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Abstract

This work presents a particular approach to the calibration procedure for Heath-

Jarrow-Morton models. Are analyzed precisely payer swap options for which

have been computed prices through Monte Carlo simulations of the HJM dy-

namics. Results are compared with prices obtained using a Black like formula

focusing on qualitative aspects due to the characteristic of the framework. The

main problem has been to specify the volatility structure for practical purpose.

So that has been taken under consideration the Hull-White model to provide

it. This leads to the creative and interesting part of the work, which is the cali-

bration procedure of the parameters of the model. For this aim, using Matlab is

originally implemented the Levenberg-Marquardt optimization algorithm which

minimize iteratively the sum of the square of the di�erence between Black and

HW prices, paying particular attention to the behavior of the Hull-White model.

The variables considered are precise and the parameters encountered respect the

usual range of values present in the literature, con�rming the goodness of the

approach.

The �rst three chapters consist in a theoretical part necessary for a better com-

prehension of the following development. Are presented the basis of the interest

rate theory, then the Heath-Jarrow-Morton framework and its characteristic,

and thirdly a description of interest rate derivatives. In chapter four is calculated

the volatility structure for HJM through a calibration process of HW parameters

involving the implementation of the Levenberg-Marquardt algorithm. The �fth

chapter deals with the pricing of a payer swap option within the HJM dynamics

involving Monte Carlo simulation. Finally are presented possible developments

and conclusions, while in the appendices is exposed the Matlab code.



Abstract

Questo lavoro nasce dalla volontà di investigare riguardo a modelli su tassi di

interesse e come questi possano essere combinati per ottenere prezzi di derivati

adeguati, che rappresenta uno dei principali scopi di un ingegnere �nanziario. In

particolare viene presa in considerazione la dinamica di Heath-Jarrow-Morton

per prezzare payer swaptions, con la quale si ottengono, attraverso simulazioni

Monte Carlo, risultati solamente qualitativi a causa delle caratteristiche del

framework; è infatti nota una sua certa tendenza a sovraestimare. HJM deve la

sua importanza al fatto che teoricamente qualsiasi modello di tassi di interesse

può essere derivato a partire da esso. D'altro canto la di�coltà nell'ottenere una

funzione di volatilità adatta conduce spesso a calcoli onerosi.

Per l'obiettivo appena presentato è quindi necessario fornire una matrice di

volatilità, la cui de�nizione rappresenta il problema principale nel caso pratico.

Questo conduce all'anima di questo studio, che può essere identi�cata con il pro-

cesso di calibrazione dei parametri del modello di Hull-White extended Vasicek,

a partire dai quali si possono ricavare le volatilità necessarie in maniera ab-

bastanza semplice per via del fatto che il modello possiede struttura a�ne. Per

ottenere i giusti parametri si utilizza l'algoritmo di ottimizzazione di Levenberg-

Marquardt appositamente adattato alla situazione in questione. Questo risulta

essere uno strumento potente in grado di raggiungere rapidamente soluzioni ot-

timali, precise e che rispettano i canoni incontrati in letteratura. La sua imple-

mentazione consiste in minimizzare iterativamente la somma dei quadrati delle

di�erenze dei prezzi ottentuti attraverso una formula di tipo Black e tramite il

modello di Hull-White.

I primi tre capitoli sono dedicati a una presentazione della parte teorica

del lavoro, necessaria per meglio comprendere il seguito. Nel primo vengono in-

trodotte le basi della teoria sui tassi di interesse, vengono fornite de�nizioni e

formule dei principali strumenti, viene dato qualche accenno sulla teoria di non

arbitraggio e sui modelli unifattoriali per i tassi di interesse.

Nel secondo capitolo si analizza accuratamente HJM, proposto da Heath, Jar-

row e Morton per far fronte alle inadempienze dei modelli preesistenti. Essi

derivarono il framework libero da arbitraggio per l'evoluzione stocastica dell'intera



curva dei rendimenti, dove la dinamica dei tassi forward è interamente speci-

�cata attraverso la struttura di volatilità istantanea, la quale presenta delle

di�coltà nella sua de�nizione. Sono esposti quindi vantagi e svantaggi, e la re-

lazione con alcuni modelli unifattoriali. A partire da HJM infatti teoricamente

qualsiasi modello su tassi di interesse può essere ricavato.

Nel terzo capitolo vengono presentati i derivati, strumenti �nanziari che hanno

aquisito grande importanza e popolarità negli ultimi anni. In particolare sono

presi in questione derivati su tassi di interesse, a partire dagli swaps, passando

per caps e �oors, per giungere agli swaptions.

Nel quarto capitolo si tratta il procedimento per ottenere la matrice di volatilità

cercata. Per questo ci sono diverse possibilità, tra cui si è scelto il modello già

esistente di Hull-White che fornisce una formula esplicita dovuta al fatto che

possiede struttura a�ne. Altri modelli, come i multifattoriali, possono adattarsi

meglio ai dati e essere più performanti ma conducono spesso a calcoli eccessiva-

mente complicati. Per quanto trattato in questo lavoro si è ritenuto su�ciente

il modello considerato, che è semplice ma e�cace. Viene presentata la sua di-

namica e vengono esposti i dati di mercato utilizzati per l'analisi. Si procede

quindi alla calibrazione dei parametri attraverso l'implementazione in Matlab

dell'algoritmo di ottimizazzione di Levenberg-Marquardt adattandolo al caso

corrente e ponendo particolare attenzione alle caratteristiche di Hull-White, i

cui prezzi vengono messi a confronto con quelli ottenuti tramite una formula di

tipo Black.

Nel quinto capitolo si prezzano payer swaption per diverse maturities e tenors

a partire dalla dinamica di Heath-Jarrow-Morton, per la quale viene realizzata

un'analisi speci�ca che mostra come i valori tendano a risultare sovraestimati.

Per e�ettuare le simulazioni necessarie si utilizza il metodo di Monte Carlo in

quanto non è possibile ottenere una forma esplicita e, per una convergenza più

rapida, si ricorre alla tecnica delle variabili antitetiche.

L'argomento trattato permette alcune modi�che che vengono commentate nelle

conclusioni, dove sono presentate diverse osservazioni e le varie possibilità di

sviluppo del lavoro. In quanto ai codici implementati sono riassunti negli ap-

pendici.
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Introduction

This work arises from the keen wish of investigate on some interest rate models,

trying to �gure out how they can be combined in order to obtain derivative

prices. The latter in fact is one of the major challenges that a �nancial engineer

has to cope with. In particular Hull-White model is taken under consideration

to provide a volatility structure to the Heath-Jarrow-Morton framework, used

to study precisely the case of payer swaptions. This is a topic which is still under

process and not fully explained in the literature. The principal reason lies in the

still actual problem of de�ning a suitable volatility function for HJM in practical

cases, which generally means that burdensome procedures are necessary to price

interest rate derivatives. However the framework assumes particular importance

due to the fact that, in theory, allows to derive any interest rate model.

The subject is widely treated, especially by Carl Chiarella. In his numerous

papers are considered classes of HJM term structure models either character-

ized by time deterministic volatilities for the instantaneous forward rate or with

stochastic volatility; the latter models admit transformations to Markovian sys-

tems and from them is possible to get well solution techniques for the bond and

bond option pricing, and in some situations are included numerical simulations.

Furthermore the model has been estimated via the maximum likelihood method,

obtaining estimators for observable future prices, and applied to interbank rates

in di�erent markets. In this work swap options have been taken under analysis

and has been implemented an apposite code through the language of technical

computing Matlab to obtain the prices, recurring to Monte Carlo simulations.

Numerous books present as well the a�ne term structure model of Hull-White

and its dynamics. As well can be found analytical formulas for the principal

�nancial instruments, while complex derivatives are valued using a tree or par-

tial di�erential equation approach. Furthermore are given some indications on

the usual range of the the parameters and how to chose them through a cali-
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bration procedure. To obtain their best values, in this study, has been used a

Levenberg-Marquardt approach. This is an optimization algorithm which has

been adapted to the current situation in an original way. The implementation

is easy to understand and it takes under consideration the characteristic of the

HW model. It is powerful, it allows to well replicate swaption prices and can

readily be modi�ed to be used for di�erent models and other derivatives.

The aim of the work is to supply the reader, which is supposed to own already

a basic knowledge of stochastic di�erential equations, a qualitative and quanti-

tative analysis of the models under question. This is done with the fundamental

support of a list of �gures which often o�ers a better comprehension.

So that, in the �rst chapter are presented the basis of the interest rate theory.

Firstly are given de�nitions and formulas of the principal instruments, starting

from discount factors and zero coupon bond to get to spot and forward interest

rates. It is then brie�y presented the absence of arbitrage theory introducing

concepts as the equivalent martingale measure and the numeraire. To conclude

is given an hint of short interest rate models. This is a short introduction to the

real topic, important to understand the language and symbols used in the work.

In the second chapter is taken under accurate observation the HJM framework,

built up by Heath, Jarrow and Morton in order to solve drawbacks arising in

short rate models. They proposed the idea to capture the full dynamics of the

entire yield curve, developing a complete model which does not involve the mar-

ket price of risk. Furthermore, at least in theory, it allows to derive any kind

of interest rate model. As a consequence is shown the relation with some short

interest rate models. It is as well exposed the way undertaken by Heath, Jar-

row and Morton to get the �nal dynamics. However the HJM framework is not

free of disadvantages, in fact can be complicated de�ne a suitable volatility for

practical purpose and it does not provide exact solution for pricing derivatives.

So that a numerical method is necessary and it will be explained how to use it.

The third chapter presents a large argumentation of derivatives, which are �-

nancial instruments that recently became increasingly popular. A large variety

of these objects exists then in the market in order to supply the demand. Par-

ticularly the attention is focused on interest rate derivatives, for which are given

de�nitions and explicit formulas. A swap is a contract between two counterpar-

ties that exchange series of future cash �ows dependent on the type of �nancial

2



instrument involved. Cap and Floor, which are strictly related, are contracts

designed to guarantee to the holder that �oating rates do not exceed a speci�c

level, in the �rst case , and the opposite for the second contract. These deriva-

tives and swap options represent the main product of interest rate. A swaption

is contract that gives the holder the right but not the obligation to enter into an

underlying interest rate swap at a certain future time. It can be distinguished

into two types, a peyer swap option giving the right but not the obligation to

pay �xed rate and receive �oating rate in the underlying swap, while is the con-

trary for a receiver swaption.

Chapter four is the soul of the work. Its aim is to provide the volatility structure

necessary for the HJM dynamics. This can be done in di�erent ways, here has

been taken the already existent short rate model of Hull-White extended Va-

sicek, which gives explicit formula for absolute volatilities due to the fact that it

is an a�ne term structure model. Are exposed the available data of discount fac-

tors and at the money volatilities and strikes. Then the dynamics of the model

is presented and through a calibration procedure involving a Black like formula

the parameters of the model are estimated. For this purpose a Matlab code

has been implemented, and graphs are useful for a speci�c analysis. An original

modi�cation of the Levenberg-Marquardt algorithm has been computed in order

to obtain calibration results. It has been adapted to the current situation and

has been improved to accommodate drawbacks deriving from HW.

The �fth chapter deals with the particular case of pricing a payer swap option

through the Heath-Jarrow-Morton framework, whose dynamics allows to derive

the important �nancial instruments necessary to compute the prices. Monte

Carlo methods are then introduced for the simulation of the dynamics, in fact

there is no way to get an explicit pricing formula. In respect to it has been used a

simple technique to accelerate the convergence of the price to the �nal solution.

After a speci�c analysis on the dynamics of HJM, from which is possible to get

important information, are exposed and commented the results deriving from

the simulations.

Finally are given conclusions and observations about the results. In the last

chapter are exposed as well possible alternatives and future developments. The

argument touched in this study is wide enough to leave many opportunities to

modify and extend models and cases analyzed in the work. For these reasons an

apposite section is devoted to them.

3



In order to give a clear explanation, in the appendixes is exposed most of the

code used during the research which has been implemented through the language

of technical computing Matlab. They are allocated in two di�erent chapters fol-

lowing the respective argument of which they refer.
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Chapter 1

Interest rate theory

This chapter present concepts of the interest rate world. Nowadays interest rate

is a notion that enter in the daily life of many people. If someone goes to a bank

in order to deposit some money, then expects the amount grows in time. Conse-

quently it is already in his mind the fact that the value of a certain amount of

money is not the same today and tomorrow. Holding a capital before someone

else allowed to make a pro�t out of it, hence this opportunity has a value.

The most famous interest rate is the LIBOR (London InterBank O�ered

Rate) that is the rate at which an international bank lends money to another

international bank. It is often considered as a reference for contracts and it can

be used as the risk free rate when derivatives are valued. An analogous interest

rate present in other markets is the EURIBOR �xing in Brussels.

1.1 Money-market account and discount factor

The money-market account or bank account is a process that describe the evo-

lution of a riskless investment, where the pro�t is compounded continuously at

the risk free rate present in the market at every moment.

Let B(t) be the value of the bank account at time t ≥ 0 and assume that its

evolution progresses according to the following di�erential equation:

dB(t) = rtB(t)dt, B(0) = 1

5



CHAPTER 1. INTEREST RATE THEORY 6

where rt is the instantaneous rate at which the money account accumulates

capital. Integrating we have

B(t) = exp

{∫ t

0
rsds

}
with rs positive function of time. As a consequence, investing a unit of currency

today we obtain at time t an amount given from the above de�nition.

Frequently, in �nancial mathematic, is necessary to use the inverse operation,

which is the discount of a certain amount of money from a future date T to

present.

The discount factor D(t, T ) between t and T , is the invested amount at time t

that give back a unit of currency at time T :

D(t, T ) =
B(t)

B(T )
= exp

{
−
∫ T

t
rsds

}
.

In many pricing application rt can be assumed deterministic. However, the evo-

lution of rt is modeled through a stochastic process when dealing with interest

rate products.

1.2 Structures of spot and forward interest rates

In the �nancial market is possible to distinguish two di�erent kind of operations,

they can be identi�ed as spot and forward operations.

With the term spot operation we de�ne all the processes in which there is an

immediate payment caused from the sale of a �nancial product, the exchange of

money between the two counterparts arises at same moment of the stipulation

of the contract.

It turns out useful to de�ne a T -maturity zero-coupon bond or pure discount

bond, as a contract that guarantees its holder the payment of one unit of cur-

rency at time T, with no intermediate payments. We denote the price of this

contract at time t < T by p(t, T ), as a consequence p(T, T ) = 1 for all T . Hence

a zero-coupon bond establishes the present value of one unit of currency to be

paid at time T. As the future discount rate is unknown it is only possible to

calculate the bond expected price

p(t, T ) = E
[
exp

{
−
∫ T

t
rsds

}]
. (1.1)
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In order to present a forward contract it is necessary to identify three dif-

ferent instants of time, as in the spot case the moment t at which the rate is

considered and T that sign the end of the exchange of money; however, in this

occasion, we introduce as well S as the time that signs the beginning of the

money trading. We denote by p(t, S, T ) the forward price de�ned at t for a zero-

coupon bond with money exchange at time S and ending at T . Summarizing,

the contract it is stipulated at t, one part pay the amount p(t, S, T ) at S and the

counterpart give back a unit of currency at T . Note that in the particular case

when S = t the forward contract become a spot contract, p(t, t, T ) = p(t, T ).

Turns out natural now de�ne the time to maturity T − t as the amount

of time from the present t to the maturity T > t. Arise necessary to identify

this amount of time in terms of the number of days between the two dates.

It is calculated according to the relevant market convention, this choice is not

unique. Here are mentioned three examples:

• Actual/365. Assuming the right length of each month and a year of 365

days long.

• Actual/360. With this convention is considered a year 360 days long.

• 30/360. Months are in this case assumed to be 30 days long.

1.3 From zero-coupon bonds to spot interest rates

With the hypothesis that in the market there are exchanged zero-coupon bonds

for every maturity T , the price p(t, T ) of a zero-coupon bond exchanged at t,

that give one unit of currency at time T , leads towards the de�nition of three

di�erent measure of rate:

1. Simply-compounded spot rate in the interval [t, T ]

L(t, T ) =
1− p(t, T )

(T − t)p(t, T )
.

2. Yield rate or continuously-compounded spot rate in the interval [t, T ]

y(t, T ) = − logp(t, T )
T − t

.
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3. Annually compounded spot rate in the interval [t, T ]

Y (t, T ) =
1

p(t, T )1/(T−t)
− 1.

It is easy to see that the �rst is the constant rate at which an investment of

p(t, T ) at time t produce an amount of un unit of currency at maturity, the

second is the constant rate at which an investment has to be made to accrue

continuously until yield a unit of currency at maturity, and the last one is the

constant rate at which an investment of p(t, T ) units of currency at t, when

reinvesting the gained amounts every year, gives back one unit of the currency

at maturity. Interest rates are more useful then price of zero-coupon bonds when

comparing between operations with di�erent maturity.

1.4 Forward rates

Forward rates are interest rates that can be locked in today for an investment

in a future time period. Can be demonstrate that in a arbitrage-free market,

where subsists the impossibility to make money from nothing (see [2] for further

explanations) the following holds

p(t, S, T ) =
p(t, T )

p(t, S)
.

Since the above relation holds it is possible to de�ne two di�erent forward rates:

1. Simply-compounded forward rate de�ned in t for the interval [t, T ]

F (t, S, T ) =
1− p(t, S, T )

(T − S)p(t, S, T )
=
p(t, S)− p(t, T )

(T − S)p(t, T )
.

2. Continuously-compounded forward rate de�ned in t for the interval [t, T ]

y(t, S, T ) = − logp(t, S, T )
T − S

= − logp(t, T )− logp(t, S)

T − S
.

These formulas lead to spot interest rates for S = t.

When the maturity of the simply-compounded forward rate collapses to towards

its expiry date S, we obtain the instantaneous forward rate at T de�ned at time

t

f(t, T ) = −∂logp(t, T )
∂T
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which denotes the interest strength at time T implicit in the price p(t, T ). From

the above follows

p(t, T ) = exp

{
−
∫ T

t
f(t, s)ds

}
.

Considering at this point the 1.1, by letting T tend to t the expectation becomes

known at t and comparing with the latter equation results r(t) = f(t, t).

It is now possible de�ne a forward rate agreement :

FRA(t, S, T,N,R) = Np(t, T )(T − S)(R− F (t, S, T )). (1.2)

The latter is a contract made on a nominal value N where the parties, a lander

and a borrower, agree to exchange a �xed rate R with a simply-compounded

spot rate L(S, T ). It means that the holder at maturity receives a �xed amount

and pays N(T − S)L(S, T ). This contract can be generalized to the interest

rate swap (IRS), where the parties exchange a series of cash �ows starting at

a future time S = Tα. In this case, the two counterparts pay the respectively

amounts N(Ti − Ti−1)R and N(Ti − Ti−1)L(Ti−1, Ti)) at every instant Ti for

i = α + 1, . . . , β where T = Tβ . Consequently we de�ne the forward swap rate

as the �xed rate R for which the IRS is a fair contract

Sα,β(t) =
P (t, Tα)− P (t, Tβ)∑β

i=α+1(Ti − Ti−1)P (t, Ti)
.

1.5 Absence of arbitrage and change of numeraire

In a probability space (Ω,F ,P) (in order to have a detailed explanation of

mathematical objects presented, the interested reader can have a look at [6],

[18] or [16]) are given n + 1 non-dividend paying trading assets, whose prices

are indicated by B = S0, . . . , Sn where B(t) is a money-market account. It is

then possible to de�ne a trading strategy as a process (ht)t∈[0,T ] with predictable

components h0, . . . , hn, and its associated value process

Vt(h) = htSt =

n∑
i=0

hitS
i
t .

Hence, we say that h is self-�nancing if its value changes only due to changes in

the asset prices, which means that after the initial time cash �ows do not take

places.
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A contingent claim H is a random variable belonging to L2(Ω,F ,P) and, if ex-
ists a self-�nancing portfolio h that VT (h) = H, the contingent claim is said to

be attainable. The price of h at t associated with it is denoted by πt = Vt(h).

Let introduce a new probability measure Q on the space (Ω,F) equivalent

to P, which means that they share the same set of null probability. Then, if the

Radon-Nikodin derivative dQ/dP is square integrable with respect to P and the

discounted asset price process D(0, ·)S is a Q-martingale, Q is said to be an

equivalent martingale measure. If it does exist the market is free of arbitrage

and taking now an attainable H, the associated price πt is unique for t ∈ [0, T ]

and it is given by πt = E[D(t, T )H | Ft]. When every contingent claim is at-

tainable the market is said to be complete and the martingale measure is unique.

A numeraire Z is any positive non-dividend-paying asset chosen to normalize

all other asset prices with respect to it. A self-�nancing portfolio does not change

after modify the numeraire. The measure QT associated with the zero coupon

bond whose maturity is T is known as T-forward measure. Then a price at time

t of a derivative with maturity T whose payo� is HT is given by

πt = p(t, T )ET [HT | Ft] ∀t ∈ [0, T ]

which can be calculated under the risk-neutral measure Q using

πt = E
[
exp

{
−
∫ T

t
rsds

}
HT | Ft

]
∀t ∈ [0, T ].

1.6 Short rate models

As seen above in order to calculate the price processes of a zero-coupon bond

and of a derivative with maturity T is necessary to specify the instantaneous

spot interest rate. The hypothesis that the latter is constant can be accepted

only for contracts with short life. So that arise necessary to �gure out which is

its behavior over the interval [0, T ]. The classical approach is to assume that

the dynamics of rt evolves under the measure P as follow:

dr(t) = µ(t, r(t))dt+ σ(t, r(t))dWP (t).
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In an arbitrage free market where exist bonds for all maturities, through the

Ito's formula, the price dynamics for the T-bond it is given by

dp(t, T ) = αT (t, r(t))p(t, T )dt+ σT (t, r(t))p(t, T )dWP (t)

then there exists a stochastic process λ such that

αT (t, r(t))− r(t)

σT (t, r(t))
= λ(t) (1.3)

holds for all t and for every choice of maturity T . Considering the risk-neutral

measure Q the instantaneous spot rate evolves according to

dr(t) = [µ(t, r(t))− λ(t)σ(t, r(t))]dt+ σ(t, r(t))dW (t).

Taking a closer look to the process λ we see that the numerator of the formula

1.3 is called risk premium and represents the excess rate of return for the risky

bond over the risk-free rate. Then λ is de�ned by the risk premium per unit of

volatility, for this reason the process is known as risk free rate.

The given market is not complete as in the Black-Scholes model. As a conse-

quence there is not only one equivalent martingale measure and the bond prices

are not uniquely determined by the dynamics under P of the short rate. When

the market has determined the dynamics of a price bond process then λ is de-

termined and all the bond prices can be calculated. The market price of risk is

implicit in the considered dynamics and has to be speci�ed by using market data.

In the literature have been proposed numerous way on how to specify the

dynamic of the short rate under the equivalent martingale measure. See [9] to

obtain a deep knowledge with respect to this argument.

Here are presented some of the most popular short rate models:

Vasicek : dr(t) = k[θ − r(t)]dt+ ρdW (t)

Cox-Ingersoll-Ross (CIR) : dr(t) = k[θ − r(t)]dt+ ρ
√
r(t)dW (t)

Ho-Lee : dr(t) = θ(t)dt+ ρdW (t)

Hull-White extended Vasicek : dr(t) = k(t)[θ(t)− r(t)]dt+ ρ(t)dW (t)

Hull-White extended CIR : dr(t) = k(t)[θ(t)− r(t)]dt+ ρ(t)
√
r(t)dW (t)



CHAPTER 1. INTEREST RATE THEORY 12

These model are referred as single factor models because they present a sin-

gle source of randomness. The main advantage of these methods lies in the fact

that it is allowed to specify the short rate as a solution of a stochastic di�eren-

tial equation and through Markov theory use the associated partial di�erential

equation. A drawback is that they can not reproduce satisfactorily the market

curve which seems to depend on all the rate and not only on the short interest

rate considered to construct the model. A consistent alternative to short rate

models is the Heath-Jarrow-Morton framework, an application incorporating

the entire yield curve that will be present in the next chapter.



Chapter 2

Heath - Jarrow - Morton

Framework

As stated in the last chapter modeling interest rate using short rate models gives

often the possibility to obtain analytical formulas for bond prices and deriva-

tives. However, they present some drawbacks, indeed does not seem reasonable

use only one explanatory variable to describe the market, furthermore a com-

plicated model is necessary to reconstruct properly the volatility observed in

forward rates and as it becomes more realistic increase the di�culty to obtain

the inverse of the yield curve.

The Heath-Jarrow-Morton framework (HJM) arises as the most straightfor-

ward solution to disadvantages occurred in short rate models. It is a general

framework to model the evolution of interest rates built up by Heath, Jarrow

and Morton in the late 1980s (see [3]). They developed the idea to capture the

full dynamics of the entire yield curve, proposed �rstly by Ho and Lee, extend-

ing it in continuous time. Practically, this framework is based on focusing on

the instantaneous forward rate as fundamental quantity to be modeled and this

is one of the most general way to express absence of arbitrage opportunities.

Precisely, the drift in the forward rate dynamics can be expressed as function of

the di�usion coe�cient in the same dynamics. Di�erently from the one factor

short rate model, no drift estimation is needed, it is completely determined by

the chosen volatility coe�cient.

13
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The framework for the pricing of interest rate derivatives is consistent under

HJM, it models the evolution of the entire forward rate curve while the short

rate models only capture a point on the curve. Such a framework is important

because in theory allows to derive any interest rate model; analogies with par-

ticular short rate models will be show later in this chapter. Furthermore the

model is complete, which means that does not involve the market price of risk,

this is an important result sought by earlier studies.

However, HJM presents some disadvantages, in fact it is not trivial to de�ne a

suitable volatility for practical purposes, and only a restricted class of volatilities

is known to imply a markovian short rate process. As a consequence, determine

prices of derivatives can be very complicated and particularly slow. Precisely,

the model does not provide an exact solution, which means that, in order to be

implemented, a numerical method, such as Monte Carlo, is necessary.

2.1 The dynamics of HJM

The foundation on which Heath-Jarrow-Morton framework is built, for a �xed

maturity T , is the dynamics of the instantaneous forward rate f(t, T ) which

evolves according to

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t)

f(0, T ) = f ′(0, T ),

where α(t, T ) and σ(t, T ) are adapted processes,W is an N-dimensional Wiener

process under the measure P (see [1] and [15] to have a full argumentation of

stochastic processes), while as the initial condition is used the market forward

rated curve {f ′(0, T ) : T ≥ 0} which provides a perfect �t between theoretical

and observed bond prices at present time.

This dynamics does not provide necessarily a situation without arbitrage

possibilities. In order to obtain a unique equivalent martingale measure, the

approach followed by Heath, Jarrow and Morton was to model the continuously

compounded instantaneous forward rate f(t, T ), through the basic arbitrage

relationship encountered in the bond pricing theory:

f(t, T ) = −∂logp(t, T )
∂T
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from which follows

p(t, T ) = exp

{
−
∫ T

t
f(t, s)ds

}
. (2.1)

They found out that the drift is completely determined by the vector di�usion

process and cannot be chosen arbitrarily. Particularly it has to be equal to an

object depending on σ and the drift rates in the dynamics of N zero coupon

bond prices. Furthermore, as we will see, the short rate process does not require

to be modeled but is not a Markov process in general.

2.1.1 The instantaneous forward rate dynamics under the risk-

neutral measure

Go by Black's theory (see [12] for further explanations) Heath Jarrow and Mor-

ton assumed the following dynamics for typical bonds under the risk-neutral

measure:

dp(t, T ) = r(t)p(t, T )dt+ ν(t, T )p(t, T )dW (t) (2.2)

where the risk free instantaneous spot rate is the same for all bonds and assets.

For notational convenience the path dependance has been omitted, so the vector

volatility is written ν(t, T ) rather then ν(t, T, p(t, T )).

Considering a pair of zero coupon bonds with di�erent maturities, which

prices are denoted by p(t, T ) and p(t, U). From the arbitrage relationship 2.1 we

obtain
p(t, T )

p(t, U)
= exp

{∫ U

T
f(t, s)ds

}
and rearranging this expression

log
p(t, T )

p(t, U)
=

∫ U

T
f(t, s)ds.

Taking in�nitesimal interval δ, it is possible to write the above in terms of simply

forward rate (non instantaneous) as follow

d[logp(t, T )]− d[logp(t, T + δ)] = F (t, T, T + δ)δ,

then through Ito's lemma we have

d[logp(t, T )] =
dp(t, T )

p(t, T )
− 1

2

(ν(t, T )p(t, T ))2

p(t, T )2
dt
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and similarly

d[logp(t, T + δ)] =
dp(t, T + δ)

p(t, T + δ)
− 1

2
ν(t, T + δ)2dt.

Replacing 2.2 and subtracting the last expression from the one before the short

rate disappear

d[logp(t, T )]− d[logp(t, T + δ)] =
1

2
[ν2(t, T + δ)− ν2(t, T )]dt+

+[ν(t, T )− ν(t, T + δ)]dW (t).

This is due to the fact that we are in a risk-neutral environment, therefore rt is

the same in the two equations.

As a consequence

F (t, T, T + δ) =
d[logp(t, T )]− d[logp(t, T + δ)]

δ

=
ν2(t, T + δ)− ν2(t, T )

2δ
dt− ν(t, T + δ)− ν(t, T )

δ
dW (t).

Recalling the formula of partial derivative

∂g

∂x
= lim

δ→0

g(x+ δ)− g(x)

δ

and letting δ → 0, the terms of the above become

lim
δ→0

F (t, T, T + δ) = df(t, T ),

lim
δ→0

(ν(t, T + δ))2 − (ν(t, T ))2

2δ
= lim

δ→0

{
ν(t, T + δ) + ν(t, T )

2

ν(t, T + δ)− ν(t, T )

δ

}
= ν(t, T )

∂ν(t, T )

∂T

and

lim
δ→0

ν(t, T + δ)− ν(t, T )

δ
=
∂ν(t, T )

∂T

therefore we obtain

df(t, T ) = ν(t, T )
∂ν(t, T )

∂T
dt− ∂ν(t, T )

∂T
dW (t).

At this point, simply de�ning σ(t, T ) := −∂ν(t, T )/∂T we �nd the famous HJM

drift condition

α(t, T ) = σ(t, T )

∫ T

t
σ(t, s)ds,
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so that the integrated dynamics of the instantaneous forward rate under the

risk-neutral measure is

f(t, T ) = f(0, T ) +

∫ t

0
σ(u, T )

∫ T

u
σ(u, s)dsdu+

∫ t

0
σ(s, T )dW (s)

which is completely speci�ed when the vector volatility process is provided.

Finally, the instantaneous short rate at time t does not need to be modeled with

a di�usion process but can be derived from the instantaneous forward rate as

follow

r(t) = f(t, t) = f(0, T ) +

∫ t

0
σ(u, t)

∫ t

u
σ(u, s)dsdu+

∫ t

0
σ(s, t)dW (s).

As earlier mentioned the above does not ful�ll the Markov property, in fact

the time t appears inside the integral function and as extreme of integration.

However, it is possible to identify particular volatilities that make it a Markov

process. A special case was detected by Carverhill, who considered in his studies

vector volatility of the type

σ(t, T ) = ϕ(t)ψ(T ),

where ϕ and ψ are strictly positive and deterministic functions of time. As a

consequence, the short rate process assumes the form

r(t) = f(0, T ) + ψ(t)

∫ t

0
ϕ2(u)

∫ t

u
ψ(s)dsdu+ ψ(t)

∫ t

0
ϕ(s)dW (s). (2.3)

Other studies were made by Ritchken and Sankarasubramanian for the one

dimensional case (see [17] for details). They found out a necessary and su�cient

condition on the volatility structure of forward rate for the price of any interest

rate derivative to be completely determined by a Markov process of the form

χ(t) = (r(t), ξ(t)). Taking an adapted process η and a deterministic function k

the following condition holds

σ(t, T ) := η(t)exp

{
−
∫ T

t
k(v)dv

}
. (2.4)
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In this situation, ξ is de�ned by

ξ(t) =

∫ t

0
σ2(s, t)ds

whose stochastic di�erential equation is given by

dξ(t) = [η2(t)− 2k(t)ξ(t)]dt,

while the dynamics of the short rate evolves according to

dr(t) =
∂

∂t
f(0, t)dt+

[
σ(t, t)

∫ t

t
σ(t, s)ds

]
dt−

[∫ t

0
k(t)σ(u, t)

∫ t

u
σ(u, s)dsdu

]
dt+

+

[∫ t

0
σ2(u, t)du

]
dt−

[∫ t

0
k(t)σ(s, t)dW (s)

]
dt+ σ(t, t)dW (t)

=

[
∂

∂t
f(0, t) + k(t)[f(0, t)− r(t)] + ξ(t)

]
dt+ η(t)dW (t)

where we used the equation for the dynamic of the short rate and

σ(t, t) = η(t),
∂

∂t
σ(u, t) = −k(t)σ(u, t),

∂

∂t

(
σ(u, t)

∫ t

u
σ(u, s)ds

)
= −k(t)σ(u, t)

∫ t

u
σ(u, s)ds+ σ2(u, t).

We have then calculated the evolution of the Markov process:

dχ(t) =

(
dr(t)

dξ(t)

)
.

If the volatility function is as given in 2.4, then zero coupon bond prices are

given by the formula

p(t, T ) =
p(0, T )

p(0, t)
exp

{
−1

2
γ2(t, T )ξ(t) + γ(t, T )[f(0, t)− r(t)]

}
where

γ(t, T ) =

∫ T

t
exp

{
−
∫ u

t
k(v)dv

}
du.

Similar results were obtained by Inui and Kijima for the N-dimensional case in

[10].

As a conclusion, an arbitrarily chosen of the forward rate volatility leads to

a short rate process that is not Markovian. This implies major computational
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problems making a discretization of the short rate dynamics for the pricing of

a derivative. Beyond the over exposed, further proposes for a suitable volatility

structure where made, an example is given by the Mercurio and Moraleda Model

presented in [13], where an analytical formula for the price of a European call

option on pure discount bond is achieved.

2.2 How to use HJM

This section is devoted to brie�y describe step by step how to use the Heath-

Jarrow-Morton framework in order to compute prices of derivatives through

numerical method such as Monte Carlo (see [20] for a closer examination).

1. Firstly is necessary to specify the volatility structure σ(t, T ) by using one

of the models present in the literature or considering a new own choice.

Then observe the market instantaneous-forward curve.

2. Simulate the evolution of the entire forward rate curve in the risk neutral

world until the date needed

df(t, T ) = σ(t, T )

∫ T

t
σ(t, s)ds+ σ(t, T )dW (t).

3. Compute bond pricing for all dates through the formula

p(t, T ) = exp

{
−
∫ T

t
f(t, s)ds

}
.

4. Obtain cash �ows using forward rates.

5. Consider the short rate in order to calculate the present value of the cash

�ows.

6. Go back at point 2 in order to make enough realizations to have the

discounted expected value with the desired precision.

2.3 Relation with short rate models

As said in the �rst part of the chapter, it is possible to obtain classes of interest

models under the HJM framework. In theory, every short rate model can be

equivalently formulated in term of the forward rate.
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2.3.1 Hull-White extended Vasicek

Let us go back to the markovian case, precisely consider the Carverhill's formu-

lation 2.3 for the short rate (have a look at [3]). In the case it is considered only

one factor, it is possible to de�ne the deterministic and di�erentiable function

G by

G(t) := f(0, t) + ψ(t)

∫ t

0
ϕ2(u)

∫ t

u
ψ(s)dsdu

in order to obtain

dr(t) = G′(t)dt+ ψ′(t)

∫ t

0
ϕ(s)dW (s) + ψ(t)ϕ(t)dW (t)

=

[
G′(t) + ψ′(t)

r(t)−G(t)

ψ(t)

]
dt+ ψ(t)ϕ(t)dW (t).

Now de�ne

ϑ(t) = G′(t)− ψ′(t)

ψ(t)
G(t), k(t) = −ψ

′(t)

ψ(t)
, ρ(t) = ψ(t)ϕ(t)

the model reduces to Hull-White encountered at the end of the last chapter

dr(t) = [ϑ(t)− k(t)r(t)]dt+ ρ(t)dW (t)

where ϑ(t) = k(t)θ(t). With trivial de�nition of the variables and considering θ

as a constant we �nd the model stated by Vasicek.

2.3.2 Hull-White extended CIR

The dynamics of the short rate in the Hull-White extended CIR evolves accord-

ing to

dr(t) = k(t)[θ(t) + r(t)]dt+ ρ(t)
√
r(t)dW (t).

In order to achieve such equation under the HJM framework (see [4]) it is nec-

essary to de�ne the volatility function as follow

σ(s, t) = η(s)
√
r(s) exp

{
−
∫ t

s
k(v)dv

}
.

Recalling Ritchken and Sankarasubramanian framework we take care about the

evolution of the Markov process χ(t). Simply di�erentiating, the dynamics of ξ

takes the form

dξ(t) = [η2(t)r(t)− 2k(t)ξ(t)]dt



CHAPTER 2. HEATH - JARROW - MORTON FRAMEWORK 21

while for the short rate

dr(t) =
∂

∂t
f(0, t)dt+

[
σ(t, t)

∫ t

t
σ(t, s)ds

]
dt−

[∫ t

0
k(t)σ(u, t)

∫ t

u
σ(u, s)dsdu

]
dt+

+

[∫ t

0
σ2(u, t)du

]
dt−

[∫ t

0
k(t)σ(s, t)dW (s)

]
dt+ σ(t, t)dW (t) =

=

[
∂

∂t
f(0, t) + k(t)[f(0, t)− r(t)] + ξ(t)

]
dt+ η(t)

√
r(t)dW (t)

where, with respect to the case seen above only change

σ(t, t) = η(t)
√
r(t).

Finally we get the expected result de�ning

ϑ =
∂

∂t
f(0, t) + k(t)f(0, t) + ξ(t),

η(t) = ρ(t), ϑ(t) = k(t)θ(t).

As before, it is possible to obtain the model stated by Cox, Ingersoll and Ross

adopting some variable as constants instead of functions of time.

2.3.3 Ho-Lee

In the Ho-Lee model the evolution of the spot rate is determined by the equation

dr(t) = θ(t)dt+ ρdW (t).

This time, the trick is to consider the process σ as a deterministic constant in

the drift condition. As a consequence it results for the forward rate

f(t, T ) = f(0, T ) +

∫ t

0
σ2(T − u)du+

∫ t

0
σdW (s)

= f(0, T ) + σ2t

(
T − t

2

)
+ σW (t),

in particular

r(t) = f(t, t) = f(0, T ) + σ2t
t2

2
+ σW (t),

so that the dynamics becomes

dr(t) =

[
∂

∂t
f(0, t) + σ2t

]
dt+ σdW (t),

and now de�ning

θ =
∂

∂t
f(0, t) + σ2t, ρ = σ

it is founded what we were looking for.



Chapter 3

Derivatives

In the last years derivatives have become increasingly popular, the growth of

their markets represents an important development in �nance. They are traded

on exchanged and over the counter (OTC) markets, where the procedures be-

come easier by the time passing due to the electronic and technological expan-

sion. In the �rst case contracts are standardized and de�ned by the exchange,

while in OTC are traded directly between two parties. The latter, is the largest

market for derivatives, products such swaps, FRA and exotic options are almost

always traded in this way.

A derivative is a �nancial instrument whose value is dependent on an under-

lying variable already existent in the market. Normally the underlying variables

are asset prices, however it can be almost anything that is measurable. This

contracts are therefore agreements between two parties with values linked to

the expected future price of some assets. They are commonly used to reduce

or eliminate the risk, provide leverage or speculate and make pro�t from the

underlying movements.

It is important to highlight that in order to avoid inconsistency between the

derivative and the underlying price, derivatives can not be priced arbitrarily in

an absolute sense, but their prices are determined in terms of the market price

of the underlying assets.

Exists a large variety of derivatives, we proceed here with a brie�y intro-

duction of the most notables. A forward contract is an agreement between two

22
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parties where who assumes a long position commits to buy an asset at a cer-

tain future date for a determined price established at present time, while who

assumes a short position sells the underlying. This simple derivative is not stan-

dardized and is therefore traded in over the counter markets. This is the main

di�erence with a future which is indeed usually traded on an exchange. The

characteristic of the contracts are the same, but in the latter there is a daily

exchange of money.

An option is a contract that give the owner the right, but not the obligation, to

buy (in the case of a call option) or to sell (put option) the underlying asset by

a certain pre�xed date, denoted maturity, for a certain price called strike price

or exercise price. Exact speci�cations may di�er depending on the option style.

A European option allows the holder to exercise the option only at maturity

while an American option can be exercised at any time during the life of the

option.

Nonstandard derivatives that may include complex �nancial structures are some-

times identi�ed as exotic options, the others considered standard are termed as

plain vanilla. In this work will be emphasized interest rate derivatives, already

introduced in the �rst chapter and explained in more details in the rest of this

chapter.

3.1 Interest rate derivatives

The purpose of this part of the work is to give a general presentation of prod-

ucts inherent in interest rates. Interest rate derivatives are �nancial instruments

whose payo� depend somehow on interest rates. Trade this kind of �nancial ob-

jects became popular at the end of the past century, market exchanges consider-

ably increased and the pricing of these products became an interested challenge

for investors. Indeed the valuation of interest rate derivatives presents some dif-

�culties not encountered for other �nancial instruments. Interest rates behaviors

are generally more complicated and they are used for discounting as well as for

de�ning the payo� from the derivative. Furthermore in many cases could be

necessary to develop a model, such HJM, to describe the entire yield curve.

In �nance the most famous tool for pricing is the model proposed by Black and

Scholes, which guarantees closed solutions for some products. Here are presented



CHAPTER 3. DERIVATIVES 24

the formulas at time t for European options with maturity T ,

Call = Sϕ(d1)−Ke−r(T−t)ϕ(d2) (3.1)

Put = Ke−r(T−t)ϕ(−d2)− Sϕ(−d1) (3.2)

where S is the price of the stock with volatility σ, K the strike, r the risk-free

rate, ϕ(·) the standard normal cumulative function and

d1 =
log
(
S
K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

d2 = d1− σ
√
T − t.

How these expression have been derived is out of the aim of this work, inter-

ested readers may refer to [2]. The Black and Scholes model has been modi�ed

and extended during the years adapting to requirements of traders, up to cover

some interest rate derivatives.

3.2 Interest rate swaps

A swap is a contract between two counterparts that exchange series of future

cash �ows dependent on the type of �nancial instrument involved. The agree-

ment de�nes the dates at which the streams have to be paid and how they are

calculated. These cash �ows, called legs of the swap, are calculated over a no-

tional amount which is usually not exchanged between the parties, but it is only

used for calculating the size of the interests. Usually at the initial time at least

one of the two streams series is determined by an uncertain variable such as a

rate.

Here the attention is over the most common type of swap, the interest rate

swap of which has been given a hint in the �rst chapter. Starting again from a

FRA contract, at maturity T a �oating payment based on the spot rate L(S, T )

is exchanged against a �xed payment based on a �xed rate R, where interests

are calculated from time S. In T the value is

N(T − S)(R− L(S, T )),

rewriting the spot rate in function of the zero coupon bond price becomes

N

[
(T − S)R− 1

p(S, T )
+ 1

]
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and through some substitutions the value at time t is given by

FRA(t, S, T,N,R) = N [p(t, T )(T − S)R− p(t, S) + p(t, T )]

which is equivalent to 1.2.

As already stated, an interest rate swap (IRS) can be seen as a general-

ization of the forward rate agreement. Counterparts exchange cash �ows equal

to interests at a predetermined �xed rate (the swap rate) against a �oating

rate (typically the LIBOR) on a notional principal for a future set of dates

Tα+1, . . . , Tβ where Tα = S and tβ = T . Usually between two stream exchanges

pass six months and due to its de�nition as an interest rate with a �xed expiry,

stated at present time and that determines the payment at the end of the pe-

riod, the LIBOR is �xed six months before the payment. The �oating payment

can be identi�ed by N(Ti − Ti−1)L(Ti−1, Ti) while the correspondent �xed leg

by N(Ti − Ti−1)R. It is better to point out that this is a simple argumentation

of swaps, payment can occur at di�erent dates and di�erent year fractions.

An investor is said to hold a payer swap (PFS) if he pays at �xed rate and

receives the �oating leg, whereas in the opposite case the investor is said to hold

a receiver swap (RFS). Consider the �rst circumstance, the value of a PFS at

time t < S can be expressed as

β∑
i=α+1

D(t, Ti)N(Ti − Ti−1)(L(Ti−1, Ti)−R)

while the discounted payo� of a RFS at present time is given by

β∑
i=α+1

D(t, Ti)N(Ti − Ti−1)(R− L(Ti−1, Ti)).

It is possible to obtain the value of the latter considering the contract as a

portfolio of forward rate agreements

RFS(t, S, T,N,R) =

β∑
i=α+1

FRA(t, Ti−1, Ti, N,R).

In some occasion turns out that companies have a comparative advantage

going in �xed rate market to obtain a loan while others going to �oating rate

markets. As a consequence a company borrow money in the market where is
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more convenient, but in this way maybe the kind of rate used for calculated the

interest is not the desired one. Thus a swap results to be useful to transform

�xed payments into �oating payments and vice versa.

As a conclusion of the paragraph, it is better to stress the fact that swap are

highly liquid instruments and for this reason they can be used to determine the

bond prices through the forward rate swap quoted on the market for di�erent

maturities, therefore it is possible to obtain the yield curve.

3.3 Caps and �oors

A common interest rate option, exchanged mainly in over the counter markets is

the interest rate cap, which is a contract designed to guarantee to the holder that

�oating rate does not exceed a speci�c level, known as cap rate. In other words,

the buyer receives payments at the end of each period in which the interest rate

rises above the strike. Analogously a �oor contract provides that the interest

rate on a �oating rate loan will never be below a certain level, denoted as �oor

rate. A company enters a cap contract if has a loan at a �oating rate of interest

L and it is afraid that this will increase in the future, so would like to guarantee

itself that L does not exceed a maximum cap rate R. It means that at each

payment date the company pais no more then R

L−max(L−R) = min(L,R).

An interest rate cap can be analyzed as a series of basic contracts, called

caplets which is de�ned as a contingent claim whose discounted payo� on a

notional value N is given by

D(t, Ti)N(Ti − Ti−1)(L(Ti−1, Ti)−R)+

where has been introduced the notation (·)+ = max(·, 0). It has been de�ned

for this product the Black's formula as follow

CplBi (t, Ti−1, Ti, N,R, σi) = (Ti − Ti−1)p(t, Ti)(F (t, Ti−1, Ti)ϕ(d1)−Rϕ(d2))

for i = 1, . . . , T where the forward rates are lognormal and

d1 =
log
(
F
R

)
+

σ2
i
2 (Ti−1 − t)

σi
√
Ti−1 − t

d2 = d1− σi
√
Ti−1 − t.
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The constant volatilities σi are known as Black's volatilities for caplets.

For a cap is then de�ned the Black's price formula as

CapB(t, Ti−1, Ti, N,R, σ) = N

β∑
i=α+1

(Ti−Ti−1)p(t, Ti)(F (t, Ti−1, Ti)ϕ(d1)−Rϕ(d2))

for i = 1, . . . , T with analogous d1 and d2 where σi becomes σα,β .

Similarly is possible to decompose additively a �oor contract, whose dis-

counted payo� is a sum of terms of the form

D(t, Ti)N(Ti − Ti−1)(R− L(Ti−1, Ti))
+

which denotes a contract called �oorlet.

In this case the Black's formula for the price is given by

FlrB(t, Ti−1, Ti, N,R, σ) = N

β∑
i=α+1

(Ti−Ti−1)p(t, Ti)(−F (t, Ti−1, Ti)ϕ(−d1)+Rϕ(−d2)).

In the market, cap prices are quoted in terms of implied Black volatilities

σ′α, . . . , σ
′
β de�ned as

Implied �at volatilities solution of CapM (t, Ti) =
∑i

k=1Cpl
B
k (t, σ

′
i),

i = α, . . . , β.

Implied forward volatilities solution of CplMi (t) = CplBi (t, σ
′
i), i = α, . . . , β.

A sequence of implied volatilities as above is termed volatility structure.

Another way to see a cap is as a PFS where exchange payments occur only

if are positive. It is possible to write the discounted payo� as

α∑
i=1

D(t, Ti)N(Ti − Ti−1)(L(Ti−1, Ti)−R)+.

A �oor, similarly, can be viewed as a RFS therefore its discounted payo� is given

by
α∑

i=1

D(t, Ti)N(Ti − Ti−1)(L(Ti−1, Ti)−R)+.
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To conclude this part, is given the de�nition of cap at the money (ATM).

Considering the forward swap rate given in the �rst chapter, a cap is said to be

ATM when

R = RATM := Sα,β(0) =
P (0, Tα)− P (0, Tβ)∑β

i=α+1(Ti − Ti−1)P (0, Ti)
.

If R < RATM the cap is said to be in the money (ITM) and if RATM < R the

cap is said to be out of the money (OTM).

Finally the di�erence between a cap and the corresponding �oor is equivalent

to a swap

(L−R)+ − (R− L)+ = L−R.

This is known as cap-�oor parity. From the equation above it is possible to

see that a cap is ATM if and only if its price is the same as the price of the

corresponding �oor.

3.4 Swaptions

Swaptions represent with caps the main derivative products on interest rates.

They will be utilized as a sample of pricing with the model considered, for this

reason they assume a relevant importance in this work. A swaption, short form

of swap option, is an option on interest rate swap. This contract gives the holder

the right but not the obligation to enter into an underlying IRS at a certain fu-

ture time. They can be used to guarantee that the rate which the holder will

pay on a loan at some future time will not rise above a speci�c level. Consid-

ered in this way a swaption can be used as an alternative to forward swap; the

di�erence lies in the fact that the swap option give the holder the possibility

to choose if enter or not in a swap, the drawback is that this advantage has a cost.

There are two types of swaption contracts:

• A payer swaption gives the owner the right to enter into a payer interest

rate swap at a given future time T , the maturity, that normally coincides

with the date which the IRS starts.

• A receiver swaption allows the holder to enter into a receiver swap, paying

�oating cash �ows and receiving �xed quantities for a speci�ed period of

time Tβ − Tα, termed tenor.
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As a consequence of what presented above, a swaption must specify not only

the expiry time of the option but even the tenor of the underlying IRS.

Consider a payer swaption written on a notional amount N with maturity

Tα coinciding with the �rst date of the tenor and strike rate R, then is possible

to de�ne its discounted payo� as follow

ND(t, Tα)

(
β∑

i=α+1

p(Tα, Ti)(Ti − Ti−1)(F (Tα, Ti−1, Ti)−R)

)+

;

an alternative expression in terms of the forward swap rate can be considered:

ND(t, Tα)(Sα,β(Tα)−R)+
β∑

i=α+1

p(Tα, Ti)(Ti − Ti−1).

A similar formula to the above is used for the receiver-swaption payo� discounted

to present time t from the maturity

ND(t, Tα)

(
β∑

i=α+1

p(Tα, Ti)(Ti − Ti−1)(R− F (Tα, Ti−1, Ti))

)+

.

It is important to stress on the fact that the payer-swaption payo� cannot be

split into more elementary products as caplet for cap. This di�erence implies

that the value of a payer swaption will be always smaller than the value of the

corresponding cap contract.

The Black model is the market practice to compute swaption prices. It

started being used before has being justi�ed by the theory. The formula for

a payer swaption at time t < Tα is given by

PSB = N(Sα,β(t)ϕ(d1)−Rϕ(d2))

β∑
i=α+1

(Ti − Ti−1)p(t, T ),

d1 = d1 =
log
(
Sα,β(t)

R

)
+

σ2
α,β

2 (Tα − t)

σi
√
Tα − t

d2 = d1− σα,β
√
Tα − t.

Note that the volatility parameter σα,β is di�erent from the one encountered for

caps an �oors. Given the market swaption price, the Black volatility implied by
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the formula is termed implied Black volatility.

Similarly the Black formula for a receiver swaption is given by

RSB = N(−Sα,β(t)ϕ(−d1) +Rϕ(−d2))
β∑

i=α+1

(Ti − Ti−1)p(t, T ).

As for cap and �oors, given strike R, maturity Tα, underlying swap payment

dates Tα+1, . . . , Tβ, a payer or receiver swaption is said to be at the money if

and only if

R = RATM := Sα,β(0) =
P (0, Tα)− P (0, Tβ)∑β

i=α+1(Ti − Ti−1)P (0, Ti)
.

If R < RATM a payer swaption is said to be in the money while a receiver

swaption is said to be out of the money. The opposite occurs when R > RATM .

Even for swaption subsists the parity relation:

PayerSwaption−ReceiverSwaption = PayerSwap.



Chapter 4

Volatility structure

As seen in the second chapter, in order to compute prices of derivatives through

numerical method using the HJM framework, is necessary to specify the volatil-

ity structure σ(t, T ). De�ne a suitable σ is not trivial, it is possible to take an

own choice due to some particular consideration or alternatively use one of the

models present in literature.

This work is oriented on using a model already existent in order to achieve

the above purpose. In theory, as said in the second chapter, every short rate

model can be properly related with the HJM framework. In general, whenever

the correlations of di�erent rates considerably in�uence the product to be priced

is better use multifactor models, they provide higher precision but loose e�-

ciency in the numerical implementation as the number of factors involved grows.

Neglecting the capability of these models to �t satisfactorily market data and

to realistic represent correlation patterns, here have been considered one factor

short rate models, brie�y introduced at the end of the �rst chapter, which are

easier to understand and do not lead to heavy computational statement. They

are still acceptable mainly when the rates that jointly in�uence the payo� at

every instant are close.

In paragraph 1.5 has been shown that under the risk neutral measure the

price at time t of a contingent claim with maturity T and payo� HT is given by

πt = E
[
exp

{
−
∫ T

t
rsds

}
HT | Ft

]
∀t ∈ [0, T ].

31
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A special example is o�ered by the zero coupon bond, whose payo� at time T

reduces to the unit amount of money. In this case the price at t takes the form

of the following expression

p(t, T ) = E
[
exp

{
−
∫ T

t
rsds

}
| Ft

]
∀t ∈ [0, T ].

Whenever the distribution of the latter is characterized in terms of the dynamics

of the short rate is then possible to obtain bond prices and hence all rates can

be computed. As it will be shown some models provide analytical formulas, not

only for zero coupon bonds but even for some more sophisticated derivative.

4.1 A�ne term structure

This argument acquires importance due to the fact that from an analytical and

computational point of view the existence of an a�ne term structure extremely

simpli�es the content.

A model is said to possess an a�ne term structure (ATS) if the zero coupon

bond can be written in the form

p(t, T ) = A(t, T )exp {−B(t, T )r(t)} (4.1)

where A and B are deterministic functions.

Assume the following dynamics for the short rate under the risk neutral

measure Q
dr(t) = µ(t, r(t))dt+ σ(t, r(t))dW (t), (4.2)

then it is natural to wonder which choices of the parameters lead to an a�ne

term structure. The answer can be found for instance in [5], the coe�cients µ

and σ2 needs to be both a�ne functions of r, which means linear plus a constant

as follow:

µ(t, r) = α(t)r + β(t)

σ2(t, r) = γ(t)r + δ(t).
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Then the model admits an ATM where A and B satisfy the system

∂B(t, T )

∂t
+ α(t)B(t, T )− 1

2
γ(t)B2(t, T ) = −1, B(T, T ) = 0,

∂A(t, T )

∂t
= β(t)B(t, T )− 1

2
δ(t)B2(t, T ), A(T, T ) = 0.

The �rst expression is a Riccati di�erential equation that can be solved without

involving A. Then using B is possible to get the result of the second expression.

In general this is not a the only way to obtain an ATS but if µ and σ2 are time

independent then they need to be a�ne. An example of a�ne term structure

model is the Hull-White extended Vasicek model which will be presented in the

next paragraph.

An important result deriving from a�ne models is the simply form gained

for the absolute volatility of the instantaneous forward rate, which is the input

of the HJM dynamics. The latter can be written as

f(t, T ) = −∂logA(t, T )
∂T

+
∂B(t, T )

∂T
r(t),

so that, using the general expression of the short dynamics 4.2,

df(t, T ) =

(
µ(t, r(t))

∂B(t, T )

∂T
− ∂logA(t, T )

∂T

)
dt+

∂B(t, T )

∂T
σ(t, r(t))dW (t).

Therefore the absolute volatility of the instantaneous forward rate is given by

σf (t, T ) =
∂B(t, T )

∂T
σ(t, r(t)) (4.3)

which is a deterministic function of time and maturity, it has an extremely

simple form and leads to easy computation.

4.2 Market data

The data available for this work have been gained from Bloomberg software,

they are quoted on 29th of October 2010 and are displayed on table 4.1. The

�rst column represents the data in which the variables are measured, in the

second column is shown the instantaneous forward rate, in the next column the

continuously-compounded spot interest rate, then the discount factors and last

the daily time interval between two data.
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Mty/Term Market Rate Spot Rate Discount dt

29/10/2010 0 0 1 0

01/11/2010 0,22563 0,22563 0,998121517 3

02/11/2010 0,14 0,14 0,995945685 1

09/11/2010 0,24841 0,24841 0,999952 7

16/11/2010 0,25 0,25 0,999903 7

02/12/2010 0,25375 0,25375 0,999789 16

04/01/2011 0,26766 0,26766 0,999532 33

02/02/2011 0,28594 0,28594 0,99927 29

16/03/2011 0,33 0,30742 0,998857 42

15/06/2011 0,374 0,33742 0,997914 91

21/09/2011 0,413 0,36281 0,996793 98

21/12/2011 0,476 0,38894 0,995595 91

21/03/2012 0,554 0,41988 0,994203 91

20/06/2012 0,636 0,45482 0,992607 91

19/09/2012 0,748 0,49564 0,990734 91

19/12/2012 0,875 0,54137 0,988547 91

20/03/2013 1,041 0,59445 0,985953 91

19/06/2013 1,222 0,6561 0,982917 91

18/09/2013 1,428 0,72527 0,979382 91

18/12/2013 1,648 0,8006 0,975319 91

03/11/2014 1,10561 1,11427 0,956497 320

02/11/2015 1,4726 1,49324 0,928315 364

02/11/2016 1,81625 1,85422 0,895171 366

02/11/2017 2,114 2,17265 0,85962 365

02/11/2018 2,357 2,43681 0,82385 365

04/11/2019 2,56 2,661 0,788157 367

02/11/2020 2,732 2,85414 0,753221 364

02/11/2021 2,869 3,00945 0,71995 365

02/11/2022 2,999 3,16022 0,686422 365

03/11/2025 3,266 3,47488 0,596395 1097

04/11/2030 3,497 3,75051 0,475513 1827

02/11/2035 3,61 3,8823 0,382405 1824

02/11/2040 3,673 3,95224 0,309094 1827

02/11/2050 3,699 3,93328 0,210548 3652

02/11/2060 3,625 3,69643 0,160198 3653

Table 4.1: Market data
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The exposed data are not convenient for a computational treatment, there-

fore have been carried out linear interpolations and the resulting instantaneous

forward rate curve and discount curve are represented in �gure 4.1 as function

of time expressed in years.
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Figure 4.1: Instantaneous forward rate curve and discount evolution.

4.3 Hull-White extended Vasicek model

Hull and White developed in the nineties a model of future interest rates based

on the one proposed by Vasicek, improving the poor �tting of the initial term

structure of interest rates. They used a linear stochastic di�erential equation in

order to describe the short rate dynamics. As a consequence the related process

is normally distributed. This is an enormous advantage from a computational

point of view but, on the other hand, implies that the short rate can assume

negative values and this is unreasonable in economic �eld.

The objective here is to use a calibration procedure in order to obtain the pa-

rameters for which is given the best �t to the prices obtained by today swaption

market volatilities for di�erent tenor and maturities, then derive the volatility

structure for future times at various maturities (the input for the HJM dynam-

ics). For this aim has been developed a code using the language of technical
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computing MATLAB.

4.3.1 Dynamics

The need for an exact �t to market data led Hull and White to the introduction

of time dependent parameter in the Vasicek model. There is a degree of ambi-

guity amongst practitioners about exactly which parameters are constant and

which time-varying.

Here, following [2], is considered the dynamics under the measure Q which

evolves according to

dr(t) = [θ(t)− ar(t)]dt+ σdW (t), (4.4)

known as Hull-White extension of the Vasicek model, where a and σ are the

constant parameters to calibrate and θ is a deterministic function of time given

by

θ(t) =
∂fM (0, t)

∂T
+ afM (0, t) +

σ2

2a
(1− e−2at),

chosen so as to exactly �t the market term structure of interest rates. Here it

has been considered the market instantaneous forward rate at present time for

the maturity T as

fM (0, t) = −∂logp
M (0, t)

∂T
.

As mentioned above Hull-White is an a�ne term structure model. It is then

necessary to specify A and B to have 4.1. From the literature it is possible to

see that through some burdensome calculation have been obtained the following

expressions

B(t, T ) =
1

a

(
1− e−a(T−t)

)
,

A(t, T ) =
pM (0, T )

pM (0, t)
exp

{
B(t, T )fM (0, t)− σ2

4a
(1− e−2at)B(t, T )2

}
.

Furthermore, integrating the 4.4, results

r(t) = x(t) + α(t),

where

α(t) = fM (0, t) +
σ2

2a2
(1− e−at)2,
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and x is a process which dynamics evolves according to

dx(t) = −ax(t)dt+ σdW (t), x(0) = 0.

The latter under the forward measure QT , necessary to compute the prices if

European options written on zero coupon bonds, becomes

dx(t) = [−B(t, T )σ2 − ax(t)]dt+ σdW T (t),

where the QT -Brownian motion is de�ned by dW T (t) = dW (t) + σB(t, T )dt.

Given the market discount factors, has been written a Matlab function de-

noted hw.m (see appendix A) in order to compute the calculations necessary

for the current aim, which is, at this point of the work, the volatility structure.

It takes as inputs the constants a and σ, the market instantaneous forward

rate and the discount factors at present time for di�erent maturities, the last

maturity expressed in year fraction and the year fraction intended as the time

passing between two subsequent rates or discount (1/12 for monthly data). It

is therefore assumed that intervals between market data introduced here are

constants. The outputs are represented by the above A and B, and by the short

rate and the bond prices at any future time.

In �gure 4.2 are shown the short rate evolution and the bond prices as functions

of maturity for a monthly-progressing time.

For this realizations have been considered a = 0.05, sig = 0.02 due to market

observations; furthermore, with these values, the curves seem to be more real-

istic and the discount curve at present time exactly �t the market curve. The

other parameters are chosen as follow, T = 40 years, while f0 and p0 refer to

market data quoted on October 29, 20101. The short rate grows in time and as

expected from theory it can assume negative values close to current time. This

drawback does not a�ect substantially consequent results but does not allowed

to consider the evolution fully reasonable from an economic point of view. As a

consequence, close to present even bond prices can assume values higher then

the unit. However, bond curve trends re�ect what observed in the market and

for the purposes of this work these errors become negligible.

1Special thanks are addressed to the friend Andrea Bafundi for kindly provide such data.
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Figure 4.2: Bond Prices and short rate evolution for a = 0.05, σ = 0.02.

4.3.2 Pricing

After having analyzed the dynamics of the model, it is shown how to price a

swap option, either for a payer or a receiver swaption. The prices for di�erent

tenor and maturities given by analytical formulas are then compared with the

prices obtained from market data using Black like formula in order to calibrate

a and σ for Hull-White model.

An European swaption can be viewed as an option on a coupon bearing

bond. The latter can be explicitly priced using Jamshidian's decomposition (see

[11] for details). For this purpose, take a European option with strike X and

maturity T , written on a bond paying s coupons after the option maturity. Let

ti and ci be the payment time and the value of the i-th cash �ow after option

maturity for i = 1, . . . , s. Denote by r∗ the value of the short rate at time T for

which
s∑

i=1

c(i)A(T, ti)exp(−B(T, ti)r
∗)− 1 = 0,

and set

Xi := A(T, ti)exp(−B(T, ti)r
∗).

The value of r∗ is obtained using the bisection method, the drawback is that

for Hull-White it can assume negative values. Although this is unreasonable
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economically speaking, it does not a�ect substantially the consequent results.

Therefore it is still useful for computation. Furthermore observing deeply the

case analyzed in this work it never happens.

The price of the option at a chosen time t before maturity is given by

CBO(t, T, s, c,X) =
s∑

i=1

c(i)ZBO(t, T, ti, Xi),

where ZBO represents the price at t of a European option with maturity T

written on a zero coupon bond maturing at time s.

Since, under the QT measure, the short rate is still normal, we have

ZBC(t, T, s,X) = p(t, s)ϕ(h)−Xp(t, T )ϕ(h− σp),

for a call with maturity T and strike X, while for a correspondent put

ZBP (t, T, s,X) = Xp(t, T )ϕ(−h+ σp)− p(t, s)ϕ(−h),

where

σp = σ

√
1− exp{−2a(T − t)}

2a
B(T, s),

h =
1

σp
log

p(t, s)

p(t, T )X
+
σp
2
.

To compute this formulas has been created the Matlab function europeopthw.m,

shown in appendix A, where the meanings of the symbols are of easy compre-

hension.

It is now possible to get the analytical formula for a European swaption with

strike rate X, maturity T and nominal value N , which gives to the owner the

right to enter in a swap where are exchanged the �xed rate X against the LI-

BOR. The cash �ows are given by ci = X(ti − ti−1) for i = 1, . . . , s − 1 and

cs = 1 +X(ti − ti−1), where t0 = T .

The payer swaption price at time t is then given by

PS(t, T, s,N,X) = N

s∑
i=1

ciZBP (t, T, ti, Xi),

and the price of the corresponding receiver swaption is therefore

RS(t, T, s,N,X) = N
s∑

i=1

ciZBC(t, T, ti, Xi).
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The resultant Matlab code is exposed in appendix A and it is denoted by swap-

tionhw.m, where d represents the vector of payment times of the interest rate

swap.

In �gure 4.3 are shown the prices of a payer swaption obtained for ATM
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Figure 4.3: Swaption prices for maturities and tenors given by the vectors mat

and d, a = 0.05, σ = 0.02, using Hull-White model.

strikes, N = 1, while the maturity and tenor vectors are given by mat = [2 :

10 12 15 20] and d = [2 : 10 12 15 20]. It is possible to observe a decreas-

ing trend for short maturity, which becomes essentially �at as maturity grows.

On the other hand the prices value increases as the tenor becomes greater, es-

pecially for small maturity, so that these functions assume more signi�cantly

convex form as the tenor grows. From this �gure the price seems to be more

sensible to the change of tenor then to a maturity modi�cation. The range of

values assumed in this case varies between zero and 0.1. It will be show that

similar results are obtained using a Black like formula.

4.4 Parameters calibration

This paragraph is devoted to the calibration procedure of the coe�cients a and

σ of the Hull-White model. For this aim have been calculated the prices for

di�erent maturities and tenor through a Black like formula, and this has been

done using Black market volatilities and strikes of at the money swaption for
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Expiry 1 YR 2 YR 3 YR 4 YR 5 YR 6 YR 7 YR 8 YR 9 YR 10 YR 12 YR 15 YR 20 YR 25 YR 30 YR

1 MO Vol 104,05 92,55 77,78 63,75 55,23 47,85 45,65 42,6 40,55 38,98 37,45 34,35 32,25 31,8 31,68

Strike 0,3981 0,5483 0,8034 1,1599 1,5283 1,8719 2,1652 2,4059 2,6053 2,7728 3,0352 3,2971 3,5268 3,6378 3,6978

3 MO Vol 91,55 77,83 70,58 57,85 50,35 45,6 42,85 39,45 37,8 36,43 34,85 30,95 29,95 28,85 28,7

Strike 0,437 0,6084 0,8953 1,2638 1,6334 1,9713 2,2554 2,4906 2,6835 2,8433 3,0972 3,3486 3,5686 3,6739 3,7297

6 MO Vol 88,9 69,05 62,15 51,95 45,8 41,53 38,75 37 35,55 33,95 32,5 29,35 27,7 27,15 26,73

Strike 0,4956 0,7018 1,0353 1,4201 1,7896 2,1163 2,3884 2,6113 2,7974 2,9454 3,1866 3,4234 3,629 3,7265 3,7762

9 MO Vol 87,66 67,41 57,15 48,75 43,85 39,63 37,13 35,85 34,5 32,75 31,13 28,65 26,93 26,55 25,93

Strike 0,5711 0,8197 1,1944 1,587 1,9552 2,2701 2,5284 2,7388 2,914 3,0508 3,2792 3,5001 3,6913 3,7804 3,8239

1 YR Vol 82,35 65,31 52,82 45,45 41,73 37,8 35,48 33,8 33,3 31,48 29,95 27,9 26,25 25,9 25,05

Strike 0,6646 0,9609 1,3603 1,7613 2,126 2,4272 2,6704 2,8687 3,0315 3,157 3,3718 3,5766 3,7532 3,8339 3,8712

2 YR Vol 60,76 46,98 40,25 36,08 33,7 31,83 30,15 29,95 29,15 27,98 26,8 25,5 24,2 23,95 23,05

Strike 1,2588 1,7148 2,1391 2,5091 2,8031 3,0332 3,2165 3,3648 3,4751 3,5887 3,7372 3,877 3,9961 4,0438 4,0572

3 YR Vol 41,05 34,42 31,38 29,27 28,87 27,57 26,46 26,56 25,56 25,04 24,41 23,4 22,45 22,2 21,88

Strike 2,1836 2,5979 2,9502 3,2187 3,4223 3,5809 3,7079 3,7973 3,896 3,9576 4,0672 4,147 4,2123 4,2305 4,2219

4 YR Vol 31,02 28,24 26,59 25,96 25,36 24,86 24,08 24,3 23,6 23,13 22,75 21,95 20,98 21,05 20,45

Strike 3,024 3,3507 3,5859 3,7583 3,8899 3,9948 4,0631 4,148 4,1946 4,2406 4,3006 4,3475 4,3704 4,366 4,3401

5 YR Vol 26,87 25,07 24,49 23,93 23,48 23,16 22,55 22,66 22,35 21,7 21,45 20,6 19,8 19,9 19,55

Strike 3,6882 3,8818 4,0213 4,1272 4,2124 4,2614 4,3358 4,3694 4,4055 4,4386 4,4581 4,482 4,4728 4,4525 4,4132

6 YR Vol 24,22 23,91 23,46 22,95 22,7 22,45 22,05 21,8 21,55 21,25 20,7 19,95 19,55 19,4 19,55

Strike 4,0832 4,1983 4,2857 4,3577 4,3912 4,4608 4,4846 4,5138 4,5416 4,5443 4,5534 4,556 4,5312 4,4967 4,4486

7 YR Vol 23,1 22,4 21,65 21,6 21,43 21,18 20,65 21 20,85 20,08 19,8 19,25 18,58 18,8 18,58

Strike 4,3183 4,3934 4,4574 4,477 4,5468 4,5625 4,587 4,6113 4,608 4,6074 4,6094 4,5962 4,5601 4,5151 4,4603

8 YR Vol 22,55 21,95 21,65 21,35 21,1 20,95 20,7 20,55 20,45 20,3 19,9 19,35 18,95 18,9 18,85

Strike 4,4713 4,5318 4,5348 4,6106 4,6182 4,6392 4,6613 4,6522 4,6475 4,6458 4,6416 4,6144 4,5707 4,5171 4,4574

9 YR Vol 22,01 21,41 21,25 20,91 20,6 20,5 20,1 20 19,9 19,8 19,55 19,2 18,95 18,75 18,5

Strike 4,5957 4,5691 4,6617 4,6596 4,6779 4,6985 4,6833 4,6746 4,6702 4,666 4,6502 4,6176 4,5683 4,5079 4,4437

10 YR Vol 20,47 20,55 20,08 20,08 19,85 19,48 19,5 19,85 19,7 19,15 18,65 18,3 17,6 17,95 17,45

Strike 4,5414 4,6969 4,6829 4,7008 4,722 4,7003 4,688 4,6816 4,6757 4,6704 4,6446 4,6073 4,5549 4,4882 4,4207

12 YR Vol 20,19 20,23 19,85 19,88 19,74 19,28 19,29 19,45 19,33 18,96 18,51 18,09 17,55 17,86 17,5

Strike 4,6527 4,7051 4,7408 4,7023 4,6838 4,6755 4,6682 4,6621 4,6452 4,631 4,6022 4,567 4,5015 4,428 4,342

15 YR Vol 19,99 19,95 19,8 19,75 19,65 19,1 19,1 19 18,9 18,8 18,4 17,9 17,6 17,85 17,75

Strike 4,575 4,5876 4,6003 4,6042 4,6053 4,5865 4,5719 4,5566 4,5417 4,5269 4,5065 4,4687 4,3888 4,309 4,1955

20 YR Vol 19,2 19,5 19,3 19,15 19 18,9 18,1 18,35 18,25 18,35 18 17,5 17,3 17,25 17,15

Strike 4,4783 4,4734 4,4589 4,4441 4,4285 4,4243 4,4144 4,4021 4,3882 4,374 4,3356 4,2787 4,1855 4,0472 3,935

25 YR Vol 18,15 17,95 17,7 17,5 17,4 17,3 17,25 17,2 17,2 17,25 17,7 18,4 16,5 16,55 16,6

Strike 4,4002 4,3732 4,3497 4,3269 4,3063 4,277 4,25 4,2243 4,2005 4,1764 4,1297 4,0644 3,8924 3,7622 3,528

30 YR Vol 16,95 16,9 16,9 16,9 16,9 16,95 16,85 16,8 16,95 17,1 18,3 20,1 15,95 15,84 15,69

Strike 4,1116 4,0872 4,0628 4,0412 4,0167 3,9927 3,969 3,9471 3,9241 3,9016 3,8047 3,6909 3,5481 3,2667 3,0563

Table 4.2: Swaption volatility data

di�erent maturities and tenors. Then these prices have been compared with the

prices calculated through the Hull-White model; �nally has been implemented a

Matlab code in order to search for the values of the coe�cients which minimize

the residuals.

4.4.1 Black like formula

The data necessary for the prices calculation are obtained again from Bloomberg

and are reported in table 4.2. They refer to ATM swaption volatilities and strikes

for di�erent maturities and tenors, given in data 29th of October 2010.

These data are inputs for the Matlab function swaptionblack.m implemented

in order to compute the payer swaption pricing. They are displayed in �gure 4.4
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for mat = [2 : 10 12 15 20] and d = [2 : 10 12 15 20]. It is possible to state

that volatilities have a decreasing trend for either tenors or maturities growth,

particulary the change is pronounced for small maturity and minor values of

tenor, while curves are almost �at after T = 10. The range of their values sets

up between 0.1 and 0.5. The strikes have almost the opposite behavior, in fact

for short maturities the values grows rapidly concordant with the tenor, while

slightly decreases when the parameters increase. The range of the strikes is given

by [0.01, 0.05].

The prices at time t are calculated through Black like formula introduced in the
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Figure 4.4: Market swaption volatilities and strikes for maturities and tenors

given by the vectors mat and d.

chapter above, which is written with the Matlab editor as shown in appendix

A through swaptionblack.m, where z and u represent respectively the lengths

of the maturity vector mat and the tenor vector d; p0 is the market discount

vector while X is the strike rate and R is the strike at the money. Again N

is the nominal value while vol is the volatility matrix given from the market

interpolated data.

In �gure 4.5 are shown the prices of a payer swaption obtained for X and R

both ATM strike matrix, N = 1, while the maturity and tenor vectors are given

bymat = [2 : 10 12 15 20] and d = [2 : 10 12 15 20]. The trends conversely to

the Hull-White case, are upward sloping for short maturities but then assume

a similar decreasing progress. This behavior suggest to be careful with small
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Figure 4.5: Swaption prices for maturities and tenors given by the vectors mat

and d using the Black like formula.

maturities. The approach followed in this work is to give less importance to

prices deriving from short maturities assigning them smaller weights during the

calibration procedure as shown below. Again the prices increase when tenor

increases and they seem to be more a�ected by changes of the latter then by

changes of the maturity. The range of values is like the one encountered using

the Hull-White model set between 0 and 0.1. As a consequence it is possible to

say that the values of the parameters a and σ are close to the optimal solution.

4.4.2 The Levenberg-Marquardt algorithm

In order to �nd the best values of the parameters in the Hull-White model, has

been implemented the Matlab function LMFsolveswaptionhw.m (see appendix

A) based on the Levenberg-Marquardt (LM) algorithm solving multi-variables

optimization problems (for a better understanding of this technique see [14]).

It can be thought as a combination of gradient descent (steepest descent) and

the Gauss-Newton method, acting as the �rst one when the current solution is

far from the correct one, and as the second when the current solution is close

to the correct solution.

LM is an iterative technique that locates the minimum of a function that is

expressed as the sum of squares of nonlinear functions. Its principal application
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is optimize parameters x of the model curve f(y, x), where y is a given variable,

so that the sum of the squares of the deviations

S(x) =

n∑
i=1

[pbli − f(yi, x)]
2

becomes minimal. In this work pbli represent Black prices while the function f

gives HW prices phwi, which are dependent on known variables yi and on the

guessed parameters x.

The basis of LM is a linear approximation to f in the neighborhood of x that

can be expressed as

f(yi, x+ d) ≃ f(yi, x+ d) + Jid,

where

Ji =
∂f(yi, x)

∂x

is the gradient of the function respect to x. In the follow the term y, which

represents all the given variable necessary to compute HW prices, will be omitted

for simplicity without causing any e�ect on the results. In each iteration step, the

parameter vector x is replaced by a new estimate xd starting from the guessed

vector xc, trying to minimize the square distance S = r′r with r = pbl − phw.

The latter can be written in vector notation as

∥pbl − f(xd)∥2 ≃ ∥pbl − f(x)− Jd∥2 = ∥r − Jd∥2,

where J represent the Jacobian matrix. Taking the derivatives with respect to

d and setting the result to zero follows

(J ′J)d = J ′r,

from which is possible to obtain the increments d. Note that in the Matlab

function J ′J has been named A while J ′r has been denoted v.

Due to Levenberg there is a damped version of the equation above given by

(J ′J − λI)d = J ′r,

where I is the identity matrix and λ is referred to as the damping term, which

is adjusted at each iteration. LM controls its own damping, so that is adaptive.

In fact it raises the damping if a step fails to reduce the error, otherwise the
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damping decreases. So that a smaller value of λ is used when the error reduction

is rapid leading the algorithm closer to the Gauss-Newton method, whereas the

damping term can be increase if the error reduction is slow giving a step closer

to the gradient descent algorithm.

A disadvantage shows up when the dumping term increases too much and,

as a consequence, the inversion JJ ′ − λI is not involved signi�cantly in the

computation. So that Marquardt proposed to replace the identity matrix with

the diagonal of J ′J obtaining

(J ′J − λdiag(J ′J))d = J ′r,

which allowed to avoid slow convergence in the direction of small gradient. Each

component of the gradient is scaled according to the curvature implying a larger

movement along the direction where the gradient is smaller.

The choice of the damping parameter at each step is based on a preexistent

Matlab function. As mention above, the procedure reduces λ if the predicted

error is to high, and raises the term if the predicted error is too low. The algo-

rithm terminates when the residuals are all smaller than a pre�xed tolerance or

when the maximum number of iterations allowed is reached.

4.4.3 Calibration procedure

In order to contrast the inclination of the Hull-White model to provide bad es-

timations for small maturities and tenors, have been introduced weights on the

residuals in order to give more importance to long maturities. The choice has

been made following the usual form deriving from the experience and testing its

goodness relative to the current case.

The function LMFsolveswaptionhw.m takes as input the vector of initial

guesses for a and σ, the relative prices obtained through the Hull-White method,

the prices calculated using Black like formula, and the usual parameters neces-

sary to recall the function cicloswaption.m which gives back the swaption prices

using Hull-White for new guessed values. The algorithm consists on compute

model prices of at the money swap options at current time and compare the re-

sult with the correspondent prices obtained through Black market formula, then

a and σ for which the market trend is better reproduced are founded minimiz-

ing the di�erence between the prices. As already mentioned a variable named
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peso has been introduced to give more weight to prices correspondent to higher

maturities and tenors. The reason of this adjustment is a direct consequence of

what observed in �gure 4.3 and 4.5, where prices calculated with Hull-White

model had the contrary slope to the ones encountered using Black like formula

when maturities and tenors are small. Furthermore this inappropriate behavior

is pointed out as well in the literature.

LMFsolveswaption.m allows to specify the maximum number of iterations per-

mitted, the tolerance for �nal sum of residuals and the tolerance on di�erence

of solutions when the guess parameter vector changes. The output arguments

are the approximations of the �nal solution, the sum of residual squares, the

number of iterations carried out, which is displayed as negative if the algorithm

does not converge before the maximum of allowed iterations is reached, and the

number of iterations necessary to get to the �nal solution. Are then speci�ed

Hull-White prices and ATM strikes calculated using the �nal a and σ parame-

ters.

Using a number of maximum iterations equals �fty, residual tolerance 10−5

and solution tolerance 10−3, with initial guesses a = 0.05 and σ = 0.02, is gained

a resultant vector xf which values are 0.0640 and 0.0385 approximated at the

fourth digit number. The choice of the initial values is due to an investigation

of the values observed in the market related with the function implemented in

this work, even though in some papers have been used rather higher values,

for instance look at [19]. The value of the sum of residual squares is 0.0368,

the reason why is quite high lies in the fact that Hull-White does not perform

exactly for short maturities and small tenors. Therefore is clear why is reached

the maximum number of iterations allowed. Furthermore it is interesting to

notice that the �nal solution is reached in just nine iterations, this proves the

good performances supplied by the algorithm.

Finally in �gure 4.6 are compared the prices obtained through the Black like

formula with the prices obtained through the Hull-White model using the �nal

values of a and σ. It is evident now that the prices are better approximated as

maturities and tenors increase.
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Figure 4.6: Comparison between Hull-White and Black like swaption prices.

4.5 Absolute volatility

At last is possible to derive the implied swaption volatility structure that will

be use in the HJM dynamics in order to have the price of a swaption with

particular maturity and tenor. This is done using the formula 4.3 presented

above for a�ne term structure models, which gives in the Hull-White case the

following deterministic function

σf (t, T ) = e−a(T−t)σ.

Again a Matlab function has been implemented, it is named sigmaabs.m and it

is displayed in appendix A. It gives back the volatility matrix, and the inputs

in this circumstance are the market values of the instantaneous forward rate

already interpolated and the parameters of Hull-White model derived in the

last section.

In �gure 4.7 are represented the absolute volatilities at four di�erent times,

t = 0, t = 10, t = 20 and t = 30 years, for all maturities up to forty years. The

curves are downward sloping as expected. In fact either from the literature or

in the market is possible to observe such a trend.
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Figure 4.7: Absolute volatility deriving from Hull-White model at four di�erent

times.
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Figure 4.8: Absolute volatility at current time for a ∈ [0.01, 0.09], σ ∈
[0.01, 0.04].
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4.5.1 Term structure analysis

The purpose of this paragraph is to give to the reader a clear explanation of how

di�erent choices of the parameters of the Hull-White model a�ect the volatility

structure. This is done through the analysis of the curves displayed in the �gure

4.8 where, according to market observations, a varies in [0.01, 0.09], while the

range of σ is [0.01, 0.04]. Each graph is plotted by keeping the σ parameter

�xed and varying a. These graphs suggest that absolute volatilities for swaption

decrease as a increases and increase as σ increases. In addition a has a bigger

in�uence on longer maturities.



Chapter 5

Pricing

This chapter presents a manner of pricing a European payer swaption based on

the results obtained in the last chapters. Particularly, is considered the Monte

Carlo method. The dynamics of the Heath-Jarrow-Morton framework is simu-

lated until the necessary date taking as input the volatility structure speci�ed

above; once the entire forward curve has been gained, all rates and bond prices

can be compute, then all cash �ows are obtained and discounted. Finally, when

enough realizations have been made, the expected value is calculated with the

desired precision.

In order to achieve the aim of pricing the derivative considered have been

implemented functions through the language of technical computing Matlab. It

is then given an analysis of the results with the support of explanatory graphs.

Most of the objects used here have been presented in earlier chapters and there is

no claim to keep the chapter self-contained, however it has been tried to explain

satisfactorily and clearly the argument .

5.1 Monte Carlo method

Monte Carlo methods are a class of computational algorithms that relies on

repeated random sampling to compute their results. They are useful for mod-

eling phenomena with signi�cant uncertainty inputs and tend to be used when

it is impossible to get an exact result through a deterministic algorithm. These

models have a wide area of applications, principally it is common recur to them

in simulating physical and mathematical systems. Monte Carlo methods have

50
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also proven e�cient in solving �nancial issues, such as evaluating derivatives.

Therefore, in mathematical �nance (see [8]), Monte Carlo methods are used

to analyze instruments by simulating the random sources a�ecting their value,

and then determining their expected value over the range of resultant outcomes.

Usually the products considered have to be exercised at �nal time; typically their

�nal payo�s involve the history of the underlying variable up to the end, and

not only the �nal value of the underlying.

Use these methods brings some advantages. First of all simulations are ease

to compute, then many software are available to compute the realizations, and

it is possible to incorporate path-dependency. Furthermore is often simple to

modify the models in order to have one suitable for the considered case. However

Monte Carlo methods are not free of drawbacks. In fact, since trajectories are

propagated forward in time, there is no clue whether at a certain point in time

is optimal continue or exercise. Therefore it can be di�cult manage products

involving early exercise, like American option. Furthermore, if an analytical

technique exists, these methods are usually too slow to be competitive.

5.2 Rates calculation

In this work has been paid particular attention to the payer swap option, in-

troduced in the third chapter, where turned out that is necessary to know the

evolution of the forward swap rate in order to compute its discounted payo�

given by

ND(t, Tα)(Sα,β(Tα)−R)+
β∑

i=α+1

p(Tα, Ti)(Ti − Ti−1). (5.1)

For an exact comprehension of the formulas introduced here the reader can refer

to the corresponding argumentation presented in former chapters.

For the pre�xed aim, has been considered the HJM framework (see the relative

chapter), which assumed the following dynamics for the instantaneous forward

rate, for a �xed maturity T ,

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t)

f(0, T ) = f ′(0, T ).



CHAPTER 5. PRICING 52

Having computed the above using the volatility structure previously obtained,

is possible to achieve zero-coupon bond prices p(t, T ). As a consequence, is pos-

sible to calculate the other interest rates, such as the short rate, the Libor, the

simply-compounded forward rate, and the discount factor D, through the for-

mulas introduced in the �rst chapter. As well, the forward swap rate can be

calculated, so that to compute the discounted payo� 5.1.

For this procedure has been implemented as usual a Matlab function named

rates.m (see appendix B), which take as inputs the market instantaneous for-

ward rate curve at time t = 0, the volatility structure, the year fraction and a

random matrix which values are normally distributed.

Using the Monte Carlo method, this function is recalled at every simulation and

gives as output for every time and maturity, the bond prices, the instantaneous

forward rate, the short rate, the Libor, the simply-compounded forward rate

and the discount factor.

Consider now a single representation in which the volatility is the term

structure calculated with the sigmaabs.m function in the last chapter and the

instantaneous forward rate at current time is given from the market as usual.

The HJM dynamics f(t, T ) is displayed in �gure 5.1 where is possible to ob-

Figure 5.1: Instantaneous forward rate dynamics.

serve that it grows either as the time or the maturity increase. Obviously it is
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null for t > T . Furthermore it can assume negative values due to the presence

of the Brownian motion, and the resultant range is given by [−0.4, 0.5]. It is

interesting to notice that curves get smooth as the maturity becomes greater,

which means they get less a�ected by the randomness.

In �gure 5.2 are represented the bond price trends for di�erent time and matu-

Figure 5.2: Zero coupon bond prices.

rities. They are correctly downward sloping and they keep values between zero

and the unit. They assume a remarkable importance because they are necessary

for the calculation of the forward swap rate.

The �gure 5.3 shows the resultant short rate, which is noticeably in�uenced by

the Brownian motion of the instantaneous forward rate dynamics. Has expected

it has an upward sloping trend while the range is [-0.3,0.5]. Therefore it can

assume negative values due to the high variability, which are not conceivable

from an economic point of view. Again this drawback a�ects slightly the aim of

the work because doing many Monte Carlo simulation the bad e�ect is reduced

considerably.

Then the discount factors, which have a trend similar to the bonds, are dis-

played in �gure 5.4. Their values are fundamental to compute the prices, in fact

they discount to present time the cash �ows of the derivative considered. They

lie between zero and the unit as expected.

The Libor, even if is not directly implicated in the �nal purpose of this work, it

will be involved in the further analysis of the next section. It is possible to see in
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Figure 5.3: Short rate.

Figure 5.4: Stochastic discount factors.

�gure 5.5 that it is direct proportional to the maturity while assumes a concave

form as function of time, behavior that is more evident for higher maturities.

The range varies between −0.4 and 0.6.
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Figure 5.5: Libor.

5.2.1 Analysis

In order to test the goodness of the function rates.m have been considered data

available on [21]. These data, displayed in table 5.1, refer to the instantaneous

forward rate and Libor evolutions, for monthly and semi-annual intervals of

times.

For this analysis the volatility structure has been taken constant and equals

0.2, this choice derives from the values observed in the market. The uncertain

matrix phi is normally distributed and the time is taken in respect to the data.

Firstly have been considered monthly data, available for the next �ve years;

giving to the Matlab function the instantaneous forward rate has been calculated

the Libor for t = 0, then the latter has been compared with the market Libor

data. The result is shown in �gure 5.6 where is possible to state that the function

gives a nice approximation although overestimates the Libor trend. The sum of

squares of residuals, equals 0.0037, is not negligible, therefore is necessary to

pay attention to the consequent analysis of the prices. This realization leads

to think that all objects computed in this way su�er in term of accuracy. The

reason lie in the characteristics of the Heath-Jarrow-Morton framework, which

dynamics presumes to be continuous while here are considered at least monthly

data.



CHAPTER 5. PRICING 56

f monthly L monhtly f semi-annual L semi-annual

0,63 0,57 1,29 0,87

0,76 0,64 1,65 1,25

0,86 0,70 1,28 1,30

0,97 0,75 1,50 1,32

1,11 0,81 1,85 1,39

1,29 0,87 2,24 1,50

1,47 0,95 2,59 1,63

1,63 1,02 2,91 1,77

1,73 1,10 3,20 1,91

1,76 1,16 3,45 2,06

1,73 1,21 3,68 2,19

1,65 1,25 3,88 2,33

1,55 1,28 4,05 2,45

1,45 1,30 4,19 2,57

1,37 1,30 4,31 2,68

1,32 1,31 4,41 2,79

1,29 1,31 4,49 2,89

1,28 1,30 4,55 2,98

1,29 1,30 4,60 3,06

1,32 1,30 4,63 3,14

1,36 1,31 4,65 3,21

1,40 1,31 4,67 3,28

1,45 1,31 4,67 3,34

1,50 1,32 4,67 3,39

1,55 1,33 4,67 3,44

1,61 1,34 4,66 3,49

1,67 1,35 4,65 3,53

1,73 1,36 4,64 3,57

1,79 1,38 4,62 3,61

1,85 1,39 4,60 3,64

1,92 1,41 4,58 3,67

1,98 1,42 4,56 3,70

2,05 1,44 4,54 3,73

2,11 1,46 4,52 3,75

2,17 1,48 4,49 3,77

2,24 1,50 4,47 3,79

2,30 1,52 4,44 3,81

2,36 1,54 4,42 3,83

2,42 1,56 4,39 3,84

2,48 1,59 4,36 3,85

2,54 1,61 4,33 3,87

2,59 1,63 4,30 3,88

2,65 1,65 4,27 3,89

2,70 1,68 4,24 3,90

2,76 1,70 4,20 3,90

2,81 1,72 4,17 3,91

2,86 1,75 4,14 3,91

2,91 1,77 4,11 3,92

2,96 1,80 4,07 3,92

3,01 1,82 4,04 3,92

3,06 1,84

3,11 1,87

3,16 1,89

3,20 1,91

3,24 1,94

3,29 1,96

3,33 1,99

3,37 2,01

3,41 2,03

3,45 2,06

Table 5.1: Bank of England yield curves
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Figure 5.6: Monthly Libor estimated and market data.

Now are taken as inputs semi-annual instantaneous forward rate data for the

next twenty-�ve years. Again the resultant Libor is compared with market Libor

data in the table 5.1. Observing the �gure 5.7 it is clear that the situation

is getting worse as the maturity goes forward. Until T equals �ve years the

di�erence between the two curves remains the same as the previous monthly

case, but the sum of squares of residual grows substantially going farer, reaching

the total amount of 0.0052.

As a conclusion of this analysis it is better to remark that using the dy-

namics of the instantaneous forward rate deriving from the HJM framework the

resultant objects necessary for pricing can be involved in some estimation errors.

As a consequence becomes very important to keep an eye on the price values

that can be signi�cantly a�ected using this procedure. As a matter of fact, it is

known from literature that HJM overestimates �nancial products.

5.3 Simulations

This paragraph is devoted to the analysis and calculation of payer swaption

prices through the Heath-Jarrow-Morton framework. For this purpose have been

considered several maturities and tenors according to the available data. As al-

ready mentioned the procedure used in this work tends to return overestimated
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Figure 5.7: Semi-annual Libor estimated and market data.

values, implying the analyst to be very careful with the result obtained. Here

the focus is pointed on the analysis of the models taken under consideration, it

is carried out an investigation computing prices of payer swap options, for which

the prices have been already estimated through the Black like formula and the

Hull-White model during the calibration process. This is done in order to give

a program fully understandable for studies of more complex derivatives.

The work follow the procedure exposed in paragraph 2.2, where it is ex-

plained how to adapt the variety of Monte Carlo methods to the case under

question. Having seen how get rate values, is now the time to have a look to the

function implemented to compute the prices for a single realization. Through

Matlab has been created simulation.m which is displayed in appendix B.

5.3.1 Results

As inputs of simulation.m have been taken the market instantaneous forward

rate, the year fraction and the present time, the volatility matrix from the pre-

vious chapter and a random matrix which values are normally distributed, while

the nominal value equals the unit. Maturity and tenor both assume values of

�ve, ten, �fteen and twenty years.

These values are the same passed to the Matlab function pricing.m (see ap-
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pendix B) for which is necessary to specify also the number n of Monte Carlo

simulations. This function returns the �nal price of the payer swap option as a

mean of all the simulations executed for the speci�c tenor and maturity chosen.

In literature exist various methods capable to accelerate the convergence. The

one used here is called antithetic variates (AV) method and consists on double

the simulations considering each random matrix twice, changing the signs of all

elements.

In �gure 5.8 are represented the evolutions of the payer swaption prices calcu-

10 20 30 40 50 60 70 80 90 100
0.165

0.17

0.175

0.18

n

 

 

Antithetic variate method
Monte Carlo

Figure 5.8: Comparison of prices obtained through Monte Carlo with and with-

out using the antithetic variates method.

lated through Monte Carlo for n = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, tenor =

20 and T = 20 years, recurring or not to the AV method. It turns out that in

the �rst case the algorithm converges more rapidly and it get close to the �nal

solution even for relative small values of n, while, in the second case, results

present high variability and don't seem to assure a rapid convergence.

Then �nal price obtained for n = 1000 using AV is displayed in table 5.2, where

are shown as well the results for di�erent number of simulations. It is evident

the better performance o�ered by the antithetic variates method respect to the

normal Monte Carlo. Results for di�erent maturities and tenor with the higher

n are presented in table 5.2.

In table 5.3 are shown for each maturity and tenor the prices obtained with
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n AV MC

10 0.1761 0.1661

20 0.1725 0.1724

30 0.1751 0.1775

40 0.1748 0.1755

50 0.1744 0.1800

60 0.1745 0.1703

70 0.1743 0.1710

80 0.1741 0.1730

90 0.1739 0.1761

100 0.1738 0.1757

1000 0.1736 0.1753

Table 5.2: Comparison between prices using MC with and without AV.

mat-tenor price pbl phw a σ Ssq iter

5-5 0.0910 0.0319 0.0313 0.0240 0.0328 0.0009 5

5-10 0.1397 0.0562 0.0474 0.0718 0.0350 0.0059 14

5-15 0.1722 0.0724 0.0577 0.0878 0.0373 0.0106 16

5-20 0.2060 0.0829 0.0689 0.0729 0.0344 0.0140 15

10-5 0.1829 0.0360 0.0418 0.0299 0.0358 0.0018 12

10-10 0.2779 0.0620 0.0656 0.0402 0.0337 0.0124 5

10-15 0.3340 0.0787 0.0803 0.0492 0.0348 0.0237 18

10-20 0.3695 0.0896 0.0906 0.0502 0.0347 0.0330 15

15-5 0.1516 0.0343 0.0406 0.0555 0.0405 0.0023 15

15-10 0.2298 0.0585 0.0644 0.0551 0.0369 0.0141 11

15-15 0.2673 0.0742 0.0793 0.0585 0.0372 0.0259 7

15-20 0.2882 0.0864 0.0879 0.0585 0.0369 0.0352 18

20-5 0.0915 0.0296 0.0347 0.0636 0.0422 0.0025 16

20-10 0.1415 0.0513 0.0549 0.0635 0.0390 0.0153 17

20-15 0.1643 0.0653 0.0674 0.0630 0.0384 0.0270 16

20-20 0.1736 0.0761 0.0756 0.0640 0.0385 0.0368 9

Table 5.3: Results for payer swaptions.
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the three di�erent models. The results re�ect what expected from previous con-

siderations, in fact it is possible to see that prices computed through Black like

formula and Hull-White are really close (as already seen in the last chapter

with the �gure 4.6). This means that the parameters a and σ are really well

calibrated, note that they vary with maturity and tenor due to the fact that

for the calibration procedure has been considered only data until the necessary

time for calculation (for example for the �rst line of the table are taken only

data with maturity and tenor up to �ve years). In the table is reported also the

number of iterations to get to the best solution, it is good to point out that

are all low numbers, which imply that the implemented method used for the

calibration has excellent performances.

Finally it is possible to compare prices obtained using the Heath-Jerrow-Morton
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Figure 5.9: Comparison between prices obtained through HJM and Black like

formula.

framework with prices calculated through Black like formula. In �gure 5.9 are

represented the di�erences between the results. It is easy to observe that as ex-

pected HJM gives overestimated values of prices, this poor estimation is greater

for intermediate values of maturity while the inaccuracy is quite reduced for

long maturities where HJM prices can still reach twice as much the Black's val-

ues. A possible explanation can be found in the characteristics of the models.

In fact Hull-white doesn't work well for short maturities, so that in such a case

the variables passed to HJM su�er of imprecise valuation. While for long matu-
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mat/tenor 5 10 15 20

5 0.0894 0.1789 0.2408 0.2786

10 0.1470 0.2546 0.3167 0.3502

15 0.1375 0.2187 0.2594 0.2794

20 0.0945 0.1422 0.1638 0.1736

Table 5.4: HJM payer swaption prices.

rities, when Hull-White provides optimal solution, is the HJM dynamics which

is involved in estimation problems. As a consequence for mid-term maturities,

prices are subjected to the in�uence of both of these factors, resulting as in the

�gure.

A similar trend is obtained using constant parameters a = 0.0640 and σ =

0.0385 (values deriving from the analysis done with much data as possible)

for all maturities and tenors. The prices resultant from the HJM dynamics are

displayed in table 5.4 and it can be stated that they are similar to the prices

obtained before varying the parameters. In �gure 5.10 can be observed that in

this case curves become a bit smoother for maturity values equal ten and �fteen

years.

From this analysis it is possible to say that through this procedure can be
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Figure 5.10: Comparison between prices obtained through HJM and Black like

formula for constant parameters a = 0.0640 and σ = 0.0385.
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obtained quite good approximations for long maturities; being careful with the

overestimation of the results it could be a nice development try to analyse more

complex derivatives. Although inaccuracy for short maturities can not be ne-

glected, trends follow predictions based on literature.



Chapter 6

Summary and conclusions

Pricing derivatives represents nowadays one of the most interesting areas for

�nancial engineers. As the exchange of these instrument has been increasing

rapidly, arises the need to formulate mathematical models able to reproduce

price trends. In fact prediction and analysis are becoming fundamental in the

�nancial sector, the �rst mostly to detect the best strategy to adopt, while

the second is necessary for a better comprehension. Particularly the interest

rate �eld is still "work in progress". For these reasons have been created many

models trying to satisfy the general needs, most of them are well explained in

literature and they give some hints for further evolutions. However does not

exist one model able to cover satisfactorily the entire wide variety of derivative

pricing procedures, so that is often necessary to combine two or more models in

order to obtain exhaustive results.

The objective of this work has been to supply a speci�c evaluation of the pricing

process of payer swap options, providing useful information on the considered

models. Particularly, the choice land on the Heath-Jarrow-Morton framework

able to capture the full dynamics of the entire yield curve. For its realization

have been done Monte Carlo simulations through the language of technical com-

puting Matlab, which helped as well with explanatory graphs the qualitative

analysis carried out. The values obtained were slightly overestimated due to the

dynamics considered. Has been found out that these errors tend to be more

consistent for long maturities even increasing the number of simulations. As a

consequence the mentioned framework is probably not the most appropriate for

the derivative considered, at least used combined with the Hull-White model.
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In fact it does not give results with the precision expected for all the cases taken

under analysis.

HJM led to the investigation over a model able to furnish the volatility structure

necessary, so that has been realized a deep analysis of the Hull-White model,

which enabled to obtain quantitative answers and consequently allowed to give

important considerations. Particular attention has been focused on the calibra-

tion procedure for which has been made up an original function based on the

Levenberg-Marquardt algorithm. Respect to it many tests and researches have

been executed in order to �nd the best values for the questioned parameters,

imposing prices obtained through Hull-White and Black like formula close as

possible. Precisely, knowing the Hull-White drawbacks from the literature, has

been decided to give less importance to short maturity and tenor data. The �nal

solutions were in completely agreement with values observed in the market and

con�rmed the goodness of the initial choices. As a consequence all the func-

tions involved in the calibration procedure allow to have nice performance and

lead to satisfactorily results. Then it is possible to state that the Black like for-

mula for payer swaption can be a good approach for the Hull-White parameters

calibration, when at the money data are available.

6.1 Possible alternatives and future developments

During the evolution of the work have arisen some natural opportunities of al-

ternatives to the procedures and models used.

Firstly the market data has been interpolated linearly, which is a quite good way

for the pre�xed aims, but could be possible to consider a di�erent interpolation

especially for more advanced analysis.

Secondly in order to achieve the volatility structure has been used the Hull-

White model, fundamentally for practical reason. For this purpose it is possible

to take own choices due to particular considerations or alternatively use an-

other model present in literature, has been show that Hull-White model does

not perform exactly for short maturities. This inconvenient has been solved im-

posing di�erent weights to the variables under question but it could be possible

directly consider other single or multi-factor models which give a better �t, how-

ever these models often lead to lose e�ciency in the numerical implementation.

Thirdly the data available for the calibration were the ATM volatilities and
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strikes, having out of the money and in the money data could be possible to

get more realistic results. However the process could become burdensome from

a computational point of view and di�cult to achieve with standard comput-

ers. Then has been created a particular Matlab function based on Levenberg-

Marquardt algorithm for the calibration procedure, which resulted to be good for

the case under consideration. However many new alternatives could be covered,

either own choices or models existent in the literature. Furthermore to compare

the prices has been used a Black like formula, while it could be possible to �nd

directly market prices or use other models to compute the necessary results. An

interesting idea that came out during the work evolution is to try to adapt the

SABR model (see [7] for details) to this survey, for example using it instead of

the Black like formula for the calibration. However for this advanced study it is

necessary to be careful in considering dynamics under di�erent measures.

Furthermore, as mentioned in the pricing chapter, various techniques to accel-

erate the convergence when facing Monte Carlo exist in literature. Here has

been used one of quite simple implementation with satisfactory results, for this

reason have not been taken under consideration other methods as for example

the control variates technique.

Finally this work focused the attention on payer swap option, but starting from

what has been shown here other derivatives could be analyzed. Especially the

reference is to complex derivatives for which there is no analytical solution. For

example having obtained the volatility structure as in this work could be pos-

sible to analyze Bermudan swaption, in which the owner is allowed to enter

the swap only on certain speci�c dates that fall between the start date of the

contract and the option maturity.
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Appendix A

Volatility structure code

In this appendix are exposed all the functions implemented through the language

of technical computing Matlab relative to chapter four.

A.1 Hull-White

Here is displayed the function hw.m computing the principal elements of the

Hull-White model, the coe�cients A and B, the short rate and the prices of

zero coupon bond.

function [A,B,r,p] = hw(a,sig,f0,p0,T,dt)

% Hull-White model

% a, sig -> parameters

% f0, p0 market instantaneous forward rate and discount factors

% T -> maturity

% dt -> year fraction

% Initializations

B = zeros (T+1,T); % parameter

A = zeros (T+1,T); % parameter

r = zeros (T+1,1); % short rate

p = ones (T+1,T); % bond prices

f0 = [0 f0]; % computational adjustment

p0 = [1 p0];
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for j = 1:T % parameters calculation

for i = 1:j+1

B(i,j) = 1/a * ( 1 - exp( -a*(j-(i-1))*dt ) );

A(i,j) = p0(j+1)/p0(i) * exp( B(i,j) * f0(i) - (sig^2)/(4*a) * ...

( 1 - exp(-2*a*(i-1)*dt) ) * B(i,j)^2 );

end

end

% Spot rate

h = randn(T,1); % random source

x = zeros(T+1,1); % parameter

alpha = zeros(T+1,1); % parameter

for i = 2:T+1

x(i) = ( -B(i-1,T) * sig^2 - a * x(i-1) ) * dt + ...

sig * sqrt(dt) * ( h(i-1) );

alpha(i) = f0(i) + (sig^2)/(2*a^2) * ( 1 - exp(-a*i*dt) )^2;

r(i) = x(i) + alpha(i);

end

for j = 1:T % bond prices

for i = 1:j

p(i,j) = A(i,j) * exp( - B(i,j) * r(i) );

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.2 Swaption prices

The next function is necessary to compute the price of a swap option through

Hull-White model. It gives the price of a European option.

function price = europeopthw(a,sig,t,T,s,dt,X,w,B,p)

% European option price through Hull-White model

% w=1 call

% w=-1 put
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sigp = sig * sqrt( ( 1 - exp( -2*a*(T-(t-1))*dt ) )/( 2*a ) ) * B(T+1,s);

h = 1/sigp * log( p(t,s)/( p(t,T)*X ) ) + sigp/2;

price = w * p(t,s) * ( 0.5 + 0.5 * erf( (w*h)/sqrt(2) ) ) - ...

w * X * p(t,T) * ( 0.5 + 0.5 * erf( (w*(h-sigp))/sqrt(2) ) );

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The function swaptionhw.m use the above to return the price of a swaption.

function price = swaptionhw(a,sig,t,T,d,s,dt,N,c,w,A,B,p)

Xn = zeros(s,1);

suma = 0;

for i = 1:s

Xn(i) = A(T+d(1),T+d(i)) * exp( -B(T+d(1),T+d(i)) * rstar );

suma = suma + c(i) * europeopthw(a,sig,t,T,T+d(i),dt,Xn(i),-w,B,p);

end

price =N * suma;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The next function use Black like formula to compute the price of a swaption.

function pbl = swaptionblack(z,u,t,T,d,dt,p0,X,R,vol,w,N)

% Swaption price through Black formula at time t

% w=1 payer

% w=-1 receiver

pbl = zeros(z,u);

for i = 1:z

for j = 1:u

suma = 0;

dtderiv = [0 d'];

for m = 1:j

suma = suma + p0(T(i)+ d(m)) * (dtderiv(m+1)-dtderiv(m)) *dt;

end

pbl(i,j) = N * black(X(i,j),R(i,j),vol(i,j),w,t,T(i)*dt) * suma;

end
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.3 Calibration

The function LMFsolveswaption.m is an original development of the Levenberg-

Maquardt algorithm which provides a numerical solution to the problem of

minimizing a function (the di�erence between HW prices and Black prices)

over a space of parameters (a and σ) of the function. Note that is supported

by another function �njac.m which gives numerical approximation to Jacobi

matrix.

function [xf, Ssq, cnt, phw, R, iter] = ...

LMFsolveswaption(xc,phw,pbl,z,u,f0,p0,T,tenor,dt,N,w)

% LMFSOLVE for swaption at initial time

% xc -> vector of initial guesses

% Output Arguments:

% xf final solution approximation

% Ssq sum of squares of residuals

% cnt >0 count of iterations

% -MaxIter, did not converge in MaxIter iterations

% phw final Hull-White prices

% R Hull-White ATM strikes

% iter number of good iterations

% Default Options

MaxIter = 50; % maximum number of iterations allowed

FunTol = 1e-5; % tolerance for final function value

XTol = 1e-3; % tolerance on difference of x-solutions

t=1;

x = xc;

lx = length(x);

peso = (T*dt)*(tenor*dt)'; % Weights

peso = sort(1./sqrt(1+peso));
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phw = phw .* peso;

pbl = pbl .* peso;

r = (phw-pbl); % Residuals at starting point

% Procedure to have residuals as a vector

lrT = length(r(:,1));

lrd = length(r(1,:));

r1 = zeros(lrT*lrd,1);

count = 0;

for i = 1:lrT

for j = 1:lrd

r1(count+j) = r(i,j);

end

count = count + lrd;

end

r = r1;

%~~~~~~~~~~~~~~~~~

S = r'*r;

epsx = XTol;

epsf = FunTol;

if length(epsx)<lx, epsx=epsx*ones(lx,1); end

J = finjac(r,x,epsx,z,u,f0,p0,T,t,tenor,dt,N,w,pbl);

%~~~~~~~~~~~~~~~~~~~~~~~

A = J.'*J; % System matrix

v = J.'*r;

D = diag(diag(A)); % automatic scaling

for i = 1:lx

if D(i,i)==0, D(i,i)=1; end

end

Rlo = 0.25;

Rhi = 0.75;
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l=1; lc=.75;

cnt = 0;

maxit = MaxIter; % maximum permitted number of iterations

iter=0;

while cnt<maxit && ... % MAIN ITERATION CYCLE

any(abs(r) >= epsf)

d = (A+l*D)\v; % negative solution increment

for i = 1:length(d) % evolution control

if (x(i)-d(i))<0

d(i)=0;

end

end

xd = x-d;

phw = cicloswaption(z,u,xd(1),xd(2),f0,p0,T,t,tenor,dt,N,w);

phw = phw .* peso;

rd = phw - pbl; % new residuals

lrT = length(rd(:,1));

lrd = length(rd(1,:));

r1 = zeros(lrT*lrd,1);

count = 0;

for i = 1:lrT

for j = 1:lrd

r1(count+j) = rd(i,j);

end

count = count + lrd;

end

rd = r1;

% ~~~~~~~~~~~~~~~~~~~

Sd = rd.'*rd;

dS = d.'*(2*v-A*d); % predicted reduction
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R = (S-Sd)/dS;

if R>Rhi % halve lambda if R too high

l = l/2;

if l<lc, l=0; end

elseif R<Rlo % find new nu if R too low

nu = (Sd-S)/(d.'*v)+2;

if nu<2

nu = 2;

elseif nu>10

nu = 10;

end

if l==0

lc = 1/max(abs(diag(inv(A))));

l = lc;

nu = nu/2;

end

l = nu*l;

end

cnt = cnt+1;

if Sd<S

S = Sd;

x = xd;

r = rd;

J = finjac(r,x,epsx,z,u,f0,p0,T,t,tenor,dt,N,w,pbl);

% ~~~~~~~~~~~~~~~~~~~~~~~~~

iter = iter+1;

A = J'*J;

v = J'*r;

end

end % while
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xf = x; % final solution

if cnt==maxit

cnt = -cnt;

end % maxit reached

[phw,R] = cicloswaption(z,u,x(1),x(2),f0,p0,T,t,tenor,dt,N,w);

pbl = pbl./peso;

r = (phw-pbl); % Final residuals

lrT = length(r(:,1));

lrd = length(r(1,:));

r1 = zeros(lrT*lrd,1);

count = 0;

for i = 1:lrT

for j = 1:lrd

r1(count+j) = r(i,j);

end

count = count + lrd;

end

r = r1;

%~~~~~~~~~~~~~~~~~

Ssq = r'*r;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% FINJAC numerical approximation to Jacobi matrix

% %%%%%%

function J = finjac(r,x,epsx,z,u,f0,p0,T,t,tenor,dt,N,w,pbl)

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

lx=length(x);

J=zeros(length(r),lx);

for k=1:lx

dx=.25*epsx(k);

xd=x;

xd(k)=xd(k)+dx;

phw = cicloswaption(z,u,xd(1),xd(2),f0,p0,T,t,tenor,dt,N,w);
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peso = (T*dt) * (tenor*dt)';

peso = sort(1./sqrt(1+peso));

phw = phw .* peso;

rd = ( phw - pbl );

lrT = length(rd(:,1));

lrd = length(rd(1,:));

r1 = zeros(lrT*lrd,1);

count = 0;

for i = 1:lrT

for j = 1:lrd

r1(count+j) = rd(i,j);

end

count = count + lrd;

end

rd = r1;

% ~~~~~~~~~~~~~~~~

J(:,k)=((rd-r)/dx);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.4 Absolute volatility

The next function return the volatility structure necessary for the HJM dynam-

ics. It is derived from Hull-White model considering that the latter has a�ne

term structure.

function sigma = sigmaabs(f0,a,sig)

% Absolute instantaneous volatilities through Hull-White model

T = length(f0);

dt=1/12;

sigma = zeros(T+1,T);

for j = 1:T

for i = 1:j+1
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sigma(i,j) = exp(-a*(j-(i-1))*dt) * sig;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Appendix B

Pricing code

This appendix is devoted to the Matlab functions relative to chapter �ve.

B.1 Rates

In this section is presented the function rates.m which compute rates, bond

prices and discount factors starting from the HJM dynamics.

function [p,f,r,L,F,D] = rates (f0,vol,dt,phi)

% f0 market values of forward rates at t for all maturity

% vol volatility

% dt year fraction

% phi random variable

T = length(f0); % number of time units from present to maturity

f = zeros(T+1,T); % initialization instantaneous forward rates

r = zeros(T+1,1); % initialization short rate

p = ones(T+1,T); % initialization bond prices

alpha = zeros(T,T); % initialization drift

h = zeros(T,1); % initialization random variable

L = zeros(T+1,T); % initialization LIBOR

F = zeros(T+1,T,T); % initialization forward rates

D = ones(T+1,T); % initialization discount
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sigma = vol; % volatility assignment

f(1,1:T) = f0; % market value of forward rates at present time

for j = 1:T % instantaneous forward rates

h(:) = phi(j,:);

for i = 2:j+1

alpha(i-1,j) = sigma(i-1,j) * sum( sigma(i-1,i-1:j) * dt );

f(i,j) = f(i-1,j) + alpha(i-1,j) * dt + sigma(i-1,j) * sqrt(dt) * h(i-1);

end

end

for j = 1:T % bond prices

for i = 1:j

p(i,j) = exp( -sum( f(i,i:j) * dt ) );

end

end

for i = 1:T % short rates

r(i+1) = f(i+1,i);

end

for j = 1:T % discount

for i = 1:j

D(i,j) = exp(- sum( r(i:j) * dt) );

end

end

for j = 1:T % libor

for i = 1:j

L(i,j) = (1 - p(i,j)) / (dt * (j-(i-1)) * p(i,j));

end

end

for j = 2:T % forward rates

for k = 1:j-1
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for i = 1:k

F(i,k,j) = ( ( p(i,k) / p(i,j) ) - 1) / ( dt * (j-k) );

F(i,j,j) = f(i,j);

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

B.2 Monte Carlo

The next function computes the �nal price of a payer swaption for particular

tenor and maturity. It recurs to the simulation.m displayed below.

function price = pricing (t,T,f0,N,s,n,vol,dt)

% t initial time

% T maturity + tenor

% s option maturity

% f0 % f0 market values of instantaneous forward rates

% N nominal value

% n number of simulations

% vol volatility

% dt year fraction

t = t+1; % Index adjustment

s = s/dt+1;

T = T/dt;

simul = zeros(n,1); % Initialization prices vector

for k = 1:n % Price simulations

phi = randn(length(f0)); %random variable

simul1 = simulation(t,T,f0,N,s,vol,dt,phi);

simul2 = simulation(t,T,f0,N,s,vol,dt,-phi);

simul(k) = mean([simul1,simul2]);

end

price = mean(simul); % Price calculation
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The following function represents a single simulation of the Monte Carlo meth-

ods used to price the speci�c payer swaption considered through the HJM dy-

namics.

function sim = simulation (t,T,f0,N,s,vol,dt,phi)

% phi random variable

% rates calculation

[p,f,r,L,F,D] = rates (f0,vol,dt,phi);

% forward swap rate at t=0

K = ( p(t,s) - p (t,T) ) / ( dt * sum(p(t,s+1:T)) );

%forward swap rate at maturity

R = ( p(s,s) - p (s,T) ) / ( dt * sum(p(s,s+1:T)) );

% payer swaption price

val = 0;

for i = s+1:T

val = val + p(s,i) * dt ;

end

ps = N * D(t,s) * max( R - K , 0 ) * val;

sim = ps;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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