
POLITECNICO DI MILANO

V Facolta di Ingineria

Dipartimento di Elettronica e Informazione

Corso di Laurrea Specialistica in Ingegneria Informatica

(Master of Science in Computing Systems Engineering)

COMPARISON AND BENCHMARKING OF

AUTOMATIC MALWARE UNPACKING TECHNIQUES

Supervisor: Prof. Stefano ZANERO

Master’s Thesis By:

Tewfik Adem, Getu

Matr. N°. : 737138

Academic Year 2009-2010

POLITECNICO DI MILANO

V Facolta di Ingineria

Dipartimento di Elettronica e Informazione

Corso di Laurrea Specialistica in Ingegneria Informatica

(Master of Science in Computing Systems Engineering)

COMPARISON AND BENCHMARKING OF

AUTOMATIC MALWARE UNPACKING TECHNIQUES

Supervisor: Prof. Stefano ZANERO

Master’s Thesis By:

Tewfik Adem, Getu

Matr. N°. : 737138

Academic Year 2009-2010

POLITECNICO DI MILANO

V Facolta di Ingineria

Dipartimento di Elettronica e Informazione

Corso di Laurrea Specialistica in Ingegneria Informatica

(Master of Science in Computing Systems Engineering)

COMPARISON AND BENCHMARKING OF

AUTOMATIC MALWARE UNPACKING TECHNIQUES

Supervisor: Prof. Stefano ZANERO

Master’s Thesis By:

Tewfik Adem, Getu

Matr. N°. : 737138

Academic Year 2009-2010

I

ABSTRACT

Analyzing and detection of “malicious software” (malware), such as viruses, worms and

botnet clients, whether fully automated or human assisted is a critical step in defending

against the threat such malware poses. The challenge will be more when malware

writers misuse the novel idea of software packing, to bypass detection from malware

analyzers and antivirus software.

As a matter of fact, nowadays 80% malware is often transmitted in packed or encrypted

form to prevent examination by anti-virus software [1]. To analyze new malware,

researchers typically resort to automatic and dynamic code analysis techniques to

unpack the code for examination. Unfortunately, these dynamic techniques are

susceptible to a variety of anti-monitoring defenses, as well as “time bombs” or “logic

bombs,” which can be slow and tedious to identify and disable.

This thesis work, compares and benchmark currently existing automatic malware

unpacking techniques, and explores new approaches to design automated malware

unpackers. It basically starts by assessing research works related to malware analysis

and detection, and focus on packed malware analysis techniques.

To beat the challenges posed by malware writers a packed malware analyzer should be

transparent to the analyzed malware, it should be able to detect different layers of

packing and more over able to extract and reconstruct both syntactic and semantic

behaviors of the packed malware.

II

ACKNOWLEDGMENT

First and foremost I offer my sincere gratitude to my supervisor, Professor Stefano

ZANERO, who has supported me throughout my thesis with his patience and

knowledge. I attribute the level of my Masters degree to his encouragement and

dedication to advice me.

Special thanks to Prof. Colombetti Marco, who consistently and tirelessly dedicated

his time to encourage, guide and help me throughout my stay at Politecnico Di Milano.

Thanks to Anteneh Teferi and Mohammed Mahmudur Rahman for their support and

morale in the course of this thesis, and all the dear friends nearby in helping and

encouraging me during my stay.

Finally, not only for the thesis, but for the whole opportunity I have to pursue this

masters program to an end, I would like to thank Politecnico di Milano and DSU

scholarship Program, who provided me with all the necessary fees, education and

helpful stuffs.

III

TABLE OF CONTENTS

LIST OF TABLES... IV

LIST OF FIGURES...V

CHAPTER ONE...1

1. INTRODUCTION ...1

1.1. MOTIVATION ...2

1.2. OBJECTIVES ...2

1.3. STRUCTURE OF THE REPORT ..3

CHAPTER TWO..4

2. PRELIMINARIES...4

2.1. MALICIOUS SOFTWARE (MALWARE) ...4

2.2. MALWARE ANALYSIS AND DETECTION TECHNIQUES ..6

2.3. SOFTWARE PACKING AND MALWARE PACKING ..8

2.4. PACKED MALWARE ANALYSIS AND UNPACKING TECHNIQUES ..8

CHAPTER THREE ...12

3. LITERATURE REVIEW ...12

3.1. EXISTING WORKS ON ANALYSIS OF MALWARE UNPACKING TECHNIQUES................................ 12

3.2. CURRENTLY PUBLISHED WORKS ON MALWARE ANALYSIS AND DETECTION 13

3.3. SELECTED TECHNIQUES FOR FURTHER ANALYSIS ...25

3.4. BRIEF DESCRIPTION OF THE SELECTED TECHNIQUES...26

CHAPTER FOUR ..34

4. ANALYSIS OF THE UNPACKING TECHNIQUES ..34

4.1. ANALYSIS BASED ON CRITICAL DRIVERS ..35

4.2. CLASSIFICATION ..43

4.3. SWOT ANALYSIS ..43

4.4. CROSS COMPARISON AND CATEGORIZATION..52

CHAPTER FIVE..55

5. CONCLUSIONS AND FUTURE WORKS...55

APPENDIX ...57

A. LIST OF MALWARE PACKERS ...57

REFERENCES ...61

IV

LIST OF TABLES

Table 3.1 List of scientific papers on malware analysis and detection……………………………… 14

Table 3.2 List of selected scientific papers for further analysis and comparison.………………….. 25

Table 4.1 Tabulated analysis of each technique with respect to critical drivers …………………... 35

Table 4.2 Classification of the selected techniques to malware detection taxonomy.……………... 43

Table 4.3 SWOT analysis of each technique………………………………………………………….. 44

Table 4.4 Categorization and ranking of the techniques………….…………………………………. 53

V

LIST OF FIGURES

Figure 2.1 Taxonomy of malware analysis mechanisms……………………………………………… 7

Figure 2.2 Packed executable unpacking demonstration…………..………………………………… 8

Figure 2.3 Generic model of static unpacking technique……………..……………………………… 10

Figure 2.4 Generic model of dynamic unpacking technique ………………………………….…….. 11

Figure 4.1 Implementation architecture of OmniUnpack……………………………………………. 26

Figure 4.2 Implementation architecture of PolyUnpack……………………………………………... 27

Figure 4.3 Implementation architecture of AGUnpacker…………………………………………….. 28

Figure 4.4 Implementation architecture of Renovo…………………………………………………… 29

Figure 4.5 Implementation architecture of Ether……………………………………………………… 30

Figure 4.6 Implementation architecture of Rotalum´e………………………………………………... 31

Figure 4.7 Implementation architecture of EERM……………………………………………………. 32

Figure 4.8 Implementation architecture of MmmBop………………………………………………… 33

Page 1 of 68

CHAPTER ONE

1. INTRODUCTION

Malware is a collective term for any malicious software which enters a computer system

without authorization of a system user. The term is created from merging the words

‘malicious’ and ‘software’. Malware is a very big threat in today’s computing world and

IT research.

Analyzing and detection of malware, such as viruses, worms and botnet clients, whether

fully automatically or with human assistance is a critical step in defending against the

threat such malware poses. The challenge will be more when malware writers misuse

the novel idea of software packing to bypass detection from malware ware analyzers

and antivirus software.

As a matter of fact, nowadays 80% malware is often transmitted in packed or encrypted

form to prevent examination by anti-virus software [1]. To analyze new malware,

researchers typically resort to automatic and dynamic code analysis techniques to

unpack the code for examination. Unfortunately, these dynamic techniques are

susceptible to a variety of anti-monitoring defenses, as well as “time bombs” or “logic

bombs,” which can be slow and tedious to be identified and disabled. Moreover, these

different techniques are focusing on solving different aspect of this problem in which

there isn’t clear bisection between them.

This thesis work, compares and benchmark currently existing automatic malware

unpacking techniques, and explores new approaches to design automated malware

unpackers. It basically start on assessing research works related to malware analysis and

detection, and focus on packed malware analysis techniques.

Page 2 of 68

1.1. MOTIVATION

Despite the day-to-day increase in packed malwares in the wild, there are very few

works on “automatic malware unpacking”. These days, researchers are working hard

and trying their level best to come up with a generic solution to the problem of packed

malwares analysis. But as the usual nature of any research these different studies are

focusing on various aspects of the problem in which sometimes there is some

overlapping and in its worst cases one might “solve” a problem already solved. This is

due to the lack of a clear study that shows the SWOT analysis between these studies.

In addition to above mentioned reason the main motivation behind this thesis is to

study: what is the consideration and main target, specific techniques used, experiments

done and contributions of each of these different published unpacking techniques. Thus

one can have clear idea of the current state of the art and try to come up with a better

solution.

1.2. OBJECTIVES

As a result of this thesis work we want to come up with a comprehensive summary of

comparison and benchmarking of currently existing malware unpacking techniques.

This work includes assessment of the existing malware analysis techniques, followed by

selection of techniques specifically focusing on packed malware unpacking techniques.

Finally, we would like to do a SWOT analysis that assesses the strength, weakness,

opportunities and threats of each of these techniques, and as a consequence

categorization and ranking within these techniques.

Page 3 of 68

1.3. STRUCTURE OF THE REPORT

The content of this thesis is structured as follows. Chapter two introduces the

preliminary concepts that are crucial to understand the rest of the report. It basically

discusses what are malicious software (malware), malware analysis and detection

techniques, software packing and malware packing and explains the general idea of

packed malware analysis and unpacking techniques.

Chapter three starts with literature review of existing works on analysis of malware

unpacking techniques with their basic strength and pitfalls. Followed by, literature

review of currently existing works on malware analysis and detection. In which subset

of them are selected for further study and analysis. Finally a brief overview of the

selected techniques is presented.

Chapter four presents the analysis result of the selected unpacking techniques according

to some critical drivers such as main target, specific technique, specific requirement,

experiment and contribution of each technique. It also shows the SWOT analysis detail,

along with the categorization, raking and benchmarking of the selected techniques.

Finally in chapter five, summary and conclusions of the whole thesis work, limitations

and problems on the study, and possible future works are presented. Advanced readers

with the basic idea of malware analysis and detection can skip chapter two and directly

start from chapter three.

Page 4 of 68

CHAPTER TWO

2. PRELIMINARIES

This chapter introduces preliminary concepts that are essential elements to understand

the discussion that follows in the coming chapters. The second section explains the

definition and types of malware which draw the clear picture of what malware is and its

different types. The second section discusses the importance and concept of malware

analysis and detection techniques and its categories. Followed by, a discussion of

software packing and malware packing. Finally discuss packed malware analysis and

unpacking techniques.

2.1. MALICIOUS SOFTWARE (MALWARE)

Malware, short for malicious software, is software designed to infiltrate a computer

system without the owner's informed consent. The expression is a general term used by

computer professionals to mean a variety of forms of hostile, intrusive, or annoying

software or program code.

Though a computer virus itself is one of the types of malware that can reproduce itself,

the term is often seen missed to refer to the entire category of malware. Instead Malware

can be broadly classified into following main categories.

I. Viruses

Computer virus refers to a small program with harmful intent & has ability to self

replicate. Its mode of operation is through appending virus code to an executable file.

When file is run, virus code gets executed. The original virus may evolve into new

variants by modifying itself as in case of metamorphic viruses. A virus may spread from

infected computer to other through network or corrupted media such as floppy disks,

USB drives. Viruses have targeted binary executable file (such as .COM, .EXE , PE

files in Windows etc.), boot records and/or partition table of floppy disks & hard disk,

general purpose script files, documents that contains macros, registry entries in

Windows, buffer overflow, format string etc.

Page 5 of 68

II. Worms

Worms are self replicating programs. It uses network to send copies of itself to other

systems invisibly without user authorization. Worms may cause harm to network by

consuming the bandwidth. Unlike virus the worms do not need the support of any file. It

might delete files, encrypt files in as crypto viral extortion attack or send junk email.

Example Sasser, MyDoom, Blaster, Melissa etc.

III. Spyware

Spyware is a collective term for software which monitors and gathers personal

information about the user like the pages frequently visited, email address, credit card

number, key pressed by user etc. It generally enters a system when free or trial software

is downloaded.

IV. Adware

Adware or advertising-supported software automatically plays, displays, or downloads

advertisements to a computer after malicious software is installed or application is used.

This piece of code is generally embedded into free software. The problem is, many

developers abuse ad-supported software by monitoring Internet users’ activities .The

most common source of adware programs are free games, peer-to-peer clients like

KaZaa, BearShare etc.

V. Trojans

Trojan horses emulate behavior of an authentic program such as login shell and hijacks

user password to gain control of system remotely. Other malicious activities may

include monitoring of system, damages system resources such as files or disk data,

denies specific services.

Page 6 of 68

VI. Botnet

A botnet is remotely controlled software – collection of autonomous software robots. It

is usually a zombie program (Worms, Trojans) under common control on public and

private network infrastructure. Botnets are usually used to send spam /spyware

remotely. Botnets doesn’t sit around on machine (infected machine) waiting for the

instruction from a third party instead it looks for the communication with similar

instances of bots awaiting instructions.

2.2. MALWARE ANALYSIS AND DETECTION TECHNIQUES

The need for dynamic malware analysis arise from the fact that traditional signature-

based malware detection techniques (used by many of the antivirus software) rely on

byte sequences, called signatures, in executable for signature-matching. However,

Modern malware authors can bypass signature-based scanning by employing the

recently emerged technology of code obfuscation for information hiding like packing

and emulation.

Malware Analysis and detection method can be classified in to different classes based

on the type of malware they are targeting and the specific techniques used for the

analysis and detection of the malware. The following figure demonstrates the basic

taxonomy of malware analysis and detection techniques.

Page 7 of 68

Figure 2.1 Taxonomy of malware analysis mechanisms

Malware Analysis and
Detection Mechanisims

Signature Matching

Static Analysis
(Disassembly, decompiling,

normalization)

Page 7 of 68

Figure 2.1 Taxonomy of malware analysis mechanisms

Malware Analysis and
Detection Mechanisims

Behavioral Analysis
(On variation of containments like

host, guest , SW or HW
virtualization, emulation)

Binary Analysis
(Reverse engineering,

Re-construction)

Dynamic Analysis
(unpacking and emulation)

Signature Based Unpacking
(algorithmic unpacking,

static decryption,
x-raying, and

semantic patter detection)

Page 7 of 68

Figure 2.1 Taxonomy of malware analysis mechanisms

Dynamic Analysis
(unpacking and emulation)

Generic Unpacking
(Emulation,

Instruction-level Tracing,
In memory detection)

Page 8 of 68

2.3. SOFTWARE PACKING AND MALWARE PACKING

Packers are software programs that compress and encrypt other executable files in a

disk and restore the original executable images when the packed files are loaded into

memories. Packing is applied on legitimate software to reduce the size of executable

files and to protect the intellectual property that is distributed with the code. The figure

below demonstrates packed executable unpacking.

Figure 2.2 Packed executable unpacking demonstration

As mentioned above, packers were first written in order to provide a mechanism to

shrink executables so that they take less space to store and less time to transfer over

slow channels. Malware writers use this novel idea of packing to bypass signature-based

detection, as packing completely modifies the binary foot-print of a program. In packed

malware the malicious code resides in executable file in encrypted form, and is not

exposed until the moment the executable is run.

2.4. PACKED MALWARE ANALYSIS AND UNPACKING TECHNIQUES

As already discussed in the above paragraphs, a commonly used obfuscation technique

these days is packing in which actual code stays hidden till runtime (when the

executable is unpacked) making it immune to static analysis. As a result a packed

malware analysis should be preceded by unpacking phase in order to reveal the actual

semantic of the program code.

Page 9 of 68

Unpacking is the process of stripping the packer layer (or layers) off packed executables

to restore the original contents so that AV programs and security researchers can inspect

and analyze the original executable signatures. There are many different methods used

by malware analyzers and antivirus software to unpack packed malwares. The three

common categories of these unpacking methods are discussed below:

2.4.1. STATIC UNPACKING TECHNIQUE

This category of unpacking technique basically rely on the assumption that malware

packer use a common standard packing algorithm in which there exists a standard

unpacking algorithm to unpack the code. In this kind of unpacking the task of

unpacking will only be determining the packer and unpacking of the malware code

using the standard unpacking algorithm of that specific packer.

Apart from the difficulty of packer identification, static unpacking technique works well

with known packing signatures. It is so obvious that this technique is easy and fast in

terms of execution complexity. Moreover static unpacking is system-independent and

unpacks without actually running the file, which makes it safe.

However; a very simple modification to the standard packing algorithm makes this

technique fail. This is the case in most of modern malware packing tricks; to the extent

that they are packed with new brand packing algorithm. The figure below shows a

generic model of static unpacking technique:

Page 10 of 68

Figure 2.3 Generic model of static unpacking technique

2.4.2. DYNAMIC (LIVE) UNPACKING

Dynamic analysis techniques make use of the fact that no matter what packing

technique is applied to the executable, the actual code or its equivalent will ultimately

be available in memory sooner or later, and it will execute at some point of run-time.

In most case dynamic unpacking let the program run on a real system and unpack itself.

Though they are not exclusive alternatives, there are different mechanism to do dynamic

unpacking such as (dynamic unpacking with debugger, run and dump unpacking with

memory dumping, emulation and virtual machine based). The following figure

demonstrates the generic dynamic unpacking based on virtual environment.

Page 11 of 68

Figure 2.4 Generic model of dynamic unpacking technique based on virtual environment

2.4.3. HYBRID UNPACKING TECHNIQUE

Taking into consideration the weakness of static unpacking and the complexity of

dynamic unpacking, it will be a better solution to use static unpacking combined with

the dynamic unpacking. The static unpacking can cope with the standard packers

rapidly, and the dynamic unpacking could be a complementary part, to handle the

modified packers or unknown packer issue.

Though it is obvious that integrating static analysis with dynamic analysis introduces

additional complexity to the system, but it is an efficient approach to handle the issues

of unknown malware packer’s signature.

Page 12 of 68

CHAPTER THREE

3. LITERATURE REVIEW

This section briefly discusses the existing works on analysis of “malware unpacking

techniques” with their basic strength and pitfalls followed by review of “state of the art”

on currently published works on “malware analysis and detection”. Finally, subset of

them are selected and presented for further study and analysis.

3.1. EXISTING WORKS ON ANALYSIS OF MALWARE UNPACKING TECHNIQUES

Despite the importance and need of analysis of “malware unpacking techniques” as

discussed in the motivation section, very few papers have addressed it in very restricted

and limited manner. Among them two very related publications are discussed below:

“Survey on Malware Detection Methods [Vinod P., V.Laxmi, and et. Al., 2008]”.

In this survey work a series of malware analysis and detection techniques has been well

presented. The problems related to traditional signature based analysis and detection

method is also highlighted in contrast to that of automated and dynamic techniques.

However, this survey in addition to its being very generic survey it doesn’t take into

consideration a specific malware unpacking techniques for comparison or

benchmarking. This thesis will address this limitation by taking subset of specific

malware unpacking techniques compare and benchmark them based on SWOT analysis.

“Generic Unpacking Techniques [Komal B., and Faiza K., 2009]”. This work tries to

assess currently published different categories of dynamic malware analysis

mechanisms in its generic and broad sense. Apart from mentioning some specific

techniques as an example of each category this work doesn’t do any cross comparative

analysis within different techniques. It is more survey like work than comparison and

benchmarking. Moreover, it doesn’t suggest some sort of ordering among the specified

example techniques under the categories. We strongly believe that this thesis solves the

above limitation by doing cross comparisons and raking between specific malware

unpacking techniques

Page 13 of 68

3.2. CURRENTLY PUBLISHED WORKS ON MALWARE ANALYSIS AND DETECTION

Many studies have been carried out and published in the area of malware analysis and

detection during the past few years. However, very few of them are mainly targeted on

packed malware analysis or unpacking. In this section we will present the set of

scientific works collected and selection and brief overview of specific works for further

analysis and comparison in the following sections.

The following table presents list of published scientific papers on malware analysis and

detection. The remark column of the table gives some remarks on the publication with

respect to its importance to this thesis work.

Page 14 of 68

Table 3.1 List of scientific papers on malware analysis and detection

NO Technique
(Paper Title)

SOURCE DETAIL

(AUTHOR(S) AND PUBLISHER)
REMARK

1 OmniUnpack: Fast, Generic, And Safe
Unpacking Of Malware

Lorenzo Martignoni, Mihai C., and Somesh Jha

In Computer Security Applications Conference,
2007. ACSAC 2007. Twenty-Third Annual , vol.,
no., pp.431-441, 10-14 Dec. 2007
doi: 10.1109/ACSAC.2007.15

100% Related to the thesis topic

Totally about malware unpacking

Able to get the implemented
unpacker

2 PolyUnpack: Automating The Hidden-
Code Extraction Of Unpack-Executing
Malware

P. Royal, M. Halpin, D. Dagon, R. Edmonds, and
W. Lee.

In Proceedings of 2006 Annual Computer
Security Applications Conference (ACSAC),
pages 289–300, Washington, DC, USA,
2006. IEEE Computer Society

100% Related to the thesis topic

Totally about malware unpacking

Able to get the implemented
unpacker

3 AGUnpacker : A Unpacking And
Reconstruction System

Yu San-Chao and Li Yi-Chao;

Computer Network and Multimedia Technology,
2009. CNMT 2009. International Symposium on ,
vol., no., pp.1-4, 18-20 Jan. 2009

100% Related to the thesis topic

Totally about malware unpacking

Not able to get the implemented
unpacker

4 Renovo: A Hidden Code Extractor For
Packed Executables

Kang, M. G., Poosankam, P., and Yin, H.

In Proceedings of the 2007 ACM Workshop on
Recurring Malcode
WORM '07. ACM, New York, NY, 46-53. DOI=
http://doi.acm.org/10.1145/1314389.1314399

100% Related to the thesis topic

Totally about malware unpacking

Not able to get the implemented
unpacker

http://doi.acm.org/10.1145/

Page 15 of 68

5 Ether: Malware Analysis Via Hardware
Virtualization Extensions

Dinaburg, A., Royal, P., Sharif, M., and Lee,

In Proceedings of the 15th ACM Conference on
Computer and Communications Security
(Alexandria, Virginia, USA, October 27 - 31,
2008). CCS '08. ACM, New York, NY, 51-62.
DOI=
http://doi.acm.org/10.1145/1455770.1455779

90% Related to the thesis topic

About malware analysis
techniques

Able to get the implemented
malware analyzer

6 Rotalum´e: Automatic Reverse
Engineering Of Malware Emulators

Sharif, M., Lanzi, A., Giffin, J., and Lee,

In Proceedings of the 2009 30th IEEE
Symposium on Security and Privacy (May 17 -
20, 2009). SP. IEEE Computer Society,
Washington, DC, 94-109.
DOI= http://dx.doi.org/10.1109/SP.2009.27

90% Related to the thesis topic

Totally about reverse engineering
of packed and emulated malware

Not able to get the implemented
tool

7 EERM: Emulating Emulation-Resistant
Malware

Kang, M., Yin H., Hanna, S., McCamant, S., and
Song

In Proceedings of the 1st ACM Workshop on
Virtual Machine Security (Chicago, Illinois, USA,
November 09 - 09, 2009). VMSec '09. ACM,
New York, NY, 11-22.
DOI=
http://doi.acm.org/10.1145/1655148.1655151

90 % Related to the thesis topic

About malware analysis and
defense techniques

Not able to get the implemented
malware Analyzer

http://doi.acm.org/10.1145/
http://dx.doi.org/10.1109/
http://doi.acm.org/10.1145/

Page 16 of 68

8 MmmBop : Generic Unpacking Of Self-
Modifying, Aggressive, Packed Binary
Programs

Piotr Bania.

http://piotrbania.com/all/articles/ pbania-dbi-
unpacking2009.pdf, 2009

90% Related to the thesis topic

About malware analysis
Based binary instrumentation

Not able to get the implemented
tool

9 Automatic Static Unpacking Of Malware
Binaries

Coogan, K.; Debray, S.; Kaochar, T.; Townsend,
G.;

Reverse Engineering, 2009. Wcre '09. 16th
Working Conference On , Vol., No., Pp.167-176,
13-16 Oct. 2009doi: 10.1109/Wcre.2009.24

70 % Related to the thesis topic

About malware analysis method

No implemented malware
Analyzer

10 Malware Obfuscation Detection Via
Maximal Patterns

Li, J., Xu, M., Zheng, N., And Xu, J. 2009.

In Proceedings Of The 3rd International
Conference On Intelligent Information
Technology Application (Nanchang, China,
November 21 - 22, 2009). Q. Luo And M. Zhu,
Eds. Ieee Press, Piscataway, Nj, 324-328.

60 % Related to the thesis topic

About malware analysis method
based on patterns matching

11 Eureka: A Framework For Enabling
Static Malware Analysis

Harif, M., Yegneswaran, V., Saidi, H., Porras, P.,
And Lee,

In Proceedings Of The 13th European
Symposium On Research In Computer Security:
Computer Security (Málaga, Spain, October 06 -
08, 2008). S
Doi= Http://Dx.Doi.Org/10.1007/978-3-540-

88313-5_31

60% related to the thesis topic

About malware unpacking but
based on static analysis

http://piotrbania.com/all/articles/
Http://Dx.Doi.Org/10.1007/

Page 17 of 68

12 Cobra: Fine-Grained Malware Analysis
Using Stealth Localized-Executions

Vasudevan, A.; Yerraballi, R.; ,

Security And Privacy, 2006 Ieee Symposium On ,
Vol., No., Pp.15 Pp.-279, 21-24 May 2006
Doi: 10.1109/Sp.2006.9

60% Related to the thesis topic

Malware static analysis and
disassembly

13 Run-Time Detection Of Malwares Via
Dynamic Control - Flow Inspection

Park, Y., Zhang, Z., And Chen, S.

In Proceedings Of The 2009 20th Ieee
International Conference On Application-Specific
Systems, Architectures And Processors (July 07 -
09, 2009). Asap. Ieee Computer Society,
Washington, Dc, 223-226. Doi=
Http://Dx.Doi.Org/10.1109/Asap.2009.30

60% Related to the thesis topic

Not about unpacking and more
over it is based on control flow
inspection

14 Panorama: Capturing System-Wide
Information Flow For Malware
Detection And Analysis

Yin, H., Song, D., Egele, M., Kruegel, C., And
Kirda, E.

In Proceedings Of The 14th Acm Conference On
Computer And Communications Security
(Alexandria, Virginia, Usa, October 28 - 31,
2007). Ccs '07. Acm, New York, Ny, 116-127.
Doi=
Http://Doi.Acm.Org/10.1145/1315245.1315261

60% Related to the thesis topic

Too general no specific method
mentioned

15 Architecture Of A Morphological
Malware Detector

Bonfante G., Kaczmarek M., Marion J.Y.:

J. Comput. Virol. 5(3), 263–270 (2008)

60% Related to the thesis topic

No specific unpacking method
recommended

Http://Dx.Doi.Org/10.1109/
Http://Doi.Acm.Org/10.1145/

Page 18 of 68

16 Malware Behaviour Analysis Wagener, G., State, R. & Dulaunoy, A.

Journal In Computer Virology 2008
Vol. 4(4), Pp. 279-287

60% Related to the thesis topic

Too specific, not exactly oriented
to packed malware

17 Software Transformations To Improve
Malware Detection

Mihai Christodorescu; Somesh Jha ; Johannes
Kinder ; Stefan Katzenbeisser ; Helmut Veith

Journal In Computer Virology (November 2007),
3 (4), Pg. 253-265

60% Related to the thesis topic

No specific method is
recommended

18 Static Analysis Of Executables To Detect
Malicious Patterns

Hristodorescu, M. And Jha, S

In Proceedings Of The 12th Conference On
Usenix Security Symposium - Volume 12
(Washington, Dc, August 04 - 08, 2003). Usenix
Security Symposium. Usenix Association,
Berkeley, Ca, 12-12.

30% Related to the thesis topic

Patter and signature based static
analysis method

19 Pe File Header Analysis-Based Packed
Pe File Detection Technique (Phad)

Choi, Y., Kim, I., Oh, J., And Ryou, J.

In Proceedings Of The International Symposium
On Computer Science And Its Applications
(October 13 - 15, 2008). Csa. Ieee Computer
Society, Washington, Dc, 28-31. Doi=
Http://Dx.Doi.Org/10.1109/Csa.2008.28

30% Related to the thesis topic

Specific to PE and it is static
analysis, only to detect if an
executable is packed or not

Http://Dx.Doi.Org/10.1109/

Page 19 of 68

20 Malware Examiner Using Disassembled
Code (Medic)

Sulaiman, A.; Ramamoorthy, K.; Mukkamala, S.;
Sung, A.H.; ,

Information Assurance Workshop, 2005. Iaw '05.
Proceedings From The Sixth Annual Ieee Smc ,
Vol., No., Pp. 428- 429, 15-17 June 2005
Doi: 10.1109/Iaw.2005.1495985

30% Related to the thesis topic

Signature based and specific to
assembly language instrumentation

21 MapMon: A Host-Based Malware
Detection Tool

Shih-Yao Dai; Sy-Yen Kuo; ,

Dependable Computing, 2007. Prdc 2007. 13th
Pacific Rim International Symposium On , Vol.,
No., Pp.349-356, 17-19 Dec. 2007
Doi: 10.1109/Prdc.2007.23

30% Related to the thesis topic

Static and signature based malware
analysis tool

22 Metaaware: Identifying Metamorphic
Malware

Qinghua Zhang And Douglas S. Reeves.

Computer Security Applications Conference,
Annual, 0:411–420, 2007.

30% Related to the thesis topic

Automated Static analysis method

23 Malware Detection Using Adaptive Data
Compression

Zhou, Y. And Inge, W. M.

In Proceedings Of The 1st Acm Workshop On
Workshop On Aisec (Alexandria, Virginia, Usa,
October 27 - 27, 2008). Aisec '08. Acm, New
York, Ny, 53-60. Doi=
Http://Doi.Acm.Org/10.1145/1456377.1456393

30% Related to the thesis topic

Malware analysis based on
learning and adaptation

Http://Doi.Acm.Org/10.1145/

Page 20 of 68

24 A New Generic Taxonomy On Hybrid
Malware Detection Technique

Y. Robiah, S. Siti Rahayu, M. Mohd Zaki, S.
Shahrin, M. A. Faizal, R. Marliza

International Journal Of Computer Science And
Information Security, Ijcsis, Vol. 5, No. 1, Pp. 56-
61, September 2009, Usa,
Report Number:Issn 1947 5500

30% Related to the thesis topic

Signature based and more of
analysis

25 The Threat To Identity From New And
Unknown Malware

Hodgson, P. W.

Bt Technology Journal 23, 4 (Oct. 2005), 107-
112. Doi= Http://Dx.Doi.Org/10.1007/S10550-
006-0012-2

30% Related to the thesis topic

Discussion only, no specific
method recommended

26 A Heuristic Approach For Detection Of
Obfuscated Malware

Treadwell, S.; Mian Zhou; ,

Intelligence And Security Informatics, 2009. Isi
'09. Ieee International Conference On , Vol., No.,
Pp.291-299, 8-11 June 2009
Doi: 10.1109/Isi.2009.5137328

20% Related to the thesis topic

Specific to PE files , and static
analysis method

27 Semantics-Aware Malware Detection Christodorescu, M.; Jha, S.; Seshia, S.A.; Song,
D.; Bryant, R.E.; ,

Security And Privacy, 2005 Ieee Symposium On ,
Vol., No., Pp. 32- 46, 8-11 May 2005
Doi: 10.1109/Sp.2005.20

20% Relate to the thesis topic

Based on patter matching
(which needs to have signatures
detection)

Http://Dx.Doi.Org/10.1007/

Page 21 of 68

28 A New Malware Detection Method
Based On Raw Information

Qiao-Ling Han; Yu-Jie Hao; Yan Zhang; Zhi-
Peng Lu; Rui Zhang; ,

Apperceiving Computing And Intelligence
Analysis, 2008. Icacia 2008. International
Conference On , Vol., No., Pp.307-310, 13-15
Dec. 2008
Doi: 10.1109/Icacia.2008.4770030

20% Related to the thesis topic

Based on static analysis of raw data
Not related to automatic unpacking

29 Research And Implementation Of
Compression Shell Unpacking
Technology For Pe File

Li Lu; Liu Qiuju; Xu Tingrong; ,

Information Technology And Applications, 2009.
Ifita '09. International Forum On , Vol.1, No.,
Pp.438-442, 15-17 May 2009
Doi: 10.1109/Ifita.2009.545

10% Related to the thesis topic

Too specific and not exactly related
to packed malwares

30 An Improved Clustering Validity Index
For Determining The Number Of
Malware Clusters

Wang, Y., Ye, Y., Chen, H., And Jiang, Q

In Proceedings Of The 3rd International
Conference On Anti-Counterfeiting, Security,
And Identification In Communication (Hong
Kong, China, August 20 - 22, 2009). Ieee Press,
Piscataway, Nj, 544-547.

10% Related to the thesis topic

It discuss just about malware
clustering

Page 22 of 68

31 Malware Self Protection Mechanism Alsagoff, S.N.; ,

Itsim 2008. International Symposium On , Vol.3,
No., Pp.1-8, 26-28 Aug. 2008
Doi: 10.1109/Itsim.2008.4631981

10% Related to the thesis topic

Too general, not specifically about
packed malware unpacking

32 CIMDS: Adapting Postprocessing
Techniques Of Associative Classification
For Malware Detection

Yanfang Ye; Tao Li; Qingshan Jiang; Youyu
Wang; ,

Systems, Man, And Cybernetics, Part C:
Applications And Reviews, Ieee Transactions On
, Vol.40, No.3, Pp.298-307, May 2010
Doi: 10.1109/Tsmcc.2009.2037978

10% Related to the thesis topic

Not about unpacking and moreover
it is based on mining algorithm

33 A Parameter-Free Hybrid Clustering
Algorithm Used For Malware
Categorization

Han, Z., Feng, S., Ye, Y., And Jiang, Q

In Proceedings Of The 3rd International
Conference On Anti-Counterfeiting, Security,
And Identification In Communication (Hong
Kong, China, August 20 - 22, 2009). Ieee Press,
Piscataway, Nj, 480-483.

10% Related to the thesis topic

Malware Clustering algorithm and
basically analyses malware types

34 Limits Of Static Analysis For Malware
Detection

Moser, A.; Kruegel, C.; Kirda, E.; ,

Computer Security Applications Conference,
2007. Acsac 2007. Twenty-Third Annual , Vol.,
No., Pp.421-430, 10-14 Dec. 2007
Doi: 10.1109/Acsac.2007.21

10% Related to the thesis topic

Discussion on static analysis
limitations

Page 23 of 68

35 A Static Method For Detection Of
Information Theft Malware

Jiajing Li; Tao Wei; Wei Zou; Jian Mao; ,

Electronic Commerce And Security, 2009. Isecs
'09. Second International Symposium On , Vol.1,
No., Pp.236-240, 22-24 May 2009
Doi: 10.1109/Isecs.2009.148

10% Related to the thesis topic

Static analysis of Information theft,
not about packed malware analysis

36 Scenario Based Worm Trace Pattern
Identification Technique

S. Siti Rahayu, Y. Robiah, S. Shahrin, Mohd M.
Zaki, R. Irda, M.A. Faizal

Cryptography And Security (Cs.Cr), International
Journal Of Computer Science And Information
Security, Ijcsis, Vol. 7, No. 1, Pp. 1-9, January
2010, Usa
Report Number:Computer Science Issn 19475500

10% related to the thesis topic

Too specific too worm detection
method

37 Detection And Prevention Of New And
Unknown Malware Using Honeypots

Shishir Kumar, Durgesh Pant

Networking And Internet Architecture (Cs.Ni);
Cryptography And Security (Cs.Cr)
Ijcse Volume 1 Issue 2 2009 56-61

10% Related to the thesis topic

Too specific network oriented
malwares

Page 24 of 68

38 Analysis Of Virus Algorithms Jyoti Kalyani, Karanjit Singh Kahlon, Harpal Singh, Anu
Kalyani

Journal Of Computer Science 2 (10): 785-788, 2006
Issn 1549-3636 February 2006

10% Related to the thesis topic

More on virus analysis development

39 SBMDS: An Interpretable String
Based Malware Detection System
Using Svm Ensemble With Bagging

Yanfang Ye; Lifei Chen; Dingding Wang; Tao Li; Qingshan
Jiang; Min Zhao

Journal In Computer Virology (November 2009), 5 (4), Pg.
283-293

10% Related to the thesis topic

Too specific and not dynamic
analysis

34 Auto-Sign: An Automatic Signature
Generator For High-Speed Malware
Filtering Devices

Gil Tahan Chanan Glezer Yuval Elovici Lior Rokach

2010 6 Journal In Computer Virology 2
Http://Dx.Doi.Org/10.1007/S11416-009-0119-3
Db/Journals/Virology/Virology6.Html#Tahanger10

10% Related to the thesis topic

Automated way signature analysis
and generation m

Http://Dx.Doi.Org/10.1007/

Page 25 of 68

3.3. SELECTED TECHNIQUES FOR FURTHER ANALYSIS

Among the above listed scientific papers, eight of them are selected and listed below for

the purpose of further analysis and comparison.

No. Technique Remarks

1 Omniunpack: Fast, Generic, And Safe Unpacking Of

Malware

Year of Publication : 2007

implemented

2 Polyunpack: Automating The Hidden-Code Extraction Of

Unpack-Executing Malware

Year of Publication : 206

implemented

3 AGUnpacker : A Unpacking And Reconstruction System Year of Publication : 2009

implemented

4 Renovo: A Hidden Code Extractor For Packed

Executables

Year of Publication : 2007

implemented

5 Ether: Malware Analysis via Hardware Virtualization

Extensions

Year of Publication : 2008

implemented

6 Rotalum´e: Automatic Reverse Engineering of Malware

Emulators

Year of Publication : 2009

implemented

7 EERM: Emulating Emulation-Resistant Malware Year of Publication : 2009

Not implemented

8 MmmBop : Generic Unpacking of Self-modifying,

Aggressive, Packed Binary Programs

Year of Publication : 2009

implemented

Table 3.2 List of selected scientific papers for further analysis and comparison

Page 26 of 68

3.4. BRIEF DESCRIPTION OF THE SELECTED TECHNIQUES

3.4.1.OmniUnpack: Fast, Generic, and Safe Unpacking of Malware

OmniUnpack monitors the execution of a program in real-time and detect when the

program has removed the various layers of packing and directly provides the unpacked

malicious payload to the malware detector.

The trick here is to monitor the program execution and track written as well as written

then-executed memory pages and when the program makes a potentially damaging

system call, invokes a malware detector to scan all the written memory pages.

The basic algorithm is, all memory writes and the program counter are tracked. If the

program counter reaches a written memory address, it is know that some form of

unpacking, self-modification, or code generation occurs in the program. All written-then

executed (or written-and-about-to-be-executed) memory locations should then be

analyzed by a malware detector.

OmniUnpack is implemented as a kernel driver for Microsoft Windows XP executing

on an Intel IA-32 processor, where it simulate non-executable pages in software. It is

basically derived from OllyBone, a plug-in for the well known debugger OllyDbg. The

Malware detector is based on the ClamAV open source anti-virus. The following figure

shows the implementation architecture of OmniUnpack:

Figure 4.1 Implementation architecture of OmniUnpack

Page 27 of 68

3.4.2.PolyUnpack: Automating the Hidden-Code Extraction of Unpack-Executing

PolyUnpack proposes a technique for automating the process of extracting the hidden-

code bodies of malware. This approach is based on the observation that sequences of

packed or hidden code in a malware instance can be made self-identifying when its

runtime execution is checked against its static code model.

This work formally defines unpack-execute behavior that malware exhibits and devise

an algorithm for identifying and extracting its hidden-code. It also provides details of

the implementation and evaluation of the extracting technique.

This approach basically uses trace of behavior of the program execution. Uses a

combination of static and dynamic analysis, to automate the process of extracting the

hidden-code of unpack executing malware. Then finally implemented an EXTRACT

UNPACKED CODE tool (i.e., PolyUnpack) as a command-line tool that operates over

x86 Microsoft Windows executables. The following figure shows the implementation

architecture of PolyUnpack:

Figure 4.2 Implementation architecture of PolyUnpack

Page 28 of 68

3.4.3.AGUnpacker : A Unpacking and Reconstruction System

AGUnpacker, based on primary behaviors of packing which are code obfuscation, PE

formats modification and Anti-technique, proposes a solution Automatic and Generic

unpacker (AGUnpacker) to extract and reconstruct the hidden code of packed malware.

For code obfuscation, AGUnpacker decides when the object program has decrypted

itself completely in memory on the basis of stack balance role, intersection jump role

and the characteristics of entrance. For PE formats modification, after locating Import

Address Table (IAT) by monitoring all of the call instructions, a forensics tracing

technique to restore the items in IAT, which are unmatched with Export Table items of

DLL, is presented to obtain a runnable binary. In order to bypass anti-technique, the

system is implemented by taking over exceptions through common ways and finally

reconstructs an executable routine.

The implementation architecture of AGUnpacker consists of three main components:

Packer Detector, Magic Jump Detector and Reconstruct Component. The figure below

shows the interaction between these three components and the packed object program:

Figure 4.3 Implementation architecture of AGUnpacker

Page 29 of 68

3.4.4.Renovo: A Hidden Code Extractor for Packed Executables

Renovo is a fully dynamic approach that captures an intrinsic nature of hidden code

execution and additional information useful for further analysis that the original code

should present in memory and executed at some point at run-time.

This approach monitors program execution and memory writes at run-time, determines

if the code under execution is newly generated, and then extracts the hidden code of the

executable. In addition to extracting the hidden code, this technique can also provide

additional information on the packed binaries.

Finally implement and a tool Renovo, an automated framework for extracting hidden

code, and evaluate it with a large number of real-world malware samples. Renovo is

built on top of TEMU, which is a dynamic analysis component of the BitBlaze binary

analysis platform. The following figure shows the architecture and assumption taken

into consideration to develop Renovo.

Figure 4.4 Implementation architecture of Renovo

Page 30 of 68

3.4.5.Ether: Malware Analysis via Hardware Virtualization Extensions

Ether is a transparent and external approach to malware analysis, which is motivated by

the intuition that for a malware analyzer to be transparent, it must not induce any side-

effects that is unconditionally detectable by malware.

Ether, is based on application of hardware virtualization extensions, and resides

completely outside of the target OS environment. Thus, there are no in-guest software

components vulnerable to detection, and there are no shortcomings that arise from

incomplete or inaccurate system emulation.

This approach basically first formally defines transparency requirements, i.e. obtaining

an execution trace of a program identical to that if it were run in an environment with no

analyzer present. Then implements the requirements with help of above mentioned

hardware virtualization extensions.

The implementation of ether is based on architecture with an environment of hardware

virtualization extension Intel VT, and software that can utilize hardware virtualization

extensions, i.e. Xen hypervisor version 3.1.0. Target operating system Windows XP

(Service Pack 2). The Following figure shows the implementation architecture of ether:

Figure 4.5 Implementation architecture of Ether

Page 31 of 68

3.4.6.Rotalum´e: Automatic Reverse Engineering of Malware Emulators

Rotalum´e is the first work in automatic reverse engineering of malware emulators

based on dynamic analysis. Rotalum´e executes the emulated malware in a protected

environment and record the entire x86 instruction trace generated by the emulator.

Rotalum´e basically analyses the trace of program execution to extract the syntactic and

semantic information about the byte code instruction set. Finally, it generates data

structures of the analysis output, which provide the foundation for subsequent malware

analysis.

Also Implemented a proof-of-concept system called Rotalum´e and evaluated it using

both legitimate programs and malware emulated by VMProtect and Code Virtualizer.

Rotalum´e accurately reveals the syntax and semantics of emulated instruction sets and

reconstructs execution paths of original programs from their bytecode representations.

Rotalum´e uses a QEMU based component to perform dynamic analysis. The output of

system is the extracted syntax and semantics of the source bytecode language suitable

for subsequent analysis using traditional malware analyses. The following figure shows

the implementation architecture of Rotalum´e:

Figure 4.6 Implementation architecture of Rotalum´e

Page 32 of 68

3.4.7.EERM: Emulating Emulation-Resistant Malware

EERM is an automated technique to dynamically modify the execution of a whole-

system emulator to fool a malware sample’s anti-emulation checks.

This approach uses a trace matching algorithm to locate the point where emulated

execution diverges, and then compares the states of the reference system and the

emulator to create a dynamic state modification that repairs the difference and fools the

malware anti emulation check.

It is implemented in the form of enhancements to, the popular open-source whole-

system emulation system, QEMU and virtual execution system based on Intel VT

hardware virtualization. The following figure shows the implementation architecture of

EERM:

Figure 4.7 Implementation architecture of EERM

Page 33 of 68

3.4.8.MmmBop: Generic Unpacking of Self-modifying, Aggressive, Packed
Binaries

This technique proposes MmmBop as a relatively new concept of using dynamic binary

instrumentation techniques for unpacking and by-passing detection, by self-modifying

and highly aggressive packed binary code. Present the method for by-passing packed,

obfuscated, armored layers and a couple of methods for finding original entry point

(OEP).

Implementation of MmmBop consists of two separate modules: Injector and DBI-

Engine. MmmBop supports the IA-32 architecture and it is targeted for Microsoft

Windows XP, some of the further deliberations will be referring directly to this

operating system. The following figure shows the implementation architecture of

MmmBop:

Figure 4.8 Implementation architecture of MmmBop

Page 34 of 68

CHAPTER FOUR

4. ANALYSIS OF THE UNPACKING TECHNIQUES

This section is the important chapter of the thesis which presents the analysis detail of

the malware unpacking techniques short listed and discussed in the previous chapter.

First part presents a tabulated analysis of each technique with critical drivers, such as

main target (considerations), specific technique used, experiments done and summary of

contributions done by each of the specific technique. Based on these drivers the

techniques are categorized to different type of malware detection and analysis

categories discussed in the previous sections.

The second part of this chapter discusses the SWOT analysis detail in which the

strength, weakness, opportunities and threats of each of the selected malware unpacking

techniques are presented. Finally, it presents categorization, comparative raking and

benchmarking of the techniques.

Page 35 of 68

4.1. ANALYSIS BASED ON CRITICAL DRIVERS

Table 4.1 Tabulated analysis of each technique with respect to critical drivers

No. Technique
(Paper title)

Consideration
(Main target)

Specific
Technique Used

Specific
Requirements

Experiments Contributions

1.

O
m

ni
U

np
ac

k:
 F

as
t,

 G
en

er
ic

, a
nd

 S
af

e
U

np
ac

ki
ng

 o
f

M
al

w
ar

e Packed malicious
programs

Both compressed and
encrypted malwares

Single step, or
multiple times
unpacks

Self modifying
malwares
(polymorphic/
metamorphic)

Known and unknown
packers

Execution of program in
a contained yet accurate
environment

Real time tracking of
written as well as written
then-executed memory
pages

Blacklisting of System
calls as potentially
damaging system call for
detection trigger

Use of non-executable
pages or equivalent
hardware mechanisms for
memory monitoring

Invoking of Malware
detector only once to scan
all written memory pages

System with virtual
memory capabilities

Hardware to manages
the translation between
virtual and physical
addresses and memory-
protection facilities at
the page level

Customization of
ClamAV, open source
anti-virus, for malware
detection

Specific Requirements
of Signatures from the
malware detector

Experimental
evaluation using:
- both known

and unknown
packers

- and random
sample of self
modifying
code

A comparative
experiment with
PolyUnpack, and
ClamAV Unpacker

- Significantly
faster

- Handled 80%
of packed
malware

- Relatively
smaller
overhead

A General-purpose
unpacker

In-memory malware
detection strategy

Set of experimental
results

A full pseudo code of
the unpacker
algorithm

Page 36 of 68

No. Methods
(Paper title)

Consideration
(Main target)

Specific
Technique Used

Specific
Requirements

Experiments Contributions

2.

P
ol

yU
np

ac
k:

 A
ut

om
at

in
g

th
e

H
id

de
n-

C
od

e
E

xt
ra

ct
io

n
of

U
np

ac
k-

E
xe

cu
ti

ng
 M

al
w

ar
e

Packed malware with
hidden-code bodies

Encrypted and
polymorphic viruses

Unpack executing
based malware

Behavior analysis based
approach, using a
combination of static and
dynamic analysis

Tracing the unpack-
executing behavior of
malware and extracting
the hidden-code bodies

Checking runtime
execution of the malware
code against static code
model to indentify
unpacking.

Knowledge of
the instance’s static
code model

Sterile, isolated
environment for
malware execution part

Customized x86
Microsoft Windows
command-line
interaction

On several
thousands of
malware binaries

On samples that
exhibited a wide
variety of unpack-
execute behavior

A comparative
Experiments using
ClamAV and
McAfee Antivirus

Demonstrate a
good reduction in
false negatives and
shows that
PolyUnpack
identifies more
unpack executing
malware

Formal description of
unpack-executing
programs

Algorithm for
behavior-based
hidden-code
extraction

Implementation of an
extraction tool
PolyUnpack

Implementation and
use of a framework
for testing technique
against large sets of
malware samples.

Page 37 of 68

No. Methods
(Paper title)

Consideration
(Main target)

Specific
Technique Used

Specific
Requirements

Experiments Contributions

3.

A
G

U
np

ac
ke

r
:

A
 U

np
ac

ki
ng

 A
nd

 R
ec

on
st

ru
ct

io
n

Sy
st

em

Malware with

- Code obfuscation
composed of
packing or
encryption

- PE formats
modification
specifically IAT

- Anti-technique
mechanisms like
anti debugging,
anti virtual and
anti reverse
engineering)

Complete decryption
control on the basis of:
- Stack balance role

analysis,
- Intersection jump role
- Entrance

characteristics

Import Address Table
(IAT) monitoring and
matching with Export
Table items of DLL

Careful handling of
exceptions in order to
bypass the anti technique
methods imposed by the
malware

No specific and critical
requirement specified.

On suspect
repository which
was composed 10
different types of
packers including
unknown (custom)
Packers

A sample set of
150 versions or
different object
software of each
packer

Results show that
it is faster than
existing unpackers
like PolyUnpack

- Comprehensive
Summary of
packers behaviors
and its different
categories

- An Automatic and
Generic Unpacker
(AGUnpacker).

- Details of Magic
Jump Detector and
Reconstruct
Component

- Detail of
Experimental
evaluation results

Page 38 of 68

No. Methods
(Paper title)

Consideration
(Main target)

Specific
Technique Used

Specific
Requirements

Experiments Contributions

4.
R

en
ov

o:
 A

 H
id

de
n

C
od

e
E

xt
ra

ct
or

 fo
r

P
ac

ke
d

E
xe

cu
ta

bl
es

Malwares with Anti-
reverse engineering
techniques

Packed executables
both compressed and
encrypted

Detection of novel
samples and modified
packing techniques.

Trace and analysis of
binary code to identify
and extract the hidden
packed code

Capturing and analysis
of an intrinsic nature of
the program execution

Generating a memory
map and monitoring for
possible write followed
jumps to marked
memories locations

Monitoring of execution
from the outside (host),
consulting the shadow
memory of the process,
determine if a hidden
code is being executed.

Emulated environment
for the purpose of
tracing execution

Full access to shadow
memory from the host
Operating System

On large number
of real-world
malware samples

Malware samples
with more than
one hidden layer.

Synthetic sample
programs
generated by using
14 different
packing tools.

A comparative
experiment with
Universal PE
Unpacker and
PolyUnpack

- Fully dynamic
unpacking method
which monitors
currently-executed
instructions and
memory writes at
run-time.

- A mechanism to
extract additional
information useful
for further code
analysis

- Implementation
and evaluation
result of Renovo
(an automated
framework for
hidden code
extraction)

Page 39 of 68

No. Methods
(Paper title)

Consideration
(Main target)

Specific
Technique Used

Specific
Requirements

Experiments Contributions

5.

E
th

er
:

M
al

w
ar

e
A

na
ly

si
s

vi
a

H
ar

dw
ar

e
V

ir
tu

al
iz

at
io

n
E

xt
en

si
on

s

Packed malwares with
some anti-technique
mechanisms

Malware with myriad
of anti-debugging,
anti-instrumentation,
and anti-VM

Transparency
(able hide a malware
analyzer from
analyzed malware)

Transparent and external
approach based on
hardware virtualization
extensions.

Hiding the possible side-
effects that are
unconditionally
detectable by malware

Use of higher privilege
over the OS kernel in
the virtual machine

- Higher
Privilege to
the analyzer

- Able to manage
non-privileged
side effects

- Transparent
Exception
Handling
mechanism

- Able to provide
an Identical
Measurement
of Time

On 25,000 recent
malware samples,
in which ether
remain transparent

A comparative
Experiment with
Renovo and
PolyUnpack

Framework for
describing program
execution

Framework for
analyzing the
requirements for
transparent malware
analysis.

Implementation of
Ether, an external,
transparent malware
Analyzer

Broad-scale evaluation
of current approaches
(Copies of discrete
samples referenced in
the paper and the
25,000 malware sample)

Page 40 of 68

No. Methods
(Paper title)

Consideration
(Main target)

Specific
Technique Used

Specific
Requirements

Experiments Contributions

6.

R
ot

al
um

´e
 :

 A
ut

om
at

ic
 R

ev
er

se
 E

ng
in

ee
ri

ng
 o

f
M

al
w

ar
e

E
m

ul
at

or
s

Packed and Emulated
Malwares

Execution of the
emulated malware in a
protected environment
and record the entire x86
instruction

Followed by dynamic
data-flow and taint
analysis and extract the
syntactic and semantic
information about the
bytecode instruction set

Multi-path exploration,
across the bytecode
program

Identifying the
fundamental
characteristic of decode-
dispatch emulation

Protected guest OS
environment(QEMU)

Two important
requirements for the
run-time environment
for the dynamic
tracing phase:

- Instruction-
level tracing,

- Isolation from
malware and
attacks.

A customizable
Traditional malware
detector.

Evaluated on
legitimate
programs and on
malware emulated
by VMProtect and
Code Virtualizer.

Synthetic and real
test program
obfuscated with
emulation.

Able to identify
and reconstruct
the bytecode
buffers in the
emulated malware

Formulate the research
problem of automatic
reverse engineering of
malware emulators.

Framework and working
prototype system to
identify:

- Candidate
memory regions
containing
bytecode

- Dispatch and
instruction
execution blocks

- Method for
discovering
bytecode
instruction
syntax and
semantics.

Page 41 of 68

No. Methods
(Paper title)

Consideration
(Main target)

Specific
Technique Used

Specific
Requirements

Experiments Contributions

7.

E
E

R
M

:
E

m
ul

at
in

g
E

m
ul

at
io

n-
R

es
is

ta
nt

 M
al

w
ar

e

Malwares with anti
emulation (emulation-
resistance) techniques

Transparency of
malware emulators

Creation of a reference
platform and trace
matching between the
emulator and the
reference platform

Dynamic state
modification of the
emulator based on the
above result

Fully accessible and
traceable reference
platform.

Hardware
virtualization in single
step mode

On real malware
samples collected
from the wild, with
anti-emulation
technique

By building an
implementation
into an emulator
used for malware
analysis

- Specific
formulation of the
problem of how to
ameliorate anti-
emulation checks

- Framework of
amelioration
approach

- Implementation of
the technique

Page 42 of 68

No. Methods
(Paper title)

Consideration
(Main target)

Specific
Technique Used

Specific
Requirements

Experiments Contributions

8.
M

m
m

B
op

: G
en

er
ic

 U
np

ac
ki

ng
 o

f
Se

lf
-m

od
if

yi
ng

, A
gg

re
ss

iv
e,

 P
ac

ke
d

B
in

ar
y

P
ro

gr
am

s
Self-modifying and
highly aggressive
packed binary code

Packed, obfuscated,
malwares with
armored layers

Finding the hidden
original entry point
(OEP) and

bypassing of anti-
technique
mechanisms

Reduction of packer
detection false
positive

Tracing the execution
flow of malware based
dynamic binary
instrumentation

No specific and critical
requirement specified.

Samples collected
from different well
know malware
packers

- A formal
description of
Methods for by-
passing packed,
obfuscated,
armored layers

- A couple of
methods for
finding original
entry point (OEP)

- MmmBop
unpacker

Page 43 of 68

4.2. CLASSIFICATION

Classification of the selected techniques to the “malware detection and analysis

taxonomy”, discussed above, will help us to cluster the techniques to some categories in

the following sections. The following table shows the classification to which the

selected techniques belong:

Malware Analysis and detection mechanisims

Si
gn

at
ur

e
m

at
ch

in
g

Behavioral Analysis

Static Analysis Binary analysis Dynamic analysis

Signature based

unpacking

Generic

unpacking

 Polyunpack *  Rotalum´e  ASUM

 Polyunpack*
 Renovo
 Ether
 MmmBop
 OmniUnpack
 EERM
 AGUnpacker

Table 4.2 Classification of the selected techniques to malware detection taxonomy

4.3. SWOT ANALYSIS

This section presents the SWOT analysis of the techniques, which will make us able to

have cross comparison between the techniques based on the strength, weakness,

opportunities and threat of each of the techniques. The following table illustrates the

SWOT analysis detail.

Page 44 of 68

Table 4.3 SWOT analysis of each technique

NO Methos
(Paper title)

Strengths
(Best features)

Weaknesses
(Limitations)

Opportunities Threats

1.
O

m
ni

U
np

ac
k:

 F
as

t,
G

en
er

ic
, a

nd
 S

af
e

U
np

ac
ki

ng
 o

f
M

al
w

ar
e Being generic unpacker and able to:

- Unpack both known and unknow
packers

- Both compressed and encrypted
malware

- Self modifying malwares
(polymorphic/ metamorphic)

Able to detect various levels of unpacking
and self modification layers

Postponed of malware detection scan
until a dangerous system call is invoked

Malware Detction at the end of all
unpackign layer only and Low overheads
during unpacking (due to page level trace)

Integrates with any malware detection
engine, any operating system (basically
with the requirments)

Runs the program on the native OS, does
not use debugging, virtual machine, or
emulation mechanisims

Resilient to antidebugging, anti-VM,
anti-emulation and SEH attacks

The performance and
efficiency of the unpacker
depends on the efficiency of
the malware detector

Only works for running
processes, but is not suitable
for at-rest file scanning

Tough, it reduce overhead
suffer from the imprecision of
page-level tracking, insteade of
istraction level tracking

Consideration of a dangourse
system call as end of
unpackign indicator

Choice and listing of
dangerous system calls might
be incomplete

Memory access exception as
indication of unpack, reduce
transparency to the malware

Continuous scanning and
monitoring overhead

The availablity of
software solution to
monitor memeory using
non-executable pages
(equivalent hardware
mechanisms)

Reuse of concepts of
OllyBone, a plugin for
debugger OllyDbg, for
pagelevel break-on-
execute

A lesson from
PaX PAGEEXEC
for the purpose of
tracking memory write
and execute accesses

Malware writers able
to evade malicious
payload in layers of
compression or
encryption.

Termination of the
unpacking routine is
undecidable

Malwares with
multiple processes

Automatic
generation of
signatures
that satisfy the
requirements
imposed

Page 45 of 68

NO Methos
(Paper title)

Strengths
(Best features)

Weaknesses
(Limitations)

Opportunities Threats

2.
P

ol
yU

np
ac

k:
 A

ut
om

at
in

g
th

e
H

id
de

n-
C

od
e

E
xt

ra
ct

io
n

of
U

np
ac

k-
E

xe
cu

ti
ng

 M
al

w
ar

e
Reduce the time required to analyze
packed malware

Improve the performance of malware
detection tools

Uses of combination of static and dynamic
analysis

Pretesting of packed and not packed
programs for efficiy purpose

Able produce an output of a plain-text
disassembly of the unpacked code, a
binary dump of the code, or a complete
executable version

Single step debugging(tracing)
repeatedly queried overhead
since malware’s execution is
paused after each instruction

Attachment of an instruction-
execution time out or bound n
in EXTRACT UNPACKED
CODE

The way it handles multiple
level packing not effective

Not transparent to malware so
that it can easy be attacked by
malwares with anti debugging
or anti trace mechanisms

Not good(fast) for interactive
users, and not Resilient to anti-
debugging and SEH attacks

The possiblity to execute
instruction in a sterile,
isolated environment

Windows API calls to
single-step execute a
program;

Static and dynamic
disassembly using a
80x86 32-bit
disassembler library.

For outputting the
complete executable
version used memory
dumper

Programs call to
Dynamic Link
Library (DLL)

Accurate and
successful is
disassembly not
always easy

Disassembly of
variable length
instructions and
non-code regions of
malware

Page 46 of 68

NO Methos
(Paper title)

Strengths
(Best features)

Weaknesses
(Limitations)

Opportunities Threats

3.

A
G

U
np

ac
ke

r
:

A
 U

np
ac

ki
ng

 A
nd

 R
ec

on
st

ru
ct

io
n

Sy
st

em

Can handle both known and unknown
packer independent of packing algorithms

Result binary can run and be
analyzed dynamically

Faster than existing unpackers by
reducing unpacking time effectively

Able to recover the PE architecture and
restore the original Import Address Table
(IAT) unlike many of the other packers

AGUnpacker can improve the
performance and effectiveness of
unpacking significantly

The assumptions taken for
candidate identification of
Magic Jump is weak (too
Specific to some conditions)

Not applicable in case of more
complicated PE format
modifications done by malware
packers

Usage of virtual memory
for protection exception
control and candidate
indetification.

Implementation
limitations of the
unpacker

Undecidability of
Magic Jump and
time-cost

Page 47 of 68

NO Methos
(Paper title)

Strengths
(Best features)

Weaknesses
(Limitations)

Opportunities Threats

4.

R
en

ov
o:

 A
 H

id
de

n
C

od
e

E
xt

ra
ct

or
 fo

r
P

ac
ke

d
E

xe
cu

ta
bl

es

In addition to extracting the hidden code,
Provides additional information (like
OEP, layering mechanism used, and so
on) from the packed binaries.

Does not depend on the program specific
disassembly or the known signatures
of packing techniques used by malware

Able to Extract information on multiple
hidden layers and handle any sort of
packing techniques applied to the binaries

As stated in the paper “Dealing
with emulate malwares is
beyond the scope of this paper”

Always assumes that hidden
code should eventually be
written and executed at run-
time

Since it runs on emulated
environment, it suffers from
anti-emulation malwares.

Emulated environments
with virtually Merrories

Full access to shadow
memory from the host
OS

TEMU to reason about
OS-level semantics

Emulated malware,
circumventing the
emulated
environment

Exploiting the time-
out, a possible threat
to Renovo

Page 48 of 68

NO Methos
(Paper title)

Strengths
(Best features)

Weaknesses
(Limitations)

Opportunities Threats

5.

E
th

er
:

M
al

w
ar

e
A

na
ly

si
s

vi
a

H
ar

dw
ar

e
V

ir
tu

al
iz

at
io

n
E

xt
en

si
on

s

Being transparent and external
approach to malware analysis

Completely outside of the target OS, so
that no in-guest software components
vulnerable to detection, and there are no
shortcomings that arise from incomplete
or inaccurate system emulation

Specific platform or Hardware
Requirements

Current implementation has
still threats and limitation of
Hardware Architecture to deal
with

Hardware virtualization
extensions such
as Intel VT

Software that can utilize
hardware virtualization
extensions, i.e. Xen
hypervisor

Current architectural
restrictions

- Intel VT
flushes the
TLB on
every
VMExit

- Memory
hierarchy
detection
methods

Page 49 of 68

NO Methos
(Paper title)

Strengths
(Best features)

Weaknesses
(Limitations)

Opportunities Threats

6.

R
ot

al
um

´e
:

A
ut

om
at

ic
 R

ev
er

se
 E

ng
in

ee
ri

ng
 o

f
M

al
w

ar
e

E
m

ul
at

or
s Able to reveal the syntax and semantics of

emulated instruction sets and reconstructs
execution paths of original program

Using dynamic analysis, Able to extract
execution paths in the bytecode program
and the syntax and semantics of the
bytecode instructions used in those paths

Automatic reverse engineering of
unknown malware emulators.

Assumes a decode-dispatch
emulation model only, thus,
malware authors may
implement variations
or alternative approaches

Malware using decode-
dispatch emulation may
attempt to evade accurate
analysis by targeting specific
properties of the analysis

Limitation of utilizing the
discovered syntax and
semantics to completely
convert bytecode to
native instructions

Code protection tools
such as Code Virtualizer
and VMProtect

Malware emulators
with sophisticated
approaches:

- using a
threaded
approach

- dynamic
translation
based
emulation

Recursive emulation,
which converts the
emulator itself to
another bytecode
language and
introduces an
additional emulator
to emulate it.

Page 50 of 68

NO Methos
(Paper title)

Strengths
(Best features)

Weaknesses
(Limitations)

Opportunities Threats

7.

E
E

R
M

:
E

m
ul

at
in

g
E

m
ul

at
io

n-
R

es
is

ta
nt

 M
al

w
ar

e

Able to clearly determines the root cause
of differing behavior and a way to
ameliorate it automatically

Allows a general-purpose emulator, with a
relatively minimal runtime Overhead

Built a practical implementation of
this technique into an emulator used for
automatic malware analysis

Automatically correct the emulation
failures, with robust DSMs, allowing an
automated analysis to reveal the
malware’s malicious activities

Over head of creating reference
platform and whole-system
emulation

Cost of diagnosis, due to the
alignment algorithm

Not general solution since it
Considers a few number of
anti-emulation attacks

It is basically based on the
possible behavior that malware
can exhibits to do anti-
emulation

whole-system analysis
environment TEMU

Intel XED library to
disassemble and obtain
an operand list for each
instruction, necessary for
accurate slicing

Attacks for which
there is no reference
platform

Too many
divergence points,
and obfuscation of
data flow

Page 51 of 68

NO Methos
(Paper title)

Strengths
(Best features)

Weaknesses
(Limitations)

Opportunities Threats

8.

M
m

m
B

op
 :

 G
en

er
ic

 U
np

ac
ki

ng
 o

f
Se

lf
-m

od
if

yi
ng

, A
gg

re
ss

iv
e,

 P
ac

ke
d

B
in

ar
y

P
ro

gr
am

s

Able to deal with most of the known and
unknown packing algorithms

Suitable to successfully bypass most of
currently used anti-reversing tricks

Performance does not depend on any other
3rd party software.

Developed entirely in user mode
(ring3),and does not use any debugging
API, virtual machine or emulation

Not able to handle packers
based on Virtual Machines
(VM) approach

Suffers from anti-technique
malware, since dynamic binary
instrumentation solutions need
to modify target process
address space

Availability of binary
instrumentation
techniques

The fast evolution of
the evading and
anti-debugging
techniques

Multi-threading
loader stubs and
more aggressive
packers

Page 52 of 68

4.4. CROSS COMPARISON AND CATEGORIZATION

In this section, based on the above presented “drivers based analysis” and “SWOT

analysis”, we would like to make cross comparison and dominance ranking among the

techniques. According to the main target of the techniques and specific requirements we

have classified them in to two categories.

The first category of techniques is “GENERIC UNPACKING AND ANALYSIS TECHNIQUES”.

These techniques mainly target on generic unpacking of packed malwares and no

specific attention is given to anti-technique defense during this unpacking. Moreover,

these techniques are generic in a sense that they are not targeting to specific type of

obfuscation mechanism.

The second category of techniques is “MALWARE ANALYZERS WITH ANTI TECHNIQUE

DEFENSE”. These techniques, in addition to unpacking of a packed malware, also

handles defense to anti technique such as anti debugging, anti emulation and anti virtual

machine. The table below presents these two categories of techniques with their

corresponding dominance raking and some basic justifications.

Page 53 of 68

NO

CATEGORY DOMINANCE

RANK

TECHNIQUES JUSTIFICATION OF THE DOMINANCE RANKING

1

GENERIC

UNPACKING

AND ANALYSIS

TECHNIQUES

1ST AGUnpacker - Generic unpacker with anti-technique mechanism and able to

reconstruct and generate runnable binary

- The limitations and threats are tolerable relative to others.

- No such difficult and unachievable requirement is specified

- Relatively very recent work (2009)

- Completely dominates the other methods listed below

2ND MmmBop - Generic unpacker able to handle self modifying packed malwares

- The limitations and threats are tolerable relative to others with the

exception of handling anti-technique mechanism

- No such difficult and unachievable requirements is specified

- relatively very recent work (2009)

- Completely dominates the other methods listed below

3RD Omniunpack - Generic unpacker targeted at detecting multilayer unpack with no

consideration of anti technique

- The limitations and threats are NOT tolerable relative to others

4TH Polyunpack - Generic unpacker with no consideration of multilayered and anti
technique embedded packed malware

- The limitations and threats are NOT tolerable relative to others

Table 4.4 Categorization and ranking of the techniques

Page 54 of 68

NO CATEGORY DOMINANCE

RANK

TECHNIQUES JUSTIFICATION OF THE DOMINANCE RANKING

2

MALWARE

ANALYZERS

WITH ANTI

TECHNIQUE

DEFENSE

1ST Ether - Generic malware analyzer with main target of detecting anti
technique

- Transparent to malware and able to handle most of the current
anti technique mechanisms

- The limitations and threats are tolerable relative to others
- Relatively recent work (2008)
- Completely dominates the other methods listed below

2ND EERM - Malware analyzer with specific target of detecting anti-emulation
malwares by emulating them

- Too specific relative to other methods listed
- The limitations and threats are NOT tolerable relative to others
- Relatively very recent work (2009)

3RD Rotalum´e - Malware analyzer with specific target of reverse engineering of
emulated malwares

- Too specific relative to other methods listed
- The limitations and threats are NOT tolerable relative to others
- Recent very work relatively(2009)

4TH Renovo - Malware analyzer with specific target of detecting anti-reverse
engineering malwares

- The limitations and threats are NOT tolerable relative to others
- Too specific relative to other methods listed
- Relatively not recent work(2007)

Page 55 of 68

CHAPTER FIVE

5. CONCLUSIONS AND FUTURE WORKS

In this thesis work we have reviewed research works on malware analysis and

detection techniques with special focus on comparison and analysis of the “automatic

malware unpacking techniques”. A literature review of existing similar works has also

been done. Out of the very few research works in this area two of them are presented

and discussed with respect to this thesis work.

Firstly, we have made a review of currently published research works on “malware

analysis and detection” in which eight techniques out of the total set is selected based

on their relation with our thesis topic. These eight techniques mainly discuss about

packed malware unpacking and analysis. A brief overview of each of this technique is

presented in the literature review section of this report.

An analysis based on some critical drivers, such as main target (considerations),

specific technique used, experiments done and summary of contributions, on each of

the selected techniques is done and discussed in the analysis section of this report.

Based on this analysis detail the eight techniques are classified to different taxonomy

of malware detection and analysis mechanism in order to be able to categorize the

techniques according to the taxonomy.

We have also analyzed the strength, weakness, opportunity and threat of each of these

selected techniques. Based on this SWOT analysis and the “driver based” analysis we

have categorized and made a dominance raking among the techniques. The eight

selected techniques are classified in to two categories. of four techniques each.

Page 56 of 68

AGUnpacker dominates all first category techniques by its being a generic unpacker

equipped with anti technique defense, able to reconstruct and generate runnable binary

and some more justification discussed in the report. Ether dominates all second

category techniques by its being transparent and generic malware analyzer with a main

target of anti technique detection and some more justifications discussed in the report.

A very systematic combination of the above mentioned two techniques, with omission

off overlapping and reduction of some requirements discuss above, will be a

promising solution to the different packing and obfuscation challenges imposed by

malware writers.

One of the critical limitations we faced during this study is the access to the

implemented tool for the above discussed techniques. This limitation basically

restricted the scope of our study from testing the tool and doing some experimental

analysis to come up with better results.

A possible extension of this thesis work could be to do an experimental analysis by

implementing the tools for, at least the best ranked and more dominant, techniques.

And moreover to come up with a new technique to do an automatic unpacking of

packed malware that will obviously address the limitation of the techniques discussed

in this thesis work.

Page 57 of 68

APPENDIX

A. LIST OF MALWARE PACKERS

NO. PACKER NAME BRIEF DESCRIPTION REMARK

1. ACprotect Protect Windows executable files (PE files)
against piracy. Using public keys encryption
algorithms (RSA) to create and verify the
registration keys and unlock some RSA key
locked code.

OmniUnpack,
AGUnpacker

2. Armadillo Commercial protection for any Win32
program. Also adds as you might expect some
anti-debugging code and the simple fact that its
mostly encrypted means you can forget
disassembling

OmniUnpack,
PolyUnpack,
AGUnpacker,
Renovo,
Ether

3. ASpack ASPack is an advanced Win32 executable file
compressor, capable of reducing the file size of
32-bit Windows programs by as much as 70%.
http://www.aspack.com/

OmniUnapck,
PolyUnpack,
AGUnpacker,
Renovo,
Ether

4. CExe CExe is a Win32 based .exe compressor. It has
a framework for multiple compressors and tries
them all, choosing the compressor that result in
the smallest size.
http://www.scottlu.com/Content/CExe.html
(download)

OmniUnapck

5. ExeStealth EXE Stealth can protect most of the executable
files that are compatible with PE format.
Manage your serials for your shareware.
Protect your exe files against cracking with
crypto technologies
http://www.webtoolmaster.com/download/Exe
Stealth.exe (download)

OmniUnapck,
PolyUnpack

http://www.aspack.com/
http://www.scottlu.com/Content/CExe.html
http://www.webtoolmaster.com/download/Exe

Page 58 of 68

6. EZip EZIP is a free packer with some features:
Compressed EXEs are typically 30-50% their
original size. Compressed EXEs run as normal.
No special files or drivers need. Compressed
programs are more difficult to reverse.

PolyUnpack

7. FSG FSG - F[ast] S[mall] G[ood] is a perfect
compressor for executable files, its
decompression code is only 158 bytes long, it's
compatible with Windows 95 / 98 / ME / 2K /
XP / Vista / 7.

OmniUnpack,
PolyUnpack,
AGUnpacker,
Renovo,
Ether

8. MEW Mew is an exe-packer application, based on
ApPack and LZMA methods, written in Visual
C and MASM 32. Originally it was designed
for small files (4k, 64k intros), but it supports
bigger files too.

OmniUnpack,
PolyUnpack,
Renovo,
Ether

9. MoleBox MoleBox is a runtime exe packer for Windows
applications. It bundles the executable together
with the DLL and data files into a single EXE
file, without losing the ability to run the
application. MoleBox compresses and encrypts
all the application files.
http://www.molebox.com/molebox-vs-
features.shtml

OmniUnpack,
PolyUnpack,
Renovo,
Ether

10. nPack nPack is a Win32 executable file compressor.
Features:(Support for all types of PE files (exe,
dll, ocx),Compression of program code, data,
and resources, Section naming support,Fast
decompression routines, Save overlay support,
Relocation support)
http://petools.org.ru/npack.zip

OmniUnpack

11. nSPack Nspack is an executable compressor for
Windows, which exceeds other similar
products in features and compression ratio. Not
only can it compress exe,dll, ocx, and scr files,
but it can compress 64-bit executables, and
executables created for the .net platform.
http://www.download32.com/go/56085/http%3
A%2F%2Fwww.nsdsn.com%2Fenglish%2Fns
pack.zip/

OmniUnpack,
AGUnpacker,
Ether

http://www.molebox.com/molebox-vs-
http://petools.org.ru/npack.zip
http://www.download32.com/go/56085/http%3
www.nsdsn.com%2Fenglish%2Fns

Page 59 of 68

12. Obsidium Allow you to protect your program from
unauthorized modifications (i.e. "cracking")
and provides you with a reliable yet easy to
implement licensing system. It is compatible
with any 32-bit Windows OS.

PolyUnpack,
Renovo,
Ether

13. PEComapct PECompact is a next generation Windows
executable compressor designed for software
developers and vendors. Commonly termed an
'executable packer', such utilities compress
executables and modules (i.e. *.EXE, *.DLL,
*.OCX, *.SCR).
http://www.bitsum.com/pecompact.php

PolyUnpack,
AGUnpacker,
Renovo,
Ether

14. PESpin PESpin is a Windows executable files (EXE,
DLL) protector, compressor coded in pure
assembly using MASM. It allows compression
of the whole executable - code, data and
resources, leaving them executable and
protects against patching and disassembling.
http://pespin.w.interia.pl/

MmmBop

15. Pex PeX is simple PE packer & protector. It's
compatible with Win95/98/NT.
http://github.com/qhoxie/rcrypt

PolyUnpack

16. PKLite PKLITE - An executable file compression
utility for MS-DOS from PKWARE, Inc..
PKLITE compresses the body of the
executable and adds a small, fast decompress
routine in the header

OmniUnpack,
Ether

17. RCryptor RCrypt is a simple RSA encryption library for
your Ruby scripts. It aims at being a no-frills
encrypt-decrypt solution

Ether

18. RLPack RLPack combines best of the breed
compression and protection elements to give
you the best possible protection against
software cracking, IP theft and software
tampering.
http://www.reversinglabs.com/products/RLPack.ph
p

Ether
OmniUnpack

http://www.bitsum.com/pecompact.php
http://pespin.w.interia.pl/
http://github.com/qhoxie/rcrypt
http://www.reversinglabs.com/products/RLPack.ph

Page 60 of 68

19. teLock tElock is a PE-File Encryptor/Compressor tool
that was designed to process most .exe, .ocx
and .dll files. It compresses and encrypts those
file types while leaving them executable and
protects against patching and disassembling.
http://www.telock.com-about.com/

OmniUnpack,
MmmBop,
Ether

20. Themida Powerful Windows Software Protector.
Designed for software developers who wish to
protect their applications against advanced
reverse engineering and software cracking.

OmniUnpack,
Renovo,
Ether

21. Upack Upack is a packer similar to UPX, but it uses
LZMA compression and is designed with a
focus on anti-unpacking.

PolyUnpack,
Ether

22. UPX Ultimate Packer for Xecutables (UPX) is an
extendable software high-performance
executable file compression packer software
for a number of diverse executable file
formats. It achieves an excellent file
compression ratio and fast running
decompression.
http://upx.org/

OmniUnpack,
PolyUnpack,
AGUnpacker,
MmmBop,
Renovo,
Ether

http://www.telock.com-about.com/
http://upx.org/

Page 61 of 68

REFERENCES

[1] - Babar, K.; Khalid, F.; , "Generic unpacking techniques," Computer, Control

and communication, 2009. IC4 2009. 2nd International Conference on , vol.,

no., pp.1-6, 17-18 Feb. 2009

[2] - Vinod, P.; Jaipur, R.; Laxmi, V. & Gaur, M. “Survey on Malware Detection

Methods”,. (2009) Hack. 74

[3] - Martignoni, L.; Christodorescu, M.; Jha, S.; , "OmniUnpack: Fast, Generic,

and Safe Unpacking of Malware," Computer Security Applications

Conference, 2007. ACSAC 2007. Twenty-Third Annual , vol., no., pp.431-441,

10-14 Dec. 2007

[4] - Royal, P.; Halpin, M.; Dagon, D.; Edmonds, R.; Wenke Lee; , "PolyUnpack:

Automating the Hidden-Code Extraction of Unpack-Executing Malware,"

Computer Security Applications Conference, 2006. ACSAC '06. 22nd Annual ,

vol., no., pp.289-300, Dec. 2006

[5] - Yu San-Chao; Li Yi-Chao; , "A Unpacking and Reconstruction System-

AGUnpacker," Computer Network and Multimedia Technology, 2009. CNMT

2009. International Symposium on , vol., no., pp.1-4, 18-20 Jan. 2009

[6] - Min Gyung Kang, Pongsin Poosankam, and Heng Yin., “Renovo: A Hidden

Code Extractor for Packed Executables” In Proceedings of the 5th ACM

Workshop on Recurring Malcode (WORM), October 200

[7] - Artem Dinaburg , Paul Royal , Monirul Sharif , Wenke Lee, “Ether: malware

analysis via hardware virtualization extensions”, Proceedings of the 15th

ACM conference on Computer and communications security, October 27-31,

2008, Alexandria, Virginia, USA

Page 62 of 68

[8] - Monirul Sharif , Andrea Lanzi , Jonathon Giffin , Wenke Lee, “Automatic

Reverse Engineering of Malware Emulators”, Proceedings of the 2009 30th

IEEE Symposium on Security and Privacy, p.94-109, May 17-20, 2009

[9] - Min Gyung Kang, Heng Yin, Steve Hanna, Steve McCamant, and Dawn Song.

“Emulating Emulation-Resistant Malware" In Proceedings of the 2nd

Workshop on Virtual Machine Security, November 2009.

[10] - Piotr Bania. “Generic Unpacking of Self-modifying, Aggressive, Packed Binary

Programs” http://piotrbania.com/all/articles/pbania-dbi-unpacking2009.pdf, 2009

http://piotrbania.com/all/articles/pbania-dbi-unpacking2009.pdf

