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Sommario

In questa tesi di laurea, situata all’interno del progetto Aneurisk, ci pro-
poniamo di indagare possibili relazioni tra il Wall Shear Stress sulle pareti
della Arteria Carotide Interna e l’insorgenza di aneurismi cerebrali. I dati
analizzati provengono da simulazioni numeriche di emodinamica, implemen-
tate presso il Mathematics and Computer Science Department della Emory
University.
Abbiamo scelto di analizzare le simulazioni attraverso l’approccio molto in-
novativo di Functional Data Analysis. A quanto ci risulti, questa è la prima
volta che un simile tipo di dato venga analizzato statisticamente. I modelli
numerici simulano il valore di Wall Shear Stress per ogni punto della ICA,
che è rappresentata da una superficie bidimensionale.
In questo lavoro, presentiamo le tecniche ed i risultati ottenuti dalle analisi
statistiche condotte secondo l’approccio funzionale.

Nel Capitolo 1 vengono delineati gli obiettivi del presente studio in rap-
porto alla letteratura scientifica disponibile sul soggetto e viene descritto il
processo di raccolta dei dati provenienti da immagini medicali.
Nella Sezione 2.1 viene presentata una breve introduzione alla Functional
Data Analysis, sottolineandone le peculiarità rispetto all’approccio classico.
Nel Capitolo 2 viene descritta la procedura di smoothing dei dati, ovvero,
in questa fase i dati discreti vengono trasformati in dati continui, dedicando
ampia trattazione alla scelta del bandwidth.
Nel Capitolo 3 viene trattato il problema della registrazione, mostrando la
trasformazione a dati continui allineati.
Nel Capitolo 4 vengono descritti tecniche e risultati dell’analisi delle com-
ponenti principali funzionali, elemento caratterizzante di questo lavoro.
Infine, nel Capitolo 5 vengono esposte le conclusioni di questa tesi di lau-
rea, in relazione ai risultati ottenuti precedentemente nel progetto AneuRisk,
suggerendo, inoltre, nuove direzioni di ricerca per possibili sviluppi futuri del
progetto.



Abstract

In this work, situated in the context of the AneuRisk project, we investigate
possible relationships between Wall Shear Stress on Internal Carotid Artery
wall and the origin of cerebral aneurysms. Our data come from fluidynamics
numerical simulations performed by the Mathematics and Computer Science
Department of Emory University.
We decided to analyze CFD simulations by means of a very innovative ap-
proach that is Functional Data Analysis.
At our knowledge, this the very first time that this kind of data is statis-
tically analyzed. Simulations provide us Wall Shear Stress values for every
point of ICA wall, which is represented as a two dimensional surface.
In this work the techniques and results obtained by using Functional Data
Approach on Wall Shear Stress surfaces are presented.

In Chapter 1, purposes of the present work, with respect to the scien-
tific literature, are outlined and the process of collection and elicitation of
raw data from medical imagery is described. A first exploratory analysis
about the composition of patients’ set is presented.
In Section 2.1, a brief introduction to Functional Data Analysis is pre-
sented, underlying its peculiarities with rapport to the classical approach.
In Chapter 2, we describe the smoothing procedure, i.e. in this step dis-
crete data are transformed into continuous ones, focusing on the choice of
the bandwidth.
In Chapter 3, the registration problem is treated, showing the transition
from continuous to continuous and aligned data, ready to be analyzed.
In Chapter 4, the statistical analysis on continuous, aligned, reduced data
is performed by means of the Functional Principal Component Analysis.
Finally, in Chapter 5, conclusions of this work are exposed, keeping into
considerations also all the results previously found in the AneuRisk project,
suggesting other research directions suitable for possible future developments
of the program.



Chapter 1

Problem setting and data
collection

1.1 The cerebral aneurysmal pathology

Cerebral aneurysms are deformations of cerebral vessels characterized by a
bulge of the vessel wall. This pathology is common in the adult population,
and usually it is asymptomatic and not disrupting. Epidemiological studies
show that between 1% and 6% of adults develop a cerebral aneurysm during
their lives ([6]). Rupture of a cerebral aneurysm is usually a tragic event,
even if it is a very rare event (about one event in every 10,000 adults per
year). To have a rough idea of the damages caused by an aneurysm rupture,
one can consider that out of nine people with rupture, three are expected to
die before reaching any emergency room, two to die after being hospitalized,
two to survive with permanent cerebral lesions and only two to come back
to former living habits (Boccardi E., personal communication, 2005).
When a cerebral artery blows out, the skull rigidness and the heart beats
make pressure on the brain suddenly and rhythmically increase at each sys-
tolic peak. A very high pressure over the brain tissues is reached in just few
seconds.

Rupture-preventing therapies are available but they are not without risk.
Therapies may be endovascular or surgical; they are shown in Figure 1.1.
The surgical treatment - introduced by W. Dandy in 1937 - avoids the blood
to enter the aneurysm by clipping the aneurysm neck by means of external
platinum clips. The endovascular treatment - introduced by G. Guglielmi
in 1991 - consists in filling the aneurysm by means of platinum coils from
inside the artery. In both cases the idea is to limit blood pressure in the
aneurysm by mechanically forcing blood not to flow into the aneurysmal
bulge. Both approaches are quite expensive and risky for patient’s life, so
any tool providing useful indications about aneurysm rupture probability
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would be extremely helpful to address the physician choice of treating or
not treating.

A useful classification of cerebral aneurysms is related to their position along
the vascular tree (as suggested by [7]). Most cerebral aneurysms appear
along the arteries constituting the circle of Willis or closely related to it.
Circle of Willis is a complex loop of cerebral arteries at the base of the
brain whose arrangement creates redundancies in the cerebral circulation.
It is thought to be an emergency mechanism for supplying blood to the
brain. Indeed, whether one of the inflow arteries is narrowed or occluded,
the blood can flow from the other vessels preserving sufficient cerebral per-
fusion to guarantee oxygenation of cerebral cells.
A diagram of Willis circle is given in Figure 1.2.
From the front to the back, the arteries constituting the circle of Willis
are: the Arterial Communicating Artery (ACoA), the proximal parts of the
two Anterior Cerebral Arteries (ACA), the distal parts of the two Internal
Carotid Arteries (ICA), the two Posterior Communicating Arteries (PCoA)
and the proximal parts of the two Posterior Cerebral Arteries (PCA). The
arteries providing blood to the circle are the two Internal Carotid Arteries
(ICA) and the Basilar Artery (BA) that is originated by the merging of the
two Vertebral Arteries (VA). The main outflow arteries are the two Anterior
Cerebral Arteries (ACA), the two Median Cerebral Arteries (MCA) and the
two Posterior Cerebral Arteries (PCA).

In order to perform statistical analysis, the medical classification of pa-
tients used by the physicians of Niguarda Ca’Granda Hospital Milano has
been adopted in all the AneuRisk project to identify homogeneous groups
of patients. Patients are divided into two groups:

Figure 1.1: On the left, aneurysm endovascular treatment by means of coils.
On the right, aneurysm surgical treatment by means of clips (courtesy of
http://www.med.umich.edu).
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Figure 1.2: View of a complete circle of Willis and the related arteries.
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Upper Group. These are the patients with an aneurysm downstream
of the ICA, i.e. at the final bifurcation of the ICA or along the MCA, the
ACA or the ACoA;

Lower Group. These are the remaining patients, i.e. those with an
aneurysm along the ICA or healthy.

Note that no patients with an aneurysm along PCA’s or BA are present
in the dataset. Indeed, vessels supplied by the left ICA, the right ICA and
the BA, cannot be simultaneously detected during the medical exam. Since
in these phases of the project we are mainly interested in the analysis of the
ICA, all medical examinations not providing data for the ICA have been
ignored.

In the scientific community there is not a commonly shared theory about
origin and reasons of aneurysms. Several possible explanations are provided
by the medical literature. A brief summary is reported in Section 1.1 of [1].
In medical literature, biomechanical properties of artery walls and hemody-
namic factors, such as Wall Shear Stress and pressure, are often considered
as possible explanatory factors. Hemodynamics is strictly dependent on
vascular geometry as reported in [8], [9] and [10]. The role played by mor-
phology on the hemodynamics has been deeply analyzed by [11].
An adimensional index, called “Dean number D”, has been proposed in [12]
to describe different possible flow situations.
This index depends on blood viscosity and density (quite easy to measure),
mean velocity (to be computed by numerical simulations) and two geomet-
rical quantities: vessel radius and curvature.

1.2 The present work and the AneuRisk project

The challenge of this master thesis is to focus the statistical analysis on the
fluidynamics factors suggested by the medical literature, such as Wall Shear
Stress on the Internal Carotid Artery walls.
Obviously Wall Shear Stress can not be measured directly on the patients
or obtained by three dimensional angiographies, because it is a dynamic
feature, varying in time, with rapport to heart beating.
So, the mathematical models for blood circulation in the cerebral district
studied in [2] have been exploited. These models have been implemented
numerically by Emory University producing simulations of the Wall Shear
Stress on the artery walls of all the patients previously analyzed in [1] and
[3] with rapport to vessel radius and curvature.
In the present work we propose to apply Function Data Analysis techniques
to the data obtained by these numerical simulations.
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In Chapter 1.3 a first exploratory analysis about the composition of pa-
tients’ set is presented.
In Chapter 2 we describe the smoothing procedure, i.e. in this step discrete
data are transformed into continuous ones, focusing on the choice of the
bandwidth.
In Chapter 3 the registration problem is treated, showing the transition from
not-aligned to aligned data, ready to be analyzed.
In Chapter 4 the statistical analysis on continuous, aligned data is imple-
mented by means of the Functional Principal Component Analysis, which
is the essential statistical tool of this work. All steps of the method are de-
scribed. Analysis of the scores and interpretation of Principal Component
function are performed.
Finally, in Chapter 5 conclusions of this work are exposed, keeping into
considerations also all the results previously found in the AneuRisk project,
suggesting other research directions suitable for future possible developments
of the program.

The context of this work is the AneuRisk Project, a scientific research pro-
gram that aims at evaluating the role played by different factors in the
pathogenesis of cerebral aneurysms and their eventual rupture, with the fi-
nal purpose to estimate probabilities for aneurysms origin and rupture, in
order to provide information which may support physicians’ choices. As
explained in [1] two different kinds of outcomes were expected to be pro-
vided by the project: theoretical results pertaining the development of new
mathematical, statistical and engineering methods and practical results con-
sisting in the realization of an automatic procedure providing, for a generic
hospitalized patient, a realtime support to medical decisions.

Many fields of sciences are implicated in the project, ranging from medicine
to statistics passing by neuroradiology, image reconstruction, bioengineering
and finally computational fluidynamics.
Many actors has participated to the project activities: three universities (Po-
litecnico di Milano, Università degli Studi di Milano and Emory University),
research groups of public institutes, such as Mario Negri Institute for Phar-
macological Researches and the Niguarda Ca’Granda Hospital. Fondazione
Politecnico di Milano and Siemens Medical Solutions Italy have funded a
PhD position and three research fellowships.
It is evident that collaborative interaction between the different actors has
been fundamental for the outcomes of the project and this has been a very
challenging aspect.

The main production in the AneuRisk project about statistical analysis
corresponds to [1] and [3], where the geometric aspects of arteries dealing
with Dean number D, vessel radius and curvature, have been properly inves-
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tigated with the tools of Functional Data Analysis, whose details are given
in Section 2.1.

1.3 Description, Exploration and Preprocessing of
data

In this Section the dataset analyzed in this work is introduced, giving details
about all the information contained and features of the sample.
AneuRisk dataset is a very particular dataset in terms of its origin and the
different techniques which have made possible the data collection, to which
many actors have given their active contributions. In fact, as well outlined in
Section a1.2, interaction between professionals coming from very different
scientific disciplines has been one of most challenging aspects of the pro-
gram.
The dataset analyzed in the present study has been built starting from
three-dimensional angiographies of n = 51 patients hospitalized at the
Neuroradiology Department of Niguarda Ca’ Granda Hospital, Milan, from
September 2002 to October 2005.
So the sample is not independent because a sort of “selection” of the statisti-
cal units has been performed, by the fact that only people reporting illnesses
which possible involvement of cerebral arteries have been submitted to the
angiographic investigation. In fact, the three-dimensional angiography is
usually conducted by means of contrast liquid and it results in a quite ex-
pensive and invasive exam, so it can not be conducted as routine check.
Some of the analyzed patients are affected by an aneurysm along one of the
left or right Internal Carotid Artery, others have an aneurysm at the termi-
nal bifurcation of the ICA or after it and, finally, a little part of them are
healthy. None of the patients has other severe diseases affecting the cerebral
vascular system, apart aneurysms.
People affected by aneurysmal pathology are further divided up into two
groups: patients with broken aneurysms or with not broken ones. This
dataset contains male and female patients and patients’ages range from 32
to 105 years.

Because of the non-independence of the sample, our work is limited at an
observational study, without any pretension to conclude absolute inferential
results.
Indeed, the exploratory Dataset Analysis reported in Figure 1.3 shows us
that the sample is quite homogeneous in respect to the analyzed factors. In
fact, percentages of the position of aneurysms along ICA don’t differ sig-
nificantly, (the p-value of the test for equal proportions is 9,6%) and the
percentages of broken or not broken are not far from 0.5 at all (the p-value
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of the same test as before is 100%). Neither gender percentages differ sig-
nificantly from 0.5 (the p-value of the same test as before is 65,2%).
Finally, patients’ ages appear normally distributed (the p-value of the Shapiro-
Wilk test is 5%).

Figure 1.3: Descriptive Statistics of analyzed dataset

Geometrical and morphological features of patient’s carotid are recon-
structed from a 3D angiography by means of a specific algorithm of image
reconstruction implemented by Istituto Mario Negri and coded in the Vas-
cular Modeling Toolkit, available at http://vmtk.sourceforge.net, (details are
available in Chapter 2 of [1]).
Then, hemodynamics of blood flow inside ICA have been computed starting
from the geometrical reconstruction of the Internal Carotid Artery, by using
fluidynamics models studied in [2].
For every patient, Wall Shear Stress vector has been mathematically mod-
eled by the function WSSi defined by:

WSSi : R3 7−→ R3+
(1.1)

WSSi = (WSSx(x, y, z), WSSy(x, y, z), WSSz(x, y, z)) (1.2)

WSSi maps every point (x, y, z) of the Internal Carotid Artery to the
vector (WSSx, WSSy, WSSz) evaluated in that point.
Fludynamics models have been implemented numerically by the Department
of Mathematics and Computer Science of Emory University, Georgia, USA,
after having discretized the n reconstructions of ICAs. These numerical
simulations resulted in the computing of the Wall Shear Stress vector values
of all the nodes (xj , yj , zj), j = 1, . . . , mi defined by the discretization
of patient i.
The discretization in 3D space (x, y, z) chosen by the numerical team is dif-
ferent for every patient and the number of nodes is in the order of 105.
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In the present work all the analysis is focused on Wall Shear Stress val-
ues at the instant of the systolic peak t = 2.24s, so our functional data do
not depend on time.

A reference system is necessary both for the Internal Carotid Artery math-
ematical and numerical models in order to define the position of points. So,
a parametrization was to be introduced.
The three coordinates (x, y, z) have respectively the meaning of left–right,
up–down, and front–back. Note that these coordinates are not absolute,
but are relative to the cubic volume analyzed during 3D angiography. A
parametrization more useful is the cylindrical one defined by (S, ρ,Θ), where
S is the curvilinear abscissa along ICA, Θ is the angle in radiants and ρ the
local radius. More in detail, curvilinear abscissa S is computed along ICA
centerline, which is an imaginary line situated in the center of ICA lumen.

Before any statistical analysis, a preprocessing of data has been necessary
to produce discrete data. This phase of the study has been realized in
strict interaction with the team of the Department of Mathematics and
Computer Science of Emory University, who performed the numerical sim-
ulations. Firstly, the straight pipes added to ICA extremities in order to
produce a numerically stable hemodynamics simulation have been elimi-
nated. Two different approaches have been applied to achieve the purpose
on both sides of ICA: from the positive-side and the negative-side of S. In
the first case, the first node of the centerline with a positive value of S is
identified, then the whole part of ICA with values of S greater then the node
identified has been removed. In the second one, it has been suggested to cut
away a terminal part of ICA having length equal to ten times the value of
local radius at the last node of the centerline having negative value of S.

After having completed this preprocessing on data, the first exploratory
data analysis conducted has been the graphical analysis of patients’ center-
lines.
For each patient i = 1, . . . , n the plot of centerlines nodes in the 3D (x, y, z)
space has been realized. In Figure 1.4 an example of this plot is reported.
Secondly, the three centerlines projections on the three planes defined re-
spectively by Equations z = 0, x = 0, y = 0 have been computed, and in
Figure 1.5 the respective example of these three plots is reported.
As already outlined, one of main purposes and innovations of the present
work compared to the previous ones, which are presented in detail in Section
1.2, is to find out correlations between aneurysmal pathology and values of
Wall Shear Stress. In this early phase of exploration of Wall Shear Stress
effects, we have chosen to analyze the information carried by the Euclidean
norm in R3, |WSS|, of the WSS vector only:
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Figure 1.4: Centerline nodes of patient ID=170642

Figure 1.5: The three projections of patient ID=170642 Centerline nodes
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|WSS| =
√

WSSx
2 + WSSy

2 + WSSz
2 (1.3)

Further and deeper analysis on the role played by the three components
of Wall Shear Stress vector along the three coordinates x, y, z, respectively
WSSx, WSSy, WSSz, may be explored in the future as possible perspec-
tives.
So, for every patient i = 1, . . . , n, for every node j = 1, . . . ,mi of ICA
walls surface the value of |WSS| is available. From this moment on, ICA
surfaces will be represented by cutting the carotids along S, obtaining a two-
dimensional surface parametrized by two coordinates: curvilinear abscissa S
and angle Θ. This representation will be named open carotid representation
for the sequel.
An example of open carotid representation is given in Figure 1.6.
The functions object of the statistical analysis of this work are the functions
fi 2π-periodic on Θ, defined for every patient i = 1, . . . , n as follows:

fi : [a, b]× [−π, π] 7−→ R+ (1.4)

fi(S,Θ) = |WSS|(S,Θ) (1.5)

where a and b delimit the interval of values of curvilinear abscissa of the
stretch of ICA analyzed.

In order to maintain natural proportions and measure units between
two coordinates of the ICA in the open carotid representation, the coordi-
nate Θ originally expressed in radiants has been changed into a new one,
Θ̃ = Θ× R̃ expressed in centimeters, obtained by multiplying the old value
for the constant R̃, the same for all patients, defined as the arithmetic mean
of all local radius of ICAs, R̃ = 0.1894875 cm.

Another important peculiarity of the present dataset is the 2π-periodicity
on Θ (2π × R̃-periodicity on the new coordinate Θ̃), and it is immediate to
realize that this feature comes directly from the cutting made in the open
carotid representation along ICA: every point placed on the cutting line is
splitted into two nodes placed at the extremities of Θ̃ and they must have
the same |WSS| value, being |WSS| a continue function. This has to be
strongly kept into consideration when conceiving the smoothing of data,
treated in Section 2.

Before computing the smoothed data a grid of nodes common to all the
n = 51 patients has been defined. This grid G has been built on the
intersection of all the n = 51 patients’ grids.
Practically, we have placed nΘ̃ = 70 nodes on the Θ̃ common range
[-0.5952925; 0.5952925], the mesh of grid is squared and so the step is
0.01700836 cm on both coordinates. So, on the S common range, [-3.386841;
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Figure 1.6: Open carotid representation of |WSS| of patient ID=170642

-0.508594] cm, nS = 171 equally spaced nodes have been fixed.

The grid G is common to all patients by construction, and it contains
nG = nΘ̃ × nS = 11970 nodes and so G will be the domain used
to evaluate the data in the continuous form.

All computations presented in the present work have been implemented and
performed in R 2.12.0.

18



Chapter 2

Smoothing of dataset

2.1 The Functional Data Analysis approach

Functional Data Analysis, in the sequel FDA, is one of the most recent
branches of statistics and it deals with data which are functions, in the
mathematical sense of the term.
It is very far from the classical univariate or multivariate statistics, where
the statistical units are scalar values or vectors, because all usual concepts,
defined on vectorial spaces are not projected into functional spaces.
The goals of functional data analysis are essentially the same those of other
branch of statistics, according to [5]:

� to represent the data in ways that aid further analysis;

� to display the data so as to highlight various characteristics;

� to study important sources of pattern and variation among the data;

� to explain variation in an outcome or dependent variable by using
input or independent variable information;

� to compare two or more sets of data with respect to certain types of
variation, where two sets of data can contain different sets of repli-
cates of the same functions, or different functions for a common set of
replicates.

On the contrary, Functional Data need preliminary operations before any
statistical study. In fact, the first task is to convert the discrete values of
observations into a real function xi(s). This can be done by following dif-
ferent approaches, such as smoothing or interpolation.
Secondly, to perform every analysis we would be interested in having all data
expressed according to the same reference system. This is not obvious and
this purpose is reached by means of registration, also known as alignment.
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Finally, the statistical analysis is performed. Many techniques are available
in rapport to the aim of the study. One of the most important techniques
is the Functional Principal Component Analysis (FPCA), which allows to
identify the dominant or substantial modes of variation, reducing signifi-
cantly the dimension of dataset.
A peculiarity of FDA is the importance of derivatives of data, which are
contained in data and can bring relevant information at our analysis. Fur-
ther details on Functional Data Analysis are available in [5] or on the website:

http : //www.functionaldata.org

2.2 The Kernel Smoothing Methods

An unavoidable feature a mathematical model representing a real phenomenon
has to respect necessarily is the high fidelity between the quantitative vari-
ables of the model and the behavior of quantitative aspects of the phe-
nomenon.
It is quite evident that in real arteries Wall Shear Stress on the walls varies
in a smooth way, because like in all real systems there are specific dynamics
which impose a minimum transition space, making immediate changes im-
possible to happen.
At this step we have discrete data, but we are interested in having a contin-
uous representation of the Wall Shear Stress on the Internal Carotid Artery
walls.
The main purpose of this phase of the work is to obtain the data in a
continuous and regularized form starting from discrete data. The obtained
functions have to be necessarily continuous but they may be also Ck, for any
k > 1 hopefully. This procedure is very important and has to be performed
very carefully in order to transfer the maximum possible amount of relevant
information available from discrete data into the continuous ones, without
losing important parts of it. Several techniques are available and they dif-
fer from each other according to complexity and features of the smoothed
functions produced. The simplest method is the local weighted average but
it has been discarded because of the important bias produced by the model
near the boundaries of the domain and this is not acceptable at all; this
effect is particularly bad on S coordinate, where the absence of periodicity
does not help in limiting the bias.
So in the present work we have chosen a locally weighted linear regression.
The different behaviors of these two models at the boundaries are shown in
Figure 2.1.
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Figure 2.1: Behavior of locally weighted average and locally weighted linear
regression at the boundaries (courtesy of [4])

Given a patient i, its target nodes x0 are the nodes of G, computed in
Section 1.3 common to all patients, on the other hand, the training nodes
xj j = 1, . . . ,mi are the nodes of ICA walls provided by the numerical
simulation of |WSS| for patient i, finally, yj , j = 1, . . . ,mi is the value
of |WSS| for patient i observed at training node xj. Vector y is the vector
containing all the mi observations yj .
In this practice the aim is to estimate the n = 51 regression functions
fi(S, Θ̃) over the domain by fitting a different model separately at each tar-
get node x0 and this is done by using only closest observations to the target
node x0, which are multiplied by weights decreasing as the distance from
the target node increases.

The localization is defined by the weighting function Kλ(x0,xj), j =
1, . . . ,mi, called kernel centred in x0 and evaluated in xj, and it corresponds
to the weights decreasing as the distance from the target node increases.
Different kernel functions will be characterized in the sequel. So this regres-
sion model estimates the value of function fi as:

f̂(s, θ̃)i = E[ |WSS| | S = s, Θ̃ = θ̃] (2.1)

At each target node x0 = (s0, θ̃0), a local linear model of the following form
is computed:

|WSS|(S, Θ̃) = β0(S0, Θ̃0)+ β1(S0, Θ̃0) (S−S0)+ β2(S0, Θ̃0) (Θ̃−Θ̃0)+ ε
(2.2)

where
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β(x0) = [β0(x0), β1(x0), β2(x0)]T (2.3)

For each linear model, the vector of parameters β(x0) is computed by solving
a weighted least squares problem:

minβ0(x0),β1(x0),β2(x0)

m∑
j=1

Kλ(x0,xj)[|WSSj |−β0(x0)−β1(x0) sj − β2(x0)θ̃j ]
2

(2.4)

The model has been fitted using all, but not only, the mi training nodes of
patient i, but finally the regression function f̂i is evaluated over G nodes
only.
The estimate function is f̂i(x0) = β̂0(x0).

The solution of problem in Equation (2.4) is given in Equation (2.5):

f̂(x0) = b(x0)T (BTW(x0) B)−1 BT W(x0) y (2.5)

where b(x) = [1, s, θ̃]T and B is a (mi × 3) matrix defined as

B =



b(x1)T

. . .

. . .

b(xj)
T

. . .

. . .

b(xmi
)T


W(x0) is a diagonal (mi × mi) matrix containing all the evaluations of the
kernel function centred in x0, as it is shown below:

W(x0) =


Kλ(x0,x1) 0 . . . . . . 0

0 Kλ(x0,x2) 0 . . . 0
0 . . . Kλ(x0,xj) . . . 0
0 . . . . . . . . . 0
0 . . . . . . 0 Kλ(x0,xmi

)


An equivalent formulation of (2.5) is

f̂(x0) =

mj∑
j=1

li(x0) yi = l(x0)T y (2.6)
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Equation (2.6) is very important because it highlights that the estimate of
f given by model (2.5) is linear in the observations yj , in fact l(x0) does not
involve y. The vector of these weights l(x0) combines the weighting kernels
Kλ(x0,xj) and the least squares operations, components of l(x0) are often
referred to as equivalent kernels.

One of main goals of Smoothing methods is that the result of this pro-
cess, f̂i, can be a C∞ function and so its derivatives of all orders can be
easily estimated. Continuity features of the final smoothed function depend
directly on continuity features of the Kernel function Kλ(x0,xj) uniquely.

In the statistical scientific literature different shapes of kernel are avail-
able, the most frequently used are Gaussian Kernel, Rectangular Kernel and
Epanechnikov quadratic Kernel. The Gaussian Kernel has the great advan-
tage to be C∞, but its support is infinite and this can lead significantly to
longer computing times. On the other hand, Rectangular and Epanechnikov
ones has finite support but they are not even C1 in all the domain. In Figure
2.2 a plot of the three most frequently applied Kernel functions is reported.
Further details about shapes of Kernels functions are available in Chapter
6 of [4].

More in detail, for the purposes of the present work the Kernel Smoothing
method chosen has to maintain absolutely the periodicity on Θ̃ coordinate,
in fact, the ICA open carotid representation is a fictitious representation
generated artificially by cutting the carotid along S, so, in this practice a
point of ICA wall situated on the cutting line is splitted into two different
points placed at the extremities of the 2D surface representing ICA.
We have implemented a bivariate Gaussain Kernel centred on the target
node x0 and having the following matrix as variance-covariance matrix:

Figure 2.2: Most frequently applied Kernel functions (courtesy of [4])
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Σ =

[
λ2 0
0 λ2

]
Bandwidth value is the parameter which filters the amount of information
from discrete data that will be maintained in the smoothed function, dis-
criminating between primary information and noise along the direction con-
sidered.
We have chosen the same bandwidth values for the two directions defined
by S and Θ̃, assuming the signal-to-noise ratio to be isotropic on the two
directions.
The bivariate Gaussian kernel Kλ(x0,xj) is defined in Equation (2.7).

Kλ(x0, xj) =
1

2 π |Σ|
1
2

e−
1
2

(xj − x0)T Σ−1 (xj − x0) (2.7)

In order to obtain 2π × R̃ periodic estimates of Wall Shear Stress functions
as outcome of smoothing process, theoretically we should replicate infinite
Kernel functions along the Θ̃ direction. This is not very easy in the practice,
so we have augmented data artificially, in fact the fitting of the model has
been implemented not only on the original training nodes mi, but on the
training set T = {O ∪A ∪ S} where O is the set of original mi train-
ing nodes obtained at the end of processes described in Section 1.3, A is a
translated repetition of O where each value θ̃j of Θ̃ has been changed with
θ̃j + 2π×R̃, and finally S is an analogous repetition translated on the other
side of the original dataset.
This approach is fully equivalent to the replication of kernel functions.
Being the support of Gaussian Kernel infinite, in order to maintain the
desired periodicity infinite replicates of data for each side should be the-
oretically included in T, but in the practice, in order to obtain periodic
estimates of the Wall Shear Stress functions, it is enough to replicate data
one time only by side.

2.3 Bandwidth selection

The second relevant factor defining a Kernel Function is the width λ of the
local neighborhood, which will be referred to as bandwidth. Large values for
λ imply lower variance (averages over more observations) but higher bias.
Smoothing process plays a fundamental role in the outcomes of statistical
analysis because it filters all the original data and it may lead to restrain all
the significant information. On the other hand, it is necessary to discrim-
inate between important information and noise, otherwise the statistical
models and the conclusions they lead to are likely to be affected by overfit-
ting phenomenon.
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So, it is necessary to fix an optimum value to obtain the best possible bal-
ance between loss of primary information and overfitting.

In literature the approaches usually chosen to select the bandwidth value
are the expected Kullback-Leibler cross-validation, or least-squares cross val-
idation using the method of Racine and Li (2004) and Li and Racine (2004).
All these methods split the sample into training set and validation set. The
first is used to estimate the model and the second to test its performances.
The procedure is repeated several times choosing different splitting of the
sample and the validation results are averaged over all the results.
Both methods are implemented in the function npregbw of the cited R pack-
age but unfortunately they are too expensive in term of computational costs
for our purposes, so we have chosen a heuristic approach. In spite of this
choice, the crossavalidation remains a very interesting approach and it might
be explored as future perspective of the present work.

We have based the choice of λ parameter analyzing extremal cases. To
achieve this, the |WSS| data of all patients have been graphically inspected
in order to choose the three cases with the most irregular patterns. The
three patients have the following ID: 149198I, 199926, 213558 and their
Wall Shear Stress are given in Figures 2.3 and 2.4.

These three test cases have been chosen because they all are far in dif-
ferent directions from the typical map, in fact in the first one there are three
important peaks in the left side, in correspondence with lower values pf S.
The second map is more regular and higher values of |WSS| are reached for
higher values of S. Lastly, in the third one there is a symmetrical structure

Figure 2.3: Test case patient ID 149198I Wall Shear Stress map
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Figure 2.4: Test cases patients ID 199926 (top) and ID 213558 (bottom)
Wall Shear Stress maps
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which has its maximum values at the extremities.
At this point, for each of this three test cases, seven different smoothed
dataset have been computed using the values for λ given in Equation (2.8).
The computing of smoothing of functions fi has been entirely performed by
using package np of R 2.12.0.

λtest = [0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.15]T (2.8)

In Figures from 2.5 to 2.15 the smoothed data of three test patients are
given for the all the four values of bandwidth 0.03, 0.05, 0.10 and 0.15.
A preliminary inspection of the smoothing for bandwidth values 0.03, 0.05,
0.10 and 0.15 has been conducted.
It is evident that it is not possible to choose 0.03 or 0.05 as λ value because
the model is led to follow the training data in a too strict way. So it is
necessary to select between 0.10 and 0.15.

From a further exploration, λ = 0.10 cm has been selected, and the
plot of smoothed data of the three patients taken as test cases are given in
Figure 2.17 where also discrete initial data have been reported.

27



Figure 2.5: Smoothing test case patient ID 149198I - λ = 0.3

Figure 2.6: Smoothing test case patient ID 199926 - λ = 0.3

Figure 2.7: Smoothing test case patient ID 213558 - λ = 0.3
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Figure 2.8: Smoothing test case patient ID 149198I - λ = 0.5

Figure 2.9: Smoothing test case patient ID 199926 - λ = 0.5

Figure 2.10: Smoothing test case patient ID 213558 - λ = 0.5
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Figure 2.11: Smoothing test case patient ID 149198I - λ = 0.10

Figure 2.12: Smoothing test case patient ID 199926 - λ = 0.10

Figure 2.13: Smoothing test case patient ID 213558 - λ = 0.10
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Figure 2.14: Smoothing test case patient ID 149198I - λ = 0.15

Figure 2.15: Smoothing test case patient ID 199926 - λ = 0.15

Figure 2.16: Smoothing test case patient ID 213558 - λ = 0.15
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(a) Patient ID 149198I

(b) Patient ID 199916

(c) Patient ID 213558

Figure 2.17: Final Smoothed data for three test cases - λ = 0.10
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Chapter 3

Registration of data

3.1 Amplitude variability and phase variability

At this point of the study, we have obtained the smoothed data, they are in
the continuous form but they may not be ready to perform the statistical
analysis yet, because as shown in Chapter 7 of [5], stochastic phenomena may
contain inherently two different forms of variability: amplitude variability
and phase variability.
The first one pertains to the values assumed by the |WSS(S, Θ̃)| functions,
while, the second one is the variation in the spatial placements of the feature
considered by the first one, disregarding their size.
In order to give an illustrative idea of data, average value over Θ̃ for fixed
S, |WSS|Θ̃(Θ̃), and average value over S for fixed Θ̃ |WSS|S(S), for all the
n = 51 patients, which are reported respectively in Figures 3.1 and 3.6.

In each plot the sample mean is reported in a bold continuous black line.
These functions are defined in Equations (3.1) and (3.2):

|WSS|S(S) =

∑nΘ̃
j=1 |WSS|(S, Θ̃ = θ̃j)

nΘ̃

, (3.1)

|WSS|Θ̃(Θ̃) =

∑nS
j=1 |WSS|(S = sj , Θ̃)

nS
. (3.2)

Looking at Figure 3.1, it is immediate to see that data are not aligned,
in fact for some groups of patients there are similar structures in the dis-
tributions of |WSS| peaks, for example, the highest pink and purple curves
have two peaks, one at each extremity of the domain of S, but they are not
placed at the same point. This might be due to phase variability. These
peaks do not reach the same values: maximum value of pink curve is greater
than purple one, and this aspect has to do with amplitude variability.

Data have been captured in respect to the rigid reference system defined
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by the angiographic instruments and not the natural biologic one, which is
different from patient to patient.
The rigid reference system may not be directly relevant to the biologic dy-
namics of human body, in fact, it makes no sense to pretend to have a unique
artificial reference system to compare ICAs from different patients. So, it
might be useful to warp the n = 51 scales of the curves obtained at the
end of the smoothing phase, by transforming their arguments according to
an appropriate procedure which is referred to as registration or alignment,
which has the purpose of finding a good matching of homologous points of
ICA between patients, in order to identify the natural reference system.

This work deals with, in particular, the phase variability and, as outlined
before, Θ̃ is a 2π × R̃ periodic coordinate, so it is immediately clear how
important a good matching across patients is. So, we have registered data
on Θ̃ and all details of registration algorithm are given in the sequel.

Another very important reason reinforcing the choice of registering data
on Θ̃ coordinate is that, as explained before, also position of the zero point
for Θ̃ has been fixed on the mathematical model of every patient’s ICA ac-
cording to numerical algorithms only, such as the parallel transport, and so
another arbitrary element is introduced in the original data.

Figure 3.1: |WSS|S(S)i i = 1, . . . , 51
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3.2 Choice of registration criterion

The final purpose of registration is to obtain all transformed data modified
according to a common reference system so as to perform all the analysis.
Θ̃range is defined as the range [Θ̃min = −π × R̃; Θ̃max = π × R̃] of
Θ̃ values of the grid G, and it is the interval [-0.5952925; 0.5952925] cm;
similarly Srange is [Smin;Smax] = [-3.386841; -0.508594]. For the present
problem of registration along Θ̃ the functional space W chosen is the set of
all 2π × R̃ one-to-one periodic maps gα defined as:

gα : Θ̃range → Θ̃range (3.3)

gα(Θ̃) = Θ̃ + α, α ∈ Θ̃range (3.4)

in order to affect minimally the data, without any further dilatation, or
other non-linear operations.
Equations (3.4) specify that translated data must be contained in the same
departure set, so as to preserve the periodicity previously described.

W is the algebraic group of 2π × R̃ periodic translations over Θ̃ in re-
spect to composition of functions, in fact:

� it is closed with respect to composition;

� it has a neutral element (g0(Θ̃) = Θ̃);

� every gα(Θ̃) admits an inverse element with respect to composition,
which is hα(Θ̃) = Θ̃ − α.

The group structure of W, in particular the fact that it is closed with
respect to composition, supports the iterative procedure presented in the
sequel.

For every function f defined on Θ̃, its periodic L2
∗ norm, ‖f‖L2

∗
is given

by:

‖f‖2L2
∗

=

∫
Θ̃range

f2dΘ̃. (3.5)

For every couple of functions f(Θ̃), h(Θ̃), for every element gα ∈W, it holds
the (3.6):

‖f(Θ̃) − h(Θ̃)‖L2
∗

= ‖f(gα(Θ̃)) − h(gα(Θ̃))‖L2
∗

(3.6)

So, the L2
∗ periodic norm is invariant with rapport to gα angular transla-

tions. This a very important aspect, because distance between functions is
not modified by registration and this will result particularly desirable in the
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Functional Data Analysis.

Different approaches are available to fix the mechanics of estimating the
shifts αi of patient i, as shown in Chapter 7 of [5].
In the present work a global registration criterion is defined. The iterative
procedure is conducted as follow:

1. Definition of all possible values for αk admitted to be the final shift
values αi for all the patients

αk =
2πR̃

nΘ̃

k = 0.1894875 k cm k = −
nΘ̃

2
, . . . ,

nΘ̃

2
i = 1, . . . , n

(3.7)

2. Computing of the estimate µ̂0(S, Θ̃) of the mean of not registered
data, in this case data are smooth enough to take the sample average
directly;

3. Computing of the global registration criterion REGSSEi,k,0 for the pa-
tient i, for every shift αk at iteration 0, i.e. the sum of squares of
vertical discrepancies between the shifted curve and the sample mean
function:

REGSSEi,k,0 =

∫
Θ̃

∫
S

[|WSS(S, gαk
(Θ̃))| − µ̂0(S, Θ̃)]2 dS dΘ̃ (3.8)

4. Identification of the value k̃i,0 which minimizes (3.8). Every patient’s
data are translated according to the gαk̃i,0

found;

5. A new updated estimate µ̂l(S, Θ̃) is computed starting from new data;

6. Steps from 3 to 5 are repeated with the difference that at iteration l the
REGSSEi,k,l measures the difference between data of patient i, aligned
by shift gαki,l

given by

gαki,l
= gαk

◦ gαk̃i,l−1
◦ . . . ◦ gαk̃i,0

(3.9)

and the estimate of their average µ̂l(S, Θ̃) with rapport to they are
being registered.
The procedure is repeated until an interaction q such that gαk̃i,t

=

gαk̃i,t−1
for every t > q. Final αi is given by

αi = gαk̃i,q̃
◦ gαk̃i,q̃−1

◦ . . . ◦ gαk̃i,0
(3.10)

In any case, in our process a maximum iteration number Imax has been
fixed equal to 20, according to our expectations based upon previous
studies.
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This approach is commonly known in the statistical literature as the Pro-
crustes method.
For every patient i, at every iteration l ∆1

i,l and ∆2
i,l are computed so as to

analyze the convergence to a final αi value.

Figure 3.2: Matplot of ∆2
i,l, i = 1, . . . , n, l = 1, . . . , Imax

∆1
i,l = ‖|WSSi(S, gαk̃i,l

)| − µ̂l(S, Θ̃)|‖L2 (3.11)

∆2
i,l = ‖|WSSi(S, gαk̃i,l

)| − |WSSi(S, gαk̃i,l−1
)|‖L2 (3.12)

From Figure 3.2, where ∆2
i is reported for every patient, it is clear that from

iteration 17 the algorithm does not change shift αk̃i,l for any patient.

In Figure 3.3 ∆1
i=28 for patient 195206 is plotted in order to show how L2

norm of the distance between registered data and the mean with respect to
data have been aligned decreases. In any case, for some patients, like the
one given in Figure 3.4, at the first iterations phenomena of settlement may
occur before convergence.
From all these graphical considerations, we are allowed to conclude that
Procrustes alignment algorithm converges to final values of shift αi which
allow data registration according to a unique metric.

|WSS|Θ̃(Θ̃)i of the final registered and not registered data are reported in
Figures 3.5 and 3.6 respectively.
In the first of the two pictures, it is shown that the effect of registration
is very nonessential, but it can be appreciated in regard to the plots of
smoothed data not aligned.
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Figure 3.3: Plot of ∆1
i=28,l for patient 195206, l = 1, . . . , Imax

Figure 3.4: Plot of ∆1
i=12,l for patient 147589, l = 1, . . . , Imax
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Figure 3.5: |WSS|Θ̃(Θ̃)i i = 1, . . . , 51 - Registered data

Figure 3.6: |WSS|Θ̃(Θ̃)i i = 1, . . . , 51 - Not registered data
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3.3 Analysis of the shifts αi

As already described before, registration has the principal aim of transform-
ing all data to the same reference system, different from artificial one, given
by the angiographic exam. At this step a statistical analysis of shifts αi with
rapport to information about aneurysms may be interesting in order to see
if the matching of homologous points between patients changes for different
typologies of patients.
The analysis proposed is just an observational study, because αi are periodic
data on a circumference, which require particular analysis techniques and a
precise inferential analysis lies outside the purposes of the present work.

Initially, an exploratory analysis is conducted to investigate significant dif-
ferences between the two groups that every biological feature contained in
the AneuRisk dataset defines:

� Position of the aneurysm according to lower-upper groups (ICA -
Willis);

� Position of the aneurysm on left-right carotid (L - R);

� Aneurysm broken or not (B - N);

� Gender of the patient (F - M);

Definition of Lower and Upper groups is the same as in [1].
Analysis have been performed by means of boxplots in Figure 3.7, where also
p-values of T-test for equal means are provided; hypothesis of normality of
data in all groups has been verified by Shapiro-Wilk test, and the lowest
p-value of these tests is 0.06.

Regarding this early study we conclude that shift parameters αi are uni-
formly spread on Θ̃range in the groups.
From this and from the inspection of Figures 3.5 and 3.6, phase variability
seems to be a nuisance variability to our aim, artificially introduced from the
numerical algorithm of image reconstruction and origin point positioning.
The only significant variability is along the S coordinate. In fact, a future
perspective may be the exploration of these data taking into consideration
variability along S only, representing the Wall Shear Stress with a simpler
model which requires less computational costs and which provides more ac-
curate estimates.
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Figure 3.7: Boxplots of shift α
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Chapter 4

Functional Principal
Component Analysis

At this moment, after all processes described in previous chapters of the
present work, we have smoothed and aligned data, which means that dis-
crete initial data have been transformed into n continuous functions |WSS|i
of S and Θ̃ according to the open carotid representation. These functions
have also the great advantage to be aligned, i.e. all the n surfaces modeling
mathematically the ICA walls are represented with rapport to a natural ref-
erence system, which is not the artificial one introduced by the angiographic
instruments.

The center of this work consists in the analysis of data obtained from the
above procedures with Functional Data approach, whose peculiarities and
advantages compared to other more classical approaches have been described
in Section 2.1.

The Functional Principal Component Analysis (FPCA) is a very powerful
statistical tool which allow data dimensional reduction, by projecting data
in a lower dimensional space whose generators can be chosen in order to
explain important amounts of variability by means of a very low dimension
space.
In fact, following this approach, we are going to compute the Principal
Component functions, (PC), and select between them, by a very smart and
simple procedure, the functions which best explain the variability contained
in data. The analysis of selected PC turns out to be extremely useful as
first attempt to understand or interpret variability of phenomena of which
no law-driven model is available, especially for applicative problems.

Practically, the PFCA performed in the present work has been conducted
following the paradigm brilliantly adopted in [1] and [3], which can be sum-
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marized in these macro-steps:

� Computation of Functional Principal Components;

� Data dimensional reduction;

� Scores computation;

� Data projections computation;

� Interpretation of the results.

In order to investigate the effect of data registration on the final results, we
have conducted the Functional Principal Component Analysis, in the sequel
FPCA, separately on registered data and not registered ones.
In Sections 4.1, 4.2, 4.4, 4.3, and 4.5, all details of FPCA steps are given
and results about registered data commented.

4.1 Computation of Functional Principal Compo-
nents

The first step, according to FPCA approach, is the computation of the
autocovariance function:

ΣWSS(t, u) = E[(|WSS(t)| − E[|WSS(t)|]) (|WSS(u)| − E[|WSS(u)|])]
(4.1)

In order to have a simpler notation, t and u indicate two points of the do-
main Srange × Θ̃range, each of them corresponds to a couple (s, θ̃).
Numerically, sample autocovariance v̂(t, u) function has been evaluated in
all the nG×nG = 11970× 11970 = 143280900 possible pairs of G nodes.

Referring to the same notation adopted in Section 2.1, results set out in
Appendix A.5.2 of [5] can be applied in order to obtain the estimates ξ̂p(u)
of the principal component weight functions ξp(u). Each of these functions
satisies

∫
Srange×Θ̃range

v̂(u, t)ξ̂(t) dt = ρ̂ξ̂(u) (4.2)
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for an appropriate eigenvalue ρ̂. The left side of (4.2) is an integral transform
V̂ of the weight function ξ̂. This integral transform is called covariance
sample operator V̂ and it is defined by

V̂ ξ̂ =

∫
Srange×Θ̃range

v̂(·, t)ξ̂(t) dt (4.3)

Therefore, with the new elements introduced above, the eigenequation may
be expressed directly as

V̂ ξ̂ = ρ̂ξ̂ (4.4)

So, our statistical problem corresponds to the mathematical problem of find-
ing eigenvalues and eigenfunctions of the sample covariance operator V̂ ,
which is a self-adjoint linear operator.
Spectral theorem for compact self-adjoint operators guarantees that V̂ ad-
mits an orthonormal basis consisting of eigenfunctions and eigenvalues, which
are all real and form a sequence converging to zero.
So, we have

‖ξ̂p(u)‖L2 = 1, ∀p ∈ N (4.5)

< ξ̂p, ξ̂q > = 0, ∀p 6= q (4.6)

where < ·, · > denotes the usual inner product in L2(Srange×Θ̃range) defined
by

< f, g > =

∫
Θ̃

∫
S
f · g dS dΘ̃ (4.7)

Moreover, from the nature of operator V̂ , all its eigenvalues are non negative.
Summing up all this, we are able to obtain a particular decomposition of
operator V̂ where the ρ̂p are in decreasing order and all eigenfunctions are
orthonormal:

V̂ =
∞∑
p=1

ρ̂p < ·, ξ̂p > ξ̂p (4.8)

The rank of operator V̂ is n − 1 = 50, so V̂ admits 50 nonzero eigenvalues
only.

Numerically, we have computed eigenvalues and eigenfunctions by im-
plementing the power method because this method allows us to compute
only the first k eigenfunctions with maximum modulus and the importance
of this will be shown in the sequel.
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4.2 Reduction of dimensionality of data

The statistical meaning of ρ̂p is fundamental for Functional Principal Com-
ponent Analysis, because it corresponds to the variability explained by the
corresponding eigenfunction ξ̂p.
From what has been described in Section 4.1, the idea of FPCA is to project
the data into a lower-dimension new space, generated by the orthogonal
eigenfunctions of operator V̂ .

The main challenge of FPCA is to represent data in a lower-dimension
space, that is however able to explain an important amount of data variabil-
ity. This trade-off is controlled by the opportune choice of the parameter
k, corresponding to the number of the first greatest eigenvalues ρ̂p to be
considered.

At this point, we have computed the first 50 pairs (ρ̂p, ξ̂p) p = 1, . . . , 50
eigenvalues, in fact, being zero all the others ρ̂p, p = 51, . . . , 11970, it is
no use computing them.
The value for k must be great enough to contain the eigenvalues contributing
significantly, excluding, on the contrary, all the remaining eigenvalues. In
order to choose k properly, we have investigated plots reported in Figure 4.1
and 4.2, which represent the fraction of explained total variance explained
by each eigenvalue ρ̂p,

ρ̂p∑50
p=1 ρ̂p

, and the cumulated fraction of explained total

variance explained by the first k eigenvalues
∑k

p=1 ρ̂p∑50
p=1 ρ̂p

.

This exploration suggest k = 6. Indeed, we see that in correspondence of

Figure 4.1: Variance explained by eigenvalue ρ̂p
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Figure 4.2: Cumulated variance explained by first k eigenvalues

that value, in Figure 4.1 there is a leap, and in Figure 4.2 an elbow.
So, by means of the application of the result (4.8) of the spectral theorem,
we have a restricted decomposition V̂∗ of operator V̂ , limited to the first k
eigenfunctions, which takes the following form:

V̂∗ =
k=6∑
p=1

ρ̂p < ·, ξ̂p > ξ̂p (4.9)

At this point we have computed the first k = 6 sample eigenfunctions
which generate a functional space with lower dimension, on which we are
going to project our original data. This new k coordinates are orthogonal
and allow us to identify easily how the variability is distributed.

4.3 Analysis of Principal Components

As already seen, we have reduced the dimension of the functional space to a
new space, generated by the first k = 6 eigenfunctions of operator V̂ . This
set of eigenfunction explains the 89, 29% variability of data. So the present
step has the aim of interpreting this six eigenfunctions with rapport to the
initial problem, in fact, as explained previously, these eigenfunctions has no
“a-priori” obvious meaning.

To analyze Principal Components, in the sequel PC, we have visualized
each PC function as perturbation of the mean of |WSS|, i.e. always adopt-
ing the open carotid representation, the overall mean is traced (grey surface)
and the functions are obtained by adding (red surface) and subtracting (blue
surface), on the same plot, a multiple of the principal component examined.
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The multiple is defined by a multiplicative constant equal to the sample
standard deviation of the correspondent scores.
This approach allows us to evaluate properly information coming from the

PC function with respect to mean function |WSS(S, Θ̃)|.
The Principal Component functions are traced in Figures 4.3, 4.4, 4.5, 4.6,
4.7, and 4.8.

Figure 4.3: 1st PC (55,93%)

Figure 4.4: 2nd PC (12,34%)
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Figure 4.5: 3rd PC (8.62%)

Figure 4.6: 4th PC (5,21%)

Figure 4.7: 5th PC (3,55%)
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Figure 4.8: 6th PC (2,33%)
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4.4 Analysis of the scores

According to the results found in Section 4.2, from this point on, we will
limit the analysis to the first k = 6 eigenfunctions.
The score γi,p corresponding to the ith obserbeed curve |WSS|i and the pth

estimated eigenfunction ξ̂p is defined as the component along ξ̂p of the ith

observed curve |WSS|i centred around the sample mean |WSS|:

γi,p =

∫
Θ̃

∫
S

(|WSS(S, Θ̃)|i − |WSS(S, Θ̃)|) ξ̂p(S, Θ̃) dS dΘ̃ (4.10)

where |WSS| is defined by:

|WSS| =
n=51∑
i=1

|WSS(S, Θ̃)|i (4.11)

So, at each patient are associated k = 6 scores, one for each eigenfunction.

The statistical interpretation of γi,p is a fundamental part of the present
work, in fact score value γi,p quantifies the influence of the pth eigenfunction

on the deviation of ith patient from the average behavior, i.e. |WSS|.

In order to investigate Wall Shear Stress maps on the ICA with respect
to aneurysmal pathology features, the analysis of the scores plays a funda-
mental role.
So we have analyzed the scores corresponding to the k = 6 selected eigen-
functions selected, investigating scores regarding groups Lower/Upper, Bro-
ken/Not Broken, Left/Right, Male/Female gender. We have conducted an
exploration by means of separate boxplots according to different groups, and
hypothesis tests for equal central values; in fact scores in the groups are not
always normally distributed, so T-test for equal means cannot be applied.
As in all the analysis performed in the present work normality hypothesis
has been checked through the Shapiro-Wilk test.

To test the equality of central values, in our case the median, the Wilcoxon
test has been implemented. It is a non parametric permutation test which
operates on the ranks. Further details about non parametric hypothesis
testing are available in [13].

In Figures 4.9, 4.10, 4.11 and 4.12 are reported all boxplots introduced
for the analysis of scores described in the present Section.
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Figure 4.9: Boxplots of γi,p for Lower(ICA)/Upper (Willis)

Figure 4.10: Boxplots of γi,p for Broken (R)/Not Broken (N)

By means of a MANOVA global testing on the scores of the first k = 6
PC functions, we have looked for the presence of significative differences
between groups, but no significative result was found.

All results of the FPCA presented in this Chapter are discussed in Section
4.6.
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Figure 4.11: Boxplots of γi,p for Left/Right

Figure 4.12: Boxplots of γi,p for Male/Female

4.5 Analysis of projections of data

The last step of the FPCA consists in the computation of projections of all
the |WSS|i functions on the k = 6 PC functions selected.
Projection of |WSS|i on Principal Component p is given by:

|WSS|i,p = |WSS| + γi,p × ξ̂p i = 1, . . . , 51 p = 1, . . . , 6 (4.12)
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Each projection contains the information carried by the overall mean and by
the pth Principal Component function, i.e. we are focusing on the variability
explained by the involved PC uniquely.
These projections have the purpose to make clear how each Principal Com-
ponent function has impact on every patient.

In each of Figures 4.13, 4.14, 4.15, 4.16, 4.17 and 4.18 are reported pro-
jections the n = 51 projections |WSS|i,p on the considered PC, coloured
according their values.

In each of Figures 4.19, 4.20, 4.21, 4.22, 4.23 and 4.24 are reported the
n = 51 projections |WSS|i,p on the considered PC, coloured according
Upper(blue)/Lower(red) group. It is quite evident from these plots that
eigenfunctions do not allow to discriminate between patients of the Upper
or Lower group.

Figure 4.13: Projections on 1st PC
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Figure 4.14: Projections on 2nd PC

Figure 4.15: Projections on 3rd PC

Figure 4.16: Projections on 4th PC
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Figure 4.17: Projections on 5th PC

Figure 4.18: Projections on 6th PC

Figure 4.19: Projections on 1st PC - Upper/Lower groups
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Figure 4.20: Projections on 2nd PC - Upper/Lower groups

Figure 4.21: Projections on 3rd PC - Upper/Lower groups

Figure 4.22: Projections on 4th PC - Upper/Lower groups
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Figure 4.23: Projections on 5th PC - Upper/Lower groups

Figure 4.24: Projections on 6th PC - Upper/Lower groups
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4.6 Interpretation of the results

Inspecting the plots of PC functions as perturbation of the mean, we re-
mark that first PC function might provide an early important information,
discriminating between patients with a high value of the average function
|WSS| from patients with a low one.

Analyzing second PC function, it is possible to remark that this function
is almost constant on Θ̃, varying on S only. Moreover, looking at the red
surface, it is immediate to see that the 2nd PC function is monotone on
almost the whose reconstruction of ICA surface, increasing in the direction
towards the zero, until a peak is reached, after which the function becomes
decreasing.
The function has two peaks, a negative one about at S = −2, 75 cm, and a
positive one at S = −1, 25 cm. It is interesting to note that 2nd PC func-
tion has a symmetrical behavior with respect to the axis S = −2, 25 cm.
This PC function seems to suggest having a periodic sinusoidal behavior.
Blood circulation is certainly a period phenomenon on time, and the fre-
quency is given by the heart. So this corresponds to periodic phenomena in
the points of ICA, such as the intensity of |WSS|.
A possible interpretation of this PC function might be that this function
corresponds to the spatial periodic variations in |WSS| with respect to the
mean function.
These results are the same for registered data and not registered.

Analyzing third PC function we remark again a periodic behavior even if
the location of the peaks is not the same as the one measured for second
PC. A possible interpretation of this PC function might be similar to the
one of the second PC, but on this S−periodic function has a different spatial
frequency.
Similar interpretations might be attributed to fourth and fifth PC functions.

No evident interpretation can be provided to sixth PC function.
The analysis of the scores shows that for each eigenfunction there is no sta-
tistical evidence that scores are different with respect to groups defined by
aneurysms’ features. This is true for all features provided by the AneuRisk
dataset.
If the macro-groups Upper/Lower are considered separately things do not
change significantly.
The absence of any significative difference between groups of scores, con-
sidering different combinations of groups and models, investigated by the
MANOVA global testing turns out to be surprising compared to literature
and physicians’ expectations.
Looking at PC functions also, this makes us suppose that time has an im-
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portant role in the considered phenomenon.
Analysis of time-dependent Wall Shear Stress models should be performed
as futures perspective.

These results are the same for registered data and not registered.
In conclusion, we may say the registration of data do not play any relevant
role in the analysis of |WSS|.
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Chapter 5

Conclusions and future
perspectives of AneuRisk
program

This work had the aim of investigating the presence of possible relationships
between the Wall Shear Stress values of the distal part of the Internal Carotid
Artery obtained by CFD simulations and the origin of cerebral aneurysms in
arterial district downstream of the ICA. This work is situated in the context
of AneuRisk project, a research program set up in 2005 in order to look for
effects of some factors in the onset of aneurysms. These factors, such as
geometry and hemodynamics, were suspected by medical literature to have
some active role in this pathology. This project was meant to provide infor-
mation which could support physicians in their decisions about the therapy
to adopt for the therapy of aneurysmal pathology.
The values of Wall Shear Stress have been simulated numerically from math-
ematical models of blood circulation in the cerebral district by Emory Uni-
versity.
In order to make results of this work easy to interpret, ICA has been mod-
eled according to the open carotid representation, i.e. carotid is represented
by a two dimensional surface, just as the artery were cut longitudinally and
plied till it were completely plain. To parametrize the surface, we have cho-
sen the curvilinear abscissa and an angular coordinate.

This is an observational study, so raw data have been explored to see how
patients analyzed were distributed with respect to gender, age, position of
the aneurysm and its eventual rupture, in order to verify the unbiasedness
of the dataset in terms of these features.
The next step of the work has been focused on the estimates of n Wall
Shear Stress continuous functions of the two coordinates of the ICA surface.
Kernel Regression Method has been implemented after an empirical analysis
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supporting the choice of bandwidth.
The need for data aligned to a natural system of coordinates, not defined
arbitrarily by the angiography technology, has resulted in the registration
process. This process has been conducted on the angular coordinate only.
After these preliminary phases, the central core of the present thesis has con-
sisted in the Functional Principal Component Analysis, i.e. the challenge
to succeed in describing an important amount of variability, by reducing as
much as possible the dimension of the functional space where Wall Shear
Stress functions are defined. This objective is reached by solving the prob-
lem of the search of the first greater eigenvalues of the sample autocovariance
operator and the corresponding eigenfunctions. Principal Component func-
tions (PC) have been analyzed in order to interpret the information they
contain. According to the formulation of Functional Principal Component
Analysis adopted in the work, they are related to the variability shown by
patients that can not be explained by the mean function. After a brief anal-
ysis, we have chosen to limit our study to the first six Principal Component
functions.
The first one seems to discriminate between patients having an high value
of the average function |WSS| from the patients with a low one. Other
interesting information come from the second, third, fourth ad fifth PC,
which show two important features: the first one is that, as suspected from
the earliest exploratory analysis, all the within-patient variability is along
curvilinear abscissa direction, suggesting that no information would be lost
performing analysis of these data by means of simpler carotid models, aver-
aging over angular coordinate and keeping the curvilinear coordinate only.
The second relevant aspect outlined is the behavior along curvilinear ab-
scissa of these three functions, which seems to be sinusoidal and periodic.
Blood circulation in the arteries is a periodic phenomenon both in time and
space, in fact, Wall Shear Stress changes periodically on all the points of the
arterial walls. So, these Principal Components may correspond to periodic
variations with respect to an overall mean computed averaging for every
point of the carotid on the time period (the first PC function). These plots
suggest that each of these functions may correspond to a different spatial
frequency.
Moreover, an exploratory analysis of the scores corresponding to first six
PC functions has been performed with rapport to the groups Upper/Lower,
Rupted/Not ruptured, Left/Right, Male/Female looking for relationships
between the PC scores and medical information about the location of the
aneurysms, but no statistical evidence was found.
Neither a MANOVA global test performed on the scores of first six PC func-
tions reveals significative differences between groups.
In addition to the results coming from PC functions analysis, this makes
us suppose a time effect in the studied phenomenon, which has not been
captured by the present study, because all the analysis have been performed
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at the systolic peak instant.

As already outlined, this work has to be positioned in the context of AneuRisk
project, considering also all the previous studies which delineated the direc-
tions of research we have followed. So, in spite of some interesting results
found and the implementation of techniques never applied before in this
project, we consider this only an initial effort to investigate ICA hemody-
namics in rapport to aneurysms onset.
This work, in turn, has outlined possible future perspectives for the future
developments of the project.
In the immediate future, efforts will be related to the repetition of similar
analysis on data registered also on the curvilinear coordinate. Potentially,
simpler one dimensional models of ICA might be taken into consideration
to analyze Wall Shear Stress, such as a model obtained by computing the
mean on the angular coordinate. A simpler model would have many advan-
tages both in terms of computational costs and application easiness. In fact,
visualization of functions R −→ R would be more immediate for physicians
than functions R2 −→ R.
A further research direction would be the analysis of spatial and temporal
derivatives of the |WSS| function.
In addition, a Fourier analysis of Functional Principal Component Analysis
would be interesting to test our suspects about their different periodicities.
Moreover, a new model approach including also the time dependency in the
Wall Shear Stress value should be evaluated.
An innovative approach might also schedule analysis of Wall Shear Stress
models considering curvilinear coordinate and time only.
In a longer term perspective, it would be desirable to enlarge the dataset in
order to make possible more robust results.
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