
Streaming Linked Data Page 1

POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione

Polo Regionale Di COMO

Master of Science in Computer Enigneering

“Streaming Linked Data”

Supervised by: Professor Emanuele Della Valle

Master Thesis by: Nausherwan Adil

Student Id: 736665

Academic Year 2008/2010

Streaming Linked Data Page 2

POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione

Polo Regionale Di COMO

Corso di Laurea Specialistica in Ingegneria Informatica

“Streaming Linked Data”

Relatore: Prof. Emanuele Della Valle

Tesi di laurea di: Nausherwan Adil

Matricula: 736665

Anno Accademico 2008/2010

Streaming Linked Data Page 3

“The limits of my language mean the limits of my world.”
Ludwig Wittgenstein, Tractatus Logico-Philosophicus (1922)

Streaming Linked Data Page 4

Dedication

To my Grand Parents, Parents, Teachers and especially my guiders;

Syed Yaqoob Ali Shah Naqsbandi Mujadadi Azizi,
Syed Mahboob Ali Shah Naqsbandi Mujadadi Azizi and
Syed Anwar Shah Gelani Al-Hassani Wal-Hussaini Al-Gelani Al-Qadri Al-Baghdadi

Whose, continuous prayers brought me here up to this level of knowledge.

Streaming Linked Data Page 5

Sommario (in lingua italiana)

L'utilizzo di data stream sta diventando sempre più popolare su Internet, in particolare, nei siti

Web che distribuiscono e presentare le informazioni in tempo reale. Il Resource Description

Framework (RDF) permette di descrivere documenti Web e risorse provenienti del mondo

reale -- persone, organizzazioni, oggetti -- in modo machine-processable. Questo lavoro di tesi

risponde ad una necessità sempre crescente di fare mash-up di data stream e informazioni

statiche utilizzando RDF. Questo lavoro estende il motore esistente C-SPARQL, con

la possibilità di pubblicare data stream come Linked Data mediante un grafo RDF, chiamato S-

Graph, per ogni data stream e numerosi grafi RDF istantanei chiamati I-Graphs. Il lavoro di tesi,

inoltre, ha testato e analizzato questa estensione del motore C-SPARQL.

Streaming Linked Data Page 6

Abstract (in lingua inglese)

The use of data streams is becoming increasingly popular over the Internet, especially, in the

Web sites that distribute and present information in real-time. The Resource Description

Framework (RDF) allows to describe web documents and resources from the real world --

people, organizations, things -- in a computer-process able way. This work anticipates a rapidly

growing need of mashing up the streaming information with more static information/data

using RDF. This work extends the existing C-SPARQL engine by publishing RDF data streams as

linked data. It does so using one RDF graph per each data stream named S-Graph and several

instantaneous RDF graphs named I-Graphs. This enrichment of existing C-SPARQL engine has

been tested and analyzed.

Streaming Linked Data Page 7

Acknowledgements

This work was partially supported by the European project LarKC (FP7-215535).

I owe most of my gratitude to my Professor Emanuele Della Valle, who gave me the

opportunity to work with him for this thesis during my “Master of Science in Computer

Engineering”. I very much appreciate his help and guidance during my whole duration of

thesis.

I also want to say thanks to Students and Staff from the Department of Electronics and

Informatics, Politechnico Di Milano for providing such a stimulating and friendly environment.

Finally, I am most grateful to my parents for supporting me throughout all these years and for

letting me choose my own destiny.

Nausherwan Adil

Streaming Linked Data Page 8

Table of Contents

DEDICATION 4

SOMMARIO (IN LINGUA ITALIANA) 5

ABSTRACT (IN LINGUA INGLESE) 6

ACKNOWLEDGEMENTS 7

LIST OF FIGURES 11

LIST OF DRAWINGS (GRAPHICS CREATED BY AUTHOR) 13

LIST OF TABLES 14

CHAPTER 1: INTRODUCTION 15

1.1. OVERVIEW 16

1.2. THESIS STATEMENT 16

1.3. MOTIVATION 16

1.4. OBJECTIVES 21

1.5. VISUALIZATION 22

1.6. CONTRIBUTION 22

CHAPTER 2: BACKGROUND AND STATE OF THE ART 23

2.1. OVERVIEW 24

2.2. THE DATA STREAM 24

2.3. DATA STREAM MANAGEMENT SYSTEM 24

2.3.1. CHARACTERISTICS 25

2.4. STREAM 26

2.5. AURORA 30

2.6. STREAM MILL 34

2.7. SEMANTIC WEB PUBLISHING 36

2.7.1. URI - UNIFORM RESOURCE IDENTIFIER 38

2.7.2. RDF - RESOURCE DESCRIPTION FRAMEWORK 38

2.7.3. RDF SCHEMA 41

2.7.4. THE WEB ONTOLOGY LANGUAGE 43

Streaming Linked Data Page 9

2.7.5. SPARQL 45

2.7.6. THE POWER OF SEMANTIC WEB LANGUAGES 47

2.7.7. RELATIONAL DB TO RDF FRAMEWORK 47

2.8. PUBLISHING RELATIONAL ARTIFACTS ON SEMANTIC WEB 49

2.8.1. D2RQ 49

2.8.2. D2R SERVER 50

2.8.3. VIRTUOSO UNIVERSAL SERVER 50

2.8.4. PUBBY 51

2.9. LINKED DATA 51

2.9.1. LINKED DATA BROWSERS 54

2.9.2. LINKING 57

2.9.3. BEST PRACTICES 58

2.9.4. ONTOLOGIES 61

2.10. MANAGING DATA STREAMS AT SEMANTIC LEVEL 65

2.10.1. C-SPARQL 65

2.11. PUBLISHING DATA STREAMS AS LINKED DATA 68

CHAPTER 3: PROBLEM / SOLUTION 69

3.1. OVERVIEW 70

3.2. MICRO BLOGGING 70

3.3. TWITTER 71

3.4. THE DBPEDIA DATA SET 73

3.5. DBPEDIA CLASSIFICAITON 75

3.5.1. YAGO 76

3.6. EXAMPLES 76

3.6.1. JUST LANDED IN 77

3.6.2. JUST LANDED IN NEW YORK 78

3.6.3. MISSLZACALZADO JUST LANDED IN 79

3.6.4. JUST READ LEFT NEGLECTED 80

3.6.5. JUST SEEN AN ACCIDENT 81

3.7. DATA BECOMING AVAILABLE AS LINKED DATA 83

3.8. TRANSFORMING TWITTER TWEETS INTO AN RDF STREAM 84

3.9. PROPOSED SOLUTION 85

3.10. ARCHITECTURAL DESIGN 86

3.11. PUBLISH A STREAM 86

3.12. CONTROLLING THE WINDOW 88

3.12.1. PHYSICAL WINDOW 90

3.12.2. LOGICAL WINDOW 92

3.13. RESULTING RDF/XML DOCUMENTS, TRIPLES AND RDF-GRAPHS 95

3.14. STREAMING LINKED DATA SERVER PROTOTYPE 98

Streaming Linked Data Page 10

3.15. CLIENT/SERVER ARCHITECTURE 98

3.16. URIS FOR WEB DOCUMENTS 98

3.17. HTTP AND CONTENT NEGOTIATION 99

3.18. 303 URIS SELECTION 100

3.19. INTERNET PROTOCOLS 101

3.19.1. TCP/IP 101

3.19.2. HTTP 101

3.20. ADDRESSABLE RESOURCES 101

CHAPTER 4: IMPLEMENTATION 102

4.1. OVERVIEW 103

4.2. DESIGN AND FUNCTIONALITY 103

4.3. PROTOTYPE APPLICATION DEPLOYMENT 105

4.3.1. HOW THE APPLICATION WORKS? 105

4.3.2. CONFIGURATIONS 112

CHAPTER 5: FUTURE AND RELATED WORK 114

5.1. OVERVIEW 115

5.2. CONTROLLING C-SPARQL QURIES 115

5.3. FUTURE WORK 115

5.4. RELATED WORK 116

5.5. CONCLUSIONS 117

6. REFERENCES 118

Streaming Linked Data Page 11

List of Figures
Figure 2.2.1 Data Streams ... 24

Figure 2.4.1 Data types and operator classes in abstract semantics ... 26

Figure 2.4.2 Simple query plan include operators, queues, synopses 28

Figure 2.5.1 Aurora System Model ... 32

Figure 2.5.2 Aurora Query Model ... 33

Figure 2.6.1 Stream Mill DSMS Client ... 35

Figure 2.7.1 Web and Web Of Semantics ... 36

Figure 2.7.2 Semantic Web Stack ... 37

Figure 2.7.3 Mapping Process ... 48

Figure 2.8.1 D2RQ Application Architecture ... 49

Figure 2.8.2 D2R Server... 50

Figure 2.8.3 Pubby Server ... 51

Figure 2.9.1 Linked Data ... 51

Figure 2.9.2 Linked data being created .. 53

Figure 2.9.3 Disco Hyperdata Browser ... 55

Figure 2.9.4 Marble Linked Data browser .. 56

Figure 2.9.5 Commonly Used Ontologies and their Namespaces .. 62

Figure 2.9.6 DBpedia ... 63

Figure 2.9.7 DBpedia Linking Relationship With Web Datasets ... 64

Figure 2.10.1 Triples with Timestamp .. 67

Figure 3.3.1 Twitter ... 72

Figure 3.4.1 RDF Document View ... 74

Figure 3.4.2 HTML Document View .. 75

Figure 3.5.1 Yago European Capitals .. 76

Figure 3.6.1 Results for “JustlandedIn” Using Twitter .. 77

Figure 3.6.2 Results for "JustlandedIn new York" Using Twitter .. 78

Figure 3.6.3 Result for "MisslzaCalzado just Landed In New york" Using Twitter 79

Figure 3.6.4 Result for "just read Left Neglected" USing Twitter ... 80

Figure 3.6.5 Results for "just seen an accident" Using Twitter .. 81

Figure 3.6.6 Result for "just landed in" Using Twitter .. 82

Figure 3.13.1 Resulting S-Graph ... 96

Figure 3.13.2 Resulting I-Graph .. 98

Figure 3.17.1 Http Content Negotiation ... 100

Figure 4.3.1 Streaming Linked Data Server First Page .. 106

Figure 4.3.2 S-Graph presentation using tabulator add on for Firefox internet browser 107

Figure 4.3.3 S-Graph presentation in HTML format using Firefox .. 108

Streaming Linked Data Page 12

Figure 4.3.4 I-Graph presentation using tabulator add on for Firefox internet browser 109

Figure 4.3.5 I-Graph presentation in HTML format using Firefox .. 110

Streaming Linked Data Page 13

List of Drawings (Graphics created by Author)

Drawing 2.3.1 Data Stream Management System In A Big Picture 25

Drawing 2.9.1 The RDF and HTML documents should relate the URIs to each other 58

Drawing 2.9.2 The 303 URI solution 59

Drawing 2.9.3 The hash URI solution with content negotiation 60

Drawing 3.7.1 Linked Data from Twitter Tweets 83

Drawing 3.10.1 Architectural Design 86

Drawing 4.2.1 Implementation Design 103

Streaming Linked Data Page 14

List of Tables

Table 3.4.1 Example Things from DBpedia DataSet ... 73

Table 3.8.1 Creating Triples from twitter Using RDF ... 84

Table 3.8.2 Creating Triples from twitter Using RDF ... 85

Table 3.12.1 Physical Window S-Graph .. 91

Table 3.13.1 Resulting S-Graph Triples ... 96

Table 3.13.2 Resulting I-Graph Triples .. 97

Streaming Linked Data Page 15

Chapter 1: Introduction

Streaming Linked Data Page 16

1.1. Overview
This chapter contains the highlights of the thesis. Firstly, the motivation of the work is

provided. Secondly, the objectives of this work have been discussed and lastly, the

contributions made by this work are discussed.

1.2. Thesis Statement
Semantic Web is constantly growing and is built on the fundamental idea that data items are

being published using dereference able URIs and related data items are connected using RDF

links. These data items are termed as streams, appearing more and more on the web that

distribute and present information in real-time systems. This work anticipates the growing

need of mashing up streaming information with more static one. This work followed an

approach to publish the data streams as linked data. As a proof of concept this work

transformed the Twitter tweets into RDF stream, used the C-SPARQL for continuous querying

over stream of RDF and extend C-SPARQL engine by publishing RDF data streams as linked

data. The heart of this work deals with designing and implementing a client/server based

architecture for publishing such streams as linked data.

1.3. Motivation
Motivation for this work is two-fold. A lot of work has been done in the area of data stream

processing. The data streams are highly available in real-time systems on the Web but there is

a lack of Web-based approaches to process them, brought the motivation for this work.

A data stream represents the data arriving from an online source. Streaming data is received

by DSMS continuously and in real-time, either implicitly ordered by arrival time or explicitly,

associated with timestamps for processing. The data format could be in different formats like

XML/RDF or Turtle representation. Some sources in data stream applications typically produce

time stamped information (e.g. financial applications uses streams of trading data, stock

tickers, news feeds). We defined an RDF raw data stream with timestamps, too. Since data

arrives in a time varying manner, data streams should not be treated as persistent data to be

stored (forever) and queried on demand, but rather as transient data to be consumed on the

fly by continuous queries. Continuous queries, after being registered, keep analyzing such

streams, producing answers triggered by the streaming data and not by explicit invocation.

Such a paradigmatic change has been largely investigated in the last decade by the database

community (1). Traditional DBMS’s are best equipped to run one time queries over finite

stored data sets. However, many modern applications such as network monitoring, financial

analysis, manufacturing, and sensor net works require long-running, or continuous, queries

over continuous unbounded streams of data.

Streaming Linked Data Page 17

The STREAM: Data Stream Management System (2) supports a large class of declarative

continuous queries over continuous streams and traditional stored data sets. Its prototype

targets environments where streams may be rapid, stream characteristics and query loads

may vary over time, and system resources may be limited. Declarative queries in this DSMS,

translated into physical query plans, are flexible enough to support optimizations and fine

grained scheduling decisions. The DSMS exploit possibilities for sharing state and computation

within and across query plans. Since data, system characteristics, and query load may

fluctuate over the lifetime of a single continuous query, an adaptive approach to query

execution is essential for good performance. When incoming data rates exceed the DSMS's

ability to provide exact results for the active queries, the system should perform load-

shedding by introducing approximations that gracefully degrade accuracy. Due to the long-

running nature of continuous queries, DSMS administrators and users require tools to monitor

and manipulate query plans as they run. This functionality is supported by a graphical

interface.

Aurora (3) is a new system to manage data streams for monitoring applications. It deals with

large numbers of data streams. It supports the users built queries out of a small set of

operators (boxes) and combination of (boxes) for better answers. Monitoring applications

differ substantially from conventional business data processing. The fact that a software

system must process and react to continual inputs from many sources (e.g., sensors) rather

than from human operators requires one to rethink the fundamental architecture of a DBMS

for this application area.

Stream Mill (DSMS) (4) is designed to support complex applications, along with the simpler

applications serviced by other DSMS. In particular, Stream Mill is the first DSMS to support

stream mining applications. In fact, Stream Mill provides tools that facilitate the process of

migrating queries on tables to continuous queries on data streams. Stream Mill is based on

client/server architecture. Thus, the server is always running, and managing the incoming data

streams. Users can login through a client and register continuous queries on those streams.

In analogy to the application of database management systems (DBMS) for many standard

applications like personnel or warehouse management, we believe that data stream

management systems (DSMS) helps in managing data streams in many modern applications,

such as network monitoring and traffic engineering, financial analysis, manufacturing, and

sensor networks require long-running, or continuous, queries over continuous unbounded

streams of data. In DSMS continuous queries are used to determine stream information.

The Semantic Web is defined as “the meaning of a Web”, was thought up by Tim Berners-Lee,

inventor of the WWW, URIs, HTTP, and HTML. It is a mesh of information linked up in such a

way as to be easily process able by machines, on a global scale. You can think of it as being an

Streaming Linked Data Page 18

efficient way of representing data on the World Wide Web, or as a globally linked database.

However, Semantic Web is growing up and is known as Web 3.0. The future of the semantic

web is in general appears to be bright.

The Semantic Web foundation is laid on the use URIs for documents, Resource Description

Framework (RDF), a standard language for representing information about resources in the

World Wide Web. This is also certified by W3C. RDF has three species for writing into triples,

N3, Turtle, N-triples.

RDF Schemas declare vocabularies and the XML namespace mechanism serves to identify RDF

Schemas. An RDF schema may be accessed by de-referencing the schema URI. If the schema is

machine-process able, it may be possible for an application to learn some of the semantics of

the property-types named in the schema. However an RDFS has structure based on the RDF

data model.

The OWL Web Ontology Language is designed for use by applications that need to process the

content of information instead of just presenting information to humans. OWL can be used to

explicitly represent the meaning of terms in vocabularies and the relationships between those

terms. This representation of terms and their interrelationships is called ontology. OWL

facilitates greater machine interpretability of Web content than what is supported by XML,

RDF, and RDF Schema (RDF-S) by providing additional vocabulary along with a formal

semantics. OWL has three increasingly-expressive sublanguages: OWL Lite, OWL DL, and OWL

Full.

SPARQL-Simple protocol and RDF query language can be used to express queries across

diverse data sources, whether the data is stored natively as RDF or viewed as RDF via

middleware. SPARQL contains capabilities for querying required and optional graph patterns

along with their conjunctions and disjunctions. SPARQL also supports extensible value testing

and constraining queries by source RDF graph. The results of SPARQL queries can be results

sets or RDF graphs. SPARQL is the W3C Recommendation for a query language over RDF.

The tools for publishing relational documents on semantic web are getting mature as semantic

is growing day by day. E.g. D2R, D2RQ, Pubby and Virtuoso Universal Server.

Linked Data builds on the classic architecture of the Web. The data in the web becomes part of

a single global data space. The data is crawled by Semantic Web search engines and is used by

various applications. People can use various data browsers to explore your data. People start

setting links to your data, which might make more people find and use your data.

The data is published on standards like HTTP, URIs and RDF and is based on the following

design principles:

Streaming Linked Data Page 19

 Use URIs as names for things.

 Use HTTP URIs so that people can look up those names.

 When someone looks up a URI, provide useful information, using the standards (RDF,

SPARQL).

 Include links to other URIs. So that they can discover more things.

There are certain linked data browsers available for browsing the web.

 Tabulator Browser (MIT, USA)

 Marbles (FU Berlin, DE)

 OpenLink RDF Browser (OpenLink, UK)

 Zitgist RDF Browser (Zitgist, USA)

 Disco Hyperdata Browser (FU Berlin,DE)

There are two well known and common solutions for URI publishing which are:

1. 303 URIs

2. Hash URIs

303 URIs are good for large sets of data that are, or may grow, beyond the point where it is

practical to serve all related resources in a single document. However 303 URI approach is

more feasible.

Content negotiation is a mechanism defined in the HTTP specification that makes it possible to

serve different versions of a document (or more generally, a resource) at the same URI, so that

user agents can specify which version fits their capabilities the best. When a client sends a

request to a server, the client informs the server what media types it understands with ratings

of how well it understands them. However the client provides an Accept HTTP header that lists

acceptable media types and associated quality factors. The server is then able to supply the

version of the resource that best fits the client's needs. So, a resource may be available in

several different representations. In our case it will be HTML and RDF.

C-SPARQL is an extension to SPARQL for continuous querying over virtual streams of RDF and

static RDF graphs i.e., queries registered over both RDF repositories and RDF streams. C-

SPARQL queries can be considered as inputs to specialized reasoners that use their knowledge

about a domain to make real-time decisions. Our C-SPARQL Engine (5) treats non-RDF DSMSs

as virtual RDF streams and graphs. However C-SPARQL engine process and publishes those

RDF data streams as linked data.

Streaming Linked Data Page 20

Publishing an RDF stream or graph as Linked Data on the Web will follow the following three

basic steps:

 Assign URIs to the entities described by the data set and provide for dereferencing these

URIs over the HTTP protocol into RDF representations.

 Set RDF links to other data sources on the Web, so that clients can navigate the Web of

Data as a whole by following RDF links.

 Provide metadata about published data, so that clients can assess the quality of published

data and choose between different means of access.

DBpedia is a community effort to extract structured information from Wikipedia and to make

this information available on the Web. DBpedia allows you to ask sophisticated queries against

Wikipedia, and to link other data sets on the Web to Wikipedia data. We hope this will make

it easier for the amazing amount of information in Wikipedia to be used in new and interesting

ways, and that it might inspire new mechanisms for navigating, linking and improving

the encyclopedia itself. The DBpedia data set uses a large multi-domain ontology which

has been derived from Wikipedia. DBpedia provides three different classification schemata

for things. Yago classification is one of them. However the YAGO Classification is derived from

the Wikipedia category system using Word Net. Using the classifications within SPARQL

queries allows you to select things of a certain type.

Micro blogging is a minor version of blogging that allows users to write entries of up to 140

characters. The messages can be viewed by any users. The difference between a traditional

blog and micro blogging is, that micro blogs often are headlines of present activity, thoughts

and news from a given source whereas blogging mostly is larger stories, with more

background information, research including links and pictures since weblogs allow more

content. There are several web services that provide microblog functionality such as:

 Twitter

 Jaiku

 Tumblr

 Yammer

Micro blog feature i.e status updates:

 Facebook

 LinkedIn

 Myspace

Twitter is a social networking website which offers micro blogging service. Tweets are text-

based posts of up to 140 characters displayed on the user's profile page. Tweets are the

Streaming Linked Data Page 21

messages which are publicly visible by default; however senders can restrict message delivery

to their followers. Twitter has given the user’s following and being followed concept.

People describe their status in the form of tweets. They can group posts together by topic or

type by use of hashtags — words or phrases prefixed with a #. Similarly, the @ sign followed

by a username is used for mentioning or replying to other users.

However we transformed all the tweets, including user name, topic name, external link, and

the user being followed, to the RDF stream.

Developed a client server architecture based prototype server named as Streaming Linked

data server which is responsible for publishing the RDF streams in response to HTML and RDF

client requests. However the system involves the SPARQL query end point.

The twitter tweets when transformed to an RDF stream we represent this RDF stream in RDF

using named graphs. However we distinguish between two kind of named graphs: the Stream

Graphs (shortly s-graphs) and the Instantaneous Graphs (shortly i-graphs). The s-graph

contains the RDF triples that refer to the i-graphs using rdfs:seeAlso. These graphs are made

query able by a SPARQL end point.

As the number of available streams is very large, so we introduced the windowed data stream

model. This is useful to limit the extraction of the data stream elements upon continuous

queries. The windowing model is expressed in C-SPARQL. A window extracts from the stream

the last data stream elements, which are considered by the query. Such extraction can be

physical (a given number of triples) or logical (all the triples which occur during a given time

interval, the number of which is variable over time). Logical windows are further divided in to

sliding and tumbling window. With tumbling windows every triple of the stream is included

exactly into one window, whereas with sliding windows some triples can be included into

several windows. We believe that consumers of Streaming Linked Data would largely benefit

from controlling the window of a running CSPARQL query.

1.4. Objectives
The objective of my work is to provide architecture for conceptual understanding on how to

publish a stream as linked data on the web. The architecture consists of three main parts:

1. Streaming linked data Server (Only a prototype server for testing purpose)

2. C-Cparql Engine

3. HTML ,RDF and SPARQL query end point

Streaming Linked Data Page 22

1.5. Visualization
The visualization of this work will be a web interface through which user can access HTML and

RDF template presenting a data stream transformed from twitter. Other than this the user

directly put a request to the Streaming linked data server through a web browser and the

server will respond accordingly.

1.6. Contribution
Micro blogging is a very social method of communication that appeals to our inherently

inquisitive human nature. We’re social beings who like to know what other people are doing,

reading, writing, watching, listening to etc.! It’s open, informal and spontaneous, all of which

encourages interaction. The ‘posts’ or ‘tweets’ if using Twitter, can be about any topic and are

available to be read by anyone. People freely reply to tweets, entering the conversation;

responses are made, ideas are swapped and suggestions are offered. However, posts are

most likely to be seen by the author’s ‘followers’ – people who have indicated that they’re

interested and want to receive updates from them.

However we used these tweets as our source of data and we transformed these to RDF

streams, linked with DBpedia , queried on sindice and developed a Web-based approach to

process them.

Streaming Linked Data Page 23

Chapter 2: Background and State of the Art

Streaming Linked Data Page 24

2.1. Overview

To build a semantic web application, for publishing streams as linked data, is the driving force

behind this work. Therefore, to bring clarity into this topic, this chapter is being included. The

principles behind the concept of publishing data streams will be presented in this chapter. We

will also go through different existing systems using DSMS and see their advantages and

shortcomings as well.

2.2. The Data Stream
As a data stream is defined as the real-time, continuous, ordered sequence of items.

Therefore Data streams differ from the conventional stored relational model in several ways:

 The data elements in the stream arrive online.

 The system has no control over the order in which data elements arrive to be

processed, either within a data stream or across data streams.

 Data streams are normally unbounded in size.

 Once an element from a data stream has been processed it is discarded or archived

this means that it cannot be retrieved easily unless it is explicitly stored in memory,

which typically is small relative to the size of the data streams.

Data Streams, being unbounded sequences of time-varying data elements, should not be

treated as persistent data to be stored (forever) and queried on demand, but rather as

transient data to be consumed on the fly by continuous queries.

Figure 2.2.1 Data Streams

2.3. Data Stream Management System
Traditional database management systems are best equipped to run one-time queries over

finite stored data sets. However, many modern applications such as network monitoring,

financial analysis, manufacturing, and sensor net- works require long-running, or continuous,

queries over continuous unbounded streams of data. We can see the Big picture of data

stream management system.

Streaming Linked Data Page 25

Drawing 2.3.1 Data Stream Management System In A Big Picture

2.3.1. Characteristics
The data stream management system must hold the following characteristics:

 Manage traditional stored data (relations)

 Handle multiple continuous, unbounded, possibly rapid and time-varying data streams

 Supports long-running continuous queries, and produce answers in a continuous and

timely fashion

Data stream model creates the fundamental difference between a classical DBMS and a DSMS.

DBMS process a query over a persistent set of data that is stored in advance on disk however

in DSMS queries are performed over a data stream. In a data stream, data elements arrive on-

line and stay only for a limited time period in memory. Consequently, the DSMS has to handle

the data elements before the buffer is overwritten by new incoming data elements. The order

in which the data elements arrive cannot be controlled by the system. Once a data element

has been processed it cannot be retrieved again without storing it explicitly. The size of data

streams is potentially unbounded and can be thought of as an open-ended relation. In DSMSs,

continuous queries evaluate continuously the arriving data elements. Standard operator types

that are supported by most existing DSMSs are filtering, mapping, aggregates, and joins. Since

Streaming Linked Data Page 26

continuous streams may not end, intermediate results of continuous queries are often

generated over a predefined window and then either stored, updated, or used to generate a

new data stream of intermediate results. Window techniques are especially important for

aggregation and join queries. The interested reader can find an extensive overview on DSMSs

in (6; 7)

2.4. STREAM
In the STREAM: The Stanford Data Stream Management System (8) project at Stanford

investigated on the applications which involve data management and query processing.

As a part of the project general-purpose prototype Data Stream Management System (DSMS)

has been built, STREAM: Data Stream Management System supports a large class of

declarative continuous queries over continuous streams and traditional stored data sets. Its

prototype targets the environments where streams may be rapid, stream characteristics and

query loads may vary over time, and system resources may be limited.

The STREAM: Data Stream Management System supports a continuous query language (CQL)

for registering continuous query. When a CQL query is registered, STREAM constructs a query

plan. Query plans are composed of three types of components.

 Query operators (similar to traditional DBMS)

 Inter-operator queues (similar to some traditional DBMS)

 Synopses

CQL is defined by instantiating the operators of abstract semantics defined for STREAM.

Syntactically, CQL is a relatively minor extension to SQL. However the abstract semantics is

based on two data types, streams and relations

Figure 2.4.1 Data types and operator classes in abstract semantics

Streaming Linked Data Page 27

 A relation-to-relation operator takes one or more relations as input and produces a

relation as output.

 A stream-to-relation operator takes a stream as input and produces a relation as

output.

 A relation-to-stream operator takes a relation as input and produces a stream as

output.

The stream-to-relation operators in CQL is based on the concept of a sliding window (9) over a

stream, and are expressed using a window specification language derived from SQL-99:

Sliding window specification:

 Partitioning clause (grouping)

 Window size (ROWS or RANGE)

o e.g. “ROWS 50 PRECEDING”

o e.g. “RANGE 15 MINUTES PRECEDING”

 Filtering predicate (WHERE)

 Sampling clause

 specifies that a random sample of the data elements should be used for query

processing

o (e.g. “1 % SAMPLE” means each data element in the stream should be retained

with probability 0.01 and discarded with probability 0.99)

A queue in a query plan connects its “producing" plan operator OP to its “consuming"

operator OC. At any time a queue contains null collection of elements representing a portion

of a stream or relation. The elements that OP produces are inserted into the queue and

buffered there until they are processed by OC.

Mechanisms for buffering tuples and generating heartbeats to ensure non decreasing

timestamps, without sacrificing correctness or completeness, are discussed in detail in (10).

The most common use of a synopsis in this system is to materialize the current state of a

(derived) relation, such as the contents of a sliding window or the relation produced by a sub

query.

 used to maintain state associated with operators

 summarization technique (sliding windows) used to limit their size (produce

approximate results)

Streaming Linked Data Page 28

Figure 2.4.2 Simple query plan include operators, queues, synopses

When a query plan is executed, a scheduler selects operators in the plan to execute in turn.

The semantics of each operator depends only on the times-tamps of the elements it

processes, not on system or “wall-clock" time. Thus, the order of execution has no effect on

the data in the query result, although it can affect other properties such as latency and

resource utilization. Global scheduler for plan execution (calls run methods)

 uses round-robin scheme

 Focus on minimizing intermediate (inter-operator) queue sizes

 Parallelism not considered

 Greedily schedule the operator that “consumes” the largest number of tuples per time

unit and is the most selective (i.e. “produces” the fewest tuples)

 Example:

o a query plan with two unary operators:

o O1 operates on input queue q1, writing results to queue q2 which is input to

operator O2

o O1 takes one time unit to operate on a batch of n tuples from q1, and has 20%

selectivity (produces n/5 tuples in q2)

o operator O2 takes one time unit to operate on n/5 tuples, produces no tuples

on its output queue

o assume the average arrival rate of tuples on q1 is no more than n tuples per

two time units, so all tuples can be processed and queues will not grow without

bound

Streaming Linked Data Page 29

 Approximation technique goal is to maximize the precision of query answers based on

the available resources; there are Static and Dynamic Approximations.

 In Static Approximation Queries are modified when they are submitted to the system

(use less resources)

 Two techniques:

o Window Reduction (reduce memory and computation)

 Decrease the window size or introduce a window where none was

specified originally (band joins)

 This can have a ripple effect that propagates up the operator tree

o Sampling Rate Reduction (reduce output rate)

 Reduce the sampling rate of the SAMPLE clause or introduce one where

none was specified originally Can take an existing sample operator and

push it down the query plan

 In Dynamic Approximation Queries are unchanged

 System may not always provide precise query answer

 Three techniques:

o Synopsis Compression (analogous to window reduction)

 Reduce synopsis sizes at one or more operators

 Incorporating a sliding window into a synopsis or shrinking the existing

window

 Maintaining a sample of the intended synopsis content

o Sampling (reduce queue size)

 Introduce one or more sample operators into the query plan, or to

reduce the sampling rate at existing operators

o Load Shedding (reduce queue size)

 Simply drop tuples from queues when they grow too large

In a system for continuous queries, it is important for users, system administrators, and

system developers to have the ability to inspect the system while it is running and to

experiment with adjustments. To meet these needs, we have developed a graphical query and

system visualizer for the STREAM system.

The visualizer allows the user to view the structure of query plans and their component

entities (operators, queues, and synopses). Users can view the path of data flow through each

query plan as well as the sharing of computation and state within the plan.

Streaming Linked Data Page 30

View the detailed properties of each entity. For example, the user can inspect the amount of

memory being used (for queue and synopsis entities), the current throughput (for queue and

operator entities), selectivity of predicates (for operator entities), and other properties.

Dynamically adjust entity properties. These changes are reflected in the system in real time.

For example, an administrator may choose to increase the size of a queue to better handle

bursty arrival patterns.

View monitoring graphs that display time-varying entity properties such as queue sizes,

throughput, overall memory usage, and join selectivity, plotted dynamically against time. The

technique for implementing the monitoring graphs is based on introspection queries on a

special system stream called 18 Arasu et al.

2.5. Aurora
The Aurora system (3) is a data stream management system with fully functional prototype

which includes both graphical development environment, and runtime system. Such a data

stream management system is used for monitoring applications. Monitoring applications are

developed in consultation with defense, financial, and natural science communities. These

applications use the data streams which are continuous data from the sources such as sensors,

satellites and stock feeds. These applications track the data from numerous streams, filtering

them for signs of abnormal activity and processing them for purposes of aggregation,

reduction and correlation. Also the management requirements for these monitoring

applications are different from the traditional DBMS. However the management requirements

for DSMS are

 Monitoring and alerting humans for abnormal activities

 Processing of data that is bounded by finite window of values and not over unbounded

past

 Respond to real-time deadlines and provide reasonable approximations to queries

 Benefits from Application specific optimization criteria (QoS)

 The norm is push-based data processing

The Aurora system consists of the following components:

 A Java-based GUI development environment, where tuple structures and Aurora flow

networks are defined.

 A server that executes an Aurora network. The inputs and outputs of the Aurora server

are streams of tuples, delivered over TCP/IP sockets.

Streaming Linked Data Page 31

 A Java-based GUI performance monitor that shows the quality of service being

provided by the server at a given moment.

However the overall goal of the Aurora system is to maximize overall quality of service from all

applications. There are some Novel Features which includes Stream-oriented query operators

for stream processing and window based operators. The window operations have optional

timeout and slack parameters that enable them to deal with slow and out-of-order arrivals,

respectively.

Aurora application defines one or more Quality of Service (QoS) functions/graphs. QoS

specifications serve as specifications of desired system behavior. The three main functions

graph of QoS are:

 A latency graph

 A loss-tolerance graph

 A value-based graph

The latency graph indicates how QoS drops as the results are delayed. The loss-tolerance

graph is a simple way to describe how averse the application is to approximate or incomplete

answers. The value-based graph defines the relative importance of the output values.

QoS specifications also serve to drive policies for scheduling, storage management and load

shedding. The scheduler decides which operators to execute and in which order to execute

them, pays special attention to reducing operator scheduling and invocation overheads,

batches (i.e., groups) multiple tuples and operators and executes each batch at once. The

storage manager is designed for storing ordered queues of tuples instead of sets of tuples

(relations). It also combines the storage of push-based queues with pull-based access to

historical data stored at connection points.

The load shedder is responsible for detecting and handling overload situations. The latter is

accomplished by shedding tuples by temporarily adding “drop” operators to the Aurora

processing network. The goal of a drop is to filter messages, either based on the value of the

tuple or in a randomized fashion, in order to rectify the overload situation and provide better

overall QoS at the expense of reduced answer quality.

Streaming Linked Data Page 32

The Aurora System Model:

Figure 2.5.1 Aurora System Model

The basic job of Aurora is to process incoming streams in the way defined by an application

Administrator

 Data Stream Flow

 Input from external Stream

 Data flow through a loop-free, directed graph of processing operations (ie. boxes)

 Output streams are presented to applications

 Maintain historical storage (support ad-hoc query) Operators

 Eight Primitive Operators

 Windowed Operators

o Slide

o Tumble

o Latch

o Resample

 Non-Windowed Operators

o Filter – Drop

o Map

o GroupBy

o Join

Streaming Linked Data Page 33

Query Model

Figure 2.5.2 Aurora Query Model

There are three types of queries

 Continual queries (real-time processing)

 Views

 Ad-hoc queries

Continuous queries do not need to store the data once they are processed. The QoS

specification at the end of the path controls how resources are allocated to the processing

elements along the path. Application – programmed to deal with asynchronous tuples.

Views are a path is defined with no connected application. It is allowed to have a QoS

specification as an indication of the importance of the view. Applications can connect to the

end of this path whenever there is a need. Moreover, it can store these partial results at any

point along a view path.

Adhoc queries has a Connection Point .A connection point is an arc that will support dynamic

modification to the network. An ad-hoc query can be attached to a connection point at any

time. Data stored in the connection point is delivered to ad-hoc query .Thus, the semantics for

an Aurora ad-hoc query is the same as a continuous query that starts executing at tnow-T and

continues until explicit termination.

The example of Aurora based application are financial Applications. This application monitors

streams of stock quotes. As with the military application, the user can both view a digest of

the information, as well as be alerted when interesting events occur. In particular, we have

been working with Fidelity on several problems that they have ranging from intelligent routing

of trades to fraud detection on transaction data.

Aurora’s performance monitoring tools are useful for showing how much data is in various

parts of the system and its flow rate, as well as the QoS level that Aurora is able to achieve.

Streaming Linked Data Page 34

We’ll show how varying the rate of input data flow affects the Aurora network’s internal

queue contents as well as the overall delivered QoS.

Aurora, whose design was presented at VLDB 2002 (11), has been the focus of positive

attention room the industrial, scientific, and academic sectors. We've developed a prototype

Aurora application for a defense company that easily solved a problem that the company

considered difficult. We're working with partners in the financial and natural science fields to

develop prototype Aurora applications for those sectors as well.

2.6. Stream Mill
Stream Mill (4) is a Data Stream Management System (DSMS) designed to support complex

applications. In particular, Stream Mill is the first DSMS to support stream mining applications;

this is achieved by the Stream Mill Miner (SMM) workbench. Stream Mill provides a user-

friendly introduction to the system and its powerful query language Expressive Stream

Language (ESL), which extends SQL into a Turing-complete language by means of User Defined

Aggregates (UDAs).

Most of the ESL constructs are applicable to both database tables and data streams. This

simplifies the task of ESL programmers who are likely to develop and test their ESL queries on

tables before applying them to streams. It is recommended that new users learning the

system follow this procedure; in fact, Stream Mill provides tools that facilitate the process of

migrating queries on tables to continuous queries on data streams.

Stream Mill is based on client/server architecture. Thus, the server is always running, and

managing the incoming data streams. Users can login through a client and register continuous

queries on those streams. In writing queries, the ESL programs can use the following declared

objects:

1. Imported data streams,

2. Data streams derived from other streams,

3. Database tables, residing on disk or main memory,

4. Tables derived from data streams,

5. User-Defined Aggregates, with, and without windows,

6. Table Functions.

Multiple clients can connect to a single server. Users, using the client, can create and save

their entities such as streams and queries on the server for future retrieval.

Streaming Linked Data Page 35

Figure 2.6.1 Stream Mill DSMS Client

In the figure 2.6.1 the main window is used for building workflows. The smaller rectangular

window on the bottom left is used to view components which are available on the server for a

specific user. The smaller rectangular window on the top left is used to create new

components on the server (such as streams etc). The client allows the user to create a

workflow where he can specify all steps w.r.t the data mining process he is building. Basically

he can create his own entities (i.e. streams, tables, queries, aggregates etc.) on the server, or

just use ones created previously. User can use created entities as building blocks for his

workflow. Note that entities created cannot be modified, thus if modification is desired entity

must first be deleted and re-created with appropriate adjustments. The client has 3 modes,

namely, Not-Logged-in mode, Logged-in mode and View Library. In a Not Logged-in mode,

only a few functions are available like log in, create new user; while in the View Library mode

previous functions and also object viewing/monitoring are available. Functions of all types are

available in the Logged-in mode where user can create new tables, streams, queries etc on the

server and build workflow related to data mining process.

Streaming Linked Data Page 36

2.7. Semantic Web Publishing
Semantic Web provides a common framework that allows data to be shared and reused across

application, enterprise, and community boundaries. It is a collaborative effort led by W3C

(World Wide Web Consortium).

 “Classical” Web: computers deliver documents (text, multimedia…)

 “Semantic” Web: let computers process (interpret, combine, select, judge) and deliver

information

As the word “Semantic" is the study of meaning. So Semantic Web means a Web with

meaning.

Figure 2.7.1 Web and Web Of Semantics

The Web 1.0 has the scope of web pages that are able to just give out the information to the

viewers as they can see in TVs. Similarly in Web 2.0 the web pages became dynamic in

behavior; they provide information and also accept data from the viewers and produce results

based on that data. The current version of Web which is Web 2.0 allows the search engines

use the keywords in the web pages to show the results of the search query. This means that

means the contents are index by means of keywords or tags, but not by the meaning.

However the semantic Web provides a better efficient searching of the web using the

semantics of the content in the pages. This means that the search engines work not with the

keywords we use to search, but with the meaning of the search query we gave. So this new

feature in the development of the web Semantic Web and now being called as Web 3.0.

Streaming Linked Data Page 37

Lets take an example that I am going to Milan. And I want to know about the hotels, tourists

spots etc in Milan. In the present condition if I search the term ‘I am going to Milan’, I get the

results page showing the websites containing the keywords I searched, but not useful for me.

But in Semantic Web the search engine understands the semantics, that is the meaning of the

search query and give results based on the semantics of the query. This will helps the users

more than ever before.

Therefore we can say that the Semantic Web is a mesh of information linked up in such a way

as to be easily process able by machines, on a global scale. So the Semantic web publishing

means to publish the information on the web as data objects using the semantic web language

or as documents having semantic markups. It is a way for computers to understand the

structure and even the meaning of the published information, making information search and

data integration more efficient. Semantic publishing is driven by the increase of semantic web.

In the semantic web, published information is accompanied by metadata describing the

information, providing a "semantic" context.

Figure 2.7.2 Semantic Web Stack

However Web applications are being developed using the semantic web standards such

standards involve W3C which is developing semantic web infrastructures and standards

through its many semantic web activities.

The Semantic Web is generally built on syntaxes which use URIs to represent data, usually in

triples based structures: i.e. many triples of URI data that can be held in databases, or

Streaming Linked Data Page 38

interchanged on the World Wide Web using a set of particular syntaxes developed especially

for the task. These syntaxes are called "Resource Description Framework" syntaxes.

2.7.1. URI - Uniform Resource Identifier
A URI is simply a string starting with "http:" or "ftp:" that you often find on the World Wide

Web, used to identify a name or a resource. Such identification enables interaction with

representations of the resource over a network (typically the World Wide Web) using specific

protocols.

Here we are discussing the URIs for Web Documents. Taking an example of a company named

as ABC. Assume that ABC Inc., the fictional company from many Williams Brothers, has a web

site at http://www.abc.com/.

Imagine, part of the site is a white-pages service listing the names and contact details of the

employees. Alice and Bob both work at ABC. The structure of ABC’s web site might thus be:

http://www.abc.com/ – the homepage of ABC, Inc.

http://www.abc.com/people/alice – the homepage of Alice

http://www.abc.com/people/bob – the homepage of Bob

Like everything on the traditional web, these are web documents. Every web document has its

own URI. Note that a web document is not the same as a file: A single web document can be

available in many different formats and languages, and a single file, for example a PHP script,

may be responsible for generating a large number of web documents with different URIs. On

the traditional web, URI’s are used only for web documents – to link to them, and to access

them in a browser.

2.7.2. RDF - Resource Description Framework
Resource Description Framework (RDF) is a semantic web standard as well as a language for

representing information about resources in the World Wide Web. This is also certified by

W3C.

The RDF data model (12) is similar to classic conceptual modeling approaches such as Entity-

Relationship or Class diagrams, as it is based upon the idea of making statements about web

resources in the form of subject-predicate-object expressions. These expressions are known as

triples in RDF terminology. The subject denotes the resource, and the predicate denotes

aspects of the resource and expresses a relationship between the subject and the object.

Streaming Linked Data Page 39

Let’s take an example that someone says that “the grass is green”. We will represent the

notion in RDF as a triple: a subject denoting "the grass", a predicate denoting "has the color",

and an object denoting "green". However RDF is an abstract model with several serialization

formats. It’s simple data model and ability to model disparate, abstract concepts has also led

to its increasing use in knowledge management applications unrelated to Semantic Web

activity. In practice, RDF data is often persisted in relational database or native

representations also called Triple stores.

However the goals of RDF are extensive and the potential opportunities are enormous. So a

discussion of the functionality of RDF and an overview of the model, schema and syntactic

considerations of this framework follow.

A triple can simply be described as three URIs. Since RDF is a generic format, which already has

many parsers. XML RDF is quite a verbose specification, and it can take some getting used to

(for example, to learn XML RDF properly, you need to understand a little about XML and

namespaces beforehand...), but let's take a quick look at an example of XML RDF right now:-

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:foaf="http://xmlns.com/0.1/foaf/" >

 <rdf:Description rdf:about="">

 <dc:creator rdf:parseType="Resource">

 <foaf:name>Sean B. Palmer</foaf:name>

 </dc:creator>

 <dc:title>The Semantic Web: An Introduction</dc:title>

 </rdf:Description>

</rdf:RDF>

This piece of RDF basically says that this article has the title "The Semantic Web: An

Introduction", and was written by someone whose name is "Sean B. Palmer". RDF has three

notions for writing into triples.

Streaming Linked Data Page 40

2.7.2.1. Notation3
Notation3, or N3 as it is more commonly known, is a serialization of Resource Description

Framework models, designed with human-readability in mind: N3 is much more compact and

readable than XML RDF notation. The format is being developed by Tim Berners-Lee and

others from the Semantic Web community.

N3 has several features that go beyond a serialization for RDF models, such as support for

RDF-based rules. Here are the triples that XML/RDF produces:-

@prefix : <http://www.w3.org/2000/10/swap/log#> .

 @prefix dc: <http://purl.org/dc/elements/1.1/> .

 @prefix foaf: <http://xmlns.com/0.1/foaf/> .

 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

 <> dc:creator [

 foaf:name "Sean B. Palmer"];

 dc:title "The Semantic Web: An Introduction" .

2.7.2.2. Turtle
Turtle is a simplified, RDF-only subset of N3. Turtle (Terse RDF Triple Language) is a

serialization format for RDF graphs. Turtle doesn't go beyond RDF's graph model. The SPARQL

Protocol and RDF Query Language uses a similar N3 subset to Turtle for its graph patterns, but

using N3's braces syntax for delimiting sub graphs.

Turtle has no official status with any standards organization, but has become popular amongst

Semantic Web developers as a human-friendly alternative to RDF/XML.

2.7.2.3. N-triples
N-Triples, is a format for storing and transmitting data. It is a line-based, plain text serialization

format for RDF graphs. N-Triples was designed to be a simpler format than Notation 3 and

Turtle, and therefore easier for software to parse and generate. However, because it lacks

some of the shortcuts provided by other RDF serializations (such as CURIEs and nested

resources, which are provided by both RDF/XML and Turtle) it can be difficult to type out large

amounts of data by hand, and difficult to read.

<> <http://purl.org/dc/elements/1.1/creator> _:ag0 .

 <http://purl.org/dc/elements/1.1/title> "The Semantic Web: An

Introduction".

 _:ag0 <http://xmlns.com/0.1/foaf/name> "Sean B. Palmer" .

Streaming Linked Data Page 41

2.7.2.4. Why RDF?
When people are confronted with XML RDF for the first time, Firstly, the benefit that one gets

from drafting a language in RDF is that the information maps directly and unambiguously to a

model, a model which is decentralized, and for which there are many generic parsers already

available. This means that when you have an RDF application, you know which bits of data are

the semantics of the application, and which bits are just syntactic fluffs. And not only do you

know that, everyone knows that, often implicitly without even reading a specification because

RDF is so well known.

The second part of the twofold answer is that we hope that RDF data will become a part of the

Semantic Web, so the benefits of drafting your data in RDF now draws parallels with drafting

your information in HTML in the early days of the Web.

The answer to "do we use XML Schema in conjunction with RDF?" is almost as brief. XML

Schema is a language for restricting the syntax of XML applications.

2.7.3. RDF Schema
RDF Schemas are used to declare vocabularies, the sets of semantics property-types defined

by a particular community. RDF schemas define the valid properties in a given RDF description,

as well as any characteristics or restrictions of the property-type values themselves. The XML

namespace mechanism serves to identify RDF Schemas.

A human and machine-process able description of an RDF schema may be accessed by de-

referencing the schema URI. If the schema is machine-process able, it may be possible for an

application to learn some of the semantics of the property-types named in the schema. To

understand a particular RDF schema is to understand the semantics of each of the properties

in that description. RDF schemas are structured based on the RDF data model. Therefore, an

application that has no understanding of a particular schema will still be able to parse the

description into the property-type and corresponding values and will be able to transport the

description intact (e.g., to a cache or to another application).

RDF Schema was designed to be a simple data typing model for RDF. Using RDF Schema, we

can say that "Fido" is a type of "Dog", and that "Dog" is a sub class of animal. We can also

create properties and classes, as well as doing some slightly more "advanced" stuff such as

creating ranges and domains for properties.

RDF Schema give us are the "Resource" (rdfs:Resource), the "Class" (rdfs:Class), and the

"Property" (rdf:Property).

Streaming Linked Data Page 42

For example, all terms in RDF are types of resource. To declare that something is a "type" of

something else, we just use the rdf:type property:-

rdfs:Resource rdf:type rdfs:Class .

rdfs:Class rdf:type rdfs:Class .

rdf:Property rdf:type rdfs:Class .

rdf:type rdf:type rdf:Property .

This simply says that "Resource is a type of Class, Class is a type of Class, Property is a type of

Class, and type is a type of Property". These are all true statements.

It is quite easy to make up your own classes. For example, let's create a class called "Dog",

which contains all of the dogs in the world:-

:Dog rdf:type rdfs:Class .

Now we can say that "Fido is a type of Dog":-

:Fido rdf:type :Dog .

We can also create properties quite easily by saying that a term is a type of rdf:Property, and

then use those properties in our RDF:-

:name rdf:type rdf:Property .

:Fido :name "Fido" .

Why have we said that Fido's name is "Fido"? Because the term ":Fido" is a URI, and we could

quite easily have chosen any URI for Fido. However, we still have to tell machines that his

name is Fido, because although people can guess that from the URI (even though they probably

shouldn't), machines can't.

RDF Schema also has a few more properties that we can make use of: rdfs:subClassOf and

rdfs:subPropertyOf. These allow us to say that one class or property is a sub class or sub

property of another. For example, we might want to say that the class "Dog" is a sub class of

the class "Animal". To do that, we simply say:-

:Dog rdfs:subClassOf :Animal .

Hence, when we say that Fido is a Dog, we are also saying that Fido is an Animal. We can also

say that there are other sub classes of Animal:-

:Human rdfs:subClassOf :Animal .

:Duck rdfs:subClassOf :Animal .

Streaming Linked Data Page 43

You can see that RDF Schema is very simple, and yet allows one to build up knowledge bases

of data in RDF very quickly.

The next concepts which RDF Schema provides us, which are important to mention, are ranges

and domains. Ranges and domains let us say what classes the subject and object of each

property must belong to.

2.7.4. The Web Ontology Language
The Web Ontology Language (OWL) facilitates greater machine interoperability of Web

content than that supported by XML, RDF, and RDF Schema (RDF-S) by providing additional

vocabulary along with a formal semantics.

The Web Ontology Language (OWL) is a component of the Semantic Web activity. The Web

Ontology Language (OWL) is a family of knowledge representation languages for defining web

ontology. The language extends by web semantic standards RDF and RDFS. It is designed to

support different levels of expression with different computational requirements. Its primary

aim is to bring the expressive and reasoning power of description logic to the semantic web. It

is certified by World Wide Web Consortium (W3C).

The W3C has played an important role in an increasing number and range of applications built

by using OWL, and is the focus of research into tools, reasoning techniques, formal

foundations and language extensions. This level of experience with OWL means that the

community is now in a good position to discuss how OWL to be applied, adapted and

extended to fulfill current and future application demands.

The OWL Web Ontology Language is intended to provide a language that can be used to

describe the classes and relations between them that are inherent in Web documents and

applications. Thus it provides us the way to:

 Formalize a domain by defining classes and properties of those classes,

 Define individuals and assert properties about them, and

 Reason about these classes and individuals to the degree permitted by the formal

semantics of the OWL language.

Unfortunately, DL does not describe everything from RDF. For example, the classes of classes

are not permitted in the DL, and some of the triple expressions would have no sense in DL.

That is why OWL can be only syntactic extension of RDF/RDFS (note that RDFS is both syntactic

and semantic extension of RDF). To partially overcome this problem, and also to allow layering

within OWL, three species of OWL are defined.

Streaming Linked Data Page 44

2.7.4.1. OWL Lite
OWL Lite was originally intended to support users whose primary need is a classification

hierarchy and simple constraints. For example, while it supports cardinality constraints, it only

permits cardinality values of 0 or 1. It was hoped that it would be simpler to provide tool

support for OWL Lite than its more expressive relatives, allowing quick migration path for

systems utilizing some taxonomies.

However, in practice the most of the expressiveness constraints placed on OWL Lite amount

to little more than syntactic inconveniences: most of the constructs available in OWL DL can

be built using complex combinations of OWL Lite features. Development of OWL Lite tools has

thus proven almost as difficult as development of tools for OWL DL, and OWL Lite is not widely

used.

2.7.4.2. OWL DL
OWL DL was designed to provide the maximum expressiveness possible while retaining

computational completeness (either φ or ¬φ belong), decidability (there is an effective

procedure to determine whether φ is derivable or not), and the availability of practical

reasoning algorithms.

OWL DL includes all OWL language constructs, but they can be used only under certain

restrictions (for example, number restrictions may not be placed upon properties which are

declared to be transitive). OWL DL is so named due to its correspondence with description

logic, a field of research that has studied the logics that form the formal foundation of OWL.

2.7.4.3. OWL Full
OWL Full has no expressiveness constraints, but also does not guarantee any computational

properties. It is formed by the full OWL vocabulary, but does not no impose any syntactic

constrains, so that the full syntactic freedom of RDF can be used.

The OWL is defined in these three species because as

 every legal OWL Lite ontology is a legal OWL DL ontology

 every legal OWL DL ontology is a legal OWL Full ontology

 every valid OWL Lite conclusion is a valid OWL DL conclusion

 and every valid OWL DL conclusion a valid OWL Full conclusion.

The inverses of these relations generally do not hold. However every OWL ontology is a valid

RDF document (i.e., DL expressions are mapped to triples), but not all RDF documents are

valid OWL Lite or OWL DL documents.

Streaming Linked Data Page 45

Below is an example of OWL ontology expressed in triples and serialized in N3. "Pizza has

PizzaBase as its base; Pizza is disjoint with PizzaBase; NonVegetarianPizza is exactly Pizza that

is not VegetarianPizza; isIngredientOf is a transitive property; isIngredientOf is inverse of

hasIngredient". The example expressed in follows:

Syntax:

 @prefix : <http://example.com/pizzas.owl#> .

 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

 @prefix owl: <http://www.w3.org/2002/07/owl#> .

 :Pizza rdfs:subClassOf

 [a owl:Restriction ;

 owl:onProperty :hasBase ;

 owl:someValuesFrom :PizzaBase] ;

 owl:disjointWith :PizzaBase .

 :NonVegetarianPizza owl:equivalentClass

 [owl:intersectionOf

 ([owl:complementOf :VegetarianPizza]

 :Pizza)] .

 :isIngredientOf

 a owl:TransitiveProperty , owl:ObjectProperty ;

 owl:inverseOf :hasIngredient .

2.7.5. SPARQL
SPARQL- simple protocol and RDF query language is proposed by W3C for querying RDF data

published on the web, either stored natively or vied via middle ware. SPARQL offers a

syntactically SQL-like language for querying RDF graphs via pattern matching, as well as simple

communication protocol that can be used by the clients for issuing SPARQL queries against

endpoints.

SPARQL, which is both a query language and a data access protocol, has the ability to become

a key component in Web 2.0 applications: as a standard backed by a flexible data model, it can

provide a common query mechanism for all Web 2.0 applications. SPARQL should be of

interest to developers exploring the available options for publishing open data on the Web.

Work on RDF query languages has been progressing for a number of years. Several different

approaches have been tried similar to SQL-style syntaxes. SPARQL actually consists of three

separate specifications. The query language specification makes up the core. But alongside it

sits the query results XML format which, as you might guess, describes an XML format for

serializing the results of a SPARQL SELECT (and ASK) query. This simple format is easily process

able with common XML tools such as XSLT. The third specification is the data access protocol

Streaming Linked Data Page 46

which uses WSDL 2.0 to define simple HTTP and SOAP protocols for remotely querying RDF

databases.

However there are a number of issues that SPARQL does not address yet; most notably,

SPARQL is read-only and cannot modify an RDF dataset.

Happily the SPARQL specifications don't exist in isolation. There are several tools and APIs that

already provide SPARQL functionality, and most of them are up to date with the latest

specifications. A brief list includes:

 ARQ, a SPARQL processor for Jena

 Rasqal, the RDF query library

 Twinql, a SPARQL processor for Lisp

 Pellet, an open source OWL DL reasoner in Java, that has partial SPARQL query support

 KAON2, another OWL DL reasoner that has partial SPARQL support.

Most forms of SPARQL query contain a set of RDF triple patterns called a basic graph pattern.

The example below shows a SPARQL query to find the title of a book from the given data

graph. The query consists of two parts: the SELECT clause identifies the variables to appear in

the query results, and the WHERE clause provides the basic graph pattern to match against

the data graph. The basic graph pattern in this example consists of a single triple pattern with

a single variable (?title) in the object position.

Data
 <http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title>

"SPARQL Tutorial" .

Query
SELECT ?title

WHERE

{ <http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title>

?title . }

Query Result
title "SPARQL Tutorial"

Streaming Linked Data Page 47

2.7.6. The Power Of Semantic Web Languages
The power of Semantic Web languages is that anyone can create application for publishing

some RDF that describes a set of URIs. As we use URIs for each of the terms in our semantic

web standard languages, we can publish the languages easily without fear that they might get

misinterpreted or stolen, and with the knowledge that anyone in the world has a generic RDF

processor can use them.

We can measure the power on a principle of least power: the lesser the rules, the better. This

means that the Semantic Web is essentially very unconstraining in what it lets one say, and

hence it follows that anyone can say anything about anything. When you look at what the

Semantic Web is trying to do, it becomes very obvious why this level of power is necessary… if

we started constraining people, they wouldn't be able to build a full range of applications, and

the Semantic Web would therefore become useless to some people.

2.7.7. Relational DB to RDF framework
Real-world applications store data in relational databases. Such RDBs are faster and reliable.

With the growth of semantic web we need to express relational databases in a form and

language that may be machine process able. To make the data process able by the machines is

the aim of semantic web.

The purpose of using relational databases is to store, manage and retrieve data. Then some

mythology will be used to express these RDBs to RDF which is the standard semantic web

language. Below shown is the complete mapping process of relational data to RDF.

Streaming Linked Data Page 48

Figure 2.7.3 Mapping Process

The above mapping process has two main steps. First, the Relational.OWL, which represents

the schema of RDB. The reference OWL classes describe the tables in a database. Ontology will

be constructed by specifying the possible relationships among OWL classes. The schema will

then be an instance of the Relational.OWL ontology. In turn, the data items converted become

instances of the schema ontology just created. The schema and data components are

translated statically in a using a virtual representation of that RDF model, e.g. with RDQuery

(13).

When Relational.OWL schema has been created which represents the relational database, the

second step including the actual mapping can be performed. The RDF model can be queried

with an RDF query language e.g. SPARQL. As long as the query language is closed, the

resulting query response is again within the Semantic Web, i.e. it is a valid RDF model or graph

and may then be processed by other Semantic Web applications using their own built-in

functionality for reasoning tasks.

Streaming Linked Data Page 49

2.8. Publishing Relational Artifacts on Semantic Web
As Semantic Web technologies are getting mature, there is a growing need for RDF

applications to access the content of huge, live, non- RDF, legacy databases without having to

replicate the whole database into RDF.

2.8.1. D2RQ
D2RQ is a declarative language to describe mappings between relational database schemata

and OWL/RDFS ontologies. It takes a relational database schema as input and presents an RDF

interface of the same as output using Jena API’s. A D2RQ graph wraps one or more local

relational databases into a virtual, read only RDF graph. D2RQ rewrites RDQL queries and Jena

API calls into application data model-specific SQL queries. The result sets of these SQL queries

are transformed into RDF triples which are passed up to the higher layers of the Jena

framework.

The D2RQ mapping language builds on experience gained with D2R. The central object within

D2RQ is the ClassMap. A ClassMap represents a class or a group of similar classes from the

ontology. It specifies whether instances are identified by using URI column values from the

database, by using an URI pattern together with the primary key values or by using blank

nodes.

The complete D2RQ application architecture is shown below.

Figure 2.8.1 D2RQ Application Architecture

The D2RQ, Semantic Web applications can:

 Query a non-RDF database using RDQL,

 Publish the content of a non-RDF database on the Semantic Web using the RDF

Net API,

 Do RDFS and OWL inferencing over the content of a non-RDF database using the

Jena ontology API,

 Access information in a non-RDF database using the Jena model API.

Streaming Linked Data Page 50

2.8.2. D2R Server
D2R Server is a tool for publishing relational databases on the Semantic Web. It enables RDF

and HTML browsers to navigate the content of the database, and allows applications to query

the database using the SPARQL query language. Database content is mapped to RDF by a

declarative mapping which specifies how resources are identified and how property values are

generated from database content. Based on this mapping, D2R Server allows Web agents to

retrieve RDF and XHTML representations of resources and to query non-RDF databases using

the SPARQL query language over the SPARQL protocol.

Figure 2.8.2 D2R Server

D2R Server uses the D2RQ mapping language to capture mappings between application

specific database schemas and RDFS schemas or OWL ontologies. A D2RQ mapping specifies

how resources are identified and how property values are generated from database content.

D2R Server includes a tool that automatically generates a D2RQ mapping from the table

structure of a database. The tool generates a new RDF vocabulary for each database, using

table names as class names and column names as property names. The mapping can be

customized afterwards by substituting auto-generated terms with terms from well-known RDF

vocabularies.

2.8.3. Virtuoso Universal Server
Virtuoso Universal Server is the OpenLink Virtuoso server for serving RDF data via a Linked

Data interface and a SPARQL endpoint. RDF data can either be stored directly in Virtuoso or

can be created on the fly from non-RDF relational databases based on a mapping.

Streaming Linked Data Page 51

2.8.4. Pubby
The Pubby server can be used as an extension to any RDF store that supports SPARQL. Pubby

rewrites URI requests into SPARQL and describe queries against the underlying RDF store.

Besides RDF, Pubby also provides a simple HTML view over the data store and takes care of

handling 303 redirects and content negotiation between the two representations. Pubby can

be used to add Linked Data interfaces to SPARQL endpoints.

Figure 2.8.3 Pubby Server

2.9. Linked data
Linked Data is about using the Web to connect the related data that was not previously linked.

More specifically we can say that sharing, and connecting pieces of data, information, and

knowledge on the Semantic Web using URIs and RDF. Linked Data embodies an important goal

of the Semantic Web, to create a web of data which can be queried like a global database as

well as traversed by the links connecting the individual data elements.

Figure 2.9.1 Linked Data

This web of data is published on standards like HTTP, URIs and RDF and is based on the

following design principles:

Streaming Linked Data Page 52

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards (RDF,

SPARQL).

4. Include links to other URIs. So that they can discover more things.

"By publishing data according to Web standards and Linked Data principles others are

empowered to create the shiny interfaces that are meaningful and useful to them (14).

The first rule is to identify things with URIs. It is understandable by most of the people

involved in semantic web technology. If we do not use the universal URI set of symbols, we

don't call it Semantic Web.

The second rule is to use HTTP URIs. This is the only deviating thing since the web started, a

constant tendency for people to invent new URI schemes (and sub-schemes within the urn:

scheme) such as LSIDs and handles and XRIs and DOIs and so on, for various reasons.

The third rule is that one should serve information on the web against a URI, is, in 2006, well

followed for most ontologies, but, for some reason, not for some major datasets. One can, in

general, look up the properties and classes one finds in data, and get information from the

RDF, RDFS, and OWL ontologies including the relationships between the terms in the ontology.

The basic format here for RDF/XML, with its popular alternative serialization N3 (or Turtle).

Large datasets provide a SPARQL query service, but the basic linked data should be provided

as well.

The fourth rule is to make links elsewhere. This is necessary to connect the data we have into

a web, a serious, unbounded web in which one can find all kinds of things that just as on the

hypertext web we have managed to build. So let's look at the ways of linking data, starting

with the simplest way of making a link.

For publishing Linked Data on the Web, the information about resources is represented by

using the RDF. RDF provides a data model that is extremely simple but strictly tailored towards

Web architecture.

Below is an example that uses RDF browser to display information about Richard from his

FOAF profile. Richard has identified himself with the URI.

http://richard.cyganiak.de/foaf.rdf#cygri

Streaming Linked Data Page 53

When the user types the above URI into the navigation bar, the browser dereferences this URI

over the Web, asking for content type application/rdf+xml and displays the retrieved

information. In his profile, Richard has stated that he is based near Berlin, using the DBpedia

URI http://dbpedia.org/resource/Berlin as URI alias for the non-information resource Berlin.

As the user is interested in Berlin, he instructs the browser to dereference this URI by clicking

on it. The browser now dereferences this URI asking for application/rdf+xml.

Figure 2.9.2 Linked data being created

After being redirected with a HTTP 303 response code, the browser retrieves an RDF graph

describing Berlin in more detail. A part of this graph is shown in the third step of the figure

above. The graph contains a literal triple stating that Berlin has 3.405.259 inhabitants and

another RDF link to a resource representing a list of German cities. Therefore in the same step,

as both RDF graphs share the same URI http://dbpedia.org/resource/Berlin, they are naturally

merged together.

Streaming Linked Data Page 54

The user might also be interested in other German cities. Therefore he lets the browser

dereference the URI identifying the list. The retrieved RDF graph contains more RDF links to

German cities, for instance, Hamburg and München as shown in the fourth step of the figure

above. So this is how RDF graphs being presented by using the RDF browsers.

2.9.1. Linked data browsers

2.9.1.1. Tabulator Browser (MIT, USA)
This is one possible form of a semantic web browser. It works with Firefox as add on. The

Tabulator project is a generic data browser and editor. Using outline and table modes, it

provides a way to browse RDF data on the web. RDF is the standard for inter-application data

exchange.

2.9.1.2. Zitgist’s RDF Browser
This is new tool from Zitgist for browsing information available on the Semantic Web. Like
other semantic web browsers this browser also depends on the data available for a given thing
(a resource), its user interface is pity simple so that the data is best displayed for a better
understanding of its semantic.

The core of this new RDF browser is its templating system. Users only have to put the URI of a
resource (it can be a URL where the browser can find RDF information about this Thing), then
pressing the “browse” button. Depending on the information available about this Thing, the
RDF browser will shape its interface to optimize users’ browsing experience with the data.

Data displayed in the Zitgist RDF Browser can come from many different data sources:

 Zitgist’s internal RDF datastore
 URI dereferencing
 On-the-fly conversation of data sources such as:

o Microformats
o RDFa
o eRDF
o HTML meta tags
o API data source such as: Amazon.com, Google Base, etc.

So, depending on what information is available for a given URI, the browser will mesh-up

these data sources and displays the information to the user.

Streaming Linked Data Page 55

2.9.1.3. Disco Hyperdata Browser (FU Berlin, DE)
The Disco - Hyperdata Browser is a simple browser for navigating the Semantic Web. The

browser renders all information that it can find on the Semantic Web about a specific

resource, as an HTML page. This resource description contains hyperlinks that allow you to

navigate between resources. While you move from resource to resource, the browser

dynamically retrieves information by dereferencing HTTP URIs and by following rdfs:seeAlso

links.

Figure 2.9.3 Disco Hyperdata Browser

Streaming Linked Data Page 56

2.9.1.4. Marbles (FU Berlin, DE)
Similarly like other Web browsers marbles allow users to navigate between HTML pages by

hypertext links and like Linked Data browsers allow users to navigate between data sources by

links expressed as RDF triples.

Figure 2.9.4 Marble Linked Data browser

Figure: The Marbles Linked Data browser displaying data about Tim Berners-Lee.The colored

dots indicate the data sources from which data was merged.

2.9.1.5. Other browsers

 OpenLink RDF Browser (OpenLink, UK)

 Humboldt (HP Labs, UK)

 Fenfire (DERI, Irland)

Streaming Linked Data Page 57

2.9.2. Linking
As discussed earlier that for linked data we will URIs related to a single real-world object –

resource identifier, RDF document URL, HTML document URL and these should be explicitly

linked with each other to help information that consumers understand their relation.

Let’s assume ABC Inc. wants to publish contact data of their employees on the semantic web.

This is the company of two brothers. As described in section of URI for documents. We will

have the following URIs.

http://www.abc.com/ – the homepage of ABC, Inc.

http://www.abc.com/people/alice – the homepage of Alice

http://www.abc.com/people/bob – the homepage of Bob

Now in case of linked data there are three URIs related to Alice:

http://www.abc.com/id/alice - Identifier for Alice, the person

http://www.abc.com/people/alice - Alice‟s homepage

http://www.abc.com/data/alice - RDF document with description of Alice

As an example the RDF document located at http://www.abc.com/data/alice might contain

these foaf statements (expressed in N3):

<http://www.abc.com/id/alice>

foaf:page <http://www.abc.com/people/alice>;

rdfs:isDefinedBy <http://www.abc.com/data/alice>;

a foaf:Person;

foaf:name "Alice";

foaf:mbox <mailto:alice@acme.com>;

The document makes statements about Alice, the person, using the resource identifier. The

first two properties relate the resource identifier to the two document URLs. The foaf:page

statement links it to the HTML document. This allows RDF-aware clients to find a human-

readable version of the resource, and at the same time, by linking the page to its topic, defines

useful metadata about that HTML document. The rdfs:isDefinedBy statement links the person

to the document containing its RDF description and allows RDF browsers to distinguish this

main resource from other auxiliary resources that just happen to be mentioned in the

document. We use rdfs:isDefinedBy instead of its weaker superproperty rdfs:seeAlso because

the content at /data/alice is authoritative.

The remaining statements are the actual white pages data. The HTML document at

http://www.acme.com/people/alice should contain in its header a <link /> element that

points to the corresponding RDF document:

Streaming Linked Data Page 58

<html lang="en">

<head>

<title>Alice‟s Homepage</title>

<link rel="alternate" type="application/rdf+xml"

title="RDF Version"

href="http://www.acme.com/data/alice" />

</head>

This allows RDF-aware web clients to discover the RDF information. The approach is

recommended in Section 9 of the RDF/XML specification (15). If the information on the web

page differs significantly from the RDF version, then we recommend using rel="meta" instead

of rel="alternate". The three desired links for each resource are shown in drawing 2.9.2.

Drawing 2.9.1 The RDF and HTML documents should relate the URIs to each other

2.9.3. Best practices
For publishing the URIs we have two solutions.

 303 URIs

 Hash URIs

Both of these solutions have their own advantages and disadvantages.

2.9.3.1. 303 URIs
The first solution is to use a special HTTP status code, “303 See Other”, to distinguish non-

document resources from regular web documents. Since 303 is a redirect status code, the

server can also give the location of a document that describes the resource. If, on the other

hand, a request is answered with one of the usual status codes in the 2XX range, like 200 OK,

then the client knows that the URI identifies a web document. This practice has been

embraced by the W3C’s Technical Architecture Group in its httpRange-14 ruling (16). If ABC

adopts this solution, they could use these URIs to represent the company, Alice and Bob:

http://www.abc.com/id/acme – ACME, the company

http://www.abc.com/id/bob – Bob, the person

http://www.abc.com/id/alice – Alice, the person

Streaming Linked Data Page 59

The web server would be configured to answer requests to all these URIs with a 303 status

code and a Location HTTP header that provides the URL of a document that describes the

resource, as seen in drawing 2.9.3. The server could employ content negotiation to send either

the URL of an HTML description or RDF. Requests for HTML would be redirected to the web

page URLs and requests for RDF data would be redirected to RDF documents, such as:

http://www.abc.com/data/acme – RDF document describing ABC, the company

http://www.abc.com/data/bob – RDF document describing Bob, the person

http://www.abc.com/data/alice – RDF document describing Alice, the person

http://www.abc.com/id/alice

http://www.abc.com/data/alice

http://www.abc.com/people/alice

303 redirect

Accept: application/rdf+xml Other content types,

or no Accept: header

Drawing 2.9.2 The 303 URI solution

Each of the RDF documents would contain statements about the appropriate resource, using

the original URI, e.g. http://www.abc.com/id/alice, to identify the described resource.

2.9.3.2. Hash URIs
The second solution is to use “hash URIs” for non-document resources. URIs can contain a

fragment, a special part that is separated from the rest of the URI by a hash symbol (“#”).

When a client wants to retrieve a hash URI, then it is required to strip off the fragment part

before requesting the URI from the server. This means a URI that includes a hash cannot be

retrieved directly and therefore cannot identify a web document. We can use them to identify

other, non-document resources, without creating ambiguity. If ABC adopts this solution, then

they could use these URIs to represent the company, Alice, and Bob:

Streaming Linked Data Page 60

http://www.abc.com/data#acme – ABC, the company

http://www.abc.com/data#bob – Bob, the person

http://www.abc.com/data#alice – Alice, the person

Clients will always strip off the fragment part before requesting any of these

URIs, resulting in a request to this URI:
http://www.abc.com/data – RDF document describing ABC, Bob, and Alice

At this URI, ACME could serve an RDF document that contains descriptions of all three

resources, using the original hash URIs to identify the resources. Alternatively, content

negotiation (see Section 3.16) could be employed to redirect from the data URI to separate

HTML and RDF documents. This is a somewhat intricate affair because of the way HTML

interacts with fragments:

Drawing 2.9.3 The hash URI solution with content negotiation

The redirect to the HTML document must send a 303 See Other status code (otherwise a client

could conclude that the hash URI represents a part of the HTML document). For the redirect to

the RDF, 302 Found, 303 See Other, and 301 Temporary Redirect are fine; a recent W3C Best

Practices document uses 303 (17). The hash URI solution, with content negotiation, is shown

in drawing 2.9.4.

Streaming Linked Data Page 61

2.9.4. Ontologies
There is no common definition of the term "ontology" itself. However to define an ontology

we can say that ontologies share many structural similarities, regardless of the language in

which they are expressed. So,

1. Ontology is a term in philosophy and its meaning is “theory of existence''.

2. Ontology is an explicit specification of conceptualization.

3. Ontology is a body of knowledge describing some domain, typically common sense

knowledge domain.

Ontology describes individuals (instances), classes (concepts), attributes, and relations.

Therefore the common components of ontology include:

 Individuals: instances or objects (the basic or "ground level" objects)

 Classes: sets, collections, concepts, classes in programming, types of objects, or kinds

of things

 Attributes: aspects, properties, features, characteristics, or parameters that objects

(and classes) can have

 Relations: ways in which classes and individuals can be related to one another

 Function terms: complex structures formed from certain relations that can be used in

place of an individual term in a statement

 Restrictions: formally stated descriptions of what must be true in order for some

assertion to be accepted as input

 Rules: statements in the form of an if-then (antecedent-consequent) sentence that

describe the logical inferences that can be drawn from an assertion in a particular

form.

In Semantic Web and Linked Data the models are based on the use of RDF, RDFS and OWL

which are used to describe the types, properties, and relationship types. So ontologies are

commonly known as RDF "vocabularies".

Streaming Linked Data Page 62

The following is a table of commonly used ontologies, together with their namespaces and
preferred prefixes.

Prefix Namespace Description

Dc http://purl.org/dc/elements/1.1/
DCMI Namespace for the Dublin Core

Metadata Element Set, Version 1.1

dcterms http://purl.org/dc/terms/

DCMI Namespace for metadata

terms in the

http://purl.org/dc/terms/

namespace

event http://purl.org/NET/c4dm/event.owl#

foaf http://xmlns.com/foaf/0.1/ Friend of a Friend (FOAF) vocabulary

geo http://www.w3.org/2003/01/geo/wgs84_pos# geo

owl http://www.w3.org/2002/07/owl#

Po http://purl.org/ontology/po/ Programmes ontology

Rdf
http://www.w3.org/1999/02/22-rdf-syntax-

ns#
The RDF Vocabulary (RDF)

rdfs http://www.w3.org/2000/01/rdf-schema# The RDF Schema vocabulary (RDFS)

skos http://www.w3.org/2004/02/skos/core#

Xsd http://www.w3.org/2001/XMLSchema#

Figure 2.9.5 Commonly Used Ontologies and their Namespaces

Streaming Linked Data Page 63

2.9.4.1. Dbpedia Ontologies
DBpedia is a community effort to extract structured information from Wikipedia and to make

this information available on the Web. DBpedia allows you to ask sophisticated queries against

Wikipedia, and to link other data sets on the Web to Wikipedia data. We hope this will make

it easier for the amazing amount of information in Wikipedia to be used in new and interesting

ways, and that it might inspire new mechanisms for navigating, linking and improving

the encyclopaedia itself.

Figure 2.9.6 DBpedia

The DBpedia dataset describes more than 3.5 million things, including at least 213,000

persons, 328,000 places, 57,000 music albums, 36,000 films, 20,000 companies. The dataset

features labels and short abstracts for these things in 30 different languages; 609,000 links to

images and 3,150,000 links to external web pages; 4,878,100 external links into other RDF

datasets, 415,000 Wikipedia categories, and 75,000 YAGO categories.

Streaming Linked Data Page 64

Figure 2.9.7 DBpedia Linking Relationship With Web Datasets

DBpedia Ontology http://dbpedia.org/Ontology "is a shallow, cross-domain ontology, which

has been manually created based on the most commonly used infoboxes within Wikipedia.

The ontology currently covers over 170 classes which form a subsumption hierarchy and has

940 properties".

There is an overview of the class hierarchy at:

http://www4.wiwiss.fu-berlin.de/dbpedia/dev/ontology.htm

Top level classes i.e. Subclasses of owl:Thing can be viewed by running in following query in

the Dbpedia SPARQL Web form:

http://dbpedia.org/snorql/

SELECT * WHERE {

?s rdfs:subClassOf owl:Thing

}

E.g. the Artist class is a sub class of the Person class.

<http://dbpedia.org/ontology/Artist> rdfs:subClassOf

<http://dbpedia.org/ontology/Person> .

Streaming Linked Data Page 65

2.9.4.2. Yago
YAGO is a large ontology with high coverage and precision. YAGO has been automatically

derived from Wikipedia and WordNet. It comprises entities and relations, and currently

contains more than 1.7 million entities and 15 million facts. These include the taxonomic Is-A

hierarchy as well as semantic relations between entities. The facts for YAGO have been

extracted from the category system and the infoboxes of Wikipedia and have been combined

with taxonomic relations from WordNet.

2.10. Managing data streams at semantic level

2.10.1. C-sparql
It is termed as Continuous SPARQL which is a new language for continuous queries over

streams of RDF data. The support of streams in RDF format guarantees interoperability and

opens up important applications, in which reasoners can deal with knowledge evolving over

time. Such modern applications deals with are network monitoring, traffic engineering, sensor

networks and financial sector. However processing of data streams has been largely

investigated in the last decade (18), specialized data streams management systems has been

developed, and their features are becoming supported by major database products , such as

ORACLE and DB2. Thus the extension of SPARQL for dealing with streaming data is currently

investigated.

Streaming SPARQL (19), C-SPARQL (20) and TA-SPARQL (21) are two proposals for extending

SPARQL to stream data management. Both of them introduce the notion of RDF streams as

the natural extension of the RDF data model to this scenario, and then extend SPARQL to

query RDF-streams. All queries over RDF data streams are denoted as continuous queries,

because they continuously produce output in the form of tables of variable bindings or RDF

graphs. Here in the start we address the registration of queries that do not produce a stream,

but a result that is periodically updated. C-SPARQL queries are registered through the

following statement:

Registration „REGISTER QUERY‟ QueryName

[„COMPUTED EVERY‟ Number TimeUnit] „AS‟ Query

The COMPUTED EVERY clause is the same as the one for stream registration. As a very simple

example of a registered query that does not generate a stream, consider the following query.

For each known user, the query counts the overall number of interactions performed in the

last 30 minutes and the number of distinct topics to which the documents refer.

Streaming Linked Data Page 66

REGISTER QUERY GlobalCountOfInteractions COMPUTED EVERY 5m AS

SELECT ?user

COUNT(?document) as ?numberOfInteractions

COUNT(DISTINCT ?topic) as ?numDifferentTopics

FROM STREAM <http://streamingsocialdata.org/interact.trdf> [RANGE 30m STEP

5m]

WHERE { ?user sd:accesses ?document .

?document sd:describes ?topic . }

GROUP BY { ?user }

The query is executed by matching all interactions in the window, grouping them by ?user,

and computing the aggregates. The result has the form f a table of bindings that is updated

every 5 minutes.

REGISTER QUERY GlobalCountOfInteractions COMPUTED EVERY 5m AS

SELECT ?user COUNT(?document) as ?numberOfMovies

FROM STREAM <http://streamingsocialdata.org/MoviesJohnsFriendsLike.trdf>

[RANGE 30m STEP 5m]

WHERE { ?user sd:likes ?document }

GROUP BY { ?user }

The query above counts among the friends of John, the number of movies that each friend has

liked in the last 30 minutes.

The following example shows the construction of a new RDF data stream by selecting all

interactions that are of the “likes” type, that are performed by a friend of John, and that

concern movies.

REGISTER STREAM MoviesJohnsFriendsLike COMPUTED EVERY 5m AS

CONSTRUCT {?user sd:likes ?document}

FROM STREAM <http://streamingsocialdata.org/

interact.trdf> [RANGE 30m STEP 5m]

WHERE { ?user sd:likes ?document .

?user foaf:knows ?john .

?john foat:name "John" .

?document sd:describes ?topic .

?topic skos:subject yago:Movies . }

This query uses the same logical conditions as the previous one on static data, but only

matches the sd:likes predicate. The output is constructed in the format of a stream of RDF

triples. Every query execution may produce from a minimum of zero triples to a maximum of

an entire graph. The timestamp is always dependent on the query execution time only, and is

not taken from the triples that match the patters in the WHERE clause. Thus, even though in

the example the output stream is a restriction of the input stream, a new timestamp is

assigned to every triple. Also note that, if the window contains more than one matching triple

Streaming Linked Data Page 67

with a sd:likes predicate, then also the result contains more than one triple, that are returned

as a graph. In this case the same timestamp is assigned to all the triples of the graph. In all

cases, however, timestamps are system-generated in monotonic non-decreasing order.

Results of two evaluations of the previous query are presented in the table below, generating

two graphs (one at = 100 and one at = 101).

Figure 2.10.1 Triples with Timestamp

The following is another example of C-SPARQL query that given a static description of brokers

and a stream of financial transactions for all Swiss brokers, computes the amount of their

transactions with in last one hour.

1 REGISTER STREAM TotalAmountPerBroker COMPUTE EVERY 10m AS

2 PREFIX ex: <http :// example />

3 CONSTRUCT {? broker ex: hasTotalAmount ? total .}

4 FROM <http :// brokerscentral . org / brokers .rdf >

5 FROM STREAM <http :// stockex .org/ market .trdf >

6 [RANGE 1h STEP 10m]

7 WHERE {

8 ? broker ex: from ? country .

9 ? broker ex: does ?tx .

10 ?tx ex: with ? amount .

11 FILTER (? country = "CH")

12 }

13 AGGREGATE { (? total , SUM (? amount), ? broker) }

At line 1, the REGISTER clause is use to tell the C-SPARQL engine that it should register a

continuous query, i.e. a query that will continuously compute answers to the query. In

particular, we are registering a query that generates an RDF stream. The COMPUTE EVERY

clause states the frequency of every new computation, in the example every 10 minutes. At

line 5, the clause FROM STREAM defines the RDF stream of financial transactions, used within

the query. Next, line 6 defines the window of observation of the RDF stream. Streams, for

their very nature, are volatile and for this reason should be consumed on the y; thus, they are

observed through a window, including the last elements of the stream, which changes over

time. In the example, the window comprises RDF triples produced in the last 1 hour, and the

window slides every 10 minutes. The WHERE clause is standard; it includes a set of matching

Streaming Linked Data Page 68

patterns and FILTER clauses as in standard SPARQL. Finally, at line 13, the AGGREGATE

function asks the C-SPARQL engine to include in the result set a new variable ?total which is

bound to the sum of the amount of the transaction of each broker.

2.11. Publishing data streams as linked data
We describe the publishing of data on the Web according to the Linked Data principles, data

providers add their data to a global data space, which allows data to be discovered and used

by various applications. Publishing a data set or data Stream as Linked Data on the Web

involves the following three basic steps:

 Assign URIs to the entities described by the data set and provide for dereferencing

these URIs over the HTTP protocol into RDF representations.

 Set RDF links to other data sources on the Web, so that clients can navigate the Web of

Data as a whole by following RDF links.

 Provide metadata about published data, so that clients can assess the quality of
published data and choose between different means of access.

Streaming Linked Data Page 69

Chapter 3: Problem / Solution

Streaming Linked Data Page 70

3.1. Overview
The objective of this chapter is to review the problem on our hand and propose a solution for

this. If we consider Waterfall model as a standard, then this chapter will cover the

Requirement Analysis and Specifications.

3.2. Micro blogging
Micro blogging is a way of communication channel with some considerable potential to

improve intra-firm transparency and knowledge sharing. However, the adoption of such social

software presents certain challenges to enterprises.

Users and organizations can set up their own micro blogging services. Over the last few years

communication patterns have been changed. They are shifted primarily from face-to-face to

more online communication like email, IM, text messaging, and other tools. The idea of

sharing short messages using multiple access points (e.g. mobile phone, web, instant

messaging) seems to be appealing to people worldwide. Currently, more than 1 million users

generate a total of 3 million messages per day (TechCrunch, 2008) updating each other about

their daily occurrences.However, some argue that email is now a slow and inefficient way to

communicate.

For instance, time-consuming 'email chains' can develop, whereby two or more people are

involved in lengthy communications for simple matters, such as arranging a meeting. The 'one-

to-many' broadcasting offered by micro blogs is thought to increase productivity by

circumventing this.

There is an implication of remote collaboration that there are fewer opportunities for face-to-

face informal conversations. However, micro blogging has the potential to support informal

communication among coworkers. Many individuals like sharing their whereabouts and status

updates with micro blogging.

Another reason is that the information shared via micro blogging remains available to a

definable population outside the sender-recipient sphere facilitating knowledge storage and

exchange as well as providing potential for data mining. Allowing to conveniently sharing daily

updates micro blogging helps people to keep in touch. This is of particular value given one of

the most consistent findings in the social science literature saying that you know is highly

correlated with what you come to know.

Micro blogging is therefore expected to improve the social and emotional welfare of the

workforce, as well as streamline the information flow within an organization. It can increase

opportunities to share information, help to realize and utilize expertise within the workforce,

Streaming Linked Data Page 71

and help to build and maintain common ground between coworkers. As microblogging use

continues to grow every year, it is quickly becoming a core component of Enterprise Social

Software.

Micro blogging service is provided my several online platforms like twitter1, jaiku2 and most

recent is pownce3.

Recognizing the tremendous success of Twitter in the personal communication domain,

companies have started to investigate a possible transfer of microblogging concepts into the

commercial domain. This raises the question for the business value. Indeed, facilitating the

work of distributed teams, improving transparency and collaboration, and dealing with the

“expert finding problem” are often-mentioned advantages of microblogging. Twitter’s success

in an enterprise context by offering an extended set of functions accounting for business

needs.

3.3. Twitter
Twitter is a website, owned and operated by Twitter Inc., which offers a social networking and

micro blogging service, enabling its users to send and read messages called tweets. Tweets are

text based posts of up to 140 characters displayed on the user's profile page. Tweets are

publicly visible by default; however senders can restrict message delivery to their followers.

Users may subscribe to other users' tweets—this is known as following and subscribers are

known as followers.

Twitter users follow others or are followed. The relationship of following and being followed

requires no reciprocation. A user can follow any other user, and the user being followed need

not follow back. Being a follower on Twitter means that the user receives all the messages

(called tweets) from those the user follows.

Twitter Annotations represent structured metadata about the tweet. What that metadata

contains is up to you. The feature simply provides a structure for how to specify the

annotations and retrieve them along with the tweet. Common practice of responding to a

tweet has evolved into well-defined markup culture: RT stands for retweet, ’@’ followed by a

user identifier address the user, and ’#’ followed by a word represents a hashtag. This well-

defined markup vocabulary combined with a strict limit of 140 characters per posting

conveniences users with brevity in expression. The retweet mechanism empowers users to

spread information of their choice beyond the reach of the original tweet’s followers.

1
http://www.twitter.com,

2
http://www.jaiku.com,

3
http://www.pownce.com

Streaming Linked Data Page 72

All users can send and receive tweets via the Twitter website, compatible external applications

such as for smartphones. Since its creation in March 2006 it has gained popularity worldwide

and currently has more than 175 million users.

For many reasons Micro blogging platforms like Twitter have become increasingly popular. It

has received public attention due to its ability to rapidly spread news. For example, before

reaching any major news station, Twitter users have broadcasted about the Hudson River

plane crash landing—one of them even being on the ferry boat heading out to rescue the

passengers.

The length of messages is one of the key aspects differentiating Twitter from other social

software such as online social networks, forums, wikis or blogs. Due to its “pull”-nature

microblogging is less disruptive than instant messages, text messages, or the phone.

Figure 3.3.1 Twitter

Streaming Linked Data Page 73

3.4. The DBpedia Data Set
The DBpedia data set uses a large multi-domain ontology which has been derived from

Wikipedia. The DBpedia data set currently describes 3.4 million “things” with over 1 billion

“facts” (March 2010).

DBpedia uses the Resource Description Framework (RDF) as a flexible data model

for representing extracted information and for publishing it on the Web. The DBpedia data

set uses a large multi-domain ontology which has been derived from Wikipedia. The ontology

was manually created from the most commonly used infobox templates within the English

edition of Wikipedia. The ontology is used as target schema by the mapping-based infobox

extraction.

The table below contains links to some example “things” from the data set:

Class Examples

City Cambridge, Berlin, Mnchester

Country Spain, Iceland, South Korea

Politician George W. Bush, Nicolas Sarkozy, Angela Merkel

Musician AC/DC, Diana Ross, Röyksopp

Music album Led Zeppelin III, Like a Virgin, Thriller

Director Woody Allen, Oliver Stone, Takashi Miike

Film Pulp Fiction, Hysterical Blindness, Breakfast at Tiffany's

Book The Lord of the Rings, The Adventures of Tom Sawyer, The Holy Bible

Computer Game Tetris, World of Warcraft, Sam & Max hit the Road

Technical Standard HTML, RDF, URI

Table 3.4.1 Example Things from DBpedia DataSet

Each thing in the DBpedia data set is identified by a URI reference of the form

http://dbpedia.org/resource/Name, where Name is taken from the URL of the source

Streaming Linked Data Page 74

Wikipedia article, which has the form http://en.wikipedia.org/wiki/Name. Thus, each resource

is tied directly to an English-language Wikipedia article.

Each DBpedia resource is described by various properties. Below, we give an overview about

the most important types of properties.Every DBpedia resource is described by a label, a short

and long English abstract, a link to the corresponding Wikipedia page, and a link to an image

depicting the thing (if available). RDF Document View

Below is the snapshot of RDF view of the tabulator semantic web browser presenting the RDF

resource information of the city Milan. The information about Milan, presented in RDF format

is actually taken from the DBpedia data sets.

Figure 3.4.1 RDF Document View

Streaming Linked Data Page 75

Below is the snapshot of the Firefox internet browser which is displaying the information

about the city, Milan, in HTML format. However the information about Milan is actually taken

from the DBpedia data sets.

Figure 3.4.2 HTML Document View

3.5. DBpedia Classificaiton
DBpedia provides three different classification schemata for things.

1. Wikipedia Categories are represented using the SKOS vocabulary.

2. The YAGO Classification is derived from the Wikipedia category system using

Word Net.

3. Word Net Synset Links were generated by manually relating Wikipedia infobox

templates and Word Net synsets, and adding a corresponding link to each thing that

uses a specific template. In theory, this classification should be more precise then

the Wikipedia category system.

Using these classifications within SPARQL queries allows you to select things of a certain type.

Streaming Linked Data Page 76

3.5.1. Yago
YAGO ontology contains 1 million entities and 5 million facts. The schema was created by
mapping Wikipedia leaf categories, i.e. those categories which has no subcategories.
Characteristics of the YAGO hierarchy are its deepness and the encoding of much information
in one class (e.g. the class \MultinationalCompaniesHeadquarteredInTheNetherlands"). While
YAGO achieves a high accuracy in general, there are a few errors and omissions (e.g. the
mentioned class is not a subclass of \MultinationalCompanies") due to its automatic
generation. However the Yago classes consist of two main categories.

1. European Capitals

2. Birds of the United States

Figure 3.5.1 Yago European Capitals

3.6. Examples
As described above that people state that their status for example students say that they are

doing assignments, they mention their topic of an assignment, and reading books. Researchers

update their status as they are working on some projects. Similarly someone one is travelling

he will mention that he is travelling to some place e.g “I am travelling to Milano”.

However there is common practice of responding to such tweets has evolved into well-defined

markup culture: RT stands for retweet, ’@’ followed by a user identifier address the user, and

Streaming Linked Data Page 77

’#’ followed by a word represents a hashtag. This well-defined markup vocabulary combined

with a strict limit of 140 characters per posting conveniences users with brevity in expression.

The retweet mechanism empowers users to spread information of their choice beyond the

reach of the original tweet’s followers.

However our example could elaborate the status of the people, presented in the tweets of the

twitter, and we can find answers of some relevant questions and explain their semantics. E.g.

 Person(s) is just landed in place

 Someone is just landed in NYC

 Who is just landed in NYC

 Who just seen an accident

 Who just read Left Neglected

These are the questions that have semantics in them and are the complete sentences as

well. All of these can be divided in the subject its predicate and its value, which is the

simple RDF triple to represent the knowledge

3.6.1. Just Landed In
Below is result of an example of string searched on the twitter. The string is “Just landed in".

Figure 3.6.1 Results for “JustlandedIn” Using Twitter

Streaming Linked Data Page 78

3.6.2. Just Landed in New york
Similarly the above searched string “just landed in” is then modified to get more specific

results. The string is modified as “just landed in new york”. The result is all the tweets

including use who mentioned that he is just landed in New York.

Figure 3.6.2 Results for "JustlandedIn new York" Using Twitter

Streaming Linked Data Page 79

3.6.3. MisslzaCalzado just Landed In
If we would like to search a specific user and we searched a string that where a specific user is

just landed in we get a single result as an example, the string is “MissIzaCalzado landed in New

York”. The figure given below shows the results of the searched string against the particular

user.

Figure 3.6.3 Result for "MisslzaCalzado just Landed In New york" Using Twitter

Streaming Linked Data Page 80

3.6.4. Just Read Left Neglected
Another example of a search string is for the user who Just read a book named “left

neglected” we got the following result.

Figure 3.6.4 Result for "just read Left Neglected" USing Twitter

Streaming Linked Data Page 81

3.6.5. Just Seen An Accident
Similarly one can search the user who has Just seen an accident the number of users will be

listed down who have mentioned in their tweet message that they just have seen an accident.

Figure 3.6.5 Results for "just seen an accident" Using Twitter

So come back to an example of “just landed in” we can find multiple information in a single

stream of twitter. For example @user is the user who is following the tweet and replied to the

post of the first user to whom he is following. Information we can find is from the user who is

following. He uses the hashtags to organize an event or initiating a new topic. This is one of

the most complex features of Twitter for new users to understand it; a topic with a hash

symbol (“#”) at the start is for its identification. Twitter hashtags like #followfriday help spread

information on Twitter while also helping to organize it.

Streaming Linked Data Page 82

However in our example we can see that “hillharper” is the follower. He is stating that he is

landed in his favorite city in the world NYC and he has travelled through “#GoJets”. His

purpose it to welcoming his followers and those to whom he is following to let them know

about “Gojets”.

Figure 3.6.6 Result for "just landed in" Using Twitter

Streaming Linked Data Page 83

3.7. Data becoming available as linked data
The above example of “Just landed In” includes tweets and those tweets can be drown and

shown as linked data.

Drawing 3.7.1 Linked Data from Twitter Tweets

From all of the above examples we can find some useful information and modifying to our

own proof of concept, need and implementation.

We can write the instances in an engineering way. We have instances NYC, Left Neglected etc.

exploring the instance of NYC by using the keywords “just landed in New York”. We can find a

tweet/stream say 1 which includes:

 Some link: http://plixi.com/p/69114643

 Author : hill harper

 Time and date :

 Tweet text : Just landed in my favorite city in the world NYC!!! Its not as snowy as folks

said!!! #GoJets

 just landed in : NYC

Similarly tweet 2 includes

 Some link: http:// 4sq.com/hBH7hx

 Author : gerypakke

 Time and date :

Streaming Linked Data Page 84

 Tweet text : safely reached in jakarta

 just landed in : jakarta

3.8. Transforming twitter tweets into an RDF Stream
A data stream is defined as an ordered sequence of pairs, where each pair is made of a RDF

tuple and its timestamp. We can write the above tweets as a RDF stream.

Triples Timestamp

:User1 :justlandedin :”http://dbpedia.org/resource/Milan” T100

:Traveller2 :justlandedin :”http://dbpedia.org/resource/NYC” T101

:Traveller1 :tweettext : “Message” T101

:Traveller3 :justlandedin :http://dbpedia.org/resource/Como T101

:Traveller2 :tweettext : “message” T101

Table 3.8.1 Creating Triples from twitter Using RDF

Streaming Linked Data Page 85

In a similar way, we define an RDF stream (4) as an ordered sequence of pairs, where each pair

is made of an RDF triple and its timestamp. By mapping the data stream above in RDF using

D2RQ mapping language (22), we obtain the following RDF stream:

<http://localhost:8080/testproj/resource/Traveller1>

<http://localhost:8080/tweeter/TweeterText> "message" .

<http://localhost:8080/testproj/resource/Traveller1>

<http://purl.org/dc/elements/1.1/Date> "2010-10-

10T03:25:55Z"^^<http://www.w3.org/2001/XMLSchema#dateTime> .

<http://localhost:8080/testproj/resource/Traveller1>

<http://www.w3.org/2000/01/rdf-schema#justlandedin>

<http://dbpedia.org/resource/Milan> .

<http://localhost:8080/testproj/resource/Traveller2>

<http://localhost:8080/tweeter/TweeterText> "message" .

<http://localhost:8080/testproj/resource/Traveller2>

<http://purl.org/dc/elements/1.1/Date> "2010-10-

10T03:25:55Z"^^<http://www.w3.org/2001/XMLSchema#dateTime> .

<http://localhost:8080/testproj/resource/Traveller2>

<http://www.w3.org/2000/01/rdf-schema#justlandedin>

<http://dbpedia.org/resource/NYC> .

<http://localhost:8080/testproj/resource/Traveller3>

<http://localhost:8080/tweeter/TweeterText> "message" .

<http://localhost:8080/testproj/resource/Traveller3>

<http://purl.org/dc/elements/1.1/Date> "2010-10-

10T03:25:55Z"^^<http://www.w3.org/2001/XMLSchema#dateTime> .

<http://localhost:8080/testproj/resource/Traveller3>

<http://www.w3.org/2000/01/rdf-schema#justlandedin>

<http://dbpedia.org/resource/Como> .

Table 3.8.2 Creating Triples from twitter Using RDF

3.9. Proposed solution
We are proposing a novel technique to publish the data elements of such streams. Below is

the detail for the architectural design for a data stream publishing system as well the

technique through which the system is publishing these streams.

Streaming Linked Data Page 86

3.10. Architectural design

Drawing 3.10.1 Architectural Design

3.11. Publish a stream
We propose to represent RDF streams in RDF using named graphs (23). We distinguish

between two kind of named graphs: the Stream Graphs (shortly s-graphs) and the

Instantaneous Graphs (shortly i-graphs). In our proposal, an RDF Stream can be represented

using one s-graph and several i-graphs, one for each timestamp. A s-graphs is a metadata

graph that describes the current content of the window over the RDF Stream. The most

important part of an s-graph are the triples that refer to the i-graphs using rdfs:seeAlso and

those that describe when each i-graph was received using the property receivedAt. Fewer

other metadata complete the description of an graph. The property lastUpdate describes the

last time the graph was updated. The property expires allows to indicate a Linked Data Client

that the information in the graph will expire in a given moment in future. These graphs will be

made query able by a SPARQL end point. The properties sld:windowType and sld:windowSize

describe the window through which the steam is observed (see chapter 4 for more

information).

For instance, if the data stream exemplified above were the current content of a window over

the stream of twitter tweets transactions, it can be represented using the s-graph in Listing 1

and the two i-graphs in Listing 2 and 3.

Streaming Linked Data Page 87

Listing with notion of window:

1 @prefix rdfs : <http :// www.w3. org /2000/01/ rdf - schema #> .

2 @prefix sld : <http :// www . streaminglinkeddata .org/ schema #> .

3 @prefix : <http :// localhost:8080/SLD/resourse /> .

4 :sgraph1 sld : lastUpdate "ti+1"^^ xsd : dataTime ;

5 sld : expires "ti+2"^^ xsd : dataTime ;

6 sld : windowType sld : logicalTumbling ;

7 sld : windowSize " PT1H "^^ xsd: duration .

8 :sgraph1 rdfs : seeAlso : igraph1 .

9 :igraph1 sld : receivedAt "ti "^^ xsd : dataTime .

10:sgraph1 rdfs : seeAlso : igraph2 .

11:igraph2 sld : receivedAt "_i+1"^^ xsd : dataTime .

Listing 1: Example of Stream Graph linking two Instantaneous Graphs

1 @prefix rdfs : <http :// www.w3. org /2000/01/ rdf - schema #> .

2 @prefix sld : <http :// www . streaminglinkeddata .org/ schema #> .

3 @prefix : < http :// localhost:8080/SLD/resourse /> .

4 : igraph1 sld : receivedAt "ti "^^ xsd : dataTime ;

5 rdfs : seeAlso : sgraph1 .

Listing 2: The Instantaneous Graph timestamped with ti. We choose to link s-graphs to i-

graphs using the property rdfs:seeAlso, because it has been largely adopted to link named

graphs (see for instance the usage of rdfs:seeAlso in sindice (24) and in the Semantic Web

Client (25))

1 @prefix rdfs : <http :// www .w3. org /2000/01/ rdf - schema #> .

2 @prefix sld : <http :// www . streaminglinkeddata . org / schema #> .

3 @prefix : <http :// localhost:8080/SLD/resourse > .

4 : igraph2 sld : receivedAt "ti+1"^^ xsd : dataTime ;

5 rdfs : seeAlso : sgraph1 .

Listing 3: The Instantaneous Graph timestamped with ti+1

1 @prefix rdfs : <http :// www .w3. org /2000/01/ rdf - schema #> .

2 @prefix sld : <http :// www . streaminglinkeddata . org / schema #> .

3 @prefix : < http :// localhost:8080/SLD/resourse /> .

4:igraph2 sld : receivedAt "_i+1"^^ xsd : dataTime ;

5 rdfs : seeAlso : sgraph1 .

Following the guidelines on cool URIs (26) , we propose to give to s-graphs and i-graphs an IRI
using the following schemata:

s- graph : http :// ex. org /\% stream - name \%

e.g., http :// http :// localhost:8080/SLD/resourse/justlandedin

i- graph : http :// ex. org /\% stream - name \%/ URLeconde (\%timestamp\%)

e.g.,http://localhost:8080/SLD/resourse/2010-02-12T13\%3A34\%3

Streaming Linked Data Page 88

Moreover, following the best practice on how to publish Linked Data on the Web (27) in terms

of content negotiation, when IRIs, which follow the schemata shown above are dereferenced,

the Streaming Linked Data Server sends a 303 redirect to an information resource appropriate

for the Clients.

Linked Data Clients are redirected to:

http :// localhost:8080/SLD/data/justlandedIn.rdf

http :// localhost:8080/SLD/data/2011-02-15T071550Z.rdf (time-stamp)

HTML Clients are redirected to:

http :// localhost:8080/SLD/ page/justlandedIn.html

http :// localhost:8080/SLD/page/ 2011-02-15T071550Z.html (time-stamp)

3.12. Controlling the window
As a data stream is a real-time, continuous, ordered sequence of items. Processing queries

over data streams, which are expected to run continuously and return new answers as new

data arrive, introduces novel challenges such as adapting query plans in response to changing

stream arrival rates, sharing resources among similar queries, and generating approximate

answers in limited space (28). Data streams are more common today in most of the web

applications, these streams are now fundamental to many data processing applications. For

example in computer networks switches and routers periodically generate records of their

network traffic, these records are actually the streams (29). Atmospheric observations,

weather measurements, lighting stroke data and satellite imagery also produce multiple data

streams (30). Emerging sensor networks produce many streams of observation, e.g. highway

traffic conditions (31). Sources of data streams -large scale transactions, financial transactions

of stock brokers are very common in our daily life. Two observations hold in practice.

1. In most of the scenarios, data analysis often involves questions about the most recent,

just an hour back. This is because of the need to take decisions. For example a query is

that, to compute the financial transactions of Swiss brokers within last one hour.

2. In most of the applications, despite of the fact that the capacity of storage devices is

growing exponentially, still it is not common for the streams to be stored on the disk.

However they are being processed in real time as they are produced. This means that

we received the data stream and we consumed it on the “fly”.

Considering such type of the problem in mind to monitor thousands of data streams in an

online fashion and making decisions based on them. The windowed data stream model is

introduced. This is useful to limit the extraction of the data stream elements upon continuous

queries. However we need to store each item in the window to compute the minimum value

Streaming Linked Data Page 89

at each step, which is again impossible for the worst case scenario. We get the overhead of

O(1/e log2N) bits of memory. Please refer to (32) for further elaboration of a mathematically

version of the same argument.

As we have explained earlier that streams are intrinsically infinite. In C-SPARQL, we introduce

the notion of windows over streams. In Section 3.11, we focus on the general approach to

publish a data stream rather than on the notion of window. However, we foresee the need for

a

Consumer of Streaming Linked Data to be able to control the behavior of the window through

which the stream is observed.

Types and characteristics of windows in C-SPARQL are inspired by those of the windows

defined in continuous query languages for relational streaming data, such as CQL (33).

Windows are expressed in C-SPARQL within the FROM STREAM clause, whose syntax is as

follows:

FromStrClause `FROM' [`NAMED'] `STREAM' StreamIRI`[RANGE' Window `]'

Window LogicalWindow | PhysicalWindow

LogicalWindow Number TimeUnit WindowOverlap

TimeUnit `ms' | `s'| `m' | `h' | `d'

WindowOverlap `STEP' Number TimeUnit | `TUMBLING'

PhysicalWindow `TRIPLES' Number

This text is elaborating the concept of windowing data stream model in an efficient way. This

windowing data stream model is capable of presenting the limited set of elements of a data

stream. We have divided the window in to two types; physical and logical where as logical

window is further viewed as the sliding and the tumbling window.

In order to observe the working or results of both the physical and logical windowing model

we consider the CSPARQL Engine (5) which is extracting the triples from an RDF Stream in a

continuous fashion. It allows registering queries that continuously combine (virtual) RDF

streams and RDF graphs. Under this respect, our C-SPARQL Engine is similar to D2RQ (31) that

treat non-RDF databases as virtual RDF graphs. This means that the query environment is

continuous so continuous queries need continuous reevaluation whenever new triples arrive,

and secondly, queries are interested only in a specific part (window-of-interest) of the

received data. The physical and logical-window query models are introduced to answer

continuous queries that are interested only on the most recent stream triples. In a physical

and logical-window query over “N” input streams, “S1” to “Sn”, a window of size “Wi” is

defined over the input stream “Si”. As the window moves, the query answer is updated to

reflect both the new triples entering the physical window and the old triples expiring from the

Streaming Linked Data Page 90

physical and logical-window. Triples enter and expire from the physical-window in a First-In-

First-Expire (FIFE) fashion.

The basic syntax for the continuous query is given below:

REGISTER STREAM transactions COMPUTE EVERY 10m AS

PREFIX : < http://www.streaminglinkeddata.org />

CONSTRUCT *

FROM STREAM < http://localhost:8080/testproj/resource/justlandedin .rdf >

[RANGE 1h step 10m]

WHERE {?s ?p ?o }.

Here in the query, the REGISTER STREAM clause is use to tell the C-SPARQL engine that it

should register a continuous query, i.e. a query that will continuously compute answers for the

query. In particular, we are registering a query that generates RDF stream. The COMPUTE

EVERY clause states the frequency of every new computation, in the example every 10

minutes. The clause FROM STREAM defines the RDF stream of justlandedin which is queried.

[RANGE] defines the window of observation over the RDF stream. WHERE clause is common in

all query languages and is used to specify selection criteria.

3.12.1. Physical window
The physical window extracts the given number of triples from an RDF stream, which are

considered by the query. In this model, data streams arrive continually and only the most

recent “N” data stream elements are used when answering queries. We present a novel

technique for presenting these RDF data stream triples using physical windowing model. The

physical window query model is useful for many RDF data stream applications.

For example we registered the following query in our CSPARQL Engine:

REGISTER STREAM transactions COMPUTE AS

PREFIX : < http://www.streaminglinkeddata.org />

CONSTRUCT *

FROM STREAM < http://localhost:8080/testproj/resource/justlandedin .rdf >

[RANGE 10triples]

WHERE { ?s ?p ?o }.

Now utilizing the physical-window query model, the query semantics reads as follows: We are

interested in the last 10 triples from our Justlandedin RDF stream graph. So our window of

interest includes the 10 triples in a way that, for example our CSPARQL Engine starts extracting

triples, at time “t1” it received 2 triple then at time “t2” it received 4 triples then at time “t3”

it received 5 triples. Now at the three time instances we received three S-graphs the total

number of triples received are 11 but our window of interest needs to present 10 triples so

last 10 triples will be presented and the first S-graph will be discarded. As the physical

windows moves and at time instance “t4” two triples received now the total number of triples

Streaming Linked Data Page 91

received are twelve however our window of interest is capable and of presenting 10 triples so

the last 10 triples will be presented and the first two triples of S-graph arrived at time instance

“t2”will be expired and upon the arrival of more two triples on next time instance, the S-graph

at the time instance “t2” will completely be expired and discarded.

S-graph
@prefix rdfs:<http://www.w3.org/2000/01/rdf- schema #> .

@prefix sld:<http://www.streaminglinkeddata.org/schema #> .

:sgraph1 sld:lastUpdate "i+1"^^ xsd:dataTime ;

sld:expires "i+10"^^ xsd:dataTime ;

sld:windowType sld:physicalwindow ;

sld:windowSize " PT10 "^^ xsd:integer .

:sgraph1 rdfs:seeAlso :igraph1 .

:igraph1 sld:receivedAt "i "^^ xsd:dataTime .

:sgraph1 rdfs:seeAlso :igraph2 .

:igraph2 sld:receivedAt "i "^^ xsd:dataTime .

Time: T1 T2 T3 T4

S-graph1 1 2

S-graph1 1 2 3 4 5 6

S-graph1 1 2 3 4 5 6 7 8 9 10 11

S-graph1 1 2 3 4 5 6 7 8 9 10 11 12 13
Table 3.12.1 Physical Window S-Graph

I-graph 1
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#> .

@prefix sld:<http://www.streaminglinkeddata.org/schema#> .

:igraph1 sld:receivedAt "i "^^ xsd:dataTime ;

rdfs:seeAlso :sgraph1 .

I-graph 2
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#> .

@prefix sld:<http://www.streaminglinkeddata.org/schema#> .

:igraph2 sld:receivedAt "i+1 "^^ xsd:dataTime ;

rdfs:seeAlso :sgraph1 .

Streaming Linked Data Page 92

3.12.2. Logical window
The logical window extracts data stream elements from the Stream, which are considered by

the query. Such extraction can be logical because they are continuously advanced by a given

step and time period. In this model, the triples of RDF data stream arrive continually and only

the most recent “N” RDF data streams are used when answering queries. We present a novel

technique for solving two important and related problems in the logical window model. On

the basis of such problems we divided the logical window into two; sliding window and

tumbling window. One stream triple includes once in a tumbling window while in case of

sliding window one stream triple can be included in several windows.

3.12.2.1. Sliding window
The sliding window query model is useful for discounting stale data in data stream

applications. As the window slides, the query answer is updated to reflect both the new triples

entering the sliding window and the old triples expiring from the sliding-window. Triples enter

and expire from the sliding-window in a First-In-First-Expire (FIFE) fashion. Now utilizing the

sliding-window query model, the query semantics reads as follows:

REGISTER STREAM transactions COMPUTEEVERY 10m AS

PREFIX : < http://www.streaminglinkeddata.org />

CONSTRUCT *

FROM STREAM < http://localhost:8080/testproj/resource/justlandedin .rdf >

[RANGE 1h step 10m]

WHERE { ?s ?p ?o }.

In the example, the window comprises of RDF triples produced in the last 1 hour, and the

window slides every 10 minutes. The WHERE clause is standard; it includes a set of matching

patterns, so one step of sliding is of 10minutes. In one hour the windows slides up to 6 times.

However in hour we have received 1000 triples then our sliding window behaves in practice:

1. The possible scenario for system is that we received 2 triple in 10 minutes so after the

10 minutes when the window slides, the triple arrived earlier in previous 10 minutes

will be expired.

2. We received 100 triples in next 10 minutes so after the 10 minutes when the window

slides, the triple arrived earlier will be expired as well.

However all the triples arrived in last hour will be presentable using the sliding window query

model and here in our case the window size “Wi” is 10m. This means that our window of

interest includes all the triples arrived in 10minutes and these all triples will be expired soon

after the window slides in next 10minutes over the data streams. However with sliding

windows some triples can be included into several windows.

Streaming Linked Data Page 93

The practical behavior of s-graph and i-graphs is shown below. As our CSPARQL engine starts’

extracting the first triple arrives at “ti” the s-graph constructed like this.

Case1:

S-graph
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#> .

@prefix sld:<http://www.streaminglinkeddata.org/schema#> .

:sgraph1 sld:lastUpdate "i+1"^^ xsd:dataTime ;

sld:expires "i+2"^^ xsd:dataTime ;

sld:windowType sld:slidingwindow ;

sld:windowSize " PT1H "^^ xsd:duration .

sld:windowSize " PT10m "^^ xsd:duration .

:sgraph1 rdfs:seeAlso :igraph1 .

:igraph1 sld:receivedAt "i "^^ xsd:dataTime .

I-graph 1
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#> .

@prefix sld:<http://www.streaminglinkeddata.org/schema#> .

:igraph1 sld:receivedAt "i "^^ xsd:dataTime ;

rdfs:seeAlso :sgraph1 .

I-graph 2
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#> .

@prefix sld:<http://www.streaminglinkeddata.org/schema#> .

:igraph2 sld:receivedAt "i+1 "^^ xsd:dataTime ;

rdfs:seeAlso :sgraph1 .

Case2:

S-graph
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#> .

@prefix sld:<http://www.streaminglinkeddata.org/schema#> .

:sgraph1 sld:lastUpdate "i+1"^^ xsd:dataTime ;

sld:expires "i+2"^^ xsd:dataTime ;

sld:windowType sld:slidingwindow ;

sld:windowSize " PT1H "^^ xsd:duration .

sld:windowSize " PT10m "^^ xsd:duration .

:sgraph1 rdfs:seeAlso :igraph1 .

:igraph1 sld:receivedAt "i "^^ xsd:dataTime .

:sgraph1 rdfs:seeAlso :igraph2 .

:igraph2 sld:receivedAt "i+1 "^^ xsd:dataTime .

...

:sgraph1 rdfs:seeAlso :igraph100 .

:igraph sld:receivedAt "i+100 "^^ xsd:dataTime .

Streaming Linked Data Page 94

I-graph 1
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#> .

@prefix sld:<http://www.streaminglinkeddata.org/schema#> .

:igraph1 sld:receivedAt "i "^^ xsd:dataTime ;

rdfs:seeAlso :sgraph1 .

I-graph 100
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#> .

@prefix sld:<http://www.streaminglinkeddata.org/schema#> .

:igraph2 sld:receivedAt "i+100 "^^ xsd:dataTime ;

rdfs:seeAlso :sgraph1 .

3.12.2.2. Tumbling window
The tumbling window query model is useful for limited time data in data stream applications.

Queries are interested in all part (window-of-interest) of the received data in a given time. The

tumbling-window query model is introduced to answer continuous queries that are interested

on the most recent stream triples. In a tumbling-window query over “N” input streams, “S1”

to “Sn” given that a window of size “Wi” is defined over the input stream “Si”. As the window

tumbles, the query answer is updated to reflect the new triples entering the tumbling window

and all the old triples are discarded. Triples enter and then discarded from the tumbling-

window in a produce and consumed fashion but in a limited time.

Now utilizing the tumbling-window query model, the query semantics reads as follows:

REGISTER STREAM transactions COMPUTEEVERY 10m AS
PREFIX : < http://www.streaminglinkeddata.org />
CONSTRUCT *
FROM STREAM < http://localhost:8080/testproj/resource/justlandedin .rdf >
[RANGE 10m step 10m]
WHERE { ?s ?p ?o }.

We have been given a range of 10minutes, the triples arrives in 10m should be extracted. The

range and the step is same in case of tumbling window. The window tumbles over the data

streams every 10 minutes. So the number of triples continues to be extracted in every 10

minutes. The possible scenario for system is that either we have received 1 triple or 100 triples

in 10 minutes the window tumbles, the triple arrived earlier in previous 10 minutes of the

tumbling window will be discarded.

 This means that our window of interest includes all the triples arrived in 10minutes and these

all triples will be discarded soon after the window tumbles in next 10minutes over the data

streams. However with tumbling windows every triple of the stream is included once into the

window.

Streaming Linked Data Page 95

Data Streams are usually the record measurements from sensors which are installed at

distributed locations, e.g weather forecast. Such streams appearing more and more often on

the Web, Similarly, users interested in the streams are often distributed as well. These streams

are normally geographically distributes so we anticipate this rapid growing need of mashing up

this streaming information with more static one. While best practices for linking static data on

the Web were published and facilitate the mash up of static information published on the

Web, streams were neglected. Now A basic question is thus arises how to publish mashed up

streaming information and how to query it that allows interested users and to find them? We

propose a web based approach to process the information behind these streams by publishing

and querying them by an extension to SPARQL (32) for continuous querying over streams of

RDF and static RDF graphs.

3.13. Resulting RDF/XML documents, Triples and RDF-Graphs
The prototype of this work results S-Graph and I-Graphs, these graphs with their RDF/XML

document and triples are given below.

S-Graph RDF/XML document:

1: <rdf:RDF

2: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3: xmlns:j.0="http://www.streaminglinkeddata.org/schema#"

4: xmlns:owl="http://www.w3.org/2002/07/owl#"

5: xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

6: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" >

7: <rdf:Description rdf:about="http://localhost:8080/SLD/resource/

 justLandedIn">

8: <xsd:ReceivedAt

 rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

9: 2011-02-5T07:15:50Z

10: </xsd:ReceivedAt>

11: <rdfs:SeeAlso rdf:resource="http://localhost:8080/SLD/resource/

 2011-02-15T071550Z"/>

12: <j.0:Window>No Window</j.0:Window>

14: <j.0:WindowSize

 rdf:datatype="http://www.w3.org/2001/XMLSchema#decimal">

16: Unlimited

17: </j.0:WindowSize>

18: <j.0:WindowStep

 rdf:datatype="http://www.w3.org/2001/XMLSchema#duration">

20: No step

21: </j.0:WindowStep>

22: <xsd:LastUpdate

 rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

24: 2011-02-15T07:15:35Z

25: </xsd:LastUpdate>

26: <xsd:Expiry rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

28: 2011-02-15T07:15:35Z

29: </xsd:Expiry>

30: </rdf:Description>

32: </rdf:RDF>

Streaming Linked Data Page 96

S-Graph Triples:

Num Subject Predicate Object

1 http://localhost:8080/
SLD/resource/justLand
edIn

http://www.w3.org/2001/XM
LSchema#ReceivedAt

http://www.w3.org/2001/XMLSche
ma#LastUpdate

2 http://localhost:8080/
SLD/resource/justLand
edIn

http://www.w3.org/2000/01/r
df-schema#SeeAlso

http://localhost:8080/SLD/resource/
2011-02-15T071550Z

3 http://localhost:8080/
SLD/resource/justLand
edIn

http://www.streaminglinkedd
ata.org/schema#Window

"No Window"

4 http://localhost:8080/
SLD/resource/justLand
edIn

http://www.streaminglinkedd
ata.org/schema#WindowSize

"Unlimited"^^http://www.w3.org/2
001/XMLSchema#decimal

5 http://localhost:8080/
SLD/resource/justLand
edIn

http://www.streaminglinkedd
ata.org/schema#WindowStep

"No
step"^^http://www.w3.org/2001/X
MLSchema#duration

6 http://localhost:8080/
SLD/resource/justLand
edIn

http://www.w3.org/2001/XM
LSchema#LastUpdate

"2011-02-
15T07:15:35Z"^^http://www.w3.org
/2001/XMLSchema#dateTime

7 http://localhost:8080/
SLD/resource/justLand
edIn

http://www.w3.org/2001/XM

LSchema#Expiry

"2011-02-
15T07:15:35Z"^^http://www.w3.org
/2001/XMLSchema#dateTime

Table 3.13.1 Resulting S-Graph Triples

S-Graph:

Figure 3.13.1 Resulting S-Graph

http://localhost:8080/SLD/resource/justLandedIn
http://localhost:8080/SLD/resource/justLandedIn
http://localhost:8080/SLD/resource/justLandedIn
http://www.w3.org/2001/XMLSchema#ReceivedAt
http://www.w3.org/2001/XMLSchema#ReceivedAt
http://www.w3.org/2001/XMLSchema#LastUpdate
http://www.w3.org/2001/XMLSchema#LastUpdate
http://localhost:8080/SLD/resource/justLandedIn
http://localhost:8080/SLD/resource/justLandedIn
http://localhost:8080/SLD/resource/justLandedIn
http://www.w3.org/2000/01/rdf-schema#SeeAlso
http://www.w3.org/2000/01/rdf-schema#SeeAlso
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://localhost:8080/SLD/resource/justLandedIn
http://localhost:8080/SLD/resource/justLandedIn
http://localhost:8080/SLD/resource/justLandedIn
http://www.streaminglinkeddata.org/schema#Window
http://www.streaminglinkeddata.org/schema#Window
http://localhost:8080/SLD/resource/justLandedIn
http://localhost:8080/SLD/resource/justLandedIn
http://localhost:8080/SLD/resource/justLandedIn
http://www.streaminglinkeddata.org/schema#WindowSize
http://www.streaminglinkeddata.org/schema#WindowSize
http://localhost:8080/SLD/resource/justLandedIn
http://localhost:8080/SLD/resource/justLandedIn
http://localhost:8080/SLD/resource/justLandedIn
http://www.streaminglinkeddata.org/schema#WindowStep
http://www.streaminglinkeddata.org/schema#WindowStep
http://localhost:8080/SLD/resource/justLandedIn
http://localhost:8080/SLD/resource/justLandedIn
http://localhost:8080/SLD/resource/justLandedIn
http://www.w3.org/2001/XMLSchema#LastUpdate
http://www.w3.org/2001/XMLSchema#LastUpdate
http://localhost:8080/SLD/resource/justLandedIn
http://localhost:8080/SLD/resource/justLandedIn
http://localhost:8080/SLD/resource/justLandedIn
http://www.w3.org/2001/XMLSchema#Expiry
http://www.w3.org/2001/XMLSchema#Expiry

Streaming Linked Data Page 97

I-Graph RDF/XML document:

1: <rdf:RDF

2: xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3: xmlns:j.0="http://www.streaminglinkeddata.org/schema#"

4: xmlns:j.1="http://localhost:8080/tweeter/"

5: xmlns:dc="http://purl.org/dc/elements/1.1/"

6: xmlns:j.2="http://www.w3.org/2001/XMLSchema#"

7: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" >

8: <rdf:Descriptionrdf:about="http://localhost:8080/SLD/resource/

 2011-02-15T071550Z">

9: <j.2:Date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

 2011-02-15T07:12:58Z</j.2:Date>

10: <dc:Author rdf:resource="http://localhost:8080/SLD/resource/

 189466385"/>

11: <j.1:TweeterText>Just landed in Cali, I'm tired!!#ThankGodWeMadeIt

 </j.1:TweeterText>

12: <j.0:justlandedin rdf:resource="http://dbpedia.org/resource/Cali"/>

13: <j.2:ReceivedAt

 rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

 2011-02-15T07:15:50Z</j.2:ReceivedAt>

14: <rdfs:SeeAlso

 rdf:resource="http://localhost:8080/SLD/resource/justLandedIn"/>

15: </rdf:Description>

16: </rdf:RDF>

I-Graph Triples:

Num Subject Predicate Object

1 http://localhost:8080/SLD/
resource/2011-02-
15T071550Z

http://www.w3.org/2001/
XMLSchema#Date

"2011-02-
15T07:12:58Z"^^http://www.w3.or
g/2001/XMLSchema#dateTime

2 http://localhost:8080/SLD/
resource/2011-02-
15T071550Z

http://purl.org/dc/elemen
ts/1.1/Author

http://localhost:8080/SLD/resourc
e/189466385

3 http://localhost:8080/SLD/
resource/2011-02-
15T071550Z

http://localhost:8080/twe
eter/TweeterText

"Just landed in Cali, I'm tired!!
#ThankGodWeMadeIt"

4 http://localhost:8080/SLD/
resource/2011-02-
15T071550Z

http://www.streaminglink
eddata.org/schema#justla
ndedin

http://dbpedia.org/resource/Cali

5 http://localhost:8080/SLD/
resource/2011-02-
15T071550Z

http://www.w3.org/2001/
XMLSchema#ReceivedAt

"2011-02-
15T07:15:50Z"^^http://www.w3.or
g/2001/XMLSchema#dateTime

6 http://localhost:8080/SLD/
resource/2011-02-
15T071550Z

http://www.w3.org/2000/
01/rdf-schema#SeeAlso

http://localhost:8080/SLD/resourc
e/justLandedIn

Table 3.13.2 Resulting I-Graph Triples

http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://www.w3.org/2001/XMLSchema#Date
http://www.w3.org/2001/XMLSchema#Date
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://purl.org/dc/elements/1.1/Author
http://purl.org/dc/elements/1.1/Author
http://localhost:8080/SLD/resource/189466385
http://localhost:8080/SLD/resource/189466385
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://localhost:8080/tweeter/TweeterText
http://localhost:8080/tweeter/TweeterText
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://www.streaminglinkeddata.org/schema#justlandedin
http://www.streaminglinkeddata.org/schema#justlandedin
http://www.streaminglinkeddata.org/schema#justlandedin
http://dbpedia.org/resource/Cali
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://www.w3.org/2001/XMLSchema#ReceivedAt
http://www.w3.org/2001/XMLSchema#ReceivedAt
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://localhost:8080/SLD/resource/2011-02-15T071550Z
http://www.w3.org/2000/01/rdf-schema#SeeAlso
http://www.w3.org/2000/01/rdf-schema#SeeAlso
http://localhost:8080/SLD/resource/justLandedIn
http://localhost:8080/SLD/resource/justLandedIn

Streaming Linked Data Page 98

I-Graph:

Figure 3.13.2 Resulting I-Graph

3.14. Streaming linked data Server prototype
In order to test our system, we need a prototype server. Server should be implemented to the

extent that it would be able to process client request properly and respond. We will discuss

implementation in detail in the coming chapter but for the proof of concept we will describe

an example of a data stream taken from a twitter, we mapped this stream to RDF stream and

make this stream available to the linked data client and is served as Linked Data by the

Streaming Linked Data Server.

3.15. Client/Server Architecture
Client/Server architecture forms the basis of our solution. From our problem description,

Client in our case is a broad term used for two types of clients. Client/Server architecture is

based upon Request and Response. Request refers to the process of submitting your URL.

Response is that server interprets the URL, locates the corresponding page, and ends back the

page to the requesting browser. The browser is referred to as Client in this interaction.

3.16. URIs for Web Documents
The Resource Description Framework RDF allows you to describe web documents and

resources from the real world—people, organizations, things—in a computer-process able

way. Publishing such descriptions on the web creates the semantic web. URIs are very

important as the link between RDF and the web.

Streaming Linked Data Page 99

3.17. HTTP and Content Negotiation
Web clients and servers use the HTTP protocol (37) to request web documents and send back

the responses. HTTP has a powerful mechanism for offering different formats and language

versions of the same web document:

When a user agent e. g. a web browser requests a URL, it sends along some HTTP headers to

indicate what data formats and language it prefers. The server then selects the best match

from its hard disk or generates the desired content on demand, and sends it back to the client.

For example, a browser 2 could send this HTTP request to indicate that it wants an HTML or

RDF version of an application.

GET /page/justlandedin HTTP/1.1

Host: http://localhost:8080/SLD/resource/justlandedin

Accept: text/html, application/xhtml+xml

The server could answer:

HTTP/1.1 200 OK

Content-Type: text/html

Content-Language: en

Content negotiation is often implemented with a twist: Instead of a direct answer, the server

redirects to another URL where the appropriate version is found:

HTTP/1.1 302 Found

Location: http://localhost:8080/SLD/page/justlandedin.html

The redirect is indicated by a special status code, here 302 Found. The client would now send

another HTTP request to the new URL. By having separate URLs for all versions, this approach

allows web authors to link directly to a specific version. RDF/XML, the standard serialisation

format of RDF, has its own content type too, application/rdf+xml.

Streaming Linked Data Page 100

Figure 3.17.1 Http Content Negotiation

3.18. 303 URIs Selection
The first solution is to use a special HTTP status code, “303 See Other”, to distinguish non-

document resources from regular web documents. Since 303 is a redirect status code, the

server can also give the location of a document that describes the resource. If, on the other

hand, a request is answered with one of the usual status codes in the 2XX range, like 200 OK,

then the client knows that the URI identifies a web document.

303 URIs, are very flexible because the redirection target can be configured separately for

each resource. There could be one describing document for each resource or one large

document for all of them, or any combination in between. It is also possible to change the

policy later on. But the large number of redirects may cause higher latency.

303 URIs should be used for large sets of data that are, or may grow, beyond the point where

it is practical to serve all related resources in a single document. If in doubt, it’s better to use

the more flexible 303 URI approach.

Streaming Linked Data Page 101

3.19. Internet Protocols
Two protocols are essential to be discussed here, as we will see later the importance of them.

1. TCP/IP

2. HTTP

3.19.1. TCP/IP
TCP/IP is a suite of networking protocol. A networking protocol is simply a method of

describing information packets so that they can be sent down your telephone-, cable-, or T1-

line from node to node, until they reach their intended destination.

When the user tells the browser to fetch a web page, the browser parcels up this instruction

using a protocol called the Transmission Control Protocol (or TCP). TCP is a transport protocol,

which provides a reliable transmission format for the instruction. It ensures that the entire

message is packaged up correctly for transmission (and also that it is correctly unpacked and

put back together after it reaches its destination).

3.19.2. HTTP
HTTP (Hyper Text Transport Protocol) is used to address the data which is parceled up by TCP.

HTTP is the protocol used by the World Wide Web in the transfer of information from one

machine to another – when you see a URL prefixed with http://, you know that the internet

protocol being used is HTTP. You can think of TCP/IP as the postal service that does the

routing and transfer, while HTTP is the stamp and address on the letter (data) to ensure it gets

there.

3.20. Addressable Resources
Addressability is the idea that every object and resource in your system is reachable through a

unique identifier. By addressable we mean resources that can be accessed and transferred

between clients and servers. Subsequently, a resource is a logical, temporal mapping to a

concept in a problem domain for which we are implementing a solution.

In the case of this work, a search result of “just landed in” on twitter is a resource. Even

though a resource’s mapping is unique, different requests for a resource can return the same

underlying representation stored in the server. However HTTP enables us to communicate any

kind of information between client and server. It could either be text, a picture, a flash movie

and so on. The data is streamed in all cases over TCP/IP and our browser knows how to

interpret the streams because of the HTTP protocol’s response header Content-Type.

Streaming Linked Data Page 102

Chapter 4: Implementation

Streaming Linked Data Page 103

4.1. Overview
The objective of this chapter is to implement the proposed solution. However we elaborate all

the major components used in the implementation for this web application.

4.2. Design and Functionality
The objective of this chapter is to implement the proposed solution. However we elaborate all

the major components used in the implementation for this web application.

Drawing 4.2.1 Implementation Design

As described earlier about this application is based on client server approach. However we

have three possible clients which are the internet web browsers supporting HTML and RDF,

whereas, the third client is the SPARQL query endpoint. The compatible browsers are IE6.0,

IE7.0, Firefox3.4, firefox3.5 for HTML requests while RDF request can be treated using the

tabulator generic data browser or with its extension for Firefox 3.x web browser. So, the user

can send a URI as request e.g. http://localhost:8080/SLD/resource/justlandedin, this request

will be processed by server, when a web browser has sent this request with this URI, it sent

the request along with HTTP header to indicate what data formats and language it prefers.

Streaming Linked Data Page 104

The user’s has sent its request from an HTML browser or RDF browser (see content

negotiation section 3.16) the steaming linked data server interprets the URL, locates the

corresponding page, and sends back the page to the requesting browser.

Streaming linked data server is among the major components of the application. The server is

based on the Java servlet technology. Servlets are the Java platform technology of popular

choice for building interactive Web applications. Servlets provide a component-based,

platform-independent method for building Web-based applications, without the performance

limitations of CGI programs. Servlets can also access a library of HTTP-specific calls. This is the

component which is actually responsible for the publishing of the data streams gernatated.

JSP technology is an extension of the servlet technology created to support of HTML pages. It

makes it easier to combine fixed or static template data with dynamic content. Web container

manages the execution of JSP page and servlet components for Java applications. Web

components and their container run on the java application server.

Semantic Annotator is the software component built using java, querying the keywords on

sindice and DBpedia. These keywords are queried through SPARQL query language. RDF

Stream Generator generates the raw RDF Streams by taking the data from sindice and

DBpedia. Stream gernerator uses the Jena API for RDF graph creation.

Jena is a Java framework for building Semantic Web applications. It provides a programmatic

environment for RDF, RDFS and OWL, SPARQL and includes a rule-based inference engine.

Jena is open source and grown out of work with the HP Labs Semantic Web Program.

Jena is a Java API which can be used to create and manipulate RDF graphs. Jena has object

classes to represent graphs, resources, properties and literals. The interfaces representing

resources, properties and literals are called Resource, Property and Literal respectively. In

Jena, a graph is called a model and is represented by the Model interface.

Monitor is another software component which actually searches the tweets fulfilling the user

search keyword. Monitor generates an output as the list of tweets.

The Twitter API consists of three parts: two REST APIs and a Streaming API. These APIs provide

search capability for Twitter data. The Streaming API supports long-lived connections on a

different architecture. However the Twitter REST API methods allow developers to access core

Twitter data. This includes update timelines, status data, and user information. The Search API

methods give developers methods to interact with Twitter Search and trends data. The

Streaming API provides near real-time high-volume access to Tweets in sampled and filtered

form.

Streaming Linked Data Page 105

Twitter4J is an unofficial Java library for the Twitter API. With Twitter4J, you can easily

integrate your Java application with the Twitter service. Twitter4J is Pure Java and works on

any Java Platform version 1.4.2 or later.

4.3. Prototype Application Deployment
Web applications are packaged into a WAR (web application archive). There are many

different ways to create a WAR file. We can use jar command, ant or an IDE like Eclipse.

Now take the WAR file of this web application “sld.war”and install it into your container of

choice. This war file is compatible and tested on tomcat 5.5 & 6.0

Tomcat deployment is trivial and requires copying the WAR file into the

TOMCAT_HOME/webapps folder and restarting the container. However below are the steps

to follow.

Copy “sld.war” to <TOMCAT_HOME>/webapp directory. That’s it! You have successfully

deployed the application to tomcat web server.

Once you start the server, tomcat will extract the war file into the directory with the same

name as the war file.

To start the server, open the command prompt and change the directory to

<TOMCAT_HOME/bin> directory and run the startup.bat file.

4.3.1. How the Application Works?
When you access the application by navigating to URL http://localhost:8080/SLD/ the web

server serves the index.html file. Index.html file is specified as welcome file in web.xml file so

web server serves this file by default. Below is the startup page of streaming linked data

application prototype.

Streaming Linked Data Page 106

Figure 4.3.1 Streaming Linked Data Server First Page

If you would like to run any of the client’s results you can simply click on the links, Click on

Justlanded in for HTML request, for RDF use the JustLandedIn link for Tabulator Browser

request and you can use the Sparql endpoint for querying the S-graph.

However you can send request directly from your browser using the URI,

http://localhost:8080/sld/resource/justlandedin, your browser request will let to know about

the request to the Streaming linked data application to generate the specific response.

When you hit the URI http://localhost:8080/SLD/resource/justlandedin, browser sends the

HTTP GET request. Based on the servlet mapping in web.xml, the web container delegates the

request to servlet class.

When the request is received by PublishingServlet it performs following tasks.

 Extract the name parameter from HttpServletRequest object.

 Generate the contents for the request.

 Generate the HTML or RDF document and write the response to HttpServletResponse

object.

Browser receives the HTML or RDF document as response and presents that document in its

window. Below are given the screen shots of S-Graph presented in RDF and HTML formats.

Streaming Linked Data Page 107

Resulting S-Graph presented using tabulator add on for Firefox browser.

Figure 4.3.2 S-Graph presentation using tabulator add on for Firefox internet browser

Streaming Linked Data Page 108

Below is the HTML presentation of S-Graph using Firefox internet browser.

Figure 4.3.3 S-Graph presentation in HTML format using Firefox

Streaming Linked Data Page 109

Below is the HTML presentation of I-Graph using Firefox internet browser.

Figure 4.3.4 I-Graph presentation using tabulator add on for Firefox internet browser

Streaming Linked Data Page 110

Figure 4.3.5 I-Graph presentation in HTML format using Firefox

Given below is the quries done on DBpedia and sindice. The next step is to understand the

code.

Queries performed on DBpedia:
dbpedia += "WHERE { " +

 "{GRAPH ?graph {?graph a

<http://dbpedia.org/ontology/PopulatedPlace> }} " +

 "UNION " +

 // a country

 "{GRAPH ?graph {?graph a

<http://sw.opencyc.org/2008/06/10/concept/Mx4rvViACZwpEbGdrcN5Y29ycA> }} " +

 "UNION " +

 // a state capital

 "{GRAPH ?graph {?graph a

<http://sw.opencyc.org/2008/06/10/concept/Mx4rvVi3vpwpEbGdrcN5Y29ycA> }} " +

 "}";

 System.out.println(dbpedia);

 com.hp.hpl.jena.query.Query q2 = QueryFactory.create(dbpedia);

 QueryExecution innerqexec2 = QueryExecutionFactory.create(q2);

 ResultSet innerresultSet2 = innerqexec2.execSelect();

Streaming Linked Data Page 111

Queries performed on Sindice

String sindice = "SELECT ?link "

 + "FROM

<http://api.sindice.com/v2/search?q="+encodedPlace+"&qt=term&page=1> "

 + "WHERE { ?x <http://sindice.com/vocab/search#link> ?link

. "

 + " FILTER (regex(str(?link), \"dbpedia\")) " + " }";

// System.out.println(sindice);

 com.hp.hpl.jena.query.Query q = QueryFactory.create(sindice);

 QueryExecution innerqexec = QueryExecutionFactory.create(q);

 ResultSet innerresultSet = innerqexec.execSelect();

Queries performed for windowing using C-SPARQL

final String queryCountLogicalWindow = "REGISTER QUERY PIPPO AS "

 + "SELECT ?t (count(?t) AS ?conto)" + " FROM STREAM

<http://localhost:8080/sld/resource/justlandedin> [RANGE

“+”justlandedin.size”+”justlandedin.step”+”] WHERE { ?s ?p ?o } "

 + "GROUP BY ?t ";

final String queryphysicalwindow = "REGISTER QUERY PIPPO AS "

 + "SELECT ?s (COUNT(?s) AS ?conto) FROM STREAM

<http://localhost:8080/sld/resource/justlandedin> [RANGE

TRIPLES”+”justlandedin.size”] WHERE { ?s ?p ?o } GROUP BY ?s";

 final justlandedinGenerator tg = new justlandedinGenerator();

Registering C-SPARQL queries

engine.registerStream(tg);

final Thread t = new Thread(tg);

Streaming Linked Data Page 112

4.3.2. Configurations
The deployment descriptor (web.xml) file

Copy the following code into web.xml file and save it directly under servlet-example/WEB-INF

directory.

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

<listener>

<listener-class>eu.larkc.csparql.plugins.streaminglinkeddata.MainClass

</listener-class>

</listener>

<listener>

 <listener-class>eu.larkc.csparql.plugins.streaminglinkeddata.ForTest

</listener-class>

</listener>

<listener>

<listener-

class>eu.larkc.csparql.plugins.streaminglinkeddata.ForjspmainThread

</listener-class>

 </listener>

 <Servlet>

 <display-name>PublishingServlet</display-name>

 <servlet-name>PublishingServlet</servlet-name>

<servlet-

class>eu.larkc.csparql.plugins.streaminglinkeddata.PublishingServlet

</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>PublishingServlet</servlet-name>

 <url-pattern>/resource/*</url-pattern>

 <url-pattern>/data/</url-pattern>

 <url-pattern>/page/</url-pattern>

 <url-pattern>/data/physical/</url-pattern>

 <url-pattern>/page/physical/</url-pattern>

 <url-pattern>/data/logical/</url-pattern>

 <url-pattern>/page/logical/</url-pattern>

 </servlet-mapping>

<welcome-file-list>

<welcome-file>index.html</welcome-file>

</welcome-file-list>

<login-config>

<auth-method>BASIC</auth-method>

</login-config>

</web-app>

Streaming Linked Data Page 113

The deployment descriptor (config.xml) file, copy the following lines of code into config.xml

file and save it directly under servlet-example/WEB-INF directory

<SLD>

 <logininfo>

 <username>nausherwan644@hotmail.com</username>

 <password>amirkhalil12</password>

 <placetoannotate>""</placetoannotate>

 </logininfo>

</SLD>

Note: see war deployment for Dbpedia and Sindice queries

Congratulations! If you have reviewed the deployment procedure and both web.xml and

config.xml configuration files then see how it works.

Streaming Linked Data Page 114

Chapter 5: Future and Related Work

Streaming Linked Data Page 115

5.1. Overview
In this chapter, we will discuss our implementation experience, analyzing the further

enhancements in the current research, proposing the future work for the same work domain

and then we will conclude our research work.

5.2. Controlling C-SPARQL Quries
We describe the RESTful (34) services which allow controlling each C-SPARQL query that

continuously computes each RDF stream published with our approach. As we did that C-

SPARQL queries have to be registered in the C-SPARQL Engine. As soon as a query is

registered, the C-SPARQL engine starts to compute it. An explicit stop command is required to

stop the processing of a registered query. Similarly in order to unregister the query we need

an explicit delete command for deleting a C-SPARQL query.

5.3. Future Work
A RESTful service to control the C-SPARQL queries that generates the RDF streams is also

detailed. This service could help us to complete another prototypical implementation of our

Streaming Linked Data Server and evaluate it against several use cases.we need to extend our

work with the design of a RESTful interface. A RESTful uses the HTTP methods to control the C-

SPARQL queries:

 PUT, with a C-SPARQL query as parameter, allows registering a query that generates a
certain RDF stream,

 POST, with start or stop command as parameters, is used to start or stop a registered
query, and

 DELETE can be used to unregister a query.

Similarly this work is extendable and presentable for the social network service websites as we

did elaborate the tweets of the twitter.

We intend to focus on the optimal deployment of multiple continuous queries over streams in

distributed and heterogeneous environments, where RDF repositories and data streams will

be managed by different systems, and stream managers may exhibit limited data

management capabilities. We believe that generalizing some of the results presented in this

paper in a multi-query, heterogeneous, and distributed context is possible, although far from

trivial.

CSPARQL should solve the challenge of providing efficient access protocols for heterogeneous

streams.

Streaming Linked Data Page 116

We should measure the performance of the data streams processed on the fly and by storing

these streams first using Db4 or some other database system.

We can extend this work to measure the performance of the C-SPARQL engine and existing

DSMS systems in order to answer the questions that which system exhibit better or ideal

performance to process data streams on the fly.

5.4. Related Work
Two previous works (35) (36) address the need for publishing data streams as Linked Data. In

(35), Corcho introduce the concept of Linked Stream Data, a way in which the Linked Data

principles can be applied to stream data and be part of the Web of Linked Data. At a first

glance, his proposal could appear similar to our one. Both his and our proposal use named

graphs and define IRI schemata. However, his approach does take into account the nature of

streams, that being unbounded sequences of time-varying data elements, should not be

treated as persistent data to be stored (forever) and queried on demand, but rather as

transient data to be consumed on the y by continuous queries. His proposal allows for opening

window of any dimension and any position in time (see listing below):

This is incompatible with principle to consume data on the fly. It requires the Linked Stream

Data server to store the stream for an indefinite time period.

http :// www. domain . org / sensor / name /\% start time \% ,\% end time \%

In (36), Rodrfiguez et al. introduce the notion of Time-Annotated RDF (TA-RDF) that allows for

representing timeseries data, especially streaming data, using the Semantic Web approach.

(TA-RDF) is an extension of the RDF model where resources are optionally annotated with a

time

value, i.e, a time-annotated resource is a pair of the form resource[time] (see listing below for

an example).

<urn:OHARE > <urn : hasRainSensor > <urn : sensor1 > .

<urn:sensor1 >["2009 -01 -01Z -06:00"^^ xsd : date] <urn: hasReading > "0".

<urn:sensor1 >["2009 -01 -01Z -06:05"^^ xsd : date] <urn: hasReading > "5".

...

<urn:sensor1 >["2009 -01 -31Z -10:00"^^ xsd : date] <urn: hasReading >

"15".

A TA-RDF graph can be represented as a set of RDF graphs using two special properties:

belongsTo, which indicates a data element in a stream, and hasTimestamp, which points

toward the timestamp of the data element. As for the previous related work, TA-RDF proposal

looks very similar to our one, but still it lacks the paradigmatic change from persistent data to

transient data. In TA-RDF streams are supposed to be stored indefinitely. Finally, the two

Streaming Linked Data Page 117

proposals do not consider the rich types of windows proposed in DSMS. They do not propose

a vocabulary to describe the window type (i.e., lsd:physical vs. lsd:logical) and the size of the

window (i.e., the equivalent of our property windowSize). The properties lastUpdate and

expires, which in our vocabulary allows to indicate a Linked Data Client when the graph was

updated and when it will expire, are not present.

The TA-RDF and TA-SPARQL have been implemented in a prototype service, integrated with

the NCSA Tupelo semantic middleware. This has enabled integration of stream data with other

data and metadata, including documents, imagery, workflows, provenance, and annotations.

We believe that providing the ability to reason about streaming data to cope with the

increasing amount of dynamic data on the web is the next big step in semantic technologies.

5.5. Conclusions
The proposition of this work provides an extension of C-SPARQL Engine by publishing data

streams as Linked Data. C-SPARQL and their corresponding infrastructures provide an

excellent starting point for further investigating expressive reasoning over data streams. Our

proposition to publish RDF streams continuously generated by C-SPARQL queries is

successfully using our concepts of Stream Graph (or s-graph) and Instantaneous Graph (or

igraph) as well as a small vocabulary that allows to describe which part of the stream has been

published and when the information will expire.

Windows data model is much more flexible and is very natural for query processing. Our

technique of using the C-SPARQL query worked very well, however still there is a need to

control the continuous queries and this could be better by using A RESTful service as we

proposed it in section of future work.

Streaming Linked Data Page 118

6. References
1. Rastogi. Data Stream Management: Processing High-Speed Data Streams (Data-Centric

Systems and Applications). M. Garofalakis, J. Gehrke, and R. Secaucus, NJ, USA : Springer-

Verlag New York, Inc., 2007.

2. STREAM: The Stanford Stream Data Manager (Demonstration Description). A. Arasu, B.

Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein, and J. Widom. 2003. In Proc.

ACM Intl. Conf. on Management of Data (SIGMOD 2003). p. page 665.

3. The Design of the Borealis Stream Processing Engine. D. J. Abadi, Y. Ahmad, M. Balazinska,

U. C_ etintemel, M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina,

N. Tatbul, Y. Xing, and S. Zdonik. In Proc. Intl. Conf. on Innovative Da.

4. Introducing Stream Mill. Hetal Thakkar, Nikolay Laptev, Vincenzo Russo and Carlo Zaniolo.

Los Angeles : s.n., April 2009.

5. An Execution Environment for C-SPARQL Queries. . D. F. Barbieri, D. Braga, S. Ceri, and M.

Grossniklaus. 2010. In Proc. Intl. Conf. on Extending Database Technology (EDBT).

6. Issues in Data Stream Management, ACM SIGMOD Record vol 3. Golab, L., Özsu, M. T. June

2003. p. 5-14 .

7. Querying RDF Streams with C-SPARQL. Davide Francesco Barbieri, Daniele Braga, Stefano

Ceri,Emanuele Della Valle, Michael Grossniklaus.

8. STREAM: The Stanford Data Stream Management System. Arvind Arasu, Brian Babcock,

Shivnath Babu, John Cieslewicz, Mayur Datar, Keith Ito, Rajeev Motwani, Utkarsh Srivastava,

and Jennifer Widom.

9. Models and issues in data stream systems. In Proc. of the 21st ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems. B. Babcock, S. Babu, M. Datar, R. Motwani, and J.

Widom. June 2002. p. 1,16.

10. Flexible time management in data stream systems. In Proc. of the 23rd ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of Database Systems. Widom., U. Srivastava and J. June

2004.

11. Monitoring Streams – A New Class of Data Management Applications. Don Carney, Ugur

Cetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Greg Seidman, Michael

Stonebraker, Nesime Tatbul and Stan Zdonik,. honkong : s.n., 2002.

Streaming Linked Data Page 119

12. "Resource Description Framework (RDF) Model and Syntax Specification".

http://www.w3.org/TR/PR-rdf-syntax/.

13. http://sourceforge.net/projects/rdquery/, RDQuery. 2006.

14. http://www.w3.org/DesignIssues/LinkedData.html.

15. Rdf/xml syntax specification (revised). W3c recommendation, W3C, Oct 2004.

http://www.w3.org/TR/rdf-syntax-grammar/.Tim Berners-Lee. Beckett., Dave.

16. Mailing list message to www-tag@w3.org, http://lists.w3.org/Archives/Public/www-

tag/2005Jun/0039.html. Fielding, Roy T. june 2005.

17. Best practice recipes for publishing rdf vocabularies. Alistair Miles, Thomas Baker, and

Ralph Swick. March 2006.

18. Data Stream Management Processing High-Speed Data Streams. Garofalakis, Minos,

Gehrke, Johannes e Rastogi, Rajeev (Eds.).

19. Semantic Management of Streaming Data. Alejandro Rodriguez, Robert McGrath, Yong Liu

and James Myers. Semantic Sensor Networks Workshop at ISWC. Andre Bolles Marco

Grawunder Jonas Jacobi Davide F. Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della

Valle, Michael Grossniklaus Semantic Management of Streaming Data. Alejandro Rodriguez,

Robert McGrath, Yong Liu and James Myers,Emanuele Della Valle. 2009.

20. The CQL Continuous Query Language: Semantic Foundations and Query Execution. A.

Arasu, S. Babu, and J. Widom. 2006. The VLDB Journal. p. 5(2):121,142.

21. Sindice.com: a document-oriented lookup index for open linked data. E. Oren, R. Delbru,

M. Catasta, R. Cyganiak, H. Stenzhorn, and G. Tummarello. 2008. p. 3(1):37,52.

22. C-SPARQL: SPARQL for Continuous Querying. D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle,

and M. Grossniklaus. s.l. : In Proc. Intl. Conf. on World Wide Web (WWW), pages 1061,1062,

2009.

23. D2r map - a database to rdf mapping language. Bizer, C. 2003.

24. Querying Sliding Windows over On-Line Data Streams. Golab, Lukasz. School of Computer

Science, University of Waterloo Waterloo, Ontario, Canada N2L 3G1 : s.n.

25. How to publish linked data on the web. C. Bizer, R. Cyganiak, and T. Heath. 2007, 2008,

2009.

Streaming Linked Data Page 120

26. Surfing wavelets on streams: One-pass summaries for approximate aggregate queries. A.

Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. 2001. In Proceedings of VLDB.

27. Cool uris for the semantic web. World Wide Web Consortium. Vlkel, D. Ayers and M.

december 2008.

28. service.http://www.nws.noaa.gov/, NOAA. U.S. national weather.

29. the stream: architecture for queries over streaming sensor data. Fjording, S. Madden and

M. J. Franklin. In Proceedings of ICDE.

30. Maintaining Stream Statistics over Sliding Windows. to appear in Proceedings of Thirteenth

Annual ACM-SIAM Symposium on Discrete Algorithms. M. Datar, A. Gionis, P. Indyk, and R.

Motwani.

31. An Execution Environment for C-SPARQL Queries. . D. F. Barbieri, D. Braga, S. Ceri, and M.

Grossniklaus. In Proc. Intl. Conf. on Extending Database Technology (EDBT), 2010.

32. D2rq - treating non-rdf databases as virtual rdf graphs. Seaborne., C. Bizer and A. nov

2004. In ISWC2004 (posters).

33. SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query/. Seaborne., E.

Prud'hommeaux and A.

34. The CQl Continuous Query Language: Semantic Foundations and Query Execution. A.

Arasu, S. Babu, and J. Widom. s.l. : The VLDB Journal, 2006.

35. Hypertext transfer protocol. al, R. Fielding et. June 1999.

36. RESTful Web Services. Ruby., Richardson and S. O'Reilly, Beijing : s.n., 2007.

37. Linked stream data: A position paper. Corcho., O. 2009. In The 2nd International Workshop

on Semantic sensor Networks.

38. Semantic management of Streaming Data. A. Rodriguez, R. McGrath, Y. Liu, and J. Myers.

2009. In Proc. Intl. Workshop on Semantic Sensor Networks (SSN).

39. A Data Stream Language and System Designed for Power and Extensibility. In Proc. Y. Bai,

H. Thakkar, H. Wang, C. Luo, and C. Zaniolo. 2006. Intl. Conf. on Information and Knowledge

Management (CIKM 2006). p. pages 337,346.

40. International Organization for Standardization. Data elements and interchange formats |

information interchange | representation of dates and times. ISO 8601,Available on line at:

http://xml.coverpages.org/ISO-FDIS-8601.pdf. Dec 2004.

41. R. Fielding et al. Hypertext transfer protocol – http/1.1. RFC 2616, Jun 1999.

http://www.ietf.org/rfc/rfc2616.txt.

