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Abstract

This work studies the stability properties of a dielectric liquid confined between
two indefinite plane electrodes, the so-called electro-hydrodynamic (EHD) electro-
convection problem, that presents a full coupling between the electric field and the
velocity field. The EHD stability has been already studied in the past, owing to its
practical importance and theoretical interest, but several open problems still exist.
In fact, very simple analytical and/or numerical models have been employed, with
sometimes far-reaching simplifying assumptions like that of neglecting the charge
diffusion process altogether. As a matter of fact, discrepancies exist between the
critical values of the governing parameters measured in experiments as compared to
those educed from theoretical analysis.

This work reports on several, substantial improvements of the state-of-the-art
in the study of EHD electroconvection. The effect of charge diffusion is taken into
account, and a cross-flow is explicitly considered in the form of a laminar Poiseuille
flow. Moreover, and perhaps most importantly, we apply to the EHD problem the re-
cent theoretical tools of non-modal stability analysis. After a physically sound norm
is defined to quantify the disturbance amplitude, the non-modal stability analysis
allows us to describe the non-normality of the underlying stability operator, which
implies that the EHD system is capable to support transient growth, albeit of mild
intensity, in both the hydrostatic case and in the case with shear. The important
role of charge diffusion is described, which enhances instability through increased
mixing, and is connected to wall-based modes. The EHD-Poiseuille system is found
to be unstable to perturbations that at low Re are dominated by the electrical
parameters.





3

Sommario

In questo lavoro cono state indagate le proprit di stabilit di una delle pi classiche
confugrazioni che vede l’accoppiamento di un campo di moto fluido all’effetto di un
campo elettrico, ossia la presenza di un liquido dielettrico all’interno di due elettrodi
di geometria piana indefinita. Questo tipo di problema meglio noto come proble-
ma elettrodinamico o EHD ed il fenomeno d’istabilit che lo caratterizza chiamato
elettroconvezione. Data la sua importanza sia dal punto di vista applicativo che dal
punto di vista teorico il fenomeno dell’elettroconvezione e dei processi che la innes-
cano sono stati oggetto di molte attenzioni. Purtroppo il profondo accoppiamento
accoppiamento che esiste tra il fluido e il campo elettrico ha reso di fatto necessario
lo sviluppo di modelli matematici molto semplificati. Il trascurare la diffusione di
carica e l’effetto di una correte imposta ha difatto accumato tutti i lavori fino ad
oggi rivelando serie discrepanze tra i risultati teorici e quelli sperimentali.
Questo lavoro ha dunque la pretesa di includere ed indagare tutti i fenomeni fisici
trascurati fino ad ora quali la diffusione di carica e l’effeto di una corrente sovraim-
posta. Inoltre si voluto indagare anche gli aspetti legati alla non normalit dell’oper-
atore EHD. Questo infatti non esclude che il problema qui trattato presenti crescite
energetiche a tempo finito.
Si dimostrato che la diffusione di carica ha un importanto ruolo instabilizzanze
sia sul problema idrostatico che nel caso con flusso di Poisoulle e che sono presenti
crescite energetiche a tempo finito attraversomeccanismi sia elettrici che puramente
fluidodinamici.
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INTRODUCTION

ELECTROHYDRODYNAMICS (EHD) is the particular domain of electrodynamics
of moving media concerned with the action of electric forces on dielectric fluids. Since
the dielectric fluids are usually characterized by very low electrical conductivity they
can sustain very high electric fields without strong currents and this permits to
neglect the induced magnetic fields (A)
Two electric forces can be distinguished which can give rise to a permanent fluid
motion, namely the Coulomb force and the dielectric force. On another hand, two
categories of problems can be defined. Only the Coulomb force distributed in the
bulk of fluids will be considered here.
Unfortunately the complex and most often strongly nonlinear coupling between force
and motion makes EHD a difficult subject. In fact, the charge distribution, involves
much smaller spatial scales, which are strongly influenced by minimal variations of
the velocity field. This intrinsic complexity forced the early numerical simulations of
EHD flows to use simplified model of flow-charge interaction and charge transport,
neglecting the charge diffusion.
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1.1 Electroconvection

The classical EHD problem deals with the simple and idealized case of unipolar in-
jection of identical ions into a liquid layer bounded between two parallel electrodes
almost exclusively without cross flow. The unipolar injection assumption implies
that the density of injected charge is uniform on the injecting electrode. For this
configuration the question of hydrodynamic instability arises. Nevertheless, in this

Figura 1.1: Introduction: Framework

.

domain, the Naiver-Stokes equations have two equilibrium solutions: the motionless
state and the Poiseuille flow.
The instability problem is then to determine in what conditions the fluid mechanics
equilibrium solutions destabilize under electric field effect examining the time evo-
lution of perturbation of vanishingly small amplitude and determining the critical
conditions for which at least one perturbation begin to grow exponentially. If insta-
bility arises, it has been proven that this growing perturbation produces coherent
convective structures (called rolls) between two electrodes that show an electrocon-
vective effect.

Fundamental studies into the onset of electroconvection in insulating liquid have
been carried out by Watson et al. [7], [?] starting from the 70’s. Till now both theo-
retical and experimental studies have been carried out implying the motionless state
of the basic flow and steady charge transport dominated by ionic drift. Nevertheless
after [5] the charge diffusion term has been ignored at all.
The first important result figures out by these studies is the role played by the di-
mensionless parameter T , which is described as the ratio of electrical energy supplied
to the system to the energy dissipated by viscous force. It could be viewed as the
directly analogous to the Rayleigh number in hydrodynamics.
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Atten [1] shows that the simple Ohmic law that relates voltage and current density
tends to fail as T increases above a critical value. This deviation suggests the sets
in of a liquid convection which affects the charge transport.
Performing a modal linear stability analysis, a dimensionless wavenumber K also
appears in [7] and a neutral stability curve can be plotted relating the critical values
of T and K.
For strong injection, the autonomous injection assumption is valid. In this regime
instability is only dependent on T, and it occurs for T ⋆ ≈ 161.
Physically, the charge density decreases from the emitter into insulating liquid and
and this creates a potentially unstable situation. Considering a fluid portion un-
der a velocity perturbation which conserves the charge, if it will be pushed toward
collector it will be subjected to a greater Coulomb force than the fluid in its neigh-
borhood which has a lower charge. Therefore it will have a tendency to continue to
swing towards the collector.This tendency is counteracted by viscous drag and by
relaxation of charge [3]. This excesses charge relaxation takes place via two physical
mechanisms, i.e. molecular charge diffusion and Coulomb repulsion.
As many authors such as [?], [3] suggested, neglecting the diffusion term, is possi-
ble to obtain from the charge continuity a simplified but clear model of the charge
relaxation. This model gives the decay of space-charge (Figure 1.2) along specific
trajectories. The obvious limitation of this analysis is that it does not couple charge
and velocity.

1.1.1 Rayleigh-Benard analogy and fluid-charge interaction

It has been proven as in the stationary state of pure unipolar injection, due to
coulombic repulsion the charge density decreases from the injector to the collector.
Therefore it suggests an analogy between the pure unipolar injection problem in
plane parallel electrodes geometry and the Rayleigh-Bernard problem of horizontal
fluid layer heated from below. In the latter case the unstable density gradient brings
about fluid motion when the temperature differences is large enough for buoyancy
to overcome the damping action of viscous forces. Above the critical value of the
Rayleigh number, instability sets in and heat is partially transferred by convection.
Although this analogy is not strictly correct because it does not take into account
all three mechanisms which transport the charge carriers: mass flux, the molecular
charge diffusion and the finite drift velocity of charge carriers with respect to the
fluid.
In absence of fluid motion, Felici [?] developed a simple model, known as hydraulic
model, in the weak injection regime. Felici modeled a convective cell as two columns
of equal radius R in whose the liquid velocity is assumed to be constant in mag-
nitude and to have a direction respectively identical and opposite to that of the
electric field. In these assumptions the time of flight ts of the ions between the
injector (y = 0) and a point at height y has been computed as

ts =
y

KE0

(1.1)
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where K is the ionic mobility of the dielectric and E0 is the equilibrium solution of
the electric field. Let us consider a convective motion in the form of two dimensional
rolls as shown in Figure 1.2. a positive velocity component w along the field line

Figura 1.2: Introduction: Two dimensional rolls and charge relaxation law

(zone 1) results in a decrease of the time t1 required for the ions to reach the height
y because

t1 =
y

(KE0 + v)
. (1.2)

Coulomb repulsion therefore acts during a time smaller than the motionless time ts
and the charge density Q1 is higher than the value Qs which exists at rest (Figure
1.2). In zone 2, the liquid velocity diminishes resulting an opposite effect. Therefore
the convective motion gives rise to a net torque which tends to accelerate it. Because
of this positive coupling between velocity and charge perturbations, the stationary
charge distribution is potentially unstable. The destabilizing force is proportional
to Q1 −Q2 and consequently to the mean charge gradient.
This unstable character of space charge distribution does not imply that any velocity
perturbations will be amplified. Indeed a sustained motion implies that an energy
source can provide for dissipation due to viscous forces and it is clear that for low
enough applied voltages the system remains stable.
As the liquid velocity reaches the value (v = KE0), two separate regions are formed
in the cell pattern. The charges are indeed denied to enter in zones where the
liquid velocity in the electric field direction equals the ion mobility velocity. If the
diffusion has been neglected the two region are separated by a discontinuity line
called separatrix. If the charge diffusion works [?] the two regions still exist with
the same geometry but the separatrix becomes an high charge gradient layer. The
linear stability analysis gives the critical conditions but cannot predict the planform
of the convective cells which will appear. Therefore non-linear analysis has been
developed to explain both cells shape behavior and hysteresis loop in current-voltage
law [1], [4]. The great features of the non-linear instability mechanism have been
derived by Felici [?] and consists in its hydraulic model. This simple model has been
extended by several authors using information about the shape of convective cells
risen by experimental results. The typical shapes are 2D rolls and 3D hexagonal
cells [8]. By theoretical studies the non linear instability threshold agrees with
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Figura 1.3: Introduction: Charge density contour from [?] (a) accounting for diffusion (b)
neglecting diffusion

Figura 1.4: Introduction: . A) Schlierenphotograph of the motion pattern in pyralene
1460 under strong injection from [8], B) Visualization of hexagonal convective
cells for the 3d Rayleigh-Benard problem



Capitolo 1 10

experimental results.
With the intent to better understand both linear and non linear EHD processes, a
computer code for the Direct Numerical Simulation of wall turbulent flows has been
recently modified during an earlier thesis work by S. Ceccon [?] to account for the
full set of equations which describe an EHD flow.
From this starting point, D. Cerizza [?] has done 3D DNS of EHD parallel plates
flow with full account of charge diffusivity effects. Being the first 3D EHD flow
simulation ever realized it has allowed us to investigate the diffusivity’s role, always
neglected till now.
In 2D case [?] has brought to light the limits of the simplified models used until the
present day.
In particular, accounting for charge diffusion, the estimate critical values of linear
and non linear analysis are significantly lower than the values reported in others
papers.
Moreover in 3D case [?] has been able to show for the first time hexagonal cells with
details made possible only by a numerical simulation.

Figura 1.5: Introduction: Stable pattern. Visualizations for the first stable convective to
charge pattern for a value of Q = 1.4 from [?]

Cerizza in [?] underlines that a simple order of magnitude analysis does not
take into account of several effects related to the diffusion charge mechanism which
affects the density charge distribution.
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1.1.2 The cross flow effect

The cross flow effect has been studied in [4] only in weak injection regime and
neglecting the EHD coupling. From this study emerges that a flow with a mean
velocity parallel to the electrodes generally interacts with the convection generated
by unipolar injection. For a low enough applied voltage the ions injected have a
vertical velocity KE0(y) due to the electric field and an horizontal velocity due to
the velocity profile U0(y). When the instability sets in the flow pattern depends on
the ratio of ionic velocity to the mean flow velocity and it could be 3-dimensional
(modulated transverse rolls or hexagonal cells) or, for higher values of Reynolds
number, it could appears as longitudinal rolls which later destabilize. Although no
furthers studies have been done about the cross flow effect and many interrogatives
about EHD and cross flow coupling still remain.

1.2 Brief summaries of EHD applications

EHD flows are implied in many devices actually in use and still in development. In
the first case the study of the electric-velocity field interaction can explain undis-
covered aspects about EHD flows, defining new path of technological improvement.
In the latter situation it defines a brand of new applications of the physical theory.

EHD and heat transfer

The most classical topic is how the EHD convective structures influence the
fluid properties. Superimposing a simple EHD flow on the fluid in an enclosure
domain, the convective rolls can enhance heat transfer at the wall. The heat
transfer for a given Rayleigh number could be augmented by EHD processes,
in particular using a non-uniform injection. For instance, experimental results
have shown an increasing 1000 % in heat transfer coefficients for the refrig-
erant R-134a [?]. The improvements in heat transfer are dramatic, especially
at lower refrigerant qualities (more liquid and less vapor). This allows man-
ufacturers to produce highly compact heat exchangers with less complicated
surfaces without sacrificing heat transfer efficiency. From a safety and cost
point of views, to use EHD seems to have some troubles because of an elec-
trical voltage needs to be added to the heat transfer device. However,using
typically dielectric materials, very little current is generated, despite the high
voltage.

EHD and MEMS technology

The utility of electrohydrodynamics (EHD) has an effective mean for the mi-
crodrop generation. The electric field developed between the charged liq-
uid sample and the ground electrode cause the electrical body force at the
air/liquid interface. The microdrop size can be controlled either by the gap be-
tween the electrode and the microchannel or the strength of the electric field.
Recently, the EHD method are especially applied to small scale diagnostic
devices such as massive parallel drug discovery and DNA microarray.
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EHD and micropumps

EHD pump are usually feasible only at microscale as the forces generated
are generally unable to move large quantity of fluids unless one is looking at
input in order of some tens of kilovolts. The fundamental phenomenon that
allows the transduction of electrical to mechanical energy in an EHD pump
is an electric field acting on induced charges in a fluid. In EHD pumping,
fluid forces are generated by the interaction of electric field with the charges
injected in the fluid. The fluid must be dielectric in order to permit EHD
pumping to occur. This idea is not a new one. In fact, EHD pump were first
proposed and built back in the 1960’s.

EHD and flow control

Until the present day the main processes that generate electroconvective mo-
tions have been dealt in hydrostatic conditions. However combining the EHD
set up and a cross flow, a boundary flow control technique via injection
distribution could be developed.
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1.3 Present work

Despite the remarkable accomplishments seen till here, many questions were left
unanswered including the discrepancy between the computed critical T ⋆ and the
observed one. The common simplifications in the previous works are the assump-
tions of an exponential time dependence (normal-mode approach) and a negligible
charge diffusion. The limiting nature of the above-mentioned approaches was un-
derlined by [?] and confirmed by [?].

Although, after being dominated by modal (eigenvalue) analysis for many decades, a
different perspective has emerged, allows the quantitative description of short-term
disturbance behavior.
Stability has been redefined in a broader sense as the response behavior of the gov-
erning equations to general input variables [6].
A remarkable result of the non modal stability is that the temporal behavior of a
non linear operator substantially deviates from the asymptotic behavior dictated
by its eigenvalues. Therefore any conclusions drawn from the eigenvalues can eas-
ily misrepresent the general disturbance behavior over the course of time, and the
dynamics of the least stable mode are, at worst, entirely irrelevant to the temporal
behavior of the linear system at finite time.

The aim of this work is to provide valuable answers to the following questions
throughout a non modal linear stability analysis of an EHD parallel plane problem
with and without cross flow and charge diffusion.

- What is the role played by the charge diffusion in the instability set in?

- Can it solve the discrepancy between computed and theoretical critical value
of T?

- What happens when combing a cross flow with the EHD parallel plane system?

- Is the EHD problem affected by a short time amplification?

- If yes, which are the growth mechanisms?

As can be seen by gathering all the previous investigations and theoretic studies
available in literature, the cross flow in strong injection, the charge diffusion effects
and the short time behavior have never been investigated before.
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The thesis is structured (Figure 1.6) as follows:

Chapter 1: INTRODUCTION.
Introduction to the EHD planar plan problem and reviews of the most remark-
able literature results.

Chapter 2: MODAL STABILITY ANALYSIS.
Introduction to the specific problem considered in the present work. Definition
of the equation set, its adimensionalization and its linearization. Discussion
of dimensionless electrical parameters and electrical time scale. Definition of
the eigenvalue problem for the linear modal analysis.

Chapter 3: NON MODAL STABILITY ANALYSIS.
Introduction to the non modal analysis tools as initial value problem, energy
definition and its related norm, maximum transient growth, maximum growth
rate, harmonically forced response and optimal initial conditions.

Chapter 4: HYDROSTATIC CASE.
Application of the modal e non modal analysis tools to the hydrostatic case. A
direct comparison with available data is possible and shows a good agreement,
even if several differences are observed thanks to the full accounting of the
physical processes related to the charge diffusion. A weak transient growth
has been observed.

Chapter 5: POISEUILLE CASE Application of the modal e non modal
analysis tools to the EHD planar plane problem combined with a cross flow.
In the viscous dominated regime (Re → 0) the stability is strongly affected
by electric field while as the Reynolds number increase the fluid dynamics
mechanisms dominate the transition. A strong transient growth has been
observed especially when α = 0.

Chapter 6: CONCLUSION

Appendixes.
Brief summaries of the mathematical tools used as Quasi-steady-Maxwell equa-
tion and Spectral methods. Moreover there are the benchmark cases used to
test the numerical code.
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Figura 1.6: Introduction: Presentation plan





CAPITOLO 2

MODAL STABILITY

2.1 Introduction

An isothermal flow of incompressible and perfectly insulating liquid, contained be-
tween two metallic electrodes of infinite extent and subject to unipolar injection,
is a classical configuration useful to study the effect of charge diffusion upon the
Coulomb-driven finite amplitude convection. This motion,named electroconvection,
depends on the strength of the electric field, the ionic purity of the liquid, and
the geometry of the electrodes. Both electrical and fluid-mechanical equations are
necessary to study this problem, and the electric-motive force is the coupling term
between the fluid’s motion field and the electric equations system. In fact for liquids,
ionic convection may not be negligible and a two way coupling will exist between
the flow field and the electrical-force field. How to write the equation set for the
linear modal stability analysis is the goal of this chapter.
Hydrodynamic stability theory is concerned with the response of a laminar flow to
a disturbance of small amplitude and deals with the mathematical analysis of evo-
lution of disturbance superposed on a laminar base-flow. In the EHD problem, the
instabilities results in a convective motion similar to Rayleigh-Benard’s instability.
A linear equation governing the the evolution of disturbance is necessary.
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2.2 Basic equations

2.2.1 Fluid mechanics equations

The plane electrodes are along the coordinates x, z and are placed at y = −ℓ (injec-
tor) and y = ℓ (collector) where y is associated to the electrodes-normal direction.
The fluid is assumed to be incompressible, Newtonian, with no-slip conditions at
the walls and driven by a pressure gradient along x direction. The fluid’s ions are
subjected to electrical-force that drive them towards the collector. In this process
the ions collide with fluid molecules, transferring momentum. This is equivalent to a
body force which acts directly on the fluid. Calling ρ the density and ν the cinematic
viscosity, the time evolution of the velocity vector V is described by the solenoidal
condition stemming from mass conservation and the Navier-Stokes equations com-
plemented by a suitable driving term related to the electric field, represented by F.
A cinematic constrain for the modified pressure could be found solving the momen-
tum equation’s divergence so it is implied by continuity equation.















∇ ·V = 0,

DV

Dt
= −1

ρ
∇P + ν∇2V +

1

ρ
F.

(2.1)

+l

-l

x

y

E0

Figura 2.1: Poiseuille simulation set up
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2.2.2 Electric field equations: Quasi-steady Maxwell equations

To investigate the effect of the charge injection upon the first instabilities in the EHD
flow the Maxwell equation set is required. Since the electrical current in dielectric
liquids is much small, the magnetic induction can be ignored yielding the electro-
quasi-statics Maxwell’s equations (A). In this limit the effect of density charge
evolution still remains by the charge continuity equation, but the electrodynamics
laws are submitted to the Gauss law and the irrotational nature of the electric field.











∇ ·D = Q,

E = −∇Φ,

where E, D, Φ, Q are the electric field, displacement, potential and the charge
density respectively. As usual, the electrical displacement is given by D = εE with
ε being the permittivity.

2.2.3 Electric field equations: Charge continuity

Electric charge is a fundamental property of subatomic particles. The charges of
free-standing particles are integer multiples of the elementary charge1 e = −1.602 ·
10−19C. The electric charge of a macroscopic object is the sum of the electric charges
of the particles that make it up. This charge is often small, because matter is made
of atoms, and atoms have typically equal numbers of protons and electrons, making
the atoms neutral.
The conservation law for the charge is

∂Q

∂t
+∇ · J = 0.

In dielectric liquids of high resistivity, as afterward specified, the Ohm’s law

J = σE

often fails to be valid and a new constitutive law for the current density is needed.
The injection mechanism controls the ions species injected in the system and the
nature of the force which drive them so it is strictly correlated to the current den-
sity’s law.
Moreover, as shown in several papers [3], [?], [?], the injection mechanism depends
on the nature of the electrode-liquid interface. For example in [8] metal electrodes
act as blocking contact than a injecting one causing non-uniform ionic emission and
so local pumping.
Therefore focus is needed on the simplest case where only one species of charge car-
riers is injected into a perfectly insulating fluid (conductivity σ = 0) with unipolar

1Charge of an electron or proton



Capitolo 2 20

autonomous injection.

There are several factors influencing the transport of charge and each are discussed
in turn below.

Convective transport by fluid motion

Naturally, if charge is present in a convected fluid the convective flux, i.e. the cur-
rent flux, for a specific species is simply that carried by the bulk motion of the fluid

Jconv = QV

Mobility and the Drift term

Generally in a conductor or in a dielectric, an electron will ’rattle around’ at the
Fermi velocity randomly. Since a dielectric material is a substance that is a poor
conductor but an efficient supporter of electric fields, when these are applied, a small
net velocity to the electron’s random motion results. This net velocity is called drift
velocity vdrift.
Ionic mobility is therefore classified as a material property closely related to the
ratio between free and blocked charges, describing the ability of the charge carriers
(such as electrons or ions2) to move through a medium in response to an electric field.

Vdrift = KE

The ionic mobility of a fluid is usually assumed to be both isotropic and constant,
and varies depending on the physical properties of the charge carriers and medium.
For negative ions the typical Walden’s rule give

K = 1.5
10−11

µ

If it is assumed that the charged fluid element is traveling at its terminal velocity,
then it is said to have reached the mobility limit and the flux of current can be
expressed as

Jmob = QKE

The conduction term is proportional to the Coulomb force so, theoretically, for high

2An ion is an atom (or group of atoms) that has lost one or more electrons, giving it a net
positive charge (cation), or that has gained one or more electrons, giving it a net negative charge
(anion).
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electric fields, it could permit to the charge carriers (ions) to move in the upstream
direction and create free charge zones.

Diffusion and the Debye length

As explained in [3] the diffusion could be considerated in both boundary layers or
internal layers. The typical length scale of these layers is the Debye length. It is
defined as the distance over which the potential developed by separating a charge
density from the background charge of the opposite polarity is equal to the Ther-
mal Voltage ℓD = KBΓ/e. The simplest formula to get the charge diffusion is the
Nernst-Einstein equation [?], which relates diffusion to ions mobility for a given ionic
specie i :

Di = KiℓDi (2.2)

where Γ is the absolute temperature in Kelvin and Ki the mobility for the specified
ionic specie. As explained by [?], ℓD is important when the ratio of ionic diffusion
timescale to the charge relaxation timescale is considerable. Which is the reason
why diffusion is signified in EHD processes occurring close to the charge injecting
electrode. The current flux due to diffusion can be written as

Jdiff = −D∇Q

Typically, D diffusion coefficient’s range is 10−8 ∼ 10−10. The diffusion term is
usually eliminated only if bulk effects are of interest. According to [1] it is possible
to formulate a magnitude analysis regarding the drift and diffusion term

D∇Q

QKE
∼ 0.025

Φ0

ℓ

ℓD

Thus the diffusion term is of interest only if the ratio of diffusion and drift currents
accords to unity’s order. For the most common EHD applications D is very low and
it is usually neglected [?], [?], [?], [?] but as shown in [?], it has a strong influence, in
particular for the 2D case. In fact [?] has demonstrated that its presence enhances
the instability of the flow throughout an augmented mixing. Moreover within the
linear-stability analysis, the absence of diffusion term creates a critical layer making
the numerical solution more complex (D).

Charge conservation

The total steady-state current flux can be defined by combining the previews con-
tributes. Therefore, the constitutive laws for the current density results as:

J = QV +QKE−D∇Q. (2.3)
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It’s clear that generally, three charge distribution mechanisms are present in (??).

2.2.4 The electrical-force

The body force F has an electrical origin and is the only term that permits EHD
coupling, and it is a force per volume unit. The most general expression for F is:

F = QE− E2

2
∇ε+∇

[

E2

2
ρ
∂ε

∂ρ

]

+ J ∧B+ (P · ∇)E (2.4)

For the previous hypotheses, the magnetic induction (B) and the polarization (P)
are negligible. The first term is the Coulomb force on a medium containing free
electric charge. It is the strongest EHD force in these kind of systems. The second
term, called the dielectric force, is due to the force exerted on a non-homogeneous
dielectric liquid by an electric field so, assuming ε steady and homogeneous, it does-
n’t exist.
The third term, called the electrostrictive term, is a gradient of a scalar. It is treated
as the gravitational force, so it is possible to considerate it modifying the pressure
term.
Equation ??) simplifies to:

F = QE (2.5)
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2.2.5 The complete sets and its boundary conditions

Substituting (??) in (??) and writing (??) as function just of Φ is possible to write
the complete equation set in five unknowns variables3.







































∇ ·V = 0,

DV

Dt
= −1

ρ
∇P + ν∇2V +

ε

ρ
∇2Φ∇Φ,

∂

∂t
∇2Φ +∇ · (∇2ΦV −K∇2Φ∇Φ−D∇2(∇2Φ)) = 0.

(2.6)

The differential problem is closed when an initial condition for all the fluid variables
and electric potential are specified, and suitable boundary conditions are chosen. At
the wall the no-slip condition is physically meaningful.

V(x, ℓ, z, t) = 0, V(x,−ℓ, z, t) = 0. (2.7)

Periodic conditions are usually employed in the x and z directions, where either the
problem is homogeneous in wall-parallel planes. From now on this assumption will
be considerated.
The third equation of (??) is a forth order differential equation and so it needs four
boundary conditions. Assuming that the injection is autonomous, i.e., independent
by electric field, the electrical boundary conditions, consist in imposing the potential
on the electrodes.

Φ(x, ℓ, z, t) = 0, Φ(x,−ℓ, z, t) = Φ0, (2.8)

Specifying the way in which charge is injected into the liquid on one boundary and
removed from the opposite, the last two conditions will be revealed. The assump-
tion of autonomous injection provides (??). Moreover, in the case where the charge
diffusion coefficient is not negligible, the dielectric nature of the medium (E(ℓ) = 0)
suggests a Neumann boundary condition for the charge density on the collector (??).

∇2Φ(x, t)
∣

∣

y=ℓ
= −εQ0, (2.9)

∂∇2Φ(x, t)

∂y

∣

∣

∣

∣

y=ℓ

= 0. (2.10)

3 the operator
D

Dt
(.) is defined as substantial derivative t.c.

D

Dt
(.) =

∂

∂t
(.) +V∇̇(.)
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2.3 Non-dimensional EHD equations and parameters

2.3.1 Dimensionless sets and boundary conditions

Before any kind of analysis, a dimensionless form of preview set is more likely
desidered. The mechanical and electrical equations may be written as (??) taking
ℓ, Φ0, Q0, (KΦ0)/ℓ as the dimensional units for distance, potential, charge density
and velocity respectively45. The EHD set is:







































∇ · Ṽ = 0,

DṼ

Dt̃
= −∇P̃ +

M2

T
∇2Ṽ +M2∇2Φ̃∇Φ̃,

∂

∂t̃
∇2Φ̃ +∇ · (∇2Φ̃Ṽ −∇2Φ̃∇Φ̃ +

1

Fe
∇2(∇2Φ̃)) = 0.

(2.11)

with its suitable boundary condition:

Ṽ(x̃, 1, ỹ, t̃) = 0, Ṽ(x̃,−1, z̃, t̃) = 0, Φ̃(x̃, 1, z̃, t̃) = 0, Φ̃(x̃,−1, z̃, t̃) = 1,

∇2Φ̃(x̃, t̃)
∣

∣

∣

ỹ=−1
= −C, ∂∇2Φ̃(x̃, t̃)

∂ỹ

∣

∣

∣

∣

∣

ỹ=1

= 0.

2.3.2 EHD non-dimensional parameters

Electrical timescales

There are many timescales associated with EHD flow in addition to those by Hy-
drodynamic definition. For the present purposes they are

→ τSCR: Space charge Relaxation= ε/(KQ0),
Typical for high insulating liquid. By [5] [3] it determines the rate at which
charge decay from a given origin.

Q(y) =
Q(y0)

1 + t/τSCR

4To let the notation more clear ∇ is the dimensionless differential operator ∇̃
5To let the notation more clear, from now on the dimensionless quantities will be written without

(̃·)
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→ τD:Ionic diffusion timescale= D/ℓ2D,
Near the electrodes, a thin layer exists where electro-chemical reactions en-
abling charge to be injected in the fluid. Here the Debye scale is important
and defines a diffusion timescale.

→ τK :Ionic transit Timescale=
ℓ2

KΦ0

,

It is the timescale associated with drift of ions, characterized the bulk of EHD
processes.

→ τEV : Electro-viscous timescale=
µℓ2

εΦ0

,

→ τEI :Electro-inertial timescale= ℓ2
√

ρ

εΦ2
0

,

Non dimensional parameters

The EHD parameters are:

→ T : Taylor’s Parameter =
εΦ0

µK
=

τK
τEV

It measures the strength of the destabilizing Coulomb force. It could be also
viewed as the ratio of electrical energy supplied to the system to the energy
dissipated by viscous force, and it plays a role of critical parameter. It is
directly analogous to the Rayleigh number in hydrodynamics.

→ M : Dimensionless ionic mobility =
1

K

√

ε

ρ
=

τK
τEI

.

It s the ratio of the hydrodynamic mobility to the ionic mobility. The charac-
ter
√

ε/ρ as a hydrodynamic mobility can be easily understood by considering
a complete conversion of the electric energy supplied to the system into kinetic
energy of the liquid [1].

→ C : Charge injection coefficient =
q0ℓ

2

εΦ0

=
τK
τSCR

,

When the charge density is uniform on the injector it is a measure of the
injection level. It has a relevant influence on the critical value of T. C ≪ 1
and C ≫ 1 limit both weak and strong injection.

→ Fe : Dimensionless charge diffusivity =
KΦ0

D
∝ τK

τD
.

It is the ratio of diffusion time to ionic transit time 6

6By [3] it may also be written (for ambient temperature) as 1
40Φ0.
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It is important to distinguish material parameters (M), fixed once the liquid has
been chosen, from flow parameters (M ,C,T ) that depend on flow regime. In (??) the
viscous stress are proportional to M2/T that is analogous to the Prandtl number.

2.3.3 Weak and strong injection regime

The critical T value, depends on the C parameter which measures the intensity of
charge injection. [1] has expressed charge relaxation (??) that shows how moving
the charge carriers toward the collector, the charge density decreases because of the
Coulomb repulsion.
The weak injection limit, corresponds to great τSCR. By (??), in this regime, the
charge density doesn’t change on the trajectory towards the collector. The increas-
ing of the current due to convection could be although considered weak, so the
Coulomb repulsion has a weak effect between charge carriers.
In the case of two plane parallel rigid electrodes, the weak injection limit is charac-
terized by the criterion

TcC2 = 220.7 (2.12)

As (C → +∞) 7, the convection has an influence on the passage of current. In this
case the charge diffusion plays an important role close to the injector. In this regime
the stability criterion is

Tc ≈ 161. (2.13)

Even though, both injections are shown, only the strong injection will be considerate
throughout this thesis.

7also called (SCL)
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2.4 Linear modal analysis

2.4.1 Velocity base flow

The Poiseuille flow assumption has been taken in account. Stream-line parallel to
the plates and U as non-null velocity component. Moreover, as the velocity field even
the electric field has not dependence by x and z direction and in the equilibrium
case there’s not EHD coupling because mechanic and electric fields are orthogonal
each other. In fact, under the previews assumptions the coupling term are:

Fx = M
∂

∂x

d2

dy2
Φ0 = 0, ∇(∇2Φ0) ·V = 0.

Substituting the hypotheses in the (??), integrating the x-momentum in y for two
time and applying the no-slip boundary condition we get:

U0(y) =
U(y)

Uion

=
Πion

2

T

M2
(y2 − 1),

U
′

0(y) = Πion
T

M2
y,

U
′′

0 (y) = Πion
T

M2
.

Where Πion is the dimensionless pressure gradient taking ionic velocity as reference
velocity. Πion is negative if the velocity is positive and viceversa. As we would
control the mean velocity flow with a parameter which is independent by electrical
parameters M, T and C we choose to get the dimensionless equations set (??) with
center-line velocity as reference velocity

U(y)

Ucl

=
Πcl

2
Recl(y

2 − 1), → U(0)

Ucl

= −Πcl

2
Recl = 1.

Πion = Πcl
U2
cl

U2
ion

= − 2

Recl

U2
cl

U2
ion

and so:

U0(y) = Recl
M2

T
(1− y2), U

′

0(y) = −2Recl
M2

T
y, U

′′

0 (y) = −2Recl
M2

T
. (2.14)
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2.4.2 Electric potential base flow

As previously explained the coupling term in the charge continuity, the scalar prod-
uct between the electric field and the velocity, is null in the base flow assumption.
In the case where the charge diffusion coefficient is not neglected, the third equation
in (??) is a fourth order equation, and therefore we need an homogeneous Neumann
boundary condition for the charge density. The electric base flow equation is

dΦ0

dy

d3Φ0

dy3
+ (

d2Φ0

dy2
)2 +

1

Fe

d4Φ0

dy4
= 0 (2.15)

or more simply, as

d

dy

(

1

Fe

d2Φ0

dy3
+

dΦ0

dy

dΦ0

dy

d2Φ0

dy2

)

= 0

Eq. (??) is readily integrated to give

1

Fe

d3Φ0

dy3
+

dΦ0

dy

d2Φ0

dy2
= α

Upon substituting A =
dΦ0

dy
one obtains

1

Fe

d2A

dy2
+ A

dA

dy
= α

which can be simplified by setting B = dA
dy

+ Fe
2
A2 to yield

dB

dy
= αFe

Integrating yields directly the new equation

dA

dy
+

Fe

2
A2 = αFey + β

which is a Riccati equation. Substituting A = 2P ′

FeP
leads to

2P ′′ − PFe(αFey + β) = 0

Solving yields

P =

√

y +
β

αFe

{

γJ1/3

[

2

3

(

y +
β

αFe

)3/2
√

−αFe

2

]

+ ηY1/3

[

2

3

(

y +
β

αFe

)3/2
√

−αFe2

2

]}

We select η = 0 to avoid the singularity due to the Bessel function of the second
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kind Y1/3. further, nothing that

A =
2

Fe

P ′

P
=

2

Fe
(lnP )′ = φ′,

that readily integrates to

Φ0(y) = δ +
2

Fe
ln

{
√

y +
β

αFe

(

γJ1/3

[

2

3

(

y +
β

αFe

)3/2
√

−αFe

2

])}

.

where α, β, γ and δ are integration’s constants.
To solve the system a spectral method with boundary bordering technique has been
used.
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2.4.3 Perturbation equations

The evolution equations for the disturbance can be derived by considering a basic
state, previously obtained, and a perturbed state , both satisfying the Naiver-Stokes
equations.

V = V0 + v, P̂ = P̂0 + p, Φ = Φ0 + φ, .

Subtracting the equations for basic and perturbed flow and omitting the non linear
terms, the resulting linear equation can be written as































































































∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

∂u

∂t
+ U0

∂u

∂x
+ v

∂U

∂y
= −∂p

∂x
+

M2

T
∇2u+M2Φ

′′

0

∂φ

∂x
,

∂v

∂t
+ U0

∂v

∂x
= −∂p

∂y
+

M2

T
∇2v +M2Φ

′′

0

∂φ

∂y
+M2Φ

′

0∇2φ,

∂w

∂t
+ U0

∂w

∂x
= −∂p

∂z
+

M2

T
∇2w +M2Φ

′′

0

∂φ

∂z
,

∂

∂t
∇2φ = Φ

′′′

0 (
∂φ

∂y
− v) + 2Φ

′′

0∇2φ+ Φ
′

0

∂

∂y
∇2φ− U0

∂

∂x
∇2φ+

1

Fe
∇2∇2(φ)

With its suitable homogenous boundary conditions at the wall and periodic in x, z
directions

v(x, 1, z, t) = 0, v(x,−1, z, t) = 0, φ(x, 1, z, t) = 0, φ(x,−1, z, t) = 0,

∇2φ(x, t)
∣

∣

y=−1
= 0,

∂

∂y
∇2φ(x, t)

∣

∣

∣

∣

y=1

= 0.

The linearized momentum equation’s divergence with the continuity equation yields
a cinematic constrain for the perturbation pressure

∇p = −2U ′
0

∂v

∂x
+M2(Φ′

0

∂

∂y
∇2φ+ 2Φ′′

0∇2φ+ Φ′′′
0

∂φ

∂y
) (2.16)
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In order to describe the EHD system in a more efficient way, (??) may be used
to eliminate the pressure, resulting in an equation for the normal velocity v supple-
mented by charge continuity and the normal vorticity8. If the disturbance pressure
is needed it can be recovered from the normal velocity.















































∂

∂t
∇2v = −U0

∂

∂x
∇2v + U

′′

0

∂v

∂x
+

M2

T
∇2∇2v +M2

[

Φ
′

0∇2∇2
1φ− Φ

′′′

0 ∇2
1φ
]

,

∂η

∂t
= −U0

∂η

∂x
− U

′

0

∂v

∂z
+

M2

T
∇2η,

∂

∂t
∇2φ = Φ

′′′

0 (
∂φ

∂y
− v) + 2Φ

′′

0∇2φ+ Φ
′

0

∂

∂y
∇2φ− U0

∂

∂x
∇2φ+

1

Fe
∇2∇2(φ)

(2.17)

This equations set, together with the homogeneous boundary condition

v(x,±1, z, t) = 0, v′(x, t)|y=±1 = 0, η(x,±1, z, t) = 0, φ(x,±1, z, t) = 0,

∇2φ(x, t)
∣

∣

y=−1
= 0,

∂

∂y
∇2φ(x, t)

∣

∣

∣

∣

y=1

= 0.

and the initial conditions

v(x, y, z, 0) = v0(x, y, z), η(x, y, z, 0) = η0(x, y, z), φ(x, y, z, 0) = φ0(x, y, z).

form a complete description of the evolution in both space and time of an infinitesi-
mal disturbance. In the linear stability analysis the velocity, pressure and potential
perturbations have a wave-like form

g(x, t) = ĝ(y)ei(αx+βz−ωt), α, β ∈ R, ω ∈ C (2.18)

where ω = αc , with c as phase speed and α and β as streamwise and spanwise wave
number. The choice of a complex frequency is know as temporal problem where
the spatial structure of wavelike perturbation is unchanged and the amplitude of
wave grows or decays as time progress. Introducing this representation into (??), or
equivalently taking the Fourier transform in the horizontal directions, results in the
following equations for v, η and Φ 9

8η =
∂u

∂z
− ∂w

∂x
, ∇2

1(·) = ∇2(·)− ∂

∂y
(·).

9Dn =
∂(n)

∂y(n)
(·)
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ω(D2 − k2)v̂ =

[

αU0(D2 − k2)− αU
′′

0 − 1

i

M2

T
(D2 − k2)2

]

v̂+

+
1

i
M2

[

k2Φ
′

0(D2 − k2)− k2Φ
′′′

0

]

φ̂,

ωη̂ =
[

U
′

0β
]

v̂ +

[

αU0 −
1

i

M2

T
(D2 − k2)

]

η̂,

ω(D2 − k2)φ̂ = Φ
′′′

0 v̂+

+

[

αV0(D2 − k2)− 1

i
(Φ

′′′

0 D1 + 2Φ
′′

0(D2 − k2) + Φ
′

0(D3 − k2D1))

]

φ̂+

−1

i

[

1

Fe
(D2 − k2)2

]

φ̂.

(2.19)

with its suitable homogeneous boundary condition

v̂(±1) = 0, v̂′|y=±1 = 0, η̂(±1) = 0, φ̂(±1) = 0, φ̂′′
∣

∣

∣

y=−1
= 0, φ̂′′′

∣

∣

∣

y=1
= 0.
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2.5 Discrete form

To solve the previews problem a spectral collocation method has been used. More
details about Chebyshev polynomials and spectral discretization are given in (B),
being specific, given a function f(y) defined for 1 ≥ y ≥ −1, is possible to approxi-
mate it as

f(y) =
N
∑

n=0

anTn(y)

where

Tn(y) = cos(nθ), θ = cos−1(y)

In matrix form

f(y) = D0af , f (n)(y) =
d(n)

dy(n)
(D0)af = Dnaf (2.20)

where

D0(kj) = cos(j cos−1(yk)).

Substituting (??) in the complete set with the wavelike perturbations (??), the
matrix system (??) has been obtained. In this form, notation and algebraic manip-
ulation will result easier.





Lvv 0 Lvφ

Lηv Lηη 0
Lφv 0 Lφφ









av

aη

aφ



 = w





Mvv 0 0
0 Mηη 0
0 0 Mφφ









av

aη

aφ



 (2.21)

Where the M(.) and L(.) operators are the follows:

Mvv = D2 − k
2D0, (2.22)

Mηη = D0, (2.23)

Mφφ = D2 − k
2D0. (2.24)
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Lvv =αU0(D2 − k
2D0)− αU

′′

0D0 −
1

i

M2

T
(D4 − 2k2D2 + k

4D0), (2.25)

Lvφ =+
1

i
M2

[

k
2Φ

′

0(D2 − k
2D0)− k

2Φ
′′′

0 D0

]

, (2.26)

Lηv =βU
′

0D0, (2.27)

Lηη =αU0D0 −
1

i

M2

T
(D2 − k

2D0), (2.28)

Lφv =
1

i
Φ

′′′

0 D0, (2.29)

Lφφ =αU0(D2 − k
2D0)−

1

i
(Φ

′′′

0 D+ 2Φ
′′

0(D2 − k
2D0) + Φ

′

0(D3 − k
2D))

− 1

i

1

Fe
(D4 − 2k2D2 + k

4D0). (2.30)

The system (??) is a first order generalized eigenvalue problem. Introducing com-
pact notation it equals to:

Lx = ωMx (2.31)

with M as a positive definite operator.
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2.5.1 Enforcement of boundary conditions

Choosing the boundary bordering technique described in (B) the operative proce-
dure is really simple.
Giving the following system and its boundary conditions

Lx = ωMx (2.32)

the trick is to use the first c rows to force the c conditions on the collector and the
last i rows to apply the i conditions on the injector. In the charge diffusive case the
modified operators will be the following10

Lvv = [ξD0(1, :); ξD1(1, :);Lvv(3 : Ndof − 2, :); ξD1(Ndof , :); ξD0(Ndof , :)] ,

Lvφ = [Zr(1, Ndof );Zr(1, Ndof );Lvφ(3 : Ndof − 2, :);Zr(1, Ndof );Zr(1, Ndof ); ] ,

Lηv = [Zr(1, Ndof );Lηv(2 : Ndof − 1, :);Zr(1, Ndof ); ] ,

Lηη = [ξD0(1, :);Lηη(2 : Ndof − 1, :); ξD0(Ndof , :)] ,

Lφv = [Zr(1, Ndof );Zr(1, Ndof );Lφv(3 : Ndof − 2, :);Zr(1, Ndof );Zr(1, Ndof ); ] ,

Lφφ = [ξD0(1, :); ξD1(1, :);Lφφ(3 : Ndof − 2, :); ξD2(Ndof , :); ξD0(Ndof , :)] ,

Mvv = [D0(1, :);D1(1, :);Mvv(3 : Ndof − 2, :);D1(Ndof , :);D0(Ndof , :)] ,

Mφφ = [D0(1, :);D1(1, :);Mφφ(3 : Ndof − 2, :);D2(Ndof , :);D0(Ndof , :)] ,

where ξ is a imaginary negative constant.
Its function is to map the spurious modes associated to the forced boundary con-
ditions to an arbitrary location in the complex plane guaranteeing the respect of
homogenous boundary conditions. In fact ξ converts-inverts real and imaginary

10A Matlab style notation has been used, the generic matrix A(i, j) has two indices, i for rows
and j for columns. As example the notation A(1 : 3, :) equals to consider the firsts three rows of
A and all its columns. Ndof is the total number of degree of freedom.
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part of the unknown coefficients as

{

Real(v̂) = |ξ|Imag(v̂),

|ξ|Real(v̂) = −Imag(v̂).
−→

{

Real(v̂) = 0,

Imag(v̂) = 0.



CAPITOLO 3

NON MODAL STABILITY

3.1 Initial value problem

A new to way to investigate the EHD problem has to be developed. Re-examining
(??) and focusing the attention on its form of initial value problem,it is possible to
turn out significant differences about the perturbations’s behavior.
In the previous chapter (??) has been obtained by assuming a wave-like form pertur-
bation which includes an exponential time dependence. On the other hand, assuming
solutions in the form of

g(x, t) = ĝ(y, t)ei(αx+βz), α, β ∈ R.

and following the same derivation path of (??), it is possible to obtain the initial
value problem form















































∂

∂t
∇2v = −U0

∂

∂x
∇2v + U

′′

0

∂v

∂x
+

M2

T
∇2∇2v +M2

[

Φ
′

0∇2∇2
1φ− Φ

′′′

0 ∇2
1φ
]

,

∂η

∂t
= −U0

∂η

∂x
− U

′

0

∂v

∂z
+

M2

T
∇2η,

∂

∂t
∇2φ = Φ

′′′

0 (
∂φ

∂y
− v) + 2Φ

′′

0∇2φ+ Φ
′

0

∂

∂y
∇2φ− U0

∂

∂x
∇2φ+

1

Fe
∇2∇2(φ)

(3.1)

Introducing a spectral method, it yields a first order strictly proper system

{

ẋ = Ax

y = Cx.
(3.2)

whereas A = −iM−1L = −iL1
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x =





av

aη

aφ



 , A = −i





D2 − k2D0 0 0
0 D0 0
0 0 D2 − k2D0





−1 



Los 0 Lvφ

Lc Lsq 0
Lφv 0 Lφ



 ,

Besides the dimensionless parameters, the evolution of disturbance is influenced by
the initial conditions [u0, v0, w0]

T . The input and output are in primitive vari-
ables (velocity and potential) while the state variables have to be a specified shape
in the wall-normal direction.

C =



























i
α

k2
D1 −i

β

k2
D0 0

D0 0 0

i
β

k2
D1 i

α

k2
D0 0

0 0 D0



























.

x0 =





av0

aη0

aφ0



 =

=





D2 − k2D0 0 0
0 D0 0
0 0 D2 − k2D0





−1 



0 D0 0 0
−iβD0 0 iαD0 0

0 0 0 I













au0

av0

aw0

aφ0









=





iα (k2D0 −D2)
−1

(k2D0 −D2)
−1

k2D0 iβ (k2D0 −D2)
−1

D1 0
iβD0 0 −iαD0 0
0 0 0 D0













au0

av0

aw0

aφ0









=

= B









au0

av0

aw0

aφ0









= Bv0 (3.3)

Assuming the fact that no statements have been made regarding the temporal be-
havior, the general solution of (??) which completely describes the time evolution
of initial condition x0 is

x = eAtBvo (3.4)



39 NON MODAL STABILITY

while the velocity-potential input-output form is









auout

avout

awout

aφout









= CeAtB









au0

av0

aw0

aφ0









(3.5)

As shown in [6], [?], systems governed by non-normal matrices can exhibit a large
transient amplification of energy contained in the initial condition.

3.1.1 Modal reduction

As usual in many problems it is possible to reduce the numerical efforts projecting
the system in a new, and more efficient, base set. Congruence and completeness are
two essential properties that the new set required. The eigenfunctions1 respect the
congruence (boundary conditions) by definition. Moreover, for bounded domains,
completeness has been proven by [?].
Assuming (??), it is to translate from (??) to

Ax̃ = −iωx̃, w ∈ C. (3.6)

L1x̃ = ωx̃, w ∈ C. (3.7)

Calling x̃ and ỹ right and left eigenvectors of n-by-n system and using their prop-
erties already cited,it is possible to expand (??) as a linear combination of m ≪ n
eigenvectors . This technique, called modal reduction2, is a powerful tool to get a
new and smaller system instead the original one. As every tool it has several limi-
tations. Its applicability will be tested forwardly in the same manner used by [?].

X = [x̃1, x̃2, ..., x̃m] , X ∈ Cnxm. (3.8)

x = Xq. (3.9)

where q are the coefficients of modal expansion. Substituting in (??) and using

ẋ = Xq̇, YT (A)X = −iΛ, YTX = I.

1Eigenvector in discrete form
2Also known as Modal expansion or Modal truncation.
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calling Cr = CX, the reduced problem is

{

q̇ = −iΛq,

y = Crq
(3.10)

whereas

q =

















q1
q2
.
.
.
qm

















, Λ =













ω1 0 ... ... 0
0 ω2 ... ... 0
0 0 . ... 0
0 0 0 . 0
0 0 0 ... ωm













, n,m ∈ R, m ≪ n.

The benefits gained are: a smaller dimension of reduced system, minor numerical
effort and the power to use a simple diagonal matrix instead the exponential one

eAt = I+At+
1

2
A2t2+ ... = YTX−iXΛYT t+

1

2
XΛ2YT t2+ ... = Xe−iΛtYT (3.11)

Initial condition for the reduced system

Recalling (??), the initial conditions available u, v, w and φ need to be projected in
the Chebyshev space. Although

q0 = X−1x0

does not make sense because X is a rectangular matrix. A possible solution is given
by least square method. Guessing a modal initial condition, it’s possible to define a
residual as

ε(q0) = x0 −Xq0

and then, using LSD the result is

q0 = W−1
REX

∗WEx0 = Zx0 (3.12)

and the input-output reduced form









uout

vout
wout

φout









= Cre
−ΛtZB









u0

v0
w0

φ0









(3.13)

where the matrices WE and WRE will be presented in the next sections.
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3.2 Disturbance measure

3.2.1 Total Energy

At the core of the non modal analysis of non-normal operators is the non-orthogonality
of the eigenfunctions. The angle between various eigenfunctions is computed by us-
ing an inner product. This same inner product provides a norm to measure the size
of our state variables. This choice of inner product will quantitatively influence the
maximum amplification potential of the underlying operator. Therefore, the norm
and inner product have to be chosen carefully3.
In order to quantify these amplifications a disturbance measure is needed. As it is
clear, physically motivated measures are preferred as they suggest realizability and
observability for numerical simulation and experiments.
In the present work the charge carriers are the electrons, which dragged by the
electric field form zones with different charge densities. 4. In this process no mass
displacement is involved since the electron’s mass is negligible. Therefore a natural
choice of disturbance measure in EHD problems is the system’s total energy deter-
mined by the sum of kinetic energy produced by liquid velocity perturbations, and
potential energy produced by electrical perturbations.
In dimensional units

Ek =
1

2
ρ

∫

V

|u|2 + |v|2 + |w|2dV = [J ], (3.14)

Ep =
1

2

∫

V

qφdV = [J ]. (3.15)

which added yield

Ẽtot =
1

2

∫

V

|ũ|2 + |ṽ|2 + |w̃|2 +M2q̃φ̃ dV (3.16)

where ℓ, Φ0,(Φ0ε)/ℓ
2 and (KΦ0)/ℓ are taken as reference distance, potential, charge

density and velocity respectively. Using Parseval’s equality

∫ +∞

−∞

hT (x)h(x)dx =
1

2π

+∞
∑

α=−∞

h∗(iα)h(iα)

and

3Orthogonality is strictly connected to the inner product between eigenvectors and so to the
norm used to evaluate it. Since from Lyapunov theory in a stable system the energy should decrease
or remain constant over time, we can say that if the system is stable, there is a energy defined
by quadratic form of the state, for which the inner product is zero. Usually these norms have not
physics meaning and so are useless for our purpose.

4It has been proven by several papers [?], [?]that, when EHD instability sets in, in the charge
continuity equation is possible to find regions with null or almost null charge density even with
the charge diffusion term.
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û =
i

k2
(αDv̂ − βη̂),

ŵ =
i

k2
(βDv̂ + αη̂),

q̂ = −(D2 − k
2)φ.

Since the Fourier modes are orthogonal, the total energy can be written as follows

Ẽtot =
∑

α

∑

β

E (α, β) =
∑

α

∑

β

∫ 1

−1

|Dv|2
k2

+|v|2+ |η|2
k2

+M2
k
2|φ|2−M2φ∗D2φ dydαdβ

(3.17)

Integrating per parts E5, known as total energy density in Fourier space, the energy
measure can be related to a weighted inner product

E =
1

2k2

∫ +∞

−∞





v̂
η̂

φ̂





∗ 



k2 −D2 0 0
0 1 0
0 0 M2k4 −M2k2D2









v̂
η̂

φ̂



 dy (3.18)

3.2.2 Energy weight in discrete form

Using a spectral method, the total energy results

E = x∗ 1

2k2

∫ 1

−1





D∗
1D1 + k2D∗

0D0 0 0
0 D∗

0D0 0
0 0 M2(k4D∗

1D1 + k2D∗
0D0)



 dy x

E = x∗





Wvv 0 0
0 Wηη 0
0 0 Wφφ



x = x∗WEx. (3.19)

As explained in [?] if values of a function at yi are known, the function can be in-
tegrated with spectral accuracy. Using the matrix O which converts the function’s
coefficients in the first derivative’s coefficients, and integrating the Chebyshev ma-
trices

x/y = D1x = D0Ox,

S =

∫ 1

−1

D∗
0D0dy.

5Just its first term |Dv|2.
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where O is given by [?] and

Sij =







1

1− (i+ j)2
+

1

1− (i− j)2
, if i+ j = even

0, if i+ j = odd
(3.20)

Is possible to re-write every term of (??) as a matrix product

Wvv = O∗SO+ k
2S,

Wηη = S,

Wφφ = M2
k
2O∗SO+M2

k
4S.

3.2.3 Energy modal reduction, inner product and energy norms

A reduced formulation of the scalar product and its associated norm is needed. Sub-
stituting (??) in (??)

E = x∗WEx = q∗X∗WEXq = q∗WREq (3.21)

whereas WE is the n-by-n energy weight matrix and WRE is the m-by-m reduced
energy weight matrix where m ≪ n. The weight matrices are both hermitian and
definite positive so a Cholesky decomposition could be applied

WE = F∗F,

WRE = F∗
rFr, (3.22)

(3.23)

Both WE and WRE are necessary to convert an energy measure to the more
standard Eulerian norm. In fact, the integral (??) is a inner product, an application
( . , . )E that permits the passage from a vector space to a scalar space. As every
inner product it is linear, hermitian, and definite positive. In that way the energy
scalar product could be defined as

(x1,x2)E = x∗WEx = (Fx1,Fx2)2,

(q1,q2)RE = q∗
1WREq2 = (Frq1,Frq2)2,

(x1,x2)E = (q1,q2)RE
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from the inner product it is simple to derive its associated energy and eulerian norms

(x,x)E = ‖x‖2E = ‖Fx‖22, (3.24)

(q,q)RE = ‖q‖2RE = ‖Frq‖22, (3.25)

‖x‖2E = ‖q‖2RE (3.26)

‖B‖E = max
x

‖Bx‖E
‖x‖E

= max
x

‖FBx‖2
‖Fx‖2

= max
x

‖FBF−1Fx‖2
‖Fx‖2

= ‖FBF−1‖2 (3.27)

‖B‖RE = max
q

‖Bq‖RE

‖q‖RE

= max
q

‖FrBq‖2
‖Frq‖2

= max
x

‖FBx‖2
‖Fx‖2

= ‖FrBF−1
r ‖2 (3.28)
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3.3 Unforced problem, response to initial condition

3.3.1 Maximum amplification

The linearized EHD problem is defined by a non-normal operator, therefore a large
transient growth is possible even when all eigenvalues are confined to the stable
half-plane, thus predicting large-time asymptotic decay. In the large-time limit, this
analysis recovers the least stable mode, but for intermediate time, the results may
be significantly different. After choosing a suitable disturbance measure and its re-
lated norms, we are interested to measure the maximum response to varying initial
conditions.
Defining G as the maximum possible amplification of the energy density related to
an initial condition

G(t) = max
E(t)

E(t0)
= max

x0 6=0
‖x(t)‖2E
‖x0‖2E

= max
q0 6=0

‖q(t)‖2RE

‖q0‖2RE

= max
q0 6=0

‖e−Λtq0‖2RE

‖q0‖2RE

with (??) it is possible to re-write it as

G(t) = ‖Fre
ΛtF−1

r ‖22 = ‖BE‖22 = σ2
1 (3.29)

where σ1 is the principal singular value of BE. The crucial feature of this formula is
that the 2-norm of any matrix can be determined using the singular value decompo-
sition (SVD), which can be computed using standard subroutines available in most
software libraries.
Since Fr implicitly contains information about eigenvectors, it should become clear
that a simple eigenvalue analysis misrepresent the transient growth phenomena. As
underlined before, the eventual short time amplification will decay as described by
the eigenvalues’s asymptotic fate. It is important to keep in mind that the initial
condition that optimizes the amplification G(t) might be different for different times.
The curve ‖e−iΛt‖2RE represents the maximum possible energy amplification, which
for each instant in time is optimized over all possible initial conditions with unit
energy norm.
G(t) is thus an optimization over all initial conditions with unit energy norm for
each time.
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3.3.2 Optimal disturbances at fixed time T

The most common approach quest of hydrodynamic stability theory is to figure out
the most dangerous initial condition that results in the maximum energy amplifica-
tion. The SVD decomposition yields both G(t) and the coefficient q of the initial
condition that achieves this supremo.
Assuming that the initial condition (unknown) has unit energy norm, it will have
an energy density of

E(t) = ‖e−iΛt‖2RE = ‖Fre
−iΛtF−1

r ‖22 = ‖BE‖22

which yields

BEq0 = ‖BE‖2q(t) = σ1(BE)q(t)

On the other hand applying the SVD decomposition to BE we obtain

BEv1 = σ1u1. (3.30)

The equation (??) can have a physical key of lecture. The energy given by initial
condition v1 (the unknown q0), is mapped by BE at time t in the vector u1 and
amplified by σ1. So the unknown optimal initial disturbance q0 is simply v1.
To recovery the the optimal disturbance in u, v, w and φ variables is quite simple.

voptimal = CTXv1 (3.31)
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3.3.3 Maximum growth rate

In this section the disturbance maximum growth rate will be demonstrate.
First of all the energy density rate is defined as

Ė(t) =
∂

∂t
‖x(t)‖2E = (ẋ,x)E + (x, ẋ)E =

= (Ax,x)E + (x,Ax)E = 2Real (Ax,x)E =

= 2Imag (L1x,x)E

or for the projected case

Ė(t) =
∂

∂t
‖q(t)‖2RE = (q̇,q)RE + (q, q̇)RE =

= (−iΛq,q)RE + (q,−iΛq)RE =

= 2Imag (Λq,q)RE

It is clear that the growth rate depends on how the numerical range N (Λ) extends
into the upper complex half-plane. The numerical range or field of values (Λq,q)RE

, is defined as the set of all Rayleigh quotients of Λ t.c.

N (Λ) =
{

q∗Λq : q ∈ CN , ‖q‖RE = 1
}

,

The principal application of the numerical range, i.e. the limit of pseudospectra for
ε → ∞, is estimating the behavior of ‖eΛt‖RE as a function of t. The norm above
cited may have different behaviors in its initial, transient and asymptotic phases.
The behavior as t → ∞ is determined by eigenvalues (or spectral abscissa) while
as t → 0+ the behavior is determined by numerical abscissa. The boundary of the
numerical range is easily computed using the following formula [6], [?]

z =
v∗Λv

v∗v

where v are the principal eigenvector of the Hermitian part

H(eiθΛ) =
1

2

(

(eiθΛ) + (eiθΛ)∗
)

, 0 ≤ θ ≤ π.

Since the maximum growth rate can be determined as

max
‖q‖RE=1Ġ(t) = max (2Imag (Λq,q)RE) (3.32)
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we are interested to find the numerical range’s maximum protrusion. Following [?],
this protrusion is equivalent to the numerical abscissa and thus the max growth rate
is the max growth rate at time t = 0+. The numerical abscissa is defined as the
maximum eigenvalue of H(Λ) for θ = 0.
For last but not least a necessary and sufficient condition for growth of energy is
that the numerical range extends into upper complex plane. This is a much stronger
condition than eigenvalues’s condition for the instability set in.
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3.4 Forced Problem

3.4.1 Response to harmonic excitation

Considering the system (??) harmonically forced

ẋ = Ax+ xfe
iωf t, ω ∈ R. (3.33)

the solution is

x(t) = xh(t) + xp(t) = eAtx0 +

∫ T

0

h(t− τ)xfe
iωτdτ. (3.34)

where h(t) is system’s impulsive response. Assuming that eigenvalues of A are con-
fined to the stable half-plane the long time response is governed only by its particular
solution

x(t) = (iωfI−A)−1xfe
iωt. (3.35)

Proceeding in the same manner for the projected system we obtain

q(t) = (Λ− iωfI)
−1qfe

iωt. (3.36)

whereas qf = Xxf and the quantities (iωfI − A)−1, and (Λ − iωfI)
−1 are known

as the resolvents. Similarly to the maximum growth rate of an initial condition, it
is possible to define a maximum response of the system to a forcing frequency ωf

according to

R(ωf ) = max
qf

‖q(t)‖2RE

‖qf‖2RE

= ‖(Λ− ωfI)
−1‖2RE = (3.37)

= ‖FDiag
(

1

ω1 − ωf

, ...,
1

ωm − ωf

)

F−1‖22 = (3.38)

= ‖Bfh‖22 = σ2
1. (3.39)

where σ2
1 is the principal singular value of Bfh.

Since Bfh contains both eigenvectors and eigenvalues’s information, there are two
different resonance mechanism [?], [?], in fact as shown in

1

dist {ωi−esimo − ωf}
≤ R(ωf ) ≤

cond(F)

dist {ωi−esimo − ωf}
. (3.40)

the two distinct ways to get a large response are either forcing with a ωf close to
ωi−esimo (resonance) or getting a large cond(F). This second mechanism is known
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as pseudoresonance and it’s related to the level of nonorthogonality of eigenvectors.
Exactly as in the case of optimal disturbance we are able to compute the most re-
sponsive disturbances using SVD decomposition as

vf−optimal = CTXv1 (3.41)

where, obviously, v1 is the principal left vector of SVD decomposition of Bfh.
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HYDROSTATIC CASE

4.1 Equations and Parameters

Physically, the problem has a certain symmetry in the x-z directions due to the
domain’s geometry. Thus by a geometrical point of view it is possible to confuse x
and z. In the Poiseuille flow this symmetry is broken by the presence of cross flow
that establishes a preferred direction. In this way it is then possible to distinguish
between the intensity of disturbances along the streamwise (α) and spanwise (β)
direction.
However, in the hydrostatic case there is no cross-flow and therefore there is no
preferential direction.
The equations (??) have been simplified by deleting the velocity-base-flow terms.







































































ω(D2 − k2)v̂ =

[

−1
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M2

T
(D2 − k2)2

]

v̂ +
1

i
M2

[

k2Φ
′

0(D2 − k2)− k2Φ
′′′

0

]

φ̂,

ωη̂ =

[

−1

i

M2

T
(D2 − k2)

]

η̂,

ω(D2 − k2)φ̂ = Φ
′′′

0 v̂+

+

[

−1

i
(Φ

′′′

0 D1 + 2Φ
′′

0(D2 − k2) + Φ
′

0(D3 − k2D1))−
1

i

1

Fe
(D2 − k2)2

]

φ̂.

As it is both mathematically and physically clear, there is no point distinguishing
from streamwise and spanwise disturbances do to the fact that there is no cross flow.
The only disturbance parameter that still plays a role in the equations is its modu-
lus k. Furthermore, if in the the Poiseuille’s flow the normal velocity v couples the
whole system by forcing the normal vorticity η, in the hydrostatic case the absence
of the term ( U

′

0βv̂) effectively decouples the vorticity reason why the system can
be composed by only two equations.
The following study will focus on the system (??).



Capitolo 4 52























































ω(D2 − k2)v̂ =

[

−1
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M2

T
(D2 − k2)2

]

v̂ +
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M2
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k2Φ
′

0(D2 − k2)− k2Φ
′′′

0

]

φ̂,

ω(D2 − k2)φ̂ =
1

i
Φ

′′′

0 v̂+

+

[

−1

i
(Φ

′′′

0 D1 + 2Φ
′′

0(D2 − k2) + Φ
′

0(D3 − k2D1))−
1

i

1

Fe
(D2 − k2)2

]

φ̂.

(4.1)

with its suitable boundary conditions

v̂(±1) = 0, v̂
′

∣

∣

∣

±1
= 0, φ̂(±1) = 0, φ̂

′′

∣

∣

∣

−1
= 0, φ̂

′′′

∣

∣

∣

1
= 0.

The parameters which determine the solution are k, M , T and Fe.
Recovering the discrete form notation we obtain

[

Lvv Lvφ

Lφv Lφφ

](

av

aφ

)

= ω

[

Mvv 0
0 Mφφ

](

av

aφ

)

(4.2)

Where the M(.) and L(.) operators are the following:

Mvv = D2 − k
2D0, (4.3)

Mφφ = D2 − k
2D0. (4.4)

Lvv =− 1

i

M2

T
(D4 − 2k2D2 + k

4D0), (4.5)

Lvφ =+
1

i
M2

[

k
2Φ

′

0(D2 − k
2D0)− k

2Φ
′′′

0 D0

]

, (4.6)

Lφv =
1

i
Φ

′′′

0 D0, (4.7)

Lφφ =− 1

i
(Φ

′′′

0 D+ 2Φ
′′

0(D2 − k
2D0) + Φ

′

0(D3 − k
2D))

− 1

i

1

Fe
(D4 − 2k2D2 + k

4D0). (4.8)
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4.2 Modal stability

4.2.1 Discrete Spectrum

The eigenvalues of the equation set (??) are shown in Figure ??. The eigenvalues
are located on three main branches which have been labeled as A, B (parabola)
and Z (ωR = 0) using a similar notation to the one used by [6]. Typical shape
of eigenfunction labeled (1,2,3) in Figure ?? are shown in Figure ??. Since in the
Hydrostatic case the wall normal vorticity is decoupled by the rest of the system,
and the flow is essentially a 2D flow only the components u(y,K), v(y,K) and φ(y,K)
will be shown.
As for the Poiseuille flow we can distinguish between wall-modes and center-modes.
The only difference is that, starting from the least stable eigenvalue, as σI diminishes
the modes tends to pass from center-modes to wall-modes. There are non differences
between A and B’s modes.

Figura 4.1: Hydrostatic case: Spectrum, N = 250, K = 2.5, Fe = 65,C = 10, M = 60,
T = 110
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Figura 4.2: Hydrostatic case: Eigenfunctions, N = 250, K = 2.5, Fe = 65,C = 10,
M = 60, T = 110
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resolution errors

Errors in the spectrum introduced by insufficient resolution have most of their ef-
fects on A and B branches as shown in Figure ??. As clearly explained on [6] with
the decreasing of imaginary part of eigenvalues, one observes that the eigenfunc-
tions become increasingly oscillatory. At a certain point the numerical resolution
is insufficient to represent these oscillations. Now the eigenvalues corresponding to
this ill-represented eigenfunctions fail to follow the asymptotic behavior of the two
branches splitting. Reducing N the split clearly climbs back to the branches A and
B not affecting the Z branch. Testing the code, neither M nor Fe values affects the
resolution capability in the hydrostatic case.

Figura 4.3: Hydrostatic case: Discretization errors, K = 2.5, Fe = 65,C = 10, M = 60,
T = 110



Capitolo 4 56

4.2.2 Neutral curves

The neutral curve shows the values of k, M , T and Fe for whose the system is
unstable. In the EHD hydrostatic case the principle of exchange of instabilities is
assumed to be valid [7]. This principle assumes that the transition from stability to
instability occurs when the least stable eigenvalue becomes a positive pure imagi-
nary number. The spectrum confirms this assumption. Keeping in mind this, it can
be shown that the dimensionless ionic mobility has no effect on the neutral curve
behavior.
Mathematically, assuming the critical eigenvalue null, the system (??) does not de-
pends on M























[

1

T
(D2 − k2)2

]

v̂ −
[

k2Φ
′

0(D2 − k2)− k2Φ
′′′

0

]

φ̂ = 0,

[

(Φ
′′′

0 D1 + 2Φ
′′

0(D2 − k2) + Φ
′

0(D3 − k2D1)) +
1

Fe
(D2 − k2)2

]

φ̂− Φ
′′′

0 v̂ = 0.

Physically, since M = τK/τEI and no inertial processes are present in the base flow,
one can assume that the M parameter does not make sense in this kind of problem
and therefore the solution does not depend on it.
The neutral curve in Figure ?? confirm the assumption above, while the case studied
in [7] has been considered as a benchmark case [C] in order to test the numerical
code.
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Figura 4.4: Hydrostatic Case: Neutral curve, Effect of M , N = 150, k = 2, Fe = 65,
C = 10
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Figura 4.5: Hydrostatic case: Neutral curve, Effect of M , N = 150, k = 2, Fe = 105,
C = 10

Figura 4.6: Hydrostatic case: Neutral curve, Effect of Fe. A for Fe = 65, B for Fe = 103,
C for Fe = 107. Others parameters are N = 150, C = 10,M = 60
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Figura 4.7: Hydrostatic case: Neutral curve, Effect of C. A for C = 100, B for C = 10,
Others parameters are N = 150, C = 10,M = 60

Physically speaking, the charge density decreases from the emitter into insulating
liquid and and this creates a potentially unstable situation. Considering a fluid
portion under a velocity perturbation which conserves the charge, if it will be pushed
toward collector it will be subjected to a greater Coulomb force than the fluid in
its neighborhood which has a lower charge. Therefore it will have a tendency to
continue to swing towards the collector. This tendency is counteracted by viscous
drag and by relaxation of charge [3]. This excesses charge relaxation takes place via
two physical mechanisms, i.e. molecular charge diffusion and Coulomb repulsion.
Remarking that charge diffusion is destabilizing, the critical parameters become
T ⋆ ≈ 112, K ≈ 2.5 instead of T ⋆ ≈ 161. Comparing the results of DNS by [?], the
critical value of T is different, more precisely T ⋆ ≈ 132. As the diffusive term tends
to zero (Fe → ∞) the behavior described in (D) is resumed. Experimental results
confirm that T ⋆ ≈ 100 in agreement with the ones above found.
As expressed in ?? there is a strong connection between the effect of C and the
presence of the charge diffusivity. More Fe → 0, or C → ∞, more the charge
boundary layer thickness decreases and so the diffusivity becomes important.
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4.3 Non modal stability

The non modal analysis figures out a weak transient growth shown in Figure ??.
The model has been reduced using the eigenmodes projection. The energy simili-
tude of the original system and the reduced one has been demonstrated [?] for the
critical case represented by the black point in Figure ??. In the same figure the
grey area on the spectrum is the unstable part of the imaginary plane while in the
Gmax(t) convergence graph represents the numerically spurious eigenmodes which
are neglected. In order to extract them a simple comparison between the spectra
computed with N = 300 has been done.

4.3.1 Max growth

Figura 4.8: Hydrostatic case: Max Growth.N = 150, Fe = 65,C = 10, M = 60
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4.3.2 Max growth rate

Figura 4.9: Hydrostatic case: max growth rate.N = 150, Fe = 65,C = 10, M = 60
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4.3.3 Transient growth neutral curve

The black line in Figure (??) separates the area of asymptotic growth (dark grey)
from the area of asymptotic decay (colored). The no growth rate curve (red line)
defines the area of transient growth, but asymptotic decay (colored), from the area
of no transient growth (light grey). The well-known critical T ⋆ ≈ 112 can be easily
determined from the graph. The largest T below which the initial perturbation
energy for two-dimensional disturbances decays monotonically is given by T ⋆

energy ≈
65.

Figura 4.10: Hydrostatic case: Neutral curves.N = 150, Fe = 65,C = 10, M = 60



Capitolo 4 62

4.3.4 Optimal disturbance

Figura 4.11: Hydrostatic case: Optimal disturbance.N = 150, Fe = 65,C = 10, M = 60,
T = 102,K = 2.5
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4.3.5 Forced flow

Figure ?? displays the maximum response to a harmonic forcing. As in the simple
Poiseuille flow without streamwise disturbances, we observe a pronounced peak for
steady forcing, which means pseudo-resonance occurred. Increasing T the maximum
response increases (Figure??).
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Figura 4.12: Hydrostatic case: Forced flow. Forced response. N = 150, Fe = 65,C = 10,
M = 60, T = 110,K = 2.5
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Figura 4.13: Hydrostatic case: Forced flow. Effect of T. C = 10, Fe = 65, M = 60,
N = 150, K = 2.5
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4.4 Remarks

Through the use of electric timescales, it was shown that dimensionless ionic mo-
bility has no physical meaning for the hydrostatic problem. Since the only way
to achieved a M independence in (??) is to assume valid the instability exchange
principle, the results confirm its applicability.
For the first time, the effect of charge diffusivity has been investigated in the hy-
drostatic EHD problem. Considering only its order of magnitude, it has been often
suggested that its effect is relevant only close to the walls. However, thanks to a
more precise identification of modes, and defining the system’s total energy, we have
proven that the energetically important modes are almost entirely wall modes. Thus
using a simplified model which neglects diffusion, one does not take into account the
most important energetic effects.
Sustaining the conclusion written above the most of the energetic content is related
to the charge perturbation as shown in Figure ??.
As expected, the charge diffusivity shows a strong destabilizing character yielding a
T ⋆ lower than 30% compared to literature results.
Despite the outcome, the modal analysis results are not yet comparable with the
experimental ones.
Using the non modal analysis tool, we prove that the system shows a mild non modal
behavior where the maximum transient growth usually occurs in one dimensionless
time unit. This could explain the earlier transition observed during the experiments.
A new and more useful curve which considers both transient and asymptotic fate of
the modes has been in Figure ??.
Finally Figure ?? displays the maximum response to a harmonic forcing. As in the
simple Poiseuille flow without streamwise disturbances, we observe a pronounced
peak for steady forcing, which means pseudo-resonance occurred.
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POISEUILLE CASE

5.1 Equations

A laminar forced flow with direction normal to the electric field does not alter the
unstable character of the charge distribution, but it modifies the turbulence struc-
ture of electroconvection which exists without forced flow [4].
Poiseuille’s plane flow is unstable to infinitesimal disturbances for a critical Reynolds
number of about 5772 [?]. This instability, which has a pure hydrodynamic nature,
is due to the transfer of energy via Reynolds stresses. The superposition of a unipo-
lar injection to this forced flow should enhance the instability of the liquid layer.
Complete set shown below
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(5.1)

with its suitable homogeneous boundary conditions

5.1.1 Squire’s theorem

Since the presence of the electric field has no effect on the squire equation 1, Dumped
Squire Modes theorem can be applied. Therefore the solutions to the vorticity equa-
tion are always dumped, i.e. ωI < 0 for all α, β, and Re. The dimensionless pa-
rameters, explicitly, do not play any role in the charge continuity then the Squire’s

1Normal vorticity equation
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transformation can be applied just to v equation. Considering ω = αc, 3D and 2D
cases are (2.2) and (2.3) respectively

c(D2−k
2)v̂ =
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i
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(5.2)

c(D2−k
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(5.3)

Comparing these two equations, it is evident that they have identical solutions if
the following relations hold

α2
2D = K

2,

1

α2D

M2
2D

T2D

=
1

α

M2

T
,

M2
2D

α2D

=
M2

α
.

from which it follow

α2D =
√

α2β2,

M2D =

√

K

α
M,

T2D = T.

Thus parallel shear flows become unstable to two dimensional wavelike pertur-
bation at a critical values that are smaller than any value for which unstable
three-dimensional perturbation exists.

5.1.2 Streamwise invariant perturbation

When α = 0 the perturbation equation (??) simplifies to (2.4) that has stability
properties similar to the hydrostatic case. In fact, the velocity base flow drops out



67 POISEUILLE CASE

Figura 5.1: Poiseuille case: Neutral Curve. Squire’s Theorem. N = 150, Fe = 200,C =
10, M = 60, T = 2000

from v and φ equation and the squire modes are always stable [6].
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5.2 Modal stability

According to [4], neglecting charge diffusion, one can distinguish two different un-
stable regions. For a low-enough Reynolds number the EHD instability mechanism
could be dominant, while for large values the destabilizing inertial mechanism would
be the most important, with the electrical forces playing a minor role.
From [4] theoretical results, it may be stated that at low Reynolds numbers, the
growth rate of transverse perturbations is strongly inhibited by the forced flow,
whereas the perturbations to longitudinal wavenumbers β are unaffected.

5.2.1 Low Reynolds regime, discrete spectrum

In this subsection the eigenvalues of the equation set (??) will be shown. As already
explained the system’s behavior could be splitted in two regimes, low and high
Reynolds. At low Reynolds numbers, and low values of M, it is still possible to
recognize the three branches structure presented in the hydrostatic case (Figure
E.2). However, with the cross flow, the eigenvalues on branch Z increased their real
part and a new cluster path (related to the squire equation) appears (Figure 2.5).
The branches and the G cluster, tend to fall down as Fe decreases (Figure E.3).
Along with C’s growth, the cluster tends to widen slightly (Figure E.5).
We can notice that M plays a fundamental role making the spectrum highly chaotic
as it increases.

Figura 5.2: Poiseuille case: Discrete Spectrum. Effect of M. α = 1, β = 0, C = 50,
Fe = 200, N = 150, Re = 50, T = 2000
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Figura 5.3: Poiseuille case: Discrete Spectrum. Effect of Fe. α = 1, β = 0, C = 50,
M = 5, N = 150, Re = 50, T = 2000

Figura 5.4: Poiseuille case: Discrete Spectrum. Effect of C. α = 1, β = 0, Fe = 200,
M = 5, N = 150, Re = 5000, T = 2000
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Choosing a case not affected by resolution errors case, a new identification of
modes is possible. From Fiuger2.6 to Figure2.9 sample shapes of the eigenfunctions
are shown. As in the hydrostatic case the least stable mode is a center-mode. While
going downhill of the A-B branches, the eigenfunctions tends to become 2D wall-
modes, this means that w(y,K) velocity is null. Contrarily,Z’s eigenfunctions show
a purely 3D structure which means that there are no φ(y,K), u(y,K) and v(y,K)
but only an high oscillating w(y,K). The oscillation tends to increase as σI → −∞.
On the G cluster, the modes neither center modes nor wall modes. They show a 2D
high oscillating structure with the same asymptotic behavior of the Z branch.

Figura 5.5: Poiseuille case:Modal Identification. Spectrum. α = 1, β = 0, C = 50,
Fe = 200, M = 5, N = 250, Re = 100, T = 2000
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Figura 5.6: Poiseuille case:Modal Identification. Least stable mode. α = 1, β = 0, C = 50,
Fe = 200, M = 5, N = 250, Re = 100, T = 2000
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Figura 5.7: Poiseuille case:Modal Identification. A-B branches. α = 1, β = 0, C = 50,
Fe = 200, M = 5, N = 250, Re = 100, T = 2000
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Figura 5.8: Poiseuille case:Modal Identification. Z branch. α = 1, β = 0, C = 50, Fe =
200, M = 5, N = 250, Re = 100, T = 2000
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Figura 5.9: Poiseuille case:Modal Identification. G cluster. α = 1, β = 0, C = 50,
Fe = 200, M = 5, N = 250, Re = 100, T = 2000
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Resolution error

As previously explained spectrum errors are introduced by insufficient resolution
of numerical scheme. In Figure2.10 the leak of resolution is strictly linked to the
parameter M . If in the hydrostatic case, M played a secondary role, adding the
cross flow, would turn it into a very important parameter. Matter of fact as M
increases the spectrum tends to be chaotic, and the high mode’s oscillations makes
the spectral method unable to resolve the eigenvalue problem.
In physical terms a small M value corresponds to a low electric potential- fluid ki-
netic energy transforming efficiency liquid. In the other words if M has a high value,
the electric potential interferes with the velocity oscillation making the non linear
interference relevant. A better understanding of this phenomena is necessary.
In Figure 2.11 Fe determines relevantly the choice of N . If one considers Fe’s
physical values no critical layer phenomenons occur. Last but not least the injec-
tion parameter C has to be chosen higher than one (Figure 2.12). Contrarily, the
autonomous injection assumption tends to fail and the numerical model does not
represent the physical system.

Figura 5.10: Poiseuille case: Resolution. Effect of M. α = 1, β = 0, C = 50, Fe = 200,
Re = 100, T = 2000
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Figura 5.11: Poiseuille case:Resolution. Effect of F. α = 1, β = 0, C = 50, M = 5,
Re = 100, T = 2000
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Figura 5.12: Poiseuille case: Resolution. Effect of C. α = 1, β = 0, Fe = 200, M = 5,
Re = 100, T = 2000
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5.2.2 High Reynolds regime, discrete spectrum

As the Reynolds number increases, things get a bit more complicated. The Z branch
tends to move from its original position (σR = 0) toward higher real values. The new
path seems the classic Poiseuille Y spectrum combined with the parabolic branches A
and B. Although at this Reynolds regime the transition is driven by fluid dynamics
causes, the electrical parameters are still playing a key role. Therefore in Figure
E.2 and E.3 the shape of the spectra presents important changes. The spectrum
behavior is too chaotic to hazard any conclusion.

Figura 5.13: Poiseuille case: Discrete Spectrum. Effect of M. α = 1, β = 0, C = 50,
Fe = 200, N = 150, Re = 5000, T = 2000

Figura 5.14: Poiseuille case: Discrete Spectrum. Effect of Fe. α = 1, β = 0, C = 50,
N = 150, M = 5, Re = 5000, T = 2000

Resolution error

Figure 2.15 recalls the undeniable role played by M within numerical solution. Re-
gards the charge diffusivity, its effect is related to the charge distribution (2.16). If
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diffusion tends to be null the charge density gradients will rise until they determine
discontinuities, therefore bad resolution.
Contrarily if C respects the high injection assumption, it has a weak effect (Figure
2.17).

Figura 5.15: Poiseuille case: Resolution at high Reynolds. Effect of M. α = 1, β = 0,
C = 50, Fe = 200, N = 250, Re = 5000, T = 2000
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Figura 5.16: Poiseuille case:Resolution at high Reynolds. Effect of F. α = 1, β = 0, C = 50,
M = 5, N = 250, Re = 5000, T = 2000
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Figura 5.17: Poiseuille case: Resolution at high Reynolds. Effect of C. α = 1, β = 0,
Fe = 200, M = 5, N = 250, Re = 5000, T = 2000
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5.2.3 Neutral curves

As suggested by [4], there are two critical regions. As shown in Figure 2.18, at
low Reynolds number the cross flow tends to retard the EHD instabilities, while as
Reynolds number increases, the effect of electrical disturbances and their parameters
tend to be dominated by the velocity perturbations instabilities.

Figura 5.18: Poiseuille case: Neutral Curve. β = 0, C = 50, Fe = 200, M = 5, N = 250,
T = 2000



83 POISEUILLE CASE

Electric parameters effect

Form Figure 2.19 to Figure 2.22 the suggestion of [4] regard the strong influence of
the fluid mechanics instabilities at high Reynolds number has been confirmed.
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Figura 5.19: Poiseuille case: Neutral Curve. Effect of C. β = 0, Fe = 200, M = 5,
N = 250, T = 2000
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Figura 5.20: Poiseuille case: Neutral Curve. Effect of M. β = 0, C = 50, Fe = 200,
N = 250, T = 2000
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Figura 5.21: Poiseuille case: Neutral Curve. Effect of T.β = 0, C = 50, Fe = 200, M = 5,
N = 250
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Figura 5.22: Poiseuille case: Neutral Curve. Effect of Fe. β = 0, C = 50, M = 5, N = 250,
T = 2000
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5.3 Non modal stability

The equation set has been reduced using the eigenmodes projection. The energy
similitude of the original system and the reduced one has been demonstrated in two
critical cases. The grey area on the spectrum is the unstable part of the imaginary
plane while in the Gmax(t) convergence graph it represents the numerically spurious
eigenmodes which have to be neglected. In order to define them, a simple comparison
with the spectra computed with N = 300 has been done. Usually, for (M ≤ 10), a
good resolution is achieved and the maximum modes’s number that could be taken is
Nmax ≈ 200. Unfortunately the transient growth needs an higher number of modes
to converge as Reynolds number and α increase.

5.3.1 Max growth

2D Case

Figura 5.23: Poiseuille case: Max Growth. Case A, convergence. α = 0.2, β = 0, C = 50,
Fe = 200, M = 5, N = 150, Re = 500, T = 2000
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Figura 5.24: Poiseuille case: Max Growth. Case B, convergence. α = 0.2, β = 0, C = 50,
Fe = 200, M = 5, N = 150, Re = 500, T = 2000

Figura 5.25: Poiseuille case: Max Growth. Reynolds-α behavior. N = 150, M = 5,,Fe =
200 C = 50, T = 2000
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Streamwise independence

Figura 5.26: Poiseuille case: Max Growth α = 0. Case A. α = 0, β = 0.1, C = 50,
Fe = 200, M = 5, N = 150, Re = 600, T = 2000
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Figura 5.27: Poiseuille case: Max Growth α = 0. Case B. C = 50, Fe = 200, M = 5,
N = 150, T = 2000

Figura 5.28: Poiseuille case: Max Growth α = 0. Reynolds-β behavior. C = 50, Fe = 200,
M = 5, N = 150, T = 2000
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5.3.2 Max growth rate

Figura 5.29: Poiseuille case: Max Growth. Reynolds-α behavior. β = 0, C = 50, Fe =
200, M = 5, N = 150, T = 2000
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Figura 5.30: Poiseuille case: Max Growth. Reynolds-β behavior. α = 0, C = 50, Fe =
200, M = 5, N = 150, T = 2000
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5.3.3 Transient growth neutral curve

Figura 5.31: Poiseuille case: Transient growth neutral curve. Reynolds−α behavior. β =
0, C = 50, Fe = 200, M = 5, N = 150, T = 2000
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Figura 5.32: Poiseuille case: Transient growth neutral curve. Reynolds−β behavior. α = 0
C = 50, Fe = 200, M = 5, N = 150, T = 2000
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5.4 Optimal disturbance

Figura 5.33: Poiseuille case: Optimal Initial condition. α = 0.2, β = 0, C = 50, Fe = 200,
M = 5, N = 150, Re = 500, T = 2000
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Figura 5.34: Poiseuille case: Optimal Initial condition. α = 1.1, β = 0, C = 50, Fe = 200,
M = 5, N = 150, Re = 5500, T = 2000
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Figura 5.35: Poiseuille case: Optimal Initial condition. α = 0, β = 0.3, C = 50, Fe = 200,
M = 5, N = 150, Re = 2000, T = 2000
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5.4.1 Forced flow
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Figura 5.36: Poiseuille case: Forced Response. Effect of Reynolds. α = 1, β = 0, C = 50,
Fe = 200, M = 5, N = 150, T = 2000

10 20 30 40 50

10
0

10
1

ω

R
(ω

)

T=500
T=1000
T=2000

Figura 5.37: Poiseuille case: Forced Response. Effect of Reynolds. α = 1, β = 0, C = 50,
Fe = 200, M = 5, N = 150, Re = 4000
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Figura 5.38: Poiseuille case: Forced Response. Effect of C. α = 0.2, β = 0, Fe = 200,
M = 5, N = 150, Re = 4000, T = 2000
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Figura 5.39: Poiseuille case: Forced Response. Case B. α = 0.2, β = 0, C = 50, Fe = 200,
M = 5, N = 150, Re = 500, T = 2000
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5.5 Remarks

After proving that Squire’s theorem can be applied for system (??), the 2D (β = 0)
and streamwise invariant (α = 0) cases were analyzed. While for β = 0 a distinction
can be made between high and low Reynolds regime, for α = 0 the Reynolds does
not affect the transition from stable to unstable behavior. Unlike in the hydrostatic
case, the dimensionless ionic mobility plays a key role by dictating the applicability
limits of the numerical model here implemented. In fact, the error related to the
numerical resolution remains acceptable only if M ≤ 10. This means that for larger
values of M = τK/τEI the dynamics of the system are no longer well resolved.
Since the set up is studied for the first time including both charge diffusion and cross
flow, no comparisons with known results is possible. However, as in the case without
charge diffusivity the critical curve path suggested by [4], has been confirmed. in
fact the linear stability of Poiseuille flow is significantly affected by the presence of
the electric field at lowest Reynolds number and as the base flow velocity increases
the charge perturbations tend to play a minor role in the transition.
When β = 0 and the Reynolds number is low, a modal identification is still possible
but as soon as cross-flow’s velocity increases it will be lost. The interesting fact is
that with the cross flow, three-dimensional components of the disturbance appear.
These modes lie on the Z branch and present only an high oscillating w(y, k), with-
out any other disturbance components. This means that they don’t contribute to
the system’s potential energy. Furthermore the velocity modes have different be-
havior while the electrical perturbations tends to remain wall-modes. Once again
the idea that the charge diffusivity plays an important role seems to be verified.
Significant energy transient growths are related to classical mechanisms (Figure 2.24)
but the peaks of G(t) are achieved for dimensionless timescales much lower than the
classical Poiseuille flow. In addition, the Figure 2.31 shows that there is virtually
no area where the system does not present energy growth.

The case in which α = 0 presents slight differences. The transient growths achieved
are higher than before (β = 0) but the transient mechanisms are still related only
to the velocity perturbations (Figure 2.28). Moreover there is a wider area with no
energy growth and the energy peaks are achieved at large time (Figure 2.32).
In both cases the maximum response to an harmonic force does not show a pseudo
resonance behavior.
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CONCLUSIONS AND FURTHER

STUDIES

For the first time we studied the EHD parallel plane problem with and without
charge diffusion and with and without cross flow

As the charge diffusion tends to zero the results obtained agree very well with
other works available in literature , (Figure ??), (C), (D). The possibility offered by
the present code to include charge diffusion, short time transient growth and cross
flow, has brought to light new aspects of the well-known EHD planar plane problem.

In the hydrostatic case, accounting the charge diffusion, the critical value T ⋆ ≈ 110
associated with the linear stability criterion agrees with that predicted in [?]. There-
fore it is significantly lower than the value reported in others papers according with
the experimentals result. Thus, once at all, it has been proven that the diffusion
enhance the instability throughout an augmented mixing. Throughout an identi-
fication of modes, it is emerged that the energetically relevant modes are almost
entirely wall modes and this confirms the importance of charge diffusivity .
The non-modal stability analysis has shown a mild transient growth dues to the
potential disturbances. Moreover, for the first time Figure ?? shows the limit values
of T and α for transient growth, and exponential growth. The harmonic forced
response has been done as well but it doesn’t show any relevant result.

In the EHD-Poiseuille the Squire’s theorem has been proven allowing us to study
the 2D case as the most critical one. Nevertheless, superimposing the cross flow,
the higher number of parameters combination has forced us to impose some con-
strains at their values. If (M ≤ 10), it ensures a good numerical resolution as well
as Fe ≈ 102. More over, according with the hydrostatic case, higher values of T
comport lower K⋆. Fixing T = 2000 the neutral curve in Figure ?? shows two differ-
ent instability regions in accord to [4]. In the viscous dominated regime the effect
of the electrical parameters on the linear stability criterion is relevant while at high
Reynolds it tends to vanishing. Since non modal stability analysis involves an high
number of modes, M and Fe dictate the applicabilitys limits of the numerical model
here implemented at both low and high Reynolds numbers. As previously explained
a better understanding of this leak of resolution related to M is necessary.
Avoiding the resolution error a non modal stability analysis has been performed
revealing important transient growth, especially for α = 0. Contrarily to the hy-
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drostatic case, analyzing the different energetic contributes, the energy transient
growth depends on the classical mechanisms related to the fluid dynamics, the Orr
mechanism if β = 0, and lift-up if α = 0. Moreover, as shown in Figure 2.31, the
area with no transient growth tends to vanishing in the 2D case. The harmonic
forced response has been done but it doesn’t show any relevant result.

The analysis of the role played by M , it should be the natural follow up of this
work as well as the identification of another growth mechanism mostly based on the
electric dynamics.
Moreover as explained in Section ?? the electric volume forcing might leads to a
new brand of turbulence control techniques1 or non-modal behavior control.

In conclusion, the present work has proved that charge diffusion effects are not
negligible in both modal and non-modal stability analysis, and transient growth
phenomena occur in both hydrostatic and Poiseuille EHD cases.

1such as Boundary control via distribution of perturbation potential



APPENDICE A

Notes on the quasi-stationary Maxwell

equations

A.1 introduction

Quasi-steady electromagnetic systems are those systems not strictly stationary for
which changes over time don’t play a primary role. As every approximation, it is
important to understand when is lawful to proceed in this way.
Considering the fundamentals Maxwell equation (A.1), the charge continuity equa-
tion (A.2), and constitutive laws (A.3) respectively

∇× E = −∂B

∂t
,

∇×H =
∂D

∂t
+ J,

∇ ·D = Q,

∇ ·B = 0. (A.1)

∂Q

∂t
+∇ · J = 0. (A.2)

D = εE,

B = νH,

J = σE+ Ji. (A.3)
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Where physics quantities have been defined as

E, [V/m], Electric field, caused by charge distribution,

D, [C/m2], Electric induction, caused by interaction between E and electric
material,

H, [Asp/m], Magnetic field, caused by the charge’s movement,

B, [Wb/m2], Magnetic induction, caused by interaction between B and electric
material,

J, [A/m2] Conduction current density, linked to the charge’s movement.

and the material parameters1 are

ε, [F/m], Dielectric constant or permittivity,

µ, [H/m], Magnetic Permeability,

γ, [Ω−1/m], Conductibility,

Q, [C/m3], Charge density

Obviously the steady set is obtained neglecting the time derivatives in (A.1). In-
stead, for quasi-stationary fields, we proceed removing only some time derivatives.
It remains to specify which part could be removed and which not.

A.2 Quasi-steady assumption

In (A.1) is possible to neglect or the time derivative of magnetic induction B or the
time derivative of electric induction D. So one has to identify a priori the regions
where no serious errors are committed neglecting the time derivatives.
Focusing just on the case where ∂tB is negligible, the electric field is governed by
the following relations (??):



































∇ ·D = Q(t),

E = −∇Φ,

∂Q

∂t
+∇ · J = 0.

1Thanks to isotropy, linearity and homogeneity assumptions the material parameters are scalar
quantities.
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The time still appears in Q(t), but it plays a minor role as simple parameter. There-
fore at each time the electric field has a stationary-like behavior with unsteady
boundary conditions, without mutual time influence.
Neglecting ∂tB equals to consider that B has a static response to external forcing
represented by Q and J. In that way the quasi-steady assumption neglects the prop-
agation delay linked to magnetodynamics. Roughly speaking the characteristic time
scale of B is much smaller than Q timescale, so in a B time unit Q doesn’t change.

A.3 Quasi-steady condition

Neglecting the time delay means, that the forcing term Q doesn’t vary in a ∆τB
time unit, namely

Q(t+∆τB) ≈ Q(t) → |Q(t+∆τB)−Q(t)| ≪ |Q(t)| .

Using a series develop for Q

∣

∣

∣

∣

∂Q

∂t
∆τB

∣

∣

∣

∣

≪ |Q(t)| .

Defining c0 as the speed of light and ∆τB = 2δ/c0, the quasi-steady assumption can
be applied each time that is possible to verify the follows condition.

∣

∣

∣

∣

ω
2δ

c0

∣

∣

∣

∣

≪ 1 (A.4)

where ω = ασ and σ is the disturbance’s phase speed. In the present work the liquid
is a dielectric. Since the dielectric fluids have a very low electrical conductivity (low
σ) but can sustain very high electric fields, the relation (A.4) is verified hence the
induced magnetic fields could be neglected.
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Spectral Discretization with Chebyshev

Polynomials

B.1 Introduction to Spectral method

The term Spectral Method refers to a wide range of numerical methods to calculate
the derivatives of a function. The fundamental concept is the ability to drop down
the differential operator of a function, sometimes unknown, on an approximation of
it. So a continuous differential problem becomes a discrete one. Unlike techniques
such as finite difference or finite element, spectral methods have higher computa-
tional cost but provide an incomparable accuracy (infinite convergence order).
Hence, from this point of view, The question is not if spectral methods are the best
or not but if the problem requires a so high accuracy. The implementation difficulty
of spectral method varies widely. It depends by geometry, the basis set and how the
residual is minimized. To solve the current problem a spectral collocation method
has been used. The reasons for this choice are summarized in four rules of thumb
formulated by J.P.Boyd [2].

Collocation is the simplest choice which is guaranteed to work, and if done
right, nothing else is superior,

When in doubt, use Chebyshev polynomials unless the solution is spatially
periodic, in which case an ordinary Fourier series is better,

Unless you’re sure another set of basis functions is better, use Chebyshev
polynomials,

Unless you’re really, really sure that another set of basis functions is better,
use Chebyshev polynomials.

B.2 Gauss-Lobatto’s nodes

In the literature the standard nodes set of Gauss-Lobatto-Chebyshev has been given
by the following

xi = cos

(

iπ

N

)

, i = 0, ..., N. (B.1)
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This set provides the highest order of accuracy that is possible for quadrature for-
mulas and includes the nodes at the boundaries, making more agile the imposition
of boundary conditions. Furthermore, using the Chebyshev polynomials, through
the theorem of minimum amplitude of Chebyshev [2] it has been proven that this
distribution of nodes minimizes the interpolation error. Unfortunately, in finite
arithmetic, already with N = 10, this formulation does not guarantee symmetry
around the origin. Although, using the trigonometric identity

cos (θ) = sin
(π

2
− θ
)

Is possible to obtain a similar form of (B.1) that is symmetry errors free.

xi = sin
π(N − 2i)

2N
, i = 0, ..., N. (B.2)

In the present work the (B.2) implementation has been used.

B.3 Chebyshev Polynomial

The Chebyshev polynomials are defined as

Tn(x) = cos(nθ), θ = arccos(x) (B.3)

and they can be computed in various ways, such as eigenfunction of the Sturm-
Liumville problem, by Rodrigues formula, expansion in powers series and much
more. The (B.3) is known as trigonometric formulation that can be implemented
using the recursive formula

T0(x) ≡ 1, (B.4)

T1(x) ≡ x, (B.5)

Tn+1(x) = 2xTn(x)− Tn−1, (B.6)

Some Chebyshev polynomial properties are, domain [−1, 1]:

|Tn(x)| ≤ 1 (B.7)

Tn(±1) = (±1)n (B.8)

|T ′
n(x)| ≤ n2 (B.9)

T ′
n(±1) = (±1)n+1n2 (B.10)
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Moreover the Chebyshev polynomial are orthogonal respect to w(x) = (1− x2)−1/2

weight function, yielding to

(Tn, Tm)w ≡
∫ 1

−1

Tm(x)Tn(x)w(x)dx = dn
π

2
δmn, where dn =

{

2, n = 0

1, n ≥ 1

B.4 Spectral Method with Chebyshev polynomial

Given a function f(y) defined for 1 ≥ y ≥ −1, is possible approximate it as

f(y) =
N
∑

n=0

anTn(y)

where
Tn(y) = cos(nθ), θ = cos−1(y)

In matrix form

f(y) = D0af , f (n)(y) =
d(n)

dy(n)
(D0)af = Dnaf (B.11)

where

D0(kj) = cos(j cos−1(yk)).

The truncation error committed using a truncated Chebyshev approximation is lim-
ited by the sum of the coefficients neglected

Err(x) = ‖ u(x)−
N
∑

n=0

anTn(y) ‖∞ ≤
∞
∑

n=N+1

|an|, ∀ u(x), N e ∀ x ∈ [−1, 1]

(B.12)

Since in most practical applications the function is unknown, usually it is impossible
to quantify these errors. An approximation consists to retain that the errors are
limited by the series convergence. This is a very strong statement that can not
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be proven, but that is always true in viceversa: If a method is distinguished by
a large truncation error then it will certainly a bad way to solve that particular
problem. [2]. Furthermore, the Principle of Darboux states that problems without
singularity, or with weak singularity outside the domain of convergence will have
a spectral (infinite) convergence order. Conversely problems with singularity may
have a geometric or algebraic order of convergence.
Therefore, roughly speaking, the truncation error has the same order of magnitude
of the last coefficient of the series.

B.5 Boundary condition

In the spectral method theory, the boundary conditions may be divided into two
broad categories: numerical and behavioral. The first category has to be explicitly
imposed, in contrast, the second one may be satisfied implicitly by choosing basis
functions such that each have the required property or behavior.
In finite element theory, boundary conditions are classified as either essential, which
must be explicitly imposed, or natural conditions, which are automatically satis-
fied by the approximate solution. Attention! There is no duality between the two
classifications! In fact, both essential and natural conditions are numerical and the
distinction is only between whether u(x) or its derivative is set equal to a partic-
ular number at the endpoints. Nevertheless, from a programmers standpoint just
numerical and essential conditions require work.
There are two strategies to impose the numerical conditions:

boundary bordering: The border of the spectral matrixin this case, is
used to explicitly enforces the boundary conditions, reducing the number of
collocation conditions on the residual of the differential equation.

basis recombination modifying the problem to get homogeneous bound-
ary conditions and then altering the basis set so that the basis functions
individually satisfy these conditions.

The boundary-bordering method is more simple and applicable to even the most
bizarre boundary conditions. It gives a slightly larger matrix in comparison to the
basis recombination method, but for the largest problem, this is compensated by
the higher cost of calculating the matrix elements in the latter technique. These are
good reasons to choose it.

B.6 Spurious eigenvalues

Solving a linear eigenvalue problem with a spectral method composed by N + 1
expansion function and reordering the eigenvalues in ascending order, generally,
only the first N/2 eigenvalues will be accurate within a small error percentage.
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Others may be deemed unusable. The only way to understand which eigenvalues
are accurate and which are not consist in repeat the calculation with a different N
and compare the results. Doing that sometimes may happens to get few accurate
eigenvalues, less than N/2. In this case it is very likely that the solution contains
singularities in the complex domain of method’s convergence. In these cases the
solutions may gives boundary layer phenomena and the spectral approach fails. An
examples is non modal analysis of the EHD Poiseuille flow without charge diffusion.
Graphic techniques are a good tools to check the results goodness. Some of them
are shown in [2].
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Benchmark Case I: Free surface case

C.1 Introduction

Investigating instabilities set in conditions, the free-surface case is a good bench-
mark to test our code. Both numerical and experimental results are reported in the
literature [7], [8]. To take in count the previews works the charge diffusion has to
be neglected.
In conduction experiments the liquid-electrode interface usually acts as a blocking
contact than as injected one. Moreover injection may set in a very high fields and
the microscopic asperities on the electrode could work as disturbs. The nonuniform
charge emission causes local pumping in the liquid which may set up a more general
convection pattern.
In order to obtain experimental results consistent with the numerical ones, it has
been necessary to avoid the electrode-liquid interface phenomena not modeled in
the equation set. Hence, the following problem is slightly different from what it has
been shown before.
In free surface set up (fig. ??) just the collector is present while on the injector side
there is a electron gun also known as electron beam. Ideally speaking, the hydro-
static assumption lets say that the free surface is a plane, thus the electron beam
creates a virtual injector on it avoiding the electrode-liquid interface phenomena.

Figura C.1: Benchmark Case I:Experimental setup
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C.2 Perturbation Equations

Following the derivation of (??), the equation set is presented below.
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with its suitable boundary conditions as

v(−1) = 0, v
′

∣

∣

∣

y=−1
= 0, v(1) = 0, v

′′

∣

∣

∣

y=1
= 0.

The third boundary conditions equals to assume that on the free surface the tan-
gential stress is zero and the surface is flat.

C.3 Electric potential mean-flow

Rewriting the charge density evolution as a electric field’s function, a non linear
third order ODE equation has been found.

E0
d2E0

dy2
+

(

dE0

dy

)2

= 0. (C.1)

with variable changing:

dE0

dy
= t

d2E0

dy2
=

dt

dE0

dE0

dy
=

dt

dE0

t

the (D.2) solution as potential’s function is
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Φ0(y) =
2

3
α(y + β)3/2 + δ, (C.2)

Φ
′

0(y) = α(y + β)1/2, (C.3)

Φ
′′

0(y) =
1

2
α(y + β)−1/2, (C.4)

Φ
′′′

0 (y) = −1

4
α(y + β)−3/2. (C.5)

Applying the follows boundary conditions [7],

Φ0(1) = 1, Φ
′

0

∣

∣

∣

y=1
= 0, Φ0(−1) = 0.

the potential base flow is

Φ0(y) = 1−
√

1

8
(1− y)3/2,

Φ
′

0(y) =

√

9

32
(1− y)1/2,

Φ
′′

0(y) = −
√

9

128
(1− y)−1/2,

Φ
′′′

0 (y) = −
√

9

512
(1− y)−3/2.

C.4 Results

Comparing the results with those of [7] some differences have been founded.According
to the experimental data the critical parameters are T ⋆ ≈ 95.196 and K⋆ ≈ 2.175
while by [7] T ⋆ = 99 and K⋆ = 2. It is to be remarked that in the both cases the
agreement between theory and experiments is excellent.
In [7], Watson has assumed a priori the principle of exchange of stabilities. With
this hypothesi the neutral curve is independent by M . In the present work no
assumption has been made regarding ω⋆ but the results confirm this independence.

C.4.1 Neutral curves
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Figura C.3: Benchmark Case I:Neutral curve, Effect of M, green M = 60, black M = 1000



115 Benchmark Case I: Free surface case

85 90 95 100 105 110 115 120

1.9

2

2.1

2.2

2.3

2.4

T

k
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APPENDICE D

Benchmark Case II: Poiseuille without

charge diffusion

In the following appendix will be presented both hydrostatic and Poiseuille cases
without the charge diffusion. Only the passages relates to the Poiseuille flow will
be expose1. The only results available in literature regard the hydrostatic case in
strong injection regime and most of them are summarized in [1]2. Unfortunately
if the electrical diffusivity is neglected, the numerical approach implemented here
tends to fail, because the resulting the system presents singularities in charge density
distribution. As explained in (B) the existence of these singularities can guessed
testing the eigencvalue sensitivity to the number of grid points. In [4] Castellanos
distinguishes two distinct regions. For a low-enough Reynolds number, the EHD
instability mechanism would be dominant. Contrarily, for high enough Reynolds
number, the destabilizing inertial mechanism would be the most relevant.

D.1 Perturbation equations

Neglecting the charge diffusion term the constitutive laws for the current density is

J = QV +QKE, (D.1)

Following the same path which yields to (??), it is possible to write the same eigen-
value problem excepting for the charge density equation. Reasonably, the boundary
conditions for the electric potential will be different.

ω(D2 − k
2)φ̂ = Φ

′′′

0 v̂ ++

[

αU0(D2 − k
2)− 1

i
(Φ

′′′

0 D1 + 2Φ
′′

0(D2 − k
2) + Φ

′

0(D3 − k
2D1))

]

φ̂.

where U0(y) is the same velocity base flow that has been obtained in the charge
diffusion case, while Φ0 will be deduced in the next section.

1 in fact, for the hydrostatic case the C) are still valid.
2There are both numerical and experimental results
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The homogeneous boundary conditions for the perturbations are

v(±1) = 0, v
′

(±1) = 0, η(±1) = 0, φ(±1) = 0, φ
′′

∣

∣

∣

y=−1
= 0.

D.1.1 Electric potential base flow

Hence, to close the system a new base flow must be provided for the electric po-
tential. Rewriting the charge density evolution as a electric field’s function, a non
linear third order ODE equation has been found:

E0
d2E0

dy2
+

(

dE0

dy

)2

= 0. (D.2)

with variable changing:

dE0

dy
= t

d2E0

dy2
=

dt

dE0

dE0

dy
=

dt

dE0

t

the (D.2) solution as potential’s function is:

Φ0(y) =
2

3
α(y + β)3/2 + δ, (D.3)

Φ
′

0(y) = α(y + β)1/2, (D.4)

Φ
′′

0(y) =
1

2
α(y + β)−1/2, (D.5)

Φ
′′′

0 (y) = −1

4
α(y + β)−3/2. (D.6)

Applying the follows boundary conditions,

Φ0(−1) = 1, Φ
′′

0

∣

∣

∣

y=−1
= C, Φ0(1) = 0.

the integration constants are related in the follows way:
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2

3
α(β − 1)3/2 − 2

3
α(β + 1)3/2 = 1,

α = −2C(β − 1)1/2

Replacing the second equation in the first one, we’ll get a cubic form for β(C)

6β3 − (
12C + 3

2C )β2 + (
2C + 3

C )β − (
32C2 + 9 + 24C

16C2
) = 0 (D.7)

SCL assumption

In space charge limited case C → ∞. To maintain A finite, B has to be equal one.
Replacing it, an analytical form of the electric potential base flow has written below.

α = − 3

4
√
2
, β = 1, δ = 1.







































































Φ0(y) = − 1

2
√
2
(y + 1)3/2 + 1,

Φ
′

0(y) = − 3

4
√
2
(y + 1)1/2,

Φ
′′

0(y) = − 3

8
√
2
(y + 1)−1/2,

Φ
′′′

0 (y) =
3

16
√
2
(y + 1)−3/2

(D.8)

D.2 Results

Since the cross flow effect have not been tested yet, a comparison could be attempted
only for the hydrostatic case. According with the previous works, without cross
flow, the critical values are T ⋆ ≈ 161, K ≈ 2.5. The M independence is confirmed.
Unfortunately in [3], T ⋆ ≈ 100. This discrepancy is due probably to the simplicity
of the model and to the electrode liquid interface. Indeed it has been shown that
also using ion-exchange-membrane [3], its rapid deterioration, may affect the results.
Nevertheless some controversy exists on the criterion to recognize the critical T.



121 Benchmark Case II: Poiseuille without charge diffusion

0

0

0

0

T

k

155 160 165
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Figura D.2: Benchmark Case II: Hydrostatic Neutral curve

Re

α

0 1000 2000 3000 4000 5000 6000 7000

0.2

0.4

0.6

0.8

1

1.2

1.4

Figura D.3: Benchmark Case II: Neutral curve





APPENDICE E

High Reynolds number, discrete spectrum

and eigenmodes

Since as the Reynolds number increases the spectrum behavior is too chaotic, no
conclusions could be attempted regard the eigenmodes. For completeness has been
decided to include a brief look to the modes in this appendix.
The Z branch tends to move from its original position (σR = 0) toward higher real
values. The new path seems the classic Poiseuille Y spectrum combined with the
parabolic branches A and B. Although at this Reynolds regime the transition is
driven by fluid dynamics causes, the electrical parameters are still playing a key
role. Therefore in Figure E.2 and E.3 the shape of the spectra presents important
changes.

Figura E.1: Poiseuille case: Discrete Spectrum. Effect of M. α = 1, β = 0, C = 50,
Fe = 200, N = 150, Re = 5000, T = 2000
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Figura E.2: Poiseuille case: Discrete Spectrum. Effect of M. α = 1, β = 0, C = 50,
Fe = 200, N = 150, Re = 5000, T = 2000

Figura E.3: Poiseuille case: Discrete Spectrum. Effect of Fe. α = 1, β = 0, C = 50,
N = 150, M = 5, Re = 5000, T = 2000

Figura E.4: Poiseuille case: Discrete Spectrum. Effect of T. α = 1, β = 0, C = 50,
Fe = 200, N = 150, M = 5, Re = 5000
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Figura E.5: Poiseuille case: Discrete Spectrum. Effect of C. α = 1, β = 0, Fe = 200,
N = 150, M = 5, Re = 100, T = 2000
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As in the low Reynolds regime, a well solved case has been chosen to analyze in
detail the eigenfunction. The least stable mode is still a center mode.

Figura E.6: Poiseuille case:Modal Identification. Least stable mode. α = 1, β = 0, C = 50,
Fe = 200, M = 5, N = 250, Re = 5000, T = 2000
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Figura E.7: Poiseuille case:Modal Identification. Mode n20. α = 1, β = 0, C = 50,
Fe = 200, M = 5, N = 250, Re = 5000, T = 2000
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Figura E.8: Poiseuille case:Modal Identification. Mode n25. α = 1, β = 0, C = 50,
Fe = 200, M = 5, N = 250, Re = 5000, T = 2000
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Figura E.9: Poiseuille case:Modal Identification. Mode n60. α = 1, β = 0, C = 50,
Fe = 200, M = 5, N = 250, Re = 5000, T = 2000



Appendice E 130

Figura E.10: Poiseuille case:Modal Identification. Mode n75. α = 1, β = 0, C = 50,
Fe = 200, M = 5, N = 250, Re = 5000, T = 2000
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