
Politecnico di Milano

Facoltà di Ingegneria Industriale

Corso di Laurea Specialistica in Ingegneria Spaziale

“Dynamics and Control of a
Spacecraft-Manipulator System:

Analisys, Simulation and Experiments”

Relatore: Prof. Franco BERNELLI ZAZZERA

Correlatori: Ing. Sabrina CORPINO
Prof. Marcello ROMANO

Edoardo SERPELLONI Matr. 734625

Anno Accademico 2010/2011

To Annachiara, for her love,
To my Parents, for their inconditionate support,
To Marianna, Mario and my amazing nieces,
To all my friends, and in particular to Sara, Cri, Chips, Elena, Bonny, Lore and
Ila for their friendship,
To my roommates Sassut, Il Mazzo and Andre.

I also want to thank Professor Bernelli and Professor Romano, that gave me
the possibility to live a great experience at the Naval Postgraduate School, from
the professional and personal point of view. A particular thank goes to Octavio
,Marco and Alessio, the research team of the Spacecraft Robotics Laboratory at
the Naval Postgraduate School.

i

ii

ii

Contents

List of Symbols xiii

Sommario 1

Abstract2 3

1 Introduction 5
1.1 Spacecraft Mounted Manipulators 5

1.1.1 Canadarm . 6
1.1.2 ETS VII Mission . 7
1.1.3 Manipulators Applications in Space 7
1.1.4 Research Focus . 8
1.1.5 Thesis Structure . 9

2 State of the Art 11

3 Overview of the System 17
3.1 Simulator Architecture . 18
3.2 The Experimental Setup . 21

3.2.1 The Experimental Software Architecture 21
3.2.2 The Free Flyer Robot . 23
3.2.3 Manipulator Design . 25

4 Kinematics 27
4.1 The Kinematic Control Problem 27
4.2 Jacobian Computation . 28

4.2.1 The Direct Path Method 29
4.3 Redundancy Solution . 31

4.3.1 Simple Jacobian-based Techniques 31
4.3.2 Projection techniques . 31

4.4 Validation . 33
4.4.1 1 Link Free-Flyer . 33

4.5 Numerical and graphical validation 35
4.5.1 2D Case, Rectilinear x-Trajectory 36

iii

iv Contents

4.5.2 2D Case, Rectilinear y-Trajcetory 38
4.5.3 2D Case, Circular Trajectory 40
4.5.4 3D Case, Complex Trajectory 45
4.5.5 Conclusions . 48

5 Spatial Vector Algebra 49
5.1 Introduction . 49
5.2 Preliminaries . 49
5.3 Spatial Velocity . 50
5.4 Spatial Force . 51
5.5 Scalar Product . 51
5.6 Coordinate Transforms . 51

5.6.1 Rotation . 52
5.6.2 Translation . 52
5.6.3 General Transforms . 52

5.7 Spatial Cross Product . 53
5.8 Momentum . 53

5.8.1 Inertia . 54

6 System Modeling 55
6.1 Connectivity . 55
6.2 Body Reference Systems . 58
6.3 Joint Models . 59

6.3.1 Revolute/Hinge Joint . 59
6.3.2 Prismatic/Sliding Joint . 61
6.3.3 Prismatic and Revolute Joints Conventions 62
6.3.4 Planar Joint . 63
6.3.5 6-DoF Joint . 64
6.3.6 Modeled Systems . 65

7 Dynamics 69
7.1 Introduction . 69
7.2 Inverse and Forward Dynamics 70

7.2.1 Inverse Dynamics . 70
7.2.2 Forward Dynamics . 70

7.3 Inverse Dynamics Newton-Euler Algorithm 71
7.3.1 Validation . 73
7.3.2 Conclusions . 80

8 Control System 81
8.1 Computed Torque Control . 81

8.1.1 Spacecraft Control . 84
8.2 Sensors . 86

iv

Contents v

8.2.1 Spacecraft Attitude and Angular Velocity 86
8.3 Control System Performances . 87

8.3.1 2D Case - Continuous Force and PWM Control 87
8.3.2 3D Case: Full Computed Torque Control and Diagonal H

Matrix Control . 96
8.3.3 Conclusions . 105

9 Virtual Reality Model 107
9.1 Operator Performances . 107
9.2 3D Graphical Model . 107

10 Manipulator Realization 113
10.1 Project Requirements and Constraints 113
10.2 Components Selection . 113

10.2.1 Servo Motors . 113
10.2.2 Drive Electronics . 114

10.3 Realization Process . 115
10.3.1 CAD Design . 116
10.3.2 Joint Realization and Assembly 120

10.4 Preliminary Experimental Results: Spacecraft Control 123
10.4.1 X-Trajectory . 123
10.4.2 Y-Trajectory . 126
10.4.3 Conclusions . 128

11 Conclusions 131
11.0.4 Software Implementation 131
11.0.5 Future Developments . 132

11.1 Experimental Tests . 132
11.1.1 Future Develpments . 133

A 135

Bibliography 145

v

vi Contents

vi

List of Figures

1.1 The Space Shuttle Canadarm. 6
1.2 ETS VII Mission manipulator. 7

3.1 Teleoperator Module. 21
3.2 Autonomous Robot Module . 22
3.3 The Epoxy flat floor. 23
3.4 Initial positions of the robots. 24
3.5 Designed joint. 25

4.1 System’s configuration . 29
4.2 Single link arm. 2D case. 33
4.3 Resolved motion, Rectilinear x trajectory. 36
4.4 Spacecraft CoM Position,Rectilinear x trajectory. 37
4.5 Joint Angles, Rectilinear x trajectory. 37
4.6 Resolved motion, Rectilinear y trajectory. 38
4.7 Spacecraft CoM Position, Rectilinear y trajectory. 39
4.8 Joint Angles, Rectilinear y trajectory. 39
4.9 Resolved motion, Circular trajectory, Jacobian Pseudo-Inverse. . . 40
4.10 Spacecraft Position, Circular trajectory, Jacobian Pseudo-Inverse. 41
4.11 Spacecraft Attitude, Circular trajectory, Jacobian Pseudo-Inverse. 41
4.12 Joint Angles, Circular trajectory, Jacobian Pseudo-Inverse. 42
4.13 Resolved motion, Circular trajectory, Joint Limit Avoidance. . . . 43
4.14 Spacecraft Position, Circular trajectory, Joint Limit Avoidance. . 43
4.15 Spacecraft Attitude, Circular trajectory, Joint Limit Avoidance. . 44
4.16 Joint Angles, Circular trajectory, Joint Limit Avoidance. 44
4.17 Resolved motion, 3D Case. 46
4.18 Spacecraft Position, 3D Case. 46
4.19 Spacecraft Attitude, 3D Case. 47
4.20 Joint Angles, 3D Case . 47

6.1 Linear manipulator graph. 56
6.2 Multiple manipulator graph. 56
6.3 Graph of the studied manipulators. 58

vii

viii List of Figures

6.4 Graph of the simulated manipulators. 65
6.5 Experimental system graph. 66

7.1 Linear Momentum Conservation, 3 DoF spacecraft, 4 DoF planar
manipulator . 75

7.2 Angular Momentum Conservation, 3 DoF spacecraft, 4 DoF planar
manipulator . 75

7.3 Kinetic Energy Conservation, 3 DoF spacecraft, 4 DoF planar ma-
nipulator . 76

7.4 System motion, 3 DoF spacecraft, 4 DoF planar manipulator . . . 76
7.5 Linear Momentum Conservation, 6 DoF spacecraft, 4 DoF manip-

ulator . 78
7.6 Angular Momentum Conservation, 6 DoF spacecraft, 4 DoF ma-

nipulator . 78
7.7 Kinetic Energy Conservation, 6 DoF spacecraft, 4 DoF manipulator 79
7.8 System motion, 6 DoF spacecraft, 4 DoF manipulator 79
7.9 System motion visulization, 6 DoF spacecraft, 4 DoF manipulator 80

8.1 Computed Torque method block scheme. 83
8.2 Thrusters distribution and mapping. 85
8.3 Position of the spacecraft along the x-direction. 89
8.4 Position of the spacecraft along the y-direction. 89
8.5 Spacecraft attitude. 90
8.6 Joint 1 position. 90
8.7 Joint 2 position. 91
8.8 Joint 3 position. 91
8.9 Joint 4 position. 92
8.10 Position of the end effector along the x-direction. 92
8.11 Position of the end effector along the y-direction. 93
8.12 End-Effector orientation. 93
8.13 Scacecraft Thrust Forces. 94
8.14 Scacecraft Torque. 94
8.15 Thrusters impulse profile. 95
8.16 End Effector resulting trajectory. 95
8.17 Position of the spacecraft along the x-direction. 97
8.18 Position of the spacecraft along the y-direction. 98
8.19 Position of the spacecraft along the z-direction. 98
8.20 Spacecraft Euler Angle φ. 99
8.21 Spacecraft Euler Angle θ. 99
8.22 Spacecraft Euler Angle ψ. 100
8.23 Joint 1 position. 100
8.24 Joint 2 position. 101
8.25 Joint 3 position. 101

viii

List of Figures ix

8.26 Joint 4 position. 102
8.27 Position of the end effector along the x-direction. 102
8.28 Position of the end effector along the y-direction. 103
8.29 Position of the end effector along the z-direction. 103
8.30 End Effector Euler Angle φ. 104
8.31 End Effector Euler Angle θ. 104
8.32 End Effector Euler Angle ψ. 105
8.33 End Effector resulting trajectory. 105

9.1 NPS SRL Virtual model. 108
9.2 Virtual World. 109
9.3 Thrusters off. 109
9.4 Thrusters firing. 110

10.1 Proposed design for the joint realization 116
10.2 Joint internal disposition. 117
10.3 Joint bottom part front and rear. 117
10.4 Joint top part. 118
10.5 Joint exploded view. 118
10.6 CAD view of the designed manipulator. 119
10.7 Components presentation and first assembly phase. 120
10.8 Second and third assembly phases. 120
10.9 Electronics accomodation . 120
10.10Complete Joint. 121
10.11Final Design. 121
10.12Final system configuration. 122
10.13Motion in the x direction. 123
10.14Motion in the y direction. 124
10.15Attitude Control. 124
10.16Followed trajectory. 125
10.17Thrusters command. 125
10.18Motion in the x direction. 126
10.19Motion in the y direction. 126
10.20Attitude Control. 127
10.21Followed trajectory. 127
10.22Thrusters command. 128

ix

x List of Figures

x

List of Tables

4.1 System Configuration, Kinematics 35

8.1 Systm Configuration, 2D Case . 88
8.2 System Configuration, 3D Case 96

10.1 Servo Motors Data. 114
10.2 Electronics Data . 115
10.3 Manipulator Data. 122

xi

xii List of Tables

xii

List of Symbols

n Number of links per maipulator. .27
x Tasks vector . 27
q Joint vector .27
m Dymension of the task space . 27
J System Jacobian Matrix . 27
K Inverse Mapping Matrix .31
RC0 Spacecraft Position Vector in Inertial Reference System 29
rCI Position Vector of the i-th Link Center of Mass29
rpCi Position of the Point P wrt CM of the i-th Link 29
Nm Number of Links .30
K Number of Manipulators . 29
Tk
j Matrix rotation between jth and kth references .31

zkj Rotation axis Versor bewteen jth and kth references 31
I Identity Matrix . 31
h Cost Function for Joint Limit Avoidance . 31
qiminMinimum Allowable Value for the Joint qi . 32
qimaxMaximum Allowable Value for the Joint qi . 32
g Gradient Function . 32
β Control Law Parameter . 32
Ix Spacecraft Moment of Inertia along the x direction 35
Iy Spacecraft Moment of Inertia along the y direction 35
Iz Spacecraft Moment of Inertia along the z direction 35
Ixm Link Moment of Inertia along the x direction .35
Iym Link Moment of Inertia along the y direction .35
Izm Link Moment of Inertia along the z direction . 35
Rn Coordinate Vector Space . 49
En Euclidean Vector Space . 49
Mn Motion Vector Space .49
F n Force Vector Space . 49
vP Velocity of the point P .50
ω Angular Velocity .50
D0 Plucker Basis . 50
v̂ Spatial Velocity .50

xiii

xiv List of Tables

f̂ Spatial Force . 51
BXA Spatial Motion Rotation between frames A and B 51
BX∗

A Spatial Force Rotation between frames A and B51
IC Inertia Matrix wrt the Point C .53
ĥ Spatial Momentum . 53
ĪP Spatial Inertia wrt the Point P .54
p Vector of Predecessor Joints . 57
s Vector of Successor Joints .57
λ Parent Array . 57
S Motion Subspace Matrix . 59
T Force Constraint Matrix . 60
φ 1st Euler Rotation . 64
θ 2nd Euler Rotation . 64
ψ 3rd Euler Rotation . 64
H Inertia Manipulator Matrix . 69
C Bias Manipulator Matrix . 69
Q External Force Vector .69
KP Proportional Gains Matrix . 82
KD Derivative Gains Matrix . 82
u Feedback Control Law . 82
q̈Des Reference Acceleration . 82
e Joint Position Error Vector . 82
ë Joint Velocity Error Vector . 82
f Thrusters Pulses Vector .84
t Thrusters Profiles .84
M Thrusters Mapping . 84
xs x Spacecraft Coordinate . 87
ys y Spacecraft Coordinate . 87

xiv

Sommario

La possibilita di avere un manipolatore a bordo di un veicolo spaziale puo es-
pandere enormemente le capacita di un satellite, aprendo nuovi ed interessanti
scenari di applicazione. La missione ETSVII della JAXA ha dimostrato la fat-
tibilita del rendez-vous e docking tra due satelliti per mezzo di un braccio robotico.
Mentre negli anni passati la ricerca accademica si e’ concentrata sullo studio di
manipolatori montati su veicoli spaziali non controllati, in questa tesi e’ stato
studiato il caso concernente il pieno controllo di satellite e braccio robotico.Lo
scopo della tesi e’ stato l’implementazione di un simulatore Simulink del sistema
satellite-manipolatore e la progettazione di un manipolatore planare da montare su
un robot flottante allo Spacecraft Robotics Laboratory, alla Naval Postgraduate
School, Monterey, California. Particolare attenzione e’ stata posta alla model-
lazione della cinamatica, della dinamica e al controllo del sistema. Il Direct Path
Method e’ stato implementato per calcolare in modo efficiente lo Jacobiano del
sistema completo. Per la risoluazione della ridondanza del sistema e’ stata testata
la Simple Jacobian Inversion Technique e un algoritmo di Joint Limit Avoidance
e’ stato implementato. La dinamica del sistema viene calcolata ad ogni passo di
integrazione usando ilNewton-Euler Algorithm, implementato usando il formal-
ismo della Spatial Algebra . Questa formulazione permette di studiare il sistema
completo come un manipolatore a base fissa, il cui primo link e’ il satellite stesso,
connesso a terra usando un giunto a 6 DOFs. Nella restrizione bidimensionale il
controllo della base e’ stato realizzato con una tecnica di Pulse Width Modulation,
per poter simulare il reale sistema di controllo di un satellite dotato di attuatori
a getto. La tecnica di controllo implementata e’ il Computed Torque Control, una
legge di controllo che permette una Feedback Linearization, che significa che, se i
parametri del sistema sono noti con accuratezza, il sistema di controllo linearizza
il sistema in ciclo chiuso. Infine e’ stato progettato e realizzato un prototipo di
manipolatore per future attivita sperimentali. Il prototipo realizzato e’ un ma-
nipolatore planare, composto da giunti di rivoluzione e caratterizzato dall’unione
di giunti modulari, realizzati mediante l’utilizzo di una stampante 3D.

Parole Chiave: Robotica Spaziale, Manipolatore abase mobile, Spatial Alge-
bra, Computed Torque Control, Manipulator Design

1

2 Symbols

2

Abstract

Having a manipulator mounted on a spacecraft can enormously expand the ca-
pabilities of a satellite, opening new scenarios of application. JAXA ETS VII
mission proved the feasibility of rendez-vous and docking between spacecrafts us-
ing a robotic arm. While most of the research in the past years have focused on the
study of manipulators mounted on non controlled spacecrafts, in this thesis the
case of completely controlled spacecraft and manipulator has been studied. The
goal of the thesis is the implementation of a Simulink simulator for a spacecraft-
manipulator system and the realization of a planar manipulator mounted on a
free flying robot , at the Spacecraft Robotics Laboratory at Naval Postgraduate
School,Monterey, California. Particular attention has been posed on the fields of
kinematics redundancy solution, dynamics modeling and control techniques.
The Direct Path Method has been implemented in order to compute in an ef-
ficient way the Jacobian matrix of the complete system. In order to solve the
redundancy of the system the Simple Jacobian Inversion Technique and a Joint
Limit Avoidance Algorithm have been implemented. The dynamics of the system
is calculated step by step using the Newton-Euler Algorithm, implemented using
the Spatial Algebra formulation. This implementation allows to study the com-
plete system as a fixed base manipulator system, whose first link is the spacecraft
itself, fixed to a virtual ground using a 6 DOFs joint. In the 2D case the control
of the spacecraft has been realized applying a Pulse Width Modulation in order
to simulate the real attitude control techniques based on jet thrusters actuators.
The implemented control technique is the Computed Torque Control, a typical
Feedback Linearization Technique, that means that, if the information on the sys-
tem parameters and the dynamic model of the system is enough accurate, the
control law linearizes the behavior of the system.
Finally a manipulator prototype for future experimental activities has been de-
signed and realized. The realized manipulator, is a planar manipulator, composed
by modular revolute joints, produced using a rapid prototyping 3D printer.

Keywords: Space Robotics, Mobile Manipulator, Spatial Algebra, Computed
Torque Control, Manipulator Design

3

4 Symbols

4

Chapter 1

Introduction

1.1 Spacecraft Mounted Manipulators

Nowadays robotic manipulators are extensively used in the industrial and surgical
fields. The progresses in the fields of kinematic and dynamic modeling and the
design of new , innovative control techniques have allowed a deeper level of au-
tomation in activities that were performed only by humans. The industrial field
pushed the research on heavy, powerful manipulators, able to manipulate heavy
objects or to handle dangerous materials. In the automotive industry most of the
assembly phase is now performed using robotic systems. On the other side the
surgical field pushed for the development of teleoperation,telepresence and haptics
and on the development of extremely high precision control techniques.
Considering the results achieved, the application of robotic arms in the space en-
vironment can be considered natural. The space frontier offers a great variety
of applications for manipulators: from the repair of damaged structures (also the
self-repair), to the refuelling of a satellite (using the manipulator as a fuel pump);
from the rendez-vous and docking maneuvers to the manipulation and the orbit-
ing of objects in space.
On the other side the development of a space manipulator represents a huge
challenge for the designer: he has to face very strict power, weight and bulk con-
straints, the computational resources for the management of the arm movements
are low and all the components have to be space certified.
Robotic arms have already been applied to the space field in the past both in
orbit and for planetary exploration.
This thesis is focused in particular on the case of the on-orbit scenario. the two
most outstanding results in this field are represented by the Canadarm (Space
Shuttle) and by the JAXA Mission ETS VII.

5

6 Chapter 1. Introduction

1.1.1 Canadarm

The Canadrm is a Robotic Manipulator Mounted on the Space Shuttle, in order
to deploy and release payloads from its cargo bay.It was launched the first time
on November 13, 1981 on the STS-2 Mission. The Canadarm is a six degree of
freedom robotic arm, it is 15.2 meters long, and 38 centimeters in diameter. It
weights 450 kg. Compared to the total weight of the Space Shuttle (2030 tonns),
the manipulator is characterized by an arm to base ratio of 2.21 10−4.

Figure 1.1: The Space Shuttle Canadarm.

At the beginning of its life it could manipulate objects weighing up to 32.5
tonns, successive test and improvements of the control system increased that value
to 293 tonns. It is curious to notice that, despite the on-orbit capabilities, the
arm can not lift its own weight while it is on the ground on Earth. The Canadarm
configuration consists of a display and control panel, including hand controllers for
its translational and rotational dynamics and of a manipulator-on board computer
interface. The astronauts can see the results of their inputs using the Advanced
Space Vision System, close to the controllers.

6

1.1 Spacecraft Mounted Manipulators 7

1.1.2 ETS VII Mission

The ETS VII, also known as KIKU-7 (launched on November 28th, 1997) was the
world’s first satellite to be equipped with a robotic arm (6 DOFs), and also the first
unmanned spacecraft to perform autonomous rendezvous and docking operations
successfully. The ETS-VII consisted of two main parts: a chaser satellite and a
target satellite. The chaser satellite is the main satellite body, and was named
Hikoboshi. A 2 m long robotic arm was attached to this part. The smaller target
satellite was named Orihime. The box shaped, complete satellite system weighed
2,860 kg.Three rendezvous and docking operations were carried out with the ETS-
VII, which involved placing the target satellite 200 mm away from the chaser and
using the robot arm to retrieve and hold it in place. Several other experiments were
also carried out with the satellite’s robotic components. The experiments on the
rendezvous and docking have been completed both autonomously and operated
from the ground.

Figure 1.2: ETS VII Mission manipulator.

1.1.3 Manipulators Applications in Space

A manipulator mounted on a spacecraft can improve the number and the quality
of the interactions that a spacecraft can perform on the environment, on itself and
on other spacecrafts. One of the most attractive applications is the rendez-vous
and docking capability (named berthing, if performed using a robotic arm). Us-
ing a robotic arm could improve the reliability of the operation: in this way the
two docking spacecrafts could enter in contact in a more controlled and soft way,
avoiding the risks involved in such complex operations.

7

8 Chapter 1. Introduction

An extremely attractive idea is to use the manipulator to repair the spacecraft
itself and other target spacecrafts. The typical scenario could be the maintenance
of a satellite constellation: the presence on each orbit of the constellation of a
satellite equipped with tools able to perform accurate analysis of the damages
occurred on other satellites could allow to save money for the constellation main-
tenance. At the same time the capability of analysis and repair could be applied
on the spacecraft itself: during long interplanetary missions the capability of the
spacecraft to perform analysis on its status could reveal crucial for the success of
the mission.
Other possible applications are related to the capability of manipulating objects:
during missions finalized to the scientific analysis of sampled objects (for example
space debris in LEO) a robotic arm is a possible solution to the critical problem
of samples grasping and storing.

1.1.4 Research Focus

Most of the research on spacecraft mounted manipulators is focused on the free
floating case: that means that the spacecraft itself is not controlled. In this con-
dition the system becomes extremely challenging to study from the point of view
of dynamics: in these case the system is non-holonomic and this causes the birth
of dynamic singularities and limited workspaces. These consequences strongly
pushed , in the past, the research in the field of space manipulators. On the other
side, thinking to the final application on space systems, it can be considered too
risky to use a manipulator during proximity operations without controlling the
spacecraft to which it is fixed. The high required levels of accuracy and relia-
bility, forces to implement a full control of the spacecraft. Considering the costs
and the efforts spent in a mission development, a non controlled spacecraft dur-
ing extremely delicate missions seems to be unapplicable. With the controlled
spacecraft, the system does not show dynamic singularities and can be treated as
conventional problem of dynamics modeling and control of a multi-body system.
The thesis research is focused on the kinematic and dynamic modeling and control
techniques applicable in the case of full control of the spacecraft. The research
is finalized to the implementation of a Simulink simulator of the system and to
the design of an experimental setup useful for future algorithms’ validation. The
simulator has to allow the user to define the desirable trajectory of the end ef-
fector and, then, it has to compute the joints motion that permits to the whole
spacecraft-manipulator system to follow that trajectory. The attention has also
been focused on the implementation of an algorithm of joints limits avoidance in
order to avoid the problem of possible compenetrations between rigid bodies. In
this way the user provides to the system the knowledge about system geometry
and bulk, that is translated into constraints for the joint movements. The com-
putation of the dynamic matrices has been implemented using a Spatial Algebra
formulation of the Newton Euler Algorithm. In this way it is possible to compact

8

1.1 Spacecraft Mounted Manipulators 9

the formulation of the system’s dynamic equations. Another advantage of the
Spatial Algebra approach is that in this way it is simple to model the motion of
an unconstrainted rigid body in the three dimensional case using the same for-
mulation used to model the other joints of the system. This allows to model the
system as a fixed base manipulator, where the first link of this virtual manipulator
is the spacecraft itself, fixed to the ground by a 6 DOFs joint. The system is then
controlled using a Computed Torque Control Law, that actively uses the dynamic
matrices of the system to compute the forces and torques that have to be applied
to control the system motion.
After the realization of the simulator, the manipulator itself has been designed.
The output of the design phase has been a modular manipulator, composed by
modular revolute joints that can be added or removed from the system in order
to increase or decrease the number of desired DOFs.

The research main contribution is the implementation of a simple, highly ex-
pandible architecture for the simulation of a spacecraft mounted manipulator-
system (and, more in general, for the simulation of linear chains of rigid bodies).
The spatial algebra allows to reduce the computational cost of the algorithm,and
it permits to implement an high number of different joints/constraints (systems
with more than ten DOFs can be simulated in a quasi-real-time environment).
The implementation can be expanded to create a real multi-body software. The
fixed base interpretation permits to implement control laws traditionally applied
to fixed base manipulators. The experimental validation on the spacecraft control
is a first partial validation of the validity of the implementation.

1.1.5 Thesis Structure

The chapters organization reflects at the same time the logic flux of information
in the software and the chronological development of the software.
Chapter 2 presents the results obtained in the past years in the field of manipu-
lators and in particular in the case of spacecraft-manipulators systems.
In the Chapter 3 a complete overview of the developed software is presented, or-
ganized in the main block schemes that compose the software.
Chapter 4 introduces the algorithms for the computation of the Jacobian Matrix
and the implemented methods for the inverse kinematics solution. Particular at-
tention has been dedicated to the analysis and implementation of a Joint Limit
Avoidance Algorithm.
Chapter 5 presents a brief introduction to Spatial Algebra. The basic notions are
presented, in order to use this tool in the implementation of a dynamic algorithm
function and the modeling of manipulators joints.
Chapter 6 explains the basic notions in manipulators modeling. The implemented
joint models are presented and the used reference frames are defined.
In Chapter 7 the implementation of the Newton-Euler Algorithm is presented.
The implemenetation has been validated using a simple test case, both in the 2D

9

10 Chapter 1. Introduction

and 3D case.
In Chapter 8 the implemented control law is presented and tested using two dif-
ferent test cases: a 4 DOFs planar manipulator on a 3 DOFs spacecraft, with and
without thrusters Pulse Width Modulation, and a 4 DOFs spatial manipulator on
a full controlled 6 DOFs spacecraft, in the case of full control and control using
only a partial computation of the inertia matrix.
Chapter 9 presents the implementation of a virtual environment for the simula-
tion, using the Virtual Reality Toolbox.
Chapter 10 presents the design and realization of the planar manipulator to mount
on one of the free flying - free floating robot of the Spacecraft Robotics Laboratory
at the Naval Postgraduate School. The first preliminary results obtained applying
the developed software to the case of spacecraft control.
The final Chapter 11 summarizes the results obtained in the numerical simulations
and the first preliminary results obtained in the control of the spacecraft.

10

Chapter 2

State of the Art

Nowadays manipulation is an extremely active field of research. The reason of
such a success is mostly related to the fact that a lot of fields can offer important
applications to robotic arms. In general robotic manipulators have been used to
perform operations in dangerous environments (underwater manipulators or ma-
nipulators for nuclear reactors maintenance) or situations (for example the US
Army’s Warrior X700, [1]), or to perform operations in a more safe and precise
way (surgery and assembly lines in the automotive field). Also the improvements
in the field of humanoid robots pushed the research on manipulation and grasping
toward new frontiers.
One of the most emerging field is related to the realization of mobile base ma-
nipulators: that means that the manipulator is mounted on a mobile base. The
research on mobile manipulators has focused on the cases of wheeled robots, un-
derwater robots and spacecrafts mounted manipulators.
One of the most relevant applications for manipulators mounted on wheeled robots
is the field of war robotics with special attention to robots specialized in blastering.
In [1], blastering robots performances on the battle field are presented (related
to Iraq and Afghanistan wars). These robots can blaster a bomb operating with
the on board manipulator: these applications show a particular focus on robust
and reliable design of the manipulator itself and a particular attention toward the
effectiveness of the remote teleoperation technique used to drive the robot. Non
military research is mostly focused on innovative control techniques (in [2], for
example, the system’s path planning and control is finalized to stay, if possible,
as closest as possible to an optimal configuration during its motion) and on the
modeling of the effects of the vehicle’s suspensions on the system ([3])

The case of a manipulator fixed to an underwater robot can be considered very
similar to the case of a spacecraft mounted manipulator: indeed pools are often
used in the astronauts training in order to simulate the weightlessness, condition
typical of the space environment. On the other side, in some applications, the
role of the water’s drag force can be critical. The presence of a viscous fluid all

11

12 Chapter 2. State of the Art

around the robot introduces the effects of an external non linear force acting on
each point of the system depending on its orientation and its local velocity and on
the fluid mechanical properties and motion status. Because of that, most of the
research efforts have been done in order to create models of the water drag force
on each link and body of the system able at the same time to perform accurate
and fast computations. McMillan, Orin, D.E. and McGhee, R.B. in [4] developed
efficient simulations that allowed to compute all the hydrodynamic interactions
of the robot with the surrounding fluid, only doubling the computational cost of
the same algorithm but without the simulation of the hydrodynamic interactions.
Most of the control laws and philosophies used to control underwater manipula-
tors can be applied to the control of a spacecraft-manipulator system (particularly
used in this case are the feedback linearization techniques, [5]).
On the other side the real case introduces big uncertainties in the system, such as
the currents and waves disturbance effects. These effects can be large and they
can strongly influence the system behavior. To face these problems control laws
have been developed in order to control the system in a more robust way, facing
sudden variations in the environment conditions (in [6] adaptive algorithms have
been implemented to face sudden changes in the environment). This represents
one of the most critical differences between underwater and space robotics: in the
first case the environment can be more dynamic, and act on the system in a more
complex and unpredictable way. For the underwater case the possible applications
of such systems are related to inspection, maintenance, repair and service work
on underwater installations, [5]. As for surgery and mobile ground manipulators
a particular attention has been given to teleoperation control techniques ([7], [1]).

The field of spacecraft mounted manipulators modeling and control has been
extensively studied in the ’80s and early ’90s, in particular at Massacchussets In-
stitute of Technology (in particular by S. Dubowsky, E. Papadopoulos and Z. Vafa
) , Stanford University (at the Aerospace Robotics Laboratory) and at Tohoku
University (in particular K. Yoshida). The research on spacecraft-manipulator
systems is quite a new field, usually research was performed on fixed base ma-
nipulators, working on low friction tables in order to simulate a microgravity
environment. The studied systems can be classified into three different categories,
related to the control of the spacecraft itself:

� Full control of both the arm and the spacecraft translation and attitude (free
flying system)

� Full control of the arm, but spacecraft controlled only in attitude, not in
translation

� Full control of the arm, no control of the spacecraft (free floating system).

The research has focused for long time mostly on free floating systems. This
condition is particularly interesting because it allows to explore particular dy-
namic features that are not present in the controlled cases. In particular at MIT,

12

13

Dubowsky and Vafa developed the Virtual Manipulator approach ([8], [9], [10],
[11]), that permits to model a free floating manipulator as a fixed base manipula-
tor. The Virtual manipulator is a fixed base manipulator with base in the system’s
center of mass. If the system’s attitude and translation are not controlled and if
the system is not subjected to external forces, the center of mass of the system
maintains its initial position (if its initial velocity is null). This allows to use the
barycenter of the system as a fixed base for a manipulator whose links’ geometry is
directly related to the geometrical and inertial properties of the system and whose
joints rotations are exactly the same as the real joints rotations, in the case of
revolute joints. This approach can be also applied to the case of the control only
of the attitude of the spacecraft, if performed using actuators that only exchange
internal forces with the rest of the system (gyros and reaction wheels are the most
used attitude control systems that do not violate this constraint).

Torres and Dubowsky, and then Papadopoulos and Yoshida and Umetani un-
derlined for the free floating case the possible occurrance of dynamic singularities.
A free floating system is a non-holonomic mechanical system, so the evolution
of the joints motion is directly dependent on the previous motion history of the
system. A direct consequence for these systems is the fact that a closed trajectory
in the joint space does not produce a closed trajectory in the task-cartesian space.
So,some configurations of the manipulator could become singular thanks to the
joints motion history. In this case, the Jacobian matrix of the system turns to be
singular, and the system is forced to accomplish large joint movements in order
to perform small displacements in the task space.

Torres, in [12], [13],[14],[15], defined the Enhanced Disturbance Map, that is a
tool that allows to map the manipulator workspace using as parameter the atti-
tude disturbance on the spacecraft generated by the motion of the arm itself. He
underlined that, given two points A and B both inside the Reachable Workspace
of the manipulator, where A is the initial end effector position and B is the final
desired end effector position, a path from A to B can be found that causes not
attitude disturbance on the spacecraft base.

In the field of mobile manipulators kinematics, in [16] and in [17], Papadopou-
los and Moosavian developed new algorithms for the system’s Jacobian compu-
tation in the case of a non fixed base manipulator. In particular the Barycenter
Vector Approach (presented in [18] together with dynamics modeling and con-
trol techniques) and Direct Path Method ([17]) have been extensively used. The
firsts is more expansive from the computational point of view and it permits to
map the desired end effector velocity into the correspondent joints velocity and
linear and angular velocity of the system’s center of mass. The latter is cheaper
from the computational point of view and permits to map the desired end effector
velocity into the correspondent joints velocity and linear and angular velocity of

13

14 Chapter 2. State of the Art

the spacecraft. Both the methods can be easily applied to the case of multiple
mounted manipulator.
Most of the research in kinematics is focused on redundancy solution techniques
([19],[20]). A redundant manipulator is a manipulator whose joint space has an
higher dimension if compared to the task dimension. This causes to have addi-
tional joints variables to exploit in order to accomplish additional and secondary
tasks. The research in this field is extremely active because it has a great spec-
trum of possible applications also in the industrial and medical-surgical field. This
class of algorithms permits to implement routines of joint limit avoidance, obsta-
cle avoidance, power limit avoidance etc. In the industrial field non redundant
manipulators were preferred: the redundancy greatly complicates the system and
it increases the computational cost required to compute the joint trajectories from
the desired end effector trajectory. Some routines require complex optimization
procedures, that does not allow such algorithms to be directly applied on real
systems. Nowadays redundancy is seen as an additional tool in order to generate
more accurate and coherent joint motions.
The research has focused in particular on the classes of the Joint Limit ([21]
and [22]) and Obstacle Avoidance Algorithms ([23], [24]). The first class of algo-
rithms focuses on finding a redundancy solution that respect the physical, practi-
cal, boundaries on the joint motion. This class of algorithms is the only one that
has a knowledge of the system configuration: all the other routines can produce
joints trajectories that can led to compenetrations of the bodies of the system.
Generally the boundaries on the joints are decided by the user himself, that is
supposed to have the required knowledge and experience in order to indicate the
allowable joint motions. The second class of algorithms focuses on the generation
of joint trajectories in order to avoid the contact with obstacles. Obviously not
only the end effector is supposed to avoid the obstacles, but also all the joints
and the links of the system. Some of these algorithms require the knowledge of
obstacles positions, while other implementations allow the system to face unpre-
dictable obstacle positions ([23]).
In the field of dynamics, Featherstone in [25], [26] provided an original contribution
in the solution of the direct and inverse dynamics. He devloped a new, original,
mathematical tool, named Spatial Vector Algebra. This approach is based on the
definition of 6D motion and force vectors that contain both the information about
the linear and angular velocity and the information about the forces and torques.
This allows to greatly compact the equations and the computations volume nec-
essary for the solution of the inverse and direct dynamics. The Spatial Algebra
permits to translate the classical algorithms for the computation of dynamics in
a more compact and clear way. This permits also to create a constraints/joints
library, in order to model all the possible types of interaction between rigid bodies.
In a more general view this approach is applicable not only on manipulator sys-
tems, but also to parallel systems and systems characterized by closed kinematic

14

15

loops. A particular feature of the Spatial Algebra is the modelization of a 6 DoFs
joint: this allows to introduce into the system free rigid bodies and, in the case
of a spacecraft mounted manipulator, to model the movements of the base as a
normal joint of a system fixed to a virtual, hypothetical ground.

A lot of work has been done to explore the topic of teleoperation related to
space application. In particular Wang, Liang and Li , in [27], developed the entire
software and hardware architecture in order to study teleoperation techniques.
Their work revealed to be original also for the implementation of the experimen-
tal platform: they were able to simulate the motion of two spacecrafts mounted
manipulators (one to each spacecraft), using only fixed base manipulators. Stoll
and collaborators, are conducting research on telepresence and teleoperation tech-
niques at the DLR, finalized for future ESA (European Space Agency) missions
([28],[29]).

Experimental Setups

The most advanced laboratory for space manipulators test is the Aerospace Robotics
Laboratory at Stanford University. The Laboratory is equipped with three free
flyers robots with two manipulators (2 links each) each that float on a granite
flat floor. Moreover the laboratory is equipped also with fixed base planar ma-
nipulators, floating on a flat surface. One of this manipulators has flexible links,
while the other (Macro-Micro) has an original architecture: it is a large 2 links
planar manipulator, equipped with an end effector realized by the union of 2 small
2 links planar manipulators. The Tohoku University developed an experimental
setup for manipulators testing on free flying robots: their test bed consisted in
a free floating robot, equipped with a 2 links planar arm. The testbed was fi-
nalized to preliminary tests for the JAXA mission ETS VII. Also the DLR (the
German Aerospace Center) developed a system similar to the Tohoku University
one. An alternative approach consists in using fixed base manipulators in order
to simulate the behavior of spacecraft mounted manipulators, as done by Wang,
Liang and Li at University. Many universities and research labs developed free
flying tests robots (they are very attractive systems because they permit low cost
experimentation of on orbit robotics systems) with application to rendez-vous and
docking operations and formation flying (for example Naval Postgraduate School,
University of Southern California, Georgia Institute of Technology).

15

16 Chapter 2. State of the Art

16

Chapter 3

Overview of the System

In order to handle the problem of dynamics modeling and control of spacecraft
mounted manipulators, both a software and an hardware platforms have be im-
plemented. The software platform has to represent the first step in the validation
of a new dynamics or control algorithm: the implemented software is supposed to
take into account every aspect of the problem under study, such as kinematics,
dynamics, control and results visualization. To create such a complete, represen-
tative and highly expandible software platform, a Simulink model of the system
has been created. In this way it is possible to simulate all the processes from the
generations of the joints trajectories, to the dynamics modeling, to the control
law implementation. The choice of using Simulink derives from desire to create
a software that could be easily enlarged and modified. Moreover, Simulink offers
the chance to automatically generate a C code from the model to perform real
time operations. Two versions of the software have been developed: a Simulink
version, used to generate preliminary results and to perform the first simulation
tests on the developed algorithms; and a compiled version, finalized to the gener-
ation of an executable file to run in real-time ont the robots on board computer,
in order to validate the software results from the experimental point of view.
The hardware implementation in order to validate software results has to be ac-
complished with the design of a planar manipulator (the experimental test-bed
at the Naval Postgraduate School was composed by four free flying robots, but
without any manipulator fixed to them). The particular specifications for the
manipulator design were related to the development of a modular architecture, in
order to easily increase or decrease the tested number of joints. Since the target
of thesis is related to the study of manipulators mounted on small satellites, the
design of the manipulator itself has to take into account the strong volume and
bulk constraints typical of the target application. One of the consequences is the
need to accommodate all the electronics drivers inside the manipulator itself, in
order to save space on board the satellite.

17

18 Chapter 3. Overview of the System

3.1 Simulator Architecture

Teleoperation Subsystem

This block introduces into the system the input generated by the operator using
a joystick and, at the same time, it returns to the operator information about the
system status in the case of bilateral teleoperation. The applied scheme consists in
the classical unilateral or bilateral teleoperation scheme: the operator commands
the end effector motion (providing the desired linear and angular velocity in a
cartesian 3D space), while the planning of the trajectory of the rest of the system
is completely demanded to system itself. In the case of this thesis the input will
be introduced into the system using a joystick device. The input device used
by the operator in order to impose the motion to the system is called master,
while the teleoperated manipulator is called slave device. In the case of a planar
manipulator a simple joystick represent the most simple solution as master device.
In the more complex case of a spatial manipulator the master is usually a replica
of the slave manipulator itself and the operator directly moves the end effector to
decide the desired motion. Typical applications of this master-slave configuration
is in the medical-surgical field.

Predictor

The purpose is to simulate a tipical space mission that involves the use of teleoper-
ated manipulators. In the real case, a delay of second affects the communications
beteween thr ground and the satellite. This communication delay strongly de-
creases the performances of an operator during tele-operations.
A possible way to fix the problem is the design of a Predictor system. A predictor
consists in the mathematical model of the system, plus an accurate graphic inter-
face. This permits to the operator to work in real time using only the predictor.
In this way the performances of the operator are maximized, while the real sys-
tem is working in time delay. On the other side, in order to minimize the errors
between the commanded motion and the obtained motion, great efforts have to
be done in order to create a very accurate model of the system. This approach
cannot be applied in all these cases where the parameter of the system (masses,
inertias, joint friction, flexibility, etc..) are affected by large uncertainties.

Inverse kinematics block

Given the desired motion of the end-effector, the Inverse Kinematics block allows
the computation of the joints positions,velocities and accelerations that cause the
desired end-effector trajectory. This means that, once the operator has completely
determined the end effector motion, this information must be mapped from the
cartesian space to the joint space. The inverse kinematics block could be divided

18

3.1 Simulator Architecture 19

into two different sub-blocks

� Jacobian calculation, for the generation of the map from the joint motion to
the cartesian end effector motion

� Inverse mapping and redundancy solution, for the inversion of the map and
the solution of the redundancy of the robot arm.

To summarize, the input of the block is the desired end effector velocity, the
output is the set of joint positions, velocities and accelerations that allow the
desired end effector position, velocity and acceleration.

Dynamics matrices computation

The canonical equations of motion of a manipulator system is:

H (q) q̈ + C (q̇,q) = Q (3.1.1)

Most of the trajectory tracking techniques require some knowledge about the
system. In particular most of them require the computation of the dynamic
matrices of the system, H and C. This block, using an Inverse Dynamics algorithm
allows the computation of the Inertia and Coriolis matrices. The Newton-Euler
algorithm has been implemented, in its formulation based on the use of the Spatial
Algebra. Using this approach, the system can update the dynamic matrices step
by step giving as input the joint position and velocities.

Control Law

Since the final goal is not simply the maintenance of an equilibrium point, but
it is the tracking of a given complex real time trajectory , the system can not
be linearized. As a consequence of this, a Non Linear Control Law has to be
implemented in order to control the complex motion of the manipulator. As
exaplained in detail in the following chapters, a Computed Torque control law has
been used. Using this law the forces and torques applied on the system are:

τ = H (q̈des + KDė + KPe) + C (3.1.2)

This control law operates a feedback linearization on the system. This means
that if the computed dynamic matrices are very close to the real matrices of the
system, applying the control law, the closed loop controlled system reduces to:

q̈ = u = q̈des + KDė + KPe (3.1.3)

19

20 Chapter 3. Overview of the System

Forward Dynamics

Forward Dynamics consists in the direct integration of the equations of motion of
the system, given the matrices and the forces and torques acting on the system.
This block is required only for computer simulations. Indeed in the experimental
case the Forward Dynamics role is played by the real system itself.While a large
amount of algorithms have been created to perform an efficient calculation of the
resulting joint motion, in the software implementation it has been adopted the
most simple approach to problem:

q̈ = H−1 (Q − C) (3.1.4)

q̇ =

∫ t

t0

q̈ dt + q̇0 (3.1.5)

q =

∫ t

t0

q̇ dt + q0 (3.1.6)

Direct Kinematics

The direct kinematics block allows the computation of the actual position, ve-
locity and acceleration of the end effector, given the angular positions, angular
rates and angular accelerations of the joints. This allows to compare the desired
commanded trajectory with respect to the actual trajectory of the end effector of
the manipulator. The Jacobian matrix calculated in the Inverse Kinematics block
can be used to perform the reconstruction of the end effector trajectory.

20

3.2 The Experimental Setup 21

3.2 The Experimental Setup

3.2.1 The Experimental Software Architecture

There are some differences between the software architecture of the Simulator and
the architecture of the software implemented on the experimental setup. First of
all the software is divided into two main parts: the Teleoperation Module and the
software directly executed by the autonomous robot. The human operator works
on a Pc using the Teleoperator Module and sends the desired trajectory to the
robot. The Command Sender block allows to pack data and to send data to the
desired IP address (the robot on board pc) using a Wire-less network. The other
part of the software is loaded on the on board pc of the robot. The block Command
Receiver permits to receive the commanded trajectory from the teleoperator and
to unpack the sent data. The information about the joint positions, velocities and
accelerations (required in order to update the Jacobian matrix and to computed
the dynamic matrices) is obtained by on board sensors, not through the integration
of the equations of motion as in the simulator case. While the Teleoperation
Module is still a Simulink model, the software running on the robot has been
compiled into a C code using the Matlab Real Time Workshop and than compiled
into a binary executable file.

Figure 3.1: Teleoperator Module.

21

22 Chapter 3. Overview of the System

Figure 3.2: Autonomous Robot Module

22

3.2 The Experimental Setup 23

3.2.2 The Free Flyer Robot

The experimental setup consists in a group of robots floating on a flat floor.
This kind of system allows the simulation of the typical lightweigth, no friction
condition that a system experiments while it is in orbit.The experimental setup is
finalized to the simulation of autonomous rendezvous and docking strategies and
algorithms involving a large number of small micro-nanostellites. This represents
a unique possibility to test attitude control algorithms in a condition close to the
real one, but constrainted to the 2D case, 3 Degrees of Freedom.

Figure 3.3: The Epoxy flat floor.

The robots float on the flat floor using air pads, that permit to crate a small air
layer that supports the weight of the robot. The translational and attitude control
is performed using small supersonic jet thrusters, that work using compressed air
(as the air pads). Each robot is equipped with 8 fixed position and orientation
thrusters in order to fully control the motion of the robot.

A Pc-104 is the brain of each robot: the on board Pc, based on a Linux
architecture manages the execution of the experiments and the collection of data
from the sensors. The softwares that these robots execute are Matlab/Simulink
codes, compiled into executable files using Real Time Linux. An Indoor Pseudo
GPS System can provide to each robot its position on the floor in an inertial
reference system with origin in one of the corners of the floor. An on board Fiber
Optic Gyro provides to each robot its angular velocity and attitude.

The four robots are called using a colour based system:

� Green

� Yellow

� Red

23

24 Chapter 3. Overview of the System

� Orange

Figure 3.4: Initial positions of the robots.

24

3.2 The Experimental Setup 25

3.2.3 Manipulator Design

The output of the design phase ia a planar manipulator, made by modular revolute
joints. The architecture of the arm is highly flexible: all the joints are exactly the
same, and they are connected all at the same way to the precedent and successive
joint of the chain. All the driver electronics is accommodated inside the joint and
each driver is connected in series to the two adjoining drivers. The joint itself is
made by plastic material, modeled using a 3D Printer. Providing a CAD model,
the printer can realize the desired structure in a few hours and at relatively low
cost. In Fig. 3.5 is presented the designed modular joint:

Figure 3.5: Designed joint.

The manipulator developed for the testbed is characterized by the following
features:

DOFs 4
Joint type Revolute
Length 0.52 m
Total Mass 1.6 kg
Aipads 1-2

25

26 Chapter 3. Overview of the System

26

Chapter 4

Kinematics

4.1 The Kinematic Control Problem

The reference motion of the end effector generated by the human operator is
expressed in the Cartesian space. In order to control the base and the manipulator
it is necessary to map the information about the end effector position, velocity
and acceleration into the joint variables. The end effector position can be written
as a non linear function of the joint variables:

x = f(q) (4.1.1)

where x is a m x 1 vector of task variables (ex the end effector position and
orientation), q is a n x 1 vector of joint variables and f(q) is a non linear vectorial
function (m x n) function of the configuration of the system. The 4.1.1 map can
be differentiate into:

ẋ = J(q)q̇ (4.1.2)

where:

J(q) =
∂f(q)

∂q
(4.1.3)

J(q) is the m x n Jacobian matrix of the system. 4.1.2 can be diffrentiated to
obtain the realtion for the joint acceleration:

ẍ = J(q) q̈ + J̇(q)q̇ (4.1.4)

Given the trajectory x(t) in the Cartesian space of a generic point of the
manipulator, the kinematic control problem can be formulated in order to find the
joint trajectory q(t) that satisfies f(q(t)) = x. The Jacobian formulation reveals
to be extremely simple; it is possible to solve the kinematic control problem simply
solving:

27

28 Chapter 4. Kinematics

q̇ = J−1(q) ẋ (4.1.5)

It is evident that Equation 4.1.5 can be solved only if n = m. This means
that the problem can be easily faced only if the manipulator is non redundant.

Definition 1. A manipulator is said to be redundant if the dimension of the
joint space is higher that the dimension of the task space m ≥ n. Redundancy can
be an extremely attractive feature, because it allows the designer to increase the
dimension of the task space imposing new conditions and tasks on the system (ex
obstacles avoidance, performances optimization,...)

The main techniques for redundancy solution are:

� Simple Jacobian-Based Techniques

� Gradient Projection Method

� Task Space Augmentation

� Inverse Kinematic Functions

The basics on robot kinematics modeling and Jacobian computation can be
found in [30], [19], [20].

4.2 Jacobian Computation

In the last years a lot of algorithms for the Jacobian calculation have been devel-
oped in order to reduce drastically the computational cost of the kinematics step,
[18], [16]. The method implemented in the thesis is the Direct Path Method by
A.A. Moosavian, [16]. The method provides low computational cost and can be
easily implemented in a symbolic environment. This allows to run the algorithm
in two different ways : performing the complete execution of the algorithm at
each time step in order to update the Jacobian structure or performing an a pri-
ori symbolic solution of the Jacobian matrix, with a simple expression evaluation
at each time step. Furthermore the method is easily expandible to the case of
multiple manipulators. In this section the expanded algorithm is presented.

28

4.2 Jacobian Computation 29

4.2.1 The Direct Path Method

Figure 4.1: System’s configuration

The complete algorithm, together with the study on the Barycenter Vector
Approach can be found in [16]. The method is based on the use of body-fixed ge-
ometric vectors. The motion of the spacecraft’s center of mass is used to describe
the system translation with respect to an inertial frame XYZ. The body 0 repre-
sents the spacecraft, which is connected to nmanipulators, each withNm links. All
the joints are assumed to be revolute, with a single degree of freedom. The joint

angles and rates are represented by the K x 1 vectors θ =
(
θ(1), θ(2), ..., θ(n)

)T
,

where θ(m) is an N x 1 column vector, which contains the joint angles of the mth
manipulator and K =

∑n
m=1Nm.

The inertial position of a generic point P in the inertial frame can be written as:

RP = RC0 + rCi
+ rp/Ci

(4.2.6)

where RC0 is the inertial position of the spacecraft Center of Mass (CM), rCi

is the position vector of the CM of the ith link respect to the the spacecraft CM
and rp/Ci

is the position vector of the point P with respect of the CM of the link
ith.

rCi
can be expressed as:

rC0 = 0 (4.2.7)

r
(m)
Ci

= r
(m)
0 +

i−1∑
k=1

(
r
(m)
k − l

(m)
k

)
− l

(m)
i (4.2.8)

29

30 Chapter 4. Kinematics

with m = 1, ..., n and i = 1, ..., Nm.

The velocity of the point P and its angular velocity are easily obtained by
differentiation of the 4.2.6 and 4.2.8, that yields:

Ṙm
pi

= ṘC0 + ω0 x rm0 +
i−1∑
k=1

ωm
k x (rmk − lmk) − ωm

i x
(
lmi − rp/Cm

i

)
(4.2.9)

ωm
k = ω0 +

k∑
i=1

θ̇mi zm
i (4.2.10)

The linear velocity of the arbitrary point P on the ith link of the mth manip-
ulator must be rearranged in the form:(

ṘP

ωm
i

)
= Jmi,p µ (4.2.11)

where:

µ =

 ṘC0

ω0

θ̇

 (4.2.12)

The Jacobian can be obtained based on the 4.18 and 4.2.10 as:

Jmi,p =

[
13x3 Jm1 Jm2
03x3 13x3 Jm3

]
(4.2.13)

where:

Jm1 = −

[
T0

0r
m
0 +

i−1∑
k=1

[
Tm
k

(
krmk − klmk

)]
−Tm

i

(
ilmi − irp/Cm

i

)]x
(4.2.14)

Jm2 = −
i−1∑
k=1

[
Tm
k

(
krmk − klmk

)]x
Em
k +

[
Tm
i

(
ilmi − irp/Cm

i

)]x
Em
i (4.2.15)

Jm3 = Em
i (4.2.16)

Where the operator []x applied to a generic vector r means:

[r]x =

 0 −rz ry
rz 0 −rx
−ry rx 0

 (4.2.17)

30

4.3 Redundancy Solution 31

The T0 and Tk
j are rotation matrices between body-fixed frame and the inertial

frame and Ek
j is defined as:

Ek
j =

[
0 Tk

1
1zk1 ... T

k
j
jzkj 0

]
(4.2.18)

where jzkj = (0 0 1)T is a unit vector along the axis of rotation of the jth joint
of the kth manipulator, expressed in its own body-fixed frame.

4.3 Redundancy Solution

4.3.1 Simple Jacobian-based Techniques

Most of the techniques to solve the system’s redundancy are based on the inversion
of the mapping [19], [20], in order to have the simple map :

q̇ = K (q)ẋ (4.3.19)

Where K is a nxm control matrix. By definition J is not a square matrix for
redundant manipulators, so J is not invertible. Whitney in 1969 proposed to use
the Moore-Penrose Pseudoinverse of the Jacobian matrix:

K (q) = J∗ = JT
(
JJT

)−1
(4.3.20)

This is a particularly simple and attractive solution. The consequence of this
solution of the redundancy is the minimization of the sum of the square of the
joint velocities.

4.3.2 Projection techniques

The Gradient Projection techniques could be considered as a generalization of the
pseudoinverse methods explained above :

q̇ = J∗ (q)ẋ + [I− J∗ (q)J (q)] q̇0 (4.3.21)

where I is the n x n identity matrix and q̇0 is a generic, arbitrary n x 1 velocity
vector.

In this way the projection operator [I − J∗J] selects the components of q̇0

in the kernel of J. This produce only a joint self motion, without task motion. In
this way the desired task to be accomplished remains the same but the choice of
the q̇0 imposes constraints on the motion of the joints.
The definition of the vector q̇0 remains the key point for the resolution of the
redundancy. One of the most used methods is the Gradient Projection Method,
that solves the redundancy minimizing the cost function h (q). Given the cost
function h (q), q̇0 can be chosen as:

31

32 Chapter 4. Kinematics

q̇0 =

(
∂h

∂q

)
= ∇h (4.3.22)

The cost function could led to extremely various types of optimization,[20],[19].

Joint limit Avoidance Inverse Kinematics Solution

One of the most implemented types of optimization is the Joint limit avoidance.
This technique allows the user to decide the joints limits and to prevent joint
angles from exceeding their technological and structural limits. The approach
developed by Marchand,Chaumette and Rizzo is particularly attractive because
of the simplicity of the developed cost function, [21], [22]. In this approach the
joints velocities are:

q̇d = −λe (4.3.23)

where

e = J∗e1 + β (I − J∗J) gT (4.3.24)

q̇d is the output joint velocity, β is a scalar that set the amplitude of the
control law, e1 is and g is the secondary task defined as:

g =
∂h

∂q
(4.3.25)

Activation threshold 1.(
q̃imin

= qimin
+ ρ (qimax − qimin

)
q̃imax = qimax − ρ (qimax − qimin

)

)
(4.3.26)

where qimin
and qimax are the maximum and minimum joint angles and 0 <

ρ < 0.5.
The cost function is defined as:

hs =
1

2

n∑
i=1

s2i
qimax − qimin

(4.3.27)

where:

si =

 qi − q̃imax ifqi > q̃imax

qi − q̃imin
ifqi > q̃imin

0 else

 (4.3.28)

g takes the form:

g =


β(qi−q̃imax)
qimax−qimin

if qi ≥ q̃imax
β(qi−q̃imin)
qimax−qimin

if qi ≤ q̃imin
0 else

 (4.3.29)

32

4.4 Validation 33

and:

∂g

∂t
= 0 (4.3.30)

4.4 Validation

4.4.1 1 Link Free-Flyer

The simplest case that can be used for the validation of the implmentation of the
Jacobian matrix is the case of the planar motion of a free flyer with a one-link
manipulator in the plane of motion of the spacecraft.

Figure 4.2: Single link arm. 2D case.

This case is attractive because it is easy to write the analytical solution and
to compare it to the results of the algorithm. The position of the end effector can
be written as:

xe = xs/c + ro cos θ + (r1 + l1) cos (θ + q1)
ye = ys/c + ro sin θ + (r1 + l1) sin (θ + q1)

(4.4.31)

33

34 Chapter 4. Kinematics

Where r0, r1 and l1 are the norm of the vectors ro, r1 and l1. Deriving with respect
to time:

ẋe = ẋs/c − roθ̇ sin θ − (r1 + l1)
(
θ̇ + q̇1

)
sin (θ + q1)

ẏe = ẏs/c + roθ̇ cos θ + (r1 + l1)
(
θ̇ + q̇1

)
cos (θ + q1)

(4.4.32)

Rearranging the equation is easy to obtain:

J =

 1 0 −ro sin θ − (r1 + l1) sin (θ + q1) − (r1 + l1) sin (θ + q1)
0 1 ro cos θ + (r1 + l1) cos (θ + q1) (r1 + l1) cos (θ + q1)
0 0 1 1

 (4.4.33)

Running the function generated from the above algorithm, in symbolic mode
on MATLAB, provided us of the same result.

34

4.5 Numerical and graphical validation 35

Spacecraft
Lenght l 2 m
Height h 2 m
Width w 2 m
Manipulator
DoFs n 4
Length lm 0.5 m
Joint configuration in the 3D case y - z - y - y

Table 4.1: System Configuration, Kinematics

4.5 Numerical and graphical validation

It is possible to validate the Kinematics block also checking graphically if the
resulting joint motion, applied to the geometrical model of the system produces
the effective desired trajectory of the end effector. It is presented here the graph-
ical validation for both the 2D and 3D cases, solving the redundancy with both
the Moore-Penrose Pseudo Inverse Matrix and with the Merchand, Chaumette
and Rizzo’s joint limit avoidance algorithm. For the tests the robot’s following
configuration has been used:

In the 2D case the task and joint vectors are organized in the following way:

ẋe =

 vx
vy
ω

 q̇ =


vsx
vsy
ωs
q̇

 (4.5.34)

In the 3D case the task and joint vectors are organized in the following way:

ẋe =

(
v
ω

)
q̇ =

 vs
ωs
q̇

 (4.5.35)

35

36 Chapter 4. Kinematics

4.5.1 2D Case, Rectilinear x-Trajectory

� Desired motion:

x =

 vxt + x0
0
0

 (4.5.36)

� Velocity input:

v =

 vx
0
0

 (4.5.37)

� Initial Conditions

x0 =

 r
0
0

 (4.5.38)

The simulation produces the following results in terms of joint motion and
path followed:

Figure 4.3: Resolved motion, Rectilinear x trajectory.

36

4.5 Numerical and graphical validation 37

Figure 4.4: Spacecraft CoM Position,Rectilinear x trajectory.

Figure 4.5: Joint Angles, Rectilinear x trajectory.

37

38 Chapter 4. Kinematics

4.5.2 2D Case, Rectilinear y-Trajcetory

� Desired motion:

x =

 0
vyt + y0

0

 (4.5.39)

� Velocity input:

v =

 0
vy
0

 (4.5.40)

� Initial Conditions

x0 =

 r
0
0

 (4.5.41)

The simulation produces the following results in terms of joint motion and path
followed:

Figure 4.6: Resolved motion, Rectilinear y trajectory.

38

4.5 Numerical and graphical validation 39

Figure 4.7: Spacecraft CoM Position, Rectilinear y trajectory.

Figure 4.8: Joint Angles, Rectilinear y trajectory.

39

40 Chapter 4. Kinematics

4.5.3 2D Case, Circular Trajectory

� Input end effector trajectory:

x =

 r cos(ω t)
r sin(ω t)

ω t

 (4.5.42)

� Velocity input:

v =

 −ω r sin (ωt)
ω r cos (ωt)

ω

 (4.5.43)

� Initial Conditions

x0 =

 r
0
0

 (4.5.44)

Simple Jacobian Inversion Technique

Figure 4.9: Resolved motion, Circular trajectory, Jacobian Pseudo-Inverse.

40

4.5 Numerical and graphical validation 41

Figure 4.10: Spacecraft Position, Circular trajectory, Jacobian Pseudo-Inverse.

Figure 4.11: Spacecraft Attitude, Circular trajectory, Jacobian Pseudo-Inverse.

41

42 Chapter 4. Kinematics

Figure 4.12: Joint Angles, Circular trajectory, Jacobian Pseudo-Inverse.

It is important to underline that this kinematic solution can cause body com-
penetrations: no information is given about the joints limits or about the bulk of
the bodies involved in the motion. Figures 4.9 and 4.12 provide a clear example of
this condition: the desired trajectory, combined with the selected solution for the
Jacobian’s inversion causes rigid body compenentrations. This test underlines the
need of a kinematic solution absolutely reliable in terms of safety of the system
itself: the pseudoinverse does not take into account the system configuration and
the test proofs how dangerous could be for the system a wrong selection in the
kinematics inversion algorithm.

42

4.5 Numerical and graphical validation 43

Joint Limit Avoidance Algorithm

Figure 4.13: Resolved motion, Circular trajectory, Joint Limit Avoidance.

Figure 4.14: Spacecraft Position, Circular trajectory, Joint Limit Avoidance.

43

44 Chapter 4. Kinematics

Figure 4.15: Spacecraft Attitude, Circular trajectory, Joint Limit Avoidance.

Figure 4.16: Joint Angles, Circular trajectory, Joint Limit Avoidance.

44

4.5 Numerical and graphical validation 45

In this case the kinematic algorithm computes the motion taking into account
the joint limits provided by the user.Comparing Figure 4.13 with Figure 4.9 it is
clear how the Joint Limit Avoidance Algorithm prevents the system from com-
penetrations. Figure 4.16 shows the position of the joints during the test: while in
the previous test the joints motion was computed in order to minimize the total
quadratic velocity of the system’s DoFs, Figure 4.16 shows that, if one of the joints
gets close to its limit, the algorithm prevents it from breaking the constraint. All
the system reacts in order to keep all its DoFs inside the boundaries selected by
the user.

4.5.4 3D Case, Complex Trajectory

The validation of the full 3D model Kinematics has been done on a complex 3D
trajectory defined as:

� Desired trajctory

x =


r cosωt
r sinωt
− 1
k

cos kt
0
0
ω t

 (4.5.45)

� Input end effector velocity

v =


−ω r sinωt
ω r cosωt

sin kt
0
0
ω

 (4.5.46)

� Initial conditions

x0 =


r
0
0
0
0
0

 (4.5.47)

45

46 Chapter 4. Kinematics

Joint Limit Avoidance Solution

Figure 4.17: Resolved motion, 3D Case.

Figure 4.18: Spacecraft Position, 3D Case.

46

4.5 Numerical and graphical validation 47

Figure 4.19: Spacecraft Attitude, 3D Case.

Figure 4.20: Joint Angles, 3D Case

47

48 Chapter 4. Kinematics

4.5.5 Conclusions

The figures shown, validate the implementation of the inverse kinematics map.
The resolved motion, applied to the geometrical model of the system, causes the
system to follow the commanded trajectory. The simple Jacobian Pseudo In-
verse Solution proved to be poor in terms of reliability of the commanded trajec-
tory: the algorithm is highly susceptible to generate joints trajectories that cause
compenetrations in the system. On the other side, the Joint Limit Avoidance
implementation proved to be reliable in preventing the system from dangerous
configurations. Fig. 4.16 shows how the algorithm limits the motion of a joint if
close to its selected boundaries and reacts modifying the motion of the rest of the
system. Thinking to the future experimental implementation of the system, this
kinematic solution will be critic in order to prevent the systems from damages.

48

Chapter 5

Spatial Vector Algebra

5.1 Introduction

The study of rigid body linear and angular dynamics algorithms could be ex-
pressed in a more compact notation if the spatial vectors are used. A spatial
vector is a 6D vector that combines linear and angular aspect of a rigid body
motion or force. In this way one spatial vector can do the work of two 3D vectors
and one spatial equation can replace the two typical vectorial equations. This
algebra allows the engineer to implement quickly rigid body dynamics algorithms
and helps in designing new algorithms. The fundamentals of the Space Vector
Algebra are presented in the following chapter (the basics concepts can be found
in [25] ,[26], [31]).

5.2 Preliminaries

Vectors and Vectors Space 1. The canonical Linear Algebra defines a vector
as a part of a vectorial space. Four vectorial spaces are going to be used in this
thesis:

� Rn , Coordinate Vector Space

� En , Euclidean Vector Space

� Mn , Spatial Motion Vector Space

� F n , Spatial Force Vector Space

where n is the dimension of the vectorial space.

The Dual of a Vector Space 1. Let V be a vectorial space. Its dual space V ∗,
it is a vectorial space having the same dimension of V and the property that a
scalar product is defined between it and V . Duality is a symmetrical relationship:

49

50 Chapter 5. Spatial Vector Algebra

if U = V ∗ then V = U∗. Duality is important because the spaces Mn and F n

are dual. This means that a scalar product is defined between motion and force
vectors, such that if m ∈M6 and f ∈ F 6 then m ·f represents the power delivered
by the force.

5.3 Spatial Velocity

The velocity of the rigid body in figure can be expressed as:

vP = v0 + ω x ŌP (5.3.1)

where P is the point of interest, vvP is its own velocity, v0 is the velocity of
the fixed point O and ŌP is the position vector of P relative to O. Two main
elements contributes to vP: the linear translational velocity v0 and the angular
velocity of the rigid body ω about an axis passing through O. Defining a Cartesian
reference frame Oxyz,we define an orthonormal basis (i, j,k) ⊂ E6 three directed
lines Ox,Oy,Oz, passing through O. ω and v0 can be expressed in the cartesian
frame:

ω = ωx i + ωy j + ωz k (5.3.2)

and

v0 = vOx i + vOy j + vOz k (5.3.3)

The aim of the Spatial Algebra is to define a vector v̂ ∈M6 that describe the
same motion of ω and vO. For doing that a Plucker basis must be defined:

Plucker Basis 1. A Plucker Basis is defined as:

D0 = (dOx, dOy, dOz, dx, dy, dz) ⊂M6 (5.3.4)

where dOx, dOy, dOz are unit rotations about the lines Ox , Oy and Oz and
dxdydy are unit translation in the x, yandz directions.

It follows that v̂ could be defined as:

v̂ = ωxdOx + ωydOy + ωzdOz + vOxdx + vOydy + vOzdz (5.3.5)

The coordinate vector that represent v̂ in D0 can be written:

v̂0 =


ωx
ωy
ωz
vOx
vOy
vOz

 =

[
ω
v0

]
(5.3.6)

50

5.4 Spatial Force 51

5.4 Spatial Force

The reasoning done for the Spatial Velocity can be repeated for the Spatial Force.
Given the linear force f0 and the couple n0 acting on point O, the force and the
couple acting on the point P of the same rigid body is:

fP = f0
nP = n0 + f0 x ÔP

(5.4.7)

Repeating the same reasoning as before with the Plucker Basis EO:

E0 = (ex, ey, ez, eOx, eOy, eOz) ⊂ F6 (5.4.8)

we can write:

f̂ = nOxex + nOyey + nOzez + fxeOx + fyeOy + fzeOz (5.4.9)

that can be rearranged as:

f̂0 =


nOx
nOy
nOz
fx
fy
fz

 =

[
nO
f

]
(5.4.10)

5.5 Scalar Product

The scalar product m ·f = f ·m connects the two vectorial spaces M6 and F 6 with
the duality relationship. In Space Vector Algebra f · f or m ·m are not defined.

A dual coordinate system on M6 and F 6 formed by the basis (d1 ...d6) and
(e1 ...e6) for which:

di · ei =

(
1 if i = j
0 elsewise

)
(5.5.11)

5.6 Coordinate Transforms

Let A and B be two Plucker coordinate systems, each defined by the position and
the orientation of a Cartesian frame.

M6 and F 6 Transform Matrix 1. Let BXA and BX∗
A be the transformation

matrices for M6 and F 6 from the coordinate system A to the coordinate system
B. As a consequence of the properties explained in 5.5:

51

52 Chapter 5. Spatial Vector Algebra

BX∗
A = BX−T

A (5.6.12)

5.6.1 Rotation

The spatial vector m̂ ∈ M6 can be represented by the two 3D vectors m and
mO. If anly a rotation is performed from the coordinate system A to B, the
transformation matrix BXA can be expressed as:

BXA =

[
E 0
0 E

]
(5.6.13)

where E is the classic matrix of rotation for 3D vectors. For F 6 vectors:

BX∗
A =

[
E 0
0 E

]
(5.6.14)

5.6.2 Translation

Let O and P be two generic points in space, and let there be a Cartesian frame
located in each point, with the same attitude. The transformation matrix from a
vector m̂0 ∈ M6, expressed by m and m0 to a vector is m̂P ∈ M6, expressed by
m and mP is:

m̂P =

[
m

mO − r x m

]
=

[
1 0
−r x 1

]
m̂O (5.6.15)

PXO =

[
1 0
−r x 1

]
(5.6.16)

where r = ŌP .
For F 6 vectors:

PX∗
O =

[
1 −r x
0 1

]
(5.6.17)

5.6.3 General Transforms

For tranforms involving both translation and rotations the direct transorms are
expressed as:

BXA =

[
E 0
0 E

] [
1 0
−r x 1

]
=

[
E 0

−E r x E

]
(5.6.18)

BX∗
A =

[
E 0
0 E

] [
1 −r x
−0 1

]
=

[
E −E r x
−0 E

]
(5.6.19)

52

5.7 Spatial Cross Product 53

5.7 Spatial Cross Product

The cross product can be defined in both the spatial motion vector case and the
spatial force vector case. The definition of spatial cross product derives from the
definition of derivative. Also in the case of spatial algebra, given the spatial force
vector f̂ ∈ F6 and the spatial motion vector m̂ ∈ M6, moving with the velocity
v̂ ∈M6, their derivative can be defined as:

˙̂m = v̂ x m̂
˙̂
f = v̂ x∗ f̂

(5.7.20)

where x is defined as the spatial motion vector and x∗ is defined as the spatial
force vector. From the coordinate point of view the cross product can be obained
as :

v̂O x =

[
ω x 03

v0 x ω x

]
(5.7.21)

and

v̂O x
∗ =

[
ω x v0 x
03 ω x

]
= − (v̂0 x)T (5.7.22)

5.8 Momentum

A generical rigid body, with center of mass in the point C, moving free in space is
characterized by a spataial velocity v̂, composed by its angular and linear velocities
ω and vC . Then its momentum can be described by the two vectors:

h = mvC
hC = ICω

(5.8.23)

where m and IC are the mass of the rigid body and its moment of inertia about
its center of mass. The angular momentum, expressed with respect to a generic
point O can be written as:

hO = hC + ~OCxh (5.8.24)

Defining the spatial 6D vector ĥC as:

ĥC =

[
ICω
mvC

]
(5.8.25)

the spatial momentum of a rigid body, with respect to a generic point O van
be written as:

ĥO =

[
13

~OCx
03 13

]
ĥC (5.8.26)

The spatial momentum is a F 6 vector.

53

54 Chapter 5. Spatial Vector Algebra

5.8.1 Inertia

The spatial inertia ĪC of a rigid body, with respect to its center of mass, is:

ĪC =

[
IC 03

03 m 13

]
(5.8.27)

The spatial inertia of a rigid body with respect to a generic point 0 can be
easily computed as:

IO =

[
ĪC + mcxcxT mcx

mcxT m13

]
(5.8.28)

where c is the vector ~OC.

54

Chapter 6

System Modeling

To describe completely a rigid body system it is necessary to provide data about:

� System’s topology

� Component parts description (joints and links geometrical and inertial prop-
erties)

6.1 Connectivity

The connectivity of a system can be expressed as a graph with the following
properties:

� Each node represents a body

� Each arc represents a joint

� The graph is unidirected

� The graph is connected

55

56 Chapter 6. System Modeling

In the following some examples are provided to describe the graphs related to
different configurations of typical manipulators:

Figure 6.1: Linear manipulator graph.

Figure 6.2: Multiple manipulator graph.

56

6.1 Connectivity 57

A joint is defined as a kinematic constraint between two different bodies (in
the case of a manipulator these bodies are called links). It is central in studying
mechanical systems to define the predecessor and successor link with respect to
each joint. The definition of the predecessor and successor of a joint defines its
polarity. It is important to underline that inverting the polarity of a symmetrical
joint does not change the allowed type of motion that the joint provides (the case
of revolute joints), while a change in the polarity of an unsymmetrical joint causes
a complete change in the system. In order to provide the polarity definition of a
system’s joints the vectors p(i) and s(i) can be used.

Definition 1. Assuming the base of the manipulator as the system’s link 0, the
vector s(i) provides the link successors of the joint i, while the vector p(i) provides
the link predecessors of the joint i.

In the case of a non parallel manipulator the definition of the two vectors is
trivial:

p = [0 1 2 3 ...N − 1] (6.1.1)

s = [1 2 3 4 ...N] (6.1.2)

A useful quantity that can be calculated using p (i) and s (i) is the parent array
λ (i), a vector that identifies the parent of each body in a spanning tree. This
vector will be extremely useful in the dynamic modeling functions. The parent
array is defined as:

λ (i) = min (p (i) , s (i)) (i = 1...NB) (6.1.3)

Other useful vectors can be built using the information provided by the vectors
p and s:

� k(i) (rigid bodies number between the joint i and the base)

� µ(i) (set of children of the ith body)

In particular in the simulator the user can decide the number of joints and
links ,links parameters (mass and inertia), joint type and orientation and position
of the first link of the manipulator on the spacecraft. But, despite all the possible
combinations of links and joints types, the general architecture of the studied
manipulators is:

57

58 Chapter 6. System Modeling

Figure 6.3: Graph of the studied manipulators.

s =
[

1 2 3 ... N
]

p =
[

0 1 2 ... N − 1
]

λ =
[

0 1 2 ... N − 1
]

k =
[

1 2 3 ... N
]

µ =
[

1 2 3 ... N
]

(6.1.4)

As it will be explained in the next chapters, the kinematics and dynamics al-
gorithms implemented in the simulator can be easily extended to more general
configurations of the system (the most interesting one is considered the case of
multiple manipulators).

6.2 Body Reference Systems

The reference system labeled as 0 is the inertial reference system. The reference
frames labeled as Fij are frames centered at the barycenter of the link between
the joint i and j, with the x axis along the link direction. The reference frames
labeled as Fi are frames centered in the joint i, with the x axis along the successor
link direction. Obviously all the reference frames are orthogonal right handed
reference frames.

58

6.3 Joint Models 59

6.3 Joint Models

Defintion 1. A joint can be seen as a constraint that describes the allowed motion
between two reference frame.

In a complex mechanical systems it is extremely important to model the joints
in the best possible way. A complete joint model should provide the description
of the transform between the two consecutives joint frames (sXp), the velocity of
the joint vJ and the motion subspace S. The developed software provides a joint
library, in order to allow the user to decide in complete autonomy the configura-
tion of the system. In the following the main joints models are presented. The
rotational, prismatic, planar and 6-DoF joints have been implemented. Other
joint models are avaiable looking at the literature (for example cylindrical, helical
and spherical joints).

6.3.1 Revolute/Hinge Joint

Definition 1. The revolute Joint is a joint that permit only the rotation of the
second reference frame around only one of the axes of the first reference frame.

The Joint transform for a revolute joint around the i axis is characterized by:

E = rot (i) (6.3.5)

r =

 0
0
0

 (6.3.6)

59

60 Chapter 6. System Modeling

The Motion Subspace and the Constraint Force Subspace T for a revolute
joint around the x axis S can be represented as:

S =


1
0
0
0
0
0

 (6.3.7)

T =


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (6.3.8)

The Motion Subspace and the Constraint Force Subspace T for a revolute
joint around the y axis S can be represented as:

S =


0
1
0
0
0
0

 (6.3.9)

T =


1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (6.3.10)

The Motion Subspace and the Constraint Force Subspace T for a revolute
joint around the z axis S can be represented as:

S =


0
0
1
0
0
0

 (6.3.11)

60

6.3 Joint Models 61

T =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (6.3.12)

6.3.2 Prismatic/Sliding Joint

Definition 1. The Prismatic Joint is a joint that allows only the translational
motion along one of the axis of the joint itself.

The transform for a prismatic joint on the i axis can be modeled as:

E = 13x3 (6.3.13)

r = q1 ei (6.3.14)

where ei is the versor of the ith axis of the joint and q1 is the joint translation
in the ith direction.

The Motion Subspace and the Constraint Force Subspace for a prismatic joint
in the x direction is :

S =


0
0
0
1
0
0

 (6.3.15)

61

62 Chapter 6. System Modeling

T =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 (6.3.16)

The Motion Subspace and the Constraint Force Subspace for a prismatic joint
in the y direction is :

S =


0
0
0
0
1
0

 (6.3.17)

T =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1

 (6.3.18)

The Motion Subspace and the Constraint Force Subspace for a prismatic joint
in the z direction is :

S =


0
0
0
0
0
1

 (6.3.19)

T =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 (6.3.20)

6.3.3 Prismatic and Revolute Joints Conventions

It is extremely important to underline that the definition of the axis of rotation
or the definition of direction of motion of a prismatic joint are expressed in the
reference system of the predecessor link. This can cause difficulties in the definition
of such axes, if two adjoining links have no common axes. Indeed in the simulation

62

6.3 Joint Models 63

tests the initial conditions of the joint angles have been always put to 0 deg., in
order to have a full deployied manipulator, simplifying the axes definition.

6.3.4 Planar Joint

Defintion 1. The Planar Joint is a joint that constraints the motion of the fol-
lowing link upon a plane.

Therefore the joint model is characterized by three joint coordinates: q1 is the
rotational degree of freedom, q2 and q3 are the translation in the joint x and y
direction.

The Joint transform sXp can be modeled using:

E = roti (q1) (6.3.21)

r =

[
q2 cos q1 − q3 sin q1
q2 sin q1 + q3 cos q1

]
(6.3.22)

The Motion Subspace and the Constraint Force Subspace can be modeled as:

S =


0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

 (6.3.23)

S =


1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1

 (6.3.24)

63

64 Chapter 6. System Modeling

6.3.5 6-DoF Joint

The 6DoF is not a real, physical joint; but it allows to model a rigid body free
to move in space using the same conventions and mathematical structure of the
classic prismatic and revolute joints. The 6DoF joint model strictly depends on
the selected parametrization for the body’s attitude. The software implemen-
tation uses a classic Euler Angles (sequence 123) parametrization. The joint is
characterized by the six joint variables:

q =


φ
θ
ψ
sx
sy
sz

 (6.3.25)

Where φ is the rotation around the 3rd axis, θ is the rotation around the 2nd axis
and ψ is the rotation around the 1st axis. The translational position of the body is
expressed in the body coordinate system. The angular rate, in body coordinates,
can be written as function of the Euler angles rates:

ωx = cosψ cos θφ̇+ sinψθ̇

ωy = − sinψ cos θφ̇+ cosψθ̇

ωz = − sin θφ̇+ ψ̇

(6.3.26)

As a consequence, the S matrix can be simply modeled as:

S =


cosψ cos θ sinψ 0 0 0 0
− sinψ cos θ cosψ 0 0 0 0

sin θ 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (6.3.27)

This joint is characterized by a non null Ṡ matrix, in particular, deriving the
Equations 6.3.26 leads to :

Ṡ =


−ψ̇ sinψ cos θ − θ̇ cosψ sin θ ψ̇ cosψ 0 0 0 0

−ψ̇ cos psi cos θ + θ̇ sinψ sin θ −ψ̇ sinψ 0 0 0 0

θ̇ cos θ 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (6.3.28)

The motion constraint matrix is simply:

64

6.3 Joint Models 65

T = 03 (6.3.29)

For both the planar and the 6DoF the translational variables are expressed in
the successor link reference frame. In the computer implementation of the joints
both the S and the T matrices have been extended to the full dimension []6x6 in
order to avoid dimension inconsistencies that could arise using Embedded Matlab.

6.3.6 Modeled Systems

Using these joint models it is possible to describe a large number of possible
configurations. The simulator gives to the user the possibility to decide completely
the architecture, the types and configuration of the joints. Despite the large
number of configurations that can be simulated, they can all be grouped into the
following model

Figure 6.4: Graph of the simulated manipulators.

65

66 Chapter 6. System Modeling

s =
[

1 2 3 ... N
]

p =
[

0 1 2 ... N − 1
]

λ =
[

0 1 2 ... N − 1
]

k =
[

1 2 3 ... N
]

µ =
[

1 2 3 ... N
]

(6.3.30)

The experimental setup, on the other side, has a fixed structure: as previously
explained the manipulator is a 4 DoF manipulator composed only by revolute
joints, connected to a base whose motion is planar and described by a planar
joint.The topology of the experimental setup is presented below:

Figure 6.5: Experimental system graph.

66

6.3 Joint Models 67

s =
[

1 2 3 4
]

p =
[

0 1 2 3
]

λ =
[

0 1 2 3
]

k =
[

1 2 3 4
]

µ =
[

1 2 3 4
]

(6.3.31)

67

68 Chapter 6. System Modeling

68

Chapter 7

Dynamics

7.1 Introduction

The canonical equations of motion for a manipulator system (for both industrial
manipulator with fixed base and space manipulator with mobile base) can always
be organized in the scheme:

H (q) q̈ + C (q, q̇) = Q (7.1.1)

Where H (q, model) is the inertia matrix of the manipulator system, function
of the model parameters and of the joints positions. C (q, q̇, model) is the bias
force matrix. It contains the Coriolis, gravity and centrifugal forces acting on the
system. C is a function of the model parameters, of the Joints positions and ve-
locities. The matrix C can be interpreted as the joint forces/torques that produce
no acceleration. Q is the vector of generalized forces: in the case of no external
forces/torques the vector contains the actions applied to the joints of the system.
The underlined dependencies show the strong non linearity of the equations that
model the dynamics of a manipulator system (general basics concepts on robot
dynamics can be found in [30], [20], [26] and [25])

Using the spatial algebra formulation it is possible to model the spacecraft it-
self as one of the joint of a conventional fixed base manipulator. Using the models
provided in Chapter 6 for the Planar and 6 DoF joints, it possible to model the
allowed degrees of freedom of the spacecraft (3 DoF in the planar experimental
case and 6 DOFs in the complete 3D case). The clear advantage of this strategy
is that, using this technique, all the possible configurations of spacecrafts plus
manipulators can be treated as conventional fixed base manipulator. In this way,
all the kinematics, dynamics and control algorithms developed for conventional
manipulators can be used also for a mobile manipulator. This condition shares
the philosophy of the Virtual Manipulator created by Vafa and Dubovsky,[8], [9],
[10], [32],[11].

69

70 Chapter 7. Dynamics

7.2 Inverse and Forward Dynamics

The dynamic resolution of a mechnical system can be organized into two main
categories:

� Inverse Dynanmics

� Forward Dynamics

7.2.1 Inverse Dynamics

The goal of an Inverse Dynamics function is to provide the joint forces and torques
that cause a desired system evolution in time. An inverse dynamics function can
be schematically presented as:

Q = ID (q, q̇, q̈, model) (7.2.2)

Using an inverse dynamics function it is possible to calculate the matrices H
and C.Indeed it is easy to verify that in the case of q̈ = 0:

C (q, q̇) = Q = ID (q, q̇, q̈, model) (7.2.3)

Defining the function IDδ as:

IDδ = ID (q, q̇, q̈, model)− ID (q, q̇, δ, model) (7.2.4)

the ith coloumn of the matrix H ca be calculated as:

Hi = IDδ (q̈, δ, model) (7.2.5)

where δ is a column vector defined as:

δ =

(
δj = 0 if j = i
δj = 1 if j = i

)
(7.2.6)

7.2.2 Forward Dynamics

The goal of the Forward Dynamics Modeling is to provide the joint acceleration,
velocity and position, given the forces and torques on the acting system. A forward
dynamics function ca be schematically presented as:

q̈ = ID (Q, model) (7.2.7)

The joint velocities and positions can be easily obtained simply integrating the
joint acceleration. Despite a lot of forward dynamics functions have been pre-
sented, the simple process:

q̈ = H−1 (Q − C) (7.2.8)

has been used in the implementation.

70

7.3 Inverse Dynamics Newton-Euler Algorithm 71

7.3 Inverse Dynamics Newton-Euler Algorithm

The following implementation of the Newton Euler Algorithm (in joint coordinates
and using the Spatial Algebra) can be found in [25] and [26]. In the software the
Inverse Dynamics Newton-Euler Algorithm has been implemented in order to
compute the dynamic matrices of the system. The knowledge of the Dynamic
matrices is necessary in order to:

� perform the direct integration of the equations of motion, in order to simu-
late the responses of the system;

� compute non linear, model-based control laws.

The function has been implemented using the Spatial Algebra tool: this per-
mits to highly simplify the structure of the function itself, leading to a more
compact formulations of the algorithm. At the same time this implementation
takes advantages of the developed joint models presented in Chapter 6 Given the
joint positions and velocities the function has to:

� Rearrange vector sizes;

� Update the transform matrices between the joint reference frames;

� Calculate the joint velocities and accelerations;

� Calculate the forces/torques allowed by each joint model.

In the following lines the pseudo code of the Newton Euler algorithm expressed
in body coordinates is presented:

τ = Newton− Euler (q, q̇, q̈,Model)

v0 = 0
a01; = 0
for i = 1 : N
[Xj Si vj cj] = jointfunction (joint− type, qi, q̇i)
iXλ(i) = XjXT

if λ (i) 6= 0
iX0 = iXλ(i)

λ(i)X0

end
vji = Si q̇i
vi = iXλ(i) vλ(i) + vji
cj = Ṡiq̇i
ai = iXλ(i) aλ(i) + Si q̈i + cj + vi x vl
fi = Ii ai + vi x

∗ Iivi − iX∗
0 fxi

71

72 Chapter 7. Dynamics

end
for i = N : −1 : 1
τi = STi fi
if λ (i) 6= 0
fλ(i) = fλ(i) + λ(i)X∗

i fi
end
end

The presented algorithm is written in joint coordinates: the output vector τ is the
vector of joint forces and torques acting at the joint in the local joint reference
frame. It easy to understand that this set up is extremely useful: no transforma-
tion is required in order to obtain the actual value of the control action to give to
the actuators. In the 2D case the vector q ha been rearranged as:

q2D =



θ
xs
ys

qJoint 1
...

qJoint n


(7.3.9)

where xs and ys are the translation of the base spacecraft (expressed in the body
reference system) and θ is the attitude of the spacecraft. In the 3D case the
attitude of the spacecraft can be expressed using many different parametrizations,
such as Euler Angles, Euler parameters or quaternions. The Euler angles case is
presented here:

q3D =



φ
θ
ψ
xs
ys
zs

qJoint 1
...

qJoint n


(7.3.10)

As previously explained the Newton Euler algorithm has been implemented not
to solve the inverse dynamics but in order to update step by step the dynamic
matrices. One of the peculiarities of this algorithm is the possibility to implement
it using recursive techniques. On the other side Matlab Embedded Code does not
support recursion, so, the implementation of the software does not use this at-
tractive feature. The dynamic matrices calculation represents the most expansive
function of the entire software in terms of computational time. Because of this, it

72

7.3 Inverse Dynamics Newton-Euler Algorithm 73

is really important to optimize the code implementation in both the case of the
Simulink Simulator Software and the case of the executable software.

7.3.1 Validation

The Newton-Euler algorithm is an algorithm optimized for the numerical imple-
mentation. As a consequence of this, the algorithm cannot be easily implemented
with the goal to obtain a symbolic expression for the dynamic matrices. This
means that a direct validation of the obtained matrices is not possible. The va-
lidity of the implementation has to be verified in different ways. First of all it
is mandatory to verify if the inertia matrix is symmetrical and positive definite.
After this preliminary demonstration, the conservation of the fundamental phys-
ical quantities must be verified. If the system is not subjected to external or
dissipative forces it is possible to verify that:

� Matrix H must be symmetrical positive definite

� The linear momentum is a constant function.

� The angular momentum is a constant function.

� The kinetic energy is constant.

� The barycenter of the entire system moves in rectilinear uniform motion.

Giving to the system non-null initial conditions, the calculated dynamics must
be consistent with the above conditions. The check of these conditions represents a
good validation for the implementation of dynamic functions. The implementation
has been validated using two different system’s configurations:

� 4 DoF Planar Manipulator, connected to a 3 DoF spacecraft (7 DoF in total)

� 4 DoF Fully Spatial manipulator, connected to a 6 DoF spacecraft (10 DoF
in total)

To verify the conditions regarding the matrix H can be sufficient to use the
Cholesky algorithm to calculate H−1 in order to solve the forward dynamic prob-
lem 7.2.8. According to the Spatial Algebra conventions the angular and linear
momentum of each link of the system, with respect to the point 0 can be computed
as:

h0 =

[
Ii ci x
03 I3

] [
Ii mi ωi x
03 mi I3

] [
ωi
vi

]
(7.3.11)

while the kinetic energy can be computed as:

T =
1

2

[
ωi
vi

]T [
Ii mi ωi x
03 mi I3

] [
ωi
vi

]
(7.3.12)

73

74 Chapter 7. Dynamics

The following initial conditions have been implemented into the system in the
case of a planar manipulator, connected to a planar free flyer robot (experimental
setup case):

q =



θ = 0 rad
sx = 0 m
sy = 0 m
q1 = 0 rad
q2 = 0 rad
q3 = 0 rad
q4 = 0 rad


(7.3.13)

q̇ =



θ̇ = 0.7 rad/s
vx = 0.7 m/s
vy = 0.7 m/s
q̇1 = 0.7 rad/s
q̇2 = 0.7 rad/s
q̇3 = 0.7 rad/s
q̇4 = 0.7 rad/s


(7.3.14)

74

7.3 Inverse Dynamics Newton-Euler Algorithm 75

Figure 7.1: Linear Momentum Conservation, 3 DoF spacecraft, 4 DoF planar
manipulator

Figure 7.2: Angular Momentum Conservation, 3 DoF spacecraft, 4 DoF planar
manipulator

75

76 Chapter 7. Dynamics

Figure 7.3: Kinetic Energy Conservation, 3 DoF spacecraft, 4 DoF planar manip-
ulator

Figure 7.4: System motion, 3 DoF spacecraft, 4 DoF planar manipulator

76

7.3 Inverse Dynamics Newton-Euler Algorithm 77

In the case of completely 3D system the following initial conditions have been
assigned to the system:

q =



φ = 0 rad
θ = 0 rad
ψ = 0 rad
sx = 0 m
sy = 0 m
sz = 0 m
q1 = 0 rad
q2 = 0 rad
q3 = 0 rad
q4 = 0 rad


(7.3.15)

q̇ =



φ̇ = 0.1 rad/s

θ̇ = 0.1 rad/s

ψ̇ = 0.1 rad/s
vx = 0.1 m/s
vy = 0.1 m/s
vz = 0.1 m/s
q̇1 = 0.1 rad/s
q̇2 = 0.1 rad/s
q̇3 = 0.1 rad/s
q̇4 = 0.1 rad/s


(7.3.16)

77

78 Chapter 7. Dynamics

Figure 7.5: Linear Momentum Conservation, 6 DoF spacecraft, 4 DoF manipula-
tor

Figure 7.6: Angular Momentum Conservation, 6 DoF spacecraft, 4 DoF manipu-
lator

78

7.3 Inverse Dynamics Newton-Euler Algorithm 79

Figure 7.7: Kinetic Energy Conservation, 6 DoF spacecraft, 4 DoF manipulator

Figure 7.8: System motion, 6 DoF spacecraft, 4 DoF manipulator

79

80 Chapter 7. Dynamics

Figure 7.9: System motion visulization, 6 DoF spacecraft, 4 DoF manipulator

7.3.2 Conclusions

The tests performed on the implemented function proved the validity of the ap-
proach. In both the 2D and 3D cases, the function computed the dynamics of
the system respecting the physical conservation principles. In Fig and the trend
of the kinetics energy seems not to be constant, but looking carefully at the scale
on the y-axes, the variations of the system’s kinetic energy is in the range of the
Matlab numerical approximation errors.
This implementation is extremely advantageous because it is based on the the
joint reference frame: this means that the user is not forced to rotations and ref-
erence changes in order to compute the joint movements and forces and torques in
their own reference frame. Moreover the Spatial Algebra permits to implement a
large amount of joint models using always the same mathematical formalism and
procedures: this is extremely advantageous because it allows treat the spacecraft
movements as a normal manipulator joint.

80

Chapter 8

Control System

The system can be described by the manipulator canonical equation:

H (q) q̈ + C (q̇,q) = Q (8.0.1)

where the vector q represents the joint variables, [25]. As previously underlined
the system is strongly non linear. The goal of the thesis is related to the ap-
plication of a trajectory tracking technique, in order to use the manipulator for
complex operations. In order to follow a trajectory large movements of the joints
themselves could be necessary. In this context the classical linearization tech-
niques are not useful: these approaches are based on the assumption of small
excursions of the joint variables and, as a consequence, these techniques can be
used effectively only for the disturbance rejection and for the maintenance of an
equilibrium position.
The tracking control has to allow large joint movements, breaking the hypothesis
at the base of all the linearization techniques. The most useful approach is re-
lated to the application of a non linear control technique. In particular the class of
the feedback linearization algorithms seems extremely attractive for the tracking
control of complex non linear systems ([20], [30], [33],[11],[32]).

Definition 1. A feedback linearization algorithm is a control technique that per-
mits to generate a particular control law that, closing the feedback loop, linearizes
the system.

In the implementation the Computed Torque Control Law has been imple-
mented.

8.1 Computed Torque Control

The Computed Torque Control is a feedback linearization control technique that
requires the complete knowledge of the system properties, in particular the knowl-
edge of the actual inertial and bias matrix H and C. The forces/torques to apply

81

82 Chapter 8. Control System

to the system are given by the relation, [30],[20]:

Q = Hu + C (8.1.2)

Applying these generalized forces to the system:

Hq̈ + C = Hu + C

Doing the elementary calculations the feedback controlled system reduces to:

q̈ = u (8.1.3)

that represents a simple double integrator dynamic system. Using this algorithm
the stability properties of the system are completely determined by the control
action u. Given the desired acceleration of the joints q̈des, and defined the error
in joint position and velocity:

e = qdes − q (8.1.4)

ė = q̇des − q̇ (8.1.5)

ë = q̈des − q̈ (8.1.6)

the most common form for the control action u is:

u = q̈des + KDė + KPe (8.1.7)

that, applied to the feedback controlled system brings to:

ë + KDė + KPe = 0 (8.1.8)

The error dynamics is now described by a Ordinary Differential Equations System
of the second order. The easiest way to select properly the gain matrices is to
choose KD and KP as diagonal matrices. This choice brings to the implementation
of a decoupled/independent joint control: each joint, in this configuration, is
controlled independently from the others. Choosing diagonal gain matrices the
sufficient condition in order t achieve the asymptotic stability of the controlled
system is that the gains kPi and kDi are roots of the fundamental equation:

s2 + kDis + kPi = 0 (8.1.9)

A possible choice is to interpret the gains as:

kPi = ω2
i (8.1.10)

kDi = 2ζiωi (8.1.11)

Using this expression for the control action u, the commanded forces and torques
on the system are:

Q = H (q̈des + KDė + KPe) + C (8.1.12)

The method can be summarized using a classical block scheme :

82

8.1 Computed Torque Control 83

Figure 8.1: Computed Torque method block scheme.

The Computed Torque method is extremely attractive because it permits to
work with a linearized system. On the other side it requires to calculate step
by step the dynamic matrices H and C. This could be extremely challenging
in real-time applications. A lot of techniques have been developed to reduce the
computational cost of the algorithm: this class of algorithms is called Computed
Torque-Like Control (Variable Structure Compensation, Independent Joint Com-
pensation, ecc). The Spatial Algebra formulation of the Newton Euler Algorithm
for Inverse Dynamics revealed to be, on the other side, enough fast to be processed
in real time. As mentioned above, the application of the Computed Torque Con-
trol implies the deep knowledge of the parameters of the entire system in order
to have the most possible accurate computation of H and C. The perfect elimi-
nation of the non linearities can be done only in the computer simulation, where
the matrices involved in the dynamics and in the control law are the same. In the
practical case the computed matrices contain errors and uncertainties with respect
to the real matrices (the matrices used to compute the control forces are generated
by the Newton Euler Dynamic algorithm, using the joint variables measured by
the sensors, while the matrices of the motion equations are the real matrices of
the robot system). In this condition the non linearities cannot be deleted and the
effect of this is a deviation from the ideal feedback linearization behavior:

Hq̈ + C = H̃ (u) + C̃ (8.1.13)

H̃u − Hq̈ +
(
C̃−C

)
= 0 (8.1.14)

H̃ (q̈des + KDė + KPe) − Hq̈ +
(
C̃ − C

)
= 0 (8.1.15)

83

84 Chapter 8. Control System

where H and C are the matrices of the real system, while H̃ and C̃ are the
computed dynamic matrices. A possible way to reduce the computational cost of
the Computed Torque Control consists in computing just the diagonal of the H
matrix, decreasing the computational cost of the algorithm from n2 to n, where n
is the number of the system DoFs. This technique can reveal particularly useful
in practical implementation characterized by an high number of DoFs. In this
case the control law can be written as:

Q = Diag (H) (q̈Des + KDė + KPe) + C (8.1.16)

The closed loop controlled system can no more be reduced to a double inte-
grator system:

Hq̈ = Diag (H) (q̈Des + KDė + KPe) (8.1.17)

8.1.1 Spacecraft Control

The Computed Torque Control has been used to compute both the torques re-
quired at the manipulator joints and the forces and torque required by the space-
craft. The joints of a space manipulator are usually equipped with electric motors
that allow the application of continuous torque profiles, the spacecraft is equipped
with jet thrusters, that can provide only two level of thrust: 0 or Tmax. As a con-
sequence, the provided continuous thrust profile has to be converted in a sequence
of impulses on-off to be sent to the thrusters controller.
First of all it is necessary to map the computed control actions (2 forces and 1
torque in the 2D case, 3 forces and 3 torques in the 3D case) from the cartesian
space to the thrusters space.

f = Mt (8.1.18)

where f is the vector of the 3 or 6 force and torque profiles for the control of
the spacecraft, t is a vector of nt x 1 (where nt is the number of thrusters) with
the continuous force and torque profiles of each thruster and M is the mapping
matrix. In order to obtain the force profile for each thruster it is necessary to
invert the Equation 8.1.18.

t = M∗f (8.1.19)

where M∗ is the Moore-Penrose Pseudo-Inverse Matrix of the matrix M. In the
2D case, given the thrusters distribution:

84

8.1 Computed Torque Control 85

Figure 8.2: Thrusters distribution and mapping.

mθ = ht2 − ht3 + ht4 − ht5 + ht6 − ht7 + ht8 − ht1
fx = − t2 − t3 + t6 + t7
fy = t4 + t5 − t8 − t1

(8.1.20)

Where h is the semi-lenght of the spacecraft side.

 mθ

fx
fy

 =

 −h h −h h −h h −h h
0 −1 −1 0 0 1 1 0
−1 0 0 1 1 0 0 −1





t1
t2
t3
t4
t5
t6
t7
t8


(8.1.21)



t1
t2
t3
t4
t5
t6
t7
t8


=



− 1
8h

0 −1
4

1
8h

−1
4

0
− 1

8h
−1

4
0

1
8h

0 1
4

− 1
8h

0 1
4

1
8h

1
4

0
− 1

8h
1
4

0
1
8h

0 −1
4



 mθ

fx
fy

 (8.1.22)

85

86 Chapter 8. Control System

This procedure permits to compute the thrust profile for each thruster.
As already explained the thrusters cannot give a continuous thrust profile:

they can provide only a fixed amount of thrust or the null thrust. This condition
forces to convert the continuous thrust profile in a series of impulses using a
Pulse Width Modulation Technique. Using this technique it is possible to produce
a control action that provides the system with the same force impulse of the
continuous computed action. Defining the force impulse as:

I (t) =

∫ t

t0

F dt (8.1.23)

The PWM technique is base on the equality, on the sampling time:∫ t

t0

F dt = Fmax∆tPWM (8.1.24)

Manipulating this expression, it is clear that the ∆t required to produce the
necessary control action is:

∆tPWM =

∫ t
t0

F dt

Fmax

(8.1.25)

The simulator implements only a PWM technique, that means that the sampling
frequency of the thrusters controller is fixed.

8.2 Sensors

As shown in 3.2 the feedback loop is based on the measures of the joint variables:

� spacecraft translation and linear velocity

� spacecraft attitude and angular velocity

� manipulator joint position and angular velocity.

in order to compute the error on the reference input and to compute the
dynamic matrices. While the values of these variables are available in the software
simulation, in the real case sensors are required in order to measure the values
needed for the feedback loop.

8.2.1 Spacecraft Attitude and Angular Velocity

KVH DSP-3000 Fiber Optic Gyro

The angular velocity of the spacecraft base is measured using a fiber optic gyro
KVH DSP-3000. This sensor permit to obtain the measure of the angular velocity

86

8.3 Control System Performances 87

of the base to which it is solidal, measuring the delay time between two optic signal
traveling through the gyro itself. It is easy to compute the spacecraft attitude as:

θ =

∫ t

t0

ω dt + θ0 (8.2.26)

A Simulink block has been developed at the Naval Postgraduate School (in the
NPS Toolbox) in order to interface the sensor with the Simulink Model. The Gyro
communicates with the on-board pc using a Serial Port, through the communica-
tion protocol rs232, using a baudrate of 38400 bits

s

Metris iGPS Position Measurement

The position of the spacecraft in an inertial reference system is measured using
an Indoor Pseudo GPS System. The System provides to the on board Pc the
measures of the x and y coordinate of the barycenter of the spacecraft in the
inertial reference system and communicates the measures to the on board pc using
a Wire-less link. As explained above, the control system and the Newton Euler
function for the computation of the dynamic matrices require the position of the
spacecraft center of mass, but expressed in body coordinates. So, it is necessary
to perform the rotation:

xs = xm cos θm + ym sin θm
ys = − xm sin θm + ym cos θm

(8.2.27)

Also for the GPS system the NPS Toolbox provides the Simulink blocks needed
in order to interface the sensor with the system model.

8.3 Control System Performances

In the following section the performances of the control system in the virtual
environment are presented. Three cases are compared: the commanded variable,
the controlled variables in the case of continuous forces and torques and the case
of forces and torques modulated using the PWM technique. In the sections below
the time hystory of the controlled joint variables is presented in the 2D and 3D
cases. The absolute error with respect to the reference input is then presented.
It was preferred to show the absolute error than the relative error in order to
underline the real accuracy of the system in tracking the selected end effector
trajectory.

8.3.1 2D Case - Continuous Force and PWM Control

In this section the simulation results of the control system for the planar case
are provided both for the case of continuous spacecraft forces and torque and the

87

88 Chapter 8. Control System

case of the application of the Pulse Width Modulation. The tracked trajectory
is a circumference of radius equal to the distance from the spacecraft centeringof
mass to the end effector, in the full deployed manipulator configuration. The
parameters of the tested system are:

Spacecraft
Length l .2 m
Height h .2 m
Width w .2 m
Mass M 10 kg
Moment of Inertia along x Ix 6.66 10−2 kgm2

Moment of Inertia along y Iy 6.66 10−2 kgm2

Moment of Inertia along z Iz 6.66 10−2 kgm2

Manipulator
DoFs n 4
Length lm 0.2 m
Mass m 0.4 kg
Moment of Inertia along x Ixm 0 kgm2

Moment of Inertia along y Iym 8.1 10−3 kgm2

Moment of Inertia along z Izm 8.1 10−3 kgm2

Table 8.1: Systm Configuration, 2D Case

The selected gains are:

KP =



80 0 0 0 0 0 0
0 80 0 0 0 0 0
0 0 80 0 0 0 0
0 0 0 100 0 0 0
0 0 0 0 100 0 0
0 0 0 0 0 100 0
0 0 0 0 0 0 100


(8.3.28)

KD =



2
√

80 0 0 0 0 0 0

0 2
√

80 0 0 0 0 0

0 0 2
√

80 0 0 0 0

0 0 0 2
√

100 0 0 0

0 0 0 0 2
√

100 0 0

0 0 0 0 0 2
√

100 0

0 0 0 0 0 0 2
√

100


(8.3.29)

88

8.3 Control System Performances 89

Figure 8.3: Position of the spacecraft along the x-direction.

Figure 8.4: Position of the spacecraft along the y-direction.

89

90 Chapter 8. Control System

Figure 8.5: Spacecraft attitude.

Figure 8.6: Joint 1 position.

90

8.3 Control System Performances 91

Figure 8.7: Joint 2 position.

Figure 8.8: Joint 3 position.

91

92 Chapter 8. Control System

Figure 8.9: Joint 4 position.

Figure 8.10: Position of the end effector along the x-direction.

92

8.3 Control System Performances 93

Figure 8.11: Position of the end effector along the y-direction.

Figure 8.12: End-Effector orientation.

93

94 Chapter 8. Control System

Figure 8.13: Scacecraft Thrust Forces.

Figure 8.14: Scacecraft Torque.

94

8.3 Control System Performances 95

Figure 8.15: Thrusters impulse profile.

Figure 8.16: End Effector resulting trajectory.

95

96 Chapter 8. Control System

8.3.2 3D Case: Full Computed Torque Control and Diag-
onal H Matrix Control

In this section the simulation results for the full 3D case are presented. In par-
ticular the results for two different control laws are presented: the case of full
computation of the H matrix (that leads to a linear system closing the feedback
loop) and the case of the control law generated using only the diagoal of the
H matrix (obviously the Dynamics is computed using the full matrix). In this
simulation the forces and torques acting on the spacecraft are continuous. The
parameters of the tested system are:

Spacecraft
Length l 2 m
Height h 2 m
Width w 2 m
Mass M 16 kg
Moment of Inertia along x Ix 10.667 kgm2

Moment of Inertia along y Iy 10.667 kgm2

Moment of Inertia along z Iz 10.667 kgm2

Manipulator
DoFs n 4
Length lm 0.5 m
Mass m 1 kg
Moment of Inertia along x Ixm 0 kgm2

Moment of Inertia along y Iym 0.083 kgm2

Moment of Inertia along z Izm 0.083 kgm2

Joint Configuration y − z − y − y

Table 8.2: System Configuration, 3D Case

The selected gains are:

KP =



20 0 0 0 0 0 0 0 0 0
0 20 0 0 0 0 0 0 0 0
0 0 20 0 0 0 0 0 0 0
0 0 0 80 0 0 0 0 0 0
0 0 0 0 80 0 0 0 0 0
0 0 0 0 0 80 0 0 0 0
0 0 0 0 0 0 100 0 0 0
0 0 0 0 0 0 0 100 0 0
0 0 0 0 0 0 0 0 100 0
0 0 0 0 0 0 0 0 0 100


(8.3.30)

96

8.3 Control System Performances 97

KD =



2
√

20 0 0 0 0 0 0 0 0 0

0 2
√

20 0 0 0 0 0 0 0 0

0 0 2
√

20 0 0 0 0 0 0 0

0 0 0 2
√

80 0 0 0 0 0 0

0 0 0 0 2
√

80 0 0 0 0 0

0 0 0 0 0 2
√

80 0 0 0 0

0 0 0 0 0 0 2
√

100 0 0 0

0 0 0 0 0 0 0 2
√

100 0 0

0 0 0 0 0 0 0 0 2
√

100 0

0 0 0 0 0 0 0 0 0 2
√

100


(8.3.31)

Figure 8.17: Position of the spacecraft along the x-direction.

97

98 Chapter 8. Control System

Figure 8.18: Position of the spacecraft along the y-direction.

Figure 8.19: Position of the spacecraft along the z-direction.

98

8.3 Control System Performances 99

Figure 8.20: Spacecraft Euler Angle φ.

Figure 8.21: Spacecraft Euler Angle θ.

99

100 Chapter 8. Control System

Figure 8.22: Spacecraft Euler Angle ψ.

Figure 8.23: Joint 1 position.

100

8.3 Control System Performances 101

Figure 8.24: Joint 2 position.

Figure 8.25: Joint 3 position.

101

102 Chapter 8. Control System

Figure 8.26: Joint 4 position.

Figure 8.27: Position of the end effector along the x-direction.

102

8.3 Control System Performances 103

Figure 8.28: Position of the end effector along the y-direction.

Figure 8.29: Position of the end effector along the z-direction.

103

104 Chapter 8. Control System

Figure 8.30: End Effector Euler Angle φ.

Figure 8.31: End Effector Euler Angle θ.

104

8.3 Control System Performances 105

Figure 8.32: End Effector Euler Angle ψ.

Figure 8.33: End Effector resulting trajectory.

8.3.3 Conclusions

The test cases present the results of the control of the system using the Computed
Torque Control technique. Both the 2D and 3D cases have been simulated and
analyzed.
As expected, the case of full computation of the inertia matrix and perfect feed-
back linearization, the control system assures optimal performances. In this case

105

106 Chapter 8. Control System

the closed loop system is a linear system and the selection of the gains in accord
with the condition in Equation 8.1.9 is the sufficient condition in order to provide
asymptotic stability to the control.
Other more challenging conditions have been tested, in order to estimate the ro-
bustness of the control law. The Pulse Width Modulation of the thrusters has
been tested in the 2D case in order to test the same conditions of the experimental
testbed. As shown in Figure 8.10,8.11 and 8.12 also with the PWM control of
the base the system remains asymptotically stable , assuring good performances
in terms of error with respect to the reference input. The control in the case of
PWM base control is affcted by a larger error in the first transitory phase (in Fig-
ures 8.6,8.7,8.8,8.9).Despite that the control system quickly arrives to a status of
asymptotic stability. Figure 8.16 shows that the end-effector is tracking correctly
the desired input trajectory.
The case of control using anly the diagonal of the H matrix reveales to be more
complex to face: the error in the tracked trajectory is considerable and it is a con-
sequence of the great amount of information neglected. On the other side Figure
8.33 shows that, despite the error, the system is reproducing the correct shape of
the end effector input trajectory: if the mission phase requirements are enough
low, this technique can be taken into account, especially if the reduction in the
computational cost is considered a primary objective.
The analysis on computational cost revealed a linear dependance between the to-
tal compuatational time and the number of degrees of freedom of the manipulator
(in addition to the 6 DOFs of the spacecraft).

106

Chapter 9

Virtual Reality Model

9.1 Operator Performances

The developed system allows the simulation of teleoperation techniques using a
joystick. During a space mission the human operator is supposed to control the
movements of the manipulator while the satellite is orbiting around the Earth.
An artificial time delays can simulate the intrinsic commmunication delays expe-
rienced during such operations. As reported in (mettere reference) the commu-
nication delay can counts a few seconds. In this scenario it is almost impossible
for a human operator to control a system without a real-time or quasi-real-time
feedback from the system itself. Mettere gli studi visti in giro. A possible way
to face time delays is to create a graphical predictor of the system. In this way
the operator can see in real-time the simulated/predicted response of the system.
The operator, in this way, is controlling the system basing his inputs only on the
system’s simulated response: the simulator model should be the more accurate as
possible, in order to minimize the difference between the predicted operator con-
trol and the real applied control. This technique has been used in the operations
of the ETS VII mission.

9.2 3D Graphical Model

In order to create a valid graphical representation of the system, a Virtual World
has been created using the Matlab Virtual Reality Toolbox. The Virtual Reality
Toolbox allows to interface a .WRL script to a Simulink block. In particular,
given the .WRL script it allows the user to indicate the variables of the system:
in this way each port of the corresponding Simulink block is linked to variables
inside the virtual system. In the studied scenario the variables are the angular
positions of the joints and the position and attitude of the spacecraft. The result
of the graphical modeling is shown in the figures below for the 2D case (the envi-
ronment is a representation of the Naval Postgraduate School Spacecraft Robotics

107

108 Chapter 9. Virtual Reality Model

Laboratory, indeed the 2D version of the software will be used as a simulation for
future laboratory tests):

Figure 9.1: NPS SRL Virtual model.

The operator, using the joystick, has the full control of the end effector motion
of the robot equipped with the robotic arm. In this scenario the robot can move
inside the black fance, interacting with the environment (giving to the operator
tactile/vibration feedbacks in case of contacts). The VRML (Virtual Reality
Modeling Language) allows the creation of a full 3D model, with the possibility for
the designer to add material, colour and shape features to the system. From this
perspective the system can be highly improved in the future: modeling contacts
and collisions between objects and the effects of the direct manipulation of objects
could improve the effectiveness of the simulation itself. In the figure below the
robot and the environment models are presented in detail:

108

9.2 3D Graphical Model 109

Figure 9.2: Virtual World.

In the virtual world used for the visualization of the results of the Pulse Width
Modulation control technique of the spacecraft a feature related to the thrusters
firing sequence has been implemented. During that visualization, each thruster
is represented as a sphere fixed on the side of the robot itself. Exploiting the
capabilities of the Virtual Reality Toolbox, these spheres can turn from black to
red when the thruster they represent is supposed to fire. The figures 9.2 and 9.2
show two moments of a simulation:

Figure 9.3: Thrusters off.

109

110 Chapter 9. Virtual Reality Model

Figure 9.4: Thrusters firing.

Also for the full 3D case a Virtual World has been implemented. While for
the 2D case, the computational effort required by the simulator is not extremely
high, the operator can visualize in real time the controlled system, for the 3D case
the required computational time does not allow the user to have a fluid real time
animation of the system behavior. Because of that, the user decides the motion
of the system using just the visual representation of the system’s kinematics, that
represents the reference input of the control system. The simulator can then per-
form the full-control simulation and show off line the evolution of the controlled
system.
The virtual world for the 3D case is based on the same architecture of the previ-
ously explained .WRL file, but setted in order to take the inputs for the control
of all the degrees of freedom of the spacecraft. The most useful configuration of
the World is the one exposed in figure:

110

9.2 3D Graphical Model 111

A more detailed and scenographic world has been implemented, with the vi-
sualization of some celestial bodies:

111

112 Chapter 9. Virtual Reality Model

112

Chapter 10

Manipulator Realization

10.1 Project Requirements and Constraints

The Specification and constraints to the project can be summarized in the follow-
ing table:

Weight ≤2 kg
DoFs ≥ 2

Length ≥ 40 cm
Modularity Yes
Electronics Inside the arm if possible

In the design phase of such a system there are constraints that can not be
written in a quantitative form. Some desirable characteristics of the system are:

� Modularity: the system has to be designed in order to easily increase or
decrease the number of degree of freedom, in case of future needs.

� Easy Assembly: the design phase has to take into account the assembly
phase

� Wires Bulk: the wires can have significant lengths and can represent a seri-
ous obstacle to the movement of the joints. They have to be accommodated
inside the arm itself.

10.2 Components Selection

10.2.1 Servo Motors

The torques required to move the manipulator are in the order of the 10 mNm.
On the other side, in order not to put limits to future applications in the field

113

114 Chapter 10. Manipulator Realization

of force control and objects manipulation, motors with higher torque limit have
been selected. In particular it is important to underline that, since the motor
are torque (current) controlled, the selection of an high torque motor does not
affect the capability of the motor itself to provide low torques. The resolution in
providing low torques is driven by the capability of the electronics to provide low
level of current. The selected motors are Brushed DC Motors, with the following
specifications:

Electric Motor
Weight W 114 g
Nominal Voltage Un 12 V
Output Power P2 max 22.1 W
Friction Torque MR 1.7 mNm
Stall Torque MH 114.6 mNm
Torque Constant kM 18.57 mNm
Speed up to ne max 6000 rpm
Torque up to Me max 21 mNm
Current up to (thermal limits) Ie max 1.34 A
Gear-head
Gear ratio 16:1
Encoder
Lines per revolution N 500

Table 10.1: Servo Motors Data.

The motors affect in a strong way the final weight of the joint (the motor
represent the of the total joint weight).

10.2.2 Drive Electronics

The drive electronics has to be the smallest as possible, in order to be accom-
modated inside the joint itself. At the same time it has obviously to provide the
required current resolution in order to control the output current in the most
accurate way. The selected driver is an All Motion EZSV10, with the following
features:

114

10.3 Realization Process 115

Supply input 12 V to 40 V 1.5 A
Dimensions 24 mm x 35 mm x 15.24 mm
Control Modes Position-Velocity-Torque
Encoder interface Quadrature encoder, max frequency 4MHz
Electronics Inside the arm if possible
Communication interface RS232, RS485, USB

Table 10.2: Electronics Data

This driver model is equipped with an EEPROM memory, that can be used
to store an initialization program. According to the driver model command set,
the following lines are executed each time the driver is turned on:

nb38400z0mxR (10.2.1)

where n is the address of the driver, b38400 sets the baud rate (bits per second)
of the communication link, z0 initializes the encoder position and mx sets the
maximum output current (0 ≤ m ≤ 100, where 100 is the current peak allowed
by the driver). The driver communicates with the on board Pc using a serial port
with the communication protocol rs232. An S-Function has been implemented in
order to communicate with the drivers and the motors from Simulink. In this way
it is very easy to generate a code for real time applications with the capability of
commanding a group of servo motors.

10.3 Realization Process

In this chapter the manipulator design and assembly phase and the obtained
geometrical, mass and inertial properties are explained in detail. The realization
process can be divided into:

� Specifications and project constraint analysis

� CAD Design of the Joint

� Joint Prototype realization and testing

� Realization of the complete manipulator

115

116 Chapter 10. Manipulator Realization

10.3.1 CAD Design

The design of the Manipulator has been performed using the Software NX5, a
classical Cad system of the SolidWorks family. The prototype has been realized
in a polymeric material, using a Rapid Prototyping 3D printer.

Modularity Constraint

One of the biggest constraints in the design was represented by the need to have
a reconfigurable manipulator. This means that the realized prototype has to
allow the researchers to future expansions in terms of degrees of freedom of the
system and orientation of the joints axes. The accomplishment of this task can
be realized through a careful design of the revolute joints of the manipulator.
The joint represents a great challenge from the design point of view: it has to
contain the electric motor, all the mechanisms that allow the movements, the
electronics to control the motors and the wires. These constraints increase the
level of complexity of the system. The proposed design is presented in the Figures
10.1 and 10.2 :

Figure 10.1: Proposed design for the joint realization

116

10.3 Realization Process 117

Figure 10.2: Joint internal disposition.

The system structure is composed by two parts: the bottom part of the joint,
that accommodates the driver electronics end the electric motor, and the joint top
part, that accommodates the mechanisms. The joint bottom part is presented in
the Figures 10.3(a) and 10.3(b):

Figure 10.3: Joint bottom part front and rear.

117

118 Chapter 10. Manipulator Realization

The big opening on the rear side of the part is dedicated to the accommoda-
tions of the motor and driver wires.
The joint top part connects the bottom to the rest of the manipulator and accom-
modates a screw hub, in order to fix the motor shaft to the rest of the manipulator,
and a bearing, to provide a larger, low friction, supporting area.

Figure 10.4: Joint top part.

The Figure 10.4(b) underlines the internal structure, designed to accommodate
the superior side of the bearing and the screw hub. The exploded view of the
joint helps understanding the assembly procedure and the accommodation of each
component inside the structure.

Figure 10.5: Joint exploded view.

118

10.3 Realization Process 119

Thank to the modular design the manipulator can be built simply connecting
the top link with bottom links: this configuration allows a great simplicity in the
assembly phase and, at the same time, the possibility to customize the joint orien-
tation in the 3D space, enabling the assembly of a complete spatial manipulator.
The Figure 10.6 presents the virtual model of the designed 4 DoF planar manip-
ulator.

Figure 10.6: CAD view of the designed manipulator.

119

120 Chapter 10. Manipulator Realization

10.3.2 Joint Realization and Assembly

After the joint design phase, a joint prototype has been realized in order to test
the validity of the design. The figure below presents the realized joint and each
step necessary in order to mount it and the whole manipulator:

Figure 10.7: Components presentation and first assembly phase.

Figure 10.8: Second and third assembly phases.

Figure 10.9: Electronics accomodation .

120

10.3 Realization Process 121

Figure 10.10: Complete Joint.

Coupling together the designed joints, changing the polarity of the joint itself
each time, it is possible to create the entire manipulator. The figure below shows
the designed manipulator, used in order to validate the theoretical and numerical
results produced by the simulator.

Figure 10.11: Final Design.

121

122 Chapter 10. Manipulator Realization

Final Manipulator Data
Total Weight 1.6 kg (with 4 Joints)
Joint Weight 0.360 kg
Modularity Yes
Length 52 cm (with 4 Joints)
Electronics Inside the arm
Wires Inside the arm

Table 10.3: Manipulator Data.

The final configuration of the free flying robot is presented in the Figure 10.12:

Figure 10.12: Final system configuration.

122

10.4 Preliminary Experimental Results: Spacecraft Control 123

10.4 Preliminary Experimental Results: Space-

craft Control

In the following sections the preliminary results obtained in the control of the
spacecraft, using the software derived from the simulator architecture, are pre-
sented. The software has been tested for the two most simple cases : rectilinear
trajectory of the manipulator along the x and y direction of the inertial space.
The control of the manipulator has been turned off. In the following Figures, as
in the previous ones, the error on the controlled system is an absolute error, not
a relative one. This beacuse in this phase of the tests the goal was to produce an
evaluation of the real maximum error in the spacecraft positioning.

10.4.1 X-Trajectory

Figure 10.13: Motion in the x direction.

123

124 Chapter 10. Manipulator Realization

Figure 10.14: Motion in the y direction.

Figure 10.15: Attitude Control.

124

10.4 Preliminary Experimental Results: Spacecraft Control 125

Figure 10.16: Followed trajectory.

Figure 10.17: Thrusters command.

125

126 Chapter 10. Manipulator Realization

10.4.2 Y-Trajectory

Figure 10.18: Motion in the x direction.

Figure 10.19: Motion in the y direction.

126

10.4 Preliminary Experimental Results: Spacecraft Control 127

Figure 10.20: Attitude Control.

Figure 10.21: Followed trajectory.

127

128 Chapter 10. Manipulator Realization

Figure 10.22: Thrusters command.

10.4.3 Conclusions

The control of the spacecraft is extremely accurate. As shown by Fig. 10.13 ,
10.14, 10.18 and 10.19 , the spacecraft position tracking error is in the order of the
centimeter, sometimes millimiters. These preliminary results confirm the validity
of the approach in the system modeling. The tested case was the case of full control
law, with full H matrix computation. The Spatial Algebra approach revealed to
be extremely useful in order to allow the application of such an expensive control
law to a real time system. The computed control law could, indeed, be challenging
to implement for real time applications. The errors in the controlled spacecraft
position are due to:

� Errors in system’s mass parameters

� Errors in the process of derivation of spacecraft’s position

� Floor imperfections and dust.

The errors in the attitude, as shown in Fig. 10.15 and 10.20, are in the order
of the degree. The errors can be due to:

� Errors in system’s computed inertial properties

128

10.4 Preliminary Experimental Results: Spacecraft Control 129

� Numerical errors in the angular velocity integration process

� Floor imperfections and dust.

129

130 Chapter 10. Manipulator Realization

130

Chapter 11

Conclusions

11.0.4 Software Implementation

The thesis presented step by step the development of a software simulator created
in order to test the kinematics, dynamics and control of a spacecraft mounted ma-
nipulator as a support for future experimental tests. Each sub-block of the system
has been validated, using direct or indirect methods. The simulation tests pro-
vided in the previous chapters, prove the validity of the implemented approach in
the dynamics modeling and the robustness of the implemented Computed Torque
Control Law. Indeed, while in the case of perfect feedback we expected to obtain
good results, the case of diagonal H matrix control law can be considered a strong
test for the robustness of the system. The results provided in this case prove not
only the capability of the control law to face non perfect linearization but, at the
same time, it is an additional proof of the validity of the dynamic modeling. The
errors found in this case are higher than the ideal case, but, at the same time,
they can be considered acceptable for tests and operations where an extremely
high accuracy is not the principal objective.
The Spatial Algebra approach, as already explained, proved to be a useful tool in
order to build an extremely general multi body dynamics function. The use of this
tool introduced in the system an high level of abstractness, but on the other side,
it allowed to implement an algorithm that can be easily expanded to model more
complex systems. The choice of modeling the system as a fixed base manipulator
allows to use the analysis and control tools developed for fixed base manipulators
: the implemented Joint Limit Avoidance kinematics algorithm, for example, has
been implemented and validated in the case of fixed base manipulators.

The computational performances in 2D case can support the real time imple-
mentation of the software, while the full 3D case (with Joint Limit Avoidance
Algorithm and full computation of the H matrix) cannot run in real time: as
underlined before, the full 3D case brings a strong increase in the number of the
DOFs of the system and in the number of operations to perform (in particular all
the transformations and integrations of the Euler Angles that are not necessary

131

132 Chapter 11. Conclusions

in the 2D case).

11.0.5 Future Developments

The software is now configured in order to model for both the kinematics and
dynamics, linear chains of rigid bodies, connected together by revolute, prismatic,
3DOFs or 6DOFs joints. No external forces and torques are applied to the system.
The implementation can be developed into three main directions:

� Kinematics and Dynamics Modeling

� Integration in the system of a module of Orbital Mechanics

� Control Techniques and Artificial Intelligence

The first possibility consists in a further development of the kinematics and dy-
namics modeling algorithms in order to study multiple manipulators systems and
systems characterized by closed kinematic loops. Both the Direct Path Method
for kinematics and the Newton Euler Algorithm for dynamics can be generalized
to more complex and general systems. Also the joint models library can be ex-
panded with different new joints and constraints models. The second development
direction concerns the implementation inside the software of an Orbital Mechanics
Simulator. The implementation of the Newton Euler Algorithm allows the intro-
duction of external forces on each body of the system. This feature can be easily
exploited in order to introduce in the system the effects of the orbital motion: the
system can be tested under the disturbances produced by the Gravity Gradient
Torque, Magnetic Torque, Solar Pressure Torque and Atmospheric Drag Torque.
The addition of this feature will permit to simulate more realistic and complex
operations. In this scenario a further improvement could be the modeling of the
contacts between the end effector and other bodies: this could allow to study the
system from the perspective of the manipulation capabilities of the robotic arm.
The architecture of the system can also be expanded in the field of control and
artificial intelligence. Now the system takes the input trajectory directly from an
external operator; a possible improvement for the system can be the introduction
of on board autonomy.

11.1 Experimental Tests

As shown in chapter 10 the manipulator has been completely realized and the
S-Function for the communication from the on board PC to the drivers has been
written and validated. As explained, the design of the revolute joint allows the
implementation of a modular manipulator : the only limitation to the number of
joints is related to the delay in the electronics. From the mechanical point of view

132

11.1 Experimental Tests 133

each joint is identical to the others: the manipulator can be virtually expanded to
each desired number of DOFs. This modularity is supported by the software itself,
that has no limits in the number of DOFs of the system that has to be tested. Also
from the point of view of the design philosophy the designed manipulator respects
the specifications: all the wires and the electronics are accommodated inside the
structure of the joint, this feature could be critical in the case of nano-satellites
applications: the space inside the body of the satellite is extremely limited, and
it is important to find a rational way to organize the disposition of the elements
of the system.

11.1.1 Future Develpments

The manipulator and the S-functions for rs232 communication are now ready for
experimentation. In order to validate the software from an experimental perspec-
tive the whole simulator has to be compiled in a C code. The operation has
already been completed and tested for the base of the robots. The integration of
the control of the arm will be more complex: a particular attention has to be put
on the electronics delays. The configuration of the arm drivers forces to study
in a careful way the delays problem deriving from the electronics. Moreover it is
necessary to derive the encoder feedback and the other sensors measurements in
order to obtain the joints velocities, necessary for the computation of the control
law. This operation can be risky: in order to limit the errors it will be necessary
to implement low pass filters, to avoid the derivation of the sensors noise.

133

134 Chapter 11. Conclusions

134

Appendix A

In this Appendix the joint drawings are presented. The drawings have been done
using the Solid Edge software.
The first two drwaings represents the bottom part of the joint, where the elec-
tronics, the motor and the wires are accommodated.
The second two drawings represent the top part of the joint, where the bearing
and the screw hub are fixed. The last drawing is the representation of the cover,
whose goal is to close the bottom part of the joint and to give support to the
electronics.

135

136 Chapter .

136

137

137

138 Chapter .

138

139

139

140 Chapter .

140

Bibliography

[1] Singer P.W. Wired for War: The Robotics Revolution and Conflict in the
21st Century. The Penguin Press, 2009.

[2] Yamamoto Y., Yun X. Coordinating Locomotion and Manipulation of a Mo-
bile Manipulator. In IEEE Transactions on Automatic Control, volume 39,
June 1994.

[3] Hootsman N.A.M., Dubowsky S. Large Motion Control of Mobile Manipu-
lators Including Vehicle Suspension Characteristics. In IEEE International
Conference on Robotics and Automation, volume 3, pages 2336–2341, April
1999.

[4] McMillan S., Orin D.E., McGhee R.B. Efficient Dynamic Simulation of an
Underwater Vehicle with a Robotic Manipulator. In IEEE Transactions on
System, Man and Cybernetics, volume 25, pages 1194 – 1206, August 1995.

[5] Schjolberg I., Fossen T. Modelling and Control of Underwater Vehicle-
Manipulator Systems. In Proc rd Conf on Marine Craft Maneuvering and
Control, pages 45–57, 1994.

[6] Mahesh H., Yuh J., Lakshmi R. A Coordinated Control of an Underwater
Vehicle and Robotic Manipulator. Journal of Field Robotics, 8(3):339–370,
June 1991.

[7] Ballantyne G.H. Tobotic Surgery, Telerobotics Surgery, Telepresence and
Telementoring. Surgical Endoscopy and Other Interventional Results, July
2022.

[8] Vafa Z. The Kinematics and Dynamics of Space Manipulators: The Virtual
Manipulator Approach. The International Journal of Robotics Research, 9,
August 1990.

[9] Vafa Z., Dubowsky S. On the Dynamics of Manipulators in Space using
the Virtual Manipulator Approach. In IEEE International Conference on
Robotics and Automation, pages 579–585, May 1987.

141

142 Bibliography

[10] Vafa Z., Dubowsky S. A Virtual Manipulator Model for Space Robotic Sys-
tems. In Proceedings of the Workshop on Space Telerobotics, volume 3, pages
342–344, 1987.

[11] Dubowsky S., Papadopoulos E. The Kinematics, Dynamics, and Control of
Free-Flying and Free-Floating Space Robotic Systems. In IEEE Transactions
on Robotics and Automation, volume 9, pages 531–543, October 1993.

[12] Torres M.A. The Disturbance Map and Minimization of Fuel Consumption
During Space Manipulator Maneuvers. Master’s thesis, Massachusetts Insti-
tute of Technology, 1989.

[13] Dubowsky S., Torres M.A. Minimizing Attitude Control Fuel in Space Ma-
nipulator Systems.

[14] Dubowsky S Torres MA. Path Planning for Space Manipulators to Minimize
Spacecraft Attitude Disturbances.

[15] Torres M.A. Minimizing Spacecraft Attitude Disturbances in Space Manip-
ulator Systems.

[16] Moosavian A.A., Papadopoulos E. On the Kinematics of Multiple Manipu-
lator Space Free-Flyers and their Computation. Journal of Robotic Systems,
1998.

[17] Moosavian A. A., Papadopoulos E. Dymamics and Control of Space Free-
Fyers with Multiple Manipulators.

[18] Papadopoulos E. On the Dynamics and Control of Space Manipulators. PhD
thesis, Massachusetts Institute of Technology, October 1990.

[19] Siciliano B. Kinematic Control of Redundant Robot Manipulators: A Tuto-
rial. Journal of Intelligent and Robotics Systems, pages 201–212, 1990.

[20] Siciliano B., Khatib O. Handbook of Robotics. Springer-Verlag New York,
2007.

[21] Chaumette F., Marchand E. A Redundancy-Based Iterative Approach for
Avoiding Joint Limits: Application to Visual Servoing. In IEEE Transactions
on Robotics and Automation, volume 17, pages 719–730, October 2001.

[22] Marchand E., Rizzo A., Chaumette F. Avoiding Robot Joint Limits and
Kinematic Singularities in Visual Servoing. In Proceedings of the 13th In-
ternational Conference on Pattern Recognition, volume 1, pages 297–301,
August 1996.

142

Bibliography 143

[23] Kathib O. Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots. The International Journal of Robotics Research.

[24] Maciejewsky A., Klein C. Obstacle Avoidance for Kinematically Redundant
Manipulators in Dinamically Varying Environments.

[25] Featherstone R. Rigid Body Dynamics Algorithms. Springer, 2008.

[26] Featherstone R., Orin D. Robot Dynamics: Equations and Algorithms. In
IEEE International Conference in Robotics and Automation, volume 1, pages
826–834, 2000.

[27] Xequian W., Wenfu X., Bin L., Cheng L.,. General Scheme of Teleopera-
tion for Space Robot. In Proceedings of the 2008 Conference on Advanced
Intelligent Mechatronics, July 2008.

[28] Soll E., Ulrich W., Artigas J., Preusche C., Kremer P., Hirzinger G.,
Letschnik J., Pongrac H. Ground Verification of the Feasibility of Telep-
resent On-Orbit Servicing. Journal of Field Robotics, 26(3):287–307, 2009.

[29] Soll E., Letschnik J., Ulrich W., Artigas J., Kremer P., Preusche C., Hirzinger
G. On-Orbit Servicing, Exploration and Manipulation Capabilities of Robots
in Space. IEEE Robotics and Automation Magazine, pages 29–33, December
2009.

[30] Siciliano B., Sciavicco B., Villani L., Oriolo G.,. Robotics. Modelling, Plan-
ning and Control. Springer, 2009.

[31] Featherstone R. A Beginner’s Guide to 6-D Vectors. IEEE Robotics and
Automation Magazine, 17(4):88–99, December 2010.

[32] Dubowsky S., Papadopoulos E. On the Nature of Control Algorithms for
Free-Floating Space Manipulators. In IEEE Transactions on Robotics and
Automation, volume 7, pages 750–758, December 1991.

[33] Dubowsky S., Papadopoulos E. On the Nature of Control Algorithms for
Space Manipulators. In IEEE International Conference on Robotics and Au-
tomation, volume 2, pages 1102–1108, May 1990.

[34] Dubowsky S., Torres M.A. Path Planning for Space Manipulators to Min-
imize Spacecraft Attitude Disturbances. In IEEE International Conference
on Robotics and Automation, volume 3, pages 2522–2528, April 1991.

[35] Dubowsky S., Papadopoulos E. Coordinated Manipulator/Spacecraft Motion
Control for Space Robotic Systems. In IEEE International Conference on
Robotics and Automation, volume 2, pages 1696–1701, April 1991.

143

144 Bibliography

[36] Xu Y., Kanade T., editor. Space Robotics: Dynamics and Control. The
Springer International Series in Engineering and Computer Science.

[37] Yoshida K.,. Experimental Study on the Dynamics and Control of a Space
Robot with Experimental Free-Floating Robot Satellite EFFORTS Simula-
tors. Advanced Robotics, 9(6):583–602, 1995.

[38] Yoshida K., Umetani Y. Control of Space Free-Flying Robots. In Proceedings
of the 29th Conference on Decision and Control, December 1990.

[39] Yoshida K., Umetani Y. Resolved Motion Rate Control of Space Manipula-
tors with Generalized Jacobian Matrix. IEEE Transaction on Robotics and
Automation, 5(3), June 1999.

[40] Hootsmans N., Dubowsky S., Mo P. The Experimental Performance of a
Mobile Manipulator Control Algorithm. In Proceedings 1992 IEEE Interna-
tional Conference on Robotics and Automation, volume 3, pages 1948–1954,
1992.

[41] Nanchev D., Umetani Y., Yoshida K. Analysis of a Redundant Free-Flying
Spacecraft/Manipulator System. IEEE Rransactions on Robotics and Au-
tomation, 8(1), February 1992.

[42] Umetani Y., Yoshida K. Workspace and Manipulability Analysis of Space
Manipulator. Transactions of the Society of Instrument and Control Engi-
neers, E-1(1), 2001.

[43] Marchesi M. Angrilli F., Bettanini C. On Ground Experiments of Free-
Flyer Space Robot Simulator in Intervention Missions. In Proceedings of
the 6th International Symposium on Artificial Intelligence and Robotics and
Automation in Space, June 2001.

[44] Agrawal S.K., Grimella R., Desmier G. Optimal Workspace Designs of Free-
Floating Planar Manipulators. In IEEE/RSJ International Workshop on
Intelligent Robots and Systems, November 1991.

[45] Yoshida K.,. Space Robot Dymamics and Control: To Orbit, From Orbit,
and Future.

[46] Umetani Y., Yoshida K. Workspace and Manipulability Analysis of Space
Manipulator. Transactions of the Society of Instrument and Control Engi-
neers, 2001.

[47] Romano M., Friedman D., Shay T. Laboratory Experimentation of Autonon-
mous Spacecraft Approach and ocking to a Collaboratory Target. Journal of
Spacecraft and Spacecraft and Rockets, 1, 2007.

144

Bibliography 145

[48] Romano M., Friedman D., Shay T. Ad-hoc Wireless Networking and Shared
Computation based upon Linux for Autonomous Multi-Robots Systems.
AIAA Journal of Aerospace Computing, Information and Communication,
6, 200.

145

	List of Symbols
	Sommario
	Abstract2
	Introduction
	Spacecraft Mounted Manipulators
	Canadarm
	ETS VII Mission
	Manipulators Applications in Space
	Research Focus
	Thesis Structure

	State of the Art
	Overview of the System
	Simulator Architecture
	The Experimental Setup
	The Experimental Software Architecture
	The Free Flyer Robot
	Manipulator Design

	Kinematics
	The Kinematic Control Problem
	Jacobian Computation
	The Direct Path Method

	Redundancy Solution
	Simple Jacobian-based Techniques
	Projection techniques

	Validation
	1 Link Free-Flyer

	Numerical and graphical validation
	2D Case, Rectilinear x-Trajectory
	2D Case, Rectilinear y-Trajcetory
	2D Case, Circular Trajectory
	3D Case, Complex Trajectory
	Conclusions

	Spatial Vector Algebra
	Introduction
	Preliminaries
	Spatial Velocity
	Spatial Force
	Scalar Product
	Coordinate Transforms
	Rotation
	Translation
	General Transforms

	Spatial Cross Product
	Momentum
	Inertia

	System Modeling
	Connectivity
	Body Reference Systems
	Joint Models
	Revolute/Hinge Joint
	Prismatic/Sliding Joint
	Prismatic and Revolute Joints Conventions
	Planar Joint
	6-DoF Joint
	Modeled Systems

	Dynamics
	Introduction
	Inverse and Forward Dynamics
	Inverse Dynamics
	Forward Dynamics

	Inverse Dynamics Newton-Euler Algorithm
	Validation
	Conclusions

	Control System
	Computed Torque Control
	Spacecraft Control

	Sensors
	Spacecraft Attitude and Angular Velocity

	Control System Performances
	2D Case - Continuous Force and PWM Control
	3D Case: Full Computed Torque Control and Diagonal H Matrix Control
	Conclusions

	Virtual Reality Model
	Operator Performances
	3D Graphical Model

	Manipulator Realization
	Project Requirements and Constraints
	Components Selection
	Servo Motors
	Drive Electronics

	Realization Process
	CAD Design
	Joint Realization and Assembly

	Preliminary Experimental Results: Spacecraft Control
	X-Trajectory
	Y-Trajectory
	Conclusions

	Conclusions
	Software Implementation
	Future Developments

	Experimental Tests
	Future Develpments

	
	Bibliography

