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Abstract 

Graphene is the thinnest known material, which gathered a lot of attention after its discovery 

because of unique electrical and mechanical properties such as high stiffness and electron 

mobility. Besides, the small size and mass of graphene make it an ideal candidate for 

nanoelectromechanical systems (NEMS), which offer potential for new applications such as 

single atom mass sensors.  

In addition to the mentioned features, the interplay between mechanical and electrical 

properties of graphene is an interesting functionality for designing NEMS. This interplay is 

called “piezoresistivity” and is investigated by gauge factor (GF) which is the ratio of relative 

changes in the electrical resistance to the applied mechanical strain. 

In this thesis we report for the first time the experimental study of the piezoresistivity in few 

layer graphene “nanodrums”, that are suspended flakes over circular holes. We measure the 

electrical resistance of the flake while the flake is deformed by means of the force-distance 

measurements by an atomic force microscopy (AFM) under ambient condition. Furthermore, the 

analysis of the experimental data required the writing of a program in Matlab to merge the results 

of the AFM and electrical measurements. By this program the measured force-distance curves 

and changes in the electrical resistance while the AFM tip is deforming the flake are plotted. In 

addition to that the spatial profile of the compliance of the flake is plotted to show the pattern of 

the deformability of the flake. Moreover, the spatial profile of the changes in the electrical 

resistance of the flake while the tip is pushing the flake and the flake is deformed is plotted. This 

factor gives information about the changes in the GF and the piezoresistivity of the graphene 

flakes. 

 The results proved that our method to use AFM under ambient condition as a measurement 

tool can be used to derive information on the piezoresistive behavior of graphene. According to 

the results at the center of the hole the flake is more easily deflected than the edges. Moreover, 

the deformation of the drums through AFM affects the electrical resistance of the flake (by 

approximately 10%) and it shows that graphene illustrates piezoresistive behavior in practice. 

This is a promising prospect for applications of the graphene nanodrum as the sensor of very 

small mass (individual molecules) or pressure changes in NEMS. 

 

 



 

Sommario 

Il grafene, l’unico materiale conosciuto in forma di singolo strato atomico, ha attratto molta 

attenzione fin dalla sua scoperta grazie alle proprietà elettriche e meccaniche uniche (elevato 

modulo e mobilità di carica). 

Inoltre, la ridotta massa di un flake di grafene e le sue ridotte dimensioni ne fanno un 

candidato ideale per sistemi nano-elettromeccanici (NEMS) che potrebbero condurre allo 

sviluppo di nanosensori di massa e pressione. 

In particolare l’accoppiamento tra le proprietà meccaniche ed elettriche del grafene (la 

piezoresistività) rappresenta il parametro fisico che può essere utilmente sfruttato nella 

costruzione di dispositivi alla scala nanometrica. 

In questa tesi si riporta uno studio sperimentale originale della piezoresistività di 

“nanotamburi” di grafene a pochi strati. Tali nanotamburi sono costituiti da flake di grafene 

sospesi su buchi circolari ricavati su substrati di silicio. 

Nel corso della tesi è stata misurata (a temperatura e pressione ambiente) la variazione della 

resistenza della membrana di grafene del nanotamburo sotto l’azione deformante della punta di 

un AFM. L’analisi dei dati sperimentali ha richiesto la scrittura di un programma Matlab per 

elaborare ed unire i risultati delle misure simultanee AFM ed elettrica. Tale programma permette 

di visualizzare sia il profilo spaziale della deformazione della membrana grafenica del 

nanotamburo (misurata con l’AFM) che quello della resistenza elettrica della membrana. In 

questo modo è possibile caratterizzare esaustivamente il comportamento piezoresistivo della 

membrana grafenica del nanotamburo. I risultati delle misure effettuate mostrano che il centro 

della membrana è più facilmente deformato dei suoi bordi, come atteso. Sotto l’azione della 

punta AFM si misurano variazioni dell’ordine del 10% nella resistenza elettrica della membrana. 

Questo rappresenta un risultato promettente nei confronti della possibile realizzazione di 

nanosensori di masse ridottissime (singole molecole) o di piccoli cambiamenti di pressione. 
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Nanoelectromechanical systems (NEMS) are interesting candidates to revolutionize 

measurements of i.e. extremely small displacements and week forces, with their small mass and 

nano size [1]. These systems are continuing of the microelectromechanical systems (MEMS) that 

are made by integrated-circuit technology in nanometer scale. The scaling down of these devices 

increases their resonance frequency and decreases their mass [2]. Such unique attributes of 

NEMS offer immense potential for new applications and fundamental measurements such as 

single-atom mass sensing and mechanical computing [1, 2]. To take full advantage of these 

systems we will have to stretch our imaginations, as well as our current methods and mindset in 

nanoscale science and technology. By today, many scientists have merged the most important 

semiconductor materials such as silicon, germanium, and carbon allotropes with NEMS and 

achieved systems that host intriguing attributes [2].  

In current work we have focused on NEMS made from one of the carbon allotropes called 

graphene. Graphene with a 2D structure which once was believed cannot exist, is nowadays 

considered as one of the most promising materials for the future of electronics at the nanoscale.  

The reason is its rich variety of physical features of graphene such as high carrier mobility and 

quantum hall effect. Moreover, motivated by graphene’s lightness and stiffness and the rather 

flexible electronic character under stress, the interplay between mechanical and electrical 

properties of graphene became another direction of research beyond the realm of purely 

electronic or mechanical studies in which such features are essential functionalities for building 

up low-cost NEMS [3]. 

Piezoresistivity which is the change in the electrical property of the material by changing its 

mechanical status is an interesting property to be applied in NEMS. In recent years some 

researchers have studied the piezoresistivity of some carbon allotropes theoretically and 

experimentally such as carbon nanotube [4, 5]. But in the case of graphene only theoretical 

studies have been done to predict its electromechanical behavior [3, 6] and no experiment have 

been reported by the time of this research. 

In this research we have studies for the first time the piezoresistive behavior of graphene 

experimentally. The samples are made by suspending the graphene flakes on top of a hole in the 

form of nanodrums. In order to investigate the piezoresistive behavior some electrical settings 

are added to an atomic force microscopy (AFM) to let us measure the electrical resistance of the 

flake. Then the drums are deformed by the AFM tip and meanwhile their electrical resistance is 
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measured. Later a program is made in MATLAB to merge the measured mechanical and 

electrical results and give the profile of the compliance and change in the electrical properties 

over the surface. 

In this thesis, first an introduction is given about NEMS, carbon materials and specifically 

graphene and piezoresistivity in this chapter. Then in chapter 2 the nanomechanics of the 

nanodrums is studied and some researches that have been done in this field are reported. In 

chapter 3 the fabrication of samples are explained. Later in chapter 4, the methods and settings 

used for measurements are discussed. Then in chapter 5 the results are shown and discussed, and 

at the end in chapter 6 the conclusion of this research is explained.   

 

1.1. Nanoelectromechanical Systems  

Nanoelectromechanical systems or NEMS are defined as i.e. the mechanics, sensors, 

computers and electronics that are in the nanoscale. But they are not just downscaled 

microsystems. They provide completely new functionalities since they offer interface to the 

physical world and promising applications in chemistry, microbiology, medicine and 

nanotechnology [39]. In this size regime, it is possible to attain the extremely high fundamental 

frequencies and mechanical quality factors, the force sensitivities at the attonewton level the 

mass sensitivity at the level of individual molecules [7]. 

In general, an electromechanical system consists of a mechanical element and some 

transducers. The mechanical element either deflects or vibrates in response to an applied force. 

The transducers convert mechanical energy into electrical or optical signals and vice versa [7]. 

Mainly there are two types of response: the element simply deflects under an applied force or 

some changes appear in its amplitude of oscillation. Usually the responses are detected by an 

output or readout transducer which is distinct from the input one [1]. 

Ordinarily there are two approaches in fabrication of NEMS. One technique is called the top-

down fabrication, in which the pattern of a nanoscale structures is copied on a resist mask, and 

then it is transferred to a larger structure by etching or depositing another material. The 

patterning is usually done by electron-beam lithography (E-beam). Modern fabricated devices 

with this method can have dimensions less than 100 nanometers. The second approach is the 

bottom-up technique. In this method the small structures from nature are used to build or 
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assemble devices. This technique allows building the devices with true nanometer dimensions. 

Devices made from carbon material are made by this method. 

The progress of the mentioned fabrication techniques allows having nanoscale devices even 

around 10nm. The devices in this size offer novel and fascinating opportunities for sensing and 

measurements such as: 

- It is possible to have nanoscale resonators with fundamental frequencies above 10GHz. 

such high frequency opens exciting possibilities; i.e. ultralow-power mechanical signal 

processing at the microwave frequencies and fast scanning probe microscopes [1]. 

- Nanoscale devices dissipate very little energy which is evaluated by their quality factor 

(Q). A high Q value makes both the resonant and the deflection sensors very sensitive to the 

applied forces. It is done by suppressing the random mechanical fluctuations. Indeed, this 

sensitivity appears to reach to the quantum limit [1]. 

- NEMS can be fabricated from a large variety of materials including silicon, gallium 

arsenide and etc. As a result, all the main components of the electronic and mechanical systems 

can be patterned on the same chip. Such ability solves many problems of the fabrication and 

alignment of the components [1]. 

By this time it may appear that it is easy to build NEMS. But to take a full advantage of these 

systems we will have to stretch our imaginations as well as our current methods and nanoscale 

science and technology. At the moment there are three main challenges that must be addressed 

before the full potential of NEMS can be realized: communicating signals from the nanoscale to 

macroscopic world, understanding and controlling the mesoscopic mechanisms and developing 

methods for reproducible and routine nanofabrication [1]. 

Besides the mentioned materials, new materials such as carbon nanotube and graphene which 

own novel physical properties promise to play a significant role in overcoming the classic 

downscaling problems [8]. In addition to that carbon with a variety of crystalline structures and 

properties is an interesting engineering material. These properties make it a good candidate for 

different physical, chemical, mechanical and electrical applications. Carbon based 

Microelectromechanical Systems (MEMS) and Nanoelectromechanical Systems (NEMS), with 

sizes ranging from millimeter to nanometer, can provide progress, alone or in combination with 

Si and other materials for microelectronics, nanoelectronics, sensors, miniaturized power 

systems [9]. 
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On the whole, such attributes make NEMS suitable for technological applications such as the 

ultrafast sensors, actuators and signal processing components. They are clearly destined to 

provide much of the crucial scientific and engineering foundations that will underline future 

nanotechnology.  

 

1.2. Graphene 

Carbon allotropes demonstrate unusual and complicated behavior by forming different 

structures; for example diamond, graphite and recently discovered fullerenes, carbon nanotube 

and graphene which are focused for many researches by physicist and chemists. Graphene is a 

flat monolayer of carbon atoms tightly bound together in a two-dimensional honeycomb lattice. 

It is considered to be the building block of the other carbon allotropes including fullerenes (zero-

dimensional), carbon nanotube (one-dimensional) and graphite (three-dimensional) [10]. All 

these allotropes of carbon are depicted in Fig. 1.1. 

 

     

                

Figure 1.1- Schematic structure of (a) 1 graphene as the building block of other carbon allotropes including: (b) 2 

fullerene (0D), (c) 3 carbon nanotube (1D) and (d) 4graphite (3D). 

 

                                                
1 Ref. :http://www.mc2quantum.com 
2 Ref.: http://www.suite101.com/view_image.cfm/799781 
3 Ref.: http://www.ati.surrey.ac.uk/topics?topic_id=32&level=1  
4 Ref.: http://mrsec.wisc.edu/Edetc/nanoquest/carbon/index.html 

http://www.mc2quantum.com/
http://www.suite101.com/view_image.cfm/799781
http://www.ati.surrey.ac.uk/topics?topic_id=32&level=1
http://mrsec.wisc.edu/Edetc/nanoquest/carbon/index.html
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At the beginning any attempts for synthesizing such two-dimensional atomic crystal have 

usually failed, leading instead to nanometer-size crystallites [11]. During synthesis the large 

perimeter-to-surface ratios of graphene nucleation sites, causes the structure to collapse into 

other carbon allotropes [12]. It was not surprising since it was believed that two-dimensional 

crystals cannot exist because they are thermodynamically unstable [13- 15]. According to the 

Landau [16] and Peierls [8] theorem, the thermal fluctuations displace atoms in a distance 

comparable to the interatomic distances at any finite temperature. Consequently, there should be 

no long-range order in the low-dimensional crystal lattices. Besides, it was observed that melting 

temperature of thin films rapidly decrease when their thickness decrease to the dozens of atomic 

layers, and they become unstable [17-19].  

In 2004 the discovery of graphene revealed the fact that 2D crystals do exist and moreover 

they exhibit high crystal quality [20-23]. Graphene was first observed experimentally by a simple 

approach based on micromechanical cleavage of bulk graphite [10, 24]. In this method which is 

called the mechanical exfoliation, bulk graphite is peeled repeatedly with adhesive tape to get the 

thinnest flakes [20]. Using this top-down approach helped the researchers to avoid all the issues 

with the stability of small crystallites [12].  

 There is an idea which says 2D crystals are intrinsically stable because of the existence of 

some ripples in the third dimension [25]. Such warping leads to gain in elastic energy but 

suppress the thermal vibrations, which above a certain temperature can minimize the total free 

energy. These ripples are observed also in graphene and they play an important role in its 

electronic properties [26]. 

The mechanical exfoliation method makes it possible to have high quality and large (up to 

100µm in size [27]) samples. The qualities of samples are so good that ballistic transport [28] 

and quantum Hall effect [22, 28] can be observed easily. That’s why among two-dimensional 

materials, graphene has attracted a great attention since its discovery. In addition to such unique 

electrical properties, it demonstrates interesting mechanical properties such as high mechanical 

strength and young module. Such properties make it an ideal material for NEMS applications 

such as force, position and mass sensors [29, 30].  

Today, still other techniques are required to provide graphene industrially. Among the 

promising candidate, exfoliation of intercalated graphitic compounds [31, 32] and Si sublimation 

from SiC substrates [33, 34] have the potential, to be investigated. In the first methods the 
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graphene layers are separated by intercalating molecules into bulk graphite. As this method is 

uncontrollable it has not attracted much interest [31].  In the second method the production of 

epitaxial graphene is based on laser-induced surface decomposition of the Si-rich face of a SiC 

single-crystal. The results of this method show that the thickness can be controlled up to single 

layer [34]. 

In the next sections it is focused more on electrical and mechanical properties of graphene 

which makes it a good candidate for NEMS application. 

 

1.2.1. Electrical Properties 

In the honeycomb structure of graphene there are two carbon atoms in one unit cell where 

each carbon atom sits in two triangular lattices with inversion symmetry between them. Such 

hexagonal arrangement of carbon atoms provides an unusual energy dispersion relation at the 

Fermi energy of graphene [35]. The carbon sublattices and energy band structure of graphene 

obtained by simple tight binding model is depicted in Fig. 1.2. 

 

 

Figure 1.2 – (a) Carbon sublattices (A & B) in crystal structure of graphene, (b) band structure of graphene. K 

and K´ are the points where the conductance and valence band touch each other [8]. 

 

There are several features that make graphene’s electronic properties unique and different 

from other condensed matter systems: 

The first feature is graphene’s electronic spectrum which resembles the Dirac spectrum for 

fermions [36, 37]. In the honeycomb lattice of graphene the electrons lose their effective mass 

which results in quasiparticles that cannot be described by Schrodinger equation and should be 
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described by Dirac-like equation [38]. It is the consequence of graphene’s crystal structure which 

consists of two equivalent carbon sublattices A and B which are depicted in Fig. 1.2.  

Quantum-mechanical hopping between these sublattices leads to the formation of two energy 

bands: the valence band (E < 0) and the conduction band (E > 0). These bands touch each other 

at six points at the corners of the Brillouin zone called Dirac points of which two sets of points 

are in-equivalent [35]. These two points in reciprocal lattice - called Dirac points (K and K´) - 

represent different linear superposition of Bloch wave functions in two real sublattices [39]. As a 

result, quasiparticles in graphene exhibit a linear dispersion relation as if they were massless 

relativistic particles. In this case the Fermi velocity νF ≈ c/300 plays the role of the speed of light 

[12]. Because of the linear spectrum, it is expected that quasiparticles in graphene behave 

differently from those in conventional metals and semiconductors where the energy spectrum can 

be approximated by a parabolic dispersion relation.  

The second feature is that graphene exhibits an astonishing electronic quality. It is predicted 

that because of its perfect crystal structure, the electrons can travel submicrometer distances 

without scattering [40]. This fact leads to the high mobility of graphene which is in the range of 

10,000 cm
2
/V.s and is practically independent of temperature [12]. Such mobility which is an 

order of magnitude higher compared to modern Silicon transistors, ensures ballistic transport on 

submicron distances [41]. The mobility at room temperature is limited by impurities of the 

graphene surface, which means that it can be improved significantly, perhaps up to 60,000 

cm
2
/V.s. Some of the methods that are reported to improve the mobility are suspending the 

graphene flake or current annealing [39].  

The third feature is the possibility of fabrication of nano-dimensions graphene devices [42, 

43] which enables the miniaturization of the electronic and mechanical devices. 

Such different behavior electronic properties that are mentioned here make it a good 

candidate for future electronic applications [41].  

 

1.2.2.   Mechanical Properties 

Like most of the carbon allotropes graphene also shows robust mechanical properties. 

However its mechanical behavior has been much less investigated compared to its electrical 

properties. Usually there are some problems in measuring the intrinsic mechanical properties of 
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graphene. These problems include for example uncertainty in sample geometry and stress 

concentration at clamping points [44]. 

In some researches the mechanical properties of graphene are measured by dynamic methods 

such as resonating suspended graphene in vacuum [45, 46]. Dynamic methods lead to highly 

accurate measurement of the resonant frequencies, but it is not easy and direct method to 

determine the absolute amplitude of motion.  

In contrast nanoindentation with atomic force microscopy (AFM) is used to probe the stress-

strain response of graphene [44]. This method allows the accurate and direct measurements of 

the dimension, displacement and applied force for the suspended graphene flakes. Subsequently, 

it is possible to measure the spring constant of the flake more precisely. In this way graphene is 

suspended over open holes forming a nanodrum or in the form of nano-ribbon. Investigation of 

the behavior of graphene in the form of nanodrums have some advantages: the sample geometry 

can be precisely defined, the 2D structure is less sensitive to the presence of a single defect and 

the flake is clamped around the entire hole circumference, in contrast to two points in the case of 

nano-ribbons. 

By static deflection measurements (AFM), the stiffness of the order of 300–400 N/m, and a 

breaking strength around. 42 N/m, is reported as the intrinsic strength of a defect-free sheet [44, 

47]. The Young’s modulus of graphene is estimated to be approximately 0.5–1.0 TPa which is 

very close to the accepted value for bulk graphite [48]. These values combined with the relative 

low-cost of production of graphene makes this material ideal candidate for mechanical 

applications. A single sheet graphene bears tremendous potential as the ultimately thin material 

for NEMS applications such as pressure sensors and resonators. 

     

1.3. Piezoresistivity 

Piezoresistivity is the change in the electrical resistance of a material when a strain is applied. 

The piezoresistors are often used in combination of MEMs or NEMS. The change in the 

resistance with the elongation was first discovered for iron in 1856 by William Thomson [49]. 

After that it was confirmed for polycrystalline and amorphous materials by other researchers [50, 

51]. The first commercial piezoresistive silicon strain gauge and pressure sensors started to 

appear in the late 1950’s [52]. In 1957 Mason and Thurston reported silicon strain gauges for 

measuring displacement, force and torque [53]. These sensors were the first commercial devices 
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requiring three-dimensional micromachining. As a result, this technology was a singularly 

important precursor to the MEMS technology [54]. The field benefited also from the 

developments in silicon processing and modeling for the integrated circuits (IC) industry. The 

technological advances in the mentioned fields improved the sensitivity, resolution, bandwidth 

and miniaturization of piezoresistive devices [55]. Currently, Piezoresistors are widely used in 

NEMS as cantilever, pressure, force and mass sensors [56]. 

The electrical resistance (R) of the material depends on its dimension and resistivity (ρ) [56]: 

          𝑅 =
𝜌𝑙

𝑎
        (1.3.1) 

In this equation Ɩ and ɑ are the length and cross sectional area respectively. When a stress or a 

strain is applied to a material, it will lead to changes in the resistance because of changing its 

resistivity or physical dimensions. The former case is the dominant factor in semiconductors. 

When a semiconductor is strained the distance between its atoms will change. This will lead to 

the change in the band gap and the shape of the valance and conduction band. In continue this 

change will affect the mobility and resistance of the material. So the piezoresistivity of 

semiconductors is significant. In the latter case the change in the resistance is caused by the 

changes of the aspect ratio. The change in the dimensions is mostly the dominant factor in the 

metals.  

As a result, when the stress or strain is applied the change in the resistance (∆R) is due to both 

the geometric effects (1+2ν) (ν is the Poison’s ratio) and the fractional changes in resistivity 

(∆ρ/ρ) of the material with the induced stress or strain [57]: 

        
∆𝑅

𝑅
=  1 + 2𝜈 𝜀 +

∆𝜌

𝜌
      (1.3.2) 

usually the piezoresistivity effect is determined by a Gauge factor (GF) which is defined as: 

                                𝐺𝐹 =
∆𝑅/𝑅

𝜖
                  (1.3.3) 

typical values of GF of approximately 1.4 to 2.0 can be achieved by the change in the geometry. 

The effect of the resistivity change provides a small GF for metal (in the range of 0.3). However 

for some materials such as silicon and germanium in certain directions the resistivity term is 50-

100 times larger than the geometric term. In general the piezoresistive GF reported for metals, 

semiconductors and organometallic materials are in the range of 2-12, 5-175 and 100-500 

respectively [58].  
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1.3.1.  Piezoresistive Materials 

The first piezoresistive materials that are used vastly in commercial and research 

piezoresistive MEMS or NEMS devices are silicon and germanium or their alloys. The reason is 

their high GF compared to the metallic elements and easy fabrications. It is possible to get a GF 

up to 175 and 102 from P type silicon and germanium respectively. But the problem is that their 

GF is not as high as organometalic materials. Besides they are not suitable for chemical harsh 

and high temperature environments [59]. On the other hand organometalic materials are not 

stable enough to be used in the micromechanical strain sensors [4]. Consequently, with the 

advances in materials science and device fabrications newer materials are tested to be used in 

this field. In this section some of these piezoresistive materials are explained in summary: 

- Diamond: Comparing to silicon, diamond has also some advanced properties which makes 

it a good candidates for NEMS in the elevated temperature and harsh environments [60-63]. 

Such properties include physical hardness, higher Young modulus, higher tensile yield strength, 

greater chemical inertness, lower coefficient of friction and higher thermal conductivity. The 

piezoresistive GF for single crystal and poly-crystalline diamond is reported to be around 2000-

3836 and 10-100 respectively. However these values depend greatly on doping concentration and 

temperature [64]. 

- Carbon Nanotubes (CNT): Mechanically nanotubes are among the strongest and most 

resilient materials in nature. The Young modulus of CNT is on the order of TPa and its tensile 

strength is two order of magnitude higher than steel [65]. Electronically, CNTs can be metallic, 

semiconducting or small-gap semiconducting [66]. Yong et al. have measured for the first time 

the GF of the pristine CNTs that were synthesized by hot filament CVD [4]. In this research a 

GF of 65 is achieved for CNT thin films at room temperature. According to them such a large 

GF cannot be ascribed to the changes in the band gap as the band gap of CNT is small. They 

propose that more likely the defects of the CNT play an important role in such a big GF. For 

example the deformation of some defects may shorten the length of the ballistic transport along a 

CNT.  Grow et al. have also reported the observation of piezoresistive effect in single tube CNT 

adhered to a deformable silicon nitride membrane by Van der Waals interactions. In this case it 

is assumed that the nanotube experiences the same strain as the membrane. In this experience the 

conductivity of the pressurized CNT decreases which they attribute it to the changes in the band 
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gap. In such conditions the GF of the semiconducting and small gap semiconducting CNTs are 

around 400 and 850 respectively [5] whereas the maximum achievable GF in silicon is 200 [67].  

Considering, the unique physical and chemical properties of the CNT and its piezoresistive 

effect it can be said that carbon nanotube has a potential application in nanoelectronics. 

- Graphene: besides the promising electrical and mechanical properties of graphene which 

is explained in Sec. 1.2, the interplay between these two is a new field of research. The reason is 

the rather flexible electronic character of graphene under the stress. But since today the 

piezoresistivity of graphene is reported only theoretically. Poetschke et al. have used a 

semiempirical method to model the electrical response of graphene nano ribbons according to an 

applied force [3]. In their work the band structure of armchair-edge (AGNR) and zigzag-edge 

(ZGNR) nanoribbons are compared in the relaxed and strained condition (Fig. 1.3). As it is 

shown in Fig. 1.3.a the AGNR shows initially a semimetallic behavior. After applying a uniaxial 

force the electronic structure of the system is affected significantly and it depicts a 

semiconducting behavior. It is also clearly seen that all the degeneracies at the Z points are lifted 

under strain (Fig. 1.3.b).  Differently from AGNR geometry, as it is seen in Fig. 1.3 c and d the 

band structure of ZGNR does not change significantly under the strain. As a result, ZGNRs can 

be qualified as unsuitable candidates for the electromechanical nanodevices. 

 

 

Figure 1.3- The band structure and conductance for (a), (c) relaxed and (b), (d) strained AGNR (N=11) and 

ZGNR (N=10) [3]. 
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In another research, Medvedyeva et al. have investigated the piezoconductivity of graphene 

suspended on top of a gate theoretically [6]. They have considered an AFM tip for deformation 

of the suspended flake. According to them the deformation of the graphene affects the 

conductivity by inducing change in the band structure as well as by changing the electron density 

over the flake. The latter is proved to be the dominant factor for small residual stress. But in the 

case of strong deformation (i.e. using an AFM tip) changing the band structure is more 

significant. In general still more experimental and theoretical investigations on graphene are 

necessary to make it ready for Piezoresistors applications.  
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Nanomechanics deal with the study and application of the fundamental mechanical properties 

of the physical systems at nanoscale. In this chapter the concepts of continuum mechanics is used 

to study nanoscale mechanical devices. 

 

2.1. Forces and Stresses 

The stress notion quantifies the surface or body forces act to a body in equilibrium. The body 

forces such as the gravity act inside the body, whereas the surface forces act on its bounding 

surface. The stresses are those forces distributed over an infinitesimal unit area cut out of a body 

in a certain direction, or over an infinitesimal unit area on the bounding surface [68]. 

By assuming a body subjected to an external load as shown in Fig. 2.1, the influence of the 

load on an interior point can be studied. 

 

 

Figure 2.1 – A continuum body subjected to some external forces1  

 

the definition of the stress tensor σ in the undeformed state is:  

0
lim

A

F dF

A dA


 


 


     (2.1.1) 

here, ΔF is the internal force activated on the area ΔA, from the applied external load. The 

internal force dF = σ.dA, can also be considered as a force acting on an inclined surface dAi of an 

infinitesimal body (Fig. 2.1). In such case, the infinitesimal force dF can be written in this form:  

𝑑𝑭 =  𝝈. 𝑑𝐴 = 𝝈𝒊. 𝑖𝑖 . 𝑑𝐴 =  𝝈𝒊. 𝑑𝐴𝑖 =  𝝈𝒊𝒋. 𝑖𝑗 . 𝑑𝐴𝑖      (2.1.2) 

                                                
1Ref:  http://en.wikipedia.org/wiki/Stress_(mechanics) 

http://en.wikipedia.org/wiki/Stress_(mechanics)
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in Equ. 2.1.2, σi’s denotes the components of the stress vector σ acting on the inclined surface 

dA. These are the resultant stress vectors on the surface dAi projected from dA on each side of the 

three planes constructed on the Cartesian coordinate axes. And as it is shown in Fig. 2.2 the σij’s 

are the components of the stress on these projected areas. 

 

 

Figure 2.2- Elements σij of the stress tensor σ [69] 

  

From Equ. 2.1.2, we can derive the stress tensor σij, which is a symmetric matrix as follows 

[69]: 

    𝜎𝑖𝑗 =  

𝜎11 𝜎12 𝜎13

𝜎21 𝜎22 𝜎23

𝜎31 𝜎32 𝜎33

            (2.1.3) 

     

and from the stress tensor, the stress vector is derived for each face: 

i.e. for face 1:                      𝑡1 =  𝑇11𝑋 1 + 𝑇12𝑋 2 + 𝑇13𝑋 3  

 

2.2. Balance Laws 

2.2.1.  Balance Of Linear Momentum 

The definition of the linear momentum P within a volumetric unit dV is the velocity vector (ν) 

summed over the incremental mass: 

M V

P dm dV        (2.1.4) 
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where m and ρ are the mass and density respectively. The rate of the change of the linear 

momentum is then defined as the sum of the forces including body forces and stress at the 

surface, working on the element: 

( )
V V V

dP d
dV FdV n dA

dt dt


         (2.1.5) 

in which σ (n) is the stress vector normal to the surface:  

( ) i i ij j in n i n        (2.1.6) 

here each ni is the component of a vector normal to the surface.  Using the Green-Gauss theorem 

the integral over the boundary (δV) of the element can be converted into an integral over the 

volume [2]: 

ˆ/ij i i

V V

dA x X dV


                      (2.1.7) 

from Eq. (2.1.5) and (2.1.7) we obtain: 

( ) 0
V

ijij F dV              (2.1.8) 

So far no specification has been applied about the shape or size of the element, so Eq. 2.1.8 

should be valid for all arbitrary volumes. Then it yields to Cauchy’s first law of motion or simply 

equation of motion: 

ij

j

i

F
x





 


        (2.1.9) 

 

2.2.2.  Balance Of Angular Momentum 

The time rate of angular momentum is given by: 

( )
V V A

d
r dV r FdV r n dA

dt
            (2.1.10) 

with similar analysis for the angular momentum Cauchy’s second law of motion can be derived: 

ij ji        (2.1.11) 

by applying the boundary conditions to the mentioned equations the stress distribution can be 

calculated for a given applied force profile [2]. 
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2.3. Strain Tensor 

The motion of a rigid object, subjected to various external forces, is described by the position 

of the object’s center of mass, and the orientation of the object with respect to a fixed set of 

coordinate axes. Therefore, rigid body mechanics is only an approximation to the actual motion 

of the solid, as it ignores all the internal motions when an object is acted upon by external forces; 

these external forces will cause  the deformation, or strain of the object. 

Consider a rigid body with a fixed point P at position r inside the body (Fig. 2.3), when the 

body is strained, point P will shift to a different point P´ at position r´ with respect to the center 

of mass of the object. Here it is assumed that the object does not move or rotate. Hence a 

coordinate system that is fixed to the center of mass of the body can be used, and it is assumed 

that the resulting non-inertial effects (due to the object’s acceleration and rotation) are small or 

slow enough that they can be ignored. 

 

 

Figure 2.3 - Displacement of the point P at position r to the point P´ at position r´ under relative displacement u. 

 

the strain-induced displacement of P´ with respect to P is the vector u = r´ - r. The displacement 

vector u varies with position r within the body, and is time-dependent, so it can be written as u 

(r, t). Now, if one considers two points in a small distance, P at position r and Q at position r+∆r 

(Fig. 2.4). Under the strain P displaces to P´, located at r+u(r), and Q displaces to Q´, located at 

r+∆r+u(r+∆r).  
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Figure 2.4 - Points P and Q, initially separated by Δr, shift under the induced strain to P´ and Q´ separated by Δr´. 

 

the position of Q with respect to P is Δr, and the position of Q´ relative to P´ is ∆r´ = 

∆r+u(r+∆r)-u(r). Therefore the strain-induced relative displacement of Q with respect to P is 

introduced as: 

( ) ( )u u r r u r       (2.3.1) 

as a result, the position of Q´ with respect to P´ is: 

  r r u         (2.3.2) 

if the Q and P would be infinitesimally close, Δr would be a differential vector. In this case each 

component ui of the displacement u(r+Δr) can be expanded in a vector Taylor series about the 

point r:  

3

1

( ) ( ) ....i
i i j

j j

u
u r r u r r

x


     


                 (2.3.3) 

ignoring the higher order terms Δui would be: 

   

3

1

i
i j

j j

u
u r

x


  


         (2.3.4) 

the strain-induced relative displacement of any two points is calculated by integrating these 

partial derivatives ( / )i iu x   in the appropriate way; these derivatives are assembled in a tensor 

(D) which is the basis of the definition for the strain tensor: 

       𝜀 =  ∇𝑢                               (2.3.5) 

it is possible to rewrite D as a symmetric and antisymmetric part [70]: 

      𝜀 = 𝑆 + Ω
            (2.3.6) 
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1
( ( ) )

2

Ts u u               (2.3.7) 

          

1
( ( ) )

2

Tu u                   (2.3.8) 

then the symmetric and antisymmetric parts are defined as strain tensor and rotation tensor 

respectively. Writing in component form, the strain tensor is:  

1
( )

2

ji
ij

j i

uu
s

x x


 

 
    (2.3.9) 

and in tabular form: 

31 1 2 1

1 2 1 3 1

31 2 2 2

2 1 2 3 2

3 3 31 2

3 1 3 2 3

1 1
( ) ( )

2 2

1 1
( ) ( )

2 2

1 1
( ) ( )

2 2

uu u u u

x x x x x

uu u u u
s

x x x x x

u u uu u

x x x x x

    
  

     
    

   
     

    
        

               (2.3.10) 

like the stress tensor, the strain tensor is also symmetric. 

 

2.4.   Elasticity And Compliance Tensors 

The forces acting on the material are described by stress tensor whereas the strain tensor gives 

information about the deformation of the material. As they are both symmetric it is possible to 

write them in a 6 component vector format. For small deformations the stress and strain are 

linearly related to each other by the elasticity tensor: 

 

 
 
 
 
 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑥𝑧
𝜎𝑦𝑧
𝜎𝑥𝑦  

 
 
 
 
 

=

 
 
 
 
 
 
 
𝐸𝑥𝑥𝑥𝑥 𝐸𝑥𝑥𝑦𝑦 𝐸𝑥𝑥𝑧𝑧 𝐸𝑥𝑥𝑥𝑧 𝐸𝑥𝑥𝑦𝑧 𝐸𝑥𝑥𝑥𝑦

𝐸𝑥𝑥𝑦𝑦 𝐸𝑦𝑦𝑦𝑦 𝐸𝑦𝑦𝑧𝑧 𝐸𝑦𝑦𝑥𝑧 𝐸𝑦𝑦𝑦𝑧 𝐸𝑦𝑦𝑦𝑥

𝐸𝑥𝑥𝑧𝑧 𝐸𝑦𝑦𝑧𝑧 𝐸𝑧𝑧𝑧𝑧 𝐸𝑧𝑧𝑧𝑥 𝐸𝑧𝑧𝑧𝑦 𝐸𝑧𝑧𝑥𝑦

𝐸𝑥𝑥𝑥𝑧 𝐸𝑦𝑦𝑥𝑧 𝐸𝑧𝑧𝑧𝑥 𝐸𝑥𝑧𝑧𝑥 𝐸𝑥𝑧𝑧𝑦 𝐸𝑦𝑥𝑥𝑧

𝐸𝑥𝑥𝑦𝑧 𝐸𝑦𝑦𝑦𝑧 𝐸𝑧𝑧𝑧𝑦 𝐸𝑥𝑧𝑧𝑦 𝐸𝑦𝑥𝑥𝑧 𝐸𝑥𝑦𝑦𝑧

𝐸𝑥𝑥𝑥𝑦 𝐸𝑦𝑦𝑦𝑥 𝐸𝑧𝑧𝑥𝑦 𝐸𝑦𝑥𝑥𝑧 𝐸𝑥𝑦𝑦𝑧 𝐸𝑥𝑦𝑦𝑥  
 
 
 
 
 
 

  

 
 
 
 
 
 
 
𝑆𝑥𝑥
𝑆𝑦𝑦
𝑆𝑧𝑧
𝑆𝑥𝑧
𝑆𝑦𝑧
𝑆𝑥𝑦  

 
 
 
 
 
 

     (2.4.1) 

or in short format: 

     σij = Eijkl Skl        (2.4.2) 

The elasticity tensor is a forth ranked tensor with 81 distinct elements. However the symmetry 

of the stress and strain tensor is imposed to the elasticity tensor. As a result, the number of 

independent elements reduces to 36. Further reductions can be made by using the symmetries of 
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the materials. By considering an isotropic material with full rotational symmetry the number of 

independent values is reduced only to two: the Young module E and the Poisson’s ratio ν.  

The inverse of the elasticity tensor is called the compliance tensor which expresses the strain 

in terms of stress [2, 69]. Equ. 2.4.3 and 2..4.4 depict elasticity and compliance tensors for an 

isotropic material: 

   𝐶 =  

 
 
 
 
 
 

1 𝐸 −𝜈 𝐸 −𝜈 𝐸 0 0 0
−𝜈 𝐸 1 𝐸 −𝜈 𝐸 0 0 0
−𝜈 𝐸 −𝜈 𝐸 1 𝐸 0 0 0

0 0 0 1 𝐺 0 0
0 0 0 0 1 𝐺 0
0 0 0 0 0 1 𝐺  

 
 
 
 
 

           (2.4.3) 

 

 

 𝐸 =
1

 1+𝜈 (1−2𝜈2 )
 

 
 
 
 
 
 
𝐸(1 − 𝜈) 𝐸𝜈 𝐸𝜈 0 0 0

𝐸𝜈 𝐸(1 − 𝜈) 𝐸𝜈 0 0 0
𝐸𝜈 𝐸𝜈 𝐸(1 − 𝜈) 0 0 0
0 0 0 𝐺 0 0
0 0 0 0 𝐺 0
0 0 0 0 0 𝐺 

 
 
 
 
 

     (2.4.3) 

 

For non-isotropic materials, the Young modules and Poisson’s ratio are defined considering 

the direction of the applied stress: Ei = 1/Ciiii and νij = -Ciijj/Ciiii (i ≠ j) [71].  

 

2.5.  Bending Rigidity, Tension and Equation Of Motion For Plates  

Based on Ref. [68], the equations of motion are derived from the energy needed to deform the 

material. This energy depends on the strain and it should be invariant under coordinate 

transformations if the deformation is small: 

  𝑈 =   𝑈′𝑑𝑉
 

𝑉
            in which            𝑈′ =  

1

2
𝐸𝑖𝑗𝑘𝑙 𝑆𝑖𝑗 𝑆𝑘𝑙     (2.5.1) 

when the material is considered to be isotropic U´ becomes [72]: 

    𝑈′ =  
1

2

𝐸

1+𝜈
 𝑆𝑖𝑗

2 +  
𝜈

1−2𝜈
𝑆𝑘𝑘

2       (2.5.2) 

As this research is about graphene, at this section our discussion is focused on a material in a 

thin plate format in order to make the calculations simpler. Assume a thin plate under 

longitudinal tension T, which is bent. In this condition its total potential energy consists of: 
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        𝑈 = 𝑈𝐵 + 𝑈𝑇 + 𝑈𝐹         (2.5.3) 

in which UB is energy needed to bend the plate: 

             𝑈𝐵 =  
𝐸ℎ3

24(1−𝜈2 )
   

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 
2

+ 2(1 − 𝜈)   
𝜕2𝑢

𝜕𝑥𝜕𝑦
 

2

−
𝜕2𝑢

𝜕𝑥2

𝜕2𝑢

𝜕𝑦2  𝑑𝑥𝑑𝑦   (2.5.4) 

and UT is the energy of stretching which is the result of the restoring force caused by the tension: 

   𝑈𝑇 =  
1

2
 𝑆𝛼𝛽 𝑇𝛼𝛽 𝑑𝑥𝑑𝑦  where  𝑇𝛼𝛽 = ℎ𝜎 𝛼𝛽    (2.5.5) 

and UF is the effect of an external force F in z-direction: 

    𝑈𝐹 = − 𝐹𝑢𝑑𝑥𝑑𝑦      (2.5.6) 

by considering the variation of the total potential energy for an arbitrary variation of the 

displacement (u→u+δu), the equation of motion is derived for the vertical deflection of the plate: 

   𝜌ℎ
𝜕2𝑢

𝜕𝑡2 +   𝐷∇4 −
∂

∂xα
Tαβ

∂

∂xβ
 𝑢 𝑥, 𝑦 = 𝐹(𝑥, 𝑦)    (2.5.7) 

here ρ is the mass density and D is the bending rigidity. D expresses the amount of energy which 

is needed to bend a unit area of the plate and is calculated from: 

     𝐷 =
𝐸𝑖𝑛 ℎ3

12(1−𝜈2)
      (2.5.8) 

here Ein is the in-plane Young’s module. In case of the few layer graphene the bending rigidity is 

calculated by [73-75]: 

     𝐷 =
𝐸𝑖𝑛 ℎ3

12(1−𝜈2)

𝑁−1

𝑁
      (2.5.9)  

in which N is the number of layers. According to this equation the bending rigidity is vanished 

for a single layer of graphene. But molecular dynamics simulations have shown that single layer 

of graphene still has a finite bending rigidity [73, 75]. By considering the modification of the 

bending rigidity, it is possible to describe the mechanical behavior of graphene by continuum 

mechanics [76, 77]. 

 

2.6.  Graphene Nanodrums  

In this section the theoretical and experimental studies on mechanical behavior of a few layer 

graphene suspended on top of a hole (so-called nanodrum) are reviewed. In one of these 

researches Poot et al. have modeled the deformation of a graphene nanodrum which is caused by 

a point force [2]. The condition of their modeling is depicted in Fig. 2.5. 
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Figure 2.5 – Schematic view of few layer graphene suspended on top of a hole with radius R forming a 

nanodrum. An AFM tip is used to apply a force on point (r0, ϴ0) and deform the nanodrum. 

 

In the case of deforming a nanodrum, there are three variants that contribute in the restoring 

force which opposes the applied force: 

- The bending rigidity of the flake D 

- A tension that may be present in the flake T 

by replacing these terms in Eq. 2.5.7, they have calculated equation of motion for nanodrum: 

    𝐷∇4 −
∂

∂xα
Tαβ

∂

∂xβ
 𝑢 𝑥, 𝑦: 𝑥0, 𝑦0 = 𝐹𝑡𝑖𝑝𝛿 𝑥 − 𝑥0, 𝑦 − 𝑦0   (2.6.1) 

where 𝑇𝛼𝛽 =  𝜎𝛼𝛽
ℎ

0
𝑑𝑧 and the ∇-operator and partial derivatives 

∂

∂xi
 are working in the xy-

plane only, and the z-dependence is absorbed in the bending rigidity.   

Eq. 2.6.1 is solved by applying the boundary conditions. Assuming the isotropic tension and 

ignoring the external pressure the deflection profile for the small deflections compared to the 

thickness of the flake is given in polar coordinates by:  

    𝐷∇4 − T∇2 𝑢 𝑟, 𝜃: 𝑟0, 𝜃0 =
𝐹𝑡𝑖𝑝

𝑟
𝛿 𝑟 − 𝑟0, 𝜃 − 𝜃0    (2.6.2) 

The calculated deflection profile at the point where the force is applied is illustrated in Fig. 

2.6.a. According to their modeling by moving the tip away from the center of the nanodrum the 

deflection of the flake is reduced. It means that the local compliance decreases. Since the tension 

is isotropic and the flake is suspended on top of a circular hole the compliance is independent of 

ϴ0 (Fig. 2.5). In this situation the radial of the compliance reveals all the information. This 

profile is shown in Fig. 2.6.b for different values of the tension. From the picture it is clearly 

seen that the tension is a significant factor in nanoscale devices.  The profile becomes sharper at 
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the edge of the hole for a large tension and rounded when the tension is smaller. For more 

information on non isotropic tension refer to Ref. 2. 

 

 

 

Figure 2.6 – (a) Colormaps of the calculated deflection profiles (Eq. 2.34) of a nanodrum with vanishing tension. 

The force is applied at the location of the cross and the color scale is identical in all four panels: white corresponds 

to a large deflection and dark gray to no deflection, (b) the calculated radial compliance profile for different values 

of the tension, with λ2 = TR2/D [2]. 

 

Poot et al. have also measured the elastic properties of graphene nanodrums by applying a 

force with atomic force microscope (AFM) under ambient conditions. They have derived the 

map of the local compliance by application of the force-volume technique which is explained in 

chapter 4.  This map is depicted in Fig. 2.7. 

 

 

Figure 2.7 – Color map of the compliance of a flake with h = 23nm, extracted from a force-volume measurements 

(64 by 64 force-distance curves). The range of the compliance is from 0 (black) to 9.7.10-3 m/N (white) [2]. 
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In order to compare the results of the experiment with the theory and find the bending rigidity 

and the tension of the flakes, the compliance profiles calculated with the continuum model for 

the induced deflection are fitted to the experimental data. From Fig. 2.8 it is clearly seen that the 

good fits are obtained with this model. 

 

 

Figure 2.8 – (a) The measured radial profile of the compliance (symbols) of a 15nm thick flake and the fit by the 

model (Equ. 2.6.2) (solid line). (b) The radial profile of the data shown in Fig. 2.7 [2] 

 

The fitting of the data in Fig. 2.8.a reveals that for this flake the bending rigidity is the 

dominant factor of the compliance. It is seen that the profile is rounded at the edges. On the other 

hand the profile in Fig. 2.8.b is for a flake which is fitted with a large tension. That is the reason 

of the sharp edges of the profile. 

According to the results of these experiments the bending rigidity does not depend on the hole 

size and it is an intrinsic property of the flake [2]. The tension is also uniform throughout the 

flake. It means that probably the tension is induced during the deposition process [27]. 

In summary, AFM measurements of the compliance profile of a suspended flake can reveal 

important information about its mechanical properties. Merging the results achieved from this 

technique with electrical properties of graphene can yield to the information about its 

piezoresistivity which is the goal of this research. 

 



 

 

 

 

 

 

 

 

 

 

Chapter 3 

Sample Fabrication 
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3.1. Fabrication Of Graphene Nanodrums 

In this research graphene is studied in the shape of nanodrums. A nanodrum which is 

illustrated schematically in Fig. 3.1 is formed by suspending a thin layer of membrane on top of 

a hole. In our case the membrane is a few-layer graphene sheet which is suspended on top of a 

hole. 

  

 

Figure 3.1- Schematic illustration of a thin film suspended on top of a hole, forming a nanodrum, 

 (Right) top view (Left) cross section view. 

 

In researches done so far on graphene [24, 27] it is reported that the few-layer graphene is 

visible in an optical microscope, when placed on top of an oxidized silicon substrate with a 

special thickness of silicon oxide [24, 27, 78 and 79]. A small difference in the silicon oxide 

thickness can make single layer of graphene invisible. Hence, silicon with 285nm silicon oxide 

on top was selected as the substrate in this research [80].  

In order to make the graphene nanodrums, first of all the 7μm by 7μm substrate is divided to 

cells and rows by fabricating gold markers and cell numbers on it. These cells and markers are 

used for addressing the parts of the substrate which the graphene flakes are deposited. They are 

also used for the alignment of the sample for later steps like electron-beam lithography (E-

beam). Then the holes are formed on the substrate by etching. Each cell contains 486 holes with 

the diameter about 1μm. After that the graphene is deposited to the surface by mechanical 

exfoliation to form the drums. At the last step the gold contacts are fabricated around the flakes 

that cover a hole completely. In the next section all the steps of the sample preparation are 

described in detail.  

 

 

Thin layer on top of a hole 
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3.1.1.  Fabrication Of The Markers And Cell Numbers 

To fabricate the drums, first of all the substrate is cleaned by sonicating for 2 minutes in 

subsequently nitric acid, water and IPA
1
. Afterwards, as it is shown schematically in Fig. 3.2, the 

surface is coated with two layers of PMMA
2
 495 A4 (5000 rpm, baked at 150°C for 1 min) and 

one layer of PMMA 950 A3 (6000 rpm, baked at 150°C for 1 min) as the resist. Then a pattern 

of the markers and cell numbers are written by E-beam. In the next step, the resist is developed 

by MIBK
3
/IPA with ratio of 1:3 for 2 minutes and then IPA for 1 minute. This step removes the 

parts of the resist that are exposed to the E-beam; as a result, the pattern is transformed on the 

resist (Fig. 3.2).  

 

 

Figure 3.2- Schematic process of E-beam lithography and developing for formation of the markers, the pattern is 

written on the resist by E-beam lithography and is transferred to the resist after its developing  

 

Subsequently, 5nm of chromium and 50nm of gold are evaporated on the substrate (Fig. 3.3). 

In this case the gold covers the surface where there is no resist and transfers the pattern to the 

surface, the rest parts are removed by lifting off the resist. For lift off, the sample is put in warm 

acetone (55°C) for around 3 hours and then is cleaned with IPA.   

 

 

Figure 3.3- Schematic illustration of evaporation of gold to transfer the pattern from resist to the substrate and the 

lift-off process of the resist 

                                                
1 Isopropyl alcohol   
2 Polymethyl-methacrylate 
3 Methyl isobutyl ketone 
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One of the designed cells of the substrate with its markers and cell numbers is shown in Fig. 

3.4. In this cell the numbers show the number of the row and column of the cell respectively and 

the squares are the markers which are used in E-beam lithography. 

 

 

Figure 3.4- One of the designed cells fabricated on the substrate, which contains cell numbers and markers that 

are used for further designs 

 

3.1.2.   Fabrication Of The Holes 

After creating the markers and cell numbers, the holes are formed on the substrate. Fig. 3.5 

depicts its steps schematically. At first, the surface is coated by two layers of PMMA 950 A3 

(6000 rpm, baked at 150°C for 1 min) and the pattern of the holes is written by E-beam. 

Afterward the resist is developed with the same method as before (Sec. 3.1.1) and the holes are 

etched in BHF
1
 for 100 seconds. The rate of etching for BHF is 80nm/min, so the approximate 

depth of the holes is around 130 nm. After etching of the holes, the resist is lifted off in warm 

acetone like what it is mentioned above.  

 

 

Figure 3.5- Schematic illustration of E-beam lithography and etching for forming of the holes 

 

                                                
1 Buffered hydrofluoric acid 
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Fig. 3.6 illustrates the holes that are formed on the substrate. 

 

 

Figure 3.6- Holes that are formed on the substrate  

 

3.1.3.   Graphene Deposition 

Before depositing the graphene, first the substrate is cleaned and prepared. To find the 

optimum method of cleaning and preparation, three different methods are used, which are:  

A. The substrate is sonicated for 2 minutes subsequently in nitric acid, water and IPA. 

Afterward, it is dried with nitrogen, then is coated with HMDS 
1
 and is left to get dry in 

the air. HMDS is used to make the surface hydrophobic [81]. When the HMDS gets dried 

the sample is rinsed again with IPA and is put on the hot plate at 110°C for 5 minutes to 

be sure that no solvent has remained on the surface. Three samples are cleaned by this 

method, but after graphene deposition rarely a few layer graphene is achieved. 

B. The substrate is cleaned first with Piranha (H2SO4/H2O2 with the ratio of 1:3), and then 

with IPA. After that the sample is put on the hot plate at 110°C for 5 minutes to dry 

completely. One sample is cleaned by this method, but after graphene deposition no few 

layer graphene is achieved. 

C. The substrate is sonicated for 2 minutes subsequently in nitric acid, water and IPA. Then 

after drying it with nitrogen, it is cleaned with oxygen plasma for 30 seconds. Three 

samples are prepared by this method and it seems that plasma oxidation increased the 

adhesion of the flakes to the substrate, because after graphene deposition more than 20 

few-layer graphene flakes are found on the substrate.  

consequently method (C) is used as the optimum cleaning method for making the samples.  

                                                
1 Hexa methyl di silazane 
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To prepare the graphene flakes, the graphite (NGS graphite) is stuck to blue NITTO tape (SPV 

224P) and the graphene flakes are achieved by the mechanical exfoliation. After the cleaning, the 

tape is stuck and pushed softly to the substrate and the graphene flakes stick to the surface. Fig. 

3.7 depicts the graphene flakes achieved after the graphene deposition. 

 

   

Figure 3.7- Graphene flakes covering the holes after the graphene deposition to the substrate 

 

For the case of nanodrums, the deposition of few layer graphene with exfoliation of graphite at 

the end does not guaranty to have a flake completely covering a hole. As a result, a recently 

invented method called wedging [82] is also tested on one sample. In this method the graphene 

flake is floated on water and after transferring on top of the target spot of the substrate, the water 

level is lowered until the flake touches the substrate.  

But the results show that at the end all the flakes are broken. The reason is the remaining water 

on the holes that after evaporating the surface tension applied on the flake will suck the flake 

down to the bottom of the hole and break it. Consequently, it is understood that wedging cannot 

be used for fabrication of the drums with the holes which their bottoms are closed; and in order 

to get good flakes by this method some modifications should be applied in our fabrication 

process. If the holes are designed in such a way that their bottom would be open then the 

wedging method is applicable because the water is removed from the end of the hole and does 

not stuck into the hole. 

 

3.1.4.   Fabrication Of The Electrodes 

In the next step, an optical microscope is used to find the thin flakes with less than 15 layers of 

graphene which cover a hole completely. The number of layers of the flakes is first estimated 

according to their optical contrast [83]. Afterward the thickness of the flakes is measured more 

precisely by AFM. When the best flakes are selected, the surface is coated again by resist which 
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consists of two layers of PMMA 495 A4 (5000 rpm, baked at 150°C for 1 min) and one layer of 

PMMA 950 A3 (6000 rpm, baked at 150°C for 1 min). Then the pattern of the gold contacts is 

designed around the flakes on top the holes, and is written by E-beam. After that the resist is 

developed with the same method that is mentioned above. Later 5nm of chromium and 50nm of 

gold are evaporated to create the contacts around the nanodrums followed by lift off in warm 

acetone. Fig. 3.8 shows one of the nanodrums with the gold electrodes around it. In this step the 

sample cannot be dried normally with nitrogen because the tension of liquid which remains on 

the holes from the previous steps breaks the flakes. Consequently after lift off the sample is 

transferred to IPA very fast and a critical point dryer (CPD) was used to make the samples dry. 

 

   

Figure 3.8- Gold electrodes around a graphene nanodrum 

 

When the devices are formed, they need to be connected to the electrical setting which is used 

in this research. As a result the substrate is pasted to a circuit board which is explained in detail 

in the next section.  

 

3.2. Circuit Board 

After preparing the devices their conductivity is checked. Usually each substrate contains 

around 10-12 devices, but not all of them are necessarily conductive. In order to check them a 

probe station and a beeper are used which are explained here: 

The probe station is a device which utilizes some manipulators that allow the precise 

positioning of thin needles on the contacts of the devices and apply a voltage on them.  

The beeper, which is a device for measuring the resistance between two leads, is connected to 

the source and drain of the device through the probe station. It applies a voltage to the leads and 
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emits a tone when there is a resistance between the leads and shows the amount of the resistance. 

It also shows if the circuit is open.  

As a result the sample is placed on the probe station and its resistance is measured by applying 

10 mv to the source and drain of the device by the beeper. If it is not open or the resistivity is not 

very high (not more than 50 kΩ), the device is conductive and is used for further measurement.  

After that the sample is glued on top of a circuit board using silver paste and the devices are 

bonded to it by aluminum bonding wires. Fig. 3.9 illustrates one of the samples connected to a 

circuit board. The circuit board which is soldered to the connectors is used to place the sample on 

AFM and connect it to the electrical equipments which are mentioned in the next section. In this 

case, it is possible to apply a bias or gate voltage to each device and measure the connectivity of 

the device or gate current.  

 

    

Figure 3.9- The substrate is glued on a circuit board and then the devices are bonded to the substrate and the 

substrate is soldered to the connectors in order to be able to connect to the electrical setups 

 

In the next chapter the instruments and tools that are used for measurements of the devices are 

explained in more detail. 

  

Sample 

Connector 



 

 

 

 

 

 

 

 

 

 

Chapter 4 

Measurements 

 

 

 

 

 

 

 

 

 

4. Measurements: 
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As it is explained in Sec. 1.3, the general concept of measuring the piezoresistivity is applying 

a force and meanwhile measuring the conductivity of the samples. In this research, the force is 

applied with an atomic force microscopy (AFM) under ambient conditions. The AFM which has 

been used is extended with additional electrical setup to enable applying a voltage to the device 

and measuring its conductivity. In this chapter first the basic principles about AFM and the 

applied force are discussed, and later the electrical setup is explained briefly. 

 

4.1.   Atomic Force Microscopy 

Atomic force microscopy is commonly used for atomic and nano-scale measurement of 

various properties, including surface topography and interfacial forces [84, 85]. The principle of 

AFM is based on a cantilever deflection which is measured by a laser beam deflection sensor. As 

it is shown schematically in Fig. 4.1.a, it consists of a reflective cantilever with a sharp tip with 

which scans the surface. While the tip scans the surface, the cantilever is bent up or down from 

its equilibrium position, in response to the potential forces between the tip and the sample (Fig. 

4.1.b). For example, when the height of the surface increases, the force between the tip and the 

surface also increases as a result of the reduction of the distance between the tip and the surface. 

Consequently, the cantilever deflects upward. Its deflection is detected by a laser beam that 

reflects off the cantilever onto a mirror and finally to a four segment photodiode. When the 

cantilever is in its free equilibrium position (not deflected), the laser is reflected onto the center 

of the photodiode. As a result of the cantilever deflection, the laser is reflected onto a different 

part of the photodiode; the photodiode then senses the displacement of the laser beam and sends 

an electronic signal to the data processor. Then the data processor calculates height of the sample 

surface by comparison between the photodiode generated signal and a setpoint value which is 

related to the equilibrium position of the tip. Then the feedback system controls vertical z 

position of the cantilever using the photodiode signal and keeps its deflection at the setpoint 

value by moving the sample up and down
1
.  

 

 

                                                
1 In some AFMs the tip moves instead of the sample 
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Figure 4.1- (a) Schematic illustration of AFM (taken and modified from Ref. 84), (b) Tip deflection according to 

the surface roughness  

 

The sample can move relative to the probing tip by a cylindrical piezoelectric tube in x, y and 

z directions. By scanning the sample and digitizing the deflection of the cantilever as a function 

of the x and y position AFM images are created.  

The complete AFM system that has been used for the experiments in this research is shown in 

Fig. 4.2. An AFM system consists of two main components: the atomic force microscope and the 

controlling hardware. 

 

 

Figure 4.2- (Left) Atomic force microscopy, and (Right) the hardware that are used to control AFM (Multimode 

SPM with NanoScope IIIa controler) 

(b)
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The main parts of the atomic force microscope are shown in more detail in Fig. 4.3. They 

include the detection system and the scanner. The detection system which is on top consists of 

the tip and sample holder, the mirror and the photodiode. The scanner contains the piezoelectric 

tube which moves the sample and is connected to the base. Base contains some electrical setup 

and is the connector between the AFM and its hardware. Usually the AFM is connected to an 

optical microscope in order to adjust the tip on the area that needs to be scanned. 

 

 

Figure 4.3- Structure of AFM [86] 

 

 As it is shown in Fig. 4.2 the AFM hardware includes a nanoscope controller, a computer, a 

control monitor and a display monitor. Nanoscope controller is the heart of the electrical setup of 

AFM. All the analysis of the input and output signals, like signals generated by the photodiode, 

feedback loop and voltages applied to piezo, are done in this module and sent to or taken from 

the AFM. The computer and the control monitor are the interface between the user and the 

nanoscope controller. The user can control the scanning condition and also access the output data 

through the computer by the nanoscope controller software. Display monitor also lets the user to 

see the results of AFM during and after the scanning.  

 

4.1.1. Operating Modes Of AFM 

Considering the distance between the tip and the sample, three basic types of scanning with 

AFM exist. If the tip-sample separation would be small (in the order of Å) the tip is in contact 

with the surface. In this mode which is called 'contact mode' or 'static mode', the ionic repulsion 
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forces allow the surface topography to be traced with high atomic resolution. However this mode 

can be destructive for soft samples according to the small distance between the tip and the 

surface and the combination of the lateral forces and high normal forces which may lead to 

scraping between the tip and the sample [86]. 

 In non-contact mode, the separation is in the range of 10-100 nm. In this mode forces such as 

van der Waals and electrostatic forces, are sensed and give information about surface topography 

[87]. This mode is not destructive because of the larger distance from the surface but it has 

slower scan speed compared to the other modes. The reason of slower scan rate is to avoid the tip 

getting stuck into the absorbed fluid layer from the environment to the surface [86]. 

Finally in tapping mode (TM) or dynamic mode the cantilever is driven at a fixed frequency 

close or equal to its resonance frequency with constant amplitude ranging typically from 20nm to 

100nm. During measurement, the vibrating tip touches the sample surface intermittently. As a 

result of the interface forces the vibration amplitude of the tip changes according to the 

roughness of the surface. This amplitude is compared to the setpoint amplitude which is 

maintained by the feedback system and the difference is used as a parameter to track the sample 

topography. This mode has lower forces on the sample so is less destructive for soft samples [86, 

88].  

In this research two different techniques of AFM are used in tapping mode, which are: height 

image and Force-volume technique. The height image is used in order to determine the 

approximate height of the sample, the dimension of the hole and the condition of the suspended 

flake. Force-volume technique is used to apply a force and deform the flake. These techniques 

are described in detail in Sec. 4.3 and 4.4. 

 

4.2.  Electrical Setup 

It is explained later in Sec. 4.4 that the output of force-volume technique of AFM is only the 

voltages of the piezo in x, y and z direction and the tip deflection during the measurement of the 

force-distance curve. These data are used to calculate the applied force on the flake. But for 

measuring the piezoresistivity, in addition to the data of the AFM voltages, we also need to 

record the conductivity of the flake while the force is applied at each point. These are necessary 

to calculate the resistance changes according to the applied force. It is not possible to measure 

the conductivity by AFM and measuring it separately is not useful, because it cannot be 
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combined with the data of the applied force for each sample point. As a result an extra electrical 

setup is added to the AFM to let us apply a voltage to the source-drain and the gate of the device 

and measure its conductivity. In addition to that, it enables us to measure the voltages of the 

piezo and the tip deflection from AFM at the same interval that the conductivity of the sample is 

measured. Consequently, for each sample point, we can have all the necessary data for 

piezoresistivity at the same time, and merge them in different plots. 

During the measurement the sample is a part of a simple circuit which is shown schematically 

in Fig. 4.4. By this circuit, the bias and gate voltages are applied to the device and the output 

current is measured. As it is shown, the electrical circuit consists of: 

(1) A computer used for introducing the value of the bias voltage that is applied and 

recording the measured output data. The commands of the user are entered to the setup 

via the LabVIEW software.  

(2) Bias DAC controller which sends the defined value of voltages from the computer to 

the voltage source via an optically isolated connection. 

(3) IV-VI rack which is used as the voltage source and ampere meter. As it is shown in Fig. 

4.4, it has different modules which are controlled by DACs. One of the modules is 

called V-source which is connected to the source and drain of the device through MCX 

to BNC adaptor (4). In our settings it will apply a voltage in the range of millivolt. 

Another module is called Iso-V source which is connected to the gate of the device. 

This one is set to apply a voltage in the range of volt. The third module called I-

measure measures the current passes through the device. The current then is passed 

through an IV converter, with a 10 MΩ conversion factor. The output voltage is 

measured by another module called dual Iso-out. By this method the current of the 

device is converted to the voltage in order to be sent to the ADwin-Gold (7). 

(4) MCX to BNC adaptor which is used to convert different types of connectors. 

(5) AFM matrix box is a board beside AFM, containing the tip and the substrate switches. 

The Source and the drain of the sample are connected to BNC adaptor through these 

switches. The gate of the sample is also connected through one of these switches to Iso-

V source module of IV-VI rack. During the measurements these switches are on.  
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Figure 4.4- Schematic circuit of the electrical setup which enables us to apply a voltage to the flake and measuring 

its conductivity (right hand module), besides it is possible to measure the voltages of the piezo tube and the tip 

deflection simultaneously with the conductivity by this setup 

 

(6) This is the circuit board which carries the sample. It has some connectors that are 

connected to the switches of the matrix box and make the sample a part of the circuit. 

The sample is placed on the AFM by the circuit board. 

(7) Voltages are recorded with the ADwin-Gold USB (called ADwin) systems. This device 

is connected via a USB to the computer and lets us register the measured voltage by IV-

VI rack which is relative to the current of the device. It is also possible to register the 

measured piezo voltages by signal access controller (9) with ADwin. 
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(8) The Nanoscope controller which controls the feedback system and the output signals of 

AFM. It is explained in Sec. 4.1. 

(9) Signal access controller which enables the voltages of piezoelectric tubes for x, y, z and 

the tip deflection to be measured. 

(10) AFM to ADwin connector which reduces the output range of the AFM voltage (+220 

to -220 V) to the input range of ADwin (+10 to -10 V). it takes the voltages measured 

by signal access controller as input and multiply it by a factor of 1/22 and sends it to 

ADwin.  

For measurement, by defining a value for the bias and gate voltages on LabVIEW and running 

the program once by the user, that value enters in the memory of Bias DAC controller and is sent 

to related modules of IV-VI rack. The IV-VI rack applies the voltages to the source and the gate 

of the device. Then the AFM is run in the force-volume regime to apply a force (Sec. 4.4) and 

meanwhile the current passing through the sample is measured and is sent to ADwin. 

On the other side, the measured voltages by the AFM signal access controller during the force-

volume technique are transferred to ADwin. At the end ADwin sends all of these data to the 

computer at a specific time distances and they are recorded by time-trace LabVIEW program 

during the measurement. In our case the time distance between the two samples of ADwin is 1 

ms, in other words the voltages of AFM and the current are measured every millisecond. 

Consequently, with this setup we can measure the voltages of tip deflection and the piezo in x, 

y, z direction which let us calculate the force at each point (Sec. 4.4). Meanwhile when the force 

is applied, we can measure the current of the sample. These data are processed by a program 

which is made in Matlab in order to get the profiles of the changes in the compliance and 

resistivity of the graphene flakes. The detail about the program is explained in Sec. 4.3.1 and 

4.4.2. 
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4.3.  Height Image 

The function of the tapping mode height image is already explained in sec. 4.1. The output of 

AFM in this mode is an image with a color plot according to height of the surface. Fig.4.5.a 

depicts the AFM height image of a flake suspended on top of the holes. 

 

 

Figure 4.5- (a) AFM Height image of a suspended graphene flake on top of the holes, (b) cross section analysis of 

the flake to find the height difference between the points of the red markers. The marker # 1 points the flake on top 

of the substrate and the marker # 2 points the substrate, the inset depicts where the section analysis has been done. 

 

One of the options of the nanoscope’s controller software is the section analysis which plots 

the height difference at the cross section along a line plotted on the surface. This option is used 

for the height image to measure the thickness of the flake. In Fig 4.5.b the section analyses of the 

flake along the line which is shown in intersect, is illustrated. By moving the red markers to 

different points the program shows the height difference between those points. In Fig. 4.5.b 

marker 1 is on top of the flake and marker 2 is on the substrate. According to the section analysis 

the approximate difference between the heights of these two points is about 3 nm which shows 

the thickness of the flake. 

For taking the height image one should define for AFM: 

- The dimensions of the area that needs to be scanned. 

-  The velocity with which the tip scans one line of the surface (tip velocity). 

- The number of sample points at each line in x and y directions. The voltages of the piezo are 

measured by AFM at each sample point.  

As it was explained before, while taking the height image the voltages of the piezo tubes at x, 

y and z directions are measured by ADwin. In the next section it is explained that how a program 

is made in order to reconstruct the height image by using the ADwin data.  
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4.3.1.  Reconstructing The Height Image From The Data Measured By 

ADwin 

In Sec. 4.2 it is explained that in order to investigate the piezoresistivity of the flakes we need 

to measure the piezo voltages of AFM and the conductivity separately with ADwin. Later we 

will explain in Sec. 4.4.2 that these data are used to reconstruct the results of the force-distance 

curve measurements. Making a program that can reconstruct the force-volume results in first step 

is complicated. Consequently, we first start to make the program for the height image which has 

less data points and is easier to find logic to reconstruct the image. Later we will apply this logic 

and improve it to reconstruct the results of the force-volume technique. 

In AFM the distance that the tip moves in each direction to scan the sample is (more or less) 

proportional to the voltages of the piezo in that direction. So the pattern of the changes in the 

piezo voltage in the x and y direction shows the pattern of the tip motion.  

During the height image the voltages applied by the AFM controller to the piezo tube (Vx, Vy 

and Vz) are measured at every millisecond using ADwin. These data contains the voltages at the 

coordinates of the sample points and also some electrical noises. Thus the data points of ADwin 

are more than AFM. The reason is the difference in  is the mismatch between the interval that the 

tip moves from one AFM sample point to the other (depending on the tip velocity and number of 

sample points) and the interval that the data are measured and recorded with ADwin (1 ms).  

As a result a program is made in Matlab to reconstruct the height image by using the voltages 

measured with ADwin. Before explaining about the program it is necessary to explain in more 

detail how the tip moves while creating the height image. 

Assume that a rectangular area with the dimension of X and Y is scanned (in our case X and Y 

are equal). For the scanning, the tip moves to one of the corners on bottom or top of the 

rectangular and starts scanning. Fig. 4.6 shows schematic motion of the tip on x and y direction 

during scanning. The tip scans the surface line by line by moving in a zigzag fashion in x and y 

direction. The number of lines is equal to the number of sample points that is defined by the user 

for AFM in y direction. During the scan of each line AFM records the piezo voltages at some 

equidistance points. The number of these points is equal to the number of AFM sample points in 

x direction.  
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Figure 4.6- Schematic illustration of the tip motion on the surface during scanning the height of the surface  

 

Consequently, these AFM sample points make a grid over the surface. The program reconstructs 

this grid by finding the approximate voltage of each AFM sample point from the voltages 

measured by ADwin. Then it fits a surface according to the piezo voltage is z direction over the 

grid. Here it is explained how the grid is reconstructed. 

Fig. 4.7 depicts the changes in voltage of piezo in x direction (Vx) versus time. During the scan 

of the height of the surface the piezo compresses and extends in x direction repeatedly in order to 

move the tip forward and backward at each line. The approximate interval of scanning of each 

line in forward or backward direction is calculated by using length of the line and tip velocity. It 

is not precise because the extension of the piezo is not completely linear when it extends more 

than a range. But it can be used to find the time of the first minimum and maximum in Vx. Then 

the difference between the time of the first minimum and maximum gives a more accurate 

interval with an uncertainty of approximately 1ms. 

 

 

Figure 4.7- Schematic illustration of piezo voltages in x direction vs. time during height image technique of AFM 

 

Furthermore by knowing the interval and the time of the first minimum and maximum, the 

times of all the minima and maxima values in Vx are found. At this stage, the slope of a line that 
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fits to all the minima (or maxima) gives an even more accurate interval. To be more precise in 

our program, a line is fitted first to all the minima and then to all the maxima; the slopes of these 

lines is equal to the double length of interval because it shows the time that the tip completes 

scanning one forward and one backward direction. So the most precise interval is achieved by 

using the average of the slope of those lines.  

Fig. 4.8 illustrates an example of the method that is used to derive the coordinate of the tip at 

each moment from the piezo voltages that are measured by ADwin. By calculating the ratio of 

the interval which is passed at each moment, it is possible to find the position of the tip on each 

line. 

    
∆𝑉

𝑉
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ×  

∆𝐿

𝐿
       (4.3.1.1) 

Here V and L are the difference between the value of the voltage of the maximum and 

minimum in the first interval and the length of the scanned line (defined by user) respectively. 

By using double length of an interval in this method it is also possible to calculate the coordinate 

of the tip separately for forward and backward direction at each moment. For example, in Fig. 

4.8 assume that the line scan starts at t = 60. (This is the time of the first point of the interval 

when x=0).  Then For scanning a line with the length of 1μm if we consider double length of 

interval as 2 seconds, at the moment when one quarter of the interval is passed (t = 60.5 sec), the 

tip is in the coordinate of x=0.5μm in the forward direction (Point A). When the tip reaches to 

half of the interval (t = 61sec), it finishes one forward motion and starts to move backward (Point 

B). After passing three quarter of interval (t = 60.5), the tip is in x=0.5μm in the backward 

direction (Point C).  

 

 

Figure 4.8- Calculating the motion of the tip in x direction from the double length of an interval 
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The next step after converting Vx to x coordinate of the tip at each moment is to find its y 

coordinate, which its period is equal to the time of the beginning and ending of the scanning. 

Usually measuring of the voltages starts by the time-trace program before the tip reaches to the 

top or bottom corner and starts scanning. The reason is that it is not easy to start measuring 

exactly at the same time that the tip starts scanning so the time-trace program is run it a few 

seconds earlier. As a result in the program the extra voltages should be omitted before 

reconstructing the image. It is done while finding the y coordinate of the tip at each moment. 

To find the coordinate of the tip in y direction first the interval in y direction is found. The 

interval in y direction is equal to the time in which the AFM scans all the lines in forward and 

backward direction. It means that during this time AFM scans the defined area once. 

Consequently, if we assume that scanning starts from the bottom, the minimum in y piezo 

voltage is the first point of the first interval in x piezo voltage; and the maximum of y piezo 

voltage is the last point of the last interval of x piezo voltage or vice versa (It is vice versa if the 

tip starts scanning from the top). 

Assume that the scanning starts from the bottom, to determine the first point of scanning, the 

time difference between the minimum of Vy (Vymin) and the first minimum and maximum of Vx 

are compared respectively. The one that has smaller time difference with Vymin is considered as 

the first point. In order to find the last point of scanning, at first the length of Vy and interval of 

Vx are used to find the last maximum and minimum of Vx. Furthermore, the time difference 

between the maximum of Vy (Vymax) and the last minimum and maximum of Vx are compared, 

and the one which is closer in time to Vymax is considered as the last point. When the first and the 

last point of scanning are determined, the interval in y direction is calculated. After that, the y 

coordinate of the tip at each moment is calculated with the same method which is used for x, by 

using Vy and the y interval. At the end the voltages of the times before and after the y interval are 

omitted from the x and y voltages. Once knowing the x and y coordinate the surface is gridded 

according to the number of sample points in x and y direction. 

Furthermore, the coordinate of the piezo in z direction which shows the height of the sample at 

different points is derived by dividing the z piezo voltage by the z piezo sensitivity. In our AFM 

scanner the z piezo sensitivity is equal to 12.8 mV/nm. In continue a value of z is interpolated to 

each point of the grid. The result of this step is a matrix consisting of z value at each point of the 

grid. The number of sample points in x direction determines the number of the columns of the 
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matrix and the number of sample points in y direction determines the number of the rows. By 

creating the matrix, a surface with the form of z = f(x, y) is fitted to the grid. In other words, the 

program will interpolate a surface at the points of the grid according to the z piezo coordinate.  

Fig.4.9 depicts the AFM height image of a graphene flake taken from two different area (a, c) 

and their reconstructed image from the measured data with ADwin (b, d). Comparing Fig. 4.9.a 

and b it is seen that they are more or less the same, but with some small differences, i.e. in the 

shape and the place of the holes. But Fig. 4.9.d is very similar to its AFM image (Fig. 4.9.c). The 

differences are mostly because of the nonlinearity in the extension of the piezo tube when it 

extends more than a critical range. This is very small but it makes some shifts in the 

reconstructed image. As in the program the changes in the piezo voltages are considered to be 

only linear. This is clearly visible when we compare the accuracy of Fig. 4.9 b with d. In Fig. 

4.9.b the length of the scanned area is larger than d, as a result the piezo extends more and the 

effect of the nonlinear extension appears more. That is why Fig. 4.9.b is less accurate than Fig. 

4.9.d comparing to their AFM images. Besides the electrical noises that are inevitable in the 

ADwin data and other approximations that are made in the program causes some changes in the 

reconstructed program. But in general it can be concluded that the logic which is used to make 

this program can further be applied for reconstruction of the results of the force volume 

technique.   
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Figure 4.9- Height image of a graphene flake suspended on top of a hole (a, c) image taken by AFM, (b, d) image 

reconstructed by a program made in Matlab (dashed line shows the boundary of the flake) 

 

Another technique which is used to apply a force on the sample is force-volume technique. In 

next section, this technique is explained in more details. 

 

4.4.   Force-Volume Technique 

Force-volume technique is a technique of AFM in which multiple force-distance curves are 

recorded while scanning the surface in a rectangular grid over the sample [89]. In our research 

this technique is used to apply a force on the flake in order to deform it and measure its 

compliance profile. The force distance curve which is depicted in Fig. 4.10.a is used to get some 

information about the mechanical properties of the material.  
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In Fig. 4.10.b it is shown that how a force-distance curves is measured. In order to measure 

the force-distance curve of a point, the tip approaches the surface from a specific distance (Zpiezo) 

until a maximum deflection of the cantilever (Ztip) occurs. Afterward the tip is retracted from the 

surface and goes back to the same height as before approaching.  

     

Figure 4.10- (a) A force-distance curve of the AFM in approaching and retracting regime. (b) Schematic 

illustration of the interaction of the tip and the sample in approaching (A- C) and retracting (D-F) regime. 

 

Here it is explained in detail that what happens to the tip at every step while recording a force-

distance curve [90]: 

At the beginning the piezo extends in order to bring down the tip (A); here there is no interaction 

with the surface yet because of the large distance between the tip and the surface. At some point 

the tip is pulled down by attractive Van der Waals forces near the surface (B). After that because 

the piezo is still bringing down the tip, the tip applies a force and pushes the surface (C). This 

leads to the sample indentation and the cantilever upward deflection. This step continues till the 

cantilever deflects to a threshold value. Then the piezo retracts, and the cantilever reaches to the 

zero deflection, afterward the cantilever bends downward as the surface attraction holds the tip 

(D). It continues until the tip forces are in equilibrium with the surface forces. By continuing the 
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retraction of piezo, at some point spring constant of the tip overcomes the surface attraction and 

separates the tip from the surface and cantilever rebounds sharply upward (E). Later the tip 

ascents because the piezo continues retracting, but there are no further interaction with the tip 

and the surface. 

One of the important properties that force-distance curve reveals, is the material’s elasticity. In 

our case the most interesting parts of the force-distance curve are the steps C and D because the 

tip is in constant contact with the sample and applies a force on it. Here it is shown that the slope 

of the force-distance curve in these steps is used to calculate the compliance of the flake. i.e. in 

step C, the more the tip is pressed onto the material, the more the deformation is induced to the 

membrane under it. Consequently, according to the stiffness of the membrane, the cantilever 

bends upward in response to the restored forces on the membrane which are caused by the 

deformation. In Fig.4.11 the deflection of the cantilever (Ztip), the deformation of the flake (U) 

and the distance between the tip and the sample (Zpiezo) are shown schematically. By using 

Hook's law it is possible to calculate the applied force from the deflection of the tip.   

     𝐹𝑡𝑖𝑝 =  −𝐾𝑡𝑖𝑝 × 𝑍𝑡𝑖𝑝      (4.4.1) 

Here Ktip is the spring constant of the tip which is measured by the force calibration method 

(explained in Sec.4.6). In this case the force should be small enough to keep the deformation of 

the flake in the linear regime; otherwise the Hook’s law is not applicable. 

 

 

Figure 4.11- Schematic illustration of the tip deflection (Ztip), the flake deformation (U) and the tip-sample 

surface (Zpiezo) 

 

In Fig. 4.11 point A shows the position of the cantilever when it is in contact with the tip but 

no force is applied and consequently no deformation is induced to the flake yet. In continue, as 

the piezo brings the sample up and consequently the tip approaches the surface from point A, 

U

Z
tip A

Zpiezo
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Zpiezo decreases and meanwhile causes the deformation of the flake and the deflection of the 

cantilever. As a result, the deformation is calculated from: 

𝑈 = Ztip − 𝑍𝑝𝑖𝑒𝑧𝑜                (4.4.2) 

in Equ. 4.4.2, when Zpiezo = 0, the maximum tip deflection occurs and the retracting regime will 

start.By knowing the amount of the applied force and the deformation of the flake for a given 

amount of the downward tip motion it is possible to calculate the compliance of the flake: 

                 𝐾−1 =  −𝜕𝑈/𝜕𝐹𝑡𝑖𝑝                 (4.4.3) 

equation 4.4.4 is achieved by replacing equations 4.4.1 and 4.4.2 in 4.4.3, in this formula S= 

dztip/dzpiezo is the slope of the force distance curve. 

 𝐾𝐹
−1 =  −d𝑈/d𝐹

𝑡𝑖𝑝
=  𝐾𝑡𝑖𝑝

−1(𝑆−1 − 1)    (4.4.4) 

hence by Equ. 4.4.4 it is shown that how the compliance of the flake is calculated directly from 

the inverse of the slope of the force-distance curve. As it is explained before the slope of the 

force distance curve on the step C is used in Equ. 4.4.4. According to this equation there is an 

inverse relation between the force-distance slope and the compliance of the flake. Thus the more 

is the slope, the smaller is the compliance and the less is the induced deformation (U) and vice 

versa. 

For extracting all the mechanical properties of a membrane the compliance of a single point of 

the flake is not enough [89]. Therefore, in order to have a profile of the compliance over the 

surface, the data should be taken across the surface. Force-volume technique is one of the 

techniques to measure the elasticity at multiple points on a surface and construct a map of the 

local compliance over the scanned area.  

 Here it is necessary to mention that as it is explained in Sec. 4.5 the tip deflection is related to 

the associated AFM photodiode voltage by a constant called sensitivity. As a result, the tip 

deflection voltage versus the tip-sample distance can also be considered as a force-distance curve 

which is the case in this research. 

During the force-volume technique voltages for each force-distance curve are recorded by 

AFM which are used by a program called Mega to reconstruct it. In the next section it is 

explained in detail. However, it is mentioned in Sec. 4.2 that the voltages that are recorded by 

AFM cannot be used directly for measuring piezoresistivity because it does not contain 

conductivity for each sample point. Consequently, in order to combine the results of the force-

volume technique with the electrical properties of the flake the voltages are measured also by 
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ADwin. As later in this chapter more explanations are given, similar to reconstruction of the 

height image, we made a program in Matlab to reconstruct the force-volume results from the 

ADwin data and merge them with the electrical properties. As a result, the Mega program is only 

used to confirm that the curves that are given by the program are precise.    

 

4.4.1.  Reconstructing The Force-Distance Curves From Data Measured 

With AFM 

The recorded voltages of AFM for force-volume technique are saved in a data file and contain 

the voltages of piezo in x, y and z direction and the tip deflection. These voltages are used to 

reconstruct the force-distance curve for each sample point by a program called Mega. Mega is a 

package of programs made in Matlab which can read out AFM output data file. This package is 

designed by molecular electronic and devices (MED) group in TU Delft. By this program it is 

possible to calibrate the sensitivity of the photodiode to the tip deflection (Sec 4.5) and plot the 

force-distance curve or the flake deformation versus tip deflection at every sample point. In Fig. 

4.12 a force-distance curve is plotted for a sample point which is on the hard substrate by Mega. 

 

     

Figure 4.12 – Force-distance curve of a hard substrate plotted by Mega program from the voltages recorded by 

AFM 

 

It is explained before that the more the tip applies a force on the flake to deform it, the more is 

the tip deflection. So the tip deflection is a measure of the applied force. The amount of the 
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deformation of the flake cannot be derived directly from the force-distance curve. Therefore, U 

vs. Ztip is plotted to depict how much the flake is deformed while the force is increased. One of 

the samples of these graphs is illustrated in Fig. 4.13 for a sample point on the hard substrate by 

Mega.  

 

 

Figure 4.13 – The deformation of a hard substrate vs. the tip deflection plotted by Mega program from the 

voltages recorded by AFM      

.  

In this figure it is seen that at first the tip deflection is zero while the deformation is negative 

and it starts to increase as soon as the deformation starts to become positive. The reason of 

having such a graph is that when the tip is far from the surface, its deflection is zero and Eq. 

4.4.2 yields to a negative value of U. This should, however, not be interpreted as the physical 

deflection of the flake as the flake and the tip do not touch. It is however convenient to include 

this part of the data in the plot of U v.s. Ztip as it gives information about the approaching regime 

of the force-distance curve that would otherwise be lost. In the case of Fig. 4.13 the deformation 

is approximately zero which shows that the membrane is so stiff that cannot be deformed by the 

applied force. 

As Mega program uses the data recovered by the AFM, its results are accurate. Consequently 

it is used to confirm the accuracy of the results achieved from the ADwin data. Later, at each 

step the results of Mega are discussed and compared with the results of our program.  
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In the next section it is focused more on the tip motion in force-volume technique and it is 

explained how a program is made in Matlab to reconstruct the force-distance curves from the 

AFM voltages. 

 

4.4.2. Reconstructing The Force-Distance Curves From Data Measured 

With ADwin-Gold USB 

During the force-volume measurement of the devices, the voltages of x, y, z piezo and the tip 

deflection, plus the conductivity of the flake are measured and recorded through ADwin-Gold 

USB by time trace software, every millisecond (Sec. 4.2). According to the scan rate of AFM in 

our setup each force volume measurements takes about one hour. During this time, ADwin 

measures about 3.1x10
6
 points which is much more than AFM data points. Like it is explained in 

Sec.4.3.1 the ADwin data contains the information of the sample points and also the electrical 

noises. Consequently, in order to reconstruct the force-distance curves from the ADwin data, we 

made a program in Matlab which is explained here in detail: 

When performing the force-volume technique in tapping mode, at each sample point the piezo 

scanner keeps the position of the tip at a fixed x and y position while the AFM records the force-

distance curve of that point. Afterwards, when the tip is retracted, the piezo continues the xy 

motion (Fig. 4.6) till the next sample point. It means that the tip remains for a longer time at each 

sample point and the x and y piezo voltages are approximately the same during the approaching 

and retracting regime. As it is shown schematically in Fig. 4.14, such motion makes a step for 

each sample point at the voltage of piezo in x and y direction. 

The complication of such motion is that the length of the step is not the same at every point 

because the tip has to move further up or down to obtain the same tip deflection as the surface 

height changes. 

The first part of the program is to find the voltage of x piezo at each step. In Fig. 4.14 point A 

and B show the points in the middle and end of one step respectively. Point C shows the first 

point of the next step. By comparing the voltages of these points, it is clearly seen that there is a 

significant difference between the voltages of points B and C. In contrast, the difference between 

the voltage of points A and B which are at the same step is small. This fact can be used to find 

the first point of each step. The voltage of x piezo is checked in an interval of approaching and 

retraction motion of the tip (average length of the steps). In this interval the times of the two 
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voltages that have the maximum difference compared to the other points are selected as the time 

of finishing the current step and starting the next step respectively. When the times of the first 

and last point of each step are found, it is possible to determine the value of average x and y 

piezo voltage and the tip deflection voltage plus the average conductivity for each step. With this 

information, we are able to separate the individual force-distance curves.  

 

 

 

Figure 4.14 – Schematic motion of (a) x and (b) y piezo voltage in force volume technique, in reality the length of 

the steps are not the same at every point because the time that each force-distance curve takes depends on the height 

of the surface. 

 

In the next part, the designed program separates the values of the voltages for approaching and 

retracting regime of the tip for each step. The tip-sample distance and the tip deflection voltages 

vs. time are shown schematically in Fig. 4.15. In Fig. 4.15.a as the z piezo voltage is reduced, the 

tip approaches the surface, thus the minimum value is the interface between the approaching and 

retracting regime. It is shown in Fig. 4.15.b that at the moment when the tip-sample distance 

reaches to its minimum the maximum of the tip deflection and the change in the resistivity 

occurs. In the program, the index of the minimum value of the tip-sample distance is determined 

along each step to distinct the approaching and retracting regime. 
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Figure 4.15- Changes of (a) the piezo voltage in z direction, (b) tip deflection voltage (c) the resistivity (which 

can either increase or decrease depending on gauge factor (GF) of the device), vs. time during the recording of 

force-distance curve 

 

Afterward, it is possible to calculate the tip-sample distance and the tip deflection using the 

sensitivity and consequently the deformation of the flake by equation 4.4.2 for each step, 

separately for approaching and retracting regime. When all the data for each sample point are 

obtained separately, we can plot the force-distance curve for each point. Fig. 4.16.a depicts a 

force distance curve for a sample point which is plotted by our program. In this plot the values of 

the approaching and retracting regime are shown with different colors and the steps of the force-

distance curve that are explained in Sec. 4.4 are visible. Besides, a line is fitted to the step C of 
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the force-distance curve (Sec. 4.4) in order to find the slope of the force-distance curve. Then the 

compliance of the flake is calculated according to Eq. 4.4.4.    

 

  
Figure 4.16- (a) The force-distance curve, (b) induced deformation vs. tip deflection, plotted by ADwin data, for a 

point on the substrate 

 

In Sec. 1.3 the piezoresistivity is explained and it is explained that the Gauge Factor (GF) 

which is defined by Equ. 1.3.3 is usually used to measure this property. In this equation it is 

shown that: 

GF ≈ ∆R/ε 

as the calculation of the induced strain on the flake in our case is complicated and needs more 

simulations, in this research instead of calculating GF, we try to show the piezoresistive behavior 

of graphene by considering the factors that are related to the strain and cause the changes in the 

resistance. In other word, as: 

ε ≈ ϭ ≈ F     (ϭ: stress, F: applied force) 

we can investigate the effect of the factors that change the applied force. One of these factors is 

Zpiezo, from the force distance curve it is clear that when the tip touches the surface, by reducing 

Zpiezo the applied force increases and causes the deformation and induces strain. Consequently, in 

our case the slope of the R vs. Zpiezo is used as a symbol of GF to show the piezoresistive 

behavior of graphene.  

Plotting ∆R versus the Zpiezo for each sample point is derived from the ADwin data. It is shown 

in Fig.4.17 for an approaching regime. The slope of this plot from the point that the tip deflection 

starts, can show the trend of changes in GF. These plots are used to make the profiles of the flake 

properties over the surface. 
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Figure 4.17- Change in resistivity vs. tip-sample distance for approaching regime for a sample point plotted by 

ADwin data 

 

In order to get the profiles of the height, compliance and changes in the resistivity, first the 

slope of the force-distance curve is used to calculate the compliance of the flake at each sample 

point. Furthermore, the compliance values are fitted over the grid of the surface with the same 

method as the height value explained in Sec. 4.3.1. After that the slope of the changes in 

resistivity versus Zpieoz is determined for each sample point and its profile is plotted over the 

surface. The reason of using the slope of the resistivity changes is that in our case the changes in 

the resistivity are so small; to show the changes more precisely the slope is used instead of ∆R. 

All the mentioned profiles are illustrated in chapter 5. 

 

4.4.3. Comparing The Results Taken From AFM Data With The Results 

of ADwin-Gold USB Data 

As it is mentioned before the voltages measured by AFM can be used as a source to prove that 

the program which we have made works properly. In this section, the curves that are plotted for 

different sample points with AFM and ADwin data are compared together. 

  Fig. 4.18 (a-d) depicts the force-distance curves and the deformation versus the tip deflection 

for a sample point of the flake on the hard substrate plotted by ADwin and AFM data.  
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Figure 4.18 - (a) The force-distance curve plotted by AFM data, (b) The force-distance curve plotted by ADwin 

data, (c) U vs. Ztip plotted by AFM data and (d) U vs. Ztip plotted by ADwin, for a point of the flake on the hard 

substrate 

 

From Fig. 4.18. it is clearly seen that in both a and b the tip deflection starts at the same height 

above the surface and also the slopes of the force-distance curve and the maximum tip deflection 

are almost the same. The deformation of the flake in c and d is also the same and is almost zero. 

In general the results which are derived by ADwin data match very well with the results of AFM 

data. But there are also some differences. One of the differences is the number of points in the 

results of ADwin. The reason is that the number of points that ADwin measures are more than 

AFM and this is because of the difference in their sampling rate; i.e. in our case, the sampling 

rate for AFM is set to be around 77 per seconds while for ADwin is around 1000 per seconds. So 

the number of measured values by ADwin is about thirteen times more than AFM. The other 

difference is a small variation in the value of the voltages in ADwin compared to AFM which is 

the result of the electrical noises and some approximations in the program that are explained 

before. However, the effect of these differences is small and can be ignored.  
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In fig.4.19 the same plots as fig.4.18 are illustrated for a point of the flake which is on the 

center of the hole. It is seen that the slopes of the force-distance curves and U vs. Ztip are almost 

the same in a and b, and c and d respectively. The deformation also starts at the same height in 

the plot of AFM and ADwin. 

 

     

    

Figure 4.19- (a) The force-distance curve plotted by AFM data, (b) The force-distance curve plotted by ADwin 

data, (c) U vs. Ztip plotted by AFM data and (d) U vs. Ztip plotted by ADwin for a point of the flake on the center of a 

hole 

 

By comparing the results of ADwin with AFM, it is proved that the measured voltages with 

ADwin can be used reliably for the determination of the applied force by the AFM tip and the 

deformation of the flake.  

 

4.5. Tip Deflection Sensitivity 

The voltages that are measured by AFM or ADwin for the tip deflection can be converted to 

Ztip by a constant factor called the tip deflection sensitivity. It represents the cantilever deflection 
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signal (Vztip) versus the deflection of the tip in Z direction (Ztip). In other words, it shows if the 

cantilever deflects one nanometer, how much the tip deflection voltage will change.  

𝑉𝑧𝑡𝑖𝑝 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑍𝑡𝑖𝑝    (4.5.1) 

The tip deflection sensitivity is achieved by the calibration. The calibration of the sensitivity is 

necessary in order to derive accurate data from force-distance plots. For calibration a force-

distance image is taken on the hard substrate. Because the substrate cannot be deflected by the 

tip (i.e. U = 0 in Eq. 4.4.2), the tip deflection is equal to the extension (or compression) of the z 

piezo tube ( )tip piezoZ Z . So the slope of the force-distance curve is used to extract the tip 

deflection sensitivity.  

In order to do the calibration, first a force-volume image is taken by AFM on the silicon 

substrate. Then the slope of the force-distance curves are determined for every sample point; and 

as depicted in Fig. 4.20, the slopes are illustrated with a histogram, and their average is 

considered as the average of the tip deflection sensitivity (Table 4.1). To be more precise, in our 

case, it is done for approaching and retracting regime separately and their average is used as the 

tip deflection sensitivity. 

The calibration is done by both AFM and ADwin data and their results are compared together. 

The results are depicted in Fig. 4.20 and table 4.1. One should pay attention that the data ranges 

of the histograms are not the same for AFM and ADwin. The histograms of Fig. 4.20 show the 

scattering of the range of the slopes for force-distance curves in each regime. The wider are the 

histograms the more scattered are the range of the slopes.  

A small difference in the sensitivity achieved by AFM data compared to ADwin is acceptable 

because in AFM we have the exact data of sample points, but in ADwin there are also some 

electrical noises which can lead to a larger uncertainty in the results. 
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Figure 4.20- The histogram of the tip deflection sensitivity for approaching and retracting regime respectively 

derived from AFM and ADwin output data 

 

Table 4.1- the average tip deflection sensitivity for approaching and retracting motion of the tip 

 AFM data ADwin data 

Approaching sensitivity (mV/nm) 11.5 ± 0.1 12.2 ± 0.8 

Retracting sensitivity (mV/nm) 12.1 ± 0.1 13.2 ± 0.9 

Average of the tip deflection 

sensitivity (mV/nm) 
11.8 12.7 

 

For analyzing the data of each source (AFM or ADwin) we use its own sensitivity to get the 

more precise results. The accuracy of the results depends on the accuracy of the designed 

program and the tip deflection sensitivity calibration. In addition to that it is necessary to 
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determine the spring constant of the cantilever in order to calculate the applied force. This is 

done by a method called force calibration which is explained in the next section. 

 

4.6. Force Calibration 

Reliable results of the applied force from the measured voltages of the AFM tip deflection 

require an accurate calibration of the spring constant of the tip. There are several methods to 

estimate the spring constant of a tip such as reference cantilever method [84], theoretical 

methods according to cantilever geometry and materials and thermal noise method [84]. 

In this research we have used the thermal noise method to calculate the spring constant of the 

tip, but the values that was achieved does not seem logical, as a result at the end the values that 

are reported by the manufacturing company of the tips which in our case is 42-46 Nm
-1

, is used 

to calculate the applied force. 



 

 

 

 

 

 

 

 

 

 

Chapter 5 

Results and discussions 
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After preparing all the requirements of measuring the piezoresistivity with our method, it is 

possible to measure the devices. In this thesis the piezoresistivity of two flakes with the average 

thickness of 3 nm (measured by AFM) which means that the flake has about 10 layers of 

graphene are measured. In general, they both showed the same behavior.  

In order to measure, first the device is placed on AFM and connected to the electrical setup. 

Furthermore its electrical conductivity is checked to be sure that the device is conductive. Then 

the height image technique is used to focus on top of the hole. After that the force-volume 

measurement is taken while a bias voltage is applied to the device and meanwhile the 

conductivity of the device is recorded. In this chapter, first it is explained that how the 

conductivity of the device is checked and then the results of one of the devices is discussed.  

 

5.1.  Checking the Connectivity Of The Devices 

Before doing the AFM measurements, the conductivity of the device is checked by measuring 

the resistance and its changes according to the bias and gate voltages. The device which its 

results are reported in this chapter is depicted in Fig. 5.1. In this nanodrum the diameter of the 

hole is 1µm and as mentioned above the average thickness of the flake is 3 nm. In this device the 

distance between the electrodes around the drum is around 2µm.  

 

  
Figure 5.1- The measured nanodrum with gold electrodes, the diameter of the hole is 1µm and the thickness of 

the flake is 3nm. 

 

 The resistance of the device is determined by measuring its IV curve. Fig. 5.2 depicts the IV 

curve of the device in Fig. 5.1. It is seen that the device has a linear IV curve with a resistance of 

about 3.5 kΩ.  
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Figure 5.2- IV curve of one of the nanodrums which is a linear and shows a resistance around 3.5 KΩ 

 

In the next step the gate dependence of the device is checked in a way that a fixed bias voltage 

is applied and the gate voltage is changed. The means of this test is to see if the electric field 

caused by the gate voltage can change the band gap of the graphene layer by changing the 

distance between the layers and consequently affect its resistivity or not. In general significant 

gate dependence is expected for single layer and few layers graphene (n < 3), but if the number 

of layers increases the gate dependence disappears [27]. In our case to see if the conductance is 

gate dependent a small bias voltage (10 mV) is applied and the gate voltage is swept from -8 to 

+8 V. According to the results (i.e. Fig. 5.3), in all of our devices no gate dependence is 

observed. The reason is the thickness of the flakes, because the flakes are around 10 layers, so no 

gate dependence is shown. 

 

 

Figure 5.3 – The plot of current vs. gate voltage to check the gate dependence of the conductance  
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These measurements illustrates that the device shows ohmic behavior with no gate 

dependence. In the next section the results of the force-volume measurements and the 

piezoresistivity of one of the devices are illustrated and discussed. 

5.2.   Results Of The Piezoresistivity 

5.2.1.  Individual Sample Point Measurements 

After it is shown that the device is conductive a height image is taken off the area of the drum 

which is depicted in Fig. 5.4. In this image, point A shows a part of the flake which is on the 

hard substrate and point B shows a part of the suspended flake which is on the center of the hole.  

The darker color which is more significant by approaching the center of the hole illustrates that 

the flake is more suspended on the center compared to the edges of the hole, the bright triangle 

on top right is related to the electrodes that are formed around the hole 

  

  

Figure 5.4- AFM height image of a nanodrum, the darker color which is more significant by approaching the 

center of the hole illustrates that the flake is more suspended on the center compared to the edges of the hole, the 

bright triangle on top right is related to the electrodes that are formed around the hole 

 

After the height image the bias voltage is applied to the source and the drain and finally the 

force-volume measurement is started. Fig. 5.5 depicts the reconstructed force-distance curves 

and the deformation versus the tip deflection for the points A and B of the device which is shown 

in Fig. 5.4.  
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Figure 5.5 – (a) The force-distance curve of a point A on the hard substrate, (b) The force-distance curve of  a 

point B on the flake on the center of the hole, (c) U vs. Ztip of a point A on the hard substrate, (d) U vs. Ztip of a point 

B on the flake on the center of the hole. 

 

By comparing the plots of Fig.5.5.a with the one in Fig.5.5.b, it is clearly seen that the plots 

are more rounded for the point on the center of the drum than the substrate. Besides, the slope of 

the force-distance curve in step c in Fig.5.5.b is less than Fig.5.5.a. According to Equ. 4.4.4. it 

shows that the flake is more deformable on the center of the hole compared to the top of the 

substrate. Consequently when the force is applied by the tip, the flake applies less force on the 

cantilever to bend it upward. And the maximum tip deflection is achieved gradually. The amount 

of the deformation of the flake is determined from Fig.5.5.c and d. In these plots it is seen that 

for the case of the substrate no deformation is achieved by increasing the tip deflection (or 

force). In contrast, the deformation of the flake is achieved up to 50 nm by applying the force 

and increasing the tip deflection in the center of the hole. 

Fig. 5.6.a illustrates the effect of the deformation on the resistance of the flake. Fig. 5.6.a 

depicts that when the flake cannot be deformed because it is on the hard substrate the change in 
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the resistance (∆R) is all the time around zero. It means that the approaching of the t ip does not 

change the resistance and it is the same during the force-distance measurements. In our case ∆R 

is not exactly zero because of some environmental noises that cannot be avoided but tried to be 

reduced as much as possible, but it does not affect the results as we are measuring ∆R not the R 

and the amount of the noises are fixed. But in Fig. 5.6.b, it is clearly seen that the resistance 

increases as soon as the flake is deformed and the tip deflection starts. The amount of the change 

in this case is increasing the resistance about 200 mΩ which is small compared to the total 

resistance of the flake. As it is mentioned before the data derived from every single plot is used 

to make the profiles of the measured properties. These profiles are depicted in the next section. 

 

  

Figure 5.6 – The tip deflection (red) and change in the resistance (blue) vs. tip-sample distance for (a) point A on the 

hard substrate, (b) point B on the flake on the center of the hole 

 

5.2.2. Profiles Of The Mechanical Properties And the  Resistance  

It is explained in Sec.4.4.3 that in order to have the average value of all the changing 

properties of the membrane, their profiles are plotted over the surface. In this section the profiles 

that are achieved for the device of Fig. 5.4 are explained. These profiles are plotted in Fig. 5.7. 
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Figure 5.7 – (a) The height profile, (b) the compliance profile, (c) the slope of the R vs. Zpiezo profile of a 3 nm 

graphene flake suspended on top of a 1 µm hole. 

 

 The first image (Fig. 5.7.a) depicts the height profile of the drum. It is clearly seen that the 

flake is more deflected on the center of the drum; like what is observed in the height image of the 

device (Fig. 5.4). The flake is clamped on the edge of the hole but by going far from the edges 

and approaching the center of the drum the deflection increases. This deflection is not because of 

the applied force and it always happens because of the weight of the flake. Fig. 5.7.b illustrates 

the profile of the compliance of the flake. It is derived from the image that by approaching to the 

center of the flake, its compliance increases. Consequently, the flake is more deformable when it 

is more deflected on the center. In Sec. 2.6 the theoretical studies that have been done on the 

compliance of the graphene nanodrums [2] is explained. There is an agreement between the 

experimental results which are shown in Fig. 5.7 and the theoretical studies. The line on the top 
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right corner of the image which shows the sudden change in compliance appears because of the 

slipping of the tip from the edges of the contacts. 

In Fig. 5.7.c, the profile of the slope of the R vs. Zpiezo over the surface is shown. By a quick 

look, this image reveals that graphene shows the piezoresistive behavior because the resistivity 

changes according to deformation of the flake. According to Fig. 5.7.c when the flake is 

deformed by the tip the slope of the R vs. Zpiezo reduces more significantly at the edges of the 

hole compared to the center. It means that by deforming the flake the resistance changes more in 

the edges and as we approach the center while the deformation of the flake increases the change 

in the resistance decreases. This is in contrast with what we have expected and what predicted 

(Sec. 1.3.1). According to theoretical studies increasing the deformation should increase the 

piezoresistivity; as a result, as the flake is more deformable on the center of the flake (Fig. 5.7.b) 

it should show more changes in the resistance as we approach the center. The reason of such 

contrast needs further investigations and theoretical modeling. There are different factors that 

can play a role such as the amount of the applied force or the stress at the clamping point. 

Without investigating all these factors it is not possible to give a certain reason for such behavior 

ofgraphene.  



 

 

 

 

 

 

 

 

 

 

 

Conclusions 
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The focus of this thesis is on measuring the piezoresistive behavior in graphene in the form of 

nanodrum. To the best of the author’s knowledge, this has been done here for the first time since 

experimental studies of piezoresistivity of graphene have not been reported yet in the literature.  

The experimental results show that the flake used in the devices displays an Ohmic behavior 

with an electrical resistance of 3.5 KΩ. The suspended flake it is more deformable on the center 

of the hole compared to the edges. By consequence, the compliance is larger in the center of the 

nanodrum. Moreover, the change in the slope of ∆R vs. Zpiezo plots (used as a parameter to show 

the trend of changes in the gauge factor, GF) show that GF decreases with increasing the 

deformation. This could be due to not applying a sufficient force to the graphene flake and will 

require subsequent investigation. 

According to our results, certainly graphene shows the piezoresistive behavior. This property 

makes few layer graphene nanodrums ideal candidates for pressure or mass sensors (at individual 

molecule scale). 

In summary, we have shown that AFM measurement of electrical and compliance profile of 

the suspended flake can give information on the piezoresistive behavior of graphene. The method 

is very promising and will certainly benefit from further optimization of the experimental 

conditions. (i.e. optimizing the applied force, reducing the electrical noise, etc.). For further work 

we recommend to optimize the measurement setup and the thickness of the flake (for example 

fabricate the single flake). Furthermore investigating the effect of the amount of forces or 

diameter of the holes on the changes of the resistance of the single flake should reveal interesting 

information about the piezoresistivity of the graphene. 
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