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Abstract 

 

 

The growing use of Internet as an information source, has led to the proliferation of 

technologies to deploy rich web based applications. Among these applications are present the 

music service providers. These systems allow users to listen to music without downloading it 

to the computer. Some use recommendations techniques to improve the user experience. 

The objective of this project is to develop a music recommendation system. The system 

will determine the musical preferences of the users based on the analysis of their interaction 

during use. This way the system is able to estimate what artist or group would match user 

preferences to the user at a given time. It has been taken into account the fact that we do not 

always want to hear the same artists or genres, we do have favorite bands, but sometimes we 

appreciates a surprise, a new discovery. 

The system uses music information collected from online music services that make 

available their music catalogs for developers‟ community to be used inside new applications. 

It has been created a web system that connects to the music service providers to obtain these 

musical catalogs. This system implements the necessary communication features to use this 

information in the client web browser. 

This system helps users discover new artists, albums or songs making the musical 

catalog available for listening. The dynamic characteristics of the interface allows the user to 

browse music collections while listening to a song or playing a video. The user will receive 

information related to her interaction patterns in form of recommendations of items. These 

items will probably match user preferences and they are shown as the user interacts with the 

system and only when it has enough information about user preferences.  

 

 



1. Introduction 

 

The Internet evolution continuously generates several changes in social habits related to 

communication and lifestyle. The bandwidth growing originated the birth and late spreading 

of complex file-sharing systems. This systems known as peer to peer software let users share 

files they had stored locally in their personal computers with other users connected to the 

same system. Music sharing started thanks to software like Napster (www.napster.com) or 

late Audiogalaxy (www.audiogalaxy.com). These peer to peer systems revolutionized the 

music industry and so the habits of people related to musical collect and playback. Now it 

was easier to search music, easier to store music, and much cheaper to get it. This new 

situation led to massive music storage for sharing purposes and affected the way music was 

reproduced, changing from complete and straight album reproduction to the creation of 

complex playlists composed of many artist and musical genres. 

The continue increasing in connection speed and trends in web development 

technologies, given rise to large web systems nowadays visited daily. Among these advanced 

systems, there are systems that allow users to listen music online without the need of 

downloading it to their personal computer. This issue solves a big problem originated by peer 

to peer software. This is the music copyright problem confronted with the music purchaser 

rights. The time to define the line delimiting the freedom a user has to share something he 

allegedly bought legally had come. Big music distribution companies started legal battles 

against the most important peer to peer software owners, the success of these legal processes 

depended on the copyright laws in each peer to peer hosting country. Despite some peer to 

peer software systems stand till nowadays, this web music services came up as new music 

sharing formulas. 

The music listening services own big music catalogs, in order to provide a wide public 

use. These same services manage the copyright problems for each country. They adapt the 

musical catalog according the copy and reproduction rights of the musical label associated to 

each album. Most of these music services are paid, some provide free access to the musical 

catalog, but no reproduction rights. There is a wide variety of these systems and new 

alternatives are constantly emerging increasingly improved. Some are simple players 

providing playlist functionality (prostopleer.com), others accompany the player with a 

recommendation system of similar artists (www.spotify.com), also there are complex 

collaborative systems in which hundreds of people leave comments on songs 

(www.pandora.com, www.lastfm.com ) and have the chance of interact with each other as in 

the newly emerging social networks. 

 Music Recommender systems can be seen as a surrogate of real-world radio stations and 

music magazines. These real-world organizations main purpose is to promote certain artists, 

sometimes because the radio directors or magazine editors find noteworthy the quality of 

their musical works, sometimes just because of economic interest. Some people listen to 

these stations and read magazines in order to make decisions about what music to acquire: 



either by traditional means or through some share-alike network. Music recommenders have 

the chance of making accessible to users not only the market-defined “good music”, but also 

new emerging groups, minor rare music and independent label‟s productions. 

 

 Approaches to recommendation 

 

Recommendation is an important field strongly related to web business which has been 

intensely researched in the past years, since electronic commerce web sites started their 

activity. Among the reviewed approaches, many solutions were found for data analysis, data 

colleting, or data-objects representation. According these, models like content-based, 

collaborative or context-based give differenced solutions to select key information to face 

recommendations. In parallel to the recommender model‟s development also evolves the 

mathematical world related to the most pure heuristic bases of recommender systems. 

The most common mathematical [1] models used in current recommender systems have 

been reviewed helping the author of this project to build up a solid idea about what 

recommendation is and how can it be achieved. These mathematical approaches to 

recommenders:  

- Logic recommender systems [17] try to find an exact match among the 

recommendation options compared the user profile. The data representation is 

build using the attributes that define objects. Attribute types as used as they are 

with no further abstraction. 

- Vector space-based systems [28] due to its numeric data modeling, estimate which 

objects best suit the user profile statements. Data object surrogates represent 

attributes in vector form being each cell a concrete attribute. 

- Probabilistic systems [17] estimate a concrete object‟s importance using a 

probability function. This function estimates the probability the object has in order 

to meet the preferences stated in the user profile. 

The application of these methods depends on the features of the recommendation 

problem itself. An important step of the design phase is how to adapt the problem 

abstraction to a suitable mathematical model,  

This project has been designed in order to meet some logic-based recommender 

features. In one hand, due to the need of overcoming the numerical representation of data, 

needed to use other mathematical approaches, in other hand because is allows the closest 

data representation domain to this problem. 

 

 

  



Project definition 

 

The objective of this project is to develop a music recommendation system. The 

system will determine the musical preferences of users based on the analysis of their 

interaction during use. This way it‟s possible to estimate what artist or group would be 

pleasing to the user at a given time. It has been taken into account that we do not always want 

to hear the same artists or genres, we have favorite bands, but sometimes a listener needs to 

be surprised, enjoy a new discovery. A music recommender needs a music catalog to be 

recommended, this project offers a review of several music services and their features, 

making use of musical information available online provided by some (friendly) music 

services. These services allow developers to access their musical collection to contribute with 

the proliferation of new applications. It has been created a web component that connects to 

music service providers to obtain this data. The web system implements the essential 

communication skills to use this information within the client web browser. 

This system helps users discover new artists, albums or songs making this music 

information accessible. For doing this, a complete analysis of the state-of-the-art for music 

recommendation has been performed, giving clear highlights about the recommendation 

techniques used in many systems which implement recommendation thought diverse 

mathematical models. The dynamic characteristics of the interface allows the user to browse 

music collections while listening to a song, album, or playing a video. The users will receive 

information related to their interaction patterns (profiles) as personalized recommendations of 

items which probably they would like, while they use the application. 

 

  



Goals and scope outline 

 

The goals of this project are outlined below: 

- Create a music recommendation system able to infer the user‟s musical preferences in a 

given time. The scope is not to know the user; instead it‟s about estimating what he 

could like right now. 

- Explore the music services available nowadays looking for a complete and freely 

accessible music catalog and free streaming services. 

- Develop a working system capable of making the most of free online services to 

provide the user with a completely free system which brings the opportunity of 

discovering new music. 

Topics which won‟t be covered: 

- This application is not for commercial use. So many issues related to it, like 

international translation or fine browser compatibility are out from this work outlines. 

- The intention of this work in not to create a big music recommender or a big music 

streaming web site. The application itself stands as a data collector and as a benchmark 

for checking if the data obtained from web services is valid to be used for 

recommendation purposes. 

 

Thesis structure 

 

This project is composed by two parts of differenced nature. First it has been performed 

an introductory review about recommendation, explaining why the recommender systems are 

so important for electronic commerce, what kind of systems do perform recommendation 

focusing arguments in music recommendation. Along the section 2 of this document, it‟s 

presented a general recommender system‟s overview, including a possible taxonomy [6], a 

technical overview [17] and a classification [1].  

Section 3 includes a complete music recommender‟s overview, including previously 

proposed approaches, and reviews of commercial and non-commercial systems which are 

currently online.  Following this introduction to music recommenders, the problem this 

project is facing is defined (Section 4) and so the selected methodology to achieve it (Section 

5). The development has been sliced in three iterations, which faithfully represent the real 

project evolution. Sections 6.2, 6.3 and 6.4 deeply explain the actions and decisions taken in 

each one. 

After presenting this project, the conclusions‟ section (7) includes some observations 

inferred from the whole project execution. The contributions achieved in this project, are just 

my two cents for the huge knowledge about recommendation out there. 

  



 2. The recommender systems 

 

 2.1. Introduction 

The roots of recommender systems were settled due to special needs of works in 

diverse fields: cognitive science [19], information retrieval [20] or economics [21]. 

Recommender systems emerged as an independent research area in the middle 90s and their 

important role to enhance data accessibility attracted the attention of both, academic and 

industrial worlds. 

 Recommender systems are a useful way to expand search algorithms since they help 

users discover items they might not have found by themselves. A recommendation is 

basically to present the user with some items which would match his preferences. There exist 

different approaches [1] to collect information about the users, by monitoring their 

interaction, by asking them to perform some actions or to fill some forms with personal 

information. The user's interaction with the system provides two types of information:  

 Implicit information: Collected from the user interaction itself. For example, by keeping 

the items the user has interacted with, and item related information like viewing times, item‟s 

reproductions or user related information as group membership. 

 Explicit information: The users provide this information every time they give opinion 

about items, rating or liking some item. Generally all the information elaborated by the user 

consciously.  

 The recommender system collects both kinds of information to generate the user 

profile. This profile stores information not only about the user likes, also information about 

the user itself, current placing, current personal needs, sex, age, professional position, and so. 

The way it's used by the recommendation system varies a lot among the different systems. 

The information stored within is also a determinant factor in the recommender algorithm 

design. 

 

  



 2.2. Taxonomy for recommender systems 

 A possible taxonomy of the recommender systems it has been proposed in [1]. The 

categories in which is divided describe diverse models of abstraction for user profile, how it 

is generated, and how is it late maintained and how does it evolve as the system runs. 

 

User profile representation: An accurate profile is an important task since the 

recommendation success depends on how the system represents the user's interests. Next are 

listed some models applied in current recommender systems: 

- History-based 

Some systems keep a list of purchases, the navigation history or the content of e-mail boxes as a 

user profile. Additionally, it is also common to keep the relevant feedback of the user associated 

with each item in the history. Amazon
1
 web site is a clear example. 

 

- Vector-space  

In the vector space model, items are represented with a vector of features, usually words or 

concepts which are represented numerically as frequencies, relevance porcentaje or probability.  

 

- Demographic 

Demographic filtering systems create a user profile through stereotypes. Therefore, the user 

profile representation is a list of demographic features which represent the kind of user. 

 

- User-item ratings matrix 

Some collaborative filtering systems maintain a user-item ratings matrix as a part of the user 

profile. The user-item ratings matrix contains historical user ratings on items. Most of these 

systems do not use a profile learning technique. Systems like Jamendo
2
 include this technique to 

represent user profile. 

 

- Classifier-based models 

Systems using a classifier as a user profile learning technique, elaborate a methodology to 

monitor continuously input data in order to classify the information. This is the case of neural 

networks, decision trees and Bayesian networks. 

 

- Weighted n-grams 

Items are represented as a net of words with weights scoring each linking between nodes. For 

example in [22] ), the system is based on the assumption that words tend to occur one after 

another a significantly high number of times, extracts fixed length consecutive series of n 

characters and organizes them with weighted links representing the co-occurrence of different 

words. Therefore, the structure achieves a context representation of the words. 

 

 

                                                 
1
 www.amazon.com 

2
 www.jamendo.com 



Initial profile generation:    

- Empty: the profile is built as the users interact with the system. 

- Manual: the users are asked to register their interest beforehand. 

- Stereotyping: Collecting user-related information like city, country, lifestyle, age or 

sex.  

- Training set: providing the users with some items among which they should select 

one. 

 

Profile learning technique: The way the profile changes during time.  

- Not needed: Some systems do not need profile learning technique. Some because 

they load the user related information from a database or it‟s dynamically generated.  

- Clustering: Is the process of grouping information objects regarding some common 

features inherited to its information context. User profiles are often clustered in order to 

groups according to some rule. To assess which users share common interests. 

Recommenders like Last.fm
3
 or iRate

4
 perform this technique [12]. 

- Classifiers: Classifiers are general computational models for assigning a category to 

an input. To build a recommender system using a classifier means using information 

about the item and the user profile as input, and having the output category represent 

how strongly to recommend an item to the user. Classifiers may be implemented using 

many different machine learning strategies including neural networks, decision trees, 

association rules and Bayesian networks [1]. 

- Information retrieval techniques: When the information source has no clear 

structure, pre-processing steps are needed to extract relevant information which allows 

estimation of any information container‟s importance. This process comprises two main 

steps: feature selection and information indexing. 

 

Relevance feedback: The two most common [1] ways to obtain relevance feedback is 

to use information given explicitly or to get information observed implicitly from the user‟s 

interaction. Moreover, some systems propose implicit-explicit hybrid approaches. 

- No feedback: Some systems do not update the user profile automatically and, 

therefore, they do not need relevance feedback. For example, all the systems which 

update the user profile manually. 

- Explicit feedback: In several systems, users are required to explicitly evaluate items. 

These evaluations indicate how relevant or interesting an item is to the user, or how 

relevant or interesting the user thinks an item is to other users. Some systems invite 

                                                 
3
 www.last.fm 

4
 irate.sourceforge.net 



users to submit information as track playlists. iRate uses this approach to provide its 

recommender with finer information about user‟s preferences. 

- Implicit feedback:  Implicit feedback means that the system automatically infers the 

user‟s preferences passively by monitoring the user‟s actions. Most implicit methods 

obtain relevance feedback by analyzing the links followed by the user, by storing a 

historic of purchases or by parsing the navigation history.  

 

2.3. Design paradigms for recommender systems 

One of the most practical issues for designing optimal-response recommendation 

systems is to represent and ontology the actors involved in the recommendation process in a 

suitable way for the selected model. 

A general model for recommender system design optimally explained in [11] provides 

an interesting overview of this kind of systems. Next diagram [fig 1] makes a clear idea of 

this general model. 

 

 

fig 1 General model for recommender systems 



Design paradigms will provide solutions for assessing, the domain representation for 

actor surrogates and for algorithms the system may use over this surrogates to infer their 

utility. These design paradigms have been optimally reviewed in [17]. It is convenient to 

concretely determine the domain for the recommender system. This domain, in order to be a 

useful starting point for system design, should model or represent the following entities and 

processes: 

Objects of interest  

These are the objects subject to evaluation which stand as main information units the 

system will use to make recommendations. For a music recommender, these objects might be 

artist, albums and tracks. 

Users  

Each user has a user profile modeled following some design pattern depending on the 

design paradigm chosen for the system. This profile is the item against the objects of interest 

will be compared. The profile is the representation of the user preferences, related somehow 

to the objects the user could consider interesting. So the user profile will be a representation 

built with a set of item surrogates or with some generalization of those. 

User environment  

More transient information about the user, like local time and day, the task in which 

the user is involved currently, user mood, etc. It shortly amplifies the user profile 

expressiveness.  

 

It should be noted that the performance of the frameworks presented next, will suffer 

severely due to limitations in the scope of available features. For instance, when item 

surrogates do not feature attributes that represent some the actual features people perceives 

on those objects. Obviously, this is not a problem of the frameworks themselves, but about 

the manifestation of the knowledge-representation designers. 

 

2.3.1. Logic Recommender systems 

 

  This model is based on the idea of exact match: the system rejects or accepts objects 

depending on whether they satisfy the constraint statements present in the user profile. As 

described in [17], objects that match the constraints in the profile, since share the same 

characteristics, are considered to have the same utility value. 

 

Domain representation 

The object surrogates are represented as a group of attributes associated to some 

object identifier or to some description text. Each of these attributes has a well-defined type, 

which fully conveys the semantics of the attribute value. Regarding user profiles, those 



collections of statements that define which attributes values are considered useful. These 

statements effectively restrict the range of values an object‟s attribute may take so that it is 

considered useful. 

 

Comparison process  

  The main operation for comparison is checks whether the set of attributes associated 

to a given object satisfy the constraints encoded in the user profile. It is searched within an 

object repository which matches perfectly those constraints. The number of attributes to 

consider is fixed. This process turns each list of attributes attached to indexed objects into a 

list of boolean assessments that represent whether a constraint present in the profile is 

satisfied or not. 

Usually, to avoid too strict specification, the list of constraints is parsed in disjunctive normal 

form: as soon as a constraint is satisfied, the object is accepted. 

 

Drawbacks and limitations 

  The profile expressiveness is acquired explicitly by making the system ask users 

about their long-term information needs, this is forcing these users to express themselves. 

Then the reliability of the information conveyed by a profile might be suspicious, allowing 

the possibility of mistaken answers encoded as correct. 

 

2.3.2. Vector Space-Based Recommender systems 

 

These systems profit multidimensional properties of vector-spaces to represent item‟s 

surrogates. The surrogates must be numerically performable in order to be placed inside a 

multi-dimensional environment. In [28] it is explained an approach to recommendation using 

this model. 

 

Domain representation 

  As the name of this model suggests, domain entities surrogates are vectors, where 

each dimension represents a certain object attribute. Attribute type should be real numbers. 

User profiles represent features which satisfied certain used needs in the past. Objects whose 

surrogates are found to be similar to those appearing on the user profile, are assumed to have 

the a utility value proportional to the degree of similarity they share. 

 

Comparison process 

While the boolean model tried to compute exact match, vector-space model aims at 

computing the degree of similarity between object surrogates and the set of prototypes 

specified within the user profile. Item surrogates can be compared using vector-space related 

methods. In order to compare two real-valued vectors, the Euclidean distance or Cosine of 

the angle, method provides reliable vector matching [24]. 

 



 

Drawbacks and limitations 

Vector space models do not allow to directly employ categorical attributes in the 

object surrogates. In order to do so, these categorical variables must be mapped to a subset of 

the real line. And this mapping function must preserve the ordering relationship, if any, in the 

value set. Sometimes, these variable semantics are not amenable to be expressed as an 

ordered set of numbers, leading to leave out these, since the framework does not offer support 

for them. 

 

2.3.3. Probabilistic Recommender systems 

 

Domain representation 

User preferences are represented as a probability distribution. Object‟s surrogate 

attributes become the variables for this probability distribution. Therefore, the problem is to 

estimate the parameters for the probability distribution that maximize the likelihood of 

observed user behavior. As [17] shows this gives an interesting twist to the problem of 

modeling long-term user information needs, since user profile can be seen as a stochastic 

process that produces statements assessing which objects are interesting.  

The probabilistic framework, in principle, allows integration of both numeric and 

categorical observations.  

 

Comparison process 

The uncertainty hypothesis  for recommender systems relies on whether an object 

belongs or not to the set of objects that satisfy user‟s information needs. This hypothesis is 

calculated for each object element‟s surrogate .  

The probability is calculated as follows: 

 

 

 

This inference method, in contrast with the previously discussed, requires to estimate 

the parameters that define , also called likelihood of , as well as , called 

hypothesis prior.  is not relevant for the problem of interest, because it is based on the 

interaction user needs which are not required to solve recommendation . The most usual way 

to estimate  is applying the Maximum Likelihood estimation
5
 procedure, deeply 

explained in [27]. This estimation requires to have available a set of surrogates for objects 

that are known to be in the relevant set. 

     

                                                 
5
 mercury.bio.uaf.edu/courses/wlf625/readings/MLEstimation.pdf 



 

Drawbacks and limitations 

 

In practice numeric attributes can be difficult to handle since they imply integrating 

the estimated probability density function, as stated in [24]. Numeric attributes can be 

clustered, or better said, encoded as a set of discrete symbols. These resulting synthetic 

categorical attributes are not the exact equivalent of their numeric meaning, because any 

mapping function from the infinite set of numbers to a finite, not very large set of integer 

numbers implies a loss of information. The assignment of points to target symbols and the 

measurement of the associated distortion phenomena is optimally obtained if: 

- Maximizing the homogeneity of assignments  

- Maximizing the minimum separation between cluster assignees 

This fact is considered a NP-hard problem
6
 since no exact, polynomial solutions are known. 

Therefore lots of numerical approximations to this problem have been analyzed as optimally 

reviewed in [18]. 

                                                 
6
 www.math.ohiou.edu/~just/bioinfo05/supplements/Lect_NP.ppt 



 2.4. Classification for recommender systems 

 

Not general agreement about classification for recommenders it has been found while 

reviewing previous works. The recommendation systems were optimally classified in [6] by 

sorting the system's recommendation approach in a quite generalized overview. The way in 

which the recommendation is faced in terms of scope: 

 

The heuristic based techniques focus on the pure algorithmic part of the 

implementation. The big advantage of these techniques is that they are not based on a 

complex system architecture. Therefore these solutions can be easily plugged into whatever 

kind of recommender system designed following some algorithm-independent approach [13]. 

 

The model based solutions move a step forward by creating a complete pattern of 

recommender system. Each model defines its item's surrogates, the profile generation and 

maintenance. The algorithms used then for matching purposes might be analytically selected, 

based on the desired system's behavior.  

 

   A different overview differences each approach according decisions taken when 

designing item surrogates are mainly guided by the approach selected to estimate the utility 

of a given item A for a particular user U. There are two main branches for this overview, on 

one hand based on the social properties of networks, such as the collaborative filtering [3], 

on the other hand relied in the user interaction and preferences, like content-based filtering 

[4]. The proposal described in [1] studies the possibility of combining both techniques, 

referred as hybrid recommendation systems, obtaining finer recommendations from better 

suited user profiles. I found further complete the solution explained in [6] and resumed next. 

- Content-based systems: item surrogates will be composed of attributes that 

characterize their information content. 

- Collaborative systems: item surrogates are reduced to their minimum expression, and 

their utility estimation is more a matter of statistical or probabilistic prediction. 

- Context-based systems: item surrogates are composed of contextual information. 

- Hybrid systems: using combination of all of the above methods.  

 

  



2.5. Conclusion 

This review shows the variety of decisions to make when planning a recommender 

system, offering a complete summary that eases the decision making process upon analysis‟ 

phase. Some decisions visualized after this analysis state that the user profile employed in 

this recommender could be based on history based generation, due to the monitoring 

capabilities of the web interface itself. The user profile will be refreshed when new 

information is retrieved from interaction, therefore user profile is continuously evolving. The 

only relevant feedback taken into account for this purpose is the purely implicit. It is 

retrieved optimally by the case-designed web interface. The most suited solution found for 

this purpose relies on logic-recommenders as mathematical model and data domain 

representation, while its features as recommendation model still could be more precisely 

estimated after next section, where music recommenders are introduced. 

 



 3. Music recommender systems 

 

 3.1. Overview 

 

There exist a variety of web systems ready to help users discover new music, some are 

commercial applications, some are open source projects easy to inspect, therefore providing 

useful information about their model design. Commercial systems are completely closed to 

users, no reviews detailed in their documentation or internal logic explained at all. Some 

documented users could infer the model of these services, but it is impossible to get detailed 

information about the recommendation algorithm or user profile concept implemented in this 

systems. 

Most of commercial systems often implement a complex recommender structure, some 

examples are Last.fm, Grooveshark or Spotify. All of them incorporate a music 

recommendation algorithm as an important part of their working. This algorithm is an 

information-filtering system itself, which plugged into musical systems, tends to sharp the 

music collection presented according the user's preferences. Some of the most important (in 

terms of popularity) music services are Last.fm
7
, Pandora

8
, Spotify

9
, Magnatune

10
, but also 

implement recommender algorithms lots of Internet sites as Apple music store
11

, (ITunes is 

the most popular according [5]), or the Amazon e-Commerce website
12

.  

There exist pure music recommenders like Emergent-music
13

 inside commercial world 

and for inside non-commercial world as iRate
14

. Despite these systems are not large complex 

communities as those mentioned above, they successfully fulfill recommendation actions. It 

ought to be considered that collaborative approaches strongly depend on the number of 

regular users the system is managing. I understand a regular user as someone interacting 

frequently with the system; otherwise, a latent user will not be useful for collaborative 

purposes. Some of them are reviewed next while those selected to be used for this purpose, 

upon being deeper studied; are listed in section 6.2. First Iteration 

 

                                                 
7
 Last.fm website: www.last.fm.com 

8
 Pandora system: website: www.pandora.com 

9
 Spotify desktop system: www.spotify.com 

10
 Magnatune radio website: magnatune.com 

11
 Apple Itunes Store: www.apple.com/itunes/what-is/store.html 
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 Amazon website: www.amazon.com 

13
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3.2. Approaches to music recommendation 

 

The collaborative filtering, whose recommendation heuristics depend on the rankings 

established by the system users [6], sets out some important efficacy problems. It can happen 

that some song or some artist isn't ranked by any user, this artist or song won't be presented 

as a recommendation itself [7]. This mood clearly decreases the number of songs or artists 

available for recommendation, just because the items tend to be ranked increasingly and the 

most commercial music will be on the top of ranks due to popularity not to real user likes. 

The social features of the collaborative filtering converts the recommendation technique into 

a kind of filter which depends on social indicators not really in the user musical preferences, 

inviting the user to try something because some people liked it before, forgetting a little bit 

about the current hearing intentions.  

The content-based filtering selects items based on the correlation between the content 

of the items and the user‟s preferences as opposed to a collaborative filtering system that 

chooses items based on the correlation between people with similar preferences [6]. Music 

content is often classified with some metadata tags, as artist name, genre, year, release 

country, and so, but sometimes audio features are also analyzed like melody, harmony, bass 

or tempo. These features are conveyed as surrogates about content. The available music not 

matching any feature of some played song or artist, will never be presented to the user as a 

recommendation, this causes the isolation of many music styles unknown for users [7]. So 

there's not too much chance of discovering some new music using this kind of heuristics if no 

extensions are performed.  

 

The most successful music recommendation systems combine diverse features from 

each model [6], generating quite different approaches [23]. Many models feature new 

specific algorithms to achieve the same objective: Provide the user with new and interesting 

music information. 

 

 



3.3. Commercial systems 

 

3.1.1. LAST.FM 

Last.fm website
15

 is one of the most outstanding music recommenders out there. It 

clearly illustrates the concept of collaborative filtering recommender system. Users access 

recommendations by connecting to a web-based music streaming service. The tracks played 

on that stream are the recommended items. Like while listening to the “random” broadcast, 

users can tell the system whether they find the item being broadcasted interesting or just 

plainly ban the author of the item being broadcasted. 

There are two kinds of recommendations streams: one for subscribers and another for 

non-subscriber. Depending on the user being a subscriber the recommendation algorithm 

precision varies. In the cases of non-subscriber users, the items broadcasted are selected 

according to a group of user profiles that are found to be similar. Subscribers can access a 

music stream whose contents are governed only by their user profile. It is then expected that 

the items on that personalized stream match more closely user preferences. 

Audioscrobbler.com is an open source project
16

 that acts as a data harvester for Last.fm 

web service. It uses and requires functionality of a quite complex and expensive 

infrastructure. This seems to be mostly paid through a donation system, where users are 

expected to donate the amount they feel the system deserves. Users that donate money 

become subscribers accessing enhanced services. 

In order to build up the user profile, the Las.fm system has implemented three different 

approaches: 

- User adding explicitly items (artists) to their profiles through Last.fm web 

interface. 

- Get the AudioScrobbler.com plug-in, available for a wide range of media 

players, which records which tracks are played. Once a certain number of 

playback events have been recorded, a report is sent automatically to the 

Last.fm servers. This information is integrated together with other previous 

statements in the user profile.  

- User can connect to Last.fm Radio, consuming a stream of music over which 

features a significative proportion of not very popular artists. Users, through a 

set of web controls in the website, can tell the system whether they approve or 

ban the artist whose work is being played at the moment. This feedback is also 

integrated into the user profile. 

 

Last.fm has chosen a very simple approach to elaborate recommendations, even if they 

are good some limitations can be observed that are related to the probabilistic-nature of the 

recommender algorithm. One main limitation is that the system requires a huge number of 

observations in order to get good estimates of the conditional probabilities. 
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3.1.2. FLYFI (Emergent music) 

Emergent Music
17

, at starting point presents the user with a list of top downloaded 

tracks and top listened tracks for the current week. This certainly suggests some collaborative 

filtering inside their recommender engine. The user can create playlists of songs which are 

saved automatically inside the user profile. Users are allowed to either download published 

tracks or listen to them through its streaming service. However, there is not always the option 

to do so: artists decide whether to make or not publicly available their works. 

The playlist creation feature acts as an user activity sniffer, creating relations between 

songs. These relations and the songs included help the recommender to build the user profile. 

Recommended items are ordered by its expected affinity with user‟s taste. Besides that, users 

can also perform simple searches on the recommended items, specifying several keywords. 

Feedback on recommendations is given by explicitly rating of presented items. The interface 

offered for this task is quite simple. The problem comes with the number of recommended 

items which may be greater than one hundred, which implies a hard task for the user to give 

each item individual feedback. 

Emergent Music is a Music Recommender exclusively based on collaborative filtering 

algorithms and techniques. It also provides a desktop application called Goombah. It has a 

more complete interface than the web system, interacts with their database to provide the user 

with recommendations and music associated to the played song. Other feature is a 

partnership-like playlist scrobbler
18

 in association with ITunes. This software must be 

installed locally and acts as a boosting element for the recommendation engine. It creates 

relations among the tracks listed inside the current ITunes playlist and between the user 

profile and these tracks, which are loaded from the user‟s music collection. 
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 3.2. Non-commercial music recommenders 

   3.2.1. JAMENDO 

Jamendo is an online community
19

 of free, legal and unlimited music published with 

Creative-Commons licenses. All the music published on the Jamendo site can be used free for 

personal use. The Creative Commons license allows the owner of the music to retain some 

rights, while giving users the ability to download and listen to this music freely. Commercial 

rights are applied to each musical piece separately and are handled through the Jamendo site. 

This allows the site to offer free music to its users yet allows publishers to earn some income 

from the commercial rights to their works.  

The site also features a group of selections, Radio Stations, and Playlists created by 

users. The site also features social networking aspects such as user profiles, user friends, 

community forums and inter user-messaging. Songs can be streamed or downloaded, 

depending on the copyright laws ruling in the country where the download is sent. 

The music stored in Jamendo database is cataloged by artist, album and by tagging 

options. Content-based filtering is present in the recommendation engine as well as a 

collaborative solution that models the interaction between users. There exist user clustering 

classifiers that can be composed using some of the many interaction possibilities a user can 

have with other system elements. Some features as groups of friends or the internal 

messaging among them are quite useful for a collaborative approach due to its semantic 

contribution by linking their musical preferences with the common features defining their 

profiles.  

The system provides a web service, which can be used by developers for example for 

adding free music to their web sites. It is provided an api documentation
20

 where it‟s 

explained clearly what to do to interact with this web service. 

Jamendo is an incipient music recommender with constant growing and increasing 

popularity nowadays. Now it has more than 10.000 albums available for streaming or 

download. They provide help for new groups to promote their work offering flexible 

licensing features. It‟s a really interesting web site but still with an immature music catalog. 

3.2.2. iRATE RADIO 

  

iRATE
21

 is an Open Source project, whose purpose is to help artists to publish their 

works. Conceptually is a file-sharing application, where artists publish their works on the 

iRATE servers by adding links to the files they wish to share. iRATE distributes this music by 

presenting network users with recommendations. 

The recommendation engine is mainly made up by a collaborative filtering system 

strongly influenced by user feedback. The system creates correlations between user profiles 
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and their track ranking to achieve the clustering all over the users. 

iRATE developers emphasize that the system does not intend to become a smart P2P 

network. This is further enforced by making sure that the only music made available is 

licensed under the any of the Creative Commons licensing patterns. Users are required to rate 

explicitly the songs the system presents them. This is achieved by getting the users to install a 

Java-based application, which downloads the music published on the system servers. As soon 

as the client application downloads a song, it is played back at the user. The user has the 

opportunity to rate it using the client application user interface. Songs rated with the 

minimum score are immediately stopped by the system, starting the playback of the 

following song if exist. 

 

3.2.3. FOAFING THE MUSIC 

Foafing the music
22

 is an open project of the Pompeu Fabra University sited in 

Catalunya, Spain. The system uses the Friend of a Friend (FOAF) and Rich Site Summary 

(RSS) vocabularies for recommending music to users. The FOAF vocabulary contains terms 

for describing personal information like name, nick, mailbox, interest, images, membership 

in groups, organization, etc. This vocabulary helps the system to build consistent user profiles 

which include relations among users. 

The recommendations are built by getting information about user preferences from the 

FOAF profile, then, it checks using a music repository whether the interest is about music 

artist and selects several similar to the items found. In order to collect these similar artists, the 

system creators have developed a focused web crawler that searches the relations between 

artists. After collecting many similar artists, the system scores them depending on the number 

of playbacks of each song.  

The system‟s most interesting feature is that upon the artist of interest according the 

user profile are selected; the system filters music-related information from Rss feeds. From 

this filtering process the system will retrieve new music releases, download or audio 

streaming links from mp3-blogs or Podcast sessions and audio playlist generated based on 

audio similarity. 

 

Music Related News 

  

An extra feature this system includes is the music related news which are all about the 

musical interest inferred from the user‟s FOAF profile. They make use of a very interesting 

service called Pubsub
23

 whose purpose is to maintain up to date a big information index. 

Pubsub collects news from over 13 million weblogs and around 50.000 newsgroups, and 

adverts the user if some new content matching his search terms have been published.  

Upon the news are collected, the FOAF system uses the TF/IDF algorithm to score the 

news documents and present them to the user ordered by relevance, as explained in [12]. 
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4. Problem definition 

 

Aim 

This project aims to create a free web-based music recommendation system able to 

estimate the user‟s musical preferences and elaborate recommendations of several musical 

elements according to these preferences. 

 

Information sources 

The system intends to use various online music services, through which obtain listings 

of groups and artists presented to the user. The music collections retrieved from music 

services act as a browsing environment to let the user navigate through music. Each music 

service provides several features, some common to all, others are particular features. The 

system aims to combine the traditional functions of various musical information providers, to 

get more results and more information to offer.  

 

User interaction 

The user interaction is done through a web interface accessible from any platform with 

a web browser. This interface provides great opportunities for interaction enabling 

continuous navigation through thousands of albums and artists. It is designed to allow the 

user easy and intuitive interaction, it should be mentioned that the longer the interaction is, 

the more complete information about user´s likes is stored, therefore better recommendations 

generated. This recommender system is basically a software element that studies the user's 

browsing patterns and then decides what to present next. 

 

System features 

In order to provide the system with a complete musical collection, several music web 

services have been reviewed. Unfortunately, the lack of a relational music database limits 

somehow the freedom for managing music data in my own way. Therefore the music catalogs 

are loaded dynamically from these music services when the user interaction requires them. 

Upon this data is loaded, the system extracts the significant information about the musical 

items (item surrogates) to evaluate what kind of music the user is interacting with. By 

monitoring this interaction the system is able to build a user profile, which is not understood 

as a constant definition of user‟s preferences, instead it‟s conceptualized as an adaptive 

changing pattern. In this way, the system is able to store a historic of user interaction as a 

long-term user-system relationship but still reacts more sensitively to recent occurred events, 

preserving the system from over valuating the most frequented items, storing also mid-term 

interaction memory. 

 

 



Improvements 

It has been observed that most music recommenders rely on collaborative filtering 

techniques to support sometimes or to boost others the recommender system functionality. 

The nature of this filtering slightly diverges from the pure concept of recommendation, which 

is strictly based on the current user‟s preferences. 

It has been proved in [25] that collaborative filtering provides good recommendations 

to users with no previous knowledge about user likes (explicit). The fact inspiring this 

project‟s aim is to base recommendation explicitly in implicit information retrieved from user 

actions. 

The problems commented in section 6.4 have been probably solved by current 

commercial systems due to experience obtained during its time online. It‟s believed so 

because these systems provide good recommendation results to users as well as economic 

benefits to founders (in the opposite case they won‟t be online). This project offers a content-

based context-based recommender, able to provide new musical content, without being 

influenced by any collaborative-like procedure. Problems related to the content-based model 

described in section 3.2 have been solved using custom designed algorithms (section 6.3 and 

section 6.4) as commented in section 6.4. 

 

 

 

 



5. Methodology 

 

The selected methodology used for developing this work is the Rapid Application 

Development explained in [10]. Its characteristics fit very well to the needs identified after 

the planning of project execution. These characteristics are: 

- Iterative 

- Based on goals and use cases 

- Using GUI tools, CMS, etc. 

- Periodic testing system 

- Track Changes 

 

The nature of the problem makes necessary several iterations over a changing pattern. 

This model will be continuously improved, as we proceed through the knowledge of the data 

with which it works, more reliable will be its behavior. The aim of this iterative process is to 

refine the relationship with the chosen web components whose reaction is not known a priori. 

The iterations are designed to improve the system performance about web components. 

 

Iteration‟s steps:  

1. Determine objectives, alternatives, and triggers for iteration. 

2. Evaluate alternatives, identify and solve problems. 

3. Develop prototypes and verify the results of previous design. 

4. Specify objectives for the next iteration. 

 



6. Development 

 

 6.1. Summary 

The project development from the first analysis of the tools necessary to 

implementation and final testing has been carried out using the method of rapid application 

design. The most outstanding feature of this methodology relays on its iterative nature. The 

overall process has been divided into several stages of development. Each stage is determined 

by previous targets and final conclusions setting out the objectives of the next iteration. Each 

stage includes activities related to analysis, design, implementation of prototypes and their 

late testing. The following summarizes the stages that emerged during the project planning 

and the activities belonging to each one. 

6.1.1. First Iteration 

 

1. Objectives: 

- Estimate the potential of music services available. 

- Determine a developing framework if convenient. 

- Check the characteristics of data from music services. 

2. Analysis 

- Some Web services available and free music 

- Functionality offered by these. 

- Estimate advantages and disadvantages of using a CMS for development. 

3. Design 

- Methods to access music services. 

- Elements of communication with music services. 

- Web structure for elements of communication. 

4. Prototype requirements  

- Web platform that enables communication with the music services, to ensure 

data collection and allow further analysis. 

- Data type that encapsulates all types of data obtained from music services  

5. Conclusions 

- Deeper knowledge about available music data 

- Election of a framework 

- Acknowledge limitations in the functions provided by the API of web services  

 

 



6.1.2. Second Iteration 

 

1. Objectives: 

- Establish a methodology for recommendation. 

- Start building the web system according the selected framework. 

2. Analysis 

- Definition of user interaction with the system. 

- Algorithms for recommendation 

3. Design 

- Consolidation of data from several music services. 

- First version of user interface. 

4. Prototype requirements  

- Prototype testing for check behavior 

- Simulation of final web system and incorporate the prototype of the 

recommender algorithm. 

5. Conclusions 

- The recommender system does not satisfy the forecasted objectives. 

 

6.1.3. Third Iteration 

 

1. Objectives: 

- Finding an alternative to previous algorithm. 

- Implementing User Management 

- Bugs and exception handling in web system 

2. Analysis 

- Feasibility of developing new recommender algorithm adapted to the problem. 

- Algorithm domain overview. 

- Study final interface. 

- Solutions for user‟s management. 

3. Design 

- Technical design of an alternative recommendation algorithm  

- Connecting the access control module to the web system 

4. Prototype requirements  

- Expanded web-based system implementing the user access control. 

- Data persistence system running. 

5. Conclusions 

- The project's objectives are covered. 

- System expansion options. 

 

 



 6.2. First Iteration 

  

Objectives 

 

Before starting the development of the application it is verified that the necessary 

elements for building up of the system are available. The system needs a great amount of 

musical information that ought to be presented to the user in a visually appealing way. 

Dealing with musical artists or groups and their albums, their description should be 

accompanied with some picture. This visual information improves interface intuitiveness 

easing the interaction with the system, while making it more attractive. In this phase, the 

tools designed to verify the data will be ready to run. Besides the visual aspect, musical 

content offered should be available for listening. At least a small sample of the song to guide 

the user on the "type" of music he‟s actually inspecting. It would be checked whether music 

services actually provide listening options, the number of available songs for streaming, use 

limitations and so. 

 

Analysis of music web services  

 

Several music web services have been reviewed, focusing on what functions do they 

provide to developers in order to mainly determine the feasibility of the project. Among the 

reviewed music services there are Emusic
24

, Yahoo music
25

, Soundcloud
26

, Discogs
27

, 

Rhapsody
28

, Musicbrainz
29

, Last.fm
30

 and Play.me
31

. The following table [fig 1], summarizes 

the characteristics of web services and the methods provided for free, as explained in the API 

documentation of each one. In this classification, are included only some of its features, those 

essential for the system regular running. These features are related to the classification of the 

artists and their works, genre, ability to make searches by albums, artists or songs, playing 

tracks, etc. 
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Response 
format 

Album 
search 

Album 
related 

Album 
genre 

Artist 
search 

Artist 
related 

Track 
search 

Track 
genre 

Label 
search 

Song 
Streami
ng 

Limit 

Emusic multiple 

Yes No Yes Yes Yes No Yes Yes 

Yes, 
private 
player 

No 

Yahoo 
music 

multiple YQL {music.artist.id, music.artist.popular, music.artist.search, 
music.artist.similar, music.release.artist,music.release.id, 
music.release.popular, music.release.search, music.track.id, 
music.track.popular, music.track.search, music.video.category, 
music.video.id, music.video.popular, music.video.search, 
music.video.similar}  

No 5000 

Music-
brainz 

Xml Yes Release 
groups 

No Yes No Yes No Not 
always 

No No 

Last.fm Multiple Yes Yes Yes, 
tags 

Yes,  
Artist 
genre 

Yes Yes Yes, 
tags 

No No No 

Sound-
cloud 

multiple No No No No, by 
track 

No Yes Yes No   No 

Discogs Xml, 
header 
gzip 

Yes, by 
release 

No Yes Yes No No, by 
release 

No Yes No 5000 

Rhapsody Xml  Not provided 

Play.me Multiple Yes No No Yes Yes Yes Yes No Yes No 

fig 2 Table briefing the most outstanding features searched and the related support of each web service. 

 

A conclusion derived from this review is the variability in the functions provided by 

each service. The difference between web services themselves is evident when focusing on 

storage facilities, services range from a single pool of songs and their metadata like 

Soundcloud, to large relational databases as Musicbrainz web service.  

After evaluating the web services and their methods, were further studied access 

platforms (API) of some web services that have been considered the most profitable for this 

purpose. The selected web services are briefly commented next: 

 

Musicbrainz 

 

Free web service. It is a huge relational database of music, which can be accessed 

through a XML-based web service. Contains the greatest amount of musical information, the 

data amount is impressive, it contains several millions of songs, thousands of artists and 

albums is awesome. The problem with its use in this project is mainly the lack of graphic 

content, despite a link that refers to the corresponding item on Amazon, no links to listen or 

download tracks are available. 

It's a big music library that provides textual information to find new artists or new 

relationships between them and their albums, but because of its size, there are many stored 

items that cannot be presented to the user for not including much needed information as links 

to pre-visualizations or album art images. Due to this lack of multimedia information about 

music elements, this service is not going to be used for this project. 



Last.fm 

 

Last.fm provides developers with a powerful web service with a huge and 

comprehensive music catalog. This service provides many details about groups or artists and 

their albums, as well as images in various sizes for artist and album art. It also includes a 

tagging system in which users can add personal tags that can be used to classify music 

privately as a way to create personal collections. Many tags are applied to each artist, album 

or song depending on their popularity. Tags help to extract the musical genre of the album or 

song, among other things, being a serious drawback that these tags are not present for every 

artist, album or track. The complete web service and musical catalog makes the last.fm web 

service to be one of the most suitable for the purpose of this project, but also has some 

limitations: it doesn‟t allow listening or downloading songs. The API does not provide 

solutions for previewing or downloading a track, listening is only available through the web 

site, and only by payment account.  

 

Play.me 

 

Tests using the Play.me Web Service determined that not all items announced on its API 

website have real support in the web service. 

It has been implemented a software layer or wrapper to access the web service API, 

intending to evaluate the usefulness of the service for this purpose. The information provided 

inside the API documentation and returned-data definitions are not completely accurate. At 

the time of representing the information graphically in the browser, the images of artists and 

albums are crucial. With them, the platform providing information to the recommender 

algorithm has a rich visual interface which makes it more entertaining than a pure text-based 

web page. The images about musical items are represented as links to the content, but often 

do not charge due to broken link or, unhopefully, due to internal server errors. Play.me web 

service includes a very interesting field inside music items, this is the genre, very useful in 

order to catalog content and thus be able to recommend music based on musical genre. Other 

interesting feature is the possibility of listening a short 30 second sample of each song. 

The most serious drawback found for Play.me is the musical catalog, even if it is big, is 

not comparable with the one owned by Last.fm or by Musicbrainz. 

 

 

 

 

  



Development-framework analysis 

 

A good study of the features offered by different development frameworks may save 

time and be decisive for achieving a robust and efficient final result. The content 

management systems or CMS, provide effective solutions to manage users, exchanging 

messages between them or sending electronic mail. Also facilitate the control of access to 

webpage elements with roles assigned to different users. Another function of CMS is to 

facilitate the maintenance of a web site, with methods to update content such as news or 

articles by performing simple actions.  

Some time has been spent analyzing several open source CMS, including Magnolia
32

, 

AtLeap 1.0
33

 and Pligg
34

 which includes social networking features. All of them provide 

plenty of facilities for the maintenance of web sites. However, what is sought for this project 

is to simplify the management of potential users of the application and make use of a 

framework for safe and easily maintain their profiles. Most of these systems are designed to 

manage web sites of news or articles, short stories and frequently updated information, 

providing further support for user authentication systems with different levels of access. 

This system needs to manage users, but the dynamic characteristics of the application, 

do not fit with the facilities offered by these CMS. Communication between users in this 

case, is practically absent. The system aims to focus on the user, not in the relationships 

between users. The system can be easily expanded to extend the communication between 

users, but this feature remains as an outline of this work intention.  

 

Design of communication element with music services 

 

The system needs information from music services to provide interaction, now it is 

defined how to allow communication with the web services of each provider. Ideally, a single 

Web service, providing all the information necessary for the application would simplify the 

system‟s web architecture and also a better performance could be achieved. However, no free 

music service providing a large multimedia music collection in order to complete the desired 

music objects. 

For this reason, it is necessary to implement several components that allow 

communication with the selected music services. The information provided by services: the 

methods available, the structure of metadata and answer format, have different characteristics 

depending on each service. Play.me offers opportunity to listen to tracks, a thirty seconds 

simple. Last.fm classifies information using labels, but the lack of genre classification inside 

the Musicbrainz web service reduces drastically its usefulness for this purpose. 

Communication with music systems is done through their API. The interaction is 

performed using http requests which are sent to the each web service.  
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Communication with Last.fm web service 

 

In order to make use of the Last.fm database, they provide API documentation
35

 where 

to find information related to methods or response formats. It‟s possible to find previous 

implementations of wrappers written in several programming languages. There exist some 

Java bindings written by Janni Kovacs which are BSD-licensed
36

 and are available for 

development purposes. It is a project hosted on Google code
37

. Not all the features 

implemented in this wrapper have been used, only the related to musical content retrieval. In 

order to establish communication between the html test page and this service, a middle Java 

servlet
38

 has been implemented to receive Ajax
39

 requests from the browser and bridge them 

directly to Last.fm web service. The serialized data sent back by the web service comes 

formatted in json
40

. This object definition language allows perfectly the object notation as the 

time its structure eases quite much the parsing process.  

 

Communication with Musicbrainz web service 

Musicbrainz xml web service
41

 is a huge service. It‟s being continuously growing due 

partially to its feature that allows user to easily send metadata about music releases. In order 

to communicate with this service it‟s possible to use some useful java code also available for 

free use. This wrapper also hosted on Google code
42

, implements a complex set of functions 

that allows access to some interesting tools available in this web service. Only music 

information retrieval functions have been tested. The xml data is parsed and converted into 

java objects, this utility has been employed for checking data integrity, response time and 

other issues related to communication. Unfortunately Musicbrainz has no truly usefulness for 

this purpose.  

 

Communication with Play.me web service 

Play.me web service does not have any API wrapper coded previously by the 

community. A Java API has been created to provide communication with the API of this 

Play.me
43

. As the others, the service receives http requests and sends back responses 

formatted in various data-types as shown in [fig 1]. After having a look to the methods 

provided in the API documentation, the related to music retrieval have been implemented and 

tested.  It is necessary to check whether the data sent back by the web service meets the 

specifications inside the API documentation. 
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The element of communication uses these software components that connect the system 

with web services. Upon receiving a request from the web interface, the communication 

element prepares the requests for each music service. The responses from each music service 

are analyzed by extracting the necessary information from each service response, and then 

generating a full data object with which the web system can perform its activity. The 

following diagram represents the structure of access to music services and communication 

with the web component. 

 

fig 3 First system‟s prototype structure 

 

Prototype’s requisites 

The implementation of the prototypes to allow communication with music services 

makes possible accurate verification of specifications detailed in the respective API 

documentations. Many methods promised certain features that after testing, it was found that 

were not covered or function behavior was not the expected. Also allows studying the actual 

structure of the data returned on each call: 

A call to the Web service Last.fm, which are requested albums belonging to a particular 

artist, returns a collection of elements, with a particular structure. For example:  

 Album { id, albumname, artistname, genre, { tracks } } 

It happens that the structure is not complete, receiving the call basic information about 

the item in question in the form: 

 

 Album { id, albumname, artistname, *, { * } } 

 

To complete the structure, it is necessary to submit a second query, which calls for the 

metadata associated with the ID of an album or track list identifier associated with an album. 

Once the requests, you can have the necessary information. 



This event converts an ideal request to the web service, which is associated with a call 

for artist albums, in an initial request, plus, as many requests as albums associated to the 

artist being queried. The consequences are clearly negative for optimum application 

performance and the proposed solutions are many: 

- A selective analysis of received information, minimizing the number of consecutive 

requests to the web service. 

- User data from each web service when it best suits. 

- Eliminate the need for extra information such as gender, the labels associated with 

an item, previews, etc. reducing the system‟s utility. 

 

The disparity between the music catalogs of selected services poses another question 

when generating the data type the system will work with. The problem is that the catalog of 

Musicbrainz, probably the most comprehensive of those selected, provides no images or 

multimedia information related to the items stored. It is needed to provide identifiers of the 

elements stored in other services such as Amazon, which provide images for artists or album 

covers. Last.fm, with an equally vast and varied catalog, still offers pictures and album arts, 

also offers a tagging system that classifies artists, albums and tracks, but offers no previews 

like Play.me service. However, Play.me service, which also offers images (although with 

broken links to images of artists) and lists artists and tracks, also features tracks pre-

visualization has an immature catalog.  

The most complete catalog has no multimedia information, the best overall, is Last.fm, 

but does not allow pre-visualization, while Play.me can be used to play samples of songs, but 

has a smaller catalog. Using the current strategy to build up the musical objects and affected 

by the disparity of music catalogs would retrieve incomplete musical objects. Some would be 

loaded from Last.fm, but could not be listened, others from Play.me, instead could be 

streamed but maybe images of album arts are not loaded. Musicbrainz service can only be 

used to check relationships between groups that should be also stored in some of the other 

two services, preferably both, to avoid object incompleteness.  

As a result of tests with the prototype, the use of Musicbrainz music service has been 

rejected. It's a music database with information in text format only, which is useful as a 

source of musical knowledge, but not useful for the system being developed which is based 

mainly on multimedia content. To supplement the information provided by Last.fm, which 

does not include previews, the famous video site, YouTube, is proposed as an interesting 

alternative, due to the vast number of music videos growing each day. 

 

 Conclusions 

 

After studying music services, I delved into the techniques used to relate the music, 

mostly used by Musicbrainz and Pandora. These services make mention of audio fingerprint. 

The audio fingerprint
44

 is a summary of the acoustic characteristics deterministically 
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generated from the audio signal of an element. It can be used to locate similar items focusing 

on acoustic characteristics within a database of music, or to recognize a particular piece of 

audio using these characteristics recorded in the fingerprint. None of the recommender 

systems found contain the fingerprint of every song, neither allow the track search using 

fingerprint. Last.fm is currently collecting fingerprint of their songs and getting some of the 

users in an effort to improve its recommendation system. 

It is possible to develop a configurable system where the user can ask for, or be 

recommended when he desires, with elements that contain similar acoustic characteristics to 

the songs he listens to. 

In order to develop some commercial music recommendation system, the designer 

should consider carefully the proper organization of the music database relating properly the 

artists and genres with releases and publications dates. Including fingerprint indexing 

coverage for all songs would provide complete musical relationships among songs. With this 

information properly indexed would provide the potential of providing a robust and complete 

music recommender sensitive to music features, not only to relations based on music 

metadata.  

 

 

  

 

  



 6.3. Second Iteration 

 

Objectives 

To establish a methodology of recommendation it should be specified the scope of 

interaction we want to offer. Once the limitations of music services that will be used are 

known, it is possible to establish with certainty a clear pattern of response to user actions, 

these actions would be encoded, extracting surrogates from musical objects. These 

surrogates represent the data used by recommendation engine. The system being 

implemented should be able to recognize user's music preferences by analyzing its interaction 

with the system. No patters or likes are determined a priori, but the content shown is adapted 

according the pattern of interaction constantly recovered. This stage starts from the first 

sketch of the web interface design. The component allowing communication with web 

services is being to be implemented as a data collector for the web interface. Upon this pieces 

are working together is easier to determine the recommender domain. 

 

Defining user interaction 

The user interaction with the system is done through a dynamic web interface. For the 

interface development, all the possibilities the user might need to manage music content have 

been identified. From all this interactions, the system extracts information used to infer the 

user preferences. The following table resumes all the available interactions: 

 

Action System response 

Insert search text Loads results related the introduced term 

Artist select 
Loads albums related to the given artist as well as similar artists to 

provide furher interacion options 

Album select 
Loads the tracks and the playback options they have as well as albums 

related to the given for further interaction options 

Play track 
Generates a web player playing the selected song as well as some 

similar tracks in terms of metadata 

Log-in, log-out actions  
Loads or saves user profile, and prepares the interface according user‟s 

preferences 

Stop playback 
Not ranking the item related. The system is not feed upon negative 

events 

Rate artist, album or 

track 

Increases the vote for the given element and the related information like 

musical genre 

fig 4 User interaction description 

 

 



Select a recommender model 

The recommender system analysis offers multiple strategies for developing internal 

heuristics. As reviewed in previous chapters collaborative filtering is commonly included in 

most of the recommenders nowadays, mainly based on user ratings to recommend artists, 

albums or tracks. This strategy is useful if the aim is to create clusters of similar users who 

share tastes and provide critical reviews for the rankings of artists, albums or tracks, through 

explicit qualification of one of the elements. Clustering techniques to group common features 

are commented in [14]. 

In this way, the system can recommend to a user A, a record that someone else chose 

(user B), while listening a track which is directly related to both. In order to achieve this 

feature, most of the reviewed solutions rely on relation matrices, where the objects are related 

to user profiles, and these relations are as well rated to assess their importance. Keeping 

rankings of music elements and relationships among groups of users is out of this project‟s 

aim. It is convenient to remark its importance inside recommenders‟ heuristics but not will be 

studied deeper in this paper. 

For this project, the actual collaborative filtering does not exist. There is no ranking of 

songs, albums or top artists. One of the reasons why the collaborative approach has not been 

chosen, is about this system does not intend to use a specific music relational database. 

Instead it is loading information “on-the-flow” directly from music services and re-

configuring dynamically the web interface. Other more important reason is the main goal of 

this project. It is not about developing other collaborative recommendation system, but to 

develop a system that is able to infer the current user preferences and able to elaborate a 

response according those preferences through the use of free music services. 

 

 

Recommender algorithm’s review 

1. k-Nearest Neighbors (kNN) 

The k-nearest neighbor
45

 full explained in [26], classifies an unknown object O with 

the most occurred label among k-nearest neighbors. A neighbor is considered nearest if it has 

the smallest distance, in the Euclidian sense (angle cosine), in feature space. For k = 1, the 

selected label belongs to its closest neighbor in the learning set. The k-nearest neighbor 

method is very intuitive, and for this reason broadly used. 

When used for regression, NN labels are real numbers and the task is then, to 

interpolate the numeric label for O the object pending of classification. 

The discrimination function implemented by this classifier will in general be a rough, 

piecewise linear function since it is influenced by each object available in the learning set. A 

disadvantage of this method is its large complexity and power requirement, since for 

classifying an object its distance to nearest k objects in the learning set has to be calculated. 
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This algorithm, when interpolating class labels, has two parameters: 

- k or number of neighbors to be calculated to infer the label. 

- the kernel function to approximate the numeric relationship. 

 

 

kNN-based recommendation algorithm 

 

The learning set is the set of rated items appearing on  

 

   

 

were  are the item surrogates limited to real value features. In order to infer 

the utility for an unrated item , we compute the distance vector . 

 

 

 

where L2 stands for the Euclidean distance (second order metric). This vector D is 

normalized 

to lie in the [0, 1) interval according to the maximum distance 

 

  

 

Once distances are normalized, we linearly interpolate the utility for item   

 

   

 

where  is the number of elements in . Note that since utility assignments are either 

0 or 1, it is needed only to consider those objects that were assigned non-zero utility. The full 

recommendation algorithm pseudocode is shown next. In this version, parameter k is , the 

total number of rated items in .  

 is the set of items eligible for recommendation, ordered according the predicted 

item utility, and  is the set of items that will be presented to the user. It requires a training 

algorithm which should be designed according the system behavior. 

 

 

 

 

 



K-nearest neighbors algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Drawbacks 

 

Despite the k-NN algorithm is conceptually simple to apply its computational cost for 

predicting over a set of unrated items  given a set of rated items  is  which is quite 

expensive in terms of efficiency.  

 

 

Application to this context 

 

The constraint of numerically representing the item surrogates and the user profile 

features highly increases the uncertainty about its fitting for solving the current problem. The 

fact of representing numerically item surrogates like artist name, or musical genre entails 

some loose of significance as the time of being a complex representation issue by itself.  

It could be possible to place a musical items into a n-dimensional space, by using audio 

signal features, but as much as known until this point, the only way to extract item‟s features 

using the data collected from music services is by reading artist features, like genre and in 

some of them the release date and tag the music object with textual information. 

 

 

 

  

  

 
 

 

 
 

 
 

Input Λ: rated items set,  unrated items set,  number of items to recommend 

   
       
    
    

    

         

    

          

    

    



2. Bayesian Network 

 

A Bayesian network
46

 is a graphical tool that allows to build models representing 

processes with inherent uncertainty, as explained in [15]. This model takes the form of a joint 

probability distribution
47

. Besides this modeling ability, they also allow to study how changes 

in the uncertainty of one of those variables affect the others. When a change in uncertainty of 

variable X implies a change of uncertainty in variable Y, it is said that there is a dependence 

relation between X and Y. It is also said that X is the parent of Y. 

 

 Bayesian networks are made up by two elements: 

- A set of variables and a set of edges conforming a directed-acyclic graph. 

- To each variable  with parents  there is attached a probability 

table .  

 

The first thing to have in mind when proposing a Bayesian network model is that its 

purpose is to give estimates of probabilities for events that are not directly observable. The 

first task is then to identify them. An unobservable event could be represented as the implicit 

rating a user gives to some item which still remains unrated. In order to follow the Bayesian 

model, these events must be packed as mutually exclusive events, for example:   

When selecting some track for reproduction, its valuable surrogates, represented in 

this problem as track‟s artist and track‟s musical genre tend to be rated positively if the song 

is reproduced or could be rated negatively or ignored in the case the user skips some track 

that was being played. Assessing this relations between the user actions and changes 

produced on other information variables, it is possible to define the probability function for 

the hypothesis variable.  These information variables can be called hypothesis variables. As 

said before, these are the variables composing the surrogates of items or   It is 

assumed that the information variables are mutually independent. So some action affecting to 

rock genre, will not affect the classical genre, and so for the artist, changes over The Beatles 

group would not directly affect other pop music groups.  

The probability function for a given hypothesis variable can be computed as follows: 

 

   

 

where α is a normalization constant. The characterization of the probability 

distribution  can be arbitrary decided following desired pattern designs. For 

giving an example in which all the possible outcomes are assigned the same 

probability, the Laplace‟s principle of indifference
48

.   
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Network parameters estimation 

 

Since the variables in  are independent, estimating the parameters for this 

Bayesian network is just a problem of estimating the parameters that define the distribution 

. Very much like while deciding which distribution choose for  , we chose to 

model these distributions as unimodal, normal distributions. A Gaussian-probability 

distribution is commonly used for probability issues.  

 

 

  

 where  stands for a numeric variable belonging to . Note that since 

we are considered conditional probability distributions, in practice, we will have to 

estimate two sets of parameters , one for each of the possible outcomes of . The 

simplest approach to obtain an estimate of these is to choose the parameters so that 

they maximize the likelihood of the data. In this case, the data are the pairs of utility 

assignments . Next it is needed to select good estimates for . 

Many previous works propone the sample-mean and sample-variance to be good 

estimates of distribution parameters, having an hypothetical continuous training data.  

 

  

 Bayesian recommendation algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Application to this context 

 

The real problem really has a continuous training data which are the selections of music 

items, which arrive continuously to the data collector from the web interface as a 

consequence to user interaction. The problem is that this number of infinite inputs must be 

determined while performing the calculation thus estimation of  parameters is still 

 
 

 

 
 

 
 

Input  posterior hypothesis distribution estimate : hypothesis 

 Unrated items set,  number of items to recommend 

     
     

     



mandatory. Other important drawback for application on this problem is the poor capacity of 

numeric abstraction over systems‟ item surrogates, which have independent textual 

significance and cannot be numerically estimated.  

 

3. Algorithms based on music data  

 

As described in [16], is it possible to achieve good recommendations without the need 

of abstracting self-significance keywords into numerical estimators, with the corresponding 

loose of information in the process of transformation.  

In this paper they explain their content-based method. Based on the content-based 

filtering approach, the purpose of the CB method [16] is to recommend the music objects that 

belong to the music groups the user is recently interested in. In order to capture the recent 

interests of the user, they analyze the latest transactions in the access history as follows:  

Each transaction is assigned a different weight, where the latest transaction has the 

highest weight. Moreover, the music group containing more accessed music objects in a 

transaction has a higher weight than other groups in the same transaction. The weight  of 

music group  is computed as follows: 

 

 

Where  is the weight of transaction ,  is the number of latest transactions used 

for analysis, , is the number of music objects which belong to music group  in 

transaction . 

 

 These weights will be recorded in a preference table for the user. After calculating the 

weight for each music group, the recommender system ranks all the music groups. The music 

group with a greater weight takes a higher priority of recommendation. To avoid 

recommending a large number of music objects to users, the recommender limits the number 

of music objects for being retrieved. According to the , different numbers of music 

objects from the music groups will be recommended. 

 

The STA Method is based on the use statistics [16]. They define a long-term hot music 

group as the music group containing the higher number of music objects in the access 

histories of all users. Furthermore, it‟s also defined a short-term hot music group as the music 

group containing the most music objects in the latest five transactions in the access histories 

of all users. When the user chooses this recommendation method, the MRS recommends the 

latest N music objects (which have not been accessed by the user), half from the long-term 

hot music group and the other half from the short-term hot music group to the user. 

 

 



4. First Algorithm proposal  

 

The system needs to collect information about user interactions for the recommender. 

For this, the user interface is designed in such a way it allows to obtain data related to the 

clicked items.  

To elaborate a context that defines user preferences, every user interaction is stored in 

a profile-related structure independent for each user. This structure contains all the user 

selections made during his session. The recommendation is made when the structure has 

enough information to provide a possible recommendation. To decide when the information 

stored is actually providing an adequate pattern, can be arbitrary decided depending on the 

desired behavior. By establishing this threshold to higher values the recommender engine 

disposes more data to generate recommendations therefore being more satisfactory in terms 

of musical coverage. As counterpoint, the user profile evolves more slowly in time. The 

opposite behavior could be obtained by selecting a lower threshold . Each recommendation 

is executed upon this threshold is reached and iteratively the input data-set to perform 

recommendation increases.  

Let us represent the recommendation input-set  for the th time the threshold  is 

reached, and  the set of stored item surrogates. 

 

 

 

For its iteration  the threshold is refreshed as follows: 

 

   

 

 

The algorithm uses statistical techniques to determine the most selected artist over the 

data-set . If some artist is dominantly selected, the recommendation is made about this 

artist, making an album compilation composed by selecting some albums from this artist and 

some from its similar artist‟s albums. This artist is stored as some artist that could interest the 

user inside the user profile. If no dominant artist is found inside the data collected, then the 

recommendation will be based on musical genre. The statistics applied on genre data 

collection tend to retrieve the rate of the most “hit” genre,  are explained following: 

 

- If  is over a 66% of hits, then it‟s believed that this genre is interesting for the 

user. Therefore the recommendation will be based on artist related to that musical 

genre. 

- If  is over a 33% of hits, then the rule inferred is that this genre is not a decisive 

element able to represent the interaction mood, thus, a set of related musical genres 



to the given is retrieved. Let us represent the  set as the set of  genre tags 

related to . Then  artists are retrieved for each musical genre inside .  

 

 and  parameters can be configured in order to obtain a wide [fig 5] or deep [fig 

6] recommendation set. Setting N large and M small the system would provide a 

result set rich in genres while discrete in the number of artists belonging to each 

genre, as a wide set. Setting N small and N large not so much genres are requested 

as the time more artist are retrieved for each one, as deep recommendation set. 

Figures show in green color the conceptual size of artists sets in from of the orange 

color representing the genre collection set. 

 

 

fig 5. Wide data-set representation 

fig 6.Deep data groups representation  

 

- If  is under a 33% of hits, it is inferred that the user has not still taken a constant 

listening attitude maybe because he didn‟t interacted too much time in something 

he could find interesting. Then recommendation will try to provide the user with 

new musical genres he still didn‟t check. 

 

The selected artist and the selected genre, if present, are stored in the user profile. 

This information will not be used to perform future recommendations but for loading a user-

related home page interface next time he starts a session, as a memory of the previous 

experience but not affecting the current decisions of the recommender. This way the user is 

provided with an alternative to start the interaction with the system through these memories 

instead of searching for a concrete keyword as the very first time. This feature increases 

general application efficacy by offering the most promising results from the last session as a 

starting point for the current. 

 

 



 

 

Similar artists‟ evaluation 

 

This project is not covering how to generate sets of similar artist to a concrete one. By 

reviewing many papers it was observed that many techniques to fulfill this task have been 

previously implemented. Some systems, as the reviewed in [12] create a multimedia 

information retrieval platform, composed by  crawlers, which role is to  monitor concrete 

music information web sources like mp3-blogs, Rss feeds and other kind of online 

documents. Other approach is the selected by Last.fm service. It elaborates complex listening 

reviews monitoring the interaction of users using their web platform or through the audio-

scrobbler
49

 plug-in for the local player. Thus they are able to make relations between artist 

that not always share the same genre specification but still are played by users within a 

similar context. This interesting grouping of artist has been selected to be used in this project. 

 

 The similar artists can be obtained using a function provided by web service API of 

Last.fm. Play.me service also offers the similar artist‟s feature but will not be used because 

the catalog of music available is smaller than Last.fm, thus coming out the problem of 

musical catalog‟s intersection. This phenomenon reduces the useful catalog set to the 

intersection between both services, has been observed to be a surmountable drawback by 

limiting the artist-album catalog to the very most complete web service.    

 

 

Redesign of the communication element 

 

Previous prototypes show that Musicbrainz might not be useful, therefore it‟s wrapper 

is no longer included inside the communication element. Last.fm web wrapper has been 

successfully configured, providing good results and complete music catalog. The problem 

being overcome is the problem of live reproduction of tracks which are not included in the 

Play.me service, which provides 30 second samples to preview them, but due to the 

intersection of catalogs problem, this tracks are reduced to the intersection between both 

services. Thus, this system is providing preview features to a small number of songs, which 

reduces its utility and avoids meeting initial project aims.  

It‟s not easy to find a web service providing previews for a complete catalog of music 

for free, but there‟s a web service that could overcome this situation providing free access to 

multimedia content. This service is the YouTube video sharing community
50

. It stores 

millions of videos of songs and other kinds of content, but mainly musical videos, live 

concerts, and musical related are interesting for this project.  

The system‟s internal logic is conceptually represented in next figure. The Youtube 

web service acts as a complementary feature loadable when the user decides to interact with a 
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given track. The video is loaded from Youtube API service and displayed dynamically in 

web the interface, being possible to be cancelled from the screen in the desired moment. 

 

 

fig 7 schematic figure of web system‟s structure 

 

Redefinition of user interaction 

 

Changes in recommendation system and in communication element cause some 

changes in user interaction with in the interface. It has been rejected the possibility of rating 

an explicit element of the recommendation set. The recommendation is an assessment of 

implicitly retrieved information, and it has to be evaluated as a whole entity in order to 

feedback correctly the recommender about the decisions it took. Next table shows how the 

interaction is understood now. 

 

Action System response 

Input search term Loads artis and album results regarding the given term. 

Artist selection Loads albums belonging to the given artist and displays some similar artists. 

Album selection 
Loads tracks belonging to the given album and displays some similar 

albums. 

Track playback Generates a music player and shows some related tracks 

Video playback Generates a video player and shows some related tracks 

Log-in Log out  Loads or stores user profile, and prepares custom interface.  

fig 8 User interaction options 



 

Explicit user feedback has been removed from the system, and its information about 

user preferences is exclusively retrieved from pure implicit actions. How to interpret these 

actions is the key feature of the recommender algorithm implemented for this model. 

 

Design of user interface 

 

For optimum performance of the application, the system should allow generation of 

web pages dynamically. This function can be performed using Ajax technology which allows 

the updating of concrete page components within the client browser, with no need of 

refreshing the whole page. The website design is done by following a common pattern of 

content organization. The page is divided into upper interface, for user orientation and 

arrangement of links to different sections. The bottom part displays the contents obtained 

each interaction.  

The web page obtains the interacted item‟s surrogates and sends them through post 

requests to the server, where are kept for further review into a user profile-related dynamic 

structure. This structure is server-side, and its life-time is identical to life-time belonging to 

the http-session assigned when the user connected to the web platform.  

Newt is shown a screenshot of the user interface, showing albums in the lowed side 

and artists in the upper set.  

 

 

fig 9 Screenshot of the first received results upon search button is clicked 

 

 



Youtube wrapper prototype 

 

In order to check the Youtube web service
51

 features, it has been implemented a 

wrapper to communicate with is API. This wrapper receives strings of characters as input 

representing data that should match the retrieved video. The video is the multimedia content 

from Youtube
52

 used to satisfy a track preview. Keywords are searched along the video 

attributes, inside the video name, or inside some of its possible tags, which are not always 

present. The keywords are mainly matched with the words listed in the video name. This 

matching seems to be consistent during testing. But it is acknowledged that it‟s possible to 

provide some track name, which includes some detail about album release on it, making 

difficult deal to match some video for a complex name. For example: 

 

For the track name:  The doors – Alabama song 

 Is it possible to find in some releases:  The doors – Alabama Song (deluxe remastered) 

 

It is convenient to solve this problem by parsing previously the track name sent to the 

wrapper, with special focus in prevail the chance of getting a response while forgetting a little 

bit about strict video matching. 

 

  

Web system prototype 

 

 The web system is characterized as a multiuser system with access to shared resources, data 

persistence system, and dynamic generation of the content displayed to the user. It has a 

dynamic interface that is generated based on customer interaction with the application. User 

actions are transferred to the web system using Ajax. The web system receives post requests 

from the web browser and redirects them as http-requests to the web services thought the 

wrapper implementations. The responses coming from the web services are analyzed by the 

web system, storing some information from them in server-sided structures for performance 

purposes and sending them back to the client encapsulated in Json objects. Json was 

previously reviewed as a powerful and simple object notation. 

 

The application is hosted in a Tomcat server
53

. It aims to manage multiple sessions of 

different users connected at the same time. Therefore concurrency strategies are developed. 

This ensures consistency of data stored in the servlet shared memory. The structure of Java 

servlet provides a simple way to implement web support with the greatest flexibility 

available, since the servlet is the simplest web entity out there. There exist other web 

programming languages which offer better solutions for encoding and simplicity, such as 

Php
54

 or Python
55

. But Java
56

, despite its awful coding, has a large number of modules and 
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functions already implemented with reliable code and compatibility issues solved which are 

quite time-saving advantages.  

 

The system designed handles multiple servlet. The servlet, such as simple web unit, 

does not implement user management (shared memory, concurrent access), but accepts 

connections from different clients running concurrently. The method in which the call is 

executed from the client browser http, poses serious concurrency problems when using 

shared variables. 

To overcome shared-memory problem, we have implemented a simple method for 

controlling access to shared memory to ensure consistency of the data used by the 

application. The access is synchronized so that the loading and writing of user memory is 

done under mutual exclusion. Access to customer-specific memory is indexed through the 

session identifier assigned to each customer connected, ensuring access to a particular area of 

memory for each thread running within the servlet shared method. 

The web system has three servlets which are assigned different tasks. 

One of them manages user's connections with the web service related to music 

catalog retrieval. The catalog is used to provide music information to the user, like artists, 

albums or tracks. This information is obtained from the music service Last.fm.  

Another servlet is responsible of retrieving musical collections for the 

recommendation system. System actions that are not explicit user commands are executed by 

this servlet. Requests are sent to the web service of Last.fm. In order to improve overall 

system performance, affected by excessive competition over too much synchronized blocks 

of code, to share the tasks in two servlets lets shorter response times.  

The third servlet handles communication with the API of the video service 

provider, allowing the catalog collection requests and video results requests are made jointly, 

providing clear benefits in system performance. Instead the music streams from Play.me web 

service can be requested using the API created for this purpose. It directly handles post 

requests building up the correspondent call to this web service. It has been included a 

complete control of exceptions which occur upon incomplete responses, mainly launched by 

the Json parser. This API provides robust and safe working due to its concretely defined 

purpose.  

In this step, has been developed the entire web system. It has been added the 

recommender functionality plugging the functions within the server-side servlet files. This 

extension gives rise to the User class, which includes the features necessary for the 

recommendation feature, user-data management, user-related recommendation engine, and 

temporary server-side user-data.  
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fig 10 Web system‟s prototype implemented for this iteration 

 

Conclusions 

 

Testing of the whole system has been performed obtaining satisfactory results 

regarding the running of implemented wrappers. The music catalog is loaded normally, and 

no latency problems have been observed using a discrete internet connection of about 2Mb of 

bandwidth.  

It is possible to interact with the system in a loop that lets the user navigate 

continuously with no need of inserting any text, only through mouse clicks. This feature 

clearly enhances the application usability greatly easing the user interaction, while providing 

rich multimedia information. 

 

Some problems have been found regarding the recommendation event, and so 

regarding the way in which the interface is organized. These problems are not really related 

to system design but yes to some aspects which could not be detected upon test with real 

users. Suggestions from users which interacted with the system in this beta version assessed 

some interface problems. For example the recommendation set comes out in the lower side 

on the window, as shown in the next figure. This fact requires the user to scroll down the web 

page in order to check the recommendation content, which is announced by a pop-up kindly 

asking the user to check the new musical stuff.  

 

 



 

fig 11Interface event, recommended content highlighted in yellow color. 

 

The recommender engine is tracked, observing that sometimes, albums or artist do not 

include genre definition, due to lack of tags in the music service. In earlier stages of 

developing occurred a similar issue relating the release date of albums. Most of them were 

not including this data even if in the data-object specification was clearly mentioned to be 

present. This event led me to forget about playing with dates and époques for creating 

recommendations, due to its lack of reliability. Current problem with genre is not as severe 

because it only affects a small number of groups which are not very popular or have been 

recently added to their musical database.  

Recommendations are built on-the-flow with data collected on-the-flow, and no 

further storage of information is persisted with recommendation purposes. In fact 

recommendations suit the user likes but still do not satisfy the project aim and further 

enhance tends to be used.  

 

 

  



 6.4. Third Iteration 

 

Objectives 

The objective for this iteration is mainly to enhance the whole system, which is 

observed to work properly but greatly improvable still to be left as it is as final system. In 

order to achieve better recommendations, an alternative to the proposed algorithm would be 

found. Furthermore, extensions in the persistence system can be done in order to store part of 

the information the system needs o create recommendations. This extension will be studied 

along this iteration assessing its advantages and disadvantages. 

A better user interface is to be designed, once the problems related previous design 

have been identified, won‟t be difficult to achieve improvements in this matter.  

Control all the bugs and exceptions emerging to the web interface will be other 

objective covered in this iteration. Some events which fire upon abnormal web services 

responses are not easy to handle, but enhancing the exception control, no error pop-ups or 

blank results page would be displayed. 

 

 

Algorithm analysis 

Most of the reviewed systems rely on collaborative filtering to solve problems like the 

unrated item problem described in [7]. The previous algorithm could be defined as a content-

based like with some influence of context-based recommenders, overcomes this problem by 

including non previously interacted (rated in other approaches) genres or artists. It is done 

when no relevant information is found inside the current interactions data-set. The approach 

is to select music genres which are not present within this data-set and elaborate the 

recommendation based on these genres.  

 

Focusing the problem 

The problem still pending to be solved relies on the fact that the retrieved genres could 

be completely disliked by the user. It will be called the problem of blind recommendation. 

This might happen as a direct consequence of the recommendation method itself. The method 

completely forgets about user‟s preferences stored in the profile and looks for new user 

genres using the web services. It may be a significant improvement to include in this case, 

some details regarding user preferences, which might be inferred using different techniques 

or extending the present approach. 

 

Solving alternatives 

Many different alternatives to implement the recommender procedure can be found in 

[14] often based on combinations of collaborative-like and content-based-like approaches. It 



seems interesting for this recommendation issue the fact of scoring each user selection, for 

example, by giving higher ranks to items clicked more recently while lowering the rankings 

for the most distant in terms of time. Including this ranking system, it is possible to reload 

previously high-clicked items when no relevant information found inside the monitored 

interaction. Thus, the blind recommendation can now be based in some item, that maybe does 

not seem interesting to the user currently, but at least it can infer that in some moment it was, 

avoiding to provide completely uncorrelated items according user preferences.  

 

  

Analysis of user management solutions 

 There are several ways to solve the user management in a web site. There exist a variety of 

modules that can be plugged, Java libraries, etc. The system needs an element that checks the 

user's identity, preventing access to application data to any user without valid credentials for 

access. The element must be incorporated into the system without making major 

modifications to either element. 

 Several modular solutions have been studied, assessing the complexity of installation, ease 

to configure, the type of server they use and the problems of incompatibility the database 

system version used. Among them the most outstanding are Josso, JFacets and OSUser. All 

of them are “easy” to install and configure. Josso
57

 was chosen because of its apparent 

simplicity, it is providing various security protocols, and as main feature +, the functions it 

provides match the needs of this project and are written in the same J2EE programming 

language used in the web system. 

 

 Josso (Java Open Single Sign-On) is a smart gateway to one or multiple web applications. 

Josso handles all the connections from one or more log-in web pages which give access to 

some application controlled with it. In these log-in pages, the user enters the log-in details, 

which are sent directly to Josso. Josso checks the user credentials and sets the data source 

connection. Once identified the user, Josso publishes an entrance ticket which is valid only 

for the user credentials and for the http-session that requested the ticket. The ticket allows 

access to the system protected areas (declared in xml files) , these areas are just folders 

containing the code that allows the execution of the music recommendation system.  
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Design of new algorithm 

For the algorithm design previous problems tend to be determined precisely. Then 

some solutions for each determined problem will be provided in order to enhance 

significantly the previous lacks in recommendation precision.  

As a previous problem it has been identified that sometimes the implemented 

algorithm completely forgets about user preferences as a try to provide him with 

undiscovered music genres. This behavior is not counter-productive, because many genres 

will be provided being very improbable every genre is completely disliked by the user. But it 

still breaks with the finer recommendation politics and maybe cross a conceptual border 

which should be strictly respected.  

A limitation of the previous implemented model relies on the impossibility of 

performing searches by genre for example among the results previously loaded. It is possible 

to request to Last.fm an artist collection  given a genre , but this results, are ranked results, 

and the method does not retrieve all the available elements, just the top tagged using that 

genre tag . It is possible to store some other information about user interaction inside the 

database system. Each time a user  interacts with some music element , classified using 

the tag  this interaction  will be stored in the database. As more times 

the same interaction occurs more important will be that element for that user. It can be also 

stored the element surrogate genre in order to classify information for further use of the 

recommender system. Upon each user interaction, an interacted element will be associated 

to its tag  and associated to this user. This association  can be stored as our 

own genre classification for the interacted artists.  

Then would be easier for the recommender to collect information about user‟s likes 

even to start a collaborative-like environment in which it is known which user has interacted 

with which artist and when. Further information can be stored like playback environment in 

order to specify more clearly the context in which the interaction occurs. By including this 

new feature, the use of some memory about the evolution of the user preferences is possible. 

Using the a artist-genre-user-time relationship table, is feasible to keep a long-term memory 

about user interaction as the time the previous monitoring structure caring about mid-term 

memory is still used. Now is it possible to give preference to the most recent user events 

( ), as project‟s aim remarks, the use of older events to extract information will happen 

if the mid-term memory is insufficient or is corrupted (lack of some attribute).  

 

Next is presented the algorithm applied for this third iteration prototype. Now we can 

speak about the type of user-interaction information stored, long-term memory which is 

stored in the database table where relations between information objects are stored. Mid-term 

memory represented by the selections taken by the user which are buffered in the temporal 

user application data. 

  

 

 



Assumptions 

A hit is a click over a musical surrogate
58

. 

The long-term memory is stored permanently LTM. Stores relations between artists 

and interacted by all the system‟s users. 

The mid-term memory or MTM is stored temporally until the http session expires. 

Each click refers to a musical surrogate independent from the item (artist, album or 

track) that generated it. The surrogate includes artist name and musical genre. Due to reasons 

beyond this system‟s capabilities, the year or époque related to the musical item could not be 

taken into account for recommendation purposes because it is absent in most of the musical 

elements checked. 

 

Mid-term memory analysis 

Once the configured threshold is reached, the recommendation is activated. A statistic 

procedure is applied over the collected data in similar way as before.  

First it‟s checked whether exists some artist mainly repeated (most than the 50% of 

hits) In the case it‟s found, similar artists are retrieved from the catalog provider. In the other 

hand, a query to the database is performed to obtain the system‟s registered information about 

the given artist. From this information the genres associated to the given artist are used to 

retrieve all the artists which are referenced thought some of those musical genres.  

In this procedure, two data-sets of artists can be managed. It provides many 

possibilities for using this information for recommendation purposes. For this algorithm, an 

intersection between both data-sets is performed. Then a minimum and a maximum threshold 

of retrieved results is set.  

If the intersection does not meet the minimum threshold then further decisions can be 

taken, next step is described in the upon genre selection section. At this point, the algorithm 

conceptually diverges from the previous proposal. Now the musical genre is always studied 

to perform recommendation while in the previous was only utilized when no favorite artist 

was found.  

The procedure to get the previous most repeated genre is performed almost as before, 

excepting the new concern about the time line of actions. There is a direct inverse 

relationship between the importance of a given selection‟s score (number of hits in time) and 

the time in which they were registered. The actual procedure to get the main genre is 

explained in the second iteration, first algorithm proposal section. 
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LTM memory analysis 

In the case the genre searched in the MTM doesn‟t arrive to the 33% of hits, the 

behavior changes and the LTM memory is analyzed. It‟s retrieved the maximum rated genre 

as follows: 

 

 

Parameter  can be configured to assess the importance of the recent events 

over past events. 

 

This method cannot success in the case no LTM is available (new user case) In this 

case, the recommendation will be performed as described in the second iteration. In case of 

success (the rest of cases) the selected genre is put together with the similar genres retrieved 

from Last.fm web service.  

 

Upon genre selection 

The number of genres is also determined by the  parameter, as also is the number of 

further artists requested for each musical genre by the  parameter. Once a main genre  is 

found by some of the appropriate procedures, and in the case that the main artist has been 

successfully found, both data-sets of artists, one from the LTM register , and other , from 

the Last.fm web services are filtered. 

 All the artists belonging LTM data-set classified with the musical genre  are selected for 

recommendation. Artists tagged with  are retrieved from Last.fm. The results received  are 

compared with the previous collection containing main artist‟s similar set . The elements 

remaining in the intersection of these two collections  are added to the previous 

collection  in order to complete the recommendation reaching the maximum threshold for 

the response dataset.  

  

Conclusions  

This algorithm ensures a optimal recommendation based on metadata information of 

music, according the preferences inferred from the monitored user interaction. New 

interesting music ins provided to the user. The tests have been performed in sessions of 

maximum fifteen minutes of interaction and the recommendations received provided the user 

with new music which surrogates have never been classified before. This is an important 

feature about discovering which has been fulfilled.  

The model used to overcome this problem has been the algebraic groups theory
59

, 

which optimally represents the abstraction of music collections retrieved from music 

services.  
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Redesign of user interface 

The user interface has been redefined to solve the problems meet the previous 

interaction. Thanks to the testing elaborated by people extern to this project, some 

improvements can be assessed for this new version of the interface. 

This new version tends to organize all the necessary information in such a way the user 

is not forced to scroll up and down the interface to check, at least the recommended items. 

It‟s also needed to include some extra information about the displayed information. It seems 

that a new user could not easily understand what is happening in the interface when he clicks 

in one item, but conveniently explaining the content this overcome will be solved.  

The new web interface is created using design-oriented software, designing each 

component separately and them putting them together inside the html document.  

 

  



Plugging the Josso module 

Josso module configuration is simple in appearance. It is made up by an agent, and a 

gateway. These two elements are configured using xml files to be which contain information 

concerning the system settings. 

The agent is responsible, among other things, of the access configuration to services 

related to persistence. The Josso-related stored data, refers to access credentials for each 

registered user and web system-related characteristics which must be remembered between 

sessions.  

The gateway defines the type of security employed, the address relative to the server 

assigned to redirect user connections after accessing the system, also defines redirections to 

error pages, or redirections to the log-out page. 

Another important aspect of the Josso module connection is the behavior for new 

accounts, or password recovery. Josso does not allow access to protected areas upon the user 

access the system successfully through the unique ticket generated by Josso. Until then, Josso 

protected content remains locked. In order to store the log-in page which is accessed freely 

but is still store inside the project that Josso controls, it‟s needed to create a public folder. 

This folder can be assigned reading rights not using the Josso unique ticket. In this folder will 

also be stored pages concerning registration or password recovering as well as further 

dependencies like javascript files or css rulers which are needed to correctly display public 

pages.  

To enable routing to several pages, such as error pages or password recovery, has been 

designed a new servlet. Its task is to handle requests related to registration, to retrieve new 

account data or password. It provides access to the login page when user registration data 

meets the Josso constraints. 

  

fig 12 Josso module placement inside the system 

 

  



Expanded prototype implementing user management 

The final system implemented for testing is installed on the server, together with the 

Josso module to provide users management. Josso ticket has a unique identification which is 

used to store the user-related temporal data. A pool of connected users is stored in the server. 

This pool structure is a key, value pair-like structure storing the application data for each 

user, indexed using the Josso unique id.  

The user-related application data has the goal to complete the musical elements 

received by a search for artist or album. These are returned incomplete for music services and 

must be completed to meet the application requisites. As explained in the section of 

prototypes belonging to the first stage of development, to complete the music object with 

which the program works, it is required a second request to the information provider. This 

request can be made asynchronously to avoid latency, thus allowing the user to continue the 

browsing while the system processes the other requests.  

Other important feature of user application data is to save some requests to the music 

providers when previously loaded items are requested again. This data is stored temporally 

for each user as a measure that enhances system‟s performance. 

 

 

fig 13 We system overview after adding user related content structure 

 

 

The user interface is implemented using JSP pages that provide the functionality to run 

code on the server, useful for extracting information about the session started by Josso and its 

attributes. In this way the user is easily be identified in the system without other java servlets 

that cover this actions. 

 

 

 



The dynamic activity characterizing the interface is achieved using libraries written in 

Javascript language
60

. In particular, Jquery
61

 supports the Ajax functionality. It‟s a library that 

provides a useful framework simple and powerful. It stands as a bridge between the web 

browser post requests and the server logic (servlets). Also cares about reception and 

reconstruction of some elements encoded in json returned by the web system. Web browser-

music services communication is completely developed using this library. Jquery is also used 

to generate the visual effects of the interface and bridges dynamically generated DOM 

elements and their css style definition. 

 

 

Data persistence tests 

There has been created a custom web interface which served as a testing environment 

for the persistence system. The selected open source technology is Mysql
62

, mainly chosen 

due to its easy to use interface called phpmyadmin
63

 which is a complete tool to manage the 

database system and generate complex relational databases in a reliable way.  

Upon this tests were passed the methods utilized were plugged inside the code, 

providing persistence features for data-types used by this application. 
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 7. Conclusions 

 

Project objectives 

The system development has been completed successfully. Its usefulness for 

discovering new music has been tested meeting and the goals stated at project‟s objectives. 

 It has been proven that is not needed to build a huge information system to provide the 

user with new music that matches his likes. Taking advantage of available web services which 

provide complete music catalogs for non-commercial purposes. 

However, it was observed that the development of a recommendation system with 

commercial features actually requires an extensive relational database to store the music 

previously cataloged. Creating a good relational database of music, making relations between 

artists, albums, musical genres and époques, could greatly expand the capabilities of a 

recommender algorithm to help users discover new music. 

 

Purpose remarks 

An important point to comment is that while all commercial recommenders claim to be 

offering personalized recommendations, the truly nature of their predictions might be biased 

by the taste of the majority of users, instead being biased by the actual user‟s preferences.  

This has been an important assessment made at the project work-lines definition, to 

focus mainly in authentic user preferences, and furthermore making especial care about the 

earliest implicit tips extracted from user actions. The real motivation which pushed me to 

consider this approach should be mentioned: 

- On one hand, my personal view before and after this thesis work about music 

recommenders is that they should meet user‟s preferences whatever approach is 

implemented to do so. Relying in collaborative filtering techniques is a risky issue 

because it slightly diverges from pure user interests, by abstracting the user 

preference pattern to meet some similar users. This abstraction is the actual loose of 

information which generates the initial purpose deviation. 

- On the other hand, the collaborative filtering is a way of abstracting some king of 

music hierarchical order in which users implicitly decide what‟s the best music 

while their actions are monitored. This fact is strongly determined by the music 

industry and its merchandising policies. Their promoting activities of some 

economically remarkable groups or artists lead people to subliminally remember 

them, thus seeding in customer‟s minds a spot of interest related to this groups or 

artists.     

 

 

 



Technical remarks 

 Popularize the use of the fingerprint is one of the most promising options for the future of 

music recommendation. The possibility of combining the techniques of collaborative 

recommendation, with data-mining techniques applied on the data collected from user 

monitoring, is an interesting path to infer optimally user‟s preferences. Subsequently, adding 

the ability to recommend music similar (or identical or different) according acoustic features, 

means that future recommenders could provide us with the music we really want. 

 

  Utopical facts  

The ultimate recommender could provide the user with a different rock song (for 

assessing a concrete example), featuring a slightly faster tempo (compared to the previous 

song) but with more folklorically-liked instrumentation. Such query might be a common 

music query for future recommenders. 

 

  

  



 8. Contributions 

 

Reviews 

A complete 2. The recommender systemsabout the state-of-the-art of recommender 

systems, specially focusing on music recommender systems has been performed. Aimed to 

settle the project analysis and design strategies, as well as define correctly the work outlines.  

In order to provide the user with a free, complete musical catalog, a revision of music 

web services has been performed. Through this work it has been assessed which service 

provides better suited solutions, starting a deeper analysis of them by implementing prototype 

wrappers to enable communication with this web system. As a result of this deeper analysis, 

the web system successfully achieves the communication functionality by providing music 

data from the selected web services for its use within the implemented environment. 

 

Code 

Code reusability is a key decision factor regarding the framework selection. So, the 

project will be implemented using Java programming language. This time-saving advantage 

benefited the project when some BSD licensed-software components were found to be 

developed in the selected language. Some custom adaptations or code modifications were 

needed in order to successfully plug these extern modules inside the project definition.  

Unfortunately most of the code pieces needed to build up this work are not previously 

implemented. A new wrapper has been implemented supporting some required methods 

employed to retrieve musical data from Play.me web service. 

Other implemented wrapper allows communication with the video service of Youtube. 

Its main feature is the track name parsing, oriented to properly select the best suited video 

from a feed, composed by thousands of possible matches. 

 

Recommender algorithms  

Upon a data domain was defined, a first custom designed algorithm was implemented 

from scratch. This algorithm (6.3. Second Iteration was designated to cover well defined 

recommendation constraints using custom defined item surrogates. Its recommender 

helpfulness was probed using empiric tests using random users, but were also assessed some 

limitations and deviations from the very main recommendation purpose. A further study, 

based on the current data-object surrogates and system characteristics, gave rise to a new 

evolved version of recommendation algorithm. The second algorithm proposal provides 

solution to problems observed theoretically after successful empirical tests over the 4. First 

Algorithm proposal  

The second algorithm was designed using algebraic grouping theory for solving some 



use-cases where the recommendation was ignoring few possible positive responses. 

Reviewed in previous works, the recommender problems related to selected approaches (see 

collaborative and content based filtering in section 3.2. Approaches to music 

recommendation) were indentified. This second version has been designed to solve these 

problems in an effort to develop a fine recommender. Grouping theory suits well this 

recommendation approach: The collection oriented structure of Last.fm responses, can be 

abstracted as a group, whose membership constraints are based on musical features of 

objects. 

 

The whole approach 

The system overview itself is an innovative approach to music browsing and 

discovering including efficient recommendation features. The system is completely 

implemented using open source tools and modules. It is convenient to remark that the system 

exploits some resources freely provided by commercial music systems required to achieve its 

functionality.  
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