits the data, i.e., a mathematical

function which is able to approximate the data as accurately as possible.

In this work we investigate Piecewise Affine Models, which are attracting

considerable attention in a variety of fields. A Piecewise Affine Model is

described by k affine functions each one associated to a subdomain Dj ⊆ Rn,

with 1 ≤ j ≤ k, where {D1, ...,Dk} is a partition of Rn. The problem of

k-Piecewise Affine Model Fitting (k-PAMF) amounts to identifying k linear

submodels f̂j : Dj → R, together with their definition domains Dj, so as to

minimize an objective function which represents the overall approximation

error with respect to the data.

Typically the problem is solved in two distinct phases. In the first phase

the data points are partitioned in k subsets and a linear submodel is fitted to

each subset, while in the second phase the subdomains Dj are defined. We

propose a novel approach that combines the two aspects in a single phase.

The thesis is organized as follows. In Chapter 1 we give an overview of

previous work on the subject and explain the novelty of our approach. The

problem of k-PAMF is described in detail and the subproblems Hyperplane

Clustering and Multi-category Classification are discussed. In Chapter 2 we
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propose a novel Mixed-Integer Linear Programming formulation for k-PAMF.

We describe the generation of ad-hoc cuts in a Branch&Cut framework to

break symmetries and speed up the solution time. Moreover, we use a Com-

binatorial Benders’ Cuts approach to get rid of the big-M coefficients. In

Chapter 3 we propose two heuristics to tackle large-size instances: an adap-

tation of k-means and an adaptive point reassignment algorithm. In Chapter

4 we report and discuss computational results obtained from randomly gen-

erated and real-world instances, and we compare the methods we propose.

The refined exact formulations yield optimal solutions for instances up to

150 points in low-dimensional spaces while the adaptive point reassignment

method provides good solutions in a short computing time. Finally, in Chap-

ter 5 we draw some conclusions and mention ideas for future work.



Riassunto

Nel problema del Model Fitting, dato un insieme A di punti ai ∈ Rn e i

loro cosiddetti valori osservati yi ∈ R, si vuole identificare un modello, cioè

una funzione f̂ : D ⊆ Rn → R, che approssimi nel miglior modo possibile il

processo reale f(·) che ha generato i dati yi.

In questa tesi si studia il problema di k-Piecewise Affine Model Fitting, che

prevede l’approssimazione di funzioni non lineari con modelli lineari (affini)

a tratti. Il problema è di attuale rilevanza in molti ambiti applicativi, ad

esempio nei modelli Piecewise AutoRegressive eXogenous (PWARX).

Un modello f̂ lineare a tratti (in generale non continuo) è descritto da un

numero k di funzioni lineari ciascuna delle quali è associata ad un proprio

dominio Dj ⊆ Rn. Il problema di k-PAMF consiste nel trovare k sottomodelli

affini f̂j : Dj → R che minimizzano una funzione obiettivo che rappresenta

l’errore di approssimazione sui dati. Una tipica funzione che viene usata allo

scopo è la somma dei moduli delle differenze fra le osservazioni yi e il valore

calcolato dal modello:
∑m

i=1 |f̂j(ai) − yi|p, dove f̂j è il sottomodello lineare

nel cui dominio giace il punto ai. La scelta nel nostro caso è la norma `1,

p = 1, ovvero la minimizzazione della somma dei valore assoluti degli errori

di approssimazione per ogni punto.

Il problema da risolvere comprende non solo la stima dei parametri dei

sottomodelli lineari, ma anche l’identificazione dei loro domini Dj. Ciò che
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viene tipicamente fatto nell’approccio classico è dividere il problema in due

fasi: nella prima vengono partizionati i punti e si trovano gli iperpiani che

meglio approssimano tali sottoinsiemi di punti, mentre la determinazione dei

domini dei sottomodelli lineari viene svolta solamente in seconda battuta.

L’approccio che proponiamo in questo lavoro prevede un’unica formulazione

che contemporaneamente lavora sulla minimizzazione dell’errore sui dati e

sulla partizione del dominio continuo in k regioni corrispondenti ai sotto-

modelli lineari.

Nel Capitolo 1 è descritto il problema di k-Piecewise Affine Model Fit-

ting con rimandi a precedenti lavori sull’argomento, mostrando la novità

dell’approccio proposto. Inoltre vengono introdotti due problemi ad esso

collegati, l’Hyperplane Clustering e la Multi-category Classification. In ef-

fetti k-PAMF può essere visto come una loro combinazione. Nel Capitolo

2 viene presentata una formulazione esatta di k-PAMF come un problema

di programmazione lineare misto-intera. Esso prevede allo stesso tempo la

detereminazione dei parametri e dei domini dei modelli lineari. Descriviamo

lo studio e l’implementazione di metodi che cercano di ridurre la complessità

del problema affrontando due aspetti critici della formulazione: le simme-

trie e i big-M . Nel primo caso consideriamo la generazione di una classe di

tagli che permettono la rottura delle simmetrie con un netto miglioramento

dell’efficienza. Nel secondo caso evitiamo l’utilizzo dei coefficienti big-M

medienta una decomposizione basata sui Combinatorial Benders’ Cuts. Nel

Capitolo 3 sono proposte due euristiche: una procedura iterativa simile a

k-means ed un algoritmo che è basato sull’individuazione di punti candidati

ad essere riassegnati. Entrambi gli algoritmi, che prevedono diverse varianti,

forniscono delle soluzioni (subottimali) di buona qualità in tempi brevi. Il

Capitolo 4 riporta e discute i test computazionali che sono stati effettuati su
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istanze reali e generate aleatoriamente. Infine, nel Capitolo 5 sono contenute

delle conclusioni ed alcuni sviluppi futuri.



Chapter 1

Introduction

Given a set A of m points ai ∈ Rn and their corresponding observations

f(ai) = yi ∈ R, where f(·) is an unknown, possibly nonlinear, function, the

problem of Model Fitting is to find a mathematical function f̂(·) which best

approximates the unknown function by minimizing the error on the data

points.

The fundamental issue of Model Fitting is the choice of the model and its

complexity. Typically real-world data exhibit nonlinearties and are affected

by errors (see Figure 1.1). A model which is too simple (e.g., affine models)

might lack the ability to extract all the information provided by the data. On

the other hand, a model which is too involved might be too complicated to use

efficiently or overfit the data (e.g., reproduce even noise). This is consistent

with Occam’s principle, which states that, when a choice is possible, the

simplest model has to be preferred.

In this work we investigate Piecewise Affine Models, also called Piecewise

Linear Models. The choice of piecewise affine models is motivated by the

difficulty that lies in the identification and the use of nonlinear models. While

basic affine models are often too simple to cope with the actual complexity



Chapter 1. Introduction 7

of real data, piecewise affine functions are considered to be general enough

to work well in practice, while maintaining most of the practical advantages

given by linear models.

0
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Figure 1.1: A set of points that exhibit highly nonlinear behaviour and can
be fitted accurately with 3 affine submodels.

The Piecewise Affine Model Fitting problem requires to find a model

f̂ : D ⊆ Rn → R, composed by a given number k of affine submodels f̂j such

that the overall approximation error is minimized. Each affine submodel

f̂j : Dj → R, for j = 1 . . . k, is described by a linear function f̂j(x) =

wT
j x− γj and a definition domain Dj ⊆ D: in each region one would like to

identify a hyperplane that best fits the data. We impose no constraints on

the continuity of the model. An example of piecewise linear noncontinuous

model is reported in Figure (1.2).

If the partitioning of the domain is known a priori, i.e., the definition

domains of the submodels are known, the problem can be reduced to a fixed

number of linear model fitting problems, which can be easily solved with

robust regression techniques. This however requires some deep knowledge of

the function that we are approximating, and it is not always the case. Indeed,



Chapter 1. Introduction 8

−1

0

1

−1

−0.5

0

1
−10

−5

0

5

10

0.5

1
−10

−5

0

5

10

Figure 1.2: A piecewise linear discontinuous model with 3 submodels.

it is likely that we just have an indication of the number of submodels k.

Often we might have no a priori knowledge that can help in the model fitting

process, thus both the number of the linear submodels and their definition

domains Dj (a polyhedral partition of the continuous domain D) have to be

completely identified from the raw data.

1.1 Classical approach

The problem of Piecewise Affine Model Fitting arises in a variety of fields, and

a number of different methods exist. Classical techniques typically work in

two phases. The first phase involves partitioning and fitting the data points:

the algorithm looks for coplanarity in the discrete space of the data points.

Then, in a second phase, the definition regions Dj of the affine submodels

are derived. However, the affine subspaces that have been found in the first

phase might not induce a feasible partition on the continuous domain D:

some points might therefore be assigned to a subdomain Dj that is different
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from the one that corresponds to the submodel they contributed to define.

An example is reported in Figure 1.3. This is a flaw that our novel approach

aims to repair (see Section 1.2).

Figure 1.3: Example showing two intersecting linear submodels. According
to the point-hyperplane y-distance, the black point would be assigned to the
submodel on the left. However, the resulting sets are not linearly separable
in the continuous domain (the x-axis), hence we would like the black point
to be assigned to the submodel on the right.

In the context of system identification the problem is usually referred to as

hybrid system estimation, and the models are called Piecewise AutoRegres-

sive eXogenous (PWARX) models. An overview of a number of techniques

for hybrid systems identification is proposed in [PJFTV07], that contains

references to several works on Piecewise Affine Model Fitting. Identification

procedures described in the paper include an algebraic approach, a Bayesian

procedure and a clustering-based method. The continuous domain partition

is achieved in a second phase by means of multi-category classification, that is

performed with Support Vector Machines (SVM, [Vap98]) or Robust Linear

Programming (RLP, [BB99]).

In [AM02] the authors tackle piecewise linear model fitting as a Min-

PFS problem, which requires to find a partition of a given linear system in a
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minimum number of feasible subsystems (with a maximum noise tolerance ε).

The problem isNP-hard, and an effective greedy algorithm is proposed in the

paper. The method does not account for the continuous domain partition: in

[BGPV03] the authors introduce a second phase that derives the subdomains

via multicategory classification, performed with SVM or RLP.

In [FTMLM03] the data points are first clustered in feature space via

k-means and then the parameters for each model are computed. The par-

tition is derived at a later stage via SVM or RLP. In [FTM02] the fitting

is performed with a 3-layers neural network which models a piecewise linear

function. The subdomains are not explicitly derived. [MB09] use an iterative

algorithm for estimating max-affine models: even in this case the domains

of the submodels are not explicit, as a linear model is active in a region if it

is maximal compared to the other ones. The resulting piecewise model is, by

definition, continuous, while our formulation is more general since the model

can be discontinuous.

1.2 Novelty of our approach

In this thesis we propose a novel approach that follows in the footsteps of

the work in [CI06], where a single-phase formulation for k-Piecewise Linear

Model Fitting is introduced. What distinguishes this approach from most

of the previous work on the subject is the fact that we do not focus first on

fitting discrete points, then on determining the domains of the submodels.

On the contrary, we attempt to solve both problems simultaneously.

The drawbacks of previous, two-phase, approaches are evident especially

in cases where distinct submodels are almost coplanar, or when we have

intersecting submodels. As an example we display in Figure 1.4 a small
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instance that shows the advantage of our approach.
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Figure 1.4: Output of the single-phase k-PAMF formulation that we propose.

The blue and the green points lie on the same line, however they are not

part of the same submodel. Our method simultaneously partitions the points

and the domain, hence it is able to identify the three separate submodels,

and it correctly determines the three definition regions on the continuous

domain, which in this case is the x-axis.

On the other hand, if we look for linear submodels not taking into account

the continuous subdomains, we identify one model for the red points and only

one model that includes both the green and the blue points (see Figure 1.5).

In the second phase, when it comes to determining the domains for the linear

submodels, no meaningful linear partition of the domain can be found: the

two clusters are not linearly separable in D. The result will be a single linear

model with domain D1 which is completely unable to correctly predict the

value of the red function.
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Figure 1.5: Output of a classical k-PAMF method working in two distinct
phases. It is unable to induce suitable definition regions for the submodels.
All points are considered part of the domain of H1.

1.3 k-Piecewise Affine Model Fitting

Let A be a set of m points ai ∈ Rn and f(ai) = yi ∈ R the observations

associated to the points ai, where f(·) is an unknown nonlinear function.

The problem of k-Piecewise Affine Model Fitting amounts to finding a model

f̂ : D ⊆ Rn → R, composed by a given number k of linear submodels f̂j such

that the overall approximation error is minimized. For each affine submodel

it is necessary to identify a linear function f̂j(x) = wT
j x−γj and a definition

domain Dj ⊆ D.

To have a formal mathematical formulation for k-PAMF we have to in-

troduce a metric to measure the discrepancy between the model and the data

values. Typically this objective function is defined as a norm of the vector

containing the approximation errors for each point, i.e., a function of the

form:
m∑
i=1

|f̂j(i)(ai)− yi|p,
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where j(i) indicates the index of the submodel in whose domain the data

point lies.

In this work we define the objective function of k-PAMF as:

m∑
i=1

|f̂j(i)(ai)− yi|, (1.1)

taking p = 1, that is the sum of the absolute values of the approximation

errors. In other words, the error function for the problem is expressed in

terms of the norm `1 of the vector containing the approximation errors: this

translates easily into a linear mathematical program. Moreover with `1 we

expect the formulation to be less sensitive to outliers than using a norm with

p > 1, like the `2 norm.

According to this definition of the problem it is possible to derive a first

nonlinear mathematical formulation for k-PAMF:

min
k∑
j=1

m∑
i=1

xijdij (1.2)

∑
j

xij = 1 ∀i ∈ [m] (1.3)

dij = |f̂j(ai)− yi| ∀i ∈ [m], j ∈ [k] (1.4)

f̂j(ai) = wT
j ai − γj ∀i ∈ [m], j ∈ [k] (1.5)

xij = 1⇔ ai ∈ Dj ∀i ∈ [m], j ∈ [k] (1.6)

xij ∈ {0, 1} ∀i ∈ [m], j ∈ [k] (1.7)

dij, γj ∈ R ∀i ∈ [m], j ∈ [k] (1.8)

wj ∈ Rn ∀j ∈ [k] (1.9)

k⋃
j=1

Dj = D, Dj ∩ Dl = ∅ ∀j 6= l (1.10)
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The binary variables xij indicate whether the point i is assigned to the

model j. Hence the objective function accounts for the approximation error

dij only if xij has value 1, since we are not interested in the error regarding the

submodels where a point does not belong. It is important to stress that the

subdomainsDj are not fixed: they have to be derived so that a point ai can be

assigned to a submodel f̂j only if it belongs to Dj. Constraints (1.10) ensure

that the subdomains are a partition of D, i.e., they are disjoint and their

union forms D. In this formulation it is still not explicit how the domains Dj
should be treated in practice. Mixed-Integer Linear Programming (MILP)

formulations for the problem are the object of Chapter 2.

1.4 Subproblems

Piecewise Affine Model Fitting can be seen as the combination of three dif-

ferent subproblems.

In the first subproblem, which is combinatorial, the points have to be

partitioned so that each one is assigned to one (and only one) linear submodel,

as expressed by the binary assignment variables xij.

In the second subproblem, which is continuous, the hyperplanes parame-

ters (wj, γj) have to be determined such that they minimize the sum of the

absolute errors between the predicted values f̂j(ai) and the observations yj

in each data point ai.

Together these two subproblems form a variant of what is called k-

Hyperplane Clustering [ACD09].

In the third subproblem the domain D has to be partitioned so that each

point belongs to the domain Dj corresponding to the submodel f̂j(·) it is

assigned to. This can be seen as a multi-category classification problem,
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that is to find a discriminating function that induces a polyhedral partition

on the continuous domain D which is consistent with the assignments of the

data points to the submodels.

In the next sections we describe in detail the Hyperplane Clustering prob-

lem and the Multi-category Classification problem.

1.4.1 Hyperplane Clustering

Clustering is the problem of discovering clusters, or groups, of similar el-

ements in a dataset. Similarity in itself is a rather vague term, hence the

problem can be defined, and thus solved, in many different ways. Usually

two points are considered similar according to a metric defined on the space

they lie in, e.g., the Euclidean distance. The desired result of a clustering

process is generally a minimal number k of clusters with high infra-cluster

and low inter-cluster similarity.

In Hyperplane Clustering the focus is not on the proximity between points

but on their collinearity (or coplanarity). This is to say that the aim is

clustering data such that elements of the same group are close to the same

linear subspace of dimension n− 1 (a hyperplane, hence the name). In other

words, given a set of m points A = {a1, a2, . . . , am} belonging to Rn, we seek

to determine a minimal number k of hyperplanes

Hj = {x ∈ Rn|wT
j x = γj,wj ∈ Rn, γj ∈ R} (1.11)

and an assignment of the points of A to the hyperplanes Hj such that the

resulting clusters minimize an overall error (an objective function) which

depends on the aggregated orthogonal distance between the points and their

corresponding hyperplanes (see Figure 1.6). For a comprehensive discussion
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Figure 1.6: In kHC we look for a number k of hyperplanes that minimize the
sum of the square orthogonal point-hyperplane distances.

on most aspects of the problem see [ACD09].

A MILP formulation of Hyperplane Clustering with a fixed number k of

clusters (k-HC) is the following:

min
k∑
j=1

m∑
i=1

xijdij (1.12)

∑
j

xij = 1 ∀i ∈ [m] (1.13)

dij =
|wT

j ai − γj|
‖wj‖2

∀i ∈ [m], j ∈ [k] (1.14)

xij ∈ {0, 1} ∀i ∈ [m], j ∈ [k] (1.15)

wj ∈ Rn ∀j ∈ [k] (1.16)

dij, γj ∈ R ∀i ∈ [m], j ∈ [k] (1.17)

This formulation adopts a 2-norm distance:

dij =
|wT

j ai − γj|
‖wj‖2

. (1.18)
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and an objective function that takes into account for each cluster the sum of

all point-hyperplane distances. The binary variables xij have value 1 when

the point ai is assigned to the cluster j and 0 otherwise. It is necessary

to point out that this formulation is rather naive, as it involves many non-

linearties that could be avoided or reformulated in a form better suited for

mathematical programming.

1.4.2 Hyperplane Clustering and Piecewise Affine Model

Fitting

The similarities between Piecewise Affine Model Fitting and Hyperplane

Clustering are many and not difficult to see, since both require to partition

the data and to identify k hyperplanes.

An important difference between the PAMF and HC lies in the objective

function. In Hyperplane Clustering the aim is of minimizing an aggregate

distance function which depends on the orthogonal distance of the points

from the hyperplanes,

di =
|wT

j(i)ai − γj(i)|
‖wj(i)‖2

. (1.19)

In PAMF, on the contrary, we seek the minimum sum of the absolute values

of the residuals
∑

i |εi|, where εi is defined as the difference between the

observed value yi and the estimated value f̂j(i)(xi) = wT
j(i)xi−γj(i). Formally:

εi := f̂j(i)(ai)− yi = wT
j(i)ai − γj(i) − yi. (1.20)

In both cases j(i) identifies the cluster that ai has been assigned to. Figure

1.7 shows the difference between the distance functions of the two problems.

By replacing the objective function of (1.12)-(1.17) we can write a pro-
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Figure 1.7: On the left we show a plane minimizing the orthogonal distance
of the blue points, but that does not translate in an optimal solution on the
y-axis (center). The plane on the right correctly minimizes the sum of the
absolute values of residuals.

gram which is very similar to k-PAMF, although it lacks the continuous

domain partitioning.

min
k∑
j=1

m∑
i=1

xij d̃ij (1.21)

∑
j

xij = 1 ∀i ∈ [m] (1.22)

d̃ij = |wT
j ai − γj − yj| (1.23)

xij ∈ {0, 1} (1.24)

We can work to write it in a better form. This program can be rephrased as

a Mixed-Integer Linear Programming (MILP) problem removing all nonlin-

earities, first by noticing that the objective function can be written as:

min
k∑
j=1

m∑
i=1

d̃ij (1.25)
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with the additional implications

xij = 0⇒ d̃ij = 0 (1.26)

xij = 1⇒ d̃ij = |wT
j ai − γj − yj| (1.27)

thus making the objective linear. Now the conditional constraints can be

easily transformed in linear constraints using the well known big-M technique

(see Section 2.3 for a discussion on it). Then we can remove the absolute

norm by introducing two sets of linear inequalities

dij ≥ wT
j ai − γj − yj (1.28)

dij ≥ −wT
j ai + γj + yj (1.29)

which are equivalent to the original equations provided that we are dealing

with a minimization problem. The resulting MILP problem is the following,

where for convenience we introduce the auxiliary variables dij:
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min
k∑
j=1

m∑
i=1

d̃ij (1.30)

∑
j

xij = 1 ∀i ∈ [m] (1.31)

d̃ij ≤Mxij ∀i ∈ [m], j ∈ [k] (1.32)

d̃ij ≥ dij −M(1− xij) ∀i ∈ [m], j ∈ [k] (1.33)

dij ≥ wT
j ai − γj − yj ∀i ∈ [m], j ∈ [k] (1.34)

dij ≥ −wT
j ai + γj + yj ∀i ∈ [m], j ∈ [k] (1.35)

xij ∈ {0, 1} ∀i ∈ [m], j ∈ [k] (1.36)

wj ∈ Rn ∀j ∈ [k] (1.37)

dij, γj ∈ R ∀i ∈ [m], j ∈ [k] (1.38)

For a pair (i, j), given a sufficiently large value of M , when xij = 0 the

Inequality (1.32) is active and d̃ij is bound to be 0. Viceversa, if xij = 1 the

Constraint (1.33) has to be satisfied (d̃ij ≥ dij).

This is a MILP which is very closely related to k-PAMF, yet it is not

enough to fully express the problem. In PAMF we intend not only to parti-

tion the given discrete dataset A, but also to guarantee that the partitioned

points be linearly separable and to compute a partition of the continuous

domain D. This is done by adding classification constraints with the pur-

pose of linearly separating the data and at the same time determining the

k subdomains where the linear submodels are defined. Such constraints are

meant to avoid the point-cluster assignments which would not translate into

a feasible linear partition of the underlying domain D. The partition of D

can be achieved through multi-category linear classification, as in [CI06], that
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will be discussed in the next section.

1.4.3 Classification

Given two sets of points A1,A2 in the n-dimensional space Rn, classification

is the problem of identifying a function capable of discriminating the data

according to their classes.

If a linear function is enough to discriminate the two classes, it is sufficient

to find an (n− 1)-dimensional hyperplane H defined as

H : wTx− γ = 0 (1.39)

where w is the normal to the plane and γ the distance from the origin, and

such that for each point ai it fulfils the constraints

wTai − γ > 0 if ai ∈ A1 (1.40)

wTai − γ < 0 if ai ∈ A2. (1.41)

If such a separating plane exists, the points are said to be linearly separable.

In this case in general there are infinitely many planes that separate the two

classes.

A common approach to deal with this problem in practice is introducing

the following nonomogeneous inequalities.

wTai − γ ≥ +1 if ai ∈ A1 (1.42)

wTai − γ ≤ −1 if ai ∈ A2 (1.43)

These constraints do not only define a hyperplane separating the data
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Figure 1.8: A linear separation bound. The points on the margin ρ are the
support vectors.

points, but in fact two parallel hyperplanes that keep a margin between the

points belonging to different classes. In particular, the distance between

the two hyperplanes is 2/‖w‖, that represents in fact the minimum distance

between two points belonging to different classes. The points lying on the hy-

perplanes that define the margin between the classes are called Support Vec-

tors (see Figure 1.8), and a well-known and powerful classification method,

called Support Vector Machines (SVM), is based on the maximization of the

geometric margin ρ = 2/‖w‖.

This technique requires a quadratic minimization problem, and the obvi-

ous drawback of this method is the potential complexity of the optimization.

Moreover, when dealing with sets which are not completely separable with

a linear function, it is important to find a result that discriminates best

according to some criterion other than the maximal separation margin. A

formulation that naturally accounts for misclassification errors and just re-

quires the solution a linear problem is Robust Linear Programming (RLP,
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[BB99]):

min
m∑
i=1

ei (1.44)

wTai − γ + ei ≥ +1 if ai ∈ A1 (1.45)

wTai − γ − ei ≤ −1 if ai ∈ A2 (1.46)

w ∈ Rn, γ ∈ R (1.47)

ei ≥ 0 (1.48)

that amounts to minimizing the sum of the misclassification errors ei.

1.4.4 Multi-category Classification: M-RLP

What was described in the previous section is valid for a binary classification,

but can be extended to multi-class problems, where k > 2. Given k sets

A1, ...,Ak we want to find a classification function capable of discriminating

them.

A typical technique is subdividing the k-category classification problem

in k binary discrimination problems, i.e., for each set Ai the method builds a

function that discriminates that class from the remaining k − 1 (one-versus-

all). Then, when a new point has to be classified, k binary decisions have

to be made, and the highest output wins. This procedure has been vastly

adopted both in SVM and RLP contexts with the name k-SVM and k-RLP

[BB99].

These methods require the identification of a set of parameters (w1, γ1), . . .

(wk, γk) such that for each class Aj and for each ai ∈ Aj

wT
j ai − γj > wT

l ai − γl ∀l ∈ [k], l 6= j (1.49)
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Figure 1.9: Example of a piecewise discriminating function for three classes.

A point ai is classified as belonging to Aj if the above inequalities hold. In

other words, the class of a point is determined by the index of the pair (wj, γj)

that maximizes the function fj(ai) = wT
j ai − γj. Indeed, the discriminating

function can be expressed as the piecewise linear function (an example in

Figure 1.9):

g(x) = max
j∈[k]
{xTwj − γj}

where the classification function is

c(x) = arg max
j∈[k]
{xTwj − γj}.

The separating plane of a class Aj from a class Al can be defined as the

points satisfying

(wj −wl)
Tx− (γj − γl) = 0, (1.50)

where the parameters are computed so that (wj −wl)
Tai − γj + γl > 0 for

each points belonging to the set Aj and viceversa (wj −wl)
Tai− γj + γl < 0

for each point in Al.
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xT (w1 −w2) = γ1 −γ2

xT (w2 −w3) = γ2−γ3

xT (w3 −w1) = γ3 −γ1

A2

A3

A1

Figure 1.10: Example of a piecewise linear separator for three classes.

If the inequalities are perfectly satisfied, the sets of points are said to be

piecewise-linearly separable (Figure 1.10).

A different approach is proposed by Bennett and Mangasarian in [BM94].

The formulation introduced in the paper is a generalization of RLP called

M-RLP and requires only a single linear optimization in contrast to the k

problems of k-SVM and k-RLP. First we introduce the equivalent nonomo-

geneous inequalities

(wj −wl)
Tai − γj + γl ≥ 1 (1.51)

for each point ai ∈ Aj and for all l 6= j. Accordingly to the proposed

inequalities, a point assigned to a class Aj is considered misclassified if there

exists an l 6= j such as (wj − wl)
Tai − γj + γl − 1 ≤ 0. We can therefore

consider the negative quantity (wj−wl)
Tai−γj+γl−1 as a misclassification

error, while, if positive, it measures the “strength” of the classification. It is

straightforward to define the misclassification error for ai ∈ Aj with respect
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to Al as:

eijl = max{0,−(wj −wl)
Tai + γj − γl + 1}, (1.52)

where we have inverted the sign of the expression to have a non-negative

quantity. The sum of the errors eijl is the quantity to be minimized in order

to find the separator which best discriminates between the two classes Aj and

Al. This can be generalized with an aggregate error function which accounts

for the misclassification errors of each point.

min
k∑
j=1

k∑
l=1
l 6=j

∑
i:ai∈Aj

eijl (1.53)

eijl ≥ −(wj −wl)
Tai + γj − γl + 1 ∀j, l 6= j ∈ [k], i : ai ∈ Aj (1.54)

eijl ≥ 0 ∀j, l ∈ [k], i : ai ∈ Aj (1.55)

wj ∈ Rn ∀j ∈ [k] (1.56)

eijl, γj ∈ R ∀j ∈ [k] (1.57)

If the optimal objective is 0, then the dataset is piecewise-linearly sepa-

rable. Otherwise, the positive values of the variables eijl represent the mag-

nitude of the misclassification error of the point ai.

M-RLP variant: max-error

In the context of this work a slightly different objective function has been

adopted. Working within a Piecewise Affine Model Fitting context, we are

often interested in setting a misclassification error tolerance rather than min-

imizing such errors. Moreover, as will be clear further on, the classification

will be made on classes that are not fixed a priori. We adopt a formulation
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with a simpler objective function:

min
m∑
i=1

ēi (1.58)

ēi ≥ eijl ∀j, l ∈ [k], i : ai ∈ Aj (1.59)

eijl ≥ −(wj −wl)
Tai + γj − γl + 1 ∀j, l 6= j ∈ [k], i : ai ∈ Aj (1.60)

ēi ≥ 0 ∀i ∈ [m] (1.61)

eijl ≥ 0 ∀j, l ∈ [k], i : ai ∈ Aj (1.62)

wj ∈ Rn ∀j ∈ [k] (1.63)

γj ∈ R ∀j ∈ [k] (1.64)

This program amounts to minimizing the sum of the maximum misclassifi-

cation errors ēi for each point ai rather then minimizing the sum of all the

misclassification errors for each point [CI06].

In this formulation the presence of the classification constraints depends

on the class labels of the points ai. As long as the sets Aj are known a

priori, as it is the case in a classic supervisioned learning problem, the sys-

tem of inequalities can be written easily. We now introduce a different, but

equivalent, formulation that is better suited for the use that will be made in

k-PAMF. We add a number m × k of binary parameters xij ∈ {0, 1} which

express the assignment of a point ai to the class Aj. These assignments have

to satisfy
∑

j xij = 1 and allow us to declare Constraint (1.60) as:

xij = 1⇒ eijl ≥ −(wj −wl)
Tai + γj − γl + 1 (1.65)

Again, we deal with the conditional constraint with the big-M method:
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min
m∑
i=1

ēi (1.66)

ēi ≥ eijl −M(1− xij) ∀j, l ∈ [k], i ∈ [m] (1.67)

eijl ≥ −(wj −wl)
Tai + γj − γl + 1 ∀j, l 6= j ∈ [k], i ∈ [m] (1.68)

ēi ≥ 0 ∀i ∈ [m] (1.69)

eijl ≥ 0 ∀j, l ∈ [k], i ∈ [m] (1.70)

wj ∈ Rn ∀j ∈ [k] (1.71)

γj ∈ R ∀j ∈ [k] (1.72)

When xij = 0 inequality 1.67 is deactivated and ēi assumes value 0. The

variable eijl is auxiliary and is used for readability purpose, but could be

omitted with a simple substitution obtaining:

ei ≥ −(wj −wl)
Tai + γj − γl + 1−M(1− xij) (1.73)

The value of M is once again crucial, as it has to be big enough (ideally

+∞) but could cause numerical instabilities if too large.
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Exact MILP formulations for

k-PAMF

In this chapter we present a MILP formulation for k-PAMF which includes

not only clustering and linear regression on the data points, but also multi-

category classification that directly induce a partition on the domain D.

With our mixed-integer formulation it is possible to find a global optimum

to the Piecewise Affine Model Fitting problem with no previous information

on the unknown function f(·) that we want to approximate. The only pa-

rameter that the method requires is the number k of affine submodels.

The devised MILP program is hard to solve to optimality. We show

methods which exploit the peculiarities of the formulation and apply some

promising recent results from the literature to cope with the complexity of

the problem.
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2.1 Mixed integer formulation

Our mixed integer formulation of k-PAMF combines all aspects of Piecewise

Affine Model Fitting in one single program. A first part of the formulation

follows from what has been discussed in Section 1.4.2 about Hyperplane

Clustering and how it is related to PAMF: we seek an assignment to the k

clusters such that the distance of each cluster member from the corresponding

model is minimal. In other words, we look for a partition of the discrete set

of points A in subsets associated to k submodels. The objective function

is the sum of the absolute values of the residuals, i.e., the difference dij

between the observed value yi of each point and the value f̂j(ai) given by

the affine submodel (hyperplane). In Section 1.4.2 we discussed the following

MILP, that is a modification of a k-HC program where we have replaced the

geometric `2-norm objective function with the `1-norm algebraic distance of
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PAMF (which we repeat for greater readability):

min
k∑
j=1

m∑
i=1

d̃ij (2.1)

∑
j

xij = 1 ∀i ∈ [m] (2.2)

d̃ij ≤Mxij ∀i ∈ [m], j ∈ [k] (2.3)

d̃ij ≥ dij −M(1− xij) ∀i ∈ [m], j ∈ [k] (2.4)

dij ≥ wT
j ai − γj − yj ∀i ∈ [m], j ∈ [k] (2.5)

dij ≥ −wT
j ai + γj + yj ∀i ∈ [m], j ∈ [k] (2.6)

xij ∈ {0, 1} ∀i ∈ [m], j ∈ [k] (2.7)

d̃ij ≥ 0 ∀i ∈ [m], j ∈ [k] (2.8)

wj ∈ Rn ∀j ∈ [k] (2.9)

γj ∈ R ∀i ∈ [m], j ∈ [k] (2.10)

What is yet to be added is a second part which performs simultaneously

a multi-category classification on the continuous domain D based on the as-

signments xij – which are not fixed. What usually happens with supervised

learning is that we have points assigned to classes and we look for a sepa-

ration of the domain such as the points belonging to different categories are

accordingly classified. In contrast, in our formulation of k-PAMF we have a

shift of paradigm: we do have a classification problem, but the supervision

labels, or characteristic vectors, xij are not known a priori. Instead, they are

variables that assume a value according to the remaining constraints.

The M-RLP formulation chosen to be included in the k-PAMF program
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is the following (see Section 1.4.4):

min
m∑
i=1

ēi (2.11)

ēi ≥ eijl −M(1− xij) ∀j, l ∈ [k], i ∈ [m] (2.12)

eijl ≥ −(wj −wl)
Tai + γj − γl + 1 ∀j, l 6= j ∈ [k], i ∈ [m] (2.13)

ēi ≥ 0 ∀i ∈ [m] (2.14)

eijl ≥ 0 ∀j, l ∈ [k], i ∈ [m] (2.15)

which is convenient because it is straightforward to change the role of the

characteristic vectors xi from parameters to binary variables. We replace the

minimization term with a tolerance η on each ēi, and we obtain the following

exact MILP formulation for k-PAMF:
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min
k∑
j=1

m∑
i=1

d̃ij (2.16)

∑
j

xij = 1 ∀i ∈ [m] (2.17)

d̃ij ≤Mxij ∀i ∈ [m], j ∈ [k] (2.18)

d̃ij ≥ dij −M(1− xij) ∀i ∈ [m], j ∈ [k] (2.19)

dij ≥ wT
j ai − γj − yj ∀i ∈ [m], j ∈ [k] (2.20)

dij ≥ −wT
j ai + γj + yj ∀i ∈ [m], j ∈ [k] (2.21)

ēi ≤ η ∀i ∈ [m] (2.22)

ēi ≥ eijl −M(1− xij) ∀j, l ∈ [k], i ∈ [m] (2.23)

eijl ≥ −(wc
j −wc

l )
Tai + γcj − γcl + 1 ∀j, l 6= j ∈ [k], i ∈ [m] (2.24)

xij ∈ {0, 1} ∀i ∈ [m], j ∈ [k] (2.25)

d̃ij ≥ 0 ∀i ∈ [m], j ∈ [k] (2.26)

dij ≥ 0 ∀i ∈ [m], j ∈ [k] (2.27)

wj,w
c
j ∈ Rn ∀j ∈ [k] (2.28)

γj, γ
c
j ∈ R ∀j ∈ [k] (2.29)

ēi ≥ 0 ∀i ∈ [m] (2.30)

eijl ≥ 0 ∀j, l ∈ [k], i ∈ [m] (2.31)

As in [CI06] we add a superscript c to distinguish the parameters of the

classification hyperplanes from the regression hyperplanes. The objective is

the minimization of the approximation error, while we impose a tolerance η

on the error committed by the multi-category classification. The additional

RLP constraints validate only the assignments x such that the clusters in A
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can be linearly separated in the underlying continuous domain D. In other

words, a configuration x is not accepted unless it induces piecewise-linearly

separable classes on D.

2.1.1 Issues of the formulation

The formulation appears complex for several reasons, such as the strong

combinatorial aspect of the problem and the rather large amount of variables

and constraints. It can be simplified, removing unnecessary variables and

constraints, yielding a more compact formulation:

min
m∑
i=1

d̃i (2.32)

∑
j

xij = 1 ∀i ∈ [m] (2.33)

di ≥ wT
j ai − γj − yj −M(1− xij) ∀i ∈ [m], j ∈ [k] (2.34)

di ≥ −wT
j ai + γj + yj −M(1− xij) ∀i ∈ [m], j ∈ [k] (2.35)

η ≥ −(wc
j −wc

l )
Tai + γcj − γcl + 1−M(1− xij) ∀j, l ∈ [k], i ∈ [m] (2.36)

xij ∈ {0, 1} ∀i ∈ [m], j ∈ [k] (2.37)

di ≥ 0 ∀i ∈ [m] (2.38)

wj,w
c
j ∈ Rn ∀j ∈ [k] (2.39)

γj, γ
c
j ∈ R ∀j ∈ [k] (2.40)

We have m(k+ 1) + 2k(n+ 1) variables, mk of those are integer, and k2m+

2mk +m linear inequalities, all of them involving binary variables.

The columns of the matrix x can be permuted yielding equivalent solu-

tions: this causes issues in branching, since we can find duplicate solutions

due to symmetry. Moreover, the symmetry and the big-M terms are known
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to be responsible for weak LP relaxation: indeed the relaxation appears to

give poor results, as we experience that the problem always appears to have

a fractional solution with objective value 0.

In the next sections we describe an attempt to solve the problem as effi-

ciently as possible applying recent promising results from research on integer

programming. The focus will be on methods to break symmetries in problems

with partitioning constraints [KP08] and the use of Combinatorial Benders’

Cuts [CF06] to avoid numerical instabilities and introduce better bounds

than those obtained with big-M .

2.2 Symmetry breaking techniques

An integer mathematical program is said to be symmetric if some of its

variables can be permuted without changing the structure of the problem.

The symmetry group G of an IP problem is the set of all permutations π of

the n binary variables mapping each feasible solution on a distinct feasible

solution having the same objective value.

Symmetries appear in a vast number of classical problems in optimiza-

tion, especially in those that exhibit a strong combinatorial aspect (graph

coloring or partitioning, job scheduling). A symmetric group makes gener-

ally a problem harder to solve with classical branch-and-bounds algorithm:

first, symmetries lead to an unnecessarily large search tree, because equiva-

lent (isomorphic) solutions are discovered again and again. Hence great part

of the effort may be wasted enumerating instances that were already con-

sidered. Second, the quality of LP relaxations of such programs typically is

extremely poor [Marg10].

One big class of symmetric problem is related to partitioning or packing
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
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1




0 0 1 0
0 0 0 1
0 0 1 0
0 0 1 0
1 0 0 0
0 1 0 0


Figure 2.1: The two matrices are obviously different but, due to symmetry,
they describe the same clusters in k-PAMF

problems, that consists in partitioning (or packing) a set A in at most a

number k of subsets having to meet the same requirements – the subsets

have to be interchangeable. This is exactly the case in k-PAMF, where all

clusters are equivalent and we have a set of partitioning constraints (also

called row-sum equations) for the binary decision variables xij:

∑
j

xij = 1 ∀i ∈ [m] (2.41)

k-PAMF is indeed symmetric: given a solution, any permutation π of

the clusters, i.e., the columns of x (viewed as a m · k matrix), results in a

feasible solution with the same objective function value. In other words, two

solutions are equivalent when for each pair ai, ai′ the two points belong to

the same cluster in a solution if and only if they belong to the same set also

in the other one. Figure 2.1 shows two equivalent x matrices for k-PAMF.

If we permute the variables x, to have an equivalent solution obviously all

the other variables have to permute in a similar way so that only the indices

related to their column change. The symmetric group G of order k acts

on the solutions (by permuting the columns of x) in such a way that the

objective function is constant along every orbit of the group action. Each

orbit corresponds to a symmetry class of feasible solutions.
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The weakness of the LP-bound mentioned above is due to the fact that in

many cases the symmetry is responsible for the feasibility of relaxed solutions

of poor quality. For example, in the classical IP formulation of the graph

coloring problem [GJ79], that is widely considered as one of the hardest

problems in combinatorial optimization, the LP relaxation is weak since it

gives a solution with all x∗ij = 1/k, where k is the maximum number of colors

that can be used: the solution represents the barycenter of the orbit of any

x that satisfies the partitioning inequalities [KP08].

Several methods that deal with symmetries in integer mathematical pro-

gramming have been developed during the years: typically the focus is either

in detecting symmetries in general problems or in developing ad-hoc break-

ing techniques that work on specific families of problems. A good survey on

the topic is [Marg10], where the author reviews and discusses most of the

approaches that have been proposed in the recent past. The line that we

follow in this work is the idea of finding symmetry-breaking inequalities that

describe a polytope containing only non-equivalent solutions for the parti-

tioning Constraints (2.33).

2.2.1 Lexicographic ordering

A solution to the symmetry problem is trying to partition the feasible region

in equivalence classes under that symmetry and cut off as large part of the

orbits as possible. This is done by adding inequalities to the MIP problem

– yet we have to keep at least one representative of each feasible orbit lest

valid solutions be missed. In [MDZ01] Méndez-Dı́az and Zabala introduce

symmetry-breaking constraints that have been proved to leave out all equiv-

alent solutions from each orbit except for one element, which is the solution

that is maximal with respect to a lexicographic ordering of the columns of x.
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Figure 2.2: A matrix with columns in decreasing lexicographic order. Under
partitioning constraints (only one 1-entry per row), the elements over the
main diagonal are bound to be 0.

Definition. A vector v ∈ Rn is lexicographically smaller than a vector w ∈

Rn if for some 1 ≤ p ≤ n we have vi = wi for i = 1, ..., p − 1 and vp < wp

(resp. vp > wp ). This is denoted by:

v ≺ w (2.42)

A solution of the integer problem is chosen as a representative if and

only if its columns are in non-increasing lexicographic order, i.e., if it is

≺-maximal1 in its symmetry orbit. An example of a matrix with columns

in decreasing lexicographic order is reported in Figure 2.2. The authors

show that this kind of symmetry-breaking constraints performs well in some

situations. The strongest constraints that are introduced in the article are

the following inequalities (from now on called MZ inequalities):

xij ≤
i−1∑
p=1

xp,j−1 (2.43)

When applied to our problem, the inequalities ensure that a point ai can

be assigned to a hyperplane Hj only if all clusters j′ < j contain at least a

1lexicographically maximal
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point with i′ < i (see fig. 2.3). Assigning the first vector to the first cluster,

by imposing x1,1 = 1, and adding the symmetry-breaking Constraints (2.43)

we ensure that the matrix x has to be lexicographically sorted. When k = 2,

just by fixing of the variable x1,1 to 1 the matrix is obviously lexicographically

sorted.

2.2.2 Orbitopes: notation and definitions

In [KP08] Kaibel and Pfetsch derive a linear description of the convex hull of

all ≺-maximal feasible solutions. It involves using an exponential number of

constraints that can be seen as both a generalization and a strengthening of

the symmetry-breaking inequalities formerly described. The convex hulls of

0/1-matrices with exactly one 1 per row and lexicographically sorted columns

are called partitioning orbitopes and are a recent research topic.

We introduce some preliminary notations and definitions. We call Mm.k

the set of m × k matrices whose elements can assume only binary values (0

or 1). Then we define:

M=
m,k := {x ∈Mm,k :

k∑
j=1

xij = 1} (2.44)

as all matrices that satisfy the partitioning constraints (row-sum equations).

Let Gk be the group of all permutations acting on Mm,k by permuting

columns (symmetric group). We denote with Mmax
m.k (Gk) the set of matrices

in Mm.k that are ≺-maximal within their orbits under the action of their

symmetry group (i.e., the set of all 0/1 matrices that are lexicographically

sorted).

We define:

Im,k := {(i, j) ∈ [m]× [k] : i ≥ j} (2.45)
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i

j

Figure 2.3: The elements in grey form the set col(i− 1, j − 1) and their sum
represents the right-hand side of the inequality in 2.43. Notice that we take
into account only the entries under the main diagonal, i.e., with with i ≤ j.

as the set of valid indices of a matrix in Mmax
m.k (Gk) ∩M=

m.k. This is derived

from the observation that, in a ≺-maximal 0/1 matrix x satisfying the par-

titioning constraints (one 1-entry per row), all entries xij with i > j have to

be equal to 0 (see Figure 2.2). Accordingly we define:

rowi := {(i, 1), (i, 2), ..., (i,min{i, k})} (2.46)

colj := {(j, j), (j + 1, j), ..., (m, j)} (2.47)

col(i, j) := {(j, j), (j + 1, j), ..., (i, j)} (2.48)

For convenience, given a set of indices S ⊆ [m]× [k] and a matrix x ∈ Rm×k,

we write:

x(S) :=
∑

(i,j)∈S

xij (2.49)

It is now possible to formally define the object on which the following

results are based.

Definition. (Partitioning orbitope) The partitioning orbitope associated with

the group Gk is:

O=
m,k(Gk) := conv(Mmax

m.k (Gk) ∩M=
m.k) (2.50)
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Figure 2.4: The points represent the solutions of a symmetric problems.
Darker, the feasible ones. The orbits contain distinct solutions that are
equivalent, i.e., with the same objective value. The orbitope, in yellow, de-
scribes the convex hull of the lexicographic maxima. Combining the orbitope
with the remaining constraints of the problem we have a tighter feasible set
with no symmetries. Figure from [KP08].

A partitioning orbitope O=
m,k(Gk) is the convex hull of all the ≺-maximal

0/1 matrices that satisfy the partitioning constraints. The orbitope con-

tains exactly one representative for each orbit with respect to the symme-

try group Gk. Combining the orbitope with the remaining constraints of a

concrete problem, we completely remove the symmetry associated with the

permutation of the columns of x (see Figure 2.4).

2.2.3 Shifted Column Inequalities

A first step towards the full description of the orbitope consists in the fol-

lowing generalization of MZ inequalities:

Definition. For a (i, j) ∈ Im.k and the set B = {(i, j), (i, j+1), . . ., (i,min{i, q}}

called bar of (i, j), we define the Column Inequality :

x(B) ≤ x(col(i− 1, j − 1)) (2.51)

Column inequalities are tightenings of the MZ symmetry-breaking in-
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Figure 2.5: (a) shows how diagonal coordinates work. (c), (d) display two
possible shiftings of the column (i, j−1) in (b). The shifted columns represent
the right-hand side of SCIs with leader (i, j).

equalities. It can be demonstrated that an integer solution x ∈ {0, 1}m×k

belongs to O=
m,k(G) if and only if it satisfies all column inequalities and the

partitioning constraints. Column inequalities are stronger yet they do not

suffice to completely define O=
m,k(Gk). In order to do that, we have to in-

troduce the Shifted Column Inequalities. First, it is useful to use a different

system of coordinates to indicate the elements in Im,k:

〈η, j〉 = (j + η − 1, j) for j ∈ [k], 1 ≤ η ≤ m− j + 1 (2.52)

We denote with 〈η, j〉 the element contained in the j-th column and η-th

diagonal counting from the top (see Figure 2.5).

Definition. A set S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉}} ⊂ Im,k with η > 1 and

c1 ≤ c2 ≤ . . . ≤ cη is called a shifted column. It is a shifting of each of the

columns

col〈η, cη〉, col〈η, cη + 1〉, . . . , col〈η, k〉, (2.53)

A shifting can be seen as a column whose elements have been moved

diagonally towards the upper-left position (Figure 2.5).

Definition. For (i, j) = 〈η, j〉 ∈ Im.k, the set B = {(i, j), (i, j + 1), ..,
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(i,min{i, q}} and a shifting S of col〈η, j − 1〉, we define the Shifted Col-

umn Inequality :

x(B) ≤ x(S) (2.54)

where B is called the bar of the Shifted Column and (i, j) is the leader of the

SC.

All Column Inequalities are included, since they are Shifted Column In-

equalities with a trivial (null) shifting. The family of SCIs is considerably

larger: indeed, it contains an exponential number of inequalities (in k).

The final result provided in [KP08] is the following theorem:

Theorem (Orbitope description). The partitioning orbitope O=
m,k(Gk) is

completely described by the nonnegativity constraints, the row-sum equa-

tions, and the shifted column inequalities:

O=
m,k(Gk)) = {x ∈ Rm×k|x ≥ 0,

k∑
j=1

xij = 1 for i ∈ [m], (2.55)

x(B) ≤ x(S) for all SCIs}

Having a full description for the convex hull of ≺-maximal partitioning

matrices is a powerful result. However, in order to use this characterization

of the orbitope O=
m,k(Gk) in practice it is not possible to think of adding

all SCIs (exponentially many) to the MIP model. It is therefore crucial to

have a separation algorithm that adds violated inequalities in a cutting plane

fashion.

2.2.4 Separation algorithm for SCIs

A sketch of an efficient algorithm for the separation problem resulting from

SCIs is described again in [KP08]. Given a solution x∗, it is possible via
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dynamic programming to compute a set of maximally violated cuts.

The algorithm builds two m×k tables: a matrix w ∈ Rm×k that contains

the value x(S) of the minimal shifting for each 〈η, j〉 ∈ Im,k and a support

structure τ ∈ {0, 1}m×k that allows the reconstruction of the corresponding

Shifted Column.

Comparing the values of the minimal shiftings in w with the values of the

respective bars x(B), with B = {(i, j + 1), . . . , (i,min{i, q}}, it is possible to

identify the SCIs which are violated in O(mk) time. Since the construction

of the data structures is done in O(mk) and the reconstruction of a Shifted

Column in O(m), we have a separation algorithm that takes an overall linear

time with respect to the dimension m×k of the matrix x. For further details

on the algorithm see Appendix A.

2.2.5 Extended formulation for orbitopes

A further step is described by Faenza and Kaibel in [FK09]: they show

that there exists an extended formulation for the partitioning orbitope, i.e.,

a linear description of a higher dimensional polytope that can be projected

down to the orbitopeO=
m,k(Gk). Rather than solving an optimization problem

over the orbitope in the original space, where exponentially many inequalities

are needed, one may solve it over a simpler polyhedron of which the first one

is an orthogonal projection.

The basic idea of the extended formulation for partitioning orbitopes is

to assign to each vertex of O=
m,k a directed path in a certain acyclic digraph

constructed on the matrix (Figure 2.6). A number of additional variables in

the extended formulations are used to suitably express these paths - from

here the need of additional dimensions. After a series of transformations, the
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Figure 2.6: A vertex of O=
m,k and its associated s-t path [FK09].

final and most compact form is expressed by the following inequalities:

xij = zij − zi,j+1 ∀(i, j) ∈ Im,k (2.56)

ui,j − ui−1,j ≥ 0 ∀(i, j) ∈ Im,k (2.57)

ui,j − ui+1,j+1 ≥ 0 ∀(i, j) ∈ Im,k (2.58)

um,1 ≤ 1 (2.59)

ui,j − ui−1,j − zij + zi,j+1 ≤ 0 ∀(i, j) ∈ Im,k (2.60)

zij − ui,j ≤ 0 ∀(i, j) ∈ Im,k (2.61)

ui,j ≥ 0 ∀i ∈ [m], j = min{k, i} (2.62)

u1,1 = 1 (2.63)

The formulation introduces 2mk new variables uij, zij and about 4mk in-

equalities. The constraints define an integral polyhedron P=
mk whose pro-
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jection onto the original space is proved to be the partitioning orbitope

O=
m,k(Gk). In practice, by including the variables uij, zij and the associated

inequalities in a problem with packing or partitioning constraints column

symmetries are removed at the cost of adding a number of continuous vari-

ables and constraints which is linear in mk.

This formulation implies that the optimization over the partitioning or-

bitope can be solved in polynomial time. The existence of a polynomial

description of O=
m,k(Gk) is consistent with the result of Grötschel, Lovàsz

and Schrijver, that show in [GLS88] how the optimization problem on a

polyhedron can be solved in polynomial time if and only if the corresponding

separation problem can be solved in polynomial time. Since we have a poly-

nomial separation algorithm for SCI inequalities, the polynomial description

of the orbitope is not unexpected.
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2.3 Dealing with Big-M

As previously mentioned, one of the major problems involved in modelling a

k-PAMF problem is dealing with the conditional constraints, i.e., the inequal-

ities which are active only if an associated binary variable xij assumes value

1. The most common way to solve this issue is adding a term weighted by a

large-valued constant M that acts in practice as an implication. Specifically,

we translate:

xij = 1⇒ d̃ij ≥ dij (2.64)

into:

d̃ij ≥ dij −M(1− xij) (2.65)

When xij = 1, the big-M term cancels out and the inequality holds. When

xij = 0, the large value of M makes the constraint unrelevant, ideally be-

coming d̃ij ≥ −∞.

However, introducing a coefficient with a value much larger than the rest

of the coefficients in the problem might not be advisable, since it can lead

to ill-conditioning and numerical instabilities which are hard to manage. See

Section 4.2.3 for details on the choice of M in practice.

On the other hand, setting too low values of M is often not possible due

to the high values not only in the data vectors, that can be normalized, but

in the RLP variables as well (for example, on some instances γc tends to

assume large values). In these situations the solutions are suboptimal or just

plain inconsistent.
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2.3.1 Introduction to Combinatorial Benders’ Cuts

Combinatorial Benders’ Cuts (CBC for short), as proposed by Codato and

Fischetti in [CF06], are a family of cuts that have the purpose of removing the

drawbacks of the big-M technique. CBC are to be used in a decomposition

method similar to classical Benders’ [NW]: the MIP problem we want to

solve is decomposed in a Master problem, which is an ILP that contains

only the integer variables, and a sequence of Slave problems which allow the

generation of cuts that determine the feasibility and, possibly, the optimality

of the incumbent solution.

Given a general MILP problem with conditional constraints, we call y

the continuous variables, and x the integer 0/1 variables which control the

implications as in:

xi = 1⇒ aTi y ≤ bi. (2.66)

Let x∗ be an integer solution of the Master problem. The associated Slave

problem works only on the variables y. The Slave is an LP program that

includes only the conditional inequalities which are active according to the

current x∗. Thus the problem of modelling implications disappear: the Slave

linear problem is constructed given a fixed solution x∗, so when we build it

the active inequalities are included in the system, while inactive ones are not

– no need for big-Ms.

If the Slave happens to be infeasible, it means that the current x∗ is

not feasible. Therefore we add cuts that are based on Irreducible Infeasible

Subsystems (IIS) of the inequalities in the Slave. Doing so, we attempt

to cut off the configurations of x that generated the infeasibility. This is

somehow similar to the concept of no-goods in Constraint Programming,

where one tries to learn from failures and record them as new constraints.



Chapter 2. Exact MILP formulations for k-PAMF 49

The difference is that with a Combinatorial Benders’ Cut we rule out not

only one, but a class of solutions.

2.3.2 Combinatorial Benders’ Cuts for k-PAMF

The method in [CF06] can be generalized to a vast family of MILP, where

integer and/or continuous variables appear either in the objective function

or in the system of inequalities. Here we describe only a variant of the

technique that is applicable to our k-PAMF formulation. Consider the k-

PAMF formulation in (2.32) rewritten as:

min cTy (2.67)

k∑
j=1

xij = 1 ∀i ∈ [m] (2.68)

Mx + Ay ≤ b (2.69)

xij ∈ {0, 1}

where y is a vector containing all the continuous variables (di, γj, γ
c
j , wj, w

c
j)

and the matrices M,A express the inequalities in (2.32). It has to be no-

ticed that only conditional constraints appear in the formulation, justifying

Inequality (2.69). The matrix M in every row contains exactly one big-M

constant associated to a binary variable xij as in:

Mxij + aTi y ≤ bi. (2.70)

The problem can then be split in two subproblems. The first, or Master

problem, is a purely combinatorial ILP and contains constraints on the binary
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variables xij only:

min 0Tx (2.71)

k∑
j=1

xij = 1 ∀i ∈ [m] (2.72)

xij ∈ {0, 1}.

The second, the Slave problem, is an LP depending on a vector x̃ of 0/1

parameters:

Slave(x̃) =

 min cTy

Ay ≤ b−Mx̃
(2.73)

All conditional constraints are moved to the Slave problem, while the

Master initially contains only the partitioning constraints. What is more, in

our case the objective function is in the Slave, since it only involves continuous

variables y. Therefore optimality cannot be ensured by the Master problem:

the cuts that we want to generate have to contain not only information on

the feasibility of the solutions but on their optimality as well. Combinatorial

Benders’ cuts translate these requirements from the Slave problem to the

Master problem, that only has combinatorial information. It is necessary to

stress that the big-M notation has been used in (2.73) for convenience, but

it is not used in practice, where we just select the rows of Ay ≤ b that are

active according to x̃ and discard the others.

To start the CBC iterative procedure, we solve the Master problem at

integrality: let x∗ be a feasible integer solution for Master.

If the linear system Slave(x∗) is feasible, let y∗ be its optimal solution.

The objective value cTy∗ represents the optimal value with respect to the
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current integer x∗. The solution (x∗,y∗) is feasible but it is not guaranteed

to be optimal for the whole problem P .

In order to achieve optimality it is necessary to impose it via an upper

bound on the slave problem, that is the best value B = cTy∗ found so far:

cTy ≤ B − ε (2.74)

With this additional constraint, if a solution does not improve the current

best, it is not considered feasible. If Slave(x∗) is feasible also with respect

to the bound inequality, we update the current best incumbent by (x∗,y∗)

and store a tighter bound B on the objective value.

When the linear system Slave(x∗) turns out to be infeasible, it means

that x∗ is infeasible for P , hence we reject it generating a cut as follows.

In the separation problem we look for an Irreducible Infeasible Subsystem

of Slave(x∗). This set will include a number of rows of Ay ≤ b which,

combined, form an irreducible infeasible system of inequalities. A subsystem

is an Irreducible Infeasible Subsystem when it is infeasible, but every proper

subsystem of it is feasible – i.e., removing just one of the inequalities in the

IIS yields a feasible system.

If we denote with C ⊆ [m]×[k] the set of indices of x associated to the con-

straints in a IIS of Slave(x∗), we can generate the following Combinatorial

Benders’ Cut : ∑
(i,j)∈C0

xij +
∑

(i,j)∈C1

(1− xij) ≥ 1 (2.75)

where C = {C0 ∪ C1}, C0 contains the pairs (i, j) such that x∗ij = 0 and C1
those for x∗ij = 1. The cut is motivated by the fact that at least one of

the binary variables indexed by C has to be changed in order to disable a

constraint in the IIS and break the infeasibility. The current x∗ violates the
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CB Inequality (2.75) since by definition of C0 and C1:

∑
(i,j)∈C0

x∗ij +
∑

(i,j)∈C1

(1− x∗ij) = 0.

The method will halt when the Master is infeasible: as soon as we generate

a CB inequality which results in infeasibility of Master, it means that any

further improvement of the solution by changing x is impossible, hence the

current incumbent (x∗,y∗) is the optimum for P .

CBC Procedure

1 repeat

2 if Master(x) infeasible

3 return (x∗,y∗)

4 x∗ ← Master(x)

5 if Slave(y; x∗) not infeasible

6 y∗ ← Slave(y; x∗)

7 B ← cTy∗

8 Add Upper Bound to Slave:

9 cTy ≤ B − ε

10 repeat //Slave is infeasible

11 C ← IIS of Slave(y; x∗)

12 Add CB cut to Master:

13
∑

(i,j)∈C0 xij +
∑

(i,j)∈C1(1− xij) ≥ 1

2.3.3 Irreducible Infeasible Subsystems

The separation problem which is required for the generation of CB cuts

involves the search of an Irreducible Infeasible Subsystem. Looking for a

minimal-weight IIS of a system of inequalities is known to be a NP-hard



Chapter 2. Exact MILP formulations for k-PAMF 53

problem [APT03]. However, there are efficient techniques to find Irreducible

Infeasible Subsystems in polynomial time. Gleeson and Ryan demonstrated a

correspondence between the IISs of a linear system Ay ≤ b and the nonzero

components of the vertices of a related polyhedron. The result presented in

[GR90] shows that given an infeasible linear problem:

min 0Ty (2.76)

Ay ≤ b (2.77)

y ∈ Rn (2.78)

the indices of its Irreducible Infeasible Subsystems correspond to the supports

(nonzero components) of the vertices of the so-called alternative polyhedron.

To define this polyhedron we start from the set defined by the dual problem,

that is:

maxλTb (2.79)

λTA = 0 (2.80)

λ ≤ 0 (2.81)

In this situation, given an infeasible primal, the dual problem cannot be

infeasible too, as λ = 0 is always a solution – here we are not interested in

primal objective function, but only in its feasibility, so all primal objective

coefficients can be considered to be 0. Therefore for every k ≥ 0 there is a

λ∗ such that bTλ∗ > k: the dual is unbounded.

The alternative polyhedron is obtained by bounding the dual variables
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with the normalization constraint

λTb = 1 (2.82)

(where any other positive constant would work). The purpose of the normal-

ization constraint is to cut what would otherwise be a cone: we want to look

for the support sets of the vertices, which define IIS. The problem to solve

becomes the following:

maxλTw (2.83)

λTA = 0 (2.84)

λTb = 1 (2.85)

λ ≤ 0 (2.86)

This program amounts to finding a linear combination λ∗ of the rows of

Ay ≤ b that certificates its infeasibility. In fact, from Ay ≤ b and λ ≤ 0

it follows that λ∗TAy ≥ λ∗Tb: the left-hand side is equal to 0 (2.84), while

λTb is strictly positive (in this case 1). If the primal is indeed infeasible,

the existence of a solution λ∗ is guaranteed by Farkas’ Lemma, and it is not

unbounded due to the normalization constraint.

Once we have a vertex solution λ∗, its nonzero components identify a

Irreducible Infeasible Subsystem for Ay ≤ b, obtained just by solving a LP

problem. The vector w in the Objective Function (2.83) is set to values

that are arbitrarily defined. The choice of w can drive the solution towards

different vertices, and by setting nonnegative values we hope to obtain IIS

with low cardinality (since we are maximizing and λ ≤ 0). This IIS search is

fast because it allows us to find several alternative IIS just by modifying the
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weights w and solving the problem again. To do that, we adopt two different

techniques attempting to guarantee diversity in IIS we find:

• start with all costs wi = 1;

• set wi = ξ > 0 for inequalities belonging to the previously identified

IIS, attempting to reduce overlap between consecutive generated IISs.

We use ξ = 2

or, in alternative, a strategy inspired by [BR09]:

• start with all costs wi = 1;

• if inequality i belongs to the currently identified IIS, increase wi by ξ

so to have coefficients wi = 1+ξ ·mi where mi is the number of the previously

identified IIS containing the constraint i.



Chapter 3

Heuristics

The exact mixed-integer formulation for k-PAMF allows to fit a Piecewise

Affine Model which is optimal with respect to the sum of the absolute values

of the approximation errors. For larger instances the problem is hard to solve

to optimality, even if we apply symmetry-breaking methods. It is therefore

useful in practice to devise fast techniques that yield good feasible solutions,

though not guaranteed to be optimal. The obtained solutions can also help

solve the exact formulation providing an upper bound.

We propose two heuristics for the problem of k-Piecewise Affine Model

Fitting as defined in Chapter 2: the aim is the minimization of the sum of the

absolute values of the errors from the observed values yi, the norm `1 of the

error vector, while at the same time we want to directly induce a partition

on the continuous domain D via multi-category classification.

3.1 Three-Step PAMF Heuristic

We describe a heuristic algorithm that finds feasible solutions for k-PAMF

efficiently. The algorithm, called Three-Step Piecewise Affine Model Fitting
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heuristic (3-PAMF for short), is an adaptation of an algorithm for k-HC

described by Mangasarian and based on classical k-means.

3.1.1 k-Plane Clustering

The original method proposed in [BM00] is called k-Plane Clustering (k-PC).

It is an adaptation of k-means to the case of Hyperplane Clustering.

k-means is a classic clustering algorithm that works in two steps to be

repeated until a stable configuration is reached. At the beginning of the

algorithm, the clusters are randomly generated. The first step is the assign-

ment of points to the cluster with the closest mean. In the second step the

cluster means are recomputed. In the case of Hyperplane Clustering, means

are replaced by hyperplanes, and the points are assigned to the plane that

has the smallest point-hyperplane orthogonal distance.

The k-PC algorithm starts with k random hyperplanes and it keeps al-

ternating between the following two steps:

Assignment

Assign each vector to the closest hyperplane Hj.

The set of points assigned to Hj is Aj = {ai : i = arg mini
|wT

j ai−γj |
‖wj‖2 }

Update

Compute the new hyperplane parameters (wj, γj) for all j ∈ [k] that

minimize the sum of the squared orthogonal distances from the points

in the corresponding cluster.

The algorithm proceeds until it reaches a steady state, i.e., when the assign-

ments (and consequently the hyperplane parameters) stops changing. Clearly

it is a heuristic algorithm, without any guarantees of optimality. Usually it

stops after a small number of iterations, although certain sets of points are
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known where the runtime takes an exponential time. The parameter update

step can be implemented efficiently in closed form as described in [BM00]

and [CI06].

3.1.2 3-PAMF

The main idea behind the Three-Step heuristic is that the k-PC algorithm

can be adapted to the Piecewise Affine Model Fitting problem.

The adaptation required by the switch from the Hyperplane Clustering

problem to the current task has to deal with the different objective function.

In k-PAMF we have a `1-norm minimization, while k-HC involves the min-

imization of the sum of the squared orthogonal distances. Hence both the

Reassignment and the Parameter Update step have to be modified.

It is also necessary to add a third step, which is required in order to

induce the partition on the domain D. The 3-PAMF algorithm iteratively

solves the sequence of three subproblems:

1. hyperplane parameter update

2. point assignment

3. partition of the domain D

After the points have been assigned to their closest plane, an RLP (see

Section 1.4.4) is performed and a partition of D is computed according to

the clusters that were formed in the previous step. Moreover, if such sets

are not piecewise-linearly separable, the algorithm picks the points which are

misclassified and reassign them according to the subdomain Dj they lie in.

The RLP step at each iteration drives the search towards solutions that

induce suitable linear partitions on the continuous domain. At the same time,
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it avoids drifting towards solutions which are good in the discrete space of

data points but do not translate well in linear submodels. This comes at

the cost of a harder problem to solve, since with the additional RLP step we

implicitly add constraints that limit to 0 the misclassification error on D.

An outline of the algorithm follows. The approximation error mentioned

in the algorithm is the sum of the absolute values of the residuals, consistent

with the formulation of k-PAMF (see Section 1.4.2).

Start Assign the m points to k hyperplanes with randomly generated pa-

rameters (wj, γj).

Repeat as long as the overall approximation error decreases:

Update Step

For each hyperplaneHj compute the new parameters (wj, γj) such

that they minimize the approximation error (absolute deviation)

on the corresponding points.

Assignment Step

Assign each vector to the closest hyperplane Hj, the cluster of

points assigned to Hj is:

Aj = {ai : i = arg mini|(wT
j ai − γj)− yi|}.

RLP Step

Identify the k discriminating hyperplanes defined by (wc
j, γ

c
j ) solv-

ing the M-RLP formulation. For each misclassified point ai, reas-

sign it to the cluster j = c(ai) given by the classification function.
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3.1.3 Algorithm analysis

Parameter update

For each hyperplane Hj we identify the parameters (wj, γj) that minimize

the quantity: ∑
i:ai∈Aj

|(wT
j ai − γj)− yi| (3.1)

By defining:

Aj =


aT1 −1
...

...

aTmj
−1

 , yj =


y1
...

ymj

 , w̄j =

 wj

γj

 (3.2)

where the row of the matrix Āj ∈ Rmj×n represent the points assigned to

the j-th hyperplane with an additional final term −1, the vector yj ∈ Rmj

contains the value of the observations yi associated to the points and w̄j is

the vector holding the pair (wj, γj), we have the the following Parameter

Update problem:

min
w̄j

‖Ājw̄j − yj‖1. (3.3)

Due to the use of the `1-norm this amounts to the following linear mathe-

matical program:

min
∑
i∈Ij

dij (3.4)

dij ≥ wT
j ai − γj − yj ∀i ∈ Ij (3.5)

dij ≥ −wT
j ai + γj + yj ∀i ∈ Ij (3.6)

wj, γj ∈ R,

where Ij is the set of the indices i s.t. ai is assigned to Hj.
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Assignment Step

Each point is assigned to the hyperplane with smallest approximation error

|(wT
j ai−γj)−yi|. To select the best submodel, for each point all hyperplanes

have to be considered and for each of them the residual has to be computed.

RLP Step

The third step consists in solving a M-RLP problem as described in equation

1.66, where we use as labels the point-hyperplane assignments that follow

from the previous steps. The result of the optimization will be the classifi-

cation hyperplanes (wc
j, γ

c
j ) that generate a linear partition of the domain D

in k subdomains.

If the classification problem has an optimal objective value equal to 0 it

follows that the classes are linearly separable and we need no further action.

On the other hand, a solution greater than 0 means that at least one point

is misclassified: a vector ai is considered misclassified if it is assigned to

a hyperplane Hj but is actually contained in the subdomain of a different

hyperplane Hj′ . In short, ai is assigned to Hj but c(ai) = j′ 6= j.

The algorithm then proceeds to remove the misclassifications: it picks

each point which is misclassified according to the M-RLP separation bounds

and assign it to the cluster j′ that corresponds to the domain Dj′ where it

belongs.

3.1.4 Complexity

We can analyze the worst-case runtime of a single iteration.

The update of the parameters of an hyperplane Hj with an `1-norm is

performed by solving k linear programs with O(m+n) variables and at most
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2m constraints.

The point reassignment step requires for each point to find the nearest

hyperplane, comparing its approximation error |(wT
j ai−γj)−yi| (computed in

O(n) time) for each one of the k submodels. This yields an overall complexity

of O(mnk).

The RLP phase requires the solution of an LP problem (M-RLP) with

O(kn + m) variables and O(k2m) constraints, and the reassignment of the

misclassified points. The classification function requires the computation of

the value aTi wc
j − γcj for each j, an overall time of O(kn). In the worst

case all points may be misclassified, therefore the whole reassignment phase

would have a complexity of O(mkn). However, in most cases we expect this

quantity to be significantly lower, as only a (hopefully small) fraction of the

points is misclassified.

3.1.5 Multi-start

The 3-PAMF algorithm is very efficient in finding feasible solutions but, as a

stand-alone method, performs poorly in terms of quality. Its results depend

highly on the random initial assignment, and thus the solutions obtained

in different runs of the algorithm can vary substantially. This behaviour

is typical of similar iterative algorithms such as k-means and k-PC. On k-

PAMF this is even more true, as the exact update combined with a larger

amount of constraints may cause the algorithm to be stuck in local optima

with a high probability.

Results can be significantly improved by using randomized variants of the

algorithm, such as a multi-start technique. This feature is a global search

that uses a local algorithm, such as our 3-PAMF procedure, starting from

several initial solutions. It requires the execution of the algorithm for a finite
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(w,γ)
x

y

Figure 3.1: The black point cannot be assigned to the blue cluster with a
linear classification on the x-axis. Hence RLP flags it as misclassified and
it is reassigned to the red cluster. However, a parameter update for the red
cluster that includes the black point would result in a model (light grey)
which is clearly worse than what we have by leaving out the black point
(outlier).

number (possibly large) of iterations. The best solution found over the i

iterations is kept as the final solution.

3.1.6 3-PAMF Variants

Selective Parameter Update

We propose a variant of the algorithm in which the Parameter Update Phase

for a submodel j is not performed using all data points assigned to it, but

only with a reliable subset of them.

When the error resulting from the M-RLP optimization is not null, there

are points which are misclassified according to the piecewise linear discrim-

inating function. Given a set of vectors ai assigned to a hyperplane Hj, we

store a list S of the points with c(ai) 6= j. The algorithm will then reassign

those points to the class indicated by the classification function, in order to

have a feasible solution with all points in the correct subdomain. One could
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think that the points that were misclassified might not really be relevant

with respect to the new submodel they have been reassigned to. Hence, in

the next iteration, we update the parameters (γj,wj) of the approximation

hyperplanes skipping the vectors that are contained in S, i.e., those that had

been previously misclassified. An example of SPU is reported in Figure 3.1.

We expect that, with this technique, the objective function will not neces-

sarily decrease: leaving out some points might result in a bigger error on the

data, since the update step does not take into account some points which are

on the contrary considered when computing the objective value. However,

we believe that the true accuracy of the obtained model will improve: the

fitting hyperplanes are computed only on points which are supposed to be

significant for that submodel. The model therefore will likely be closer to

them, and further from the points which happen to be in the subdomain but

do not truly belong to that linear model. In a way, we try to identify outliers

in the data as the points misclassified by M-RLP.

2-Norm Parameter Update

k-PAMF is defined as an `1 minimization problem, and the update of the

hyperplane parameters needs the solution of k linear programs (see Section

3.1.3).

Notice that, choosing to minimize the sum of the squared errors instead

of the `1-norm, the Parameter Update problem results in a typical Least

Squares minimization problem:

min
w̄j

‖Ājw̄j − yj‖22. (3.7)

that can be efficiently solved in closed form. Since the matrix Āj might
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be very ill-conditioned, due to the extreme proximity of the points in the

dataset, using a robust linear regression method is required. The `2-norm

update move is not exact for the k-PAMF problem we have defined, but

an approximation: we solve a `2-norm LS problem in the context of an `1-

norm minimization problem. Nevertheless, it could be reasonable to use such

approximate update, if motivated by a greater computational efficiency and

comparable solutions.

It is therefore possible to have a variant of 3-PAMF replacing the exact

Parameter Update with an approximate one that involves the minimization

of the `2-norm, and we expect it to be faster. It is important to stress that

it is an approximation: even if the update is performed as a LS problem,

the assignment phase is still performed minimizing the sum of the absolute

values of the approximation errors and the objective function is computed

using the `1-norm.
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3.2 Adaptive Point-Reassignment Heuristic

We propose a refined heuristic for k-PAMF based on the reassignments of

points that are considered most likely to be ill-assigned. The algorithm

is called Adaptive Point-Reassignment Heuristic (APR for short). It is an

iterative procedure and is inspired by the one described in [AC09], that works

for k-HC.

At each iteration a parameter α determines the quantity of points to be

reassigned following a given criterion. An RLP problem is solved to make

sure that the assignments induce linearly-separable domains on D.

Repeat until time limit is reached:

Parameter update

Update the hyperplane parameters (wj , γj) for each j ∈ [k] so that

they minimize the approximation error on the assigned points.

Ill-assigned identification

For each Hj identify α ·mj points likely to be ill-assigned.

Ill-assigned reassignment

Reassign each ill-assigned point to the closest hyperplane different from

the currently assigned.

Global reassignment

Reassign all remaining points to the Hj with smaller distance |(wT
j ai−

γj)− yi|.

RLP classification

Perform RLP, partition D and reassign misclassified points.

The crucial feature of the algorithm is the decision of which and how many

points have to be reassigned. We consider likely to be ill-assigned the points
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Figure 3.2: (a) The point a1, closer to H1, is likely to be ill-assigned since
it has a high ratio d11/d12 - the distance from the two hyperplanes is nearly
the same. (b) The reassignment of a1 gives a solution with a better objective
value (after the parameters have been updated).

that do not have a hyperplane which is considerably closer than all the others.

In other words, we are interested in the ratio between the distance of a point

to the current hyperplane and the shortest distance to the other hyperplanes:

rij =
dij

minj′ 6=j dij′
(3.8)

When this quantity is big, the likelihood of being ill-assigned is supposedly

high. While in 3-PAMF each point is always assigned to its closest hyper-

plane, in APR a point may be reassigned even if its current hyperplane is

actually the nearest.

3.2.1 PR-Local Search

The core of the algorithm follows the steps given in the outline, but some

additional features are included as we attempt to avoid being stuck in local

minima.
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Point-Reassignment Local Search(α0, s0)

1 L ← ∅, T ← ∅

2 αt ← α0

3 repeat

4 αt ← αtρ

5 foreach Hj

6 update the parameters wj,γj

7 foreach Hj

8 add to L the first αt ·mj points assigned to Hj with larger dij

9 foreach ai ∈ L

10 reassign ai from the current Hj to Hj′ with j′ = arg min dij

11 such that j 6= j′ and ((i, j′) /∈ T or dij′ < dTij′)

12 if dij < dij′

13 add (i, j) to T

14 foreach ai ∈ A\L

15 Assign ai to Hj′ with j′ = arg min dij

16 perform RLP and build list of misclassified points M

17 foreach ai ∈M

18 assign ai to Hj′ with j′ = c(ai)

19 v ← current solution objective value

20 if v < vmin

21 vmin ← v

22 store current solution st

23 foreach vold ∈ O

24 if vold = v

25 i← i+ 1

26 add v to O

27 until (αt = 0 and no change occurs) or (i > ζ)

28 return vmin
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The parameter α0 ∈ (0, 1) is passed to the procedure from the outside. The

algorithm starts from a feasible solution s0.

Once in the loop, at each iteration a set of moves is performed to find

a neighbour solution which improves the current. The parameter αt is pro-

gressively reduced: at each iteration the parameter is multiplied by a factor

ρ ∈ (0, 1) that drives it towards 0, so that the search process is stabilized.

Indeed, when αt reaches 0 we fall in the previous case of 3-PAMF, and after

some iterations the procedure will converge to a local minimum.

The Parameter Update phase has to be performed as explained for 3-

PAMF, hence we have to solve k linear programs to minimize the `1-norm of

the errors for each hyperplane.

The list L contains the points that are likely to be ill-assigned. L is built

going through each submodel Hj and ranking its point according to the ratio
dij

minj′ 6=j dij′
. This could in principles be replaced by other kinds of criteria

which give insight on the reliability of the assignments. Once we have sorted

the points assigned to the hyperplane Hj, only a fraction of them is included

in L (the first αt · mj). When L has been constructed, each point in it is

reassigned to a hyperplane that has to be different from the one they are

currently assigned to. The new submodel must have minimal distance dij′

among the hyperplanes with j 6= j′.

A Tabu List T of finite length l is introduced in order to avoid cycling

in the reassignment phase. This feature does not allow the reassignment

of a point ai from Hj to Hj′ if the same assignment (i, j′) has occurred in

the previous l iterations, therefore is in T , unless the current distance dij is

smaller that dTij, i.e., the value when the pair was added to T .

All remaining points are reassigned in the regular way, that is only if

there is an Hj′ which is a better fit than the current j.

Finally an M-RLP program is solved: given the classification function

c(·) resulting from the optimization we correct the misclassification errors, if

any, and reassign the points according to the discrimination bounds. This

works in exactly the same way as the error removal phase in 3-PAMF.

At each iteration the solution st is stored if it improves the best solution

found. Once we have reached a local optimum, this is to say that the pa-
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rameter αt has reached 0 and the current solution is stable, i.e., all points

are assigned to their closest Hj, the procedure halts. Moreover, even with

αt > 0, the search stops if the current objective value v has already been

found a maximum number of times ζ in the previous p iterations. This is

done with a finite list O of length p that contains the old objective values. If

the index i has reached ζ solutions with identical values, we stop the search

as we consider the randomization unable to move the algorithm out of a local

minimum.

3.2.2 Adaptive Metaheuristic

A single run of the above procedure, although we expect it to be an im-

provement over a single 3-PAMF thanks to its additional features, may still

give very variable results starting from different initial points and be easily

trapped in a local minimum. Even in this case, we embed the local search in

a randomized framework, a metaheuristic that adjusts adaptively the value

of the control parameter αt and, once in a while, restarts the search from

scratch generating a random solution.

Adaptive P-R Metaheuristic

1 α0 ← η, r ← 0, sb ← s0

2 repeat

3 if r > ξ //restart

4 Generate a new random solution s0

5 α0 ← η, r ← 0, sb ← s0, ξ ← 0

6 sb ← Point-Reassignment Local Search(α0, sb)

7 if sb improves s̃

8 s̃← sb

9 α0 ← β

10 r ← 0

11 else

12 α0 ← min{η, α0ν}
13 r ← r + 1

14 until time limit is reached
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The update of α0 depends on the value found by the local search. If the

new solution is better than the current best, α0 is set to an initial value β. If

the objective value is not lower, then α0 is set to a higher value min{η, α0ν},
where η is an upper bound on the value of the parameter, usually 1. The

idea is refining a good solution when α is small and driven to zero by the

parameter ρ in the local search. Viceversa, a large α0 introduces a large

amount of variability, that is what we want when the solution appears to be

far from optimal. The occasional random restart is made necessary by the

fact that the parameter αt, even with large values, is not always enough to

guarantee sufficient diversification. A restart takes place after a number ξ of

non-improving solutions obtained by the local search.

3.2.3 APR Variant

The considerations made for the variants of 3-PAMF are valid for the Adaptive-

Point Reassignment heuristic. The core of the algorithm is similar to 3-

PAMF, therefore even in APR we can choose to replace the `1-norm Param-

eter Update with an approximate `2 version. We expect the approximate

`2-norm update to be faster but generally less effective in finding good solu-

tions.
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Computational results

In the first section we describe the generation of instances for the problem

of k-PAMF. We then discuss the implementation of the proposed exact and

heuristic methods. For each approach we show computational experiments

on artificially generated and real-world instances.

4.1 Instances

The instances that we have generated in order to test the effectiveness of

our approaches are of three different kinds: wave, semi-random and noncon-

tinuous regression. The generation process was implemented in C++ and

iterated with a Python script.

4.1.1 Wave

Instances of the type wave contain points which are spread on piecewise

linear continuous functions on R2 with no noise. The optimal objective value

for these instances is 0, as a piecewise linear model should be able to fit

perfectly the data. These instances have the advantage that they can be

easily visualized and we immediate know, looking at the objective value of

an optimization, whether the optimum has been reached – that being 0.

Wave instances are constructed from a progressively increasing x-value and

an associated y-value which grows according to a fixed slope. We start with
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t = 0 and a random w. When a number dm/ke of points has been generated,

the value w is changed to rand(0, 1)(−1)t and t is incremented.
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Figure 4.1: Example of a wave instance.

4.1.2 Semi-random

The second type of test sets, semi-random (s-r for short), is made of points

that are generated with a given variability over random hyperplanes. The

hyperplanes can intersect, so in some cases a piecewise linear function might

fit badly the data. Semi-random instances are built by generating k random

hyperplanes. Then, a number m of point is generated on the domain D.

Each of them is assigned to a random Hj, and their yi value is computed

according to the hyperplane j with an additional Gaussian noise ε with zero

mean and a given variance.

4.1.3 Noncontinuous regression

The instances of type noncontinuous regression (nc-r) contain sets of points

that have been built explicitly from noncontinuous piecewise linear models

in Rn. The data are perturbed with Gaussian noise. To build an instance

we first generate k distinct points that we call centroids. Such points are the

representative of k subdomains of D, and are obviously piecewise-linearly

separable: the definition regions are computed with a modified M-RLP for-
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mulation which looks for a maximal margin separation between the k cen-

troids. Once we have a partition of D in k subdomains, we assign a random

hyperplane to each of them. The algorithm then generates a large number of

random points in D, and for each of them computes the observed values yi

using the corresponding linear submodel. The procedure stops when a total

number of m points has been generated. Even in this case an additional

Gaussian noise is added to the y-value, and, in addition, the algorithm op-

tionally adds a fraction of misclassified points. One thing to notice is that

we do not fix the number of points belonging to the submodels, so that a

cluster could be much more populated than another, although we do not

accept instances with empty submodels.
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Figure 4.2: A nc-r dataset.
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4.2 Exact formulations

We describe the implementation and the computational results for the exact

methods we have proposed.

4.2.1 Implementation of symmetry breaking techniques

The Extended Formulation for the partitioning orbitope and the MZ sym-

metry breaking inequalities can be added to a formulation that includes par-

titioning constraints in a straightforward way.

On the other hand, the exponentially many SCIs cannot be added di-

rectly to the model, and require the solution of a separation algorithm for

the generation of violated cuts. In order to be effective the algorithm needs

a Branch and Cut framework that supports it, as we need to solve the sepa-

ration problem for every node of the branching tree. The construction of the

model and the separation algorithm were implemented in C++ and embed-

ded in CPLEX/Concert: at each node, within a Cut Callback we produce

and add to the global cut pool only the Shifted Column Inequalities that

are violated by the current solution x∗. CPLEX treats the cuts as lazy con-

straints, that are constraints not specified in the constraint matrix of the

MIP problem, but that must be not be violated in a final solution.

4.2.2 Symmetry detection in CPLEX

ILOG-CPLEX offers some symmetry breaking features that are automati-

cally executed by the solver. The parameter IloCPLEX::Symmetry allows

the user to choose the amount of effort put during the preprocessing phase

to reduce symmetry in the MIP model. By default, CPLEX attempts to

find the best setting for the problem it is evaluating. However, it seems that

in our case the solver is not always able to automatically detect symmetry.

In fact, even if we explicitly turn off the symmetry reduction by setting the

parameter to 0, CPLEX often does not show any change in the solution pro-

cess: the runs appear to be identical, and the number of iterations and nodes

generated in the search tree is the same.
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We have therefore attempted to manually raise the parameter to the

highest level, which is 5, that corresponds to the most aggressive symmetry-

breaking reductions. It is not clear if it is always useful to force the most

aggressive strategy for symmetry-reduction. However, for the comparisons

that follow, we set IloCPLEX::Symmetry to the maximum value. In fact we

have noticed that the most aggressive CPLEX symmetry-breaking reduction

usually appears to be greatly effective in reducing the solution time especially

on large instances, and we would like to compare the techniques that we have

introduced with the best possible performance offered by CPLEX.

It should be noticed that CPLEX symmetry reduction is automatically

turned off by the solver when using Cut Callbacks.

4.2.3 Choice of big-M

CPLEX has an internal integrality tolerance EpsInt which is chosen by

CPLEX depending on the problem. In our case, the default tolerance is

10−5, which requires a rather large value of M in order to have correct re-

sults and avoid inconsistencies caused by rounding errors. For example, if a

constant M such as 105 has to be multiplied by a variable that is considered

to be 0, due to the integrality tolerance the variable may in fact have a value

in ±10−5. The result of the product could be potentially influential – while

it should be 0 instead. Indeed, for high value of M we have experienced

numerical issues and inconsistent or suboptimal results.

The best results were obtained by setting M = 1000 and raising the

integrality tolerance to 10−8. The drawback of setting a smaller integral-

ity tolerance is that CPLEX generally requires more time in reaching the

optimum.

4.2.4 Remarks about notation

The basic exact formulation for k-PALM used in the experiments is the one

described in Equation (2.32). When this formulation is solved by default

CPLEX techniques with the most aggressive symmetry-breaking parameter

(IloCPLEX::Symmetry=5) we use the notation CPLEX.
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The formulation can be amended by symmetry-breaking constraints or

reformulated without big-M as described in Chapter 2. In case of MZ in-

equalities, the notation MZ is used. When violated cuts are added by the SCI

separation algorithm we use the notation SCI. The Extended Formulation

is identified by Ext. In Table 4.1 we summarize the settings for the differ-

ent methods and the notation that is used in the tables. The cuts that are

Formulation Cutting Planes CPLEX Symmetry

CPLEX Basic [Eq. (2.32)] Cplex Cuts Max (5)
MZ Basic + MZ ineq. Cplex Cuts Default (-1)
SCI Basic Cplex Cuts + SCI Disabled (0)
Ext Extended Cplex Cuts Default (-1)

Table 4.1: Summary of the settings for the exact methods.

by default added by CPLEX in k-PAMF instances typically are Gomory or

Mixed Integer Rounding cuts.

4.2.5 Exact formulations on wave instances

On wave instances the exact formulation of k-PAMF can be solved with all

the exact methods. MZ symmetry breaking inequalities do not give particu-

larly brilliant results: the technique is able on average to beat CPLEX with

the standard k-PAMF formulation (indicated by CPLEX in tables), but it

achieves a lower runtime only 5 times over 15.

On the other hand the approach with Shifted Column Inequalities man-

ages to achieve the minimum much faster: on larger instances the SCI method

reaches the optimum in as low as 5% of the time needed by the standard tech-

nique (instance with m=85).

Even the Extended Formulation proves to be effective, although to a mi-

nor extent. On smaller instances the basic formulation (CPLEX) and the Ex-

tendend Formulation (Ext) still have an edge over SCI, probably suggesting

that the cuts are effective mostly if the search tree is not too small.
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Time to opt (s) Nodes generated
m CPLEX MZ SCI Ext CPLEX MZ SCI

25 0.87 0.87 1.22 0.37 210 328 688

30 0.52 1.71 1.13 0.79 211 628 653

35 1.26 5.46 1.9 1.77 192 1872 904

40 0.92 1.37 1.61 2.45 216 194 605

45 8 5.08 1.19 5.38 579 913 324

50 1.54 2.81 5.05 8.51 471 403 873

55 8.09 3.63 1.87 3.19 753 366 376

60 2.6 10.27 4.61 6.72 557 3340 592

65 13.39 29.48 2.61 2.07 671 8458 601

70 12.81 2.29 1.97 11.27 813 220 146

75 17.59 56.42 2.86 12.26 879 14291 486

80 14.01 19.52 4.84 21.95 1910 2702 1272

85 255.38 136.26 14.83 75.16 7930 43446 3858

90 26.45 121.08 11.07 13.85 732 18585 2300

95 123.4 23.53 6.77 38.87 2355 2594 1010

Table 4.2: Comparison of the exact methods on wave instances (n = 2 and
k = 3).

4.2.6 Exact formulations on semi-random instances

On semi-random instances we have performed experiments with higher di-

mensions and number of submodels. We expect that raising n will make the

exact formulation substantially harder. Increasing k even more so, since it

goes directly to increase the number of binary variables, that are m× k. On

large instances indeed an optimal solution could not be obtained.

When the chosen number k of submodels grows the problem indeed proves

very hard. What can be observed from the results (Table 4.3) is, again,

the good efficiency displayed by SCI and the Extended formulation: both

approaches outperform CPLEX on all instances. The nodes generated by SCI

are often not fewer than those visited by CPLEX, nevertheless, the runtime is

typically smaller.
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Time (s) Nodes generated
m n k CPLEX SCI Ext CPLEX SCI

20 2 2 0.47 0.29 0.23 408 203

20 2 3 9.68 5.38 7.69 2728 4474

20 2 5 315.5 425.67 142.34 160979 132198

20 3 2 1.8 1.24 0.65 1713 541

20 3 3 58.8 53.06 159.43 19799 46141

20 5 2 12.62 3.62 6.73 6730 2854

20 5 3 1717.27 842.86 2580 340242 583846

20 5 5 1.41 0.98 4.4 237 50

30 2 2 2.13 0.65 0.67 887 306

30 2 3 146.85 22.61 48.78 32061 15635

30 3 2 7.2 4.22 4.64 6513 2693

30 3 3 1010.19 425.86 1360.9 130079 250362

30 5 2 217.36 31.81 114.34 49026 24509

40 2 2 2.24 1.28 3.36 1479 969

40 2 3 157.98 68.7 38.86 92274 26462

40 3 2 49.54 6.05 13.03 9185 4185

40 3 3 9872.2 3435.12 2338.68 732085 1541586

40 5 2 1789.74 146.46 1214.95 201023 120523

Table 4.3: Time to optimum on semi-random instances for the exact meth-
ods.

4.2.7 Exact formulations on nc-r instances

Also on noncontinuous regression instances the symmetry-breaking methods

that we propose appear to be effective in speeding up considerably the so-

lution process. However in one case (m = 100) CPLEX finds the minimum

in a fraction of the time required by SCI and Ext. On the biggest instance

the improvement given by the Extended Formulation is drastic: it requires

a runtime of less than an hour, while the basic formulation requires 7 hours

(6 hours with SCIs).

Notice that using CPLEX with no symmetry-breaking we experienced

much larger runtimes on all instances, and we do not include them here.

It is surprising that the Extended Formulation in more than one case is

more efficient than SCIs, while we would typically expect the cutting planes

technique to perform better.
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Optimal Time (s) Nodes
m value CPLEX SCI Ext CPLEX SCI Ext

20 0.2510 0.39 0.85 0.98 402 948 1386

30 0.8356 5.02 6 3.92 3567 6667 4103

40 1.2727 28.82 24.25 26.56 21865 23851 27120

50 1.9706 185.01 96.71 33.72 23000 77213 25110

60 2.0129 185.63 190.38 144.19 24042 99447 63745

70 2.2537 1225.67 528.03 1119.14 132255 225588 250794

80 3.62043 2124.15 2083.79 2461.03 849052 5358054 479063

100 2.4895 1354.9 12090.6 5739.5 60602 2721730 714559

150 3.99114 26059.1 23148.3 3439.2 484712 2924244 1325152

Table 4.4: Time to optimum on nc-r (n = 2, k = 3) instances for the exact
methods.

4.2.8 Implementation of CBC procedure

The iterative approach that is described in Section 2.3.2 is sufficient to find

an exact optimal solution. However it is best used for decomposition and cut

generation in a more general Branch and Cut context. Hopefully the B&C

scheme will generate violated cuts not only when we have an integer solution

of the master, but also at each node of the branching tree. Indeed practice

has confirmed that, using CBC within ILOG-CPLEX, the solver is able to

produce a number of other cuts, such as {0, 1
2
} cuts.

The procedure has been implemented within Concert. The Master ILP

problem is solved via B&C. At each integer solution in the search tree, an

Incumbent Callback builds the Slave problem and verifies if it is infeasi-

ble. In that case, it rejects the solution and a CutCallback is called. The

modified Slave dual problem is then used to find a number of violated cuts.

The generation of cuts works as described in Section 2.3.3. The ability to

produce several IIS efficiently is crucial when applied to the generation of

CB cuts: for our purpose the proposed IIS search has proved to be more

efficient than the default algorithm provided by CPLEX with the function

IloCPLEX::refineConflict().

The results have been positive in the sense that the approach succeeds

in removing the need of the big-M coefficients. In fact, CBC even helped in

the decision of the right value of big-M to use in the previous formulation:
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since the optimality of CBC solutions is guaranteed, to have an optimality

check on what has been found using big-M it is enough to compare the value

with the optimum from CBC. It highlighted the fact that with M values

lower than 1000 the MILP formulation sometimes fails in achieving the true

minimum, stressing once again the difficulties in big-M formulations.

Computationally speaking, the runtime of the algorithm is unfortunately

much larger than what we have using B&C with the classic big-M formulation

(see Table 4.5). While in [CF06] and [BR09] two problems efficiently solved

by means of CBC are reported, our experiments have showed that in k-PAMF

Combinatorial Benders’ Cuts alone do not appear to be sufficiently strong to

guarantee a fast convergence. The approach is not competitive timewise with

the big-M formulation, showing that in this case only nogoods constraints

might not be enough.

4.2.9 Combining CBC and SCI

The CBC procedure appears to be relatively fast in finding good solutions,

but it has troubles in certificating their optimality. It would be crucial to add

other cuts that help the search process. On k-PAMF, we have showed that

it can be done with symmetry-breaking constraints. We therefore combine

the CBC mechanism with the SCI-cuts generation that we have previously

discussed. Hence we generate optimality and feasibility Combinatorial Ben-

ders’ Cuts whenever we have a feasible integer solution, while we add Shifted

Column Inequalities at each B&C node.

The additional cuts seem to be effective, and they do help in speeding up

the solution. Table 4.5 displays the results on a set of small-size instances that

show how SCI cuts typically succeed in consistently reducing the runtime.

However, although CBC have the major advantage of removing the need for

big-M terms, on k-PAMF the algorithm is still not competitive with the

big-M formulation, the runtimes still being around an order of magnitude

larger.

The key in order to have a better performance for CBC would probably

be the identification of other families of cuts that work well on the problem.
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Dataset Optimal Time to opt (s)
m n k value CBC CBC-SCI SCI CPLEX

20 2 2 23.38 4.56 2.4 0.29 0.47
20 2 3 26.28 355.58 33.11 5.38 9.68
20 3 2 15.88 42.83 12.78 1.24 1.8
30 2 2 27.87 7.7 3.79 0.65 2.13
30 2 3 40.88 3387 347.45 22.61 146.85
30 3 2 25.38 431.35 51.9 4.22 7.2

Table 4.5: Comparing the time of CBC, CBC-SCI, SCI and CPLEX on
small-size instances (s-r). CBC and CBC-SCI use the CBC decomposition
method. CPLEX and SCI solve the big-M formulation.

4.3 Heuristics

4.3.1 Implementation

All variants of the heuristic algorithms described in this work have been im-

plemented in C++ within an object-oriented framework. Most of the mathe-

matical structures (vectors, matrices) and high-level operations (inner prod-

uct, matrix-vector product, LS minimization) were provided by the Linear

Algebra library LaPack 2.5.3 accessed by the C++ wrapper LaPack++.

ILOG-CPLEX was called for the solution of the LP and MILP problems. The

parameters used for APR in the experiments are: η = 1, ρ = 0.6, ν = 1/0.95,

ζ = 5, ξ = 10.

4.3.2 3-PAMF vs classic approach

As we have described in Chapter 1, the novelty of the proposed approach is

the fact that we attempt to partition and fit the discrete data and simulta-

neously partition the continuous domain.

In Table 4.6 we report the results on a number of instances where we

compare the solutions of 3-PAMF with those obtained by a method which

follows the classical two-phase approach for k-PAMF (as described in Sec-

tion 1.1). It is an adaptation of k-PC where we just modify the objective

function to suit the `1-norm of k-PAMF. At a later stage, we use an M-RLP

phase to determine the definition domains of the submodels. We call this
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algorithm kPC-RLP .

Best solution Diff Overall time (s) Inner it. (avg)
m n k 3-PAMF kPC-RLP (%) 3-PAMF kPC-RLP 3-PAMF kPC-RLP

20 2 3 33.64 34.27 (9.9) 1.8 3.82 7.184 2.73 5.05

20 2 5 32.41 32.66 (6.3) 0.7 4.25 7.628 2.45 4.82
20 3 2 15.88 15.88 (8.0) 0.0 4.03 3.478 2.89 3.19

20 3 3 20.69 31.15 (9.0) 33.6 3.92 6.34 2.27 4.36

20 3 5 4.97 19.28 (2.0) 74.2 5.58 6.662 2.89 3.98

20 5 2 6.25 7.64 (5.0) 18.3 4.27 3.764 2.98 3.44

20 5 3 2.95 6.26 (1.8) 52.8 5.83 4.88 3.22 3.42

20 5 5 0.00027 2.70 (0.0) 100.0 6.68 6.742 2.69 3.24

30 2 3 55.93 51.91 (11.1) -7.2 3.87 8.254 2.56 5.98

30 2 5 56.60 60.64 (11.6) 6.7 5.83 9.078 2.94 4.76

30 3 2 25.39 25.67 (18.2) 1.1 3.83 3.59 2.78 3.11

30 3 3 46.76 49.64 (12.7) 5.8 4.45 5.944 2.73 4.22

30 3 5 48.36 49.79 (3.8) 2.9 5.70 9.376 2.49 4.56

30 5 2 31.92 40.04 (24.7) 20.3 4.88 4.568 3.23 3.92

30 5 3 20.45 28.08 (5.9) 27.2 6.33 6.418 3.34 4.29

30 5 5 2.30 21.62 (1.7) 89.3 9.43 9.196 3.2 4.04

40 2 3 59.74 61.79 (21.3) 3.3 5.07 7.676 3.14 5.22

40 2 5 73.60 73.81 (15.9) 0.3 5.40 9.494 2.99 5.04

40 3 2 57.65 62.94 (41.5) 8.4 3.60 6.044 2.42 5.15

40 3 3 61.82 61.02 (19.4) -1.3 5.76 8.638 3.14 5.66

40 3 5 38.79 60.51 (9.3) 35.9 4.78 10.71 1.91 5.28

40 5 2 47.44 48.94 (21.0) 3.0 4.89 6.09 3.13 5.08

40 5 3 32.91 42.78 (13.6) 23.1 6.56 7.888 3.22 4.93

40 5 5 48.38 74.02 (7.1) 34.6 5.77 12.42 1.78 5.25

Table 4.6: Comparison of 3-PAMF and kPC-RLP on a s-r testbed

3-PAMF outperforms kPC-RLP on all instances but two. The improve-

ment is relevant: the solutions found by 3-PAMF have an objective value

which can be even an order of magnitude smaller than the ones found by

kPC-RLP, and on average are more than 20% smaller. Somehow surpris-

ing, 3-PAMF also seems to be faster than BM-RLP: this can be explained

observing the lower average number of iterations required to converge for a

single run of 3-PAMF, that balance the higher number of LP problems to be

solved w.r.t. to kPC-RLP. In 3-PAMF convergence is faster most likely due

to the fact that, having more constraints, it falls more easily in local min-

ima. In brackets we report also the objective value of the k-PC runs before
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the second phase (the M-RLP phase): the values are very small compared

to what is obtained after the classification phase, indicating that k-PC finds

solutions that fit well the discrete data but are often not well suited to induce

a domain partition.

4.3.3 Heuristics on wave instances

On wave instances the two heuristics 3-PAMF and APR are able to find the

global optimum (that is 0) in most cases (Table 4.2). On 1 instance however

both algorithms have troubles in identifying the true piecewise model, that

presents two consecutive linear models which are almost coplanar. The time

limit for APR and 3-PAMF on these instances is set to just 50 seconds.

Dataset Time Optimal Best solution Time to Best
m n k (s) value APR 3-PAMF APR 3-PAMF
25 2 3 50 0 0.000 0.000 7.30 2.13
30 2 3 50 0 0.000 0.000 6.91 16.83
35 2 3 50 0 0.000 0.000 9.62 12.19
40 2 3 50 0 0.000 0.000 7.84 16.23
45 2 3 50 0 0.001 0.001 8.09 18.61
50 2 3 50 0 0.000 0.000 2.64 0.23
55 2 3 50 0 0.000 0.000 8.54 0.32
60 2 3 50 0 0.001 0.001 9.89 0.46
65 2 3 50 0 0.000 0.000 3.27 0.25
70 2 3 50 0 0.000 0.000 2.93 1.12
75 2 3 50 0 0.000 0.000 8.26 1.57
80 2 3 50 0 0.002 0.002 46.9 1.73
85 2 3 50 0 0.001 0.001 3.15 1.32
90 2 3 50 0 1.008 1.008 3.04 0.16
95 2 3 50 0 0.003 0.003 3.25 1.34

Table 4.7: Comparison of APR-`1 and 3-PAMF-`1 with a time limit of 50
seconds.
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4.3.4 Heuristics on semi-random instances

Almost on all semi-random instances the solutions found by APR have an

objective value that is better or equal to the best solution found by 3-PAMF,

although in two cases 3-PAMF is able to achieve a slightly better optimum

(Table 4.8). In Table 4.9 we report a comparison with the results obtained

with exact formulations: on seven instances APR finds the true optimum.

The gap between the best objective value of APR and the global minimum

is always lower than 10% of the optimal value.

Best solution
m n k 3-PAMF APR

30 2 2 27.87 27.87

30 2 3 50.95 45.30

30 2 5 51.85 44.70

30 3 2 25.39 25.39

30 3 3 40.04 33.00

30 3 5 38.74 23.04

30 5 2 31.50 31.50

30 5 3 17.73 18.22

30 5 5 1.26 1.65

40 2 2 51.82 51.82

40 2 3 57.00 53.80

40 2 5 67.79 43.55

40 3 2 57.65 57.65

40 3 3 45.87 45.51

40 3 5 31.84 21.86

40 5 2 44.26 44.16

40 5 3 28.85 22.19

40 5 5 17.32 14.84

Best solution
m n k 3-PAMF APR

500 2 2 34.70 29.47

500 2 3 68.63 64.34

500 2 5 62.65 59.05

750 2 2 51.83 47.37

750 2 3 103.55 97.48

750 2 5 97.58 87.33

1000 2 2 72.60 72.60

1000 2 3 138.65 129.20

1000 2 5 130.36 124.83

500 5 2 117.18 113.28

500 5 3 66.55 61.03

500 5 5 99.14 88.92

750 5 2 175.46 174.60

750 5 3 99.06 93.45

750 5 5 151.88 143.82

1000 5 2 237.45 236.66

1000 5 3 134.90 124.68

1000 5 5 208.72 201.87

Table 4.8: Objective values of the best solution obtained with the heuristics
on semi-random instances. The time limit was set to 120 seconds for each
instance.
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Exact formulations 3-PAMF APR
Dataset Opt Min time Best Gap Time Best Gap Time

m n k Value to opt sol (%) to best sol (%) to best

20 2 2 23.38 0.23 24.77 5.93 69.50 24.77 5.93 25.24

20 2 3 26.29 5.38 27.79 5.73 105.68 26.29 0.00* 6.39

20 2 5 16.30 142.34 29.81 82.83 83.88 17.82 9.31 4.97

20 3 2 15.88 0.65 15.88 0.00* 47.99 15.88 0.00* 0.04

20 3 3 16.79 53.06 17.59 4.79 107.77 18.47 10.04 93.46

20 5 2 5.87 3.62 6.25 6.42 2.57 6.25 6.42 1.85

20 5 5 0.00 0.10 0.00 0.00* 79.54 0.00 0.00* 34.36

30 2 2 27.87 0.65 27.87 0.00* 37.90 27.87 0.00* 96.22

30 2 3 40.88 22.50 50.95 24.63 20.06 45.30 10.82 9.61

30 3 2 25.39 4.22 25.39 0.00* 0.76 25.39 0.00* 10.94

30 3 3 30.19 425.90 40.04 32.63 95.84 33.00 9.31 20.10

30 5 2 31.36 31.80 31.50 0.43 20.89 31.50 0.43 21.89

40 2 2 51.82 1.30 51.82 0.00* 23.31 51.82 0.00* 27.28

40 2 3 50.51 38.90 57.00 12.83 34.21 53.80 6.50 19.46

40 3 2 57.65 6.10 57.65 0.00* 3.05 57.65 0.00* 6.63

40 3 3 41.98 2339.00 45.87 9.27 24.38 45.51 8.41 110.47

40 5 2 41.25 146.50 44.26 7.29 19.88 44.16 7.03 30.62

Table 4.9: Comparison of the optimal results on s-r with the best solutions
found by the heuristics in 120 seconds. In seven cases (*) APR finds the
global minimum.

4.3.5 Heuristics on nc-r instances

Small and large-size nc-r instances were solved with our heuristic algorithms.

On small-size instances (Table 4.10) APR and 3-PAMF are executed with

a time limit of 120 seconds, and in this time APR finds solutions which

are within 10% gap of the optimum value in all but 1 case, where the gap

is almost 20%. On medium-size instances (Table 4.11) the time limit for

the two algorithms was set to 1000 seconds. APR has the better results,

with substantially better solutions. The objective values obtained with APR

compare favorably to the true minimum (or, in case where it was not found,

to the best value attained by the exact formulation). Large-size instances

(with time limits ranging from 20 minutes to 35) confirm again that APR

appears to find better solutions than 3-PAMF (Table 4.12). Notice that on

large-size instances the exact methods are unable to find solutions in a short
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time improving those obtained with the heuristics. In Table 4.13 we report

a comparison of the average gap of 3-PAMF and APR with respect to the

true optimum, and the ratios between the time required by the heuristics

and the time taken by the fastest exact method on each instance. APR has

an average gap that is below 9%, and we believe this value could be further

improved by raising the time limit. The time required by the heuristics to

find the best solutions are on average 11% of the time for the best exact

formulation.

Exact formulations 3-PAMF APR
Dataset Opt Min time Best Gap Time Best Gap Time
m k Value to opt sol (%) to best sol (%) to best

30 3 0.84 3.92 1.327 36.98 48.3 0.84 0.00 7.85

40 3 1.27 24.25 1.457 12.64 31.3 1.296 1.80 2.73

50 3 1.97 33.72 2.13 7.68 8.9 2.21 10.67 29.83

60 3 2.01 144.19 3.74 46.2 57.5 2.49 19.47 48.57

70 3 2.25 528.03 2.462 8.44 13.5 2.461 8.437 13.8

80 3 3.62 2084 4.236 14.53 29.2 3.95 8.30 16.60

90 3 3.44 5058.04 3.65 5.80 30.5 3.66 6.00 64.9

Table 4.10: Results on small nc-r instances (n = 2) by heuristic methods
compared to the optimal solution. Time limit of 120 seconds.

Exact formulations 3-PAMF APR
Dataset Opt Min time Best Gap Time Best Gap Time
m k Value to opt sol (%) to best sol (%) to best

100 3 2.49 1355 3.00 17.13 156.15 2.85 12.52 332.09

150 3 3.99 3439 7.89 49.41 126.92 4.40 9.29 864.86

250 3 6.69* 18622 8.57 21.97 319.99 7.65 12.57 703.52

500 3 - - 15.72 - 540.51 14.99 - 339.2

Table 4.11: Results on medium nc-r instances (n = 2) by heuristic methods
compared to the optimal solution. Time limit of 1000 seconds. The solu-
tion with (*) represents the best feasible solution obtained with the exact
formulation but is not proved to be optimal.
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Dataset Time Best solution Diff Time to Best
m n k Limit (s) 3-PAMF APR (%) 3-PAMF APR

750 2 3 1200 29.23 23.80 18.57 891.8 1057.44

1000 2 3 1200 38.87 26.50 31.80 1148.4 483.17

2000 2 3 1200 164.46 114.45 30.41 8.1 275.76

5000 2 3 1800 192.73 190.21 1.30 476.0 1140.93

10000 5 5 2000 602.60 545.934 9.40 1674.3 1068.33

Table 4.12: Results on big nc-r instances by heuristics.

Gap (%) Ratio time to best /
min time to opt

m 3-PAMF APR 3-PAMF APR

30 36.984 0.000 12.321 2.003
40 12.641 1.800 1.291 0.069
50 7.682 10.670 0.264 0.885
60 46.210 19.476 0.399 0.337
70 8.444 8.438 0.026 0.026
80 14.533 8.304 0.014 0.008
90 5.804 6.003 0.006 0.013
100 17.133 12.518 0.115 0.245
150 49.406 9.290 0.037 0.251
250 21.967 12.572 0.017 0.043

Average: 22.080 8.907 0.110 0.111

Table 4.13: In the first columns, a comparison of the gaps between the objec-
tive values found by the heuristics and the true optimum. In the rightmost
columns, the ratio between the time required to obtain the best solution
with the heuristics and the time required by the fastest exact method on
each instance.
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4.4 Comparison of heuristic variants

As we have mentioned discussing the heuristic algorithms, a number of vari-

ants of the original method have been proposed. We report the tests obtained

with the variants.

4.4.1 3-PAMF variants

Selective Parameter Update

With Selective Parameter Update (section 3.1.6) we do not expect the ob-

jective value to decrease, but we believe that the estimated model will be

more accurate. In other words, not accounting for outliers when we update

the hyperplane parameters, we expect the piecewise to approximate better

the real function. We perform an experiment on nc-r instances with 5% of

misclassified points, hence non linearly-separable classes.

Objective value

m 3-PAMF 3-PAMF-SPU

40 1.332 1.3448

50 2.20757 2.21235

60 3.19725 2.52758

70 2.01934 2.02339

80 3.10233 3.16652

90 4.44525 2.19392

100 2.38837 2.39205

Table 4.14: Results obtained by 3-PAMF and 3-PAMF-SPU on a set of
artificial nc-r instances with n = 2, k = 3 and 100 runs of Multistart.

We can observe that typically the objective value of 3-PAMF-SPU is

slightly higher, meaning that it fits worse the data in the set, although in

two cases SPU obtains in fact a substantial better solutions. Let us now

consider the sum of the Euclidean distances between the vectors [ŵT
j , γ̂j]

computed by the algorithm and the actual parameters [wT
j , γj] used in the

data generation process, where by Euclidean distance we mean the square

root of the sum of the squared differences.
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m 3-PAMF 3-PAMF-SPU Diff (%)

40 0.655 0.652 0.33

50 0.717 0.715 0.37

60 1.51 0.18 87.90

70 0.708 0.707 0.06

80 0.58 0.51 11.93

90 0.32 0.08 74.53

100 0.048 0.045 5.11

Table 4.15: Sum of the Euclidean distances between the estimated hyper-
planes parameters and the true parameters.

Although the overall objective value on the data points can be worse

with SPU, on these instances 3-PAMF-SPU always gives predictions that

are closer to the actual value of the parameters used to generate the data. In

conclusion, it appears to be able to better approximate the real parameters.

2-norm Parameter Update

In 3-PAMF it is possible to replace the exact `1-norm Parameter Update with

the approximate `2-norm Update. We expect to have a faster method with

the latter - we call the modified algorithm 3-PAMF-`2, while we indicate the

method with the exact move as 3-PAMF-`1.

A first example is given by the following test on a real-world instance.

We consider the UCI dataset BCW [UCI], that contains 699 vectors with

dimension n = 9. We want to approximate a piecewise constant function

whose output value can assume only the value 2 or 4. On such a simple

function it is straight forward to be convinced about the advantage given by

the exact `1-update over an approximation of it.

Algorithm Best Value 3-PAMF it.(avg) Meta-it.

3-PAMF-`2 96.43 3.8 10

3-PAMF-`1 40 3.4 10

The result given by the 3-PAMF-`2 is much worse than what is found
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by 3-PAMF-`1. Another impressive difference is found in the parameters of

approximation function which is computed by the two algorithms:

w1,1 w1,2 w1,3 w1,4 w1,5 w1,6 w1,7 w1,8 w1,9 γ1

True 0 0 0 0 0 0 0 0 0 -4

3-PAMF-`2 0.02 0.01 0.01 0.01 -0.01 0.02 0.02 0.002 0.01 -3.36

3-PAMF-`1 0 0 0 0 0 0 0 0 0 -4

w2,1 w2,2 w2,3 w2,4 w2,5 w2,6 w2,7 w2,8 w2,9 γ2

True 0 0 0 0 0 0 0 0 0 -2

3-PAMF-`2 0.003 0.07 0.03 0.07 -0.01 0.07 0.01 0.06 0.01 -1.64

3-PAMF-`1 0 0 0 0 0 0 0 0 0 -2

3-PAMF-`1 manages to find the true value of (wj, γj), while the 2-norm

parameter update is much less accurate.

A more extensive set of tests on artificially generated dataset follows. On

the same amount of multistart iterations the results confirm the superiority

of the `1 update (Table 4.16). On the other hand, comparing the results

on a test where the runtime is fixed (Table 4.17) we can observe that the

larger number of iterations carried out by 3-PAMF-`2 balances the drawback

of the approximate update, giving solutions which are not far from those of

the original version, although still worse on average.

The tests that we have run indicate that the approximate `2-norm Pa-

rameter Update is indeed faster, in spite of a generally worse quality of the

solutions.



Chapter 4. Computational results 92

Best sol Diff Overall time (s)
m n k MS 3-PAMF-`1 3-PAMF-`2 (%) 3-PAMF-`1 3-PAMF-`2

20 2 2 100 26.65 27.61 3.5 3.256 1.408

20 2 3 100 33.64 34.67 3.0 3.82 1.60

20 2 5 100 32.41 34.50 6.0 4.25 1.47

20 3 2 100 15.88 17.66 10.1 4.03 1.41

20 3 3 100 20.69 20.98 1.4 3.92 1.44

20 3 5 100 4.97 10.78 53.9 5.58 1.62

20 5 2 100 6.25 8.59 27.3 4.27 1.56

20 5 3 100 2.95 2.71 -8.2 5.83 1.74
20 5 5 100 0.00 0.00 0.0 6.68 1.84

30 2 2 100 28.52 31.50 9.4 3.44 1.32

30 2 3 100 55.93 55.75 -0.3 3.87 1.35

30 2 5 100 56.60 53.38 -5.7 5.83 1.64

30 3 2 100 25.39 28.53 11.0 3.83 1.31

30 3 3 100 46.76 50.18 6.8 4.45 1.56

30 3 5 100 48.36 49.75 2.8 5.70 1.85

30 5 2 100 31.92 34.71 8.0 4.88 2.09

30 5 3 100 20.45 29.65 31.0 6.33 1.84

30 5 5 100 2.30 4.06 43.2 9.43 2.65

40 2 2 100 57.93 60.94 4.9 3.15 1.40

40 2 3 100 59.74 63.57 6.0 5.07 1.86

40 2 5 100 73.60 74.19 0.8 5.40 2.44

40 3 2 100 57.65 59.49 3.1 3.60 1.72

40 3 3 100 61.82 59.93 -3.0 5.76 2.09

40 3 5 100 38.79 43.82 11.5 4.78 2.07

40 5 2 100 47.44 51.35 7.6 4.89 1.85

40 5 3 100 32.91 39.83 17.4 6.56 2.44

40 5 5 100 48.38 62.59 22.7 5.77 2.15

Table 4.16: Comparison of 3-PAMF-`1 and 3-PAMF-`2 with the same number
of multistarts.
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Dataset Time Best solution Diff MS It.
m n k Limit (s) 3-PAMF-`1 3-PAMF-`2 (%) 3-PAMF-`1 3-PAMF-`2

20 2 2 10 26.65 27.61 3.6 123 200

20 2 3 10 33.64 33.57 -0.2 112 182

20 2 5 10 32.41 34.50 6.0 97 193

20 3 2 10 15.88 17.66 10.1 99 197

20 3 3 10 20.69 20.92 1.1 110 217

20 3 5 10 4.97 5.99 17.0 76 250

20 5 2 10 6.25 7.27 14.0 99 308

20 5 3 10 2.95 2.71 -8.2 81 308
20 5 5 10 0.0003 0.0003 9.9 73 340

30 2 2 10 28.52 31.50 9.4 139 419
30 2 3 10 55.75 55.75 0.0 147 426

30 2 5 10 56.60 53.38 -5.7 102 261

30 3 2 10 25.39 28.53 11.0 115 317

30 3 3 10 46.76 45.01 -3.8 92 246

30 3 5 10 48.36 48.84 1.0 80 218

30 5 2 10 31.92 34.71 8.0 81 209

30 5 3 10 25.43 26.15 2.7 66 188

30 5 5 10 2.30 5.37 57.1 45 161

40 2 2 10 52.64 54.25 3.0 126 289

40 2 3 10 59.74 63.57 6.0 82 200

40 2 5 10 73.60 73.96 0.5 78 173

40 3 2 10 57.65 59.49 3.1 111 242

40 3 3 10 61.82 55.42 -10.3 59 191

40 3 5 10 38.79 43.25 10.3 96 239

40 5 2 10 47.44 51.09 7.1 115 212

40 5 3 10 34.44 32.98 -4.2 87 163

40 5 5 10 48.38 49.51 2.3 106 225

Table 4.17: Comparison of 3-PAMF-`1 and 3-PAMF-`2 with the same time
limit.
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4.4.2 APR Variants

In Table 4.18 we report an example of results obtained by the two variants of

APR on small instances with a time limit of 10 seconds each. The `2-norm

update is faster, and therefore the algorithm manages to complete a higher

number of iterations in the given timespan - in fact always more than twice

the iterations of APR-`1. Nevertheless, the solutions are often worse than

those of the algorithm with exact `1-update.

Best solution Overall iterations
m n k APR-`1 APR-`2 APR-`1 APR-`2

20 2 2 24.77 25.54 776 1844

20 2 3 26.29 28.86 703 1707

20 2 5 17.82 15.71 640 1483

20 3 2 15.88 17.66 667 1813

20 3 3 17.74 20.27 555 1656

20 3 5 2.21 2.34 453 1481

20 5 2 6.27 8.44 654 1771

20 5 3 3.43 2.51 518 1628
20 5 5 0.00 0.00 358 1411

30 2 2 28.52 32.93 700 1737

30 2 3 46.12 49.87 704 1555

30 2 5 44.70 48.07 538 1301

30 3 2 25.67 28.78 678 1712

30 3 3 33.00 46.68 611 1515

30 3 5 30.70 36.48 470 1229

30 5 2 32.36 34.61 625 1648

30 5 3 18.22 22.50 477 1461

30 5 5 2.28 1.44 306 975

40 2 2 51.82 54.25 740 1638

40 2 3 58.48 62.27 592 1517

40 2 5 48.85 49.50 488 1019

40 3 2 57.65 59.49 634 1605

40 3 3 45.87 68.51 618 1390

40 3 5 30.16 27.83 374 807

40 5 2 45.75 47.76 615 1551

40 5 3 22.1874 33.02 484 1310

40 5 5 14.84 21.30 299 785

Table 4.18: Comparison of APR-`1 and APR-`2 on a 10 seconds run on s-r.
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4.5 UCI Machine Learning Instances

We report the results on two real-world instances freely available at the UCI

Machine Learning Repository [UCI].

4.5.1 WPBC

The Wisconsin Prognostic Breast Cancer or wpbc is a dataset that contains

real medical data. Each of the 198 vectors in R32 represents follow-up data

for one breast cancer patient. The first 30 features are computed from a

digitized image of a fine needle aspirate (FNA) of a breast mass. They de-

scribe characteristics of the cell nuclei present in the image, e.g. their radius,

perimeter, area, symmetry. The dataset has been used for classification or

prediction. In the second case, that is what we are interested in, the aim is

predicting the Time To Recur. Originally the prediction has been performed

by Mangasarian using Recurrence Surface Approximation, that is an ad-hoc

linear programming model which predicts the values in the dataset with an

estimated mean error of 16.5 months [BM94]. Our best result with k = 2

and APR is an average error, on both recurrent and non-recurrent cases, of

16.78 months. Using an exact method, with the extended formulation, we

are able to find a feasible solution in short time (< 50 seconds) that gives an

error of of less than 16 months, while if we continue the optimization with a

time limit of 2 hours the algorithm yields a solution with an average error of

14.6 months.

4.5.2 Machine-CPU

The machine instance [UCI] contains data describing the CPU performance

(an integer value) of 209 machines. The value is defined in terms of 9 at-

tributes, such as cycle time, maximum main memory, cache memory. While

all other features are integer valued, the first feature is categorical, i.e., it can

assume only a finite number of values, that are in this case 30 vendor names

(HP, IBM, Siemens, etc.). To use our methods we have translated them into

numerical values assigning a distinct integer value to each category. The
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observed value to be estimated is the published Relative CPU Performance.

The estimated values computed in [KA88] with a linear regression method

are available, so we can compare our results with them. We choose k = 2,

which seems to be the best guess based on a few preliminary experiments on

the dataset.

The overall approximation error obtained by APR is well below the previ-

ous result on the dataset. It is positive that a fast heuristic technique in this

case easily beats an exact method, although linear. While the mean error

was more than 24 units in [KA88], our piecewise model cuts it down to 19,

that is an average error of slightly more than 29% from the actual values, a

22% improvement.

Overall error Mean error Avg. diff.

[KA88] 5085 24.33 33.9%

APR-`1 3960 18.95 29.27%



Chapter 5

Concluding remarks

In this work we have addressed k-Piecewise Affine Model Fitting (k-PAMF),

a problem that has recently been attracting growing attention in number

of fields. k-PAMF is typically tackled with a two-phase approach: first the

data points are partitioned and the submodels are fitted on them, then the

subdomains of the linear submodels are determined. In this work we propose

a single-phase approach: we describe a single mixed-integer linear program-

ming formulation that is able to provide an optimal solution for k-PAMF.

Since solving instances of small size is already hard, we have refined the for-

mulation by focusing on two crucial aspects: symmetries and modelling of

implications.

Column symmetry has been removed by means of symmetry-breaking

constraints. Among them, the Shifted Column Inequalities (SCI) proved to

be the best. We have implemented a dynamic programming separation algo-

rithm proposed in [KP08] that allowed us to add to the model only the SCI

cuts that are violated at a certain node of the B&C tree. An extended for-

mulation that avoids the generation of SCIs has also been implemented and

tested with good results. Our implementation of symmetry-breaking meth-

ods typically outperforms CPLEX antisymmetry techniques on k-PAMF.

Furthermore, we attempted to get rid of big-Ms in the refined formulation

with a decomposition method based on Combinatorial Benders’ Cuts. The

approach seems promising as it removes numerical instabilities introduced
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by the big-Ms, although it is still not computationally competitive with the

original formulation.

In the second part of the work we have proposed two heuristics inspired by

algorithms for k-HC. Both algorithms are based on a local search embedded

into a randomized metaheuristic. On the basis of computational tests the

Adaptive Point Reassignment heuristic (APR) achieves considerably better

results. We have also considered and compared some variants of the two

heuristics.

Extensive computational experiments on several randomly generated and

real-world instances show that the exact formulations are a good choice to

obtain optimal results for small-size instances, while APR provides good

solutions even on large-size instances within a short amount of time.

There are several possible future developments. First the formulation

can be further refined to be more efficient even on large-scale instances. The

work on symmetry-breaking can be extended with the so-called Orbitopal

Fixing [KPP07], a recent technique related to SCIs that borrows ideas typ-

ical of constraint programming. The work on Combinatorial Benders’ Cuts

could be extended by taking the IIS of the Slave problems as a cutting-plane

generation technique rather than using a pure decomposition approach, that

turns out to be not very efficient on this problem. Another step that may be

useful in practice is using ad-hoc primal heuristics in the nodes of the B&C

search tree. A variant of the Adaptive Point Reassignment heuristic could

also be devised by replacing the costly MRLP with the more computationally

attractive k-RLP.



Appendix A

SCI separation algorithm

We describe in details the separation algorithm [KP08] that was used in

Branch and Cut to generate violated cuts based on Shifted Column Inequal-

ities. The notation introduced in Section 2.2.2 is followed.

Given a solution x∗ ∈ RIm,k we first build in linear time the matrix β

that contains the value x∗(B(i, j)) of each bar B(i, j).

1 foreach i ∈ [m], j = min{i, k} //inizialization

2 β(i, j)← x∗ij

3 foreach i ∈ [m]

4 for j = min{i, k} − 1 to j = 1

5 β(i, j)← x∗ij + β(i, j + 1)

The algorithm then needs a matrix w ∈ Rm×k that contains the value

x(S) of the minimal shifting for each 〈η, j〉 ∈ Im,k. The weight of a Shifted

Column is computed top-down via Dynamic Programming. The crucial idea

of the algorithm is that for each element (i, j) we can choose whether or not

to shift diagonally the corresponding column col(i, j). The choice is based

on the weight of the two distinct cases, which are computed for each (i, j) in

constant time thanks to the memoization of the previous entries. Since we

are looking for a minimal weight shifting, the algorithm selects the case with

lower value.
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1 foreach j ∈ [k] //inizialization of upper row

2 ω〈1, j〉 ← min{x∗〈i,`〉|` ≤ j}
3 foreach η ∈ [m] //inizialization of leftmost column

4 ω〈η, 1〉 ← ω〈η − 1, 1〉+ x∗〈η,1〉
5 for η = 2 . . .m

6 for j = 2 . . . k

7 ω1 ← ω〈η, j − 1〉 //shifting

8 ω2 ← ω〈η − 1, j〉+ x∗〈η,j〉 //no shifting

9 ω〈η, j〉 ← min{ω1, ω2}
10 if ω1 < ω2

11 τ〈η, j〉 ← 0

12 else

13 τ〈η, j〉 ← 1

The support structure τ ∈ {0, 1}m×k is used for the reconstruction of the

minimal Shifted Columns. Now just by comparing the values in ω with the

values of the respective bars B in β it is possible to identify the SCIs which

are violated in O(mk) time.

1 V iolatedCuts← ∅
2 for η = 2 . . .m

3 for j = 2 . . . k

4 if ω〈η, j〉 ≤ β(i, j)− ε
5 S(i, j)← BuildMinimalSC(〈η, j〉)
6 add {x(B(i, j))− x(S(i, j)) ≤ 0} to V iolatedCuts

BuildMinimalSC can be described for convenience in a recursive way, al-

though in practice it has been implemented as an iterative procedure.

1 BuildMinimalSC〈η, j〉
2 if τ〈η, j〉 = 0

3 S〈η, j〉 ← BuildMinimalSC(〈η, j − 1〉) //shifting

4 else

5 S〈η, j〉 ← BuildMinimalSC(〈η − 1, j〉) ∪ {〈η, j〉} //no shifting

6 return S〈η, j〉
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The construction of the data structures is done in O(mk), while the re-

construction of a Shifted Column in O(m). Then, to have a violated cut the

algorithm takes an overall linear time with respect to the dimension m× k.
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Code

We report here a part of the C++ code that shows the implementation of

the SCI separation algorithm and the 3-PAMF heuristic.

SCI cuts generation

The implementation in C++ follows the pseudo code illustrated in Appendix

A. It makes use of the data structures provided by CPLEX/Concert, that

include IloExpr, IloNumVar and IloRange for the handling of numerical

expressions and linear constraints with numerical variables.

/// minimal we igh t SCI computation and cons t ruc t i on

IloNumArray i c s e s ( getEnv ( ) ) ;

double beta [M] [K] ;

double omega [M] [K] ; // in ” d iagona l ” coord ina t e s <n , j>=(n+j , j )

int tau [M] [K] ;

getValues ( i c s e s , vars ) ; // ge t v a r i a b l e va l u e s

// b u i l d be ta

for ( int i =0; i<M; i++){
i f ( i<K) {

beta [ i ] [ i ]= i c s e s [ i ∗K+i ] ;

for ( int j=i −1; j>=0;j−−)

beta [ i ] [ j ]= i c s e s [ i ∗K+j ]+ beta [ i ] [ j +1] ;

}
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else {
beta [ i ] [ K−1]= i c s e s [ i ∗K+K−1] ;

for ( int j=K−2; j>=0;j−−)

beta [ i ] [ j ]= i c s e s [ i ∗K+j ]+ beta [ i ] [ j +1] ;

}
}

double minx=I l o I n f i n i t y ;

// b u i l d omega

for ( int j =0; j<K; j++){
i f ( i c s e s [ 0∗K+j ]<minx )

minx=i c s e s [ 0∗K+j ] ;

omega [ 0 ] [ j ]=minx ;

}
for ( int eta =1; eta<M; eta++)

omega [ eta ] [ 0 ] = omega [ eta −1] [0]+ i c s e s [ eta ∗K+0] ;

for ( int eta =1; eta<M; eta++)

for ( int j =1; j<K && eta+j<M; j++){
double omega1= omega [ eta ] [ j −1] ;

double omega2= omega [ eta −1] [ j ]+ i c s e s [ ( eta+j ) ∗K+j ] ;

i f ( omega1<=omega2 ) {
omega [ eta ] [ j ]=omega1 ;

tau [ eta ] [ j ]=1;}
else {

omega [ eta ] [ j ]=omega2 ;

tau [ eta ] [ j ]=2;}
}

for ( int eta =1; eta<M; eta++)

for ( int j =1; j<K && eta+j<M; j++)

i f ( omega [ eta ] [ j−1]<beta [ eta+j ] [ j ] ) {
//compute the s h i f t e d colum ( g iven e ta and j−1)

I loExpr shiftedColumn ( getEnv ( ) ) ;

int e t a=eta ;

int j=j −1;

bool f i n i s h e d=fa l se ;

while ( ! f i n i s h e d ) {
i f ( eta>0 && j >0){
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i f ( tau [ e t a ] [ j ]==1)

j −−;

else {
shiftedColumn+=vars [ ( e t a+ j ) ∗K+ j ] ;

e ta−−;

}
} else {

i f ( e t a==0){
shiftedColumn+=vars [ ( e t a+ j ) ∗K+ j ] ;

f i n i s h e d=true ;}
else {

for ( int i= e t a ; i>=0; i−−)

shiftedColumn+=vars [ i ] ;

f i n i s h e d=true ;

}
}

}

I loExpr bar ( getEnv ( ) ) ;

for ( int j j=j ; j j<K && j j <( eta+j ) ; j j ++)

bar+=vars [ ( eta+j ) ∗K + j j ] ;

i f ( getValue ( bar−shiftedColumn )>eps ) {
try { //add a v i o l a t e d cut

add ( bar−shiftedColumn<=0) ;

}
catch ( . . . ) {throw ;}

}
bar . end ( ) ;

shi ftedColumn . end ( ) ;

}

3-PAMF

We show the code implementing the basic version of the heuristic 3-PAMF.

The procedure calls other methods that compute the `1-norm distances, re-

assign the points and perform an RLP step.

double a lgor i thm : : 3 PAMF solve ( Problem instance & pi ) {
const int k = pi .K( ) ;
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double i n i t t i m e = pi . chrono . e l aps ed t ime ( ) ;

p i . r andomly popu la t e c lu s t e r s ( ) ;

p i . updat e d i s t ance s ( ) ;

p l a i n c o m b i n a t o r i a l r e a s s i g n m e n t ( p i ) ;

double l a s t o b j = 1 e300 ;

double obj = pi . so lu t i on measure ( ) ;

int i t e r a t i o n = 0 ;

while ( obj < l a s t o b j && pi . chrono . e l ap sed t ime ( ) < pi . ops .

max time ) {
l a s t o b j = obj ;

for ( int j = 0 ; j < k ; j++)

r e c a l c u l a t e l 1 n o r m a f f i n e s u b m o d e l p a r a m e t e r s ( pi , j ) ;

p i . updat e d i s t ance s ( ) ;

p l a i n c o m b i n a t o r i a l r e a s s i g n m e n t ( p i ) ;

reass ign with RLP ( pi ) ;

obj = pi . s o lu t i on measure ( ) ;

i t e r a t i o n ++;

} // end o f the i t e r a t i o n s

obj = pi . so lu t i on measure ( ) ;

return obj ;
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