
POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione

Corso di Laurea in Ingegneria Informatica

Self-Adaptive Software Systems on Android based on

Application Heartbeats Framework

Supervisor: Prof. Marco Domenico Santambrogio

The master thesis of:

Pham Tien Thanh

Matricola n. 736554

Academic Year 2010–2011

Summary

Computing systems have evolved through an unimaginable step in com-

parision to their first ancient ones. The first electronic computers were de-

veloped in the mid-20th century (1940-1945). Originally, they were the size

of a large room, consuming as much power as several hundred households

and provied very limited computing ability. Our desktop computers to-

day are equipped with multi-core processors, each of each may go up to 6

cores (e.g., Intel Core i7 series and AMD Phenom X6 series), smaller size

than ever, consume less power and provide thousand times in computing

ability more than the old age ones. Even our mobile devices are now pow-

ered by extremely powerful SoC which refer to the ability of integrating

all components of a computer or other electronic system into a single inte-

grated circuit(chip). Computing systems which now can be defined as an

aggregate of complex computer architectures and software systems, there-

fore implies their great complexity . Moreover, the born of Internet makes

the overall picture becomes more complicated by providing the ability of

connecting computers and computer systems to create distributed comput-

ing systems. Thus, software systems are also becoming more sophisticated

due to the requirements of dealing with extremely powerful computing

ii

iii

systems working in dynamic environments.

Software systems which have to deal with the changing in environment

normally require human suppervisors to continue operation in all condi-

tions. These (re-)configuring, troubleshooting, and in general maintaining

tasks lead to costly and time-consuming procedures during the operating

phase. These problems are primarily due to the open-loop structure often

being followed in software development. It is straightforward that relying

on human intervention to tune a system is not feasible due to the conditions

changing constantly, rapidly and unpredictably. Therefore, there is a high

demand for management complexity reduction, management automation,

robustness, and achieving all of the desired quality requirements within

a reasonable cost and time range during operation. We believe that self-

adaptive software systems is a response to these demands; it is a closed-

loop system with a feedback loop aiming to adjust itself to changes during

its operation. This allows them to automatically find the best way to ac-

complish a given goal with the resources at hand. This capability would

benefit the full range of computing systems, from small devices to grids of

computing systems.

This dissertation first aims at studying about the architecture of a self-

adaptive software system. Second, in this scope of this dissertation a frame-

work called Application Heartbeats will be studied as a monitoring infras-

tructure for building self-adaptive software. This framework helps in pro-

viding methods for an application to define its goals,to observe its current

states and performance. We then going to provide to readers the imple-

iv

mentation logic of common components in a self-adaptive software sys-

tem. Taking those knowledges as foundation, we then discuss into details

about implementing a self-adaptive software system. During dicussion, we

are going to propose the concept of running configuration as a unifica-

tion for using implementation library and parameter API library. The con-

cept of running configuration have the very similar meaning to the con-

cept of context used in pervasive system. It helps programmers in express-

ing the action self-adaptive software system should take corressponding to

each situation. Finally, we will illustrate the dicussed methodology by the

implementation of self-adaptive software application. To demonstrate the

fact that self-adaptive property has a wide spectrum of benefits, we chose

Android mobile operating system as the development environment. Our

project aims at build a small self-adaptive software application - an MP3

decoder running on Android. As a self-adaptive software application, this

application has to have the ability to monitor its own progress or delegates

this to external observer and to adapt itself to the new situation. During im-

plementation, all dicussed methods will be experimented. The application

finally is put to test to verify the benefit of self-adaptive propery.

The remainder of this dissertation is structured as follows. In Chapter 1,

a brief introduction over self- awareness adaptive software systems in rela-

tion with abroader concept - autonomic system is provided to reader. A

detailed study about self-adaptive software system is introduced in Chap-

ter 2. Chapter 3 is intended to provide to reader about Application Heart-

beats framework, and the methodology to build an self-adaptive software

v

system. Chapter 4 introduces to readers the Android mobile operationg

system as a developing environment and design in detail of our project to

illustrate the methodology in developing a self-adaptive software system.

Chapter 5 represents to readers a set of results to demonstrate the bene-

fits of proposed approach. Finally, Chapter 6 concludes the document by a

proposal of some possible future works.

Contents

List of Figures viii

List of Tables x

List of Listings xi

1 Introduction 1

1.1 Introduction to the problem 2

1.2 Research context . 2

1.3 Hierarchy of adaptation properties 6

1.4 Summarization . 9

2 Self-Adaptive Software Systems 10

2.1 Definitions . 11

2.2 Adaptation Requirements Elicitation 12

2.3 A taxonomy of self-adaptation 15

2.4 Control Loop Models . 23

2.5 Summarization . 26

3 Methodology 27

vi

CONTENTS vii

3.1 Application Heartbeats Framework Introduction 27

3.2 Control loop implementation 33

3.2.1 Logic of Observe process 34

3.2.2 Logic of Decide process 35

3.2.3 Logic of Act process 36

3.3 Services . 36

3.4 Consensus Object . 38

3.4.1 Introduction . 38

3.4.2 Communication infrastructure 40

3.4.2.1 Communication between the Consensus Ob-

ject and Services 40

3.4.2.2 Communication between the Consensus Ob-

ject and Applications 42

3.4.2.3 Decision support mechanism 44

3.4.3 Application’s goals management 45

3.5 Summarization . 46

4 Implementation 48

4.1 Android Operating System 49

4.1.1 Introduction . 49

4.1.2 Android system architecture 50

4.1.3 Working with the Android platform 53

4.2 Self-adaptive MP3 decoder implementation 56

4.2.1 General description . 56

4.2.2 Porting Application Heartbeats Framework 59

CONTENTS viii

4.2.3 The implementation of adaptable MP3 decoder . . . 61

4.2.4 The implementation of Services 65

4.2.5 The implementation of the Consensus Object 72

4.3 Summarization . 78

5 Experimental result 80

5.1 Application Heartbeats framework overhead 80

5.1.1 Test purpose and expected result 80

5.1.2 Testing conditions . 81

5.1.3 Experimental Result and Comments 82

5.2 Test Self-Adaptivity . 86

5.2.1 Test purpose and expected result 86

5.2.2 Testing conditions . 87

5.2.3 Experimental Result and Comments 88

5.3 Summarization . 89

6 Conclusions and Future work 91

List of Figures

1.1 Observe-Decide-Act loop . 4

1.2 Adaptation Hierarchy . 7

2.1 A self-adaptation taxonomy 16

2.2 The internal/external approaches 19

2.3 The MAPE-K loop . 24

2.4 The Dobson adaptation loop 25

3.1 Two scenario of using Application Heartbeats framework . . 33

3.2 The communication between the Consensus Object and Service 42

3.3 The communication between the Consensus Object and Ap-

plication . 43

3.4 The Parameters API . 46

3.5 The implementations library 47

4.1 Android operating system architecture 51

4.2 The self-adaptive MP3 decoder system. 57

4.3 Registering performance using Application Heartbeats library 61

4.4 Sequence diagram for self-optimization MP3 decoder 63

ix

LIST OF FIGURES x

5.1 Overhead on application execution time - MPG123 decoder . 83

5.2 Overhead on application execution time - MiniMP3 decoder 83

5.3 Performance comparision between two algorithms 85

5.4 Self-optimization MP3 decoder 88

5.5 Optimization using external observer 89

List of Tables

3.1 Heartbeats API functions . 29

3.2 Heart Rate Monitor API functions 31

5.1 Application Heartbeats overhead no playback 82

5.2 Application Heartbeats overhead - playback enabled 85

xi

List of Listings

3.1 Sample of a Heartbeat’s structure 30

4.1 A sample Android.mk file . 55

4.2 Android.mk file for building Application Heartbeats 59

4.3 Code for self-optimization implementation 63

4.4 Service API implementation 68

4.5 Sample structure of a configuration 70

4.6 Code for implementation switching 71

4.7 Code for target application discovery 74

4.8 Sample of the Consensus Object’s registry table 75

4.9 Code for updating registry table 76

4.10 Logic for processing registry table 77

xii

List of Abbreviations

2D Two Dimensions

3D Tree Dimensions

API Application programming interface

BSD Berkeley Software Distribution

CPU Central Processing Unit

DARPA Defense Advanced Research Projects

Agency

DVM Dalvik Virtual Machine

FPU Floating Point Unit

ID Identifier

JNI Java Native Interface

JVM Java Virtual Machine

MAPE-K Monitor-Analize-Plan-Execute loop

xiii

LIST OF LISTINGS xiv

MP3 Moving Picture Expert Group-1/2 Audio

Layer 3

ODA Observe-Decide-Act loop

PCM Pulse-code Modulation

PID Process Identifier

QoS Quality of Service

SDK Software Development Kit

SMS Short Message System

Chapter 1

Introduction

This Chapter is going to introduce to readers one of the most com-

mon problem that plagues moderning computing systems, the skyrocket-

ing complexity problem. On the way studying the solutions for this prob-

lem, scientists and engineers have made significant efforts to design and

to develop systems which can change their behaviors without human in-

tervention and adapt itself to the unpredicted changes in environments or

also being called in short self-adaptive system. While self-adaptive systems

are used in a number of different areas, in this dissertation we only focus

on their applications in the software domain, called self-adaptive software.

This Chapter will provide an overall introduction on this topic including

basic concepts which will be refered throughout all other chapters.

1

CHAPTER 1. INTRODUCTION 2

1.1 Introduction to the problem

Computing systems now can be seen as an aggregate of complex com-

puter architectures and software systems. According to Moore’s law[1]:

“The number of transistors that can be placed inexpensively
on an integrated circuit has doubled approximately every two
years[1]”

This implies that we have skyrocketing in the evolution of computer ar-

chitecture’s complexity. Moreover, this steady evolutionary trend in hard-

ware creates more computational power availability and fosters the devel-

opment of software representing in the creation of many complex software

systems. Designing and developing application in modern world is now

not a trivial process. Besides, the complexity of software systems makes the

(re-)configuring, troubleshooting, and in general maintaining tasks costly

and time-consuming during the operating phase. Therefore, there is a high

demand for management complexity reduction, management automation,

robustness, and achieving all of the desired quality requirements within a

reasonable cost and time range during operation[2]. We believe that self-

adaptive computing systems, and thus self-adaptive software systems is a

right answer to these demands.

1.2 Research context

This section aims at answering the question : why we need self-adaptive

software. One of the most important reason which has been introduced in

CHAPTER 1. INTRODUCTION 3

previous section, is the increasing cost of handling the software systems’

skyrocketing complexity to achieve their desired goals[3]. Different soft-

ware systems have different definitions of their goals, some deal with man-

agement complexity, robustness in handling unexpected condition (e.g.,

fault tolerance) changing priorities and policies governing the goals, and

changing conditions (e.g., in the context of mobility)[2]. Traditionally, soft-

ware development focuses on handling complexity and its internal quality

attributes. However, recently due to an increase in the heterogeneity level

of software components, frequent changes in context/goals/ requirements

during runtime, and higher security needs, there has been an increase de-

mand for software systems to be able to deal with issues those happen at

operation time. In fact, some of these causes are consequences of the higher

demands for ubiquitous, pervasive, embedded, and mobile applications,

mostly in the Internet and ad-hoc networks[2].

Self-adaptive software is expected to fulfill those requirements at run-

time in response to changes. However, managing software at runtime is

often costly and time-consuming due to the fact that it is impossible to

make any assumption about the contexts where software is going to op-

erate in nor the mutation between those contexts in timing manner. There-

fore, an adaptation mechanism is expected to be smart enough to detect

changes and take appropriate actions accordingly at a reasonable cost and

in a timely manner. It is dynamic/runtime change which is the basis for

adaptation in self-adaptive software systems.

As being mentioned above, scientists and engineers in Software En-

CHAPTER 1. INTRODUCTION 4

gineering area have made significant efforts to design and develop self-

adaptive software systems. These systems address adaptivity in various

concerns including performance, security, and fault tolerance [4]. Several

methods have been proposed to incorporate adaptation mechanism into

software systems. It is straightforward that softwares which are normally

being implemented as an open-loop system, should be converted to a closed-

loop system using feedback mechanisms. While adaptivity may be achieved

through feed-forward mechanisms as well (e.g., through workload moni-

toring), the feedback loop takes into account a more holistic view of what

happens inside the application and its environment[2]. Figure 1.1 shows

the adaptation loop or often called ODA loop (ODA stands for Observe-

Decide-Act) of a general automic system.

Figure 1.1: Observe-Decide-Act loop

As can be observed, there are 3 fundamental components in an ODA

loop :

CHAPTER 1. INTRODUCTION 5

• Observe component: takes part in monitoring both the internal is-

sues and context environment using sensing sub-system.

• Decide component: bases on observed information and the sys-

tem’s goal definitions, this component uses logic system to make de-

cisions of which action shoud be taken next.

• Act component: translates the decision made by the Decide compo-

nent into a set of actions which are going to be executed by actuators.

A self-adaptive software means that the whole body of the software

will be implemented in serveral layers while the context encompasses ev-

erything in the operating environment that affects the system’s properties

and its behaviors. Thus, self-adaptive software is a closed-loop system with

feedback from both the internal and the environment.

It is obviously that self-adaptive software systems have strong rela-

tionship with autonomic and self-managing systems [5], thus it is diffi-

cult to draw a distinction between these terminologies. Many researchers

use the terms self-adaptive (not specifically self-adaptive software), auto-

nomic computing, and self-managing interchangeably[2]. However, from

one point of view, the self-adaptive software domain is more limited, while

autonomic computing has emerged in a broader context. This means self-

adaptive software has less coverage and falls under the umbrella of auto-

nomic computing. From another point of view, we can consider a layered

model for a software-intensive system that consists of: application(s), mid-

dleware, network, operating system, hardware [6], and sublayers of mid-

dleware [7]. According to this view, self-adaptive software primarily covers

CHAPTER 1. INTRODUCTION 6

the application and the middleware layers, while its coverage fades in the

layers below middleware. On the other hand, autonomic computing covers

lower layers too, down to even the network and operating system . How-

ever, the concepts of these domains are strongly related and in many cases

can be used interchangeably[2].

1.3 Hierarchy of adaptation properties

This section answers the question about which properties that an auto-

nomic system in general and an self-adaptive software system in particu-

lar should contain. It is IBM, through their research [8] specified the initial

well-known set of adaptation properties or often called self-* properties.

There are eight properties which are depicted in the hierarchical structure

in Figure 1.2 1.

Those eight properties are categorized in three levels. The most general

level contains self-adaptiveness and self-organizing properties, and they

will be decomposed into major properties and primitive properties in the

two corresponding lower level:

• General Level: This level contains global properties of self-adaptive

software. A subset of these properties, which falls under the umbrella

of self-adaptiveness [10], consists of self-managing, self-governing,

self-maintenance [5], self-control [11], and self-evaluating [12]. An-

other subset at this level is self- organizing [13], [14], which empha-

sizes decentralization and emergent functionality(ies). The self-organizing

1Graphic taken from the thesis of Marco Triverio[9]

CHAPTER 1. INTRODUCTION 7

Figure 1.2: Adaptation Hierarchy

property is bottom-up, in contrast to self-adaptiveness, which is typ-

ically top-down.

• Major Level: This level contains four main property which have

been defined in accordance to biological self-adaptation mechanism[5].

The details of each property is depicted below:

– Self-configuring: This property means the capability of sys-

tem to configure itself automatically and dynamically. This not

only means the system can (re)configure its existing components

to adapt new situation, but also mean the capability of installing,

updating, and composing/decomposing new software compo-

nents.

– Self-healing: This property express the capability of system

to self-discover, to self-diagnose, and to react against failures. In

CHAPTER 1. INTRODUCTION 8

a smart system, this also means the ability of system to foresee

the potential problem to take appropriate action to prevent dis-

ruptions. Self-diagnosing provide the ability to diagnose errors

while self-repairing refers to the ability of recovering from them.

– Self-optimizing: It is straightforward that the algorithm on

which software systems implemented are not closed but pro-

vides a set of parameters which can be tuned to get a better

performance in different operating contexts. Self-optimizing ex-

press the ability of self-managing resource by adjusting parame-

ters in order to get the desired goals. Response time, throughput,

utilization, and workload are examples of important require-

ment related to this properties.

– Self-protecting: is the ability of automatically defending

against malicious attacks or failures which maybe using early

monitoring to anticipate threats or mitigate their affects.

• Primitive Level: Self-awareness, self-monitoring, self-situated, and

context- awareness are the underlying primitive properties. Self-awareness

means that the system is aware of its self states and behaviours based

on self-monitoring. In contrast, Context-Awareness means that the

system is aware of its context in which it is operating in. These reflect

our vision in previous section indicated that software system contains

a closed-loop with feedback both from the internal and the environ-

ment.

CHAPTER 1. INTRODUCTION 9

1.4 Summarization

In this chapter, we have already introduced to readers the skyrocketing

complexity problem of computing systems. Scientists and engineers on the

way studying the solution for this problem have proposed self-adaptive

computing system as the full of promise answer. We pointed out that self-

adaptive system can help in improving the performance, customizability,

extensibility, maintainability, availability and security while reducing the

effort and skills needed to take control and manage the system. We also

discussed about the fundamental properties of a self-adaptive computing

system and categorized them using hierarchical structure. It is important

to notice that self-adaptive computing has emerged a broader context than

self-adaptive software but it is sometime difficult to draw the distinction

between them. In the following chapters, we are going to discuss more

about self-adaptive software systems rather than the general self-adaptive

computing systems but most of described concepts can be used interchange-

ably without losing their validity.

Chapter 2

Self-Adaptive Software

Systems

This chapter is intended to provide to readers a more detailed view

about self-adaptive software systems. Firstly, we are going to introduce

some definition of self-adaptive software system. Secondly, we will discuss

about what the important requirements of a self-adaptive software system

are, and how to elicit those requirements. Thirdly, a completed and unified

taxonomy of self-adaptive software systems will be represented to intro-

duce to readers the general view of self-adaptive software’s world. Finally,

we are going to discuss about control loop models which are the funda-

mental elements of the self-adaptive software systems.

10

CHAPTER 2. SELF-ADAPTIVE SOFTWARE SYSTEMS 11

2.1 Definitions

There are alot of definitions of self-adaptive software which are pro-

posed by many researcher so far. Among them, one is provided in a DARPA

Broad Agency Announcement [15] indicates that :

“Self-adaptive software evaluates its own behavior and changes
behavior when the evaluation indicates that it is not accom-
plishing what the software is intended to do, or when better
functionality or performance is possible.[15]”

A similar definition also was given by Oreizy in his work [10]:

“Self-adaptive software modifies its own behavior in response
to changes in its operating environment. By operating environ-
ment, we mean anything observable by the software system,
such as end-user input, external hardware devices and sensors,
or program instrumentation.[10]”

They can be considered as some of formal concepts of self-adaptive soft-

ware. Prior to those, there has been a related point of view which based

on the apdative programming language principle. Adaptive programming

language is an extension of objecte-oriented programming language which

is defined in [16]:

“A program should be designed so that the representation of an
object can be changed within certain constraints without affect-
ing the program at all.[16]”

Softwares which are implemented using multi switchable logic layers

can be considered belong to adaptive programming. Although, up to now

many definitions have been proposed, all self-adaptive systems have the

common point that is their life cycle wil be continued after installation,

CHAPTER 2. SELF-ADAPTIVE SOFTWARE SYSTEMS 12

gather and evaluate context information and change their behaviors to adapt

the new context at all time.

2.2 Adaptation Requirements Elicitation

In Software Engineering it is obviously that to start building a software,

requirement analysis is the first and the most critical step which guaran-

tees the success of the project. For a self-adaptive software systems, beside

of those analyses which we have to carefully accomplish for a general soft-

ware, it is important that we have to address the adaptation requirements.

Many researches have proposed methods that can be used in elicitation the

essential requirements of self-adaptive software. Among of them, [3] pro-

posed six important questions to partially address these requirements and

they were modified and completed in [2]. The list below shows the question

set depicted in [2]:

• Where: This set of questions need to be answered to specify where

the need for change is. Which artifacts at which layer (e.g., middle-

ware) and level of granularity need to be changed? Thus, it is required

to collect information about attributes of adaptable software, depen-

dency between its components and layers, and probably information

about its operational profile. Therefore, The answers to Where ques-

tions set help in locating the problem that needs to be resolved by

adaptation.

• When: This set of questions related to the temporal aspect, mostly

CHAPTER 2. SELF-ADAPTIVE SOFTWARE SYSTEMS 13

specifies when a change need to be applied, and when it is feasi-

ble to do so(e.g., it’s dangerous to swap components using hot swap

method without reaching the quiescent state). It is straightforward

that there exist some constraints on applying changes on a running

software system to maintain its consistency. This set of questions also

requires answers related to the frequency of change like how often

does the system need to be changed? or are the changes happening

continously? .etc.

• What: The answer to this set of questions identifies what attributes

or artifacts of the system can be changed through adaptation actions,

and what needs to bechanged in each situation. These can vary from

parameters and methods to components, architecture style, and sys-

tem resources. It is also important to identify the alternatives avail-

able for the actions and the range of change for attributes (e.g., pa-

rameters). Moreover, it is essential to determine what events and at-

tributes have to be monitored to follow up on the changes, and what

resources are essential for adaptation actions.

The distinction between the what and where questions is notable.

Where addresses which part of the system causes the change, while

what refers to the attributes and artifacts that need to be changed

to resolve the problem. Sometimes, the entity that is the source of

change is also the entity that needs to be changed (e.g., component

swapping). Therefore, although these questions are related, they ad-

dress different aspects of adaptation.

CHAPTER 2. SELF-ADAPTIVE SOFTWARE SYSTEMS 14

• Why: This set of questions deals with the motivations of building a

self-adaptive software application. These questions are concerned with

the objectives addressed by the system (e.g., robustness). If a goal-

oriented requirements engineering approach is adopted to elicit the

requirements, this set of questions identifies the goals of the self-

adaptive software system.

• Who: This set of questions alter the level of automation thus the level

of human involvement in self-adaptive software.

• How: One of the important requirements for adaptation is to deter-

mine how the adaptable artifacts can be changed and which adap-

tation action(s) can be appropriate to be applied in a given condi-

tion. This includes how the order of changes, their costs and after-

effects are taken into account for deciding the next action/plan(e.g.,

hotswap method is a very promising answer to this set of question in

self-adaptive software area).

Not like general softwares which only need requirement analysis at de-

veloping phase, self-adaptive softwares need requirement analysis at both

developing phase and operating phase. This comes from the fact that self-

adaptive softwares contain a closed-loop with feedback from context. In

developing phase, analyses will be undertaken for building self-adaptive

software either from scratch or by re-engineering a legacy system. During

this phase, designers elicit the requirements based on above question in

order to build adaptable software (e.g. software will be designed

to contain serveral layers) and setup mechanisms to be used at the operat-

CHAPTER 2. SELF-ADAPTIVE SOFTWARE SYSTEMS 15

ing phase. At the operating phase, the software is required to manange the

feedback information to adapt itself to changes in the self/con-

text of software application based on these questions. The questions in this

phase are mostly being asked about where need a change, what need to be

changed, and when and how it is better to be changed.

2.3 A taxonomy of self-adaptation

This section is going to provide to readers a taxonomy of self-adaptation.

There are many way for categorizing based on different aspects have been

proposed so far. Some of them start from static approaches and then moves

on to dynamic ones [10], while others tend to focus on techniques and tech-

nologies [6]. In their work [2], Mazeiar Salehei and Ladan Tahvildari from

University of Waterloo uninified these classifications into a taxonomy de-

pcited below, and also introduced new facets to fill the gaps:

According to [2], their proposed classification was taken in the relation-

ship with the method of eliciting adaptation requirements using six impor-

tant questions. In fact, it is impossible to map one by one between each

questions set and one facet of classification. As depcited in Figure 2.1, the

first level of hierachical taxonomy contains: Object to adapt, realization is-

sues, temporal characteristics, and action concerns.

• Object To Adapt: This facet is in the relationship with What and

Where questions set. It is going to be devided in to three smaller sub-

facets indicating the main object for adaptation:

CHAPTER 2. SELF-ADAPTIVE SOFTWARE SYSTEMS 16

Figure 2.1: A self-adaptation taxonomy

CHAPTER 2. SELF-ADAPTIVE SOFTWARE SYSTEMS 17

– Layer: This sub-facet specify the layer which causes problem or

the layer which can be changed. Adaptation action can be ap-

plied on different layers.

– Artifact and Granularity: This sub-facet indicate software

components and the levels of granularity can be changed by

adaptation actions. The adaptation actions can take place either

on modules or on the architecture and the way they are com-

posed. An application can be decomposed into components de-

pending on the architecture and granularity level and all of them

are subject of changes, thus object of adaptation process.

– Impact and Cost: The Impact aspect describes the scope of

effect after adaptation actions are operated, while Cost aspect

refer to the price for taking those adaptation actions(e.g., execu-

tion time, resources, algorithm complexity). They can be further

divided in to week and strong classes. Weak adaptation more or

less means the action of tuning parameters which can be per-

formed at low-cost with limited-impact. Besides, Strong adapta-

tion deals with the alters software artifacts which are performed

at high-cost with great impact. It is notable to notice that a Strong

class is a composition which may contains other Strong or Weak

classes.

• Realization Issues: This facet are deal with the questions set

How, and being devided into two smaller class called Approach and

Type. This classification means the issue of how the adaptation can

CHAPTER 2. SELF-ADAPTIVE SOFTWARE SYSTEMS 18

be applied is realized either by their approaches or their types.

– Approach: This sub-facet of taxonomy indicate the approach

of incorporating adaptivity into the system. The following sub-

facets can be identified:

* Static/Dynamic Decision Making: This subfacet classifies two

kind of decision making support mechanism : static and dy-

namic. In the static option, the decision making mechanism

is hard-coded (e.g., as a decision tree) and its modification

requires recompiling and redeploying the system or some of

its components. In dynamic decision-making, policies [17],

rules [18] or QoS definitions [19] are externally defined and

managed, so that they can be changed during runtime to

create a new behavior for both functional and non-functional

software requirements.

* External/Internal Adaptation: This appproach takes classi-

fication based on the level of separation between adaptation

mechanism and application logic. Internal means the strong

couple between application and adaptation logic mostly based

on programming language features(e.g., conditional expres-

sions, functional programming). It is obviously that using

this approach leads to the poor scalability and maintainabil-

ity and only suitable for simple software systems to handle

local adaptation. Recently, some programming languages have

been extended to contain the notion of Context and intro-

CHAPTER 2. SELF-ADAPTIVE SOFTWARE SYSTEMS 19

duce the definition of Context-Oriented Programming,

to provide the ability to access global information about the

system and correlating events happening in its self/context.

Figure 2.2: The internal/external approaches

External approaches use an external adaptation engine con-

taining adaptation processes. Drawing the distinction line

devides the self-adaptive software system into an adapta-

tion engine and an adaptable software. The decoupling be-

tween application logic and adaptation logic fixed the draw-

backs of internal approaches. Moreover,a significant advan-

tage of the external approach is the reusability of the adap-

tation engine, or some realized processes for various appli-

cations. This means that an adaptation engine can be cus-

tomized and configured for different systems. The Figure 2.2

describes those approaches for building self-adaptive soft-

ware system.

CHAPTER 2. SELF-ADAPTIVE SOFTWARE SYSTEMS 20

* Making/Achieving Adaptation: This subfacet indicate two

strategies which can be used to introduce self-adaptivity into

software system. The first strategy is to engineer self-adaptivity

into the system at the developing phase. The second strategy

is to achieve self-adaptivity through adaptive learning. They

call these two approaches making and achieving in [20]

– Type : Another important facet is the type of adaptation. It spec-

ifies whether the adaptation is open or closed to new alterna-

tives, whether it is domain specific or generic, and whether it is

model-based or model-free.

* Close/Open Adaptation: A close-adaptive system has only

a fixed number of adaptive actions, and no new behaviors

and components can be introduced during runtime. Whereas,

in open adaptation, self-adaptive software can be extended,

and consequently, new components can be added, and even

new adaptable entities can be introduced to the adaptation

mechanism

* Model-Based/Free Adaptation: In model-free adaptation, the

mechanism does not have a predefined model for the envi-

ronment and the system itself. In fact, by knowing the re-

quirements, goals, and alternatives, the adaptation mecha-

nism adjusts the system. On the other hand, in model-based

adaptation, the mechanism utilizes a model of the system

and its context. This can be realized using different model-

CHAPTER 2. SELF-ADAPTIVE SOFTWARE SYSTEMS 21

ing approaches, such as a queueing model for self-optimizing,

architectural models for self-healing [21], or domain-specific

models in [22].

* Specific/Generic Adaptation: This subfacet divides two type

of adaptation based on their applied domain. Specific adap-

tation indicates solutions which address for a specified set of

domains, whereas generic adaptation is valid solutions for

a generic domain which can be configured using policy set-

ting, alternative components or set of adaptation processes

for different domains.

• Temporal Characteristics: This facet deals with answer for When

questions set. The following subfacets can be identified:

– Reactive/Proactive: In the reactive mode, the system re-

sponds when a change has already happened, while in the proac-

tive mode, the system predicts when the change is going to oc-

cur.

– Continuous/Adaptive Monitoring: This subfacet captures

whether the monitoring process is continually collecting and pro-

cessing data or being adaptive in the sense that it monitors a few

selected features, and in the case of finding an anomaly, aims at

collecting more data.

• Action Concerns: This facet make classification based on the level

of interaction between one self-adaptive system and other self-adaptive

CHAPTER 2. SELF-ADAPTIVE SOFTWARE SYSTEMS 22

system or human through its interfaces.

– Human Involvement: In self-adaptive software, human involve-

ment can be discussed from two perspectives. First, the level

of automation, and second, how well it interacts with its users

and administrators. There are notable difference between two

perspectives. The former indicates that human involvement is

not desirable, whereas the latter indicates the quality of human

interaction. According to the latter, human involvement is es-

sential and quite valuable for improving the manageability and

trustworthiness of self-adaptive software.

– Trust:Trust is a relationship of reliance, based on past experi-

ence or transparency of behavior. Trust can be either watched

from two different perspectives: security issues and the extend

to which a system can be believed to correctly adapt.

– Interoperability Support: Self-adaptive software often con-

sists of elements, modules, and subsystems. In open approaches

interoperability is always a concern because system’s elements

need to be coordinated with each other to have the desired self-

* properties.Especially in the area of distributed complex sys-

tems, local adaptation and interoperability support mechanisms

are needed to provide global adaptation which is a critical re-

quirement.

CHAPTER 2. SELF-ADAPTIVE SOFTWARE SYSTEMS 23

2.4 Control Loop Models

It is obviously that self-adaptive aspects of software-intensive systems

can be hidden within the system design, but what self-adaptive software

systems have in common is that:

• Typically design decisions are partially made at runtime.

• The systems reason about their state and environment using feedback

mechanism.

The feedback mechanism contains a closed loop plays an important role

in self-adaptive software architecture. This often is called control loop or

adaptation loop because of enabling adaptivity to the systems. In Chapter

1, we mentioned about the ODA control loop which is represents a feed-

back mechanism with three processes. Another similar control loop was

proposed in [5] and called the MAPE-K loop. This loop consists of four

processes, as well as sensors and effectors and being used in the context of

autonomic computing. Figure 2.3 depicts four adaptation processes includ-

ing the Monitoring, Analyzing, Planning and Executing functions, with the

addition of a shared Knowledge-base. In fact, the adaptation loop proposed

by [5], which exist at the operating phase of an adaptive-software system

is similar to the ODA control loop for general autonomic system described

in Chapter 1 and can be summarized as follows:

• The monitoring process is responsible for collecting and corre-

lating data from sensors and converting them to behavioral patterns

CHAPTER 2. SELF-ADAPTIVE SOFTWARE SYSTEMS 24

Figure 2.3: The MAPE-K loop

and symptoms. The process can be realized through event correla-

tion, or simply threshold checking, as well as other methods.

• The analyze process is responsible for analyzing the symptoms

provided by the monitoring process and the history of the system,

in order to detect when a change (response) is required. It also helps

to identify where the source of a transition to a new state (deviation

from desired states or goals) is.

• The plan process determines what needs to be changed, and how

to change it to achieve the best outcome. This relies on certain criteria

to com- pare different ways of applying the change, for instance by

different courses of action.

• The execute process is responsible for applying the actions de-

termined by the deciding process. This includes managing non prim-

CHAPTER 2. SELF-ADAPTIVE SOFTWARE SYSTEMS 25

itive actions through pre- defined workflows, or mapping actions to

what is provided by effectors.

Sensors and effectors are essential parts of MAPE-K loop. Sensors play

an important role in collecting software’s internal state data and context

information, while effectors work the role like Act in ODA control loop

in applying changes. In fact, the first step in realizing self-adaptive soft-

ware is instrumenting sensors and effectors. One notable point of missing

in MAPE-K loop is that the input for being monitored by sensors in this

control loop is not specified. In fact, system’s internal state and context in-

formation are implied to be the implicit sources for sensors.

In [23], a similar control loop is also presented but directed in the con-

text of autonomic communication. This adaptation loop consists four pro-

cess: monitoring, detecting, deciding and act. Figure 2.4 depicts an overview

of the main activities around the control loop but ignores the properties of

the control and data flows around the loop.

Figure 2.4: The Dobson adaptation loop

CHAPTER 2. SELF-ADAPTIVE SOFTWARE SYSTEMS 26

The feedback cycle starts with the collection of relevant data from en-

vironmental sensors and other sources that reflect the current state of the

system. Next, the system analyzes the collected data. There are many ap-

proaches to construct and to reason about the raw data (e.g., using appli-

cable models, theories, and rules). The system then makes a decision about

how to adapt in order to reach a desirable state. Approaches such as risk

analysis can help make this decision. Finally, to implement the decision, the

system must act via available actuators and effectors. A formal requirments

elicitation method using questions set discussed above can be useful in an-

alyzing the requirment for implementing each adaptation process of the

loop.

2.5 Summarization

This chapter has provided to readers fundamental concepts in self-adaptive

software area. We first presented some formal definitions, introduced meth-

ods for eliciting requirments, dicussed about the methods to classify self-

adaptive software systems based on various aspects. We then discussed

about the most important part of this kind of software system - the control

loop. In the next chapter, we are going to represent more details about how

to experimentally create a self-adaptive software and verify its benefits.

Chapter 3

Methodology

We have dicussed about self-adaptive software in previous chapter. This

chapter aims at providing a experimental view of the self-adaptive soft-

ware’s implementation. We will first take a dicussion about a framework

called Application Heatbeats which help in defining application’s desir-

able goals and monitoring system’s states. This chapter next explores gen-

eral methods for implementing self-adaptive software components. At the

end of this chapter, we are going to discuss about the Consensus Object

implementation as the center element which connects other components to

create the complete architecture of self-adaptive software systems.

3.1 Application Heartbeats Framework Introduction

In previous chapter, some type of control loops have been explored. One

notable common point between them can be recognized that they all need a

mechanism of instrumentation. Many solutions have been proposed so far

27

CHAPTER 3. METHODOLOGY 28

providing good flexibility in monitoring system’s internal state and con-

text information but with different expenses of simplicity and portability.

Starting from the idea of providing a simple, portable and general method

of monitoring an application’s actual process towards its goals and mak-

ing that information available to external observers, Application Heartbeat

Framework has been proposed in [24] implementing a very simple yet ex-

tremely powerful monitoring infrastructure. A key factor has been intro-

duced in this framework is application’s heartbeat which is very similar to

human heartbeat. By allowing applications to inform their heartbeat and

using monitoring infrastructure to monitor them, Application Heartbeats

framework helps programmers to express their applicationâs goals and

monitor the application’s progress using a simple set of APIs.

As being mentioned, Application Heartbeat framework aims at the sim-

plicity and portability, that is why it is written in C using basic system calls

which are supported by most of compilers and can be callable from both C

and C++. Table 3.1 lists all support functions by the framework.

Technically, when the HB_heartbeat function is called, a new entry con-

taining a timestamp, tag and thread’s ID is written into a file. One file is

used to store global heartbeats. When per − thread heartbeats are used,

each thread writes to its own individual file. It is mandatory to define a

private directory for framework to store those file and it is done by us-

ing environment variable called HEARTBEAT_ENABLED_DIR. A mutex

is used to guarantee mutual exclusion and ordering when multiple threads

attempt to register a global heartbeat at the same time. When an external

CHAPTER 3. METHODOLOGY 29

Table 3.1: Heartbeats API functions

Function Name Description

heartbeat_init Initialize the Heartbeat runtime system

and specify how many heartbeats will

be used to calculate the default average

heart rate.

heartbeat_finish Do the cleanup stuff

hb_get_current Returns the average heart rate calculated

from the last window heartbeats.

hb_get_history Called to retrieve the n recently heart-

beats history

hb_get_global_rate Called to retrieve the global target heart

rate

hb_get_windowed_rate Called to retrieve the windowed target

heart rate

hb_get_min_rate Called to retrieve the minimum target

heart rate

hb_get_max_rate Called to retrieve the maximum target

heart rate

heartbeat Generate a heartbeat to indicate progress

CHAPTER 3. METHODOLOGY 30

application wants to get information on a heartbeat−enabled program, the

corresponding file is read. The target heart rates are also written into the

appropriate file so that the external applications can access them. The snip

code 3.1 depicts the structure used to store heartbeat’s information:

1 typedef struct {

2 int64_t first_timestamp;

3 int64_t last_timestamp;

4

5 int64_t* window;

6 int64_t window_size;

7 int64_t current_index;

8

9 int steady_state;

10 double last_average_time;

11

12 heartbeat_record_t* log;

13

14 FILE* binary_file;

15 FILE* text_file;

16 char filename[256];

17

18 pthread_mutex_t mutex;

19

20 HB_global_state_t* state;

21 } heartbeat_t;

List 3.1: Sample of a Heartbeat’s structure

This framework also provides an extension set of APIs called Heart Rate

Monitor which supports external applications in monitoring Heartbeats-

enabled applications to get target heart rates. However,this implementa-

tion does not support changing the target heart rates from an external ap-

CHAPTER 3. METHODOLOGY 31

plications. The Table 3.2 depicts the APIs which can be called from external

application (e.g., adaptation engine):

Table 3.2: Heart Rate Monitor API functions

FunctionName Description

heart_rate_monitor_init Preparation step to get access to specific

process heartbeats information.

heart_rate_monitor_finish At this moment this function do nothing.

hrm_get_current Allows external application to get the

current heart rate of specific process.

hrm_get_history Allows external application to retrieve n

recently heartbeats history

hrm_get_global_rate Allow external application to retrieve the

global heart rate of specific process

hrm_get_windowed_rate Allow external application to retrieve the

windowed heart rate of specific process

hrm_get_min_rate Allow external application to retrieve the

minimum heart rate of specific process

hrm_get_max_rate Allow external application to retrieve the

maximum heart rate of specific process

hrm_get_window_size Allow external application to retrieve the

default window size of specific process

A general execution scenario using Application Heartbeat framework

will be summarized as below :

CHAPTER 3. METHODOLOGY 32

• Hearbeats− enabled Applications: calls to HB_heartbeat function are

injected into application code at significant points to express the ap-

plication’s progress. Normally, a hearbeat log record contains cur-

rent time and thread’s ID of caller. It may also contain a tag which

is inserted by the users to provide additional information. A call to

HB_init should be invoked prior to all calls to HB_hearbeat to setup

stuff. Default window size may be the most important setup informa-

tion needs to be specified during initialization step because it alters

the number of heartbeats will be used to calculate the moving aver-

age rate. The HB_get_current function will return the average heart

rates for the most recent heartbeats; by saying recent we mean the

heartbeats belong to the window. When more in − depth analysis of

heartbeats are required, the HB_get_history function can be used to

get a complete log of recent heartbeats. It returns an array of the last

n heartbeats in the order that they were produced.

• External application: An external application may monitor Heartbeats−

enabled using Heart Rate Monitor APIs. It is mandatory for external

application to know the identification of Heartbeats− enabled thread

it wants to monitor. A call to heart_rate_monitor_init function with

target’s ID will provide a handle to access target’s heartbeat infor-

mation. Succesfully in initializing step will let external application

extract heartbeat information on the moving.

The Figure 3.1 1 depicts two scenario of using Application Heartbeats

1Graphic taken from the thesis of Marco Triverio[9]

CHAPTER 3. METHODOLOGY 33

framework : (1) self − optimizing application and (2) Optimization by an

external observer.

Figure 3.1: Two scenario of using Application Heartbeats framework

Having a simple, standardized API makes it easy for programmers to

add Heartbeats to their applications. It also crucial for portability and in-

teroperability between different applications, runtime systems, and oper-

ating systems. Registering goals with external systems enables optimiza-

tions that are unavailable within an application such as modifying schedul-

ing decisions or adjusting hardware parameters. When running multiple

Heartbeat-enabled applications, it also allows system resources (such as

cores, memory, and I/O bandwidth) to be reallocated to provide the best

global outcome [24].

3.2 Control loop implementation

In Chapter 2, we have already dicussed about some control loops. Among

them, ODA loop is the most general one and theoretically a self-adaptive

software system can be implemented using such loop model.

CHAPTER 3. METHODOLOGY 34

3.2.1 Logic of Observe process

As being mentioned in Chapter 2, Observe process makes a system

aware of its internal state and context around. In [9], three levels of aware-

ness have been introduced:

• Awareness through the data gathered by sensors: For the first kind

of awareness, a monitoring mechanism is needed and a study about

the Application Heartbeats framework in previous section makes us

believe that it is the right choice for this purpose. Application Heart-

beats framework is simple but a powerful framework that allows soft-

ware components (such as applications) to assert performance goals

and keep track of the progress.

• Awareness of the availability and potential of actuators: The second

kind of awareness requires system to have a full knowledge about

all available actuators and their level of potential. By saying level of

potential, we mean that the system need a infrastructure to evaluate

actuators’ impact and cost. The impact aspect describes the scope of

effect by specific actuator, while cost aspect refers to the price for us-

ing that actuator.

• Awareness awareness of the possible targets of actions: This kind of

awareness requires the possible targest aimed by each specific actu-

ator must be defined. In static sense, possible target can be software

implementation layers, while in dynamic sense, information about

possible target of actions might change dynamically one or more ser-

CHAPTER 3. METHODOLOGY 35

vices oriented mechanism can be introduced as the target manager.

3.2.2 Logic of Decide process

The decision engine stands at the center of the ODA loop. It is the el-

ement that exploits the awareness given by the observation mechanisms

to elaborate a plan for future behavior. The decision process can be imple-

mented in reality either in static way or dynamic way. In static option, deci-

sion making mechanism is hard-coded and its modification requires recom-

piling and redeploying the system or some of its components. Whereas, in

dynamic option, policies, rules or Qos definition are externally defined and

managed so that they can be changed during runtime. Methods for imple-

menting Decide process mainly come from the general area of Datamining

and Knowledge Extraction. It’s hard to indicate which method is the best,

the chosen method is decided in the corelation with system’s requirments

and can be summarized as below:

• Decision trees: They are effictiently evaluated at runtime but it is hard

to extend them because they are often static, and being hard− coded.

• Rule-based: This method allows for a good degree of flexibility if the

operating environment is well known and can be described through

rules. Rules guarantee a fairly deterministic behavior and allow ac-

tions to be taken in response to the occurrence of an event.

• Pattern-matching : It is highly static and used to make the program

attune to a context that is ever-changing with some periodic behavior.

CHAPTER 3. METHODOLOGY 36

• Reinforcement learning: is a sub−area of machine learning. Decisions

made previously will be evaluated and provide knowledge for taking

current decision.

• Game theory: this kind of AI also can be used to implement a non −

centerlized system

3.2.3 Logic of Act process

The Act process is implemented to translate the selected decision in to

a set of actions which can be performed by available actuators. The imple-

mentation of this process does not contain the implementation of actuators.

In fact, acting process’s logic aims at managing available actuators, collect-

ing knowledge about the ability each actuators provide through their ex-

posed interface, translating selected decision into a set of primative/non-

primative actions through pre-defined workflows or mapping actions to

what is provided by actuators.

3.3 Services

In [9], instead of the concept of actuators, an extension concept is pro-

posed. By saying an extension we mean that new concept not only repre-

sents a component capable of performing changes on one or more applica-

tions or on the system but it also includes the interact to interact with other

components(e.g, the Consensus Object, application,etc.). There is a certain

amount of elements that can affect performance on a system. They come

CHAPTER 3. METHODOLOGY 37

in different forms and they bring different consequences. [9] has made a

summarization of services base on consequences:

• Application knobs: They are parameters in an application that can be

changed, causing an alteration in performance.

• Application implementations: Many applications make use of a num-

ber of algorithms to carry out their duties. They are considered as

application’s layers and depending on the scenario a different imple-

mentation might lead to better results. For this reason changing the

algorithm to adapt the change in scenario may alter the performance.

• Core allocation: Under modern operating system it is possible to link

a given process to a certain processor or core. By doing this we can

take full adavantages of cores, there will be no need for time sharing

among processes.

• Memory allocation: The core allocation service is particularly useful

when used for processes that are CPU − intensive. There exist an-

other category of processes that requires, instead of processing re-

source, memory. Such programs are said memory − intensive: in or-

der to be optimized they require memory to be allocated easily and

efficiently. This optimization is enabled on a per − application basis.

• Niceness adjusting: Modifying the niceness (which is the priority of

a process) can enhance or reduce performance of a given application.

This optimization is enabled on a per − application basis.

CHAPTER 3. METHODOLOGY 38

• Frequency scaling: It is a widely popular service that reduces proces-

sor clock frequency for slowing down the computation on the entire

system.

Because application’s knobs are part of application, any change of them

will be vision to application. Whereas, the change in other kinds of service

will not or should not be visible to application. Utilizing services belong to

the second category enable a one-to-many and many-to-many relationship

between application and services.

3.4 Consensus Object

3.4.1 Introduction

We have already mentioned about those logics should be implemented

by each process. In experimental implementation, this means we need a

component that does the following tasks:

• Discovers and dynamically updates availability and characteristics of

actuators.

• Discovers and dynamically updates the possible targets aimed at by

the actuators.

• Analyzes data coming from the applications, decides which applica-

tions need to be targeted, chooses which actuators to activate or to

modify, and submits the plans to the actuators.

CHAPTER 3. METHODOLOGY 39

In [9], such component is described and called the Consensus Object. It is

clear that because the Consensus Object needs to have the global view of

the system, it has to be implemented as a center elemenent in the control

loop. This leeds to the fact that the Consensus Object becomes a single point

of failure. To prevent the failure of the Consensus Object cause effect to the

whole system, actuators or being called in [9] as services should be imple-

mented independently from the Consensus Object. Moreover, as a center

element, it is required to expose a standardized interface so that it can eas-

ily be intracted by different actuators. In fact, Consensus Object works in

the role of a decision engine .

As being mentioned, the Consensus Object needs to analyze data com-

ing from application. Generally, data which comes from the application

is the application’s goals and the update of application’s progress toward

those goals. The Application Heartbeat framework that is described in pre-

vious section provides the infrastructure for defining and monitoring such

information.This means that each application that adopts this framework

autonomously sets the goals and updates the progress, while the Consen-

sus Object implements Heart Rate Monitor interface to monitor the target

heartbeats. This solution is reasonable since only the application knows

what its goals are and when it has finished the computation of a fraction of

information.

CHAPTER 3. METHODOLOGY 40

3.4.2 Communication infrastructure

This subsection aims at providing an experimental view of implement-

ing a self-adaptive software based on analyzing the dataflows between its

components.

3.4.2.1 Communication between the Consensus Object and Services

The first task requires the Consensus Object to be aware of available

services in the system and their characteristics. There are two methods to

discover the availability of services based on the active role of the Consen-

sus Object and they are summarized as follow:

• Pull method: The Consensus Object plays an active role in discover-

ing the availability of services. By saying active role, we mean that

the Consensus Object periodically updates its registry about avail-

able services. In order to do so, the most simple solution is to define

a common location where services can export their information and

the Consensus Object can update its knowledge by importing those

information. The advantage of this method is that neither service or

the Consensus Object needs to know a pre− information about each

other. Their statup order also should not be important which mean

they can be executed in seperate process with any assumption about

the other’s existence. However, it is necssary to hard − code in both

the Consensus Object and the service a common location. Through

this preliminary communication channel the service might inform

the Consensus Object of its name, process ID, and all the information

CHAPTER 3. METHODOLOGY 41

needed to establish a new channel where to exchange control direc-

tions. The implemented Consensus Object can periodically scan the

common location to update needed information after its startup. The

registration mechanism is identical among each service to keep the

implementation as modular, expandable, and flexible.

• Push method: The Consensus Object plays an passive role in discov-

ering the availability of services. Utilizing this method means services

should have the Consensus Object’s ID as a pre−knowledge. The Con-

sensus object has to provide an interface for services to register/un-

register their availability and other information. After its startup or

before being disabled, service use the Consensus Object to inform its

availability. It is obviously that push method is not so flexible as pull

method as it requires the Consensus object to be started prior to all

process but of course it reduces the amount of exchanged informa-

tion.

The Consensus Object not only stores service’s registration but use them

to setup a communication channel to control the service. There are many

techniques to implement the communication channel using shared mem-

ory, file or even interrupt mechanism. Independently from implementation

methods, all services are needed to expose a standardized interface so that

the Consensus Object can easily take the control by issuing high-level com-

mands and command’s target. The commands will decide the interface ex-

posed by each service. Examples of commands and thus service’s exposed

interface might be:

CHAPTER 3. METHODOLOGY 42

Figure 3.2: The communication between the Consensus Object and Service

• Increase performance.

• Decrease performance.

• Enable service.

• Disable service.

An example of target might be the ID of a process, which has to be

affected by the service. the process’s ID has to be communicated because

the service, in most cases, will be very general and might target different

processes in different ways. The Figure 3.2 depicts the information flows

between the Consensus Object and services.

3.4.2.2 Communication between the Consensus Object and Applications

The second task requires the Consensus Object to have knowledge about

target applications. We have already dicussed that the Application Heart-

beats framework is the ideal solution to complete this task. Each target au-

CHAPTER 3. METHODOLOGY 43

tonomously implement Application Heartbeats framework to define their

goals and update the progress towards their goals. Those information is

stored in a common place for being retrieved by others who are interested

in. This procedure is often called application registration due to the similar-

ity with the service registration procedure described above. At the moment,

Application Heartbeats framework provides two model for exposing heart-

beats information: one uses shared memory technique while the other uses

files. The defined common location because of this could be either a shared

memory key or a directory in file system.

Figure 3.3: The communication between the Consensus Object and Application

The Consensus Object updates information about each application’s

goals and its progresses by looking into defined common location. For

supporting update actions, Application Heartbeats framework also make

available a set of API functions called Heart Rate Monitor which enables

CHAPTER 3. METHODOLOGY 44

the Consensus Object to read the collected data and statistics. The Figure 3.3

depicts what we have just discussed above.

3.4.2.3 Decision support mechanism

The last task requires the Consensus Object to have the ability to ana-

lyze data comming from applications and to make decision on which ap-

plication need to be targeter and which service to activate. This can be done

using decision support mechanism. We already disscussed about those mech-

anisms when we introduced the logics should be implemented by Decide

process of ODA loop. The common execution scenario will be summarized

as follow:

• The Consensus Object goes through all the available processes and

evaluating for each process its progress towards its defined goals.

• According to the set of defined decision policies (either hard− coded

or dynamic installed), the Consensus Object knows that whether an

this application is under− performing or over− performing. All the

availble services are scanned to see whether there exists at least one

that can be enabled, disabled, or altered to make the application reach

closer to its defined goals. If such service exists, the Consensus Object

issues appropriate command to it.

• At a higher level, when there exists more than one service which can

be controlled, the Consensus Object may implement a mechanism to

rank those solutions and chooses the best solution based on its rank-

ing.

CHAPTER 3. METHODOLOGY 45

3.4.3 Application’s goals management

The picture of self-adaptive software implementation has not been com-

pleted due to the unknow mechanism based on which services can alter

alter their targeted applications. It is a wide range of research and strongly

related to what we already disscused previously about the elements that

can affect application’s goals.In [9], they introduced to complete the pic-

ture with the use of autonomic libraries. In fact, building autonomic

library only concentrates on the first two of listed elements : application’s

knobs and application’s implementations. Thus, two libraries were pro-

posed:

• Parameters API: taking an idea from the fact that each application

implements a dynamic algorithm which provides a set of parame-

ters which can be tuned to get better performance during runtime,

parameters API contains different sets of parameter with their value.

Utilizing parameters api lets service tune the performance of appli-

cation during runtime by switching between those sets. It is a simple

but useful method although it needs human intervention on eliciting

sets of parameters to provide a pre-knowledge.

• Implementation Library: refers to a library that exposes some func-

tionalities and has the capability of switching among implementa-

tions. This idea comes from the fact that some applications provide

more than one implementation for their logic. Each algorithm has its

own advantage in specific context and it is desirable to have the li-

brary automatically chooses the best one based on current context.

CHAPTER 3. METHODOLOGY 46

It’s obviously that a high abstraction of implementations which pro-

vide the same functionality should be provide so that application

should never see the switching. This means each implementation im-

plements the identical interface and working on a unique abstract

data (e.g., a translation between abstract data and real data used by

the algorithm may be needed). Moreover, for a correct choice of the

implementation, the library must have data regarding goals and a de-

cision support mechanism.

The Figure 3.4 depicts the usage of parameters api library while the

Figure 3.5 depict the method of using implementations library in building

self-adaptive software.

Figure 3.4: The Parameters API

3.5 Summarization

In this Chapter, we have already disscused basic technical methods for

building a self-adaptive software system and their connection. We also in-

CHAPTER 3. METHODOLOGY 47

Figure 3.5: The implementations library

troduced Application Hearbeats framework which is very useful in provid-

ing an infrastructure for defining, and monitoring application’s goals and

its progress towards goals. All of those knowledges will be illustrated in the

next chapter while we step by step design and build a specific self-adaptive

software system.

Chapter 4

Implementation

When the definition of self-adaptive software systems is introduced,

many people think about very complicated software systems but in fact

self-adaptive software systems has a spread spectrum, ranging from great

distributed systems to very simple software applications run on our mo-

bile phone. At the beginning of this Chapter, we are going to introduce a

mobile operating system called Android. We then describe the design and

implementation of a self-adaptive MP3 decoder as an illustrative example.

This application takes a music MP3 file as input and generate PCM (Pulse

code module) samples as output so that they can be played by audio de-

vice. During this Chapter, we are going to illustrate most of the methods

and solutions that we have already discussed in previous chapter.

48

CHAPTER 4. IMPLEMENTATION 49

4.1 Android Operating System

4.1.1 Introduction

The term Android has its origin in the Greek as word andr−, meaning

"man or male" and the suffix −eides, used to mean "alike or of the species".

This together means as much as "being human". Android is a software stack

for mobile devices that includes an operating system, middleware and key

applications. Android was initially developed by Android Incorporation.

Later it is acquired by Google to form Open Headset Alliance which

is a group of 65 hardware, software, and telecom companies. Not like other

mobile operating system such as Microsoft Mobile, Symbian or Iphone, An-

droid is an open source project which means everybody can contributed to

its development. By saying open we mean that :

• From industrial point of view : the software stack is a open source

project under the Apache 2.0 license and is available after first hand-

sets ship. Anyone can download and build the system image for their

own device.

• From user’s point of view : users have control of their experience and

they control what gets installed.

• From developer’s point of view : Developers do not need permission

to ship an application. The framework APIs are made open without

any privileges and developers can integrate, extend or replace exist-

ing components.

CHAPTER 4. IMPLEMENTATION 50

Android group also provides a Software Developement Kit (SDK) along

with the OS to help developers who want to develope applications for An-

droid system without knowing the underlying complications. Android ap-

plications are developed using Java language. Each application will run in

different virtual machine. Although developer use Java language for de-

veloping applications, the virtual machine in which they are executed is

not Java Virtual Machine (JVM) but Dalvik Virtual Machine. Dalvik Vir-

tual Machine is also an open source project and gives a better performance

than general JVM in the area of mobile systems. It is the open property of

Android which allow developer to access to the platform’s low levels in-

fluenced us in choosing Android system as the developing enviroment for

our example of self-adaptive software.

4.1.2 Android system architecture

The Figure 4.11 depicts the architecture of Android operating system.

The software stack is devided into four layers and will be summarized as

follow:

• Application layer: The Android software platform will come with a

set of basic applications like browser, e − mail client, SMS program,

maps, calendar, contacts and many more. All these applications are

written using the Java programming language. It should be men-

tioned that applications can be run simultaneously, it is possible to

hear music and read an e − mail at the same time. This layer will

1Graphic taken from website http://developer.android.com/guide/basics/what-is-
android.html

CHAPTER 4. IMPLEMENTATION 51

Figure 4.1: Android operating system architecture

mostly be used by commonly cell phone users.

• Application framework layer: An application framework is a soft-

ware framework that is used to implement a standard structure of

an application for a specific operating system. With the help of man-

agers, content providers, and other services, it can reassemble func-

tions used by other existing applications.

• The libraries: Android includes a set of C/C++ libraries used by var-

ious components of the Android system. These capabilities are ex-

posed to developers through the Android application framework.

They will be called through a Java interface. Some of the core libraries

are listed below:

CHAPTER 4. IMPLEMENTATION 52

– System C library: a BSD-derived implementation of the standard

C system library (libc), tuned for embedded Linux-based devices

– Media Libraries: based on PacketVideo’s OpenCORE; the libraries

support playback and recording of many popular audio and video

formats, as well as static image files, including MPEG4, H.264,

MP3, AAC, AMR, JPG, and PNG.

– Surface Manager: manages access to the display subsystem and

seamlessly composites 2D and 3D graphic layers from multiple

applications

– ibWebCore: a modern web browser engine which powers both

the Android browser and an embeddable web view

– SGL: the underlying 2D graphics engine.

– 3D libraries : an implementation based on OpenGL ES 1.0 APIs;

the libraries use either hardware 3D acceleration (where avail-

able) or the included, highly optimized 3D software rasterizer.

– FreeType:bitmap and vector font rendering.

– SQLite:a powerful and lightweight relational database engine

available to all applications.

• Android Runtime: The Android runtime consists of two components.

First a set of core libraries which provides most of the functionality

available in the core libraries of the Java programming language. Sec-

ond the virtual machine Dalvik which operates like a translator be-

tween the application side and the operating system. Every applica-

CHAPTER 4. IMPLEMENTATION 53

tion which runs on Android is written in Java. As the operating sys-

tem is not able to understand this programming language directly, the

Java programs will be translated by the virtual machine Dalvik. The

translated code can then be executed by the operating system. Un-

like JVMs, which are stack machines, the Dalvik Virtual Machine is

a register-based architecture. Other very important notice is that ap-

plications will be encapsulated in Dalvik Virtual Machine. For every

program an own virtual machine is available even if some programs

are running parallel. The advantage is that the different programs do

not affect each other, so a program error for example can lead to a

crash of the program but not of the whole system.

• Linux Kernel Layer: Android is built on top of a solid and proven

foundation: the Linux kernel. Linux provides the hardware abstrac-

tion layer for Android, allowing Android to be ported to a wide va-

riety of platforms in the future. Internally, Android uses Linux for its

memory management, process management, networking, and other

operating system services. The Android phone user will never see

Linux, and programs will not make Linux calls directly.

4.1.3 Working with the Android platform

The implementation of our self-adaptive software needs to utilize the

Application Heartbeats Framework which is written in C/C++ language.

As being introduced, the Software Developement Kit only allows devel-

opers to write application and library in Java language. Thus, there is two

CHAPTER 4. IMPLEMENTATION 54

methods to enable the Application Heartbeats framework to work in An-

droid are : either we port the Application Heartbeats framework’s source

code into Java language or implement our self-adaptive software at low

layer of the software stack rather than in Application layer. The second

solution seems to be the most reasonable one because the success in imple-

menting our software application at low level can be expanded to provide

adaptivity at general level. Moreover, because Android is built on top of

Linux kernel, most of its low level library are written in C/C++, thus there

is a posibility of utilizing the Application Heartbeats framework without

porting requirement. By saying low level, we mean Application Heartbeats

framework will become part of Android’s libraries working in the layer

right upper the Linux kernel. Therefore, our MP3 decoder application will

be part of the Application Framework layer.

This solution requires us to download Android platform source code,

and have knowledge of building system image. Downloading and setting

up the enviroment for building Android platform has been described on

Android official website 2 or from my WordPress article 3. The system im-

age can be build using make command at source code’s top level directory.

The make command supports a lot of paramters for building the system im-

age suites developer’s need (e.g., device’s architecture, device’s hardware

configuration...). It is notable point that, Android build system does not use

the normal Makefile but uses its own Makefile called Android.mk.

Contributions to Android base framework are now left with the coding

2Android Platform http://source.android.com/source/index.html
3How to download and build Android platform - http://thanhpt25.wordpress.com/

CHAPTER 4. IMPLEMENTATION 55

phase and creating appropriate Android.mk file. The snip code 4.1 depicts

an example Android.mk used in our project to build Application Heart-

beats frameworks as a shared libraries in Android.

1 LOCAL_PATH:= $(call my-dir)

2 include $(CLEAR_VARS)

3

4 LOCAL_ARM_MODE:=arm

5 LOCAL_C_INCLUDES:=\

6 $(call include-path-for)

7

8 LOCAL_SRC_FILES:= \

9 heartbeat-file.cpp

10 LOCAL_PRELINK_MODULE:=false

11 LOCAL_MODULE:=libhb-file

12 include $(BUILD_SHARED_LIBRARY)

List 4.1: A sample Android.mk file

The most important parts of an Android.mk file can be illustrated as

bellow:

• An Android.mk file must begin with the definition of the LOCAL_PATH

variable. It is used to locate source files in the development tree. In

this example, the macro function my − dir, provided by the build

system, is used to return the path of the current directory (i.e. the di-

rectory containing the Android.mk file itself).

• The CLEAR_VARS variable is provided by the build system and points

to a special GNU Makefile that will clear many LOCAL_XXX vari-

ables (e.g. LOCAL_MODULE, LOCAL_SRC_FILES,etc.), with the ex-

ception of LOCAL_PATH. This is needed because all build control

CHAPTER 4. IMPLEMENTATION 56

files are parsed in a single GNU Make execution context where all

variables are global.

• The LOCAL_MODULE variable must be defined to identify each mod-

ule we describe in our Android.mk. The name must be *unique* and

not contain any spaces. The build system will automatically add proper

prefix and suffix to the corresponding generated file.

• The LOCAL_SRC_FILES variables must contain a list of C and/or

C++ source files that will be built and assembled into a module. Note

that we should not list header and included files here, because the

build system will compute dependencies automatically for us.

• The last line indicates the type of our project (e.g., static library, shared

library or stand− a− lone application).

4.2 Self-adaptive MP3 decoder implementation

This section represents to readers the implementation of a self-adaptive

MP3 decoder. During the implementation process, we are going to try to

follow the methodology which was dicussed in the Chapter 3.

4.2.1 General description

As being represented to readers, self-adaptive software systems are born

to solve the problem of skyrocketting complexity in current software sys-

tems. Therefore, we concluded that a self-adaptive software system should

not add more complexity to the design. That is why we chosed to develope

CHAPTER 4. IMPLEMENTATION 57

a very small self-adaptive MP3 decoder which works on a mobile operting

system - Android to illustrate the benefit of self-adaptivity. The Figure 4.2

represents to readers the overview of the system we are going to develope.

Figure 4.2: The self-adaptive MP3 decoder system.

As can be observed, the Application Heartbeats Framework will be

ported to be part of the Android’s core libraries. Whereas, our self-adaptive

MP3 decoder and its adaptation engine - the Consensus Object are part

of the Android Application Framework. We also developed an implemen-

tations library contains two algorithms for decoding MP3 data into PCM

samples: the MPG123 algorithm and the MiniMP3 algorithm. It is obvi-

ously that for flexibility and portability, the implementations should also

be a part of the Android’s core libraries.

From the internal approach point of view, the system has the ability to

gather the information about its state and its operation context to decide

at runtime which configuration among the set of its available running con-

CHAPTER 4. IMPLEMENTATION 58

figurations will be chosen for the next operation according to the different

criteria. Here we proposed the definion of running configuration instead

of specific algorithm implementation. System’s running configuration has

a broader meaning than implementation in the sense that it includes the

algorithm implementation and a set of system paramter’s values. Differ-

ent running configuration may use the same algorithm implementation but

different set of system parameter’s values provides the ability to unify the

usage of parameters API and implementations library. Moreover, as we di-

cussed about adaptation engine, we agreed that we need a mechanism to

evaluate the potential of each solution so that the decision making engine

can choose the best among them. We also concluded that for simplicity,

those evaluations can be pre-evaluated according to some criterias using

human knowledge. Thus, by introducing running configurations we can

make them to contain also their priority of potential to help decision mak-

ing engine to make a better chose. In fact, evaluation a solution is a com-

plicated process which not only based on the solution itself but also based

on the situation it is applied to. This problem relates to the area of context

definition and action definition for each specific context which are out of

the scope of this document.

From the external approach point of view, there exists an adaptation

engine called the Consensus Object which monitors the progress towards

application’s defined goals and issues appropriate commands to swith be-

tween different available configurations to save the situation.

The purpose the system is to provide an acceptable quality of music

CHAPTER 4. IMPLEMENTATION 59

to listener. On mobile device, many factors can effect this purpose such as

the low bandwidth, the defect of current used algorithm on new hardware

configuration, etc. To accomplish the purpose, the system must have the

ability to switch between different configuration to adapt the new situation

actively or passively.

4.2.2 Porting Application Heartbeats Framework

Thank to the portability of Application Heartbeats framework, it is quite

simple to port the framework into Android platform. As dicussed in Chap-

ter 3, Application Heartbeats framework provides more than one model for

implementing the communication methods: the shared memory model and

file model. However, shared memory has been stripped off from Android

platform because Android development team considered it as un-safe op-

eration. Because of this, we were left with only one choice of using the file

model. There are two steps in porting Application Heartbeats framework

as an Android’s core shared library:

• The source code will be located in a specific location so that it can be

found by build system.

• An appropriate Android.mk need to be created and located in the

same folder with framework’s source code. The snip code 4.2 depicts

the Android.mk file which was created and used in our project.

1 LOCAL_PATH:= $(call my-dir)

2 include $(CLEAR_VARS)

3

4 ifneq ($(TARGET_SIMULATOR),true)

CHAPTER 4. IMPLEMENTATION 60

5 LOCAL_SHARED_LIBRARIES += libdl

6 endif

7

8 LOCAL_ARM_MODE := arm

9 LOCAL_C_INCLUDES := \

10 $(call include-path-for)

11

12 LOCAL_SRC_FILES := heartbeat-file.cpp

13 LOCAL_PRELINK_MODULE := false

14 LOCAL_MODULE := libhb-file

15 include $(BUILD_SHARED_LIBRARY)

16

17 include $(CLEAR_VARS)

18

19 ifneq ($(TARGET_SIMULATOR),true)

20 LOCAL_SHARED_LIBRARIES += libdl

21 endif

22

23 LOCAL_ARM_MODE := arm

24 LOCAL_C_INCLUDES := \

25 $(call include-path-for)

26

27 LOCAL_SRC_FILES := \

28 heart_rate_monitor-file.cpp

29 LOCAL_PRELINK_MODULE := false

30 LOCAL_MODULE := libhrm-file

31

32 include $(BUILD_SHARED_LIBRARY)

List 4.2: Android.mk file for building Application Heartbeats

As the result, two libraries named libhrm-file and libhb-file will be cre-

ated in our Android system image. Any application or library which is in-

terested in invoking Application Heartbeats APIs should link to those two

CHAPTER 4. IMPLEMENTATION 61

library as local shared library.

4.2.3 The implementation of adaptable MP3 decoder

We dicussed in Chapter 3 about how Application Heartbeats frame-

work provides a flexibility way for application in goal definition and mon-

itoring their progress towards goal. For a specific application, it is first nec-

essary to define what application’s goals are. It is obviously that an MP3

decoder should provide a stable data stream for the audio decoder so that

users can enjoy music without any interruption. Thus, it will be useful if a

heartbeat is generated for every block being decoded, while the key metric

here is likely the frequency of heartbeat or heart rate. The Figure 4.3 rep-

resents the sequence diagram of an MP3 decoder using Application Heart-

beats framework to provide performance information.

Figure 4.3: Registering performance using Application Heartbeats library

CHAPTER 4. IMPLEMENTATION 62

As can be observed, our MP3 application first does the framework ini-

tialization by calling heartbeat_init() API. This operation will request the

framework to created a file in specified common place to store application’s

heatbeat information. It then requests the implementation service to open

a specific MP3 file for being decoded. After each successfully decoded data

block, MP3 decoder application issues a heartbeat to register the applica-

tion’s progress. This progress information can be monitored and analyzed

by application itself or by external applications.

In case we have self-optimized application software , our MP3 decoder

needs to monitor its own progress towards goal, analyzes and takes ap-

propriate action. We have already mentioned in table 3.1 that Application

Heartbeats framework also provides APIs for application to monitor the

its own heart rate (e.g., hb_get_global_rate and hb_get_windowed_rate). It

is straightforward that we can make use of those APIs with the definition

of desired heart rate to enable our application to realize the situation and

make appropriate action. The Figure 4.4 represents how heart rate related

APIs can be employed in our project.

The application retrieves its own windowed heart rate after each it-

eration and compares the windowed heart rate with the maximum and

minumum target heart rate. A very simple decision tree in the form of if-

then-else structure is employed here to help making decision: if the win-

dowed heart rate is greater than the acceptable maximum heart rate or

less than minimum acceptable heart rate then the application will issues

the implementation switching service to change the running configura-

CHAPTER 4. IMPLEMENTATION 63

Figure 4.4: Sequence diagram for self-optimization MP3 decoder

tion; otherwise it continues the next iteration. The desired heart rate is a

pre-knowledge and is specified when we call heartbeat_init(). Application

Heartbeats Framework allows developers to specify the maximum heart

rate and minimum heart rate as upper bound and lower bound respec-

tively for target heart rate during initialization. This ability provides the

flexible way for defining the target goal because application can define a

acceptable interval instead of a specific value. The snip code 4.3 used in

our project is represented below with comments so that it can be straight-

forward to understand:

1 //Bias is the pre-specified value

2 heartbeat_init(&heart,

3 minTargetRate,

4 maxTargetRate,

CHAPTER 4. IMPLEMENTATION 64

5 window_size, buffer_depth,

6 log_name);

7 ...

8 int tag = getppid (); //Tag indicator

9 int iters = 0;

10 //Here we start our main loop of decoding

11 do{

12 iters ++;

13 if(hbEnabled)

14 //Update progress towards goal

15 heartbeat(&heart, tag);

16 //Decoding MP3

17 int nSamples = 0;

18 nSamples = readSamples(

19 handle,

20 outputBuffer,

21 OUTPUT_BUFFER_SIZE);

22 if (nSamples ==0)

23 break;

24 else{

25 //Play our decoded samples

26 lpTrack->write(outputBuffer,

27 nSamples * sizeof(unsigned char));

28 }

29 /*Seft-awareness and adaptation*/

30 if (hbEnabled){

31 float globalRate = 0.0;

32 float windowedRate = 0.0;

33 //Retrieve the rate

34 globalRate =

35 hb_get_global_rate(&heart);

36 windowedRate =

37 hb_get_windowed_rate(&heart);

38 float maxRate=

39 hb_get_max_rate(&heart);

CHAPTER 4. IMPLEMENTATION 65

40 float minRate=

41 hb_get_min_rate(&heart);

42 if((windowedRate > maxRate) ||

43 //Over-performance

44 //switch to lower potential config

45 swithConfig(false);

46 }else if (windowedRate < minRate)){

47 //Under-performance

48 //switch to higher potential config

49 swithConfig(true);

50 }else{

51 //Normal execution

52 continue;

53 }

54 }

55 }while(1);

List 4.3: Code for self-optimization implementation

4.2.4 The implementation of Services

The logic should be implemented by Service was represented to readers

in Chapter 3. In actual implementation, the relationship between service is

either one of two types or a mix:

• A. One application and multiple services.

• B. Multiple applications and multiple services.

Other scenarios such as one application and one service or multiple ap-

plications and one service are special cases of A and B. In fact, the rela-

tionship between applications and services do not affects directly to the

CHAPTER 4. IMPLEMENTATION 66

application’s progress towards goals. More general, this relationship will

be considered by the adaptation engine when it has to evaluate the impact

of each decision. In the scope of our project, we propose to implement the

most simple relationship between application and its service : One appli-

cation and one service. This consideration will lead to the fact that appli-

cation’s process ID will be service’s process ID. One may argue that there

is no meaning in this implementation. However, in our point of view, this

implementation not only maintains the overal architecture of self-adaptive

software system but also give the simplicity to the system.

Because the relationship is now a one-to-one type, registering an appli-

cation with the Consensus Object also means registering a service with the

Consensus Object. It is true because all service are identical to the Consen-

sus Object except for their identities. We are going to represent to readers

how the Consensus Object makes use of this one-to-one relationship in the

following section.

We argued that service is an extension of actuator. By saying an exten-

sion we mean that it not only represents a component capable of perform-

ing changes on one or more applications or on the system but it also in-

cludes the interface to interact with the Consensus Object and with the ap-

plication. Thus, designing and implementing a service is actually designing

and implementing those programming interfaces.

• Interface between service and the Consensus Object: We agreed that

services should implement the identical interface so that the Consen-

sus Object can command them with the same set of commands. The

CHAPTER 4. IMPLEMENTATION 67

Consensus Object distinguishes services by their identity. The only

prolem left is how to implement the communication channel which is

in one way allow service to register itself with the Consensus Object,

while in the reverse direction allows service to receive the commands

from the Consensus Object. With one-to-one relationship between ap-

plication and service, we argue that there is no need to register service

to the Consensus Object, because the application registration already

means service registration.Thus, the on-going channel of bi-direction

communication can makes use of Application Heartbeats framework

as well. For the in-coming channel, many methods have been pro-

posed using : file model, pipeline, shared memory, etc. For our simple

interface, we propose to utilize software interupt as the communica-

tion channel. In our point of view, service will be implemented as

a software interupt handler which catchs and handles the following

interupts:

– SIGUSR1: When service receives SIGUSER1 from the Consensus

Object, it will consider as if it receives a request to adapt the

under-performance situation.

– SIGUSR2: When service receives SIGUSER2 from the Consensus

Object, it will consider as if it receives a request to adapt the

over-performance situation.

– SIGINT/SIGTERM : When service receives SIGINT/SIGTERM

from the Consensus Object, it will consider as if it receives a re-

quest to disable itself.

CHAPTER 4. IMPLEMENTATION 68

– SIGCON :When service receives SIGCON from the Consensus

Object, it will consider as if it receives a request to enable itself.

The snip code 4.4 depicts part of our service’s implementation as a

interupt handler.

1 //Up command definition

2 void cmdUp (int sig)

3 {

4 if (currentRunConfig < MAX_N_CONFIGS){

5 currentRunConfig++;

6 }else{

7 currentRunConfig = MAX_N_CONFIGS;

8 }

9 }

10 //Down command definition

11 void cmdDown(int sig)

12 {

13 if (currentRunConfig > 0){

14 currentRunConfig--;

15 }else{

16 currentRunConfig = 0;

17 }

18 }

19 //Start service; register the interface

20 int service_start(){

21 int rc = 0;

22 struct sigaction actionUp, actionDown;

23 sigset_t block_mask;

24 pid_t child_id;

25 /* A SIG_USR1 indicate UP command */

26 sigfillset (&block_mask);

27 actionUp.sa_handler = cmdUp;

28 actionUp.sa_mask = block_mask;

CHAPTER 4. IMPLEMENTATION 69

29 actionUp.sa_flags = 0;

30 rc = sigaction (SIGUSR1,

31 &actionUp, NULL);

32 if(rc != 0)

33 return rc;

34

35 /* A SIG_USR2 indicate DOWN command */

36 sigfillset (&block_mask);

37 actionDown.sa_handler = cmdDown;

38 actionDown.sa_mask = block_mask;

39 actionDown.sa_flags = 0;

40 rc = sigaction (SIGUSR2,

41 &actionDown, NULL);

42 if(rc != 0)

43 return rc;

44

45 }

List 4.4: Service API implementation

• The autonomic libraries: We have discussed about autonomic library

and how service affects system’s performance using those libraries.

While implementing autonomic libraries, we concluded that it is pos-

sible to define the running configuration as a more general concept

of algorithm implementation. A running configuration describes the

action service should enact including algorithm implementation, a

set of parameter’s values and a value indicate its level of potential.

Service now not only has the ability to switch between different im-

plementations but also has the ability to use the same algorithm im-

plementation but different in parameter’s values. Service also can

CHAPTER 4. IMPLEMENTATION 70

take advantage of human knowledge in form of configuration’s pre-

defined level of potential. The snip code 4.5 depicts the a general

structure of configuration.

1 enum Methods{

2 LIBMAD,

3 LIBMPG123,

4 LIBMINIMP3

5 };

6 typedef struct{

7 //parameters definition

8 int64_t buffer_size;

9 bool skip_samples;

10 ...

11 //current used implementation

12 Methods currentMethod;

13 } Configuration;

List 4.5: Sample structure of a configuration

We developed an implementations library which contains three MP3

decoder implementations:

– MAD implementation : MAD uses integer computation rather

than floating point, it is well suited for architectures without a

floating point unit. All calculations are performed with a 32-bit

fixed-point integer representation.

– MPG123 implementation : Unlike MAD using float for decoding

so it perfectly works well on architecture that possesses a Float-

ing Point Unit (FPU). There is a downgrade when MPG123 has

to work on architecture which does not support FPU.

CHAPTER 4. IMPLEMENTATION 71

– MiniMP3 implementation : Both MAD and MPG123 uses assem-

bly code for speeding up decoding. MiniMP3 does not use as-

sembly code, therefore it has the slowest decoding speed.

We have already argued that to develope an implementations library,

a high abstraction of input and output data used by algorithms must

be designed so that application could not aware of the switching be-

hind the scene. Thus, impementations library also need to have the

ability to translate from the abstracted input data type to specific in-

put data type used by current algorithm, and from output data type

returned by current algorithm to abstracted output data type under-

standably to application. In our project, we provided those abstrac-

tion by utilizing two methods: (1) Abstracted structures: contain all

information needed by each algorithm even if they are redundances.

(2) Translate function : Translate abstracted structure into structure

used by algorithm.

It is also notable that a quiescent state needs to be reached before we

can change the underlying implementation. In case of MP3 decoder, a

quiescent state could be the state when all decoded data by one imple-

mentation has been transfered to playback device. At that state, the

implementations library can switch to another implementation with-

out affecting application progress. The snip code 4.6 illustrates the

logic implemented in our MP3 decoder to reach the quiescent state.

1 if ((lastMethod == LIBMPG123) &&

2 (currentMethod == LIBMINIMP3))

CHAPTER 4. IMPLEMENTATION 72

3 {

4 //Not yet reached quiescent state

5 if (mp3Handle->leftSamples>0)

6 {

7 //continue using old method

8 return mpg123_readSamples(index,

9 buffer,

10 mp3Handle->leftSamples);

11 }

12 else

13 {

14 //reached quiescent

15 //can change method now.

16 lastMethod = currentMethod;

17 return minimp3_readSamples(

18 index,

19 buffer,

20 size);

21 }

22 }

List 4.6: Code for implementation switching

4.2.5 The implementation of the Consensus Object

As being introduced in Chapter 3, the Consensus Object plays a center

role of the control loop. We also argued that the Consensus Object should

be implemented to accomplish the following tasks:

• Discovers and dynamically updates availability and characteristics of

services.

• Discovers and dynamically updates the possible targets aimed at by

CHAPTER 4. IMPLEMENTATION 73

the services.

• Analyzes data coming from the applications, decides which appli-

cations need to be targeted, chooses which service to activate or to

modify, and submits the plans to the services.

The first task requires the Consensus Object to update the availability and

characteristics of services. Many techniques have been dicussed to build

the communication channel between services and the Consensus Object

(e.g., shared memory, pipeline, file model,etc.). The purpose of all those

methods is to let the Consensus Object aware of available services’ pro-

cess IDs so that it can issues commands in adapting phase. In our project,

to simplify the implementation, a strong coupled one-to-one relationship

between application and its service is implied. This implication allow the

Consensus Object to by pass the discovering process of available services

because while taking the discovery process looking for target applications,

the Consensus Object will know their process ID. The one-to-one relation-

ship between application and its service allows the Consensus Object to

make the implication about service’s process ID as well. Therefore, the im-

plementation logic of the Consensus Object will be summarized as follow:

• Discovers and dynamically updates heartbeat− enabled application.

The process ID of application and its service are now the same be-

cause of one-to-one relationship.

• Analyzes data coming from the applications, decides which applica-

tions need to be targeted, makes decision, and submits the plans to

CHAPTER 4. IMPLEMENTATION 74

the services.

The first task can be accomplished by scanning in the defined common

place, because each heartbeat-enabled application will create a file with

its process ID as file name (using Application Heartbeats Framework’s file

model). The snip code 4.7 depicts this scanning process.

1 DIR *dp;

2 int count = 0;

3 struct dirent *ep;

4 dp = opendir (

5 getenv("HEARTBEAT_ENABLED_DIR"));

6 if (dp != NULL)

7 {

8 do{

9 ep = readdir (dp);

10 if(ep!=NULL){

11 int id = atoi(ep->d_name);

12 if(id > 0){

13 listIds[count] = id;

14 count++;

15 }

16 }

17 }while(ep!=NULL);

18 closedir (dp);

19 }else{

20 return -1;

21 }

22 return count;

List 4.7: Code for target application discovery

After scanning, the Consensus Object maintains a list of process IDs.

The second task requires the Consensus Object to have the ability to re-

CHAPTER 4. IMPLEMENTATION 75

trieve target’s heartbeats information, to analyze and to make decision. Re-

trieving target’s heartbeats information process can be accomplished using

Application Heartbeats framework APIs. In Table 3.2, we represented a list

of APIs that framework provides to external application. We alsp propose

to store targets’ information in a well-formatted structure called Registry

table. Each registry table’s element contains heartbeats information of one

target. The Figure 4.8 shows the structure of registry table and registry ele-

ment.

1 typedef struct{

2 pid_t pId;

3 heart_rate_monitor_t hrm;

4 heart_data_t* records;

5 int nRecords;

6 } RegistryElement;

7

8 typedef struct{

9 int size;

10 RegistryElement* regs;

11 } Registry;

List 4.8: Sample of the Consensus Object’s registry table

The Consensus Object will initialize one heart rate monitor for each pro-

cess in its list. Those monitors provide a handle to access target applica-

tion’s progress towards goal information. By iterating through the list of

process and retrieving information using handle, a registry table will be

built contains heartbeat data records belong to each process. The snip code

4.9 represent the logic which takes reponsibility to update the registry ta-

ble.

CHAPTER 4. IMPLEMENTATION 76

1 for(i = 0; i < nIds; i++){

2 //Init monitor for target app

3 int rc = heart_rate_monitor_init(

4 &(regs[i].hrm),

5 regs[i].pId);

6 if(rc < 0){

7 return rc;

8 }

9 heart_data_t* records = (heart_data_t*)

10 malloc(MAX * sizeof(heart_data_t));

11 regs[i].records = records;

12 int current_tag = -1,

13 last_tag = -1;

14 int j = 0;

15 while(last_tag < MAX-1) {

16 heartbeat_record_t record;

17 //Update heart record data

18 while(current_tag == last_tag) {

19 int rc = -1;

20 while (rc != 0)

21 rc = hrm_get_current(&(regs[i].hrm),

22 &record);

23 current_tag = record.tag;

24 }

25 records[j].tag =

26 last_tag = current_tag;

27 records[j].global_rate=

28 record.global_rate;

29 records[j].min_rate=

30 hrm_get_min_rate(&(regs[i].hrm));

31 records[j].max_rate=

32 hrm_get_max_rate(&(regs[i].hrm));

33 records[j].window_rate=

34 record.window_rate;

CHAPTER 4. IMPLEMENTATION 77

35 j++;

36 }

37 regs[i].nRecords = j;

38 //Finish monitoring

39 heart_rate_monitor_finish(&(regs[i].hrm));

40 }

List 4.9: Code for updating registry table

This registry table is going to be used as the input parameter for deci-

sion engine which takes part in analyzing the data and providing decision

as output. We employed a same decision logic dicussed in previous section

for application’s self-adaptation. The Figure 4.10 depicts the logic used by

the Consensus Object to analyze data and to make decision:

1 //Get the list of registry element

2 RegistryElement* regs = registry->regs;

3 if(regs == NULL){

4 rc = -1;

5 return rc;

6 }

7 int i = 0;

8 //Start analyzing data

9 for (i = 0; i < nIds; i ++){

10 pid_t pId = regs[i].pId;

11 heart_data_t record =

12 regs[i].records[regs[i].nRecords];

13 double window_rate = record.window_rate;

14 if (window_rate > maxRate)

15 //over performance -> Issue Down command

16 kill(pId, SIGUSR2);

17 else if (window_rate < minRate)

18 //under performance -> Issue Up command

19 kill(pId, SIGUSR1);

CHAPTER 4. IMPLEMENTATION 78

20 else

21 continue;

22 }

List 4.10: Logic for processing registry table

One notable point here is the employ of interupt signal. The Consensus

Object as can be observed use kill system call with parameters are ser-

vice process ID and signal type to issue command to service. In the section

discussed about the implementation of service, we argued that our simple

service was implemented as a interupt handler, which catch the user de-

fined signal SIGUSR1 and SIGUSR2 and to provide the interface with only

2 command : increase performance and decrease performance. Here by in-

troducing kill system call we completed the picture of communication

channel between the Consensus Object and the service.

Those processes represented to readers about are main elements of the

main logic loop. The Consensus Object periodically executes the loop to

update information and to make decisions. By implementing this loop, the

Consensus Object plays the role of an adaptation engine, enables the adap-

tivity to target applications.

4.3 Summarization

In this Chapter, we first introduced to readers about the Android mo-

bile operating system as our project’s developing enviroment. The reason

we chose Android is to illustrate the spectrum of self-adaptivity benefit.

Moreover, Android is a open source project which allow developer to ar-

CHAPTER 4. IMPLEMENTATION 79

bitrary change and build the system image for their own purpose without

permission. Thus, this provides us a very flexible developing enviroment.

We then represented to readers our project work as an illustrative exam-

ple in building a self-adaptive software system. This Chapter has a strong

relationship with Chapter 3 because during implementation process, we

employed as many as possible those technical methods discussed in Chap-

ter 3. We also provided idea about the concept of running configuration as

a unification of Parameters API and Implementations Library.

Chapter 5

Experimental result

In this Chapter, we are going to represent the experimental result of

running our project to verify the benefit of self-adaptive property. It is ob-

viously that using Application Heartbeats framework add overhead to ap-

plication. Therefore, we first analyze the effect of Application Heartbeats

framework on execution time. We then simulate the conditions that affect

the decoding speed (e.g, low band-width, architecture does not support

FPU, etc) to see how our software application adapts itselft to the new situ-

ation. At the end of this Chapter, we will represent a summarization based

on actual experimental results.

5.1 Application Heartbeats framework overhead

5.1.1 Test purpose and expected result

The purpose of this test is to verify the overhead effect of using Ap-

plication Heartbeats framework. It is oviously that, the framework adds

80

CHAPTER 5. EXPERIMENTAL RESULT 81

overhead to application because it uses a series of system calls to initialize

data structures and to store heartbeats information. As using file model of

the framework, read/write to file operations may cause notable impact on

application execution time. Therefore, our expectation is to verify that the

overhead is acceptatble.

5.1.2 Testing conditions

The experiment was undertaken in generic condition:

• Software condition: A generic build of Android System image was

built for testing purpose.

• Hardware condition: Instead of using real device, our tests was un-

dertaken on emulator provided along with the SDK. The main hard-

ware configuration options are :

– Processor: ARMv7 CPU.

– Cache’s size: 66Mb.

– RAM’s size: 96Mb.

– Max Virtual Machine application heap size: 16Mb.

– SD Card : No.

– Internal Storage : 32Mb.

– Audio Plackback support : Yes.

– Cache partition: yes.

CHAPTER 5. EXPERIMENTAL RESULT 82

5.1.3 Experimental Result and Comments

We executed the test by logging the interval needed to complete decod-

ing each MP3 file with and without Application Heartbeats being enabled.

We chose to decode the whole file instead of each decoded data block be-

cause our algorithms are implemented as a stream decoder. As a stream

decoder, the interval needed to decode a frame depends on whether that

frame is already decoded and put in buffer or it has to be read from a stream

to be decoded. The later obviously takes more time. We first tested Applica-

tion Heartbeats framework’s overhead with playback disabled to remove

the effect of playback time. The table 5.1 depicts the experimental results

executed on nine differents input files.

Table 5.1: Application Heartbeats overhead no playback

MPG123 MiniMP3

With HBs(us) W/o HBs Impact(%) With HBs(us) W/o HBs Impact(%)

2.1Mb 12524 10196 22.8 16538 15255 07.7

3.3Mb 17763 14906 19.1 24679 22460 08.9

4.3Mb 23113 19055 21.2 33370 29717 10.9

5.3Mb 28053 22262 26.0 40471 34453 14.8

6.4Mb 28047 23220 20.7 39490 34824 11.8

7.3Mb 17946 15050 19.2 23721 21011 11.4

8.2Mb 19884 16606 19.7 26029 23181 10.9

9.9Mb 23324 19790 17.8 31812 29850 06.2

12.6Mb 31650 25925 22.0 40009 37738 05.6

CHAPTER 5. EXPERIMENTAL RESULT 83

Figure 5.1: Overhead on application execution time - MPG123 decoder

Figure 5.2: Overhead on application execution time - MiniMP3 decoder

CHAPTER 5. EXPERIMENTAL RESULT 84

Figure 5.1 and Figurer 5.2 describes the overhead on application execu-

tion time using MPG123 decoder and MiniMP3 decoder respectively.The

results pointed out that the overhead of Application Heartbeats is relatively

high. One of the reason leads to this effect could be the Application Heart-

beats framework communication model base on file structure we are using

for our project. Read/write file operations are high cost operations in the

context of mobile device. Moreover, the number of heartbeats issued de-

pends on the number iteration, which then depends on the size of data

we retrieved in each iteration. It is obviously that the smaller the size of

data in retrieved in each iteration, the more iterations will be executed,

thus the more heartbeats will be issued. Therefore, more read/write op-

erations will be used which cause the increase of impact. We can alter the

size of retrieved data in each iteration to reduce the number of iterations,

thus reduce the number of heartbeats but that is not the desired solution

because Application Heartbeats framework should not require any change

in application. However, in the particular situation like our MP3 decoder

with playback enabled the situation can be brighter. In fact, playback is

a non blocking operation, which means after finished writing data to the

playback device’s buffer, MP3 decoder is free to decode another frame. We

can use the interval for playback to use up its buffer to decode another

block and issue heartbeats without causing any delay to the application

progress. Indeed, experimental test result 5.2 showed that with playback

enabled, the impact of Application Heartbeats framework on Mp3 decoder

application execution time is almost zero.

CHAPTER 5. EXPERIMENTAL RESULT 85

Table 5.2: Application Heartbeats overhead - playback enabled

MiniMP3

With HBs(us) W/o HBs(us) Impact(%)

2.1Mb 27420 27420 0.0

3.3Mb 21500 21223 1.3

4.3Mb 28210 28114 0.3

5.3Mb 34720 34522 0.6

6.4Mb 33740 33560 0.5

The Figure 5.3 verify that the MPG123 algorithm has a greater perfor-

mance than MiniMP3 algorithm on the same input file. It reflected the truth

because MPG123 algorithm uses assembly code to speed up the decode

while MiniMP3 does not.

Figure 5.3: Performance comparision between two algorithms

CHAPTER 5. EXPERIMENTAL RESULT 86

5.2 Test Self-Adaptivity

5.2.1 Test purpose and expected result

This test aims at verifing the benefit of self-adaptive software system

in comparision with non-adaptive software system. We built two scenarios

for testing:

• Self-Optimization scenario : In this scenario, we are going to simulate

the low-bandwidth condition by put some delay interval to be in di-

rect ratio to the size of retrieved data in each iteration. The tests will

be executed with and without self-adaptivity being enabled. In case

non self-adaptive application, the music will be played interruptedly,

because application need to wait for enough data before it can play-

back. We expect that with self-adaptivity being enabled, MP3 decoder

will recognize the falling of heart rate and self-optimizes the size of

data retrieved in next iterations to a desirable value, thus we are able

to prevent application from being blocked for fixed intervals waiting

for enough data.

• Optimization by external observer scenario : In this scenario, our ap-

plication does not aware of the context but let a Consensus Object

monitors and makes decision. We also use the same trick to simulate

the falling in heart rate. We are going to add some delay to simulate

the performance downgrade of MiniMP3 decoder (e.g., FPU stops

functioning) during a specific interval. The Consensus Object mon-

itors is expected to recognize the decreases in application’s perfor-

CHAPTER 5. EXPERIMENTAL RESULT 87

mance, and issues appropriate command to application’s service. The

command must trigger the service to switch underlying algorithm

implementation so that target application’s heart rate can be recov-

ered to desired value.

5.2.2 Testing conditions

The experiment was undertaken in generic condition:

• Software condition: A generic build of Android System image was

built for testing purpose.

• Hardware condition: Instead of using real device, our tests was un-

dertaken on emulator provided along with the SDK. The main hard-

ware configuration options are :

– Processor: ARMv7 CPU.

– Cache’s size: 66Mb.

– RAM’s size: 96Mb.

– Max Virtual Machine application heap size: 16Mb.

– SD Card : No.

– Internal Storage : 32Mb.

– Audio Plackback support : Yes.

– Cache partition: yes.

CHAPTER 5. EXPERIMENTAL RESULT 88

5.2.3 Experimental Result and Comments

The first scenario test was undertaken using MiniMP3 decoder with

0.5 second delayed for receiving each decoded block. With self-adaptivity

being disabled, application has shown a continous interruptions in play-

back. Whereas, the Figure 5.4 depicts application’s heart rate with self-

adaptivity being enabled. As can be observed, after a few adjustments, ap-

plication’s heart rate fell back into the interval between expected the mini-

mum and maximum value (e.g., minum value is 20, maximum value is 30).

This reflected the truth that user perceived some interruptions while ap-

plication was performing adaptation then playback music went smoothly

again. Thus, the result has shown the potential benefit of self-adaptive soft-

ware system in case of self-optimization.

Figure 5.4: Self-optimization MP3 decoder

The Figure 5.5 depicts the application’s performance change in second

scenario. As can be observed from the graph, the dark blue line represents

CHAPTER 5. EXPERIMENTAL RESULT 89

application heart rate without external observer being enabled while the

red line represents the application heart rate with external observer being

enabled. The dark blue line showed that application had to endured perfor-

mance degrade represented by a wide sunken part of the grapth. Whereas,

the red line explained a short degrade in application performance (e.g., the

graph went down for a very short interval). From user’s point of view, they

perceived some interruptions in both case but with self-adaptivity enabled

application, music went smoothly again while it could not be so in the other

case. It is obviously that external observer had expressed its ability in moni-

toring application and in making decision to make target application adapt

to the new context.

Figure 5.5: Optimization using external observer

5.3 Summarization

In this Chapter, we have already represented to readers the testing re-

sult of the project. Analyzing testing data of using Application Heartbeats

CHAPTER 5. EXPERIMENTAL RESULT 90

framework, we concludes that the framework adds notable overhead on

application’s execution time. There are two reasons leads to this overhead

problem: the used file model by framework and Application Heartbeats

framework is sensitive to the number of iterations executed by the crit-

ical loop. The result also proved that self-adaptivity provided potential

benefit in both self-optimization scenario and optimization with external

adaption engine scenario. Therefore, we have a strong base to believe that

self-adaptive software system is the right answer to deal with skyrocketing

complexity problem in modern systems.

Chapter 6

Conclusions and Future work

This thesis aims at studying one of the solution for solving the prob-

lem of skyrocketing complexity in modern computing system, the self-

adapting software systems. Although this is just a partial solution with the

scope limited to software solutions, its potential benefit has been proved

in building autonomic system and reducing human efforts needed due to

(re-)configuring and maintaining the systems.

In the scope of this dissertation, we first introduced the problem in

Chapter 1; provided the overview about self-adaptive autonomic system

as the general answer to skyrocketing complexity problem. Then we pro-

vided more details into the Software Engineering area, introducing meth-

ods for eliciting requirements while design a self-adaptive software sys-

tems as well as providing a taxonomy based on various aspect as in Chap-

ter 2. The Chapter 3 introduced to readers a deeper view into self-adaptive

software system architecture by representing the the control loops and re-

lated technique for building each process of the loop. Among those tech-

91

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 92

niques, we concentrated on introducing the Application Heartbeats Frame-

work because it provides a very flexible, portable, simple way for applica-

tion to define its goal as well as monitor its progress towards goal. Taking

Application Heartbeats framework as a starting point, we demonstrated

the logic of other process, and introduced the need and the implementa-

tion of the Consensus Object as a center element. The Consensus Object is

the central entity that gathers all the information coming from Heartbeats-

enabled applications and decides which actions to undertake in order to

make the processes reach the desired goals. An extension definion of ac-

tuators called Service was also represented to readers. Service decoupled

the application and its adaptable part, thus provided a more flexible in im-

plementation. The Consensus Object controls Services using Service API,

enables the adaptivity property of application.

After the dicussion in Chapter 3, we represented to readers the imple-

mentation of a self-adaptive MP3 decoder running on Android mobile op-

erating system as an illustrative example. As argued in Chapter 3, there are

amount of elements that can affect performance on a system. Among those

elements, application knobs and implementations are likely to be the most

common effects. Taking in to account of this consideration, in Chapter 4,

we built and test an example of Implementation Library to certify dicussed

concepts in Chapter 3.

The application then was put to test and the result was represented in

Chapter 5 shows the potential benefit of self-adaptive software system in

comparision to the original one. Testing was also taken to see the impact

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 93

and cost while using Application Heartbeats Framework as monitoring in-

frastructure. It is obviously that injecting Application Heartbeats into ap-

plication, we have to endure some overhead but the result showed that

overhead are acceptable in comparision to the benefit it can produce.

Successfully in one simple project on Android operating system pro-

vided us a strong base to go further in implementing more sophisticated

applications as well as what we call self-adaptive support components. The

following ideas can be accomplished in the near future:

• Provide self-adaptivity for Android’s core components.

• Automatic the development process of self-adaptive software system.

By saying automatic the development, we mean the development of

libraries which have already intergrated ODA control loop. Develop-

ers can either fully rely or partial rely on those libraries while devel-

oping their own self-adaptive software system.

• While the idea above is likely take alot of efforts, we can provide

to developer at Android Application layer the access to Application

Heartbeats Framework which is located at Android Libraries layer

through using JNI calls. It is the mediate way for developing self-

adaptive software systems.

• It is also a great idea to take researchs to improve the performance of

decision engine. So far, we still rely on human knowledge on choos-

ing the best solution among available solution. An atonomic and effi-

cient mechanism should be proposed to accomplish this task.

Bibliography

[1] Moore Gordon E. Cramming more components onto integrated cir-

cuits. Electronics Magazine, pages 4–4, 1965.

[2] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Land-

scape and research challenges. ACM Transactions on Autonomous and

Adaptive Systems, 4(2):1–42, 2009.

[3] R. Laddaga. Active software. In Proceedings of the International Workshop

on Self-Adaptive Software. 2000.

[4] R. Laddaga. Guest editorâs introduction: Creating robust software

through self-adaptation. IEEE, 14(3):26–29, 1999.

[5] J.O. Kephart and D.M. Chess. The vision of autonomic computing.

IEEE, 36(1):41–50, 2003.

[6] P.K. McKinley and M. SADJADI. Composing adaptive software. IEEE,

pages 56–64, 2004.

[7] D.C. Schmidt. Middleware for real-time and embedded systems.

Comm. ACM, 45(6):43–48, 2002.

94

BIBLIOGRAPHY 95

[8] IBM-AC. Autonomic computing 8 elements. IBM, pages –, 2001.

[9] TRIVERIO MARCO. Application heartbeats: a technique for enhanc-

ing system self-adaptability. 2010.

[10] P. Oreizy, N. Medvidovic, and R.N. Taylor. Architecture-based run-

time software evolution. In In Proceedings of the International Conference

on Software Engineering., pages 178–186, 1998.

[11] M.M. Kokar, K. Baclawski, and Y.A. Eracar. Control theory-based

foundations of self-controlling software. IEEE, 14(3):37–45, 1999.

[12] R. Laddaga. Self adaptive software problems and projects. In In Pro-

ceedings of the IEEE Workshop on Software Evolvability., pages 3–10, 2006.

[13] M. Jelasity, O. Babaoglu, and R. Laddaga. Interdisciplinary research:

Roles for self-organization. IEEE, 21(2):50–58, 2006.

[14] D.M. Serguendo. Self-organisation: Paradigms and app. In In Pro-

ceedings of the Engineering Self-Organising Applications Workshop., pages

1–19, 2003.

[15] R. Laddaga. Self-adaptive software. Tech. Rep. DARPA BAA, 98-12 edi-

tion, 1997.

[16] K.J. Lieberherr and J. Palsberg. Self-adaptive software. Engineering

adaptive software, projest proposal edition, 1993.

[17] J.O Kephart and W. Walsh. An artificial intelligence perspective on au-

tonomic computing policies. In In Proceedings of the IEEE International

BIBLIOGRAPHY 96

workshop on Policies for Distributed Systems and Networks., pages 3–13,

2004.

[18] H. Liu, M. Parashar, and S. Harisi. A component-based programming

model for autonomic applications. In In Proceedings of the International

Conference on Autonomic Computing., pages 10–17, 2004.

[19] J.P. Loyall, D.E. Bakken, R.E. Schantz, J.A. Zinky, D.A. Karr, R. Vane-

gas, and K.R. Anderson. Qos aspect languages and their runtime in-

tegration. In In Proceedings of the International Workshop on Languages,

Compilers, and Run-Time for Scalable Computers., pages 303–318, 1998.

[20] R. Sterritt. Autonomic computing: the natural fusion of soft comput-

ing and hard computing. In In Proceedings of the IEEE International

Conference on Systems, Management and Cybernetics., pages 4754–4759,

2003.

[21] D. Garlan and B. Schmerl. Model-based adaptation for self-healing

systems. In In Proceed-ings of the Workshop on Self-Healing Systems,

pages 27–32, 2002.

[22] G. Karsai and J. Sztipanovits. A model-based approach to self-

adaptive software. IEEE, 14(3):46–53, 1999.

[23] S. Dobson, S. Denazis, A. Fernandez, D. Gati, E. Gelenbe, F. Massacci,

P. Nixon, F. Saffere, N. Schmidt, and F. Zambonelli. A survey of auto-

nomic communications. ACM Trans., 1(2):223–259, 2006.

BIBLIOGRAPHY 97

[24] Hoffmann Henry, Eastep Jonathan, Santambrogio Marco, Miller Jason,

and Agarwal Anant. Application heartbeats for software performance

and health. pages 1–12, 2009.

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Introduction to the problem
	Research context
	Hierarchy of adaptation properties
	Summarization

	Self-Adaptive Software Systems
	Definitions
	Adaptation Requirements Elicitation
	A taxonomy of self-adaptation
	Control Loop Models
	Summarization

	Methodology
	Application Heartbeats Framework Introduction
	Control loop implementation
	Logic of Observe process
	Logic of Decide process
	Logic of Act process

	Services
	Consensus Object
	Introduction
	Communication infrastructure
	Communication between the Consensus Object and Services
	Communication between the Consensus Object and Applications
	Decision support mechanism

	Application's goals management

	Summarization

	Implementation
	Android Operating System
	Introduction
	Android system architecture
	Working with the Android platform

	Self-adaptive MP3 decoder implementation
	General description
	Porting Application Heartbeats Framework
	The implementation of adaptable MP3 decoder
	The implementation of Services
	The implementation of the Consensus Object

	Summarization

	Experimental result
	Application Heartbeats framework overhead
	Test purpose and expected result
	Testing conditions
	Experimental Result and Comments

	Test Self-Adaptivity
	Test purpose and expected result
	Testing conditions
	Experimental Result and Comments

	Summarization

	Conclusions and Future work

