
POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione

Corso di Laurea Specialistica in Ingegneria Informatica

EXPLORING PERFORMANCE SCALABILITY
OF TASK-AFFINITY ON DIFFERENT

MULTICORE ARCHITECTURES

Autore: Relatore:

Matteo MARINI Prof. William FORNACIARI

matr. 724626

Tutor aziendale: Correlatore:

Wolfgang BETZ Ph.D. Patrick BELLASI

Anno Accademico 2010-2011

Contents

1 Introduction 1

1.1 State of the art . 3

1.2 Objectives of this thesis work . 4

1.3 Organization of the thesis . 5

2 Impacts of caches on Scheduling Performance 7

2.1 Issues due to an incorrect use of cache 7

2.2 Survey on cache architecture . 9

2.2.1 Cache coherent protocols . 10

2.2.2 Inclusive and exclusive cache 12

2.2.3 Cache Hardware prefetcher . 15

2.3 Classification of cache-aware Scheduling algorithms 16

2.3.1 Data locality policies . 16

2.3.2 Temporal locality policies . 25

3 Improving TaskAffinity 29

3.1 Scheduler architecture on 2.6.34 . 29

3.1.1 Task wake up management . 29

3.1.2 Migration policy . 32

3.2 Test computers and benchmarks . 35

3.3 Analysis of Taskaffinity behaviour . 37

3.3.1 Application’s performance . 37

3.3.2 Impact of task migration on execution time predictability . . . 40

3.3.3 Considerations on experimental results 44

3.4 Task-affinity improvements . 46

ii CONTENTS

3.5 Patch structure . 48

3.5.1 Temporal locality . 48

3.5.2 Synchronization . 50

4 Experimental Results 51

4.1 Comparing to vanilla . 53

4.1.1 Consideration on experimental results 53

4.2 Intel Xeon . 57

4.3 Intel i7 . 61

5 Conclusions and future developments 65

5.1 Future Works . 66

6 Estratto in lingua italiana 69

6.1 Stato dell’arte . 71

6.2 Obiettivi di questa tesi . 72

6.3 Organizzazione della tesi . 73

Chapter 1
Introduction

In the quest for the highest CPU performances, hardware developers have to deal

with a difficult dilemma. On one hand, Moore’s Law does not apply to computa-

tional power anymore, that is, computational power is no longer doubling every 18

months as in the past. On the other hand, power consumption continues to increase

more than linearly with the number of transistors included in a chip, and Moore’s

Law still holds for the number of transistors in a chip. Several solutions have been

adopted to solve this dilemma. Some of them try to reduce the power consumption

by sacrificing computational power, usually by means of frequency scaling, voltage

throttling, or both. Other solutions try to increase the Instruction Level Parallelism

(ILP) inside a processor, in order to get more computational power from the CPU

without increasing power consumption. But nowadays the penalty of a cache miss

(which may stall the pipeline) or of a miss-predicted branch (which may invali-

date the pipeline) has become way too expensive. Already in the early 2000’s, it

was clear that the most effective way to increase computational power and reduce

power consumptionwas to parallelize task execution. For this reason Simultaneous

MultiThreading (SMT) was introduced. It is a technology that allowed to execute

concurrently two threads on the same CPU. Nowadays it was introducedmulticore

technolgy that consist of N superscalar processors put in the same chip. This tec-

nology allows a great parallelization of task execution. With reference to memory

organisation, multiprocessor systems are classified into two groups:

Centralised Shared Memory Architectures: in this architecture, there are multiple

cores connected to a single shared memory. If all cores are equal this architec-

ture is called simmetric multiprocessor (SMP)

2 Introduction

Distributed Memory Architecture: in this architecture each processor has its own

memory module and memory access time depends on the memory location

relative to a processor. Non-uniform memory access (NUMA) processor are

included in this category of architecture

Multicore architectures have been adopted by most chip manufacturers. Dual-

core chips are commonplace, and numerous four and eight core options exist. In the

coming years, per-chip core counts will continue to increase: Intel has claimed that

it will release 80-core chips as early as 2013. The shift to multicore technologies is a

watershed event, as it fundamentally changes the ”standard” computing platform

in many settings to be a multiprocessor.

Even many embedded systems are starting to adopt multicore architectures,

because theese processors can provide a large increment of computational power,

with small increase in power consumption, that is a very important aspect for this

type of systems. But there is an obstacle to the use of these architectures in this sec-

tor and in particular in Real-Time systems. In most multicore platforms, different

cores share onchip caches. Imagine this situation: there are three Real-time tasks:

A, B and C. A uses 512KB ofmemory, B uses 768KB and C uses 256KB. Our platform

has a dual-core chip. Shared onchip cache is of 1MB. There are two possible case of

scheduling. In first case A and C (or B and C) are scheduled. There is enough space

in cache to alloc their resources, and it is good. In the second case A is scheduled

with B: cache trashing occurs. Performance of two tasks could get worse respect the

previous case, because there isn’t any guarantee that A or Bmay find data in shared

cache and, furthermore, it is impossible to predict A or B duration, because if A is

scheduled with B, it will have a certain duration. Instead, if A is scheduled with

C, it will have another duration. In other words: a task’s duration depends from

which other task is scheduled with it and, for this reason, using common Real-Time

scheduling algorithms in multicore systems, well developed techinques for timing

analysis of embedded software used in single processor systems are no loger use-

ful, therefore new techinques are needed to estimate the worst-case execution time

(WCET) of Real-Time tasks for this kind of platforms. It is clear that the scheduler

plays an important role to improve performance and predictability of the applica-

tions. Nowadays, it is important to develop scheduling algorithms ”cache-aware”,

that is a scheduler that, to choose on which cpu to put a task, it consider about how

scheduled tasks use cache memory, in order to avoid cache trashing. This thesis is

the prosecution of the work carried out by Lucas De Marchi. He has tried to make

1.1 State of the art 3

the Linux Real-Time scheduler cache-aware introducing the concept of taskaffinity.

In this work, I have tried to improve the concept of taskaffinity and I have studied

the behaviour of this mechanism on different multicore architectures.

1.1 State of the art

Although the problem to design ”cache aware” scheduling algorithms is an old

and well-known problem for over 20 years and multicore processors are largely

used, nowadays operating systems don’t implement this kind of algorithms and in

literature there are only a few works that study this problem. The most of recent

research works related to this argument consist of profiling activities with the aim

to demonstrate and build a model that show how an unfair cache sharing between

concurrent threads may slow down them and cause sub-optimal throughput, cache

trashing and, in some cases, thread starvation for threads that fail to occupy suffi-

cient cache space to make good progress. The first well-documented work related

to this kind of scheduling algorithms, was developed at the Stanford University. At

the end of 80’s, the Computer Systems Laboratory at Stanford University designed

a prototype of a shared-memory multiprocessor called DASH. Its architecture was

very similar to that used in modern SMP processors. DASH was able to incor-

porate up to 64 high-performance RISC microprocessors. In order to exploit full

potentiality of this machine, they developed a suitable runtime system to use with

DASH, and they designed the COOL language. It was an extension of C++, that

introduced some statements to facilitate expression of medium to large grain paral-

lelism and to define which was the data reference patterns of the program. The COOL

compiler was able to automatically extract fine-grain parallelism for architectures

that, like DASH, supported such a level of concurrency, and extract information

about use of cache made by applications. Using these informations, the runtime

system could ensure parallelism desired by programmer and try to reduce cache

miss rate of each task, because this system ”knew”, for each task, which were the

objects referenced by it, so it distributed tasks and objects in order to make them

close. In plain words, using additional informations provided by the programmer

and exploiting the principle of data locality, the runtime system decided where to

allocate objects and it assigned a task to a CPU that contained objects referenced by

it in its cache. The COOL project shows how the smart use of cache is a problem

that involves all aspect of software engineering, from the compiler to scheduler and

4 Introduction

memory management system.

Interesting research activities made in recent years exploit another strategy.

They don’t introduce new programming language or sophisticated runtime envi-

ronment, but they implement a raw profiler that, at runtime, it infers how much

cache space a task requires, in order to infer which tasks could cause cache trashing

if they would be executed concurrently. To make this job, the profiler executes a

periodical tuning phase in which it analyzes miss rate of each task, in this way it is

possible understand the amount of space used by a task. According to these infor-

mations, two or more task are scheduled on different CPUs only if they don’t cause

cache trashing. These works are not effective as COOL project, but they present

good results with SPEC2000 and LITMUS 1 benchmarks, furthermore this kind of

works was experimented with good outcome also in embedded systems.

1.2 Objectives of this thesis work

The main goal of this thesis is the optimization of the current version of task-

affinity. In a first step, we will analyze the behaviour of task-affinity on different

multicore architectures, in particular on Intel Xeon E5440 and on Intel i7 870. These

architectures have two different cache architectures, furthermore also they have a

different inter-chip communications system. With this analysis, we will find which

are the aspects of task-affinity logic to improve in order to make the most of task-

affinity on tested architectures, for example: in the current version of task-affinity,

as described in [1], the migration policy is not very effective, because some task

bounce from two CPUs at each iteration of benchmark. We believe that this issue

degrades obtainable performance with task-affinity, because a task that migrates

has to warm up the cache of CPU on which it has migrated, increasing miss rate.

We expect that this analysis put in evidence, for each architecture, what is the inci-

dence of this ”migration pattern” on miss rates.

According to results obtained in the analysis phase, we will try to enforce the

temporal locality of data, in order to diminish miss rate of the tasks. To do this, we

will include in the task-affinity logic functions used by kernel to performmigration

of tasks. In the last part of the optimization, we will synchronize the structures

used in task-affinity. All measures executed on task-affinity and on vanilla were

1It is a Linux-based testbed developed by them that supports multiprocessor real-time scheduling

policies within Linux

1.3 Organization of the thesis 5

effectuated using benchmark developed in [1].

Therefore the objectives of this thesis can be summarized as:

1. Analyze the behaviour of the current version of task-affinity on different ar-

chitectures in order to understand which aspects to improve.

2. Optimize the current version of task-affinity, improving the migration policy

and improving the temporal locality of data guaranted by task-affinity.

All changes performed on Linux kernel are based on version 2.6.34 of the vanilla

kernel

1.3 Organization of the thesis

Chapter 2: we first discuss the issues due to an incorrect use of cache. We will see

how an unfair cache sharing may degrade performance and greatly reduce

the determinism of applications. A survey of cache architectures is presented

paying attention to those architectural details that often are not well docu-

mented, such as: cache coherency protocols, inclusive or exclusive cache etc.

In the last section, a classification of recently cache aware scheduling algo-

rithms is presented paying attention to advantages and drawbacks involved

by each algorithm analyzed.

In Chapter 3: we discuss the optimization implemented in this work. The first part

is an analysis of the behaviour of task-affinity on different architectures, in

order to understand how task-affinity can be optimized. Then, the following

sections describe the implementation in Linux.

Chapter 4: we presents the experimental results regarding the correct behavior

of the solution and the improvements in respect to current version of task-

affinity.

Chapter 5: we draw the conclusions on the work summarizing achieved results

and proposing possible future development

Chapter 2
Impacts of caches on Scheduling

Performance

In multicore platforms cache memory is a very important resource and often the

issue is underestimate. Furthermore, in many cases, it is difficult know how to use

cache memory in a correct way, because many important implementations details

of cache memory are undocumented. The aim of this chapter is to show which are

the problems due to an inaccurate use of cache memory and which are the most

important factors of cache architecture that influence system performance. The

last section of the chapter propose an overview of the most important cache aware

policies studied in literature. For each policy is given a briefly description, some

example that explain how to implement it and advatages and drawbacks of the

policy.

2.1 Issues due to an incorrect use of cache

In most multicore platforms, different cores share onchip caches, usually is L2 or

L3 cache. Recent research works show how an unfair cache sharing among concur-

rent tasks and cache trashing degrades performance. Modern operating systems

(OS), attempt to schedule threads in a fair and low-overhead manner. Most simply,

they balance the load across processor by migrating task to keep the run queues

approximately equal. An OS assumes that, in a given time slice, resource sharing

uniformly impacts the rates of progress of all the co-scheduled threads. Unfortu-

nately this assumption is often unmet because howmuch cache space a thread may

use is determined by threads with which it is co-scheduled.

8 Impacts of caches on Scheduling Performance

An interesting activity developed by S. Kim et al. [10] cita shows the impact of

an unfair cache sharing on performance and how this phenomena is dependent by

co-scheduled threads. In Figure 2.1 we can see one of results is provided by that

work.

Figure 2.1: gzip miss rate [10]

The picture shows gzip’s number of cache misses per instruction and instruc-

tion per cycle (IPC), when it runs alone compared to when it is co-scheduled with

different threads, such as applu, apsi, art, and swim. All the bars are normalized to

the case where gzip is running alone. It is interesting to note how gzip’s number

of cache misses per instruction increases significantly compared to when it runs

alone. In fact, it increases by 3x when it runs with apsi and by 9.5x when it runs

with art, 7.3x when it runs with swim. Consequently, the IPC is affected differently.

It is reduced by 35%when gzip runs with apsi, but reduced by 63%when gzip runs

with art. Although not shown in the figure, art, apsi, applu, and swim’s cache miss

per instruction increases less than 15% when each of them runs with gzip.

In terms of fairness, gzip’s significant slow down can easily result in priority

reduction. For example, if gzip has a higher priority than art, for gzip to achieve

a higher progress rate, it has to be assigned more than three times the number of

time slices compared to that assigned to art. Otherwise, to the end users, gzip may

appear to be starved. Therefore, even if gzip has higher priority than art, it seems

that art run more fast than gzip, it is as if priority of gzip is reduced. In terms of

throughput, gzip’s significant slow down reduces the overall throughput because

the utilization of the processor where gzip runs on is also significantly reduced.

Furthermore, it is possible that the co-scheduled threads’s working sets severely

2.2 Survey on cache architecture 9

overflow the cache and create a trashing condition.

In briefly, there are at least three problems that may happen and render the OS

schedule ineffective. The first problem is thread starvation, which happens when

one thread fails in competing for sufficient cache space necessary to make satis-

factory forward progress. The second problem is priority reduction, where a higher

priority thread achieves a slower forward progress than a lower priority thread,

despite the attempt by the OS to provide more time slices to the higher priority

thread. It’s as if the higher priority task and lower priority task have the same pri-

ority, that is the priority of higher priority task is reduced. This happens when the

higher priority thread loses to the lower priority thread (or other threads) in deal-

ing for cache space. To make things worse, the operating system is not aware of

this problem, and hence cannot correct this situation (by assigning more time slices

to the higher priority thread). The third problem is that the forward progress rate

of a thread is highly dependent on the thread mix in a co-schedule. This makes the

forward progress rate difficult to characterize or predict, making the system behav-

ior unpredictable. Unfortunately, despite these problems, cache implementations

today are thread-blind, producing unfair cache sharing in many cases.

As I said in the first chapter, in these years were developed some ideas about

how tomake a scheduler cache-aware. This chapter aims to show the general struc-

ture and strategies used to model cache behaviour followed by these algorithms,

that are the most interesting part of these type of heuristics.

2.2 Survey on cache architecture

Over the years, cache architectures have always played an important role in sys-

tem performance. Hundreds of research papers show how performance can be im-

proved using multi-level caches on a single-processor machine. Multicore systems

introduce new challenges for cache designer, because cache memory is a shared

resource, therefore issues related to how a core access to cached data and how

the coherence regarding the access from different processors to the same cached

data is guaranteed are unavoidable. Furthermore, caches play an important role in

management of communication between different core. This section aims to show

which are most important factors introduced in cache architecture to take in con-

sideration during the development of cache aware algorithms from scratch. These

cache characteristics are common in both general purpose and embedded systems.

10 Impacts of caches on Scheduling Performance

2.2.1 Cache coherent protocols

Usually in multicore architecture, there is a private L1 cache for each core, and

there is a L2 or L3 cache shared among all cores (SMP), or among cores that belong

to the same node (NUMA). Shared cache is one of the most critical resources in

multicores.

As for all types of shared resources, also for shared cache it’s necessary to en-

sure integrity of the shared data. When two or more CPUs operate on a shared

variable and one of these modify the variable, it is necessary that the information

regarding this change of value be communicated to the other CPUs. Themean used

to communicate these informations is called coherence protocol, it defines the rules

used to communicate memory update between different cores. Existing coherence

protocols are classified based on the mechanism by which they ensure cache coher-

ence:

Snooping based protocols: each cache monitors address lines of shared bus for

every memory transaction made by remote processors. Appropriate action

is undertaken when data locally cached is modified by this transaction, for

example: a write by a remote processor into a data address locally cached

results in an invalidation of the local cache copy.

Snarfing based protocols: a cache controller watches both address and data in an

attempt to update its own copy of a memory location when a second master

modifies a location in main memory. When a write operation is observed to a

location that a cache has a copy of, the cache controller updates its own copy

of the snarfed memory location with the new data.

Directory-based protocols: shared data are placed in a common directory thatmain-

tains the coherence between processor caches. This directory acts as a look-

up table for every processor to verify coherence of data that is currently being

read or updated.

The first two mechanisms are typical of the SMP architecture, while the last is

used in large point-to-point inter-processor communication network architectures.

Snooping protocols became popular andwidely acceptedwithmultiprocessors sys-

tems since it required minimal change to the pre-existing physical shared bus in-

terface to the memory. The inherent broadcasting property of the snoop protocols

makes it simple to implement but places an upper limit on scalability. Over the

2.2 Survey on cache architecture 11

years, several snooping based cache coherence protocols were developed. Themost

common is MESI protocol. With this protocol, every cache line is marked with one

of the following states:

Modified: the cache line is present only in one of the local caches, and it has been

modified from the value in main memory. Write on a modified cache line are

allowed, reads are a bit complicated. The local cache that owns a modified

cache line must intercept (snoop) all attempted reads (from all of the other

caches in the system) at main memory location that correspond to modified

cache line, forcing them to back off, then writing data to main memory and

change state of cache line to shared state.

Exclusive: the cache line is present only in the current cache, and it matches main

memory. It is possible to read/write lines in this state. A cache that owns

lines in exclusive state must snoop all read and write transactions from all

other cache and if it intercepts some read that regards owned cache line, it

changes the state of that line from exclusive to shared.

Shared: indicates that this cache line may be stored in other caches and it matches

the main memory. It is possible read cache line in this state. Writes to a shared

cache line are allowed but before to perform the operation, it is necessary

invalidate all other copies in other caches. A cache that holds a line in the

Shared state must listen for invalidation from other caches, and discard the

line (by moving it into Invalid state) on a match.

Invalid: indicates that this cache line is invalid, read/write operation on invalid

cache line are denied

Cache coherence protocols play an important role to improve efficiency of the

read/write in cache. There are a lot of variant of MESI protocol, the most recent

variants are MESIF and MOESI.

The former protocol adds the Forward state. This state indicates that only one

cache should act as a designated responder for any requests for the given line. With

the standard MESI protocol, a request for cache line will receive a response from

each cache that contains that line in the shared state. Instead, withMESIF protocol a

request will be responded to only by the cache holding the line in the Forward state.

A cache line shared among multiple processors will be in Forward state in only

one L3 cache. This protocol is used in new Intel microarchitecture Nehalem and

12 Impacts of caches on Scheduling Performance

it is designed for NUMA. The aim of this new state is to reduce communications

between cache.

The latter protocol add Owned state. A cache line in this state holds the most

recent, correct copy of the data. Only one processor can hold the data in the Owned

state, all other processors that contains a copy of that data must hold the them in

the shared state. A copy of data in main memory can be incorrect. A cache line

in owned state may be changed to the Modified state after invalidating all shared

copies, or changed to the Shared state by writing the modifications back to main

memory, furthermore cache lines must respond to a snoop request with data. It is

clear that the aim of this protocol is to avoid the need to write a dirty cache line

back to main memory when another processor tries to read it. With the Owned

state, processor can supply the modified data directly to the other processor. This

is beneficial when the communication latency and bandwidth between two CPUs

is significantly better than to main memory. An example of MOESI implementation

is present in AMD Shanghai microprocessor.

2.2.2 Inclusive and exclusive cache

Another important architecture detail that affect performance is if a cache is inclu-

sive or exclusive. An inclusive cache means that all data available in higher level

caches are contained also in the last level cache, namely in shared cache. An exclu-

sive cache means that data is present only in one cache.

It is clear that these two architectural policies are focused on two different as-

pects. The first policy greatly reduces snoop traffic because if a core doesn’t find

requested data in any of its cache level, it knows the data it is also not present in

any other core’s cache. The second policy, instead, allows to store more data than

an inclusive cache, because for each data only one copy is stored.

An example of inclusive L3 shared cache is implemented in Intel Nehalem mi-

croarchitecture. Each cache line in the L3 contains additional ”core valid” bits, one

for each core in the system, denoting which cores may have a copy of that line in

their private caches. If a ”core valid” bit is set to 0, then that core cannot possibly

have a copy of the cache line, while a ”core valid” bit set to 1 indicates it is possible

(but not guaranteed) that the core in question could have a private copy of the line.

Since Nehalem uses the MESIF cache coherency protocol, if a cache line in L3 have

more than one ”core valid” bits set to 1, the cache line is guaranteed to be clean

and it will be in Forward state in L3, in this way, the L3 is the only responder for

2.2 Survey on cache architecture 13

all request for that line. This greatly reduces the amount of traditional ”snooping”

coherency traffic between cores.

An implementation of exclusive cache can be found in AMD’s Shanghai pro-

cessors. These CPUs present an interesting implementation of this type of cache

architecture, because L1 and L2 are exclusive cache, but last level shared cache (L3)

is a not-inclusive cache. Not-inclusive architecture is a variant of exclusive archi-

tecture, because if a cache line is transferred from the L3 cache into the L1 of any

core, the line can be removed from the L3. According to AMD this happens if it is

”likely” that the line is only used by one core, otherwise a copy can be kept in the

L3. About how the CPU can ”understand” if a line will be used only by one core,

AMD has not revealed details. Nowadays, an inclusive cache is preferred over an

exclusive cache, because it simplifies the problem of cache coherence.

Figure 2.2: AMD Shanghai and Intel Nehalem [4]

To get a sense of how cache coherence impacts on system performance, it is

possible to look over the work made by Molka et al. [4]. They have compared per-

formance of MESIF protocol applied to inclusive cache (Intel Xeon 55** Nehalem)

and MOESI protocol applied to an exclusive cache (AMD Shanghai), see figure 2.2.

These processors tested are multithreaded and NUMA dual-socket SMP systems.

In the table 2.3 read latencies recorded during test are showed.

Figure 2.3: Read latencies [4]

14 Impacts of caches on Scheduling Performance

on-chip latencies These data measure access time to the cache of other cores on the

same die. We will see that having an inclusive cache or not influence strongly

this type of latency.

Nehalem: a Shared cache line in L3 is guaranteed to be valid and it could be

in shared or forward state, it can be accessed within 13 ns. An Exclusive cache

line that has core valid bit set in L3, may has been modified in higher level

cache, this fact forces the L3 cache to check the coherency state in the core,

therefore the latency increase up to 22.2 ns, furthermore, in the this type of

cache, exclusive cache lines can be silently evicted from higher level cache

and remain only in L3. The check on coherency state is made also for these

lines that are only in L3 cache. A read of Modified cache line present in other

on-chip L1/L2 requires 25.5/28.3 ns, but if a modified line is evicted from

L1/L2, it is required a write-back in L3 and an update of the core valid bits.

It means that future access at that line will has a latency of 13 ns again.

Shanghai: a Shared or Exclusive cache lines from higher level caches need to be

fetched from the cores or main memory if no copy exists in the non-inclusive

L3 cache. Latency showed in the table indicate that request for lines in these

state are serviced by main memory. A Modified state it’s the only state that

allow to avoid access to main memory.

off-chip latencies These data measure access time to the cache of other cores on

another die. These latencies include additional penalty for the QPI/HT data

transfer. We will see that cache coherence protocol influence this type of la-

tencies.

Nehalem: thanks to inclusive cache, the access to unmodified data is fast.

Latency for Exclusive cache line include a snoop of one core (63 ns), Shared

cache line don’t require snoop (58 ns). Moreover, latency for Modified lines

is higher (> 100ns), because the MESIF protocol requires a write back to the

main memory.

Shanghai: cache lines in Shared state are fetched frommainmemory (> 99ns),

L3 can satisfies request for Exclusive cache lines (83 ns). Cache line inModified

state can be forwarded to the requesting core from all cache levels, further-

more, thanks to MOESI protocol, a modified cache line in the remote cache

can switch to the Owned state and avoid to be written back to main memory.

It is interesting to note how accesses to remote caches on Shanghai are slower

2.2 Survey on cache architecture 15

than accesses to the local RAM (83 vs. 77 ns).

2.2.3 Cache Hardware prefetcher

Finally, it is necessary to spend a few words about prefetching. Prefetcher is an

hardware component that tries to predict which memory addresses are going to be

used by the program, in order to load needed data in cache memory. Typical tech-

nical workloads often access memory in regular and sequential patterns, therefore,

with a smart predictionmechanism, a prefetcher can select and preload correct data

and, in this way, reduce memory latency. The key point to build a good prefetcher

is to design prediction mechanism. In literature there are many ideas to solve this

problem. An example of concrete solution is the Intel Smart Memory access. This

system was introduced with Intel Core microarchitecture. In this system there are

two prefetchers to the Level 1 data cache and the traditional prefetcher to the Level

1 instruction cache. In addition there are two prefetchers associated with the Level

2 cache. In total, there are eight prefetchers per dual-core processor. In order to im-

prove the accuracy of the prediction, the prefetcher system tags the history of each

load using the Instruction Pointer (IP) of the load. For each load, the prefetcher

builds a history and keeps it in a suitable history array. Based on load history, the

prefetcher tries to predict the address of next load accordingly to a constant stride

calculation (a fixed distance or ”stride” between subsequent accesses to the same

memory area). At this point, the prefetcher generates a prefetch request with the

predicted address and brings the resulting data to the Level 1 data cache. In litera-

ture, this kind of prefetchers are called strided prefetcher. Other architectures, such

as Power ISA 2.06, that use a strided prefetcher, introduces cache instructions to

hint prefetch system for data prefetching. With this instructions an application can

specify direction, depth, no of units and so on. In this way, the programmer has a

low level control on data prefetched.

Another category of prefetcher are non-strided data prefetcher. They are very

useful for accessing complex and irregular data structures as linked list, B-Trees etc.

There are different techniques to implement these prefetcher, one of these is ”pat-

tern history based prefetcher”. In this approach, the prefetcher tracks the addresses

of misses and tries to identify specific patterns of misses that occur together. Once

a pattern of misses has been detected, the prefetcher will find the first miss in the

pattern. When this first miss occurs again, the prefetcher will immediately prefetch

the rest of the pattern. For traversing a complex data structure like a linked list,

16 Impacts of caches on Scheduling Performance

this would be a fairly effective approach. Recently AMD has announced that it will

employs a non-strided prefetcher in its brand new Bulldozer microarchitecture, but

it has not revealed details on implementations.

2.3 Classification of cache-aware Scheduling algorithms

Cache aware scheduling policies can be classified according to type of strategy fol-

lowed. They are divided in data locality and temporal locality policies. The former

type is focused on a smart allocation of resources in cache. These policies partition

cache memory in order to every task may use a dedicated area in cache memory

and then, reduce inter-thread cache interference and miss rate. The latter type is

focused on cache reusability. These policies schedule tasks that subsequently will

access at the same data, reducing miss rate.

2.3.1 Data locality policies

These policies are focused on the use of Last Level Cache (LLC) made by scheduled

tasks. They can be used both for Real-time and Fair tasks. They don’t take care

about core-local cache (usually L1) or other shared resources like interconnects. In

literature, data locality is the most developed type of cache aware policies, because

they can be integrated in every OS and are relatively simple policies to develop.

Now I will show two examples of data locality policies and how they are imple-

mented.

Cache aware Fixed priority policy: to understand this type of policy assume this

situation: consider amulticore platform consisting of M cores with an on-chip

LLC, and a task set τ, in which each task T releases a thread Ji every period

p(T). Every released thread is characterized by a worst-case execution time

(WCET) denoted by C(T). It means that each thread released by task T has

a maximum duration of C(T). For each thread is defined the number A(Jk)

that represents the total cache space size used by it: we define this space as

per-thread working set sizes (WSS). For simplicity we assume that each thread

generated by a task T use the same number of partition, therefore it is possible

to express A(Jk) as A(T). The quantity e(T)/p(T) is called the utilization of

T, denoted u(T). The deadline d(Jk) of a thread Jk coincides with the release

time of thread Jk+1. If thread Jk completes its execution after time d(Jk), then

it is tardy. For some scheduling algorithms, tardiness may be bounded by

2.3 Classification of cache-aware Scheduling algorithms 17

some amount B, meaning that any thread Jk will complete execution no later

than time d(Jk) + B. Finally, assume that tasks have fixed priority. This model

describes very well a typical Real-time application.

A thread Jk is scheduled for execution if:

1. Jk is the thread of highest priority among all waiting threads,

2. There is at least one core idle

3. There is enough cache space, i.e. at least A(Jk) , is available.

p(T) C(T) A(T)

T1 3 2 1

T2 4 3 2

T3 5 3 2

T4 8 3 1

Table 2.1: An example task set

Core 1

Core 3

Core 2

Partition 1

Partition 2

Partition 3

Partition 4

J11

J11

J12

J12

J13

J13

J13

J14

J14

J21

J21

J23

J23

J23

Figure 2.4: Example of scheduling performed by Cache aware Fixed priority policy

Figure 2.4 shows how the task set in Table 2.1 is scheduled by the policy.

The index of each task identifies the task and indicates the priority of the

latter. Higher priority is 1 and lower priority is 4. In the picture threads are

represented in this way: J
β
α , where α represents which task has released the

thread, and then also its priority, and β is an index that identifies the thread.

We assume that co-scheduled threads use not-overlapped cache partitions.

18 Impacts of caches on Scheduling Performance

At time 0 all threads are released. At this time, the thread J14 can not be exe-

cuted because it has lower priority than J13 and the latter can not be scheduled

since there is not enough idle cache partitions available.

It is clear that the aim of the described policy is to avoid cache trashing that

occurs when the amount of space required by co-scheduled threads is greater

than the dimension of LLC. A very important assumption made in this policy

to achieve this goal is that all threads use not-overlapped partition of cache.

This fact simplifies the scheduling problem, because it’s enough to make a

check on the amount of cache space occupied by co-scheduled threads to infer

if cache thrashing occurs. Nevertheless, in practice, this is not always true,

because it greatly depends on type of application executed.

Mechanisms and examples They keymechanism to reach this objective is pro-

filer. At runtime, the profiler tries to infer what is the WSS of each scheduled

task and provide these informations to scheduler. The challenge is how to do

this thread. Calandrino et. al [2] propose an interesting implementation of

co-scheduler and for this type of policy.

The implementation is focused on Soft Real-time tasks, its solution is quite

simple: it makes EDF cache-aware. Standard EDF algorithm gives higher

priority to the task with earlier deadline in order to schedule it as soon as

possibile. A cache-aware EDF is very similar to classic EDF: it ”promotes”,

that is increases priority, of the thread with the smallest WSS, in this way

threads on a runqueue are ordered by WSS.

The algortihm uses two separate run queues for eligible threads: the former

is EDF-ordered, the latter is a ”promotion” queue. In this queue, threads are

ordered from smallest to largest WSS. The thread in front of this queue is

”promoted”, that is its priority was increased and, for this reason, it remains

at the front of the queue and it will be the next task to execute. If there are

tardy threads, they are inserted in EDF-ordered queue and they are scheduled

according to EDF policy. The EDF-ordered queue contains task that have

higher priority than tasks inserted in promotion queue. When the heuristic

picks a task from promotion queue, it checks if it will cause cache thrashing.

For this reason, the scheduler maintains a variable with the total amount of

the WSSs allocated, that is the cache space allocated. If this value plus the

WSS of the thread to schedule exceeds the cache space size, thrashing will

2.3 Classification of cache-aware Scheduling algorithms 19

occur. In this case, the core remains idle and the thread waits for some thread

that free cache resources. Obviously task priorities are respected, it means

that a task with the smallest WSS is promoted only if it has the higher priority.

W5 W1W2W3W4

Deadlines

WSS

............

CPU0

CPU1

D5 D1D2D3D4

Figure 2.5: Queues used in the algorithm: tasks in ”EDF-ordered” queue are ordered

by their deadline, tasks in ”promotion” queue are ordered by the size of

their WSS. Tasks in EDF-ordered queue have priority greater than priority

of the tasks in promotion queue.

To compute the WSS used by each task, the co-scheduler divides the total

cache misses observed over all profiled threads by the total number of pro-

filed threads, and multiplying the result by the cache line size. Cache misses

andWSS are related, because, from experiments executed by Calandrino et al,

follows that number of cache misses multiplied for dimension of a cache line

gives a number proportional toWSS used by a thread. All the profiled threads

belong to the same task. The co-scheduler discards measures obtained by

threads that cause cache thrashing. Cache misses are recorded using perfor-

mance counters. At the beginning of an application, there is not any measure

about cache miss, therefore the profiler requires a bootstrapping phase in or-

der to get necessary measures. This phase converge pretty fast to a reasonable

result.

It is interesting to note, that in this implementation the only mean to avoid

cache trashing is a check on amount of WSSs used by scheduled tasks. This is

a sub-optimal solution because cache trashing can occurs also in those cases

where the total amount of WSSs is less than total amount of cache space. To

understand why, it is necessary to remind some consideration about cache

architectures. When a cache miss occurs, it is necessary to make room in

cache for the new entry to load. The heuristic that decide which is the entry

to evict is called the replacement policy. According to replacement policy,

20 Impacts of caches on Scheduling Performance

cache memory are classified in:

Direct-mapped: a line in main memory can be placed only in one cache line.

There is an 1:1 relationship between main memory and cache memory.

Fully associative: a line in main memory can be placed in any cache line.

There is a 1:N relationship between main memory and cache memory.

N-way set associative: it is a trade-off between direct-mapped and fully as-

sociative. Cache memory is divided in set, each set can contain N cache

line. A line in main memory can be present only in one specific set and

within it, that line can be placed in any line that belong to that set.

Index 0
Index 1
Index 2
Index 3

Index
0
1
2
3
4
5
6

..........

Main memory
Cache memory

(a) Cache Direct mapped

Index 0, Way 0
Index 0, Way 1
Index 1, Way 0
Index 1, Way 1

Cache memory
Main memory

Index
0
1
2
3
4
5

..........

(b) Cache N-Way set associative

Figure 2.6: Example of replacement policy in Direct-mapped cache and in N-Way Set

associative Cache

Considering this architecture detail, it is clear that a check onWSS is sufficient

to prevent cache thrashing only if the cache is fully associative, because every

line in main memory can be mapped on any cache line but, in a N-way set

associative cache, a line in main memory can be mapped only within a certain

set. For this reason, if a task occupies cache line used by a co-scheduled task,

cache trashingwill occurs. Furthermore, there is another important detail: we

have assumed non-overlapping WSS, but, in practice, this hypothesis is un-

likely, therefore cache thrashing can occur also with a fully associative cache.

Nevertheless, Calandrino et al. test their algorithm with Soft Real-Time mul-

timedia application and, according to results showed [2], it seems that this

sub-optimal solution is quite effective, at least with this kind of applications.

Advantages and drawbacks This policy presents a clear drawback: it may

waste resources. According to rules previously showed, if there is an idle

core, but not enough cache space, a task may not be scheduled and, in this

way, degrade throughput.

2.3 Classification of cache-aware Scheduling algorithms 21

Nevertheless, the policy improves predictability of the application, because,

theoretically, each thread should find in cache enough space for its resources,

maintaining constant its execution time. This aspect make this policy very

indicate for Real-time system, where predictability is a very important aspect.

There is another important advantage related to improvement of predictabil-

ity. On single-core systems there are well-developed techniques for timing

analysis of embedded software. Using these techniques, the WCET of real-

time tasks may be estimated, and then used for schedulability analysis. In

multicore systems these techniques can’t be used, because, as we have seen,

cache behaviour (hit or miss) is unpredictable because it depends on which

tasks are co-scheduled, therefore WCET can be variable and very difficult to

estimate. With the analyzed policy, it is possible perform a proper cache iso-

lation, that make cache behaviour more predictable and then it becomes fea-

sible to execute a system-level schedulability analysis using existing WCET

analysis techniques. For details on WCET analysis for Real-time system in

multicore platform see [7]

Fair cache sharing policy: this policy is focused on Fair tasks, therefore it consid-

ers an application model with less constraints than to that considered by Ca-

landrino et al. This implementation ensures fair cache sharing, that is a strategy

throughput oriented.

As we have previously seen, a bad combination of coscheduled tasks may

cause cache thrashing and, consequently, a variation on task’s instruction per

cycle (IPC) that determines task’s performance variation. But, if co-scheduled

tasks sharing cache in a fair way, they can allocate needed resources in cache

and they experience the fair IPC, that is the IPC that ensure the best overall

performance. The mechanism used to ensure the fair IPC is to modify CPU

timeslice assigned to a task, in this way, each task always run as quickly as

it would under fair cache allocation, regardless of how the cache is actually

allocated.

In figure 2.7 is represented what the algorithm tries to do. Each box cor-

responds to a task. The height of the box indicates the amount of cache allo-

cated to the thread. The width of the box indicates the thread’s CPU timeslice.

The area of the box is proportional to the amount of work completed by the

thread. Stacked thread boxes indicate corunners. In the case (a) is represented

22 Impacts of caches on Scheduling Performance

TASK B

TASK B
TASK A

TASK C TASK C TASK B

TASK A
TASK A

Task A CPU latency

ca
ch

e
al

lo
ca

ti
o

n

(a) Real case: tasks don’t share equally cache

TASK B

TASK B

TASK C TASK C

TASK ATASK A

ca
ch

e
al

lo
ca

ti
o
n

Task A CPU latency

(b) Ideal case: tasks share equally cache

TASK B TASK C TASK C

TASK A
TASK

TASK A B

ca
ch

e
al

lo
ca

ti
o

n

Task A CPU latency

(c) Modified time slice to ensure equally sharing of cache

Figure 2.7: Example of how Fair cache sharing policy modifies timeslice to ensure fair

cache sharing [3]

2.3 Classification of cache-aware Scheduling algorithms 23

a real case where tasks don’t share equally cache and, for this reason, Task A

needs more CPU time to execute all its job. In situation (b) is represented

the ideal case, where all tasks share equally cache. Case (c) represents how is

possible to ensure fair cache sharing: Task A can’t make forward progress, so

CPU timeslice of task A is increased and, at the same time it decreases times-

lice of task B to maintain balanced CPU sharing. This is what the algorithm

does.

Mechanism and examples: An implementation of this policy is developed by

Fedorova et al. [3]. The algorithm is divided in two phases: sampling and

scheduling. During the sampling phase, the co-scheduler gathers perfor-

mance data and uses it to estimate the task’s fairmiss rate. During the schedul-

ing phase, the scheduler periodically monitors the task’s performance and

adjusts the task’s CPU timeslice if its actual performance deviates from its

fair performance.

The fair miss rate and fair IPC of a task are estimated via performance coun-

ters, executing this experiment: different groups of corunners are formed, the

task which we want to estimate fair miss rate is executed together to each

group. At the end of execution, miss rates of each executed task are recored.

These measures correspond to one data sample. It is necessary to collect at

least ten data sample for each task, in order that each task has completed at

least 100 million of instructions, to eliminate effects of compulsory misses. At

the end of the sampling phase, the co-scheduler estimates the fair miss rate

using a linear regression analysis and, according these informations, also fair

IPC is computed. In the scheduling phase, the scheduler monitors the task’s

IPC, again via performance counters. According to the difference between

IPC measured and task’s fair IPC, the scheduler adjusts task’s CPU timeslice.

In Figure 2.8 is reassumed how fair miss rate is estimated. Fedorova et al.

found that that a linear function is the best approximation of relationship

between co-runnners miss rates.

The overhead of sampling phase is fixed and it is repeated every time a thread

has completed one billion instructions, while the check on a task’s IPC is

made every 50 million instructions executed. When to check task’s IPC and

when to perform sampling phase is decided according to empirical observa-

tions made by the developers of the algorithms.

24 Impacts of caches on Scheduling Performance

Figure 2.8: step of co-scheduler [3]

It’s important to note that this algorithm does not establish a new CPU shar-

ing policy but simply enforce existing policies. For example, if the system

is using a fair-share policy, the cache-fair algorithm will make the cache-fair

threads run as quickly as they would if the cache were shared equally, given

the number of CPU cycles they are entitled to under the fair-share policy. Fur-

thermore, the algorithm doesn’t add any additional data structure, but simply

requires only to record fair miss rate and fair IPC for each task.

Advantages and drawbacks Unlike previous example, this algorithm don’t

waste resource, moreover it use a more complex co-scheduler than that im-

plemented by Calandrino et al, because it has to estimate fair miss rate of

each task. According some statistical considerations, two corunner task expe-

rience fair cache sharing, if their miss rate is similar and that miss rate is the

fair miss rate. To determine this value for each task, a possible approach con-

sist of executing a task with all available corunner, but this approach is not

feasible. The solution adopted by the co-scheduler, instead, consist of to run

each task with a small number of possible corunner and use miss rates mea-

sured to derive a relationship between the miss rates of the task analyzed and

its co-runners, and use that relationship to estimate task’s fair miss rate. This

procedure could introduce an higher unpredictability in the application and

for this reason, that this algorithm couldn’t be suitable for Real-Time systems,

where predictability is required.

2.3 Classification of cache-aware Scheduling algorithms 25

2.3.2 Temporal locality policies

The idea behind this type of policies is very simple, but in practice it is more com-

plex than the idea behind data locality policies. These policies require complex

infrastructure and nowadays only few research activities have developed policies

of this type. An interesting implementation of this type of policy can be found

in COOL project [8]. Recently Yang et al. [6] have implemented a scheduling al-

gorithm inspired to these policies and naturally the concept of task-affinity is a

simplified implementation of temporal locality policies.

cache reusability policy The key point to maximize reusability of data in private

cache, that is in L1 cache, is data sharing among tasks. If two threads, or in

general two task, sharing common data, they are scheduled subsequently on

the same CPU, in this way, it’s more likely to reuse the same data in private

cache. According this observation, tasks are inserted in abstract list called

sharing groups. Tasks that share the same resources are put in the same sharing

group. The scheduler assigns the same CPU at all tasks that are in the same

sharing group, in this way they will use always the same private cache.

Instead, tomaximize reusability of data in shared cache, that is L2 or L3 cache,

it is necessary to improve the opportunities that the subsequently scheduled

tasks could reuse the data accessed by the current tasks at the scheduling

point.

Current

co−scheduled

task

T1 T2 T3 T4

............

Some of possible

subsequent co−scheduled

tasks that could reuse

data in LLC cache

Example of permutation

of co−scheduled tasks

that won’t reuse

data in LLC cache

............

T1 T2 T3 T4

Figure 2.9: Data accessed by possible permutations of co-scheduled tasks. In the

right figure co-scheduled tasks with green or red squares won’t reuse data,

because current co-scheduled tasks don’t access to red or green squares

In figure 2.9 each square represents the data set used by a scheduled task,

squares with different colours represent different data set. In case (a), four

tasks are co-scheduled and they access to four different data sets. In the case

26 Impacts of caches on Scheduling Performance

(b) four co-scheduled tasks access to only two different data sets. To reuse the

data in the cache, it is necessary schedule tasks that use data sets that have

been accessed by current co-scheduled tasks subsequently. Therefore, more

data sets are accessed by current co-scheduled tasks and there will be more

opportunities that the subsequent coscheduled tasks could reuse the data in

the shared cache. For example: in situation (a) there are 44 permutations

of co-scheduled tasks that could reuse the data, but only 24 in situation (b).

According this observation, the scheduler should schedule the tasks using as

many data sets as possible, but at one important condition: the total amount

of data set used by co-scheduled task, must be less than the total cache space,

in order to avoid cache trashing.

The interesting thing, is that to maximize reuse of data present in private

cache and tomaximize reuse of data present in shared cache are not in conflict

with each other. The explanation is straightforward: each core executes a task

that belongs to different sharing group, therefore co-scheduled tasks would

access different data sets, in this way, the number of data sets accessed in

shared cache is maximized.

According to this theory, it is possible to list the rules applied this kind of

policy:

o Co-schedule tasks that belong to different sharing groups.

o Schedule a task only if it doesn’t cause cache thrashing.

Mechanism and examples: An implementation of this policy is developed by

Yang et al. [6].

This implementation use an array of linked list. In each list are inserted tasks

that sharing the same resources, for simplicity we call the i− th list SGi. Each

list is characterized by total working set used by task inserted in, it is denoted

with TWi. It is clear that these list are the implementation of the sharing

groups previously described, for this reason, from now I will call these lists

sharing groups. Before to start, the algorithm assigns each sharing group to

one CPU: if number of core (NC) is less than number of sharing groups (NS),

a CPU will execute more than one sharing groups, see fig. 2.10.

The heuristic is divided in two phases. In the first step, the algorithm chooses

a task from each sharing group for a total of NC tasks, in this way, it has

2.3 Classification of cache-aware Scheduling algorithms 27

CPU3CPU2CPU1CPU0

Q
1

Q
2

Q
3

Q
4

Q
5

W
5

W
4

W
3

W
2

W
1

T
5

T
4

T
3

T
2

T
1

D
5

D
4

D
3

D
2

D
1

SG0 SG3SG2SG1

Figure 2.10: Example of how sharing groups can be assigned to different CPUs. A

possible coschedule is: PSj = {Q1; T1;W1D1}

defined a possible co-schedule (PSj). It computes the sum of working set size

(SWSS) of the PSj selected, if SWSS is greater than dimension of shared cache,

PSj is discarded. This procedure is repeated for all possible PSj. At the end,

all filtered PSj that fit into the shared cache are put in a queue called C and

waiting for the next phase.

Before to analyze the next step, define the sharing number (SCj) as the number

of different sharing groups belong to a possible filtered co-schedule PSj. In

the next step, elements present in queue C are ordered according their SCj. In

order to schedule tasks that access the most different data sets, the algorithm

select tasks that belong to PSj with the maximum SCj.

If C is empty, it means that there isn’t any possible co-schedule PSj with the

total working set size TWj that fit in shared cache. Also in this case, the algo-

rithm would aim to minimize the shared cache misses by choosing the possi-

ble co-schedule with the maximum SCj and with smallest TWj.

An interesting aspect of this implementation, is that it is possible to reduce

also cache coherence overhead, the reason is very simple. Tasks that belong to

two different sharing groups don’t share data, otherwise they should be in the

same group. It means that lines used in private cache by a co-scheduled tasks

that are in different groups, won’t never be in shared, but only in modified

or exclusive state. in this way, the overhead due to management of cache

coherent shared state is reduced.

28 Impacts of caches on Scheduling Performance

Yang et al. implemented their algorithm in the scheduler present in Thread-

ing Building Blocks (TBB) that is a multithreading library developed by Intel.

This library allows to programmer to specify which is the working set of each

threads and this information is just what it needs to implement their policy.

Advantages and drawbacks This policy is an improvement of data locality

policies, because, also in this case, it is essential to prevent cache trashing in

LLC, exploiting the same mechanisms used in data locality policies.

An important aspect of this policy is that it deals with cache coherence, that,

as we have seen in previous section, is a very important factor that influence

system performance. A drawback, is that to implement this policy is required

an infrastructure that provide the same informations used in data locality

policies, that is how much cache space a task use, and in addition, which

are addresses used by task, that is a very difficult information to obtain. To

resolve this problem, the algorithm involves the programmer providing him

a suitable API to influence the scheduling choices. This fact means to modify

application code with additional functions.

The difference between temporal locality policies data locality policies is very

slight. The temporal locality policies, try to reduce cache misses choosing which

tasks will be scheduled in two different moments. In other words, this type of pol-

icy, for each cpu, choose which task that will be scheduled after the current task in

order that the next task will reuse resources already allocated in cache of each cpu.

Instead data locality policies, try to reduce cache misses choosing tasks that cause

the lowest inter task cache interference. In other words, this type of policy make

sure that all scheduled task in the same moment may allocate necessary resources

in shared cache.

Chapter 3
Improving TaskAffinity

In this chapter, we analize the behaviors of the current task-affinity implementation

considering different architectures and benchmarks. This analysis is two fold: on

one side it allows to understand why the current task-affinity implementation is

not effective on some architectures, e.g. the Intel Xeon, on the other which are the

points of task-affinity logic that can be optimized in order to improve an application

throughput and predictability.

3.1 Scheduler architecture on 2.6.34

Now I will briefly introduce which are the parts of the scheduling procedure inter-

ested by the task-affinity logic and which are the most important changes carried

out from 2.6.31 kernel version to 2.6.34.

3.1.1 Task wake up management

The scheduling procedure for a task starts when it wakes up. A task can wake up

for different reasons, i.e. a semaphore becomes unlocked or a new task creation.

In all those cases different kernel functions are called, but at the end they call the

try to wake up function:

2381 s t a t i c in t try to wake up (s t r u c t t a s k s t r u c t ∗p , unsigned in t s t a t e ,

2382 in t wake flags)

where p is the to be waken task. This function follows these steps:

1. Disables kernel preemption, locks the runqueue where p was last executed

and check if p is not already waken up and it is not already on a runqueue.

30 Improving TaskAffinity

In the first case the function releases lock and exits, in the second case the

function check if a push is necessary. Further details about these if state-

ments will be describe thereafter. If the two checks fail, p’s state is changed in

the TASK WAKING, the lock on runqueue is released and select task rq,

a wrapper for a class-specific select task rq rt, is called. The function

task waking at line 2420 is class-specific and regards only Fair tasks.

2391 th i s cpu = get cpu () ; /∗ d i s a b l e k e r n e l p r e empt i on ∗ /

2392

2393 smp wmb () ;

2394 rq = t a sk rq l o ck (p , &f l a g s) ;

2395 update rq c lock (rq) ;

2396 i f (! (p−>s t a t e & s t a t e))

2397 goto out ;

2398

2399 i f (p−>se . on rq)

2400 goto out running ;

2401

2402 cpu = task cpu (p) ;

2403 orig cpu = cpu ;

2404

2405 # i f d e f CONFIG SMP

2406 i f (un l ike ly (task running (rq , p)))

2407 goto ou t a c t i v a t e ;

2408

2415 i f (t a s k con t r i bu t e s t o l o ad (p))

2416 rq−>nr un in te r rup t ib l e −−;

2417 p−>s t a t e = TASKWAKING;

2418

2419 i f (p−>sched c lass−>task waking)

2420 p−>sched c lass−>task waking (rq , p) ;

2421

2422 t a sk rq un lock (rq) ;

2423

2424 cpu = s e l e c t t a s k r q (p , SD BALANCEWAKE, wake flags) ;

Figure 3.1: A portion of the try to wake upmethod

2. select task rq rt choose onwhich CPU pwill be executed. It calls find lowest rq

that returns the best CPU where to put p. Criteria used to choose the best

CPU for p will be described soon. When select task rq rt returns, check

3.1 Scheduler architecture on 2.6.34 31

for cpuaffinity 1 and if selected CPU is online, in that case returns, otherwise

calls select fallback rq that returns an any online CPU that ”respects”

p’s cpuaffinity.

2344 s t a t i c i n l i n e

2345 in t s e l e c t t a s k r q (s t r u c t t a s k s t r u c t ∗p , in t sd f l ags ,

2346 in t wake flags)

2347 {

2348 in t cpu = p−>sched c lass−>s e l e c t t a s k r q (p , sd f l ags ,

2349 wake flags) ;

2350

.

2359 i f (un l ike ly (! cpumask test cpu (cpu , &p−>cpus allowed) | |

2360 ! cpu onl ine (cpu)))

2361 cpu = s e l e c t f a l l b a c k r q (task cpu (p) , p) ;

2362

2363 return cpu ;

2364 }

Figure 3.2: A portion of the select task rqmethod

3. acquires the lock on selected runqueue, updates some p’s statistics, enqueues

p on selected runqueue and calls check preempt rq rt

4. checks if p has priority greater than priority of the task currently executed

on the selected runqueue, in that case it calls the need resched function in

order to perform the context-switch on the selected runqueue at the end of

try to wake up.

5. updates p’s state to TASK RUNNING and calls the class-specific function

task woken to check if pmust be pushed from the selected runqueue. task woken

has effects only for Real-time tasks.

The most important differences from version 2.6.31 related to Real-time tasks

regard principally try to wake up.

It is possible to have multiple istances of try to wake up for the same task

executed simultaneously. In the 2.6.31 kernel version, this problem is resolved by

1On Linux it is possible decide on which CPU a task can be executed. The set of CPUs that can

execute a task is called cpuaffinity of that task. Each task owns a mask called cpus allowed that include

all CPUs where it can be executed, that is its cpuaffinity

32 Improving TaskAffinity

2434 rq = cpu rq (cpu) ;

2435 raw spin lock (&rq−>lock) ;

2436 update rq c lock (rq) ;

2437

. . . .

2447 # i f d e f CONFIG SCHEDSTATS

2448 s cheds t a t i n c (rq , ttwu count) ;

2449 i f (cpu == th i s cpu)

2450 s cheds t a t i n c (rq , t twu loca l) ;

. . . .

2460 # endi f /∗ CONFIG SCHEDSTATS ∗ /

2473 a c t i v a t e t a s k (rq , p , 1) ; /∗ enqueue t a s k ∗ /

2474 success = 1 ;

. . . .

2491

2492 out running :

2493 trace sched wakeup (rq , p , success) ;

2494 check preempt curr (rq , p , wake flags) ;

Figure 3.3: A portion of the try to wake upmethod

holding the runqueue lock. In the 2.6.34 kernel version, to deal with this issue a

new task’s state named TASK WAKING was introduced.

TASK WAKING is used to indicate someone is already waking up the task, in

this way other instances of try to wake up fail when executing the if statement

at line 2396 of the try to wake up, Fig. 3.1, because the input parameter state of

try to wake up is in the most cases equal to TASK ALL and then, according to

Fig. 3.6, TASK WAKING & TASK ALL returns 0 and try to wake up exits. With

this solution it is possible to reduce the time in which the lock of runqueue is held.

3.1.2 Migration policy

Another important part of scheduling procedure is the migration policy. Migration

of Real-time tasks is made in two ways:

Push tasks: The push operation is implemented by push rt task(). The func-

tion receives in input a runqueue and looks at the highest-priority non-running

runnable real-time task on the input runqueue and considers all the run-

queues to find a CPU where it can run. It searches for a runqueue that is of

lower priority, that is, one where the currently running task can be preempted

3.1 Scheduler architecture on 2.6.34 33

1173 s t a t i c void check preempt curr r t (s t r u c t rq ∗rq ,

1174 s t r u c t t a s k s t r u c t ∗p , in t f l a g s)

1175 {

1176 i f (p−>prio < rq−>curr−>prio) {

1177 resched task (rq−>curr) ;

1178 return ;

1179 }

.

1196 }

Figure 3.4: A portion of the check preempt currmethod

2496 p−>s t a t e = TASK RUNNING;

2497 # i f d e f CONFIG SMP

2498 i f (p−>sched c lass−>task woken)

2499 p−>sched c lass−>task woken (rq , p) ;

2500

. . . .

2511 # endi f

2512 out :

2513 task rq unlock (rq , &f l a g s) ;

2514 put cpu () ; /∗ e n a b l e k e r n e l p r e empt i on ∗ /

2515

2516 return success ;

2517 }

Figure 3.5: A portion of the try to wake upmethod

by the task that is being pushed.

The research and the choice of the best CPU for the task to push is executed

by find lowest rq the same function used in select task rq rt. This

function builds a mask of cpus that contains the lowest-priority runqueues

and returns the CPU onwhich the task to push has last executed, as it is likely

to be cache-hot in that location. If this is not possible, the sched domain

map is considered to find a CPU that is logically closest to last CPU that has

executed the task to push. If this fails too, a CPU is selected randomly from

the mask.

The push operation is performed until a real-time task fails to be migrated

or there are no more tasks to be pushed. Because the algorithm always se-

34 Improving TaskAffinity

183 # def ine TASK RUNNING 0

184 # def ine TASK INTERRUPTIBLE 1

185 # def ine TASK UNINTERRUPTIBLE 2

186 # def ine TASK STOPPED 4

187 # def ine TASK TRACED 8

188 /∗ in t s k−>e x i t s t a t e ∗ /

189 # def ine EXIT ZOMBIE 16

190 # def ine EXIT DEAD 32

191 /∗ in t s k−>s t a t e aga in ∗ /

192 # def ine TASK DEAD 64

193 # def ine TASK WAKEKILL 128

194 # def ine TASKWAKING 256

195 # def ine TASK STATE MAX 512

Figure 3.6: Task’s states

lects the highest non-running task for pushing, the assumption is that, if it

cannot migrate it, then most likely the lower real-time tasks cannot be mi-

grated either and the search is aborted. No lock is taken when scanning for

the lowest-priority runqueue. When the target runqueue is found, only the

lock of that runqueue is taken, after which a check is made to verify whether

it is still a candidate to which to push the task (as the target runqueue might

have been modified by a parallel scheduling operation on another CPU). If

not, the search is repeated for a maximum of three trials, after which it is

aborted.

In order to decide which tasks must be pushed, a linked list named push-

able list is added to each runqueue. push rt task() selects tasks to push

from this list. A task is inserted in this list when it is enqueued on a runqueue

as show in the snippet below.

The current task of any runqueue can’t never be in a pushable list, in fact,

during a context switch the next task to be executed is removed from the

runqueue’s pushable list.

Pull task: The pull operation is implemented by pull rt task(). The algorithm

looks at all the overloaded runqueues in the system and checks whether they

have a Real-time task that can run on the current runqueue (that is, checks if

the target CPU ”respects” the cpuaffinity of the task to pull) and if that Real-

time task is of a priority higher than the task the target runqueue is about to

3.2 Test computers and benchmarks 35

902 s t a t i c void

903 enqueue task r t (s t r u c t rq ∗rq , s t r u c t t a s k s t r u c t ∗p ,

904 in t wakeup , bool head)

904 {

. . . .

912 i f (! t a sk cu r r en t (rq , p) && p−>r t . nr cpus al lowed > 1)

913 enqueue pushable task (rq , p) ;

914 }

Figure 3.7: A portion of the enqueue task rtmethod

schedule. If so, the task is queued on the current runqueue. This search aborts

only after scanning all the overloaded runqueues in the system.

In the 2.6.34 kernel version, the migration logic and all data structures involved

are not changed with respect to 2.6.31 version.

3.2 Test computers and benchmarks

In this section I will briefly describe machines and the benchmark used to test task-

affinity.

I$ L1
32KB

32KB
D$

I$ L1
32KB

32KB
D$

I$ L1
32KB

32KB
D$

I$ L1
32KB

32KB
D$

CPU2CPU1 CPU3 CPU4

6MB L2$ L2$6MB

(a) Machine A: Intel Xeon E5440

32KB
D$

32KB
D$

32KB
D$

32KB
D$

32KB32KB32KB 32KB

CPU2CPU1 CPU3 CPU4

8MB L3$

256KB
L2$

256KB
L2$

256KB
L2$

256KB
L2$

I$ L1 I$ L1 I$ L1 I$ L1

(b) Machine B: Intel i7 870

Figure 3.8: Cache configurations on computers used in this work. Those with D$ are

data cache, those with I$ are instruction caches and the others are unified,

that is, cache serves to data and instructions.

Machine A The first machine is an Intel Xeon E5440 running at 2.83GHz. There is

not any cache shared among all cores. The LLC consists in two big L2-caches,

36 Improving TaskAffinity

of 6MB each, shared between sets of 2 cores cache hierarchy is shown in Fig.

3.8(a). On this machine there are two dies: CPU0 and CPU1 are on the same

die, while other CPUs are on other die.

Machine B The second machine is an Intel Core i7 870 processor. It runs at 2.93

GHz and has the cache configuration as illustrated in Fig. 3.8(b). The LLC

consists in one L3 of 8MB, which is shared by all cores. The L2-caches are

private to each processor. All CPUs are on the same die.

The Benchmark used is the same as used in master thesis [1], in Fig.3.9 is repre-

sented its structure.

wave 0

wave 1

wave 2

wave 3

mixer 0

mixer 1

mixer 2

Figure 3.9: Structure of benchmark used: task are green coloured, buffer are blue

coloured

The Execution of benchmark is divided in three steps:

1. Waves write their buffer

2. Mixers read data from two buffers filled by waves, they mix read data and

write them on their buffer, for examplemixer0 reads data from the buffer filled

by wave0 and from the buffer filled by wave1, mixes the data and then writes

its buffer.

3. The Last mixer, reads data from the buffers written by mixer0 and mixer1,

mixes the data and writes its buffer.

3.3 Analysis of Taskaffinity behaviour 37

When mixer2 has finished to write data on its buffer, we say that a sample was

produced. The execution time to produce a sample depends on the buffers dimen-

sion, because each task has to fill its buffer. Note that waves fill their buffers with

integers of 2 byte, therefore if buffer is of 4KB they will write 2048 integers in their

buffer. Buffer dimension is always a power of 2. The metric used to evaluate bench-

mark performance is the same as used in [1]:

average + 2 ∗ standarddeviation(A2S), (3.1)

where average is the average of execution time to produce a sample and standard

deviation is the standard deviation of execution time to produce a sample. With this

metric is possible measure throughput and predictability of the application.

3.3 Analysis of Taskaffinity behaviour

This section analyzes which are the improvements and downsides that the cur-

rent version of task-affinity shows on different test computers and various buffer

dimensions.

In the following experiments only the Intel Xeon and Intel i7 architectures are

considered, because their cache architectures are similar in structure. These archi-

tectures differing in inter-chip communication, the former uses Quick-path Inter-

connect (QPI) the latter uses Hyper-transport (HT). Furthermore, Intel i7 uses an

inclusive LLC with MESIF protocol. To observe how these factors impact on task-

affinity a complex analysis would be required and this is not the goal of this thesis.

3.3.1 Application’s performance

The length of the buffers determine how long the work executed by producers and

consumers takes. It was showed in [1] that if buffers used are too short and con-

sequently tasks have very few work to do in user-space side, the parallelism pro-

vided by the SMP system is not well profited. For this reason, in [1] a buffer of 4KB

was used, in this way, parallelism was well profited. In the following graphics, we

compare vanilla and current version of task-affinity in terms of predictability and

throughput on different architectures and using different buffer dimensions.

38 Improving TaskAffinity

Figure 3.10: Average and Std. Deviation of execution time of a sample on Xeon (cur-

rent version of task-affinity)

Figure 3.11: Average and Std. Deviation of execution time of a sample on i7 (current

version of task-affinity)

A2S Improvement on Table 3.1 is calculated in this way:

A2Stask a f f inity − A2Svanilla

A2Svanilla
(3.2)

Where A2Stask a f f inity and A2Svanilla are calculated using 3.1.

As shown in graphics and as summarized in Table 3.1, the current version of

task-affinity is not effective on Intel Xeon. In terms of throughput task-affinity is

not better than vanilla, because the average of execution time of a sample is about

the same in both kernels and this is true for both the architectures. In term of

predictability, on Intel i7, task-affinity is better than vanilla, especially with buffer

greater than 32KB. Task-affinity should reduce both L1 and LLC cache misses, but

this fact occurs only on Intel i7, for this reason, on Intel Xeon predictability is degra-

dated,Fig. 3.12 and 3.13.

3.3 Analysis of Taskaffinity behaviour 39

A2S Improvement

Xeon i7

4KB -1.89% 2.33%

8KB -0.82% 6.42%

16KB -0.31% 8.42%

32KB -3.96% 6.53%

64KB -3.25% -5.14%

Table 3.1: A2S Improvement obtained with task-affinity on different architectures

with different buffer

Figure 3.12: L1 Read and write misses on Xeon (current version of task-affinity)

Figure 3.13: L1 Read and Write misses on i7 (current version of task-affinity)

40 Improving TaskAffinity

3.3.2 Impact of task migration on execution time predictability

Migration of tasks is an important factor that influences cache misses. Current ver-

sion of task-affinity is not very effective in terms of reduction of task’s migrations.

As already described in [1], during the benchmark’s execution, mixer0 or mixer1

bounce between two different CPUs. This issue is not related to the architecture or

the buffer dimension, but it is related to the logic of task-affinity. To understand the

reason of this problem see Fig. 3.14.

Figure 3.14: Step A: mixer0 chooses CPU4. Step B: mixer2 chooses CPU4. Step C:

mixer0 chooses CPU2

This picture was made using gtkwave, a tool that show in a graphic way the

scheduling performed. Consider step A. According to the current task-affinty logic,

mixer0 has to choose a CPU that has executedwave0 orwave1, that is CPU2 or CPU4,

mixer2 has to choose a CPU that have executed mixer0 or mixer1, that is CPU3 or

CPU1. mixer0 chooses the least loaded runqueue, therefore it chooses CPU4. At

Step B mixer2 can choose between CPU4 or CPU1, they have the same number of

Real-time task, therefore mixer2 choose the first CPU in its list, that is CPU4. At

step C, mixer0 has to choose CPU2 or CPU4 again, but it can’t choose CPU4, as in

step A, because it is still occupied by mixer2, so mixer0 has to be executed on CPU2.

This is the problem. Since mixer0 or mixer1 choose a CPU occupied by mixer2, one

of them will have to migrate.

Task’s migration can degrade performance because amigrated task couldwarm

up a new cache and it could create new cache interference in a new location already

occupied by other tasks. In order to measure how much this migration pattern

increases miss rate of the application, the following experiment was performed:

two run of the benchmark are performed, in the first run all tasks are pinned on a

specific CPU and they can’t migrate, in the second run only waves are pinned and

mixers can migrate, Tab.3.3.2 summarizes the relative CPU assignments.

What we expect with all tasks pinned and with buffer less than 32KB is a de-

3.3 Analysis of Taskaffinity behaviour 41

(a) All task pinned

Task CPU

Wave0 1

Wave1 2

Wave2 3

Wave3 4

Mixer0 1

Mixer1 3

Mixer2 3

(b) Waves pinned

Task CPU

Wave0 1

Wave1 2

Wave2 3

Wave3 4

Table 3.2: CPUs assignment

crease of L1 read and write miss rates and a reduction of accesses to LLC. With

dimensions greater than 32KB, the buffers can’t be loaded entirely in L1 cache,

therefore we don’t know effect on L1 miss rates. Anyway LLC miss rates should

diminish. With buffer less than 32KB, accesses to LLC are very different between

cases with all task pinned and case with only waves pinned and then, miss rates

that occur in two cases are not longer comparable. Note that on Intel i7, LLC is L3

and between L1 and L3 there are private L2 caches that can store buffer of 32KB

and 64KB, therefore also with buffers of 32KB and 64KB accesses to LLC should be

very different in the considered cases. But as we will see in the following graphics,

also on Intel i7, in the considered cases, the number of accesses to LLC is about the

same with buffer greater than 32KB.

Figure 3.15: L1 Read and Write misses on Xeon (experiment with pinned tasks)

42 Improving TaskAffinity

Figure 3.16: Number of LLC Read and Write accesses on Xeon (experiment with

pinned tasks)

Figure 3.17: LLC Read and Write misses on Xeon (experiment with pinned tasks)

3.3 Analysis of Taskaffinity behaviour 43

Figure 3.18: L1 Read and Write misses on i7 (experiment with pinned tasks)

Figure 3.19: Number of LLC read and write accesses on i7 (experiment with pinned

tasks)

44 Improving TaskAffinity

Figure 3.20: LLC miss rate of read and write instructions on i7 (experiment with pinned

tasks)

3.3.3 Considerations on experimental results

We can infer from these graphics, that migration pattern have a great influence on

read/write miss rate on LLC in both architectures considered.

On Intel Xeon, L1 and LLC read and in particular write misses are greatly in-

creased, this fact is due to cache architecture. On Xeon cores are not all on the same

die, for example: assume that core 1 and 2 are on the same die, while core 3 and

4 are on the other die. If a task is executed on core 1 and request a data on core 3,

that request will result in a miss, therefore if a task bounces from CPUs that own to

different dies, each time it has to warm up the cache. This issue regards especially

write operations, because for read operations, hardware prefetchers mitigate this

problem.

On Intel i7, instead all core share a common LLC. When a core requires a data,

it sends a data request to L3 cache. If data is in L3 and there is a hit, the L3 cache

query the ”core valid” bits of the cache line that contains requested data, in order

to know which is the core that owns requested data. The core that owns requested

data reply to the request with the most recent copy of data. For this reason, each

core on i7 can use data in other private cache because all data are contained in LLC.

To get a sense on how much cache miss influence predictability of the applica-

tion, see Fig. 3.21. In the graphics two run of the benchmark are compared: in the

first run all tasks are pinned, while in the second run all tasks canmigrate according

migration policy of vanilla kernel.

It is interesting to note how the absence of migration improve the predictability

3.3 Analysis of Taskaffinity behaviour 45

Figure 3.21: Std. Deviation of execution time of a sample on Xeon and i7 (all task

pinned compared vanilla)

when buffer used are greater than 32KB that can’t be stored in L1 but only in LLC

cache or in private L2 (Intel i7).

Performance degradation on Intel Xeon is not only due to migration pattern.

As I said before, cache architectures of Xeon and i7 are very different and from pre-

vious graphics seems that with cache architecture of Intel i7, task-affinity is more

effective, but there is another important aspect that influences performace: it is

Inter-chip communication. Intel i7 use the new Quick-path Interconnect that is a

point-to-point processor interconnect developed by Intel to compete with Hyper-

Transport. This first implementation of this bus achieve 25.6 GB/s, which provides

exactly double the theoretical bandwidth of Intel’s 1600 MHz FSB, that is the best

performance obtainable with FSB. From datasheet, Intel Xeon E5440 use a FSB at

1333 MHz, therefore communication between chips are more faster on i7. Hence, it

is clear that communication between cores that belong to different dies is very ex-

pensive on Intel Xeon. On Intel Xeon, mixer0 or mixer1 could find one buffer in L1

cache and other buffer in a bank of L2 that is shared by the CPU that have execute

it. Mixer2 could find one buffer on L1 one cache, while other buffer is always placed

on bank of L2 that is not shared by the cpu that has executedMixer2, therefore read

latencies are very high, because data are placed on different dies. On i7, instead,

mixer2 could find one buffer in L1 cache and other buffer in L3 cache that is shared

among all cores and it is inclusive, therefore to read data is less expensive on i7.

46 Improving TaskAffinity

3.4 Task-affinity improvements

Before to explain how the new kernel patch works, it is necessary to remember

the concept of task-affinity. We say that two tasks have a task-affinity relationship

if they share data and their execution depends upon reading or writing this data

[1]. In a producer-consumer application, the producer is the one that writes to the

shared buffer, while the consumer is the one that reads it. The consumer depends

on data generated by the producer since it needs it in order to be able to run, there-

fore we say that the consumer has a task-affinity relationship toward the producer.

ConsumerProducer
Task−affinity

Figure 3.22: Task-affinity relationship between producer and consumer

Each task is provided with a linked list called taskaffinity list that contains all

tasks to which it has task-affinity relationship, briefly all its producers. To insert

and delete a task in a taskaffinity list two new system calls are provided:

sched add taskaffinity: This system call adds a dependency to the current task,

i.e. the task that issued the call. It receives, as parameter, the pid of the task

the current one will be dependent upon.

sched del taskaffinity: When a task does not want anymore to use the task-affinity

mechanism, it is possible to remove it through this call. As in the case of

inclusion of dependency, it suffices to pass as parameter the pid of the task

one wants not to follow anymore.

Thanks to these system calls, the scheduler ”knows” which tasks have task-

affinity and, in this way, it can schedule consumers after producers in order to

enforce reuse of cache memory.

The task-affinity logic influences wake up and migration of a task. As we have

previously seen, in try to wake up the choice of CPU where to put the to be waken

task is made by select task rq rt 3.2. This function is modified in this way:

given the input task p, the function doesn’t call find lowest rq but it loops for

all element present in the p’s taskaffinity list and build a mask, called affinity mask,

with CPUs that have executed a task present in p’s taskaffinity list. Finished the

3.4 Task-affinity improvements 47

loop, the function returns the CPU with the runqueue that has the lowest number

of Real-Time tasks. Only if the mask is empty, the function calls find lowest rq

to choose a CPU in the standard way.

In the current version of task-affinity, a task that ”respect” task-affinity, that is

a task that was enqueued according to its task-affinity relationships, isn’t able to

migrate. In plain words, push rt task and pull rt task can’t move tasks that

”respect” task-affinity.

The aim of this policy is clear: when a task wakes up, the policy tries to select

the best CPU for that task and, if it finds it, it blocks the task on the best runqueue

until the task’s execution. For this reason the key point of this task-affinity logic

is the select task rq rt. In the optimal case, producers and consumers will be

executed subsequently always on the same CPU.

Nevertheless, in practice, the chosen CPU for p is next to never the optimal

CPU. The reason is very simple. The choice of the best CPU, and the enqueuing of

task are performed in different moments. When select task rq rt is called, it

doesn’t hold any lock. During the loop, the function has to read what is the con-

tent of different runqueues present in the system, these reads are not synchronized.

Once the CPU is selected, select task rq rt returns and try to wake up takes

a lock on the chosen runqueue, in order to call activate task to perform the en-

queuing of the task. From when select task rq rt selects the CPU to when the

lock is taken, a task with equal or higher priority than p’s priority can be inserted

in the selected runqueue and, in this way, the next task that will be executed won’t

be p.

The current version of task-affinity ensures only weak concept of temporal lo-

cality because it doesn’t ensure, when it is possible, that the next task executed after

a producer is a consumer. Another problem of the current version of task-affinity

is the migration policy. It is not very flexible. Pull and push functions maintain

the system balanced, and guarantee that every CPU executes always the higher

priority Real-time task present in its runqueue. Therefore, the denial to pull and

push can improve predictability of the application and can degrade significantly

the throughput of the application. Predictability is an important aspect for Real-

time systems, but if we have a very bad throughput we don’t exploit the potential-

ity of multicore platforms.

The aim of the patch developed in this thesis is to improve the concept of tem-

poral locality in order to execute a consumer immediately after a producer, when

48 Improving TaskAffinity

it is possible and to improve the migration policy in order to use also the func-

tions involved in the migration mechanism to exploit the concept of task-affinity.

Furthermore, the patch makes task-affinity more robust synchronizing the accesses

to data structures used. With this patch we try to improve throughput and pre-

dictability of the application.

3.5 Patch structure

The proposed patch is divided in two parts. The first part improves the temporal

locality, while the second part introduces mechanisms to synchronize accesses to

task-affinity data structures.

3.5.1 Temporal locality

The implemented logic to improve temporal locality is divided in the following

parts:

last tsk field To ensure that a consumer will be the next executed task after a pro-

ducer, it is necessary to change what select task rq rt ”sees”. As I previ-

ously said, during its loop, select task rq rt checks for CPUs that have

executed a task in p’s taskaffinity list. It means that, in that moment, those

CPUs could be executing a task that is not a producer and such, the L1 cache

could already be dirty. For this reason, at each runqueue was added a field

named last tsk that contains the last task executed in a runqueue. This

field is updated at each context switch if the next task to be executed is differ-

ent from idle. In this way, if current task on runqueue is not idle, this field rep-

resents, the task in execution. With this additional field, select task rq rt

”knows” which is the task currently executing on each runqueue. In this way,

CPUs that during select task rq rt are executing a task that is not in p’s

taskaffinity list are not inserted in affinity mask.

enqueue on head This change is not enough. Consider this situation: two different

CPUs that we call CPU A and CPU B are executing two different instances

of try to wake up. Respectively, they are called for task p and task q: the

former has task-affinity relationship, the latter is a generic Real-time task,

both tasks have the same priority. Suppose that the current task on CPU A is a

task in p’s taskaffinity list and then select task rq rt choose CPU A for p.

3.5 Patch structure 49

Suppose that try to wake up that wakes up q chooses CPU A and enqueue

task q on the runqueue of CPU A. Task p is not yet enqueued, therefore when

it will be enqueued, it will be preceded by q and then the next task that will

be executed on CPU A is q.

next task to run

..............

Runqueue

new task

CPU

Figure 3.23: Enqueue on head

To resolve this problem a task that ”respects” task-affinity is enqueued on the

top of a runqueue and not on its tail. In this way, if two Real-time tasks are

on the same runqueue and have the same priority, but one of them ”respects”

a task-affinity, the next task that will be executed is the task that ”respects” a

task-affinity.

choice of current task Even if a task with task-affinity is enqueued on head in a

runqueue, it will be the next executed task only if it is enqueued before it is

executed a task that is already on that runqueue. For this reason, it is neces-

sary to optimize the choice made in select task rq rt. In select task rq rt,

when a task with task-affinity, that we call p, has built its affinity mask, it

checks if in that mask there is the CPU that is executing the try to wake up

that are waking up it. If this is true, it means that the current task on that CPU

is a p’s producer and now on that CPU a try to wake up is in execution,

therefore any other task enqueued on that CPU in that moment can’t be ex-

ecuted, because during try to wake up kernel preemption is disabled and

then it is necessary wait that try to wake up finish. Choosing that CPU, p

will be the next task executed on that CPU, because it is enqueued on head

and it can precede all task enqueued on that CPU during select task rq rt.

migration mechanism There is another a problem. It could happen that a task

with higher priority is enqueued on the same runqueue where a task with

task-affinity is enqueued. In this case, the next task to execute won’t be

the task with task-affinity. To resolve this problem, migration mechanism

is used. When the try to wake up has enqueued task p it calls function

50 Improving TaskAffinity

task woken in order to checks if p can be immediately executed on the se-

lected runqueue or not. If on the runqueue there is a task with priority equal

or higher than the p’s priority and this task precedes p, push rt task is

called and p can be pushed on another CPU. To select the CPU where to push

p, the same mechanism used in select task rq rt is adopted. Therefore,

p will be pushed where it is in execution a task in p’s taskaffinity list, if it is

impossible standard push criteria are adopted and pwill be pushed on a CPU

that executing a task with lower priority than p. Obviously, in order to push

a task that ”respect” task-affinity, it is necessary insert it in a pushable list.

3.5.2 Synchronization

In the current version of task-affinity, accesses to data structures used to manage

task-affinity are made by user or by kernel. The resource that must be synchronized

is taskaffinity list

Access from user space: the user space can access task-affinity data structures us-

ing syscalls sched add taskaffinity, and sched del taskaffinity.

These functions access the pid of the task received in input in synchronized

way, by using the read-write lock tasklist lock that protects the kernel’s in-

ternal task list. For this reason, at every moment, only one instance of these

syscalls can modify the task-affinity data structure of a task.

Access from kernel space: here the situation is more complex. There are two func-

tions that can access to task-affinity data structures, they are:

task affinity notify exit and select task rq rt. The former func-

tion frees task-affinity data structures and is called when a task is exiting.

During this phase, all resources used by a task, pid included, are deallo-

cated. Therefore, when task affinity notify exit is called, tasklist lock

is acquired. This is not enough because in that moment select task rq rt

could access the task-affinity data structures of the exiting task, for this rea-

son another layer of synchronization is needed. To resolve this problem, each

task has its own read-write lock named taskaff lock to protect its task-affinity

data structures.

Chapter 4
Experimental Results

In this chapter I will show the behaviour of task-affinity on different architectures.

First of all, we will check if the expected scheduling is performed. After which we

will analyze how the optimization proposed influences performance and L1 and

LLC miss rates of the application.

In Fig. 4.1 the scheduling that vanilla and the developed patch should perform

are represented.

P1 P2P1 P2 P3 P3 P4

Duration of a sample

Mixer0

Mixer1

Wave2

Wave3

Mixer2

Wave0

Wave1

Mixer0

Mixer1

Wave2

Wave3

Mixer2

Wave0

Wave1

Duration of a sample

Figure 4.1: Ideal Scheduling performed by vanilla (left) and task-affinity (right).

We have assumed thatmixer0 andmixer1 have the same duration, allwaves have

the same duration. In the real benchmark, durations of the waves are slightly dif-

ferent, durations of the mixer0 and mixer1 are slightly different. Furthermore we

assume that mixer0 and mixer1 never start when waves are still in execution.

Considering the time normalized to the duration of one sample, it is possible to

express durations of different tasks in relative terms. Using relative durations, it is

52 Experimental Results

possible to estimate the improvement given by task-affinity using amdhal’s law [1]:

Speedup =

(

P1
S1

+
P2
S2

+ ...
Pn
Sn

)−1

(4.1)

Where Pi is the i − th parallelized portion of the program and Si is the cor-

respondent parallelization factor. Furthermore the following constraint must be

respected:

N

∑
i=1

Pi = 1 (4.2)

Before to explain in which portions the serial execution of the benchmark is

subdivided, it is necessary define some variables:

TW : average of execution time of a wave

TM0,1
: average of execution time of mixer0 and mixer1

TM2
: average of execution time of mixer2

TW,M: difference between TM2
and TW that is TW,M = TM2

− TW

The serialized execution of benchmark can divided into the following portions:

P1 P2 P3 P4

vanilla TM0,1
∗ 2 TW ∗ 4 TM2

–

taskaff
TM0,1

∗ 2 3 ∗ TW + TW,M TW ∗ 2, π4 > 0 π4 = |TM2
− 2 ∗ TW |

TW,M ∗ 2, π4 < 0

Table 4.1: Different Portions of serialized execution of the benchmark

Wewill see that on Intel Xeon TM2
≥ 2 ∗ TW , while on Intel i7 TM2

< 2 ∗ TW . The

showed portions have the following parallelization factors:

S1 S2 S3 S4

vanilla 2 4 1 –

taskaff 2 4 2 1

Table 4.2: Parallelization factors of different portions

The index of each parallelization factor represents the portion at which it corre-

sponds

4.1 Comparing to vanilla 53

4.1 Comparing to vanilla

In this section, we analyze the behaviour of optimized task-affinity on different ar-

chitectures. First of all, we desire to know if scheduling performed by task-affinity

on different architectures approximates the ideal scheduling showed in Fig. 4.1

and if, as we expected, this scheduling improves throughput of the application.

The improvement of throughput was measured using the Amdhal’s Law, Eq. 4.1.

We have measured the theoretical speedup given by task-affinity, executing the fol-

lowing experiment:

1. We have executed benchmarkwith only one CPU online using different buffer

dimensions. In this way, benchmark is executed in a serialized way.

2. We have recorded average execution time of each thread of the benchmark,

and the average execution time of a sample.

3. We have determined to which percentage of the serial execution each portion

corresponds. Since we have a serial execution for each buffer dimension used,

we have different percentages for each portion, for example: P0 could be cor-

responds to 35% on the execution with 4KB, 34% on the execution with 8KB

and so on. For this reason, for each portion, we have calculated the average

percentage.

4.1.1 Consideration on experimental results

The experiment described in the previous section has been executed for each tested

architecture. Besides throughput, we want to know if the predictability of the ap-

plication is improved and, consequently, if cache miss rates and number of mi-

gration are reduced. Finally, since also the migration mechanism is involved in

task-affinity, we want to investigate which is the overhead that pull rt task and

push rt task involve. We have tested task-affinity with Intel Xeon and Intel i7. Here

we summarize the main results for these architectures, while detailed measure-

ments are reported in the following subsections.

Throughput: In both Intel Xeon and Intel i7 parallelism is improved, Fig. 4.6 and

4.13. On Intel Xeon, we can see an increment of throughput especially with

32KB and 64KB. While at 4KB there isn’t any increment, in fact speedup with

54 Experimental Results

task-affinity is 2.33 while with vanilla is 2.38, Fig. 4.3. This fact occurs be-

cause, using buffer of 4KB, parallelism performed in task-affinity is very sim-

ilar to parallelism performed in vanilla, Fig. 4.2 and 4.3. On Intel i7, in-

stead, we see that task-affinity improves parallelism for every buffer dimen-

sion used, Fig. 4.4.

Figure 4.2: trace of benchmark execution on Xeon with buffer of 4KB using task-affinity

Figure 4.3: trace of benchmark execution on Xeon with buffer of 4KB using vanilla

For what regard for speedups, in both Xeon and i7, the estimated average

speedups overestimate the real parallelism performed by task-affinity, nev-

ertheless they are a good estimate. In fact, for Xeon, we have the estimated

average speedup of 2.23 and the real average speedup of 2.39: they differ

by ∼ 6%, Eq. 4.3 and Tab. 4.3. While for i7, we have an estimated average

speedup of 2.45 and a real average speedup of 2.50: they differ by ∼ 2%, Eq.

4.5 and Tab. 4.4. Therefore, we can conclude that scheduling performed by

task-affinity can be well approximated by the scheduling described in Fig.

4.1.

Instead, for vanilla, the estimated average speedups underestimate the real

parallelism performed. In fact, for Xeon, we have an estimated average speedup

of 1.86 and a real average speedup of 2.19: they differ by ∼ 18%, Eq. 4.4 and

Tab. 4.3. While for i7, we have an estimated average speedup of 2.11 and a

4.1 Comparing to vanilla 55

real average speedup of 2.26: they differ by ∼ 7%, Eq. 4.6 and Tab. 4.4. It is

clear from these data, that parallelism of the scheduling performed by vanilla

is greater with respect to parallelism of the ideal scheduling. In fact if we see

Fig. 4.3 we note that there is a fraction of mixer2 that is executed concurrently

with others waves, while in ideal schedulingmixer2 should be executed alone.

Migrations: Number of migration is greatly increased with respect the vanilla.

This is not due to architectural details or different buffer dimensions. This

fact happens because, at each sample, waves, mixer0 and mixer1 are excuted

on the same CPUs. Since in the next sample waves are woken up during the

execution of mixer0 and mixer1, they must be scheduled on CPUs different

from which that have executed them in the previous sample. For this reason,

at each sample, waves are executed on different CPUs and, consequently, also

other tasks are executed on different CPUs at each sample.

Cache misses: Because of worsening of L1 and LLC cache misses, Fig. 4.8 and 4.9,

on Intel Xeon predictability of the application is degradated, especially using

small buffer dimension such as 4KB or 8KB, Fig. 4.6. LLC miss rate is greatly

increased in task-affinity, because, if a task migrates frequently between two

different dies, at each migration it will have to warm up LLC cache and cache

misses will occur. The same goes for L1 cache misses, also in that case a mi-

gration between CPUs that are in different dies increase L1 miss rates. Nev-

ertheless with dimension greater than 8KB and especially greater than 32KB

predictability is improved, Fig. 4.6. On Intel i7, instead, thanks to the inclu-

sive shared LLC, a core can access data contained in all caches of other cores,

consequently, L1 and above all LLC cache misses are reduced, Fig 4.15 and

4.16. The diminishing of cache misses impacts significantly on application

predictability, Fig.4.13.

Migration functions: As we can see from Fig. 4.10 and 4.17, in both Xeon and

i7, with task-affinity the number of calls to push rt task is greatly reduced

with respect to vanilla. This fact happens because if a CPU is selected accord-

ing to task-affinity criteria and the enqueued task with task-affinity is the next

to be executed on the selected runqueue, push rt task for that runqueue is

not called. Other tasks on that runqeueue that have to migrate will be moved

by pull rt task. Instead, with pull rt task task-affinity is not very effective,

in fact, with task-affinity, pull rt task executes more work than in vanilla, Fig.

56 Experimental Results

4.11 and 4.18.

1553 s t a t i c in t pu l l r t t a s k (s t r u c t rq ∗ t h i s r q)

1554 {

.

1559 i f (l i k e l y (! r t over loaded (t h i s r q)))

1560 return 0 ;

1561

1562 for each cpu (cpu , th i s rq−>rd−>rto mask) {

.

Figure 4.4: A portion of the pull rt taskmethod

The explanation is simple: at line 1559, pull rt task checks for overload-

ing runqueues. If in the system there is any overloaded runqueue, pull rt task

searches which runqueues are overloaded and tries to pull a task from them.

With task-affinity, only 3 waves are executed concurrently and one wave has

to wait that mixer2 finishes. Therefore at each sample there is an overloaded

runqueue in the system. For this reason, when pull rt task is called, almost

certainly it will enter in loop at line 1562 in order to pull tasks from an over-

loaded runqueue. With vanilla instead, all waves are executed concurrently,

therefore there are less probabilities to have overloaded runqueues and thus

pull rt task will exit at line 1560. The overhead of pull rt task influences pre-

dictability of an application especially with buffer of 4KB because execution

time of each thread is relatively small.

In conclusion, to get a sense of how task-affinity improves the performance of

the benchmark, look at table 4.3, where are reported values of metric A2S (Eq. 3.1)

used to characterize how task-affinity improve throughput and predictability with

respect to vanilla. As we can see, task-affinity is well exploited by Intel i7, look

at 4.4, while on Intel Xeon we have some advantage with buffer greater than 4KB.

A2S improvements are calculated using Eq. 3.2

4.2 Intel Xeon 57

4.2 Intel Xeon

Figure 4.5: Scheduling performed by new version of task-affinity on Intel Xeon.

As we can see in Fig. 4.5, the scheduling performed is correct. We see that

mixer2 can precede one of the waves and improve parallelism. We see that mixer0

chooses the best cpu in term of temporal locality, for example: in step A mixer0

chooses CPU4 and not CPU2, because on CPU2 was executed wave2, therefore L1

cache could be dirty, instead on CPU4 the last task executed is wave1, therefore L1

cache should be clean. Also in step B, it is possible to note how mixer0 take care

about the last task executed on CPU4 choosing CPU2.

According the showed data, Tab. 4.3, it possible to estimate the average speedups

for task-affinity and vanilla.

Speeduptaska f f =

(

0.4

2
+

0.35

4
+

0.18

2
+

0.07

1

)−1

= 2.23 (4.3)

Speedupvanilla =

(

0.4

2
+

0.35

4
+

0.25

1

)−1

= 1.86 (4.4)

58 Experimental Results

(a) Average of execution times of each task on serialized execution (us). The speedups for parallel

execution are computed as: serialized execution time divided by sample time.

waves mixer0,1 mixer2 serialized Sample time Speedup

exec. time va ta va ta

4KB 12.18 29.59 38.84 146.76 61.58 63.08 2.38 2.33

8KB 17.74 42.72 55.57 211.98 95.54 90.60 2.22 2.34

16KB 31.47 70.35 88.53 355.13 165.23 150.00 2.15 2.37

32KB 60.12 128.72 155.34 653.27 306.69 266.42 2.13 2.45

64KB 115.42 246.2 285.62 1239.69 592.30 502.09 2.09 2.47

Average 2.19 2.39

(b) Portions of serialized execution

P1 P2 P3 P4

va ta va ta va ta va ta

4KB 40% 40% 33% 33% 26% 17% – 9%

8KB 40% 40% 33% 33% 26% 17% – 9%

16KB 40% 40% 35% 35% 25% 18% – 7%

32KB 39% 39% 37% 37% 24% 19% – 5%

64KB 40% 40% 37% 37% 23% 19% – 4%

Average 40% 40% 35% 35% 25% 18% – 7%

(c) Sample production time (us)

taskaff vanilla A2S

avg var A2S avg var A2S Improvement

4KB 63.08 44.70 76.45 61.58 12.42 68.63 -11%

8KB 90.60 24.18 100.43 95.54 20.31 104.55 4%

16KB 150.00 25.75 160.15 165.23 42.47 178.27 10%

32KB 266.42 27.17 276.84 306.69 43.31 319.85 13%

64KB 502.09 74.54 519.35 592.3 81.45 610.35 15%

Table 4.3: Data used to calculate speedups and A2S improvements of new version of

task-affinity and vanilla on Xeon

4.2 Intel Xeon 59

Figure 4.6: Average and Std. Deviation of execution time of a sample on Xeon (new

version of task-affinity)

Figure 4.7: task migration on Xeon (new version of task-affinity)

Figure 4.8: L1 Read and Write misses on Xeon (new version of task-affinity)

60 Experimental Results

Figure 4.9: LLC Read and Write misses on Xeon (new version of task-affinity)

Figure 4.10: Average of execution time of a call to push rt task and number of call to

push rt task on Xeon (new version of task-affinity)

Figure 4.11: Average of execution time of a call to pull rt task and number of call to

pull rt task on Xeon (new version of task-affinity)

4.3 Intel i7 61

4.3 Intel i7

Figure 4.12: Scheduling performed by new version of task-affinity.

We can see from Fig.4.12, that also in this case the scheduling performed can be

approximated with the ideal scheduling, Fig. 4.1. We can see how in step A and B

mixers choose the correct CPUs according to their task-affinity relationships.

Also in this case, according to recorded measurement the estimated average

speedups are:

Speeduptaska f f =

(

0.32

2
+

0.49

4
+

0.13

2
+

0.06

1

)−1

= 2.45 (4.5)

Speedupvanilla =

(

0.32

2
+

0.49

4
+

0.19

1

)−1

= 2.11 (4.6)

62 Experimental Results

(a) Average of execution times of each task on serialized execution (us). The speedups for parallel

execution are computed as: serialized execution time divided by sample time.

waves mixer0,1 mixer2 serialized Sample time Speedup

exec. time va ta va ta

4KB 17.86 27.31 29.25 155.31 68.25 61.44 2.28 2.53

8KB 33.17 46.39 51.88 277.32 122.42 108.22 2.27 2.56

16KB 63.65 82.49 96.54 516.11 236.35 206.03 2.18 2.51

32KB 124.85 156.46 182.30 994.59 444.38 401.53 2.24 2.48

64KB 250.27 279.39 356.96 1916.82 826.83 793.50 2.32 2.42

Average 2.26 2.50

(b) Portions of serialized execution

P1 P2 P3 P4

va ta va ta va ta va ta

4KB 35% 35% 46% 46% 19% 15% – 4%

8KB 33% 33% 48% 48% 19% 14% – 5%

16KB 32% 32% 49% 49% 19% 13% – 6%

32KB 31% 31% 50% 50% 19% 12% – 7%

64KB 29% 29% 52% 52% 19% 12% – 7%

Average 32% 32% 49% 49% 19% 13% – 6%

(c) Sample production time (us)

taskaff vanilla A2S

avg var A2S avg var A2S Improvement

4KB 61.44 20.38 70.47 68.25 34.02 79.91 12%

8KB 108.22 25.54 118.32 122.42 167.94 148.34 20%

16KB 206.03 77.33 223.61 236.35 586.69 284.80 21%

32KB 401.53 328.09 437.76 444.38 2688.34 548.08 20%

64KB 793.50 1423.98 868.97 826.83 6469.23 987.70 12%

Table 4.4: Data used to calculate speedups and A2S improvements of new version of

task-affinity and vanilla on i7

4.3 Intel i7 63

Figure 4.13: Average and Std. Deviation of execution time of a sample on i7 (new

version of task-affinity)

Figure 4.14: task migration on i7 (new version of task-affinity)

Figure 4.15: L1 Read and Write misses on i7 (new version of task-affinity)

64 Experimental Results

Figure 4.16: LLC Read and Write misses on i7 (new version of task-affinity)

Figure 4.17: Average of execution time of a call to push rt task and number of call to

push rt task on i7 (new version of task-affinity)

Figure 4.18: Average of execution time of a call to pull rt task and number of call to

pull rt task on i7 (new version of task-affinity)

Chapter 5
Conclusions and future

developments

In this work we have investigated behaviour of task-affinity on different architec-

tures. Task-affinity is based on assumption that, if tasks share a great amount of

data and we have an SMP architecture, then occasionally executing them on the

first available processors will increase the cache-miss rate. If we move tasks to

be executed near to where data was produced, then we spare some cache-misses

[1]. We have demonstrate that this assumption is not always true. Migrations of

tasks play an important role on predictability of the applications. When a task mi-

grates, data could be moved from one cache to another. As we have seen on Intel

Xeon and as it is demonstrated in [4], this operation may involve high latency that

depends on cache architecture, inter-chip communications and other hardware fac-

tors. Therefore it is clear that it is not enough to execute tasks that share common

data on the same CPUs, but it is necessary guarantee that tasks that share common

data find what they need possibly in L1 cache. For this reason, we have improved

the concept of temporal locality.

The experimental results show that task-affinity is effective on Intel i7, where

there is an average speedup in term of A2S of ∼ 17%. We have increased task mi-

gration, nevertheless we have improved throughput and predictability. It is clear

that architecture of Intel i7 mitigates the side effects of the high number of migra-

tions of tasks. On Intel Xeon task-affinity is effective only with buffer greater than

4KB, in that case there is an average speedup in term of A2S of ∼ 10, 5%. It is clear

that the effect of migrations of tasks is more significant on this architecture.

66 Conclusions and future developments

We could obtain results still better with amore effectivemigration policy. In this

patch, in order to improve the temporal locality, we have included push rt task in

the task-affinity logic and we have seen that, because of the scheduling performed,

pull rt task has an higer overhead than vanilla.

We conclude that the mechanism proposed brought, in fact, an improvement of

throughput and on determinism of the entire application, especially with buffers

of big dimension as 32KB. It is interesting that these improvements take place even

if L1 and LLC miss rates increase (Intel Xeon) therefore it is clear that, according to

the cache architecture used, cache misses have a different impact on performance

of application.

5.1 Future Works

During the development of task-affinity, NUMA architectures were never consid-

ered. In the final part of this thesis we have started to analyze the behaviour of

task-affinity on AMD Opteron, a NUMA architecture. In a first trial, using some

kernel facilities, we have held all tasks to be executed only on one node, in order to

simulate an SMP architecture. We have obtained the following results:

Figure 5.1: Scheduling performed by new version of task-affinity on Opteron (new ver-

sion of task-affinity)

Task-affinity on this machine doesn’t work properly. We can see in step B that

mixer0 doesn’t choose the correct CPU. The incorrect behaviour of task-affinity is

also reflected by Fig. 5.2, where we can see a worsening of throughput and pre-

dictability. It is possible that the task-affinity doesn’t work, because of a lot of ker-

nel threads used to manage load balancing and others kernel activities in NUMA

architectures: but this is only an hypothesis. According these results, it is clear

that task-affinity needs the support for NUMA architectures, this is the first step to

improve task-affinity.

5.1 Future Works 67

Figure 5.2: Average and Variance of execution time of a sample Opteron (new version

of task-affinity)

In this work, we have seen that cache misses have a different impact on de-

terminism of application on different architectures, it is necessary to estimate how

much cache misses impact on application performance and in particular on deter-

minism, in order to understand if the task-affinity could improve significantly or

not the determinism of application on a given architecture.

Another possible improvement is to optimize the migration policy, in order

to include also pull rt task in task-affinity logic and finally, it would be better not

to use system calls to define dependencies among tasks, but, instead, to rely in

other mechanisms, such as a profiler [2], that infers automatically the dependencies

among tasks. The reason is that it is not desirable to modify present applications to

use the task-affinity. The mechanism of adding and removing dependencies would

be rather the same: only the user interface would need to be changed.

Chapter 6
Estratto in lingua italiana

Nella sfida per fabbricare la CPU piú performante, i progettisti hardware si devono

confrontare con un problema molto complicato. Da un lato la Legge di Moore non

si puó piú applicare alla capacitá computazionale di unamacchina, cioe:́ la capacitá

computazionale non si raddoppia piú ogni 18 mesi, come nel passato. Dall’ altro

lato, il consumo di potenza continua ad aumentare piú che linearmente con il nu-

mero di transistors inclusi in un chip e la Legge di Moore vale ancora per il numero

di transistor in un chip. Parecchie soluzioni sono state adottate per risolvere questo

problema. Alcune die esse cercano di ridurre il consumo di potenza sacrificando la

capacitá computazionale, di solito usando il frequency scaling, il voltage throttle o

entrambi. Altre soluzioni cercano di in aumentare l’ Instruction Level Parallelism

(ILP) all’interno di un processore, in modo da avere piú capacitá computazionale

da un processore senza aumentare il consumo di potenza. Tuttavia, oggigiorno il

costo di un cache miss (che potrebbe mandare in stallo la pipeline) o di uno sbaglio

nella predizione di un branch (che potrebbe invalidare la pipeline) sono diven-

tati troppo elevati. Giá nei primi anni 2000, era chiaro che la via piú efficace per

aumentare la capacitá computazionale e ridurre il consumo di potenza consisteva

nel parallelizzare l’ esecuzione dei task. Per questo motivo é stato introdotto il Si-

multaneous MultiThreading (SMT). Questa tecnologia permetteva di eseguire due

thread in modo concorrente sulla stessa CPU, in questo modo é possibile avere una

grande parallelizzazione dell’ esecuzione dei task. In base a come sono organizzate

le memorie, i sistemi a multiprocessore sono classificati in due gruppi:

Centralised Shared Memory Architectures: in queste architetture, ci sono diversi

core connessi ad una memoria condivisa. Se tutti i cores sono uguali, queste

70 Estratto in lingua italiana

architetture si chiamano simmetric multiprocessor (SMP).

Distributed Memory Architecture: in queste architetture, ciascun processore ha il

suo proprio modulo di memoria e il tempo di accesso alla memoria dipende

dalla locazione di memoria relativamente al processore che vi accede. In

questa categoria di architetture sono incluse le Non-uniform memory access

(NUMA).

Le architetture multicore sono state adottate da molte industrie di microproces-

sori. I chips Dual-core sono ormai una soluzione comune e numerose opzioni da

4 e 8 cores sono disponibili. Negli anni a venire, il numero di core integrati in un

chip continuerá a crescere: Intel ha annunciato che rilascerá per chips a 80 core per

il 2013. Il passaggio alle tecnologie multicore é un evento di svolta, poiché esso

porta le piattaforme di computazione standard ad essere multiprocessori.

Anche molti sistemi embedded stanno iniziando ad usare architetture multi-

core, perché questi processori forniscono un grande incremento di capacitá com-

putazionale con un basso incremento di consumo di potenza e questo é un aspetto

importante per questo tipo di dispositivi. Ma cé un’ ostacolo all’ uso di queste ar-

chitetture in nel settore embedded e in particolare nei sistemi Real-Time. Immagi-

nate questa situazione: ci sono 3 tasks Real-time: A, B e C. A usa 512KB di memoria,

B ne usa 768KB e C ne usa 256KB. La nostra piattaforma é un Dual-core provvisto di

cache condivisa onchip di 1MB. Ci sono due casi possibili di scheduling. Nel primo

caso A e C (o B e C) sono schedulati concorrentemente. C’é abbastanza spazio in

cache per allocare le risore dei due task, perció non c’é nessun problema. Nel sec-

ondo caso A é schedulato insieme a B: avviene cache thrashing. Le performante dei

due task potrebbero peggiorare rispetto al caso precedente, perché non c’é alcuna

garanzia che A e B possano trovare i dati necessari nella cache condivisa e, inoltre, é

impossibile prevedere la durata di A o B, perché se A é schedulto insieme a B, esso

avrá una certa durata. Invece, se A é schedulato insieme a C, esso avrá un’ altra

durata, in altre parole: la durata di un task dipende da quale altro task é schedulato

con esso e, per questo motivo, utilizzando i comuni algoritmi di scheduling Real-

Time, le tecniche di analisi dei tempi per il software embedded usate nei sistemi

a single core non sono piú utilizzabili nei sistemi multicore. Per questa ragione,

sono necessarie nuove tecniche per stimare il worst-case execution time (WCET)

dei tasks Real-Time.

6.1 Stato dell’arte 71

Risulta chiaro quindi, che lo scheduler gioca un ruolo importante nel miglio-

rare la predicibilitá e le performance delle applicazioni. Oggigiorno é importante

sviluppare algoritmi di scheduling ”cache-aware”, cioé uno scheduler che, per scegliere

la CPU dove mettere un task, considera come i tasks schedulati usano la memoria

cache, in modo da evitare il cache thrashing. Questa tesi é il proseguimento del la-

voro svolto da Lucas De Marchi, egli ha provato a rendere lo scheduler Real-Time

di Linux cache-aware, introducendo il concetto di task-affinity.

6.1 Stato dell’arte

Sebbene il problema di progettare un algoritmo di scheduling cache-aware sia vec-

chio e ben conosciuto da oltre 20 anni e i multicore siano ampiamente diffusi, attual-

mente i sistemi operativi in commercio non implementano questo tipo di algoritmi

e in letteratura sono presenti solo pochi lavori che studiano questo problema. I la-

vori di ricerca piú recenti relativi a questo argomento consistono in attivitá di profil-

ing, che hanno lo scopo di dimostrare come una condivisione scorretta della cache

da parte di task concorrenti possa rallentarli e causare: throughput sub-ottimale,

cache thrashing e, in alcuni casi, task starvation per i task che non riescono ad oc-

cupare spazio sufficiente nella cache necessario per fare buoni progressi nella loro

esecuzione. Il primo lavoro ben documentato relativo a questo tipo di scheduling é

stato sviluppato all’ universitá di Stanford. Alla fine degli anni 80, il Computer Sys-

tems Laboratory di Stanford sviluppó un prototipo di un multiprocessore a memo-

ria condivisa chiamato DASH. La sua architettura era molto simile a quella usata

nel moderni processori SMP; DASH poteva incorporare fino a 64 processori RISC.

Per poter sfruttare le piene potenzialitá della macchina, venne sviluppato un run-

time system ad hoc ed un linguaggio: COOL. Esso era un’ estensione del C++ che

introduceva alcuni statements per facilitare la definizione del parallelismo a grana

fine o grossa e per definire quali erano i pattern di accesso alla memoria eseguiti

dall’ applicazione. Il compilatore di COOL era in grado di estrarre automatica-

mente informazioni sul parallelismo del programma che potevano eesere usate da

architetture che, comeDASH, supportavano un tale livello di concorrenza, ed infor-

mazioni sull’ uso della cache fatto dall’ applicazione. Usando queste informazioni,

il runtime system poteve assicurare il parallelismo desiderato dal programmatore

e cercare di ridurre il miss rate di ciascun task, perché il sistema ”sapeva”, per cias-

cun task, quali fossero gli oggetti referenziati da esso; in questo modo schedulava

72 Estratto in lingua italiana

oggetti e tasks in modo da renderli vicini. In parole povere, usando informazioni

aggiuntive fornite dal programmatore e sfruttando il principio di localitá dei dati, il

runtime system decideva dove allocare gli oggetti e assegnava ad un task una CPU

che conteneva nella sua cache gli oggetti referenziati da esso. Il progetto COOL

mostra come un uso intelligente della cache sia un problema che coinvolge tutti gli

aspetti dell’ ingegneria del software, dal compilatore allo scheduler e il sistema di

gestione della memoria.

Altri Lavori di ricerca svolti in questi anni sfruttano un’ altra strategia. Essi

non introducono un nuovo linguaggio di programmazione o sofisticati ambienti

di runtime, ma implementano un profiler grezzo che, a runtime, inferisce quanto

spazio nella cache é richiesto da un task, in modo da inferire quali tasks potrebbero

causare cache thrashing, se fossero schedulati concorrentemente. Per fare questo

lavoro, il profiler esegue una fase periodica di taratura in cui analizza il miss rate

di ciascun task, in questo modo, é possibile capire l’ ammontare di spazio usato

da un task. Sulla base di queste informaizoni due o piú tasks sono schedulati su

diverse CPUs solo se non causano cache thrashing. Questi lavori non sono efficaci

come COOL, ma presentano buoni risultati con i benchmark presenti nella suite

SPEC2000, inoltre alcuni di questi lavori sono stati sprimentati anche in sistemi

embedded con esiti soddisfacenti.

6.2 Obiettivi di questa tesi

Lo scopo principale di questa tesi é l’ ottimizzazione della versione attuale della

task-affinity. In un primo passo, analizzeremo come la task-affinity si comporta

su diverse architetture multicore; in particolare sull’ Intel Xeon E5440 e sull’Intel

i7 870. Queste due architetture sono state scelte perché hanno una architettura

delle cache molto diversa tra di loro e inoltre, anche il sistema di comunicazione tra

chip é molto diverso in termini di prestazioni. Con l’analisi che si vuole eseguire,

cercheremo di capire quali sono gli aspetti dell’attuale logica della task-affinity da

migliorare per poter sfruttare al meglio le architetture testate, per esempio: attual-

mente, come descritto in [1], la politica di migration effettuata non é molto efficace,

perché alcuni task tendono a rimbalzare da una CPU all’altra, ad ogni iterazione del

benchmark. Riteniamo che questo fenomeno degradi le peformance ottenibili con

la task-affinity, perché spesso un task che migra deve anche eseguire il warm up

della cache della CPU su cui esso é migrato, e questo aumenta il miss rate. Quello

6.3 Organizzazione della tesi 73

che ci aspettiamo é che l’analisi metta in luce, per ogni architettura, quanto questo

”migration pattern” incida sul miss rate di un task.

Tenendo conto dei risultati presentati nella fase di analisi, proporremo un’ ot-

timizzazione volta a migliorare la localitá temporale dei dati, in modo da diminuire

il miss rate di un task; per fare ció includeremo nella logica della task-affinity anche

le funzioni usate per la migrazione dei task. Nell’ultima parte dell’ ottimizzazione

introdurremo la sincronizzazione per le strutture dati usate nella task-affinity. Tutte

le misure effettuate sulla task-affinity e sul vanilla sono state eseguite usando il

benchmark usato in [1].

Quindi gli obbiettivi di questa tesi possono essere riassunti come:

1. analizzare il comportamento dell’attuale versione della task-affinity su di-

verse archietture per capire quali aspetti migliorare.

2. ottimizzare la versione attuale della task-affinity, migliorando la politica di

migrazione dei task e migliorando la localitá temporale dei dati garantita

dalla task-affinity.

Tutte le patch sviluppate in questa tesi si basano sulla versione 2.6.34 del kernel

Linux

6.3 Organizzazione della tesi

Chapter 2: Nella prima sezione del capitolo, discutiamo i problemi derivanti da

un’uso sbagliato della cache. Vedremo come un’uso scorretto della cache

possa degradare le performance e ridurre notevolmente il determinismo delle

applicazioni. Nella sezione successiva, abbiamo effettuato uno studio sulle

diverse architetture della cache focalizzandoci su quei dettagli architetturali

che spesso non sono ben documentati, come: i protocolli di coerenza, cache

inclusive o esclusive ecc. Nell’ultima sezione, é presente una classificazione

degli algoritmi di scheduling cache aware sviluppati negli ultimi anni, anal-

izzando vantaggi e svantaggi di ciascun algoritmo presentato.

In Chapter 3: Nella prima sezione analizziamo l’ottimizzazione implementata in

questa tesi. La prima sezione analizza il comportamento della task-affinity

su diverse architetture, in modo da capire come la task-affinity possa essere

ottimizzata. La sezione successiva tratta la sua implementazione in Linux.

74 Estratto in lingua italiana

Chapter 4: presenta i risultati sperimentali che riguardano: la correttezza della

soluzione, cioé se gli scheduling eseguiti sono approssimabili con gli schedul-

ing ideali definiti all’inizio del capitolo, e i miglioramenti rispetto alla ver-

sione attuale della task-affinity.

In Chapter 5: illustreremo le conclusioni del lavoro svolto, riassumendo quali risul-

tati sono stati raggiunti e possibili sviluppi futuri.

Bibliography

[1] L. DE MARCHI, Multi-core scheduling optimizations for soft real-time multi-

threaded applications. A cooperation aware approach., 2009.

[2] J. M. CALANDRINO and J. H. ANDERSON, On the Design and Implementation

of Cache-Aware Multicore Real-time Scheduler, 2009.

[3] A. FEDOROVA, M. SELTZER, and M. D. SMITH, Improving Performance Iso-

lation on Chip Multiprocessors via an Operating System Scheduler, 2007.

[4] D. MOLKA, D. HACKENBERG, and W. E. NAGEL, Comparing Cache Archi-

tectures and Coherency Protocols on x86-64 Multicore SMP Systems, 2009.

[5] D. MOLKA, D. HACKENBERG, R. SCHONE, and M. MULLER, Memory Per-

formance and Cache Coherency Effects on an Intel Nehalem Multiprocessor,

2009.

[6] T.-F. YANG, C.-H. LIN, and C.-L. YANG, Cache-Aware Task Scheduling on

Multi-Core Architecture, 2010.

[7] N. GUANN, M. STIGGE, and W. YI, Cache-Aware Scheduling and Analysis

for Multicores, 2009.

[8] R. CHANDRA and A. GUPTA, Data Locality and Load Balancing in COOL,

1993.

[9] L. PENG, J.-K. PEIR, and T. PRAKASH, Memory hierarchy performance mea-

surement of commercial dual-core desktop processors, 2008.

[10] D. CHANDRA, F. GUO, and S. KIM, Predicting Inter-Thread Cache Contention

on a Chip Multi-Processor Architecture, 2005.

76 BIBLIOGRAPHY

[11] B.-F. QIAN and L.-M. YAN, The Research of the Inclusive Cache used inMulti-

Core Processor, 2008.

[12] T. ROLF, Cache Organization and Memory Management of the Intel Nehalem

Computer Architecture, 2009.

[13] J. H. ANDERSON and J. M. CALANDRINO, Parallel Real-Time Task Scheduling

on Multicore Platforms, 2006.

[14] A. FEDOROVA, M. SELTZER, and M. D. SMITH, Improving Performance Iso-

lation on Chip Multiprocessors via an Operating System Scheduler, 2007.

[15] V. BABKA and P. TUMA, Investigating Cache Parameters of x86 Family Pro-

cessors, 2009.

[16] White Paper Intel next generation microarchitecture Nehalem.

[17] Intel Corporation. Intel 64 and IA-32 architectures software developer’s man-

uals.

	Introduction
	State of the art
	Objectives of this thesis work
	Organization of the thesis

	Impacts of caches on Scheduling Performance
	Issues due to an incorrect use of cache
	Survey on cache architecture
	Cache coherent protocols
	Inclusive and exclusive cache
	Cache Hardware prefetcher

	Classification of cache-aware Scheduling algorithms
	Data locality policies
	Temporal locality policies

	Improving TaskAffinity
	Scheduler architecture on 2.6.34
	Task wake up management
	Migration policy

	Test computers and benchmarks
	Analysis of Taskaffinity behaviour
	Application's performance
	Impact of task migration on execution time predictability
	Considerations on experimental results

	Task-affinity improvements
	Patch structure
	Temporal locality
	Synchronization

	Experimental Results
	Comparing to vanilla
	Consideration on experimental results

	Intel Xeon
	Intel i7

	Conclusions and future developments
	Future Works

	Estratto in lingua italiana
	Stato dell'arte
	Obiettivi di questa tesi
	Organizzazione della tesi

