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Abstract

This master thesis presents, a family of algorithms for load allocation in a large scale

computing infrastructures, using the concept of resource saturation in a multi-class

environment.

New request admission policies and routing algorithms have been developed to im-

prove the performance metrics based on the concept of bottleneck in a network. The

underlying idea is to selectively admit in the system a job of class that maximize the

utilization of the resources unused by the job in execution.

The algorithm have been coded and simulated, in JMT, ’Java Modelling Tool’ a suite

of applications developed by Politecnico di Milano and released under GPL license,

to evaluate the gain achieved when the new admission policy is used.

For modeling a large computing network, the technique of Queuing Network are used

where a Queuing Station represents any given Computing Resource with a given

service time, capable of serving user requests. Several simulation experiments were

performed on the above model for proper calibration of the admission policy to per-

form at optimum level.

Results are in agreement with the theoretical predictions and show a significant im-

provement over prevailing static routing algorithms. The work presented also has

several implications for future studies of Green IT since it can also help solving the

problem of energy consumption in large computing centers.

Keywords(Routing Algorithm)(Tuning)(Load balancing)(Provisioning)(Optimal re-

source allocation)
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Sommario

La tesi presenta un nuovo algoritmo per la ripartizione del carico in sistemi o reti

di sistemi informatici avanti dimensioni molto elevate. Il concetto di base quello di

valuatare i livelli di contesa delle risorse ed in base alla.

Gli algorithmi sono stati codificati e simulati, in JMT, Java Modelling Tool, una suite

di applicazioni sviluppato dal Politecnico di Milano e rilasciata sotto licenza GPL,

per vantaggi, ottenuti, attraverso la nuova politica di ammissione.

I risultati sono ulteriormente discussi nella tesi. I risultati mostrano un accordo

parziale con i risultati teorici, ed un miglioramento significativo rispetto agli algoritmi

di routing statico. Il lavoro qui presentato ha anche profonde implicazioni per studi

futuri di Green IT e possono anche contribuire ad affrontare il problema del consumo

di energia in grandi centri di calcolo.
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Chapter 1

Introduction.

1.1 Background

In the modern world, the amount of computing resources available to users are lim-

itless. Computers are becoming large, distributed in nature with huge amount of

storage and computing power. Such large number of components, interconnected

with each other through intranet or internet and running multiple layer, increases

the complexity of system architecture. With many applications running on the same

hardware through virtualization, the challenges to manage them effectively and crit-

ical issues related to daily operation, increases.

In this complex scenario, a system must be able to

1. self configure

2. self optimize

3. self recover
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based on the evaluation of the actual network conditions or state of the system. The

dimensions of the solution space are huge and possibly hundreds of thousands of dif-

ferent configurations have to be evaluated in order to take the best possible decision.

Modern data centers has to be designed to be scalable and adaptive.

Cloud computing [2], is one of the revolutionary approach for very large data center

or computing center, with infinite scalability and tremendous computing power. The

designers of such large scale computer infrastructures face a new family of problems

related to the ever increasing complexity of the architectures. The large number of

components and interconnected networks, the heterogeneity of the applications, the

service levels required, the intensity and the unpredictable fluctuations of the traffic,

and the multi-layered architecture are some of the critical issues that must be ad-

dressed.

In a very large system, many applications can be deployed and run at the same

time. The advantage gained is that, many customers can simultaneously use the

same underlying physical hardware. This avoids the need to own their own physical

infrastructure by renting and sharing resources. This allows the users to reuse initial

costs on hardware, software and services by using the idea of pay on use basis. They

consume resources as a service and pay only for what they use. As shown in Figure

1.1. Consumption is billed on a utility basis(i.e. resources consumed) or subscription

basis (time-based) with little or no upfront cost.

Other benefits of this approach are low barriers to entry, shared infrastructure and

low management overhead, and immediate access to a broad range of applications.

In general, users can terminate the contract at any time (thereby avoiding return on

2



Figure 1.1: Dynamic scaling of very large systems

investment risk and uncertainty), and the services are often covered by service level

agreements (SLAs) with financial penalties.

A Service Level Agreement (frequently abbreviated as SLA) is a part of a service

contract where the level of service is formally defined. In practice, the term SLA is

sometimes used to refer to the contracted delivery time of the service or performance.

See figure 1.2. A service level agreement (SLA) is a negotiated agreement between

two parties where one is the customer and the other is the service provider. The SLA

may specify the levels of availability, service ability, performance, operation, or other

attributes of the service.

A possible topic of discusion and research is negotiating an unique SLA between the

service provider and the customers, which benefits both, for e.g. customers pay rea-
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sonable price for the usage of the resource and service provider is able to efficiently

manage the resources. Studies need to be undertaken to know the performance as-

sociated with the usage of network resources and workload charecterization to gain

insight into parameters which can fluctuate the optimality of the given hardware in-

frastructure.

Figure 1.2: SLA negotiation based on usage and performance.

1.2 Motivation

The increasing range of Internet applications and the corresponding growth of user

base have led to the need of large, reliable, scalable data centers having hierarchical

tier based architecture. Figure 1.3 depicts the Internet as a cloud in network dia-
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grams.

Figure 1.3: Modern Internet

Such modern data centers are typically organized in building blocks, hosting hun-

dreds or thousands of servers tightly packed in racks. In such scenario, the existing

infrastructure are enriched with run-time management mechanisms and algorithms

that share multiple goals, for e.g., to optimize the run and deployment of applications

over the servers, to reduce power consumption, to avoid performance degradation.

In such large data centers normally, algorithms are operating at a coarse-grained time

scale which run periodically, to determine which servers must be turned on or off and

how applications and services are to be deployed over the servers. Special attention

has to be given to sudden and unpredictable peaks in the user demand or work load.

These mechanism is not sufficient in dealing with the rapidly changing service access

patterns and can not be monitored efficiently with coarse-grained decisions.

Over provisioning of the hardware infrastructure may represent one of the solution
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in the short term, but it introduces additional power consumption costs which are

economically poor decisions. Load management algorithms are needed to guarantee

good performance despite the foreseeable changes in request patterns. Hence, the

strategies operating at a coarse grained time scale must be enriched with real-time

solutions for handling load management. This motivates to investigate innovative

methods based on real-time state of system, which can efficiently deal with varying

server load, optimize the resources consumed and keep the performance of the system

under given quality and standard.

1.3 Aim

The focus of this masters thesis is to address the performance issues of the above

mentioned large server system without compromising on an agreed minimum Quality

of service. The aim is to design efficient techniques based on the knowledge of work-

load and their heterogeneous demand on resource consumption, in order to optimize

the utilization, throughput and response time.

As the workload is highly dynamic and characterized by the nature of high unpre-

dictability, to design such systems with high performance, they have to be designed as

autonomic in nature. An Autonomic computing systems perform self- management

including ability to optimize the use of resources, self-tuning and self-reconfiguration

based on the current state of the machine. To achieve the above mentioned goals,

concepts of bottleneck migration and common saturation sector in a network (theory

to be introduced later in chapter2) has been used to build a new approach to optimize

a given large multiclass server system. The objective is to design a Admission control
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policy, Redirection policy and Routing policy for a given computer network having

contention of resources to maximize its performance.

Study aims to understand to which extent and under which conditions the integra-

tion of predictive models into existing request management solutions can improve the

performance of the system. We focus initially on an algorithms that selectively allow

the admission of user request based on the class and then focus redirection or routing

of user requests among the servers hosted in the data center. The decisions about

user request admission and request redirection are local in nature. An admission

control algorithm also decides whether a request should be processed in the given

node or should be dropped into another node. In the latter case, it also chooses the

most appropriate node. Both decisions are usually enforced through the evaluation

of the load conditions of the server and, of its immediate neighbors, and through the

comparison of these values against a fixed, static threshold.

Effort is given to model the infrastructure through queuing theory specifically M/M/1

or M/G/1 queues and infer the server performance from the mix of classes residing in

the service section. The approach using Queueing theory also aims to overcome the

complexity of architecture of such large server systems by assuming certain assump-

tions and obtain results which gives a fair evaluation. To address this issue, we use

the server queue length and number of requests getting serviced as a measure of server

load. Process queue lengths allow to define a linear relationship between server load

and the predicted user request response time, thus simplifying the prediction model.

In order to understand the gain achieved we evaluate the performance associated by

the redirection or controlled admission of a user request by comparing the through-

put obtained with the value obtained by random routing and default admission pol-

7



icy(First come First). Our study also aims to understand to which extent and under

which conditions the integration of predictive models into existing request manage-

ment solutions can improve the performance of the system.

Aim is to study the results with the help of a detailed system simulator, and demon-

strate that the proposed solution outperforms existing, static threshold-based request

management strategies. We also strive to show how prediction can help us to achieve

results that are stable across different workload scenarios and how it can preserve

good performance for different request redirection.

1.4 Thesis Outline

This Thesis document is organized as follows:

• Chapter 2, presents the Theoretical synthesis behind the developed techniques,

an introduction about Queueing Networks and concepts on Bottlenecks and

Saturation Sector which has mainly motivated this research.

• Chapter 3, presents the techniques of converting the large data centers as Queue-

ing Network models.

• Chapter 4, introduces the techniques and simulation tools used for the devel-

opment and modeling of the work.

• Chapter 5, discusses the proposed request admission and redirection algorithms.

• Chapter 6, present the experimental setup and the results of the experimental

evaluation carried out for different workload scenarios.

8



• Chapter 7, concludes the thesis with and future work.
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Chapter 2

Theoretical Synthesis

2.1 Multi-Class Queueing Network.

Queueing theory is the mathematical study of waiting lines or queues. The theory

enables mathematical analysis of several related processes, including arriving at the

(back of the) queue, waiting in the queue and being served at the front of the queue.

The theory permits the derivation and calculation of several performance measures

including the average waiting time in the queue or the system, the expected number

waiting or receiving service, and the probability of encountering the system in certain

states, such as empty, full, having an available server or having to wait a certain time

to be served.

Queueing network modelling, is a particular approach to computer system modelling

in which the computer system is represented as a network of queues which is evaluated

analytically. A network of queues is a collection of service centers, which represent

system resources, and customers, which represent users or transactions.

10



Multi class queueing networks are used to model large computing networks because

they can provide an good description of the system load, which is reflected in more ac-

curate results of performance analysis [3]. Computers are becoming large, distributed

in nature and have huge amount of storage and computing power. Such huge number

of components, which are interconnected to each other through intranet or internet

and running N-tier architectures, also increases the complexity of the model of the

system. Also with many applications running on the same system through virtu-

alization, challenges and critical issues related to modeling and designing increase

manifold times.

The complexity of modern computer infrastructures makes the application of known

solution techniques infeasible for these new environments. For example the exact solu-

tion techniques like the convolution algorithm [4] and the MVA [15], are prohibitively

expensive in term of computational resource requirements. On the other side, ap-

proximate solution techniques (see e.g., [7, 9]) may suffer an uncontrolled decrease in

accuracy as the complexity of the model grows [19]. Thus, with computer systems

that comprise hundreds of servers, LANs and WANs and workloads consisting of large

populations of several heterogeneous customer classes an interesting alternative (in

some cases the only one feasible) to both exact and approximate solutions is rep-

resented by asymptotic techniques.With a limited effort it is possible to determine

asymptotic values of several performance indices such as system response time and

throughput, resources utilizations and queue lengths.

11



2.1.1 Bottlenecks

The performance of any system is limited by the congested hardware resources, also

known as bottlenecks. The asymptotic analysis of multi-class queueing networks

with distinct bottlenecks have introduced us to concepts of bottleneck migration. A

bottleneck is a phenomenon where the performance or capacity of an entire system

is limited by a single or limited number of components or resources.

As shown in [3] that multi-class models can exhibit multiple simultaneous bottlenecks.

The dependency of the bottleneck set on the workload mix is therefore derived. In

an enterprise system there are normally different classes of jobs and the class mix

can change at run-time. This suggests that there might be several bottlenecks at

the same time and bottlenecks can shift from one server to another server over time.

The concepts derived in the [3] will revisited in the following section of Optimal mixes

which will guide us through the mathematical derivation of common saturation sector.

2.1.2 Optimal Mixes

Interesting properties of two-class queueing networks are investigated. The theory

presented is valid for two-station networks only, while others can be extended to

models with a higher number of stations and/or a higher number of classes. In a

general setting, we consider that each customer class has a favorite station which it

utilizes the most. Such station is different for each class. For this type of workloads,

we show that in a two-station network there exists a customer population in which

the proportion of components of each class is such that both stations are equally uti-

lized for all population sizes. It is shown that the equiutilization population provides

12



an optimal operational point of the system where the system power (or, equivalently,

the sum of the station utilizations) is maximized.

This means that the system operates at the best performance since the global utiliza-

tion of the stations is maximum and so is the ratio of throughput to response time.

Furthermore, the equiutilization population belongsto a set of populations, called

common saturation sector, such that both stations saturate when the population size

increases.

2.1.3 The Equiutilization Point

The contents of this section has been described in details in [3]. Let N be a closed

queueing network with two fixed rate single server stations (denoted by indices i

and j), two classes of customers (denoted by indices r and s), and total number of

customers K. Let β = (β1,β2) be the population mix, where βr = Kr / K and Kr is

the total number of class r customers in the network (thus, K1 + K2 = K and β1 +

β2 = 1). Therefore, the network population is given by K = (β1 K, β2 K). Let Lir

= Vir Sir be class r loading of station i, where Vir is the average number of visits of

class r customers at station i and Sir is the average service time of class r customers

at station i. Thus, Lir is the total service demand of a class r customer on station

i. As an example, consider the following loading matrix

Lir =









60 40

30 70









(2.1)

According to matrix 2.1, class 1 service demands on stations 1 and 2 are 60

and 30 time units, respectively. Class 2 service demands on stations 1 and 2 are

13



40 and 70 time units, respectively. 2.1 describes one of the load of a model that

will be used as a running case in the thesis to illustrate the results presented. In a

network N there exists a population mix, i.e., a vector β∗, such that both stations

are equally utilized for any number K of customers in the network. Such a mix is

called equiutilizationpoint. The equiutilization point identifies the population mix β∗

= (β∗

1
, β∗

2
) such that

U1(K
∗) = U2(K

∗) (2.2)

for all K, where K∗ = (β∗

1
K,β∗

2
K). Station i’s utilization can be composed from the

steady state as probability p(k).

Ui(K) = 1 −
∑

k:ki=0

p(k) = 1 −
∑

k:ki=0

1

G(K)

2
∏

j=1

Fj(k) (2.3)

where k = (k1 ,k2 ) is the state vector that describes the population in the network,

ki = (ki1, ki2) is the vector describing the population at station i, and G(K) is the

normalization constant of the product-form solution. The functions F in Eq. 2.3 can

be written as

Fi(k) =
2

∏

r=1

Lkir

ir = Lki1

i1 Lki2

i2 (2.4)

as we consider only fixed rate stations. By substituting Eqs.2.3 and 2.4 in Eq.2.2,

we obtain

L
β1K
21 L

β2K
22 = L

β1K
11 L

β2K
12 (2.5)

which yields the coordinates of the equiutilization point:
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β∗ =











β∗

1
=

log L22

L12

log
L11L22

L12L21

, β∗

2
= 1 − β∗

1











(2.6)

The derivation above applies also to networks with any number of customer classes.

As the number R of classes increases, the number of dimensions of the population space

increases equally. In general, in an R-dimensional space the equiutilization point is a

hyperplane.

The following loading matrix has been used,

Lir =









60 40

30 70









(2.7)

The theoretical calculation shows us that Equiutilization in such a given network is

(0.44, 0.56), i.e. in a given network when class1 is 44% and class2 is 56%, the

system will perform at optimum level. To validate the theory, the graph was plotted

with various mix of class1 and class2 jobs is a network and corresponding system

throughput and system response time was plotted. In the figure 2.1 represents the

system throughput for various population mix in execution, which clearly shows that

when population mix is 0.40-0.50, the system throughput is maximum. In the figure

2.1 represents the system response time for various population mix in execution and as

seen that when population mix is 0.40-0.50, the system response time is minimum.

The figures 2.4 and 2.3 show us that the system throughput and system response

time for each class switches at the equiutilization point and the global throughput

and response time obtained is optimum.

The properties of multi-class product-form closed queueing networks with two classes
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Figure 2.1: System throughput
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Figure 2.2: System Response time
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Figure 2.3: System Throughput per class (switch)
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Figure 2.4: System Response time per class (switch)
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of customers as presented will be used later in the thesis to calculate equiutilization

point for a given Queueing Network model. In particular, as seen in a network with

two stations there exists a combination of customer classes such that the stations

are equally utilized regardless of the population size. Such an equiutilization point is

shown to be an optimal operational point at which the system operates at maximum

power.

2.1.4 Common Saturation Sector

The equiutilization population belongs to a set of populations, called common satu-

ration sector, such that all the stations in a given queueing network saturate when

the population size is large enough. When the workload mix changes, the bottleneck

in the system can change as well and there may be many simultaneous bottlenecks

in the system at a given time. Such a set is called common saturation sector.

Balbo and Serazzi [3] showed that in multiple workload mixes, multiple resources

systems, changes in workload mixes can change the system bottleneck. The points in

the workload mix space where the bottlenecks change are called crossover points, and

the sub-spaces for which the set of bottlenecks does not change are called saturation

sectors. The same authors, in the same paper, showed analytical relations between

the workload mixes and utilization at the saturated bottlenecks as well as analytical

expressions for asymptotic (with saturated resources) response times, throughput,

and utilization within the saturation sectors.

As shown in the figure 2.5 we can see that for 2 station 2 class network, with men-

tioned service loads. The figure 2.6 shows that when the class 1 is dominating and
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more than 60% in execution in the queueing network, then the station 1 is the bottle-

neck. When the class 2 is dominating and more than 70% in the queueing network,

then station 2 is the bottleneck. But for a range when the Class 1 is between (30%

- 60%) and Class 2 is between (70% - 40%) then both the stations are bottleneck.

Also in this sector the Equiutilization point lies where the system has optimum per-

formance.

Figure 2.5: 2 class 2 station

To summarzize the mathematical equations and concepts regarding the equiu-

tilization point, bottleneck migration and common saturation sector form the core

principles and foundations of the presented thesis.

2.2 Workload Classification

Workload characterization has significant impact on performance evaluation. Un-

derstanding the nature of the workload and its intrinsic features help us to interpret
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Figure 2.6: Common Saturation in 2 class 2 station
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performance measurements and simulation results. Identifying and characterizing the

intrinsic properties of an user request in terms of its access of servers, locality, control

flow behavior etc. can eventually lead to program a model of computer system, which

can be used for analytical performance modelling.

As the theory of common saturation sector and migration of bottleneck is currently

based on two classes, it is important to analyse and understand how a given workload

can be classified in different classes and what techniques are used to achieve the same.

Workload can be characterized at various level and classified at each level depend-

ing on the perspective. Levels of Workload characterization can be Physical Level,

Logical Level and Functional Level.

2.2.1 Physical Level

At Physical Level any workload can be broadly classified into two major classes. I/O

bound and CPU bound. At physical level the designers of a particular application

are able to interpret whether the developed tool is computation oriented or data ma-

nipulation oriented. This helps system architects to allocate right hardware resources

resulting in good performance.

2.2.2 Logical Level

At Logical level the workload can be broadly classified as response oriented or re-

quest oriented. At this level the network performance managers can design the

internet network to be upload intensive or download intensive.

23



2.2.3 Functional Level

At Functional level the workload can be classified as to which application the request

is directed. For example if a network hosts three web application then, request bound

for application A can be classified as class-A and so on. Such functional classification

helps the service provider to negotiate SLA with clients by monitoring the usage of

network resources by a given class of request.

2.2.4 Techniques

Clustering techniques are widely recommended tools for workload classification. The

k-means algorithm is widely accepted as the standard technique of detecting workload

classes automatically from measurement data. [14] The thesis does not go too much

deep into the actual methods like web crawling and request monitoring mechansisms.

Validity of the randomly generated workload classes, when the system and workload

is analyzed by a queueing network model and mean value analysis.

2.2.5 Summary

Workload classification [12] provides a sound understand of how users are using the

network. The resulting information can be used to simplify troubleshooting tasks

and help in making decisions regarding network design and optimization. In addi-

tion, characterization data, placed in the right format, produces excellent tools for

management and non-technical management like SLA negotiation.

Within the confines of a network, workload is the amount of work done by, a server,

or internetwork in a given time period. Workload characterization is the science that
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observes, identifies and explains the phenomena of work in a manner that simplifies

the understanding of how the network is being used.

25



Chapter 3

System model

Internet service providers usually use several server pools to host different web ap-

plications, to ensure smooth system management and minimum interference between

applications. Internet applications can be modelled as multi-class queueing networks,

with each queueing station corresponding to a server.

The advantage of using an queueing network model is that performance metrics can be

easily computed, and potential system bottlenecks can be identified without running

the actual system. In this thesis, a queueing netwoek model is used for simulation to

assist dynamic resource allocation in server pools. The main components of a modern

web application is

• WS Web server.

• AS Application server.

• DS Database server.

• C Incoming customer request.
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Figure 3.1: Typical web application deployment
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3.1 Data center architecture

Modern data centers are large, complex and modular infrastructures with thousands

of servers that host multiple Internet applications. Incoming requests are distributed

among the servers of the data center through a complex dispatching mechanism guided

by the URL of the request. A first level dispatcher, operating at the level of the entire

data center, decides which building block has to receive the request, then a second

level dispatcher selects a server within the building block. As shown in the figure 3.2.

Figure 3.2: Large Internet Data Center
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Figure 3.3: Logical partitioning of the Model
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The building blocks of an Internet data center as a set of servers, where each

server is basically a time shared processor. Hence forward the server will be known

as Resource. refer figure 3.3 where a single server or resource is represented by red

circles.

A single deploy of given internet application can be on a set of N servers. Hence

forward such set of N servers will be called Node. refer figure 3.3 where a single node

is represented by green circles.

The building block hosts also a Storage Area Network where multiple Network At-

tached Storage (NAS) are shared by the servers. It is assumed that each Internet

application is replicated on a subset S of servers within the building block that share

the same NAS. The redirection of a request for the Internet application will occur

among the servers of the set S. We do not consider request redirection outside the

set S, such as geographical or inter-block migrations, because each application must

access information stored in a NAS. Migration and replication of these data across

building blocks of across data centers would introduce an overhead that is not compat-

ible with real-time redirection. The subset S will be hence forth known as Cluster.

refer figure 3.3 where a a cluster is represented by blue.

We further elaborate the four different levels of abstraction as introduced above:

• Resources are units which process requests, like CPU cores, Disks, or even a

more complex elements such as web-servers or Databases.

• Nodes are collections of interconnected resources. Jobs entering a node requires

several services from each of the available resources. Jobs leave the system as

soon as they have completed their services.
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• Clusters are collections of nodes. All the nodes in a cluster can perform the

same tasks. They are all equally reachable and there is no particular advantage

in choosing a node in place of another. Every job entering the system, requires

the services provided from only one node (i.e. a cluster could be a pool of

servers). We also imagine that there is a router in front of the cluster, that can

send the jobs to the best available nodes.

• Clouds or very large Computing center are collections of several clusters.

At this level, clusters present in a cloud are not equivalent, not all the clusters

can be equally reached, and other issues (such as cost, or consumption) vary

from cluster to cluster. We also imagine that it applications are not aware of

the structure of the cloud in which they are running.

3.2 Resource

A resource, or system resource, is any physical or virtual component of limited avail-

ability within a computer system. Every device connected to a computer system is a

resource. Every internal system component is a resource. In our model, by resource

we mean items like processor unit or I/O disk unit or a Web server or Database

server. But such items, individually are of not of much use, but collectively they

form a computing unit. In our model, resources are represented by Queueing stations

where a service time required to service a request is already known.
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3.3 Node

A Node is an atomic unit of computing, which is composed by group of resources

that can fulfill the service needs of a job or of a request. Node can be a PC, which is

a collection of resources like CPU core, Memory and Disk or it can be an Enterprise

subnetwork where resources can be Application servers, Database servers and Web

servers. Each job or request queues at the node for processing.

The performance of the Node can be modeled by a simple queueing network, where

multiple classes of jobs are associated to different service requirements. To achieve

performance boost at this atomic level, the idea is to develop a admission control

mechanism for the incoming jobs based on the concept of common saturation point

(or region) in a group of resources. In a multi class queueing network, it has been

shown that, at a certain mix of request rates coming from the different classes, the

system has a common saturation point or region. This region is also a point where

the system has the best performance [3] [6], [11]. To exploit this property, we propose

a new scheduling policy that pushes the node towards common saturation point, by

controlling the mix of requests coming from different classes inside a node.

3.4 Cluster

Cluster is the level of categorization that considers a collection of nodes. All the

nodes in a cluster can perform same tasks or can process same requests. A cluster

can be for example a pool of servers. A cluster is modeled by considering a different

queueing network for each of its nodes. Not all the subnetworks may be working at
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their common saturation region at a given time instant. This fact can be exploited

to route new requests to the nodes that will get closer to their common saturation

region.

3.5 Cloud or Large Data Center

Cloud computing is a paradigm that enables to run an application on a large scale

computer system without having to buy it but just paying for the resources actually

used. The programmer just creates an application using some high level API and then

deploys it on the cloud infrastructure of the provider, having little or no knowledge

on what virtual machine his application is going to be run.

Due to the high number of nodes involved and the complex and usually unknown

interaction between them, it is infeasible to use queueing networks to optimize per-

formance indices such as response time or energy consumption. In order to overcome

this difficulty we need an appropriate approximated modeling technique. This thesis

does not cover the approximate modeling techniques. Hence the macro performance

issues on a large cloud or very large server system is out of scope of this thesis.

3.6 Request dispatching mechanism

In this section we illustrate how a user request is managed or directed to the correct

server. When a request r is received by the data center main firewall or dispatcher,

the first level of routing selects a building block in the data center that hosts the

Internet application to which r refers.
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The building block dispatcher selects a cluster, that we call ca to which the request is

forwarded. As mentioned above cluster ca is a set of nodes sharing the same NAS or

storage. If the request r belongs to an existing user session, the dispatching operation

selects a node on the basis of a binding table that maps user sessions to nodes. If

the request belongs to a new session, the building block dispatcher must select a new

node in a given cluster that will host the request user session. Mostly the the selection

of a new server is carried out through a load blind algorithm, such as Round Robin

Random algorithms to load-aware solutions, such as Weighted Round Robin [10].
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Chapter 4

Proposed Algorithm

This thesis proposes policies or algorithms exploiting the concepts of bottleneck mi-

gration and common saturation sector as introduced earlier [3], to derive performance

benefits in a large server system. The policies proposed, are deployed on Node and

Cluster level, relying on continuous monitoring of the servers.

4.1 Window based request management

Policies proposed in this section aims to improve the performace at a node level.

4.1.1 Window based admission algorithm

The basic idea is to add an extra waiting queue for the jobs, when they queue at

a node where the admission control mechanism verifies the classes of the jobs in

queue and admits only those jobs whose classes pushes the node towards the common

saturation sector. To avoid stagnation of unfavorable jobs in the waiting queue, a
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timeout is associated with all the incoming jobs. When the time out expires, the

undesired job is admitted in the node, even if this action pushes the system out of

common saturation zone.

Window based admission algorithm is described below

1. STEP : INPUT Window w, Class Desired cd, Time Timeout.

2. STEP : OUTPUT Job j.

3. STEP : FOR EACH i IN SIZE OF(w) DO.

4. STEP : IF CLASS OF JOB AT(i) EQUALS cd.

5. STEP : RETURN JOB AT(i).

6. STEP : END FOR.

7. STEP : FOR EACH i IN SIZE OF(w) DO.

8. STEP : IF AGE OF JOB AT(i) ≥ Timeout THEN.

9. STEP : RETURN JOB AT(i).

10. STEP : END IF

11. STEP : END FOR.

12. STEP : RETURN FIRST JOB AT(w).
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4.1.2 Window based request redirection

In the above mechanism of Window based admission algorithm, it is proposed that

unfavorable jobs are admitted in the node, even if pushes system out of common

saturation zone, To overcome this limitation, another improvement one the idea is to

redirect the unfavorable jobs to another node, where it can be served immediately.

In this mechanism, it is proposed to redirect the unfavorable jobs from the waiting

queue of a given node to another node, where the job will push the node towards

common saturation.

Window based request redirection is described below

1. STEP : INPUT Window w, Time time out.

2. STEP : OUTPUT Node n.

3. STEP : DECLARE Node out, NUMBER min.

4. STEP : FOR EACH i IN SIZE OF (w) DO.

5. STEP : IF AGE OF JOB AT(i) ≥ Timeout THEN.

6. STEP : j[i] = JOB AT(i).

7. STEP : END IF.

8. STEP : END FOR.

9. STEP : FOR EACH n IN List of (N) DO.

10. STEP : c[n] = getCurrentClassMix of n.

11. STEP : o[n] = getOptimunClassMix of n.

38



12. STEP : h[n] = hypotheticalClassMix(cn, ji)if n receives j.

13. STEP : dh[n] = MODULUS(o[n] - h[n]).

14. STEP : dc[n] = MODULUS(o[n] - c[n]).

15. STEP : END FOR.

16. STEP : FOR EACH k IN List of (N) DO.

17. STEP : IF dh[k] ≤ dc[k] THEN.

18. STEP : IF min ≤ dh[k] THEN.

19. STEP : ASSIGN out = k.

20. STEP : ASSIGN min = dh[k].

21. STEP : END IF.

22. STEP : END IF.

23. STEP : END FOR.

24. STEP : RETURN out.

4.2 Common Saturation directed Routing

The policy described in this section is aimed at cluster level. The routing policy is

designed so that it detects the class of a new incoming job or request and proceeds to

calculate the change in the workflow mix for each of the forwarding nodes. The policy

then routes the incoming job to the node for which such arrival will cause the best
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increase (or the least decrease) in performance, by bringing it closer to its common

saturation sector.

Equiutilization oriented Routing Algorithm is described below

1. STEP : INPUT List Nodes N, Job j.

2. STEP : OUTPUT Node n.

3. STEP : DECLARE Node out, NUMBER min.

4. STEP : FOR EACH i IN Size of (N) DO.

5. STEP : ASSIGN c[i] = getCurrentClassMix of i.

6. STEP : ASSIGN o[i] = getOptimunClassMix of i.

7. STEP : ASSIGN h[i] = hypotheticalClassMix(ci, j)if i receives j.

8. STEP : ASSIGN dh[i] = MODULUS(oi - hi).

9. STEP : ASSIGN dc[i] = MODULUS(oi - ci).

10. STEP : END FOR

11. STEP : ASSIGN min = MAX INTEGER.

12. STEP : FOR EACH i IN List of (N) DO

13. STEP : IF dh[i] ≤ dc[i] THEN.

14. STEP : IF min ≤ dh[i] THEN.

15. STEP : min = dh[i].
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16. STEP : END IF.

17. STEP : END IF.

18. STEP : END FOR.

19. STEP : out = Node at(N, min).

20. STEP : RETURN out.

Indeed, a cluster hosts hundreds of nodes, all mirroring the same Internet application,

and the cluster router needs to collect and aggregate in a timely way the information

about the load of each node.

4.3 Hypothetical implementation

User request r is routed from the main firewall or gateway to the cluster which hosts

or has the installation of the application. This is done by reading the header infor-

mation in the request packet. Inside the cluster the web application is mirrored at

various nodes.

The cluster router then directs the request to the most appropiate node ni, depending

on the best increase (or least decrease) in performance, on recieving the new request.

Each node contains a window management module that is responsible for the ad-

mission of requests at a fine-grained time scale. Request r of class ci is received

by the node ni at time t. Depending on the system conditions, the request may be

processed locally or redirected to a node nj of the same cluster. It should be noted

that in modern web based servers, the service of a user request involves access to
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data, such as the user session information, that must be migrated at the moment of

request redirection. Hence, by redirection we mean both the migration of user session

information and the actual forwarding of request r to the node nj. We can summarize

the functions of the admission controller as follows:

1. Should request r be processed locally on node ni?

2. Should it be migrated to another node nj?

3. In the latter instance, which is the best node nj to which the request should be

sent?

Refer figure 4.1 for the graphical illustration of the proposed algorithms at various

levels in an enterprise network.

.
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Figure 4.1: Hypothetical implementation at various levels
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Chapter 5

Testbed for Performance

Evaluation

In this chapter the testbed and the workload considered for the simulation evaluation

is explained. The simulation and modeling of the techniques developed in this thesis

were tested in a tool called Java Modelling Tools (hence forth will be called as JMT).

JMT is a suite of applications developed by Politecnico di Milano and released un-

der GPL license. The project of JMT offers a complete framework for performance

evaluation, system tuning, capacity planning and workload characterization studies.

JSIMgraph, an simulation application within the suite of JMT allows the design of

a queuing network model in graphical way. The model can be solved either with

simulation techniques or, if the model is BCMP compliant, automatically exported

to JMVA to be solved with exact or approximate MVA algorithm.
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5.1 JSIMgraph - Intro

JSIM supports state-independent routing strategies, e.g., Markovian or round robin,

as well as state-dependent strategies, e.g., routing to the server with minimum utiliza-

tion, or with the shortest response time, or with minimum queuelength. Performance

indices like throughputs, utilizations, response times, residence times, queue-lengths

are evaluated. The simulation engine supports several probability distributions for

characterizing service and inter-arrival times, e.g., exponential, hyperexponential, uni-

form, Erlang and Pareto.

The project aims at offering a complete framework for performance evaluation, system

tuning, capacity planning and workload characterization studies. JSIMgraph allows

the design of a queuing network model in graphical way and the model can be solved

with simulation techniques.

It provides following functionality: 1. Creation of stations, links and grouping into

blocking regions with drag and drop functionality 2. Show queue animation during

simulation process: that will give a smart information on queue state and utilization.

5.1.1 Architecture of the tool

The JSIMgraph has been designed to be very flexible. The important feature is

separation between the GUI and computation engine by introducing an XML layer

as shown in 5.1.

The tool can be divided in 3 layers.

1. GUI LAYER(Graphical User Interface to design and configuring models)

2. XML LAYER(saving and reading models to file system)
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3. SIMULATION LAYER(actual implemented strategies and logic)

Figure 5.1: JSIM Framework

In JSIMGraph, the model of Queueing Network created using the Graphical User

Interface (i.e. GUI) is saved in the form of a XML. The graphical user interface

developed using Java Swing Architecture. The gui modifies the model which are

saved in the the java class ClassModel, which is then converted into an XML file

using the JSIM.xsd file. The XMLFile 5.2 which is a well formed XML file contains

all the details regarding to the model.

The architecture allows reuse of the simulation or computation engine by other tools

or projects by providing a suitable XML input file. At the end of the computation

and simulation the performance measures and indices are in to the solution element

of input file.
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Figure 5.2: Sample XML

5.1.2 Simulation Engine

The core module of the simulation engine is a discrete event calendar that acts as

messaging service provider, sending messages to simulation engines. The arrival of

a job to the queueing station and corresponding departure after service completion,

is represented by message. When all the event for a given time are processed, the

simulation current time is moved forward to the next instant with a given time in the

calendar.

In the simlation network, each service station is composed of three parts, called

Sections. The three sections are named as Input section, Service section and Output

section. The service demands are specified through the GUI interface in the service

section of the queueing station. In a queueing station the input section receives
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incoming jobs to be processed by the service section. The service section simulates

the service process with the user specified service time distribution. After service

completion, jobs are forwarded to the output section called Router which sends the

request to the input section of another queueing or service center according to user

specified routing policy.

Figure 5.3: FCR in JMT

5.1.3 Finite Capacity Regions

Models of simultaneous resource possession due to memory or software constraints

often require Finite capacity regions (see, fig 5.3 ). These are subnetworks where the

number of circulating jobs is constrained. Shared constraints impose an upper bound

on the allowed number of jobs in the region regardless of their service class. Dedicated

constraints, instead, limit the number of cycling jobs for a specific class. Jobs arriving

to a full region enqueue in a waiting buffer outside the region. The presence of the

waiting buffer makes it dicult to obtain an analytical solution to models with Finite
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capacity regions. Therefore, only approximation techniques have been de- veloped.

However, simulation remains the most important analysis technique in presence of

realistic workloads with multiple classes.

Finite capacity regions are implemented as follows. The waiting buffer is a service

center with infinite capacity queue and tunnel service section. The output section

implements the access control policy according to the user-specified shared and dedi-

cated constraints. Waiting jobs are selected to enter the region according to a FCFS

discipline. We point out that region access control is centralized, i.e., all arrivals are

routed to the same waiting buffer. Currently, the simulator does not support mul-

tiple waiting buffers and nested or intersecting regions. We also remark that, when

a region is full, the user can force the simulator to drop arriving jobs. This may be

used to represent systems with losses, e.g., the M=M=1=k queue.

For the implementation of the new routing algorithms and to validate the theory of

existence of population mix which affects the utilization of the stations and the pres-

ence of optimal operational point based on population mix of classes, the JSIMgraph

framework is used. JSIMGraph code was modified to incorporate the simulation of

an queueing network model with the proposed modifications of adding a new way of

forwarding a job to the Queueing station based on the population mix of the system.

5.1.4 Performance Indices

JMT simulator allows the computation of several performance indices. To collect

samples a special data structure known as JobInfoList is used. It logs the arrival

time of jobs and feeds a given statistical analyser with the collected data.
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5.1.5 Statistical Analysis

The default measure analysis is using transient detection and confidence interval es-

timation algorithm. The analysis are executed at run time of the simulation. The

confidence intervals are computed using spectral methods. Unless long run simula-

tion are considered, the transient effects can significantly affect simulation results.

Transient detection uses R5 heuristics and MSER-5 stationary rule. In addition to

these pre existing analysis, normal moving average algorithm was also coded to the

simulation layer, to see the behaviour of the performance indices without advanced

statistical methods.

5.2 Testbed

The theoritical foundation was based an closed network model with two fixed rate

single server stations and two classes of customer. But modern computer infrastruc-

ture can not be accuretly represented by such closed network queueing models. To

extrapolate the theory for large computing networks, the closed class model has to

converted into an open class network model. To achieve the conversation, the closed

class model was modeled as open class model with a finite capacity region. Finite

capacity region limits the number of customer for a given queueing stations and hence

recreating the same effect as number of customer in closed class model.

Please see figure 5.4. This is the model used to simulate the behaviour of a Node.

The window is located just before the FCR region. We assume a large pool of jobs

of different classes (here two), to be present outside the window. Whenever a job

exists from the FCR, a new job waiting in the window queue enters the system. The
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dynamic admission policy selects the job depending on the parameters set as shown

in figure 5.5. The Admission control panel allows the user to control the following:

1. The input workload population.

2. Window size

3. Age which calibrates the timeout parameter.

4. Pop Mix. in Execution controls a the mix of classes at run time.

5. Redirect Jobs. allows the window to redirect unfavorable jobs to other nodes.

6. Analyser. allows user to select a given statistical analyser for the simulation.

As seen in the figure 5.6, where the testbed used to find the performance benefits of

using the Equiutilization based routing policy in a Cluster to select the best possible

node.

Experiments have been conducted for variuos workloads. The results generated are

compared with cases where the proposed algorithms are switched off. The case studies

are further discussed in the next chapter, where we simulate the testbed discussed in

this chapter.
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Figure 5.4: Admission Control testbed of node
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Figure 5.5: Admission Control testbed parameters.
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Figure 5.6: Routing Algorithm testbed of cluster
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Chapter 6

Results

6.1 Validation

As discussed in the previous chapters, the theoretical results are based on two station

and two class closed queueing network model. The closed class queueing network

model was converted in to an open class model, using the concept of finite capacity

region. First need to validate the above assumption, for which we need to compare

simulation results of throughput and response time of the open class model, with the

analytical values obtained from closed models. The loading matrix of the closed class

model is shown in figure 6.1. The total number of customer is 100 for the analytical

model. The testbed with the admission control parameters are shown in the figure

6.2 On simulation the open class model or testbed by controlling the population of

class 1 in execution by using the window admission mechanism, following results are

obtained. On analysing the resutls, we conclude that, indeed the open class model

with FCR accurately gives the same result as closed class model. Hence we take this
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testbed as reference proceed to experiment further to understand the benefits of the

new logic.

Figure 6.1: Service demand matrix

6.2 Case Study

As seen in the previous section, we were successfully able to validate that the simu-

lation model and the analytical results from JMVA as equivalent. Now we simulate

the given model for various workloads, to understand the limitations and benefits of

the proposed algorithms in the thesis.

It should be pointed out that the performance of a system is determined by its char-

acteristics as well as by the composition of the load being processed [5]. Different
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Figure 6.2: Test bed of node with admission control

Table 6.1: Analytical values: system throughput

Class-1(%) Global Class-1 Class-2

10 0.01611 0.00320 0.01292

20 0.01786 0.00626 0.01160

30 0.01934 0.00884 0.01050

40 0.01997 0.00994 0.01003

50 0.01998 0.01004 0.00994

60 0.01968 0.01064 0.00905

70 0.01904 0.01193 0.00711

80 0.01827 0.01345 0.00482

90 0.01748 0.01505 0.00243
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Table 6.2: Simulation values: system throughput

Class-1(%) Global Class-1 Class-2

10 0.016174 0.003157 0.013106

20 0.017831 0.006376 0.011442

30 0.019330 0.008879 0.010441

40 0.019992 0.010011 0.010034

50 0.020026 0.010160 0.009981

60 0.019657 0.010676 0.009050

70 0.019062 0.011993 0.007157

80 0.018374 0.013515 0.004860

90 0.017289 0.014873 0.002410

Figure 6.3: Analytical(JMVA) graph: throughput
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Figure 6.4: Simulation graph: throughput

Figure 6.5: Analytical graph: response time
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Table 6.3: Analytical values: system response time

Class-1(%) Global Class-1 Class-2

10 6206.17261 3127.21513 6968.50236

20 5597.68257 3193.38970 6895.60166

30 5171.60062 3394.18224 6668.11459

40 5008.64743 4024.24265 5984.61266

50 5005.29805 4979.01842 5031.85657

60 5080.78534 5641.21494 4421.84884

70 5252.98218 5869.33730 4219.16215

80 5472.36608 5946.74507 4148.60824

90 5721.99212 5981.20380 4116.42442

Figure 6.6: Simulation graph: response time

60



Table 6.4: Simulation system response time values

Class-1(%) Global Class-1 Class-2

10 6147.567768 3165.123871 6833.866859

20 5633.165951 3134.985289 6985.694241

30 5169.577336 3381.590296 6688.414854

40 4995.610733 4040.014477 5975.268473

50 5001.859845 4988.997857 5074.940096

60 5076.337129 5634.489243 4415.606436

70 5220.813767 5843.174367 4199.042470

80 5430.747119 5893.036246 4140.974379

90 5759.473705 6053.084228 4071.676114
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methodologies were involved for the construction of the workload models, which have

important effect on the algorthms under study. Behavior of real workload is very

complex and difficult to reproduce, so we develop simple techniques to capture the

static and dynamic behavior of the real load.

Since the study of this thesis is limited to two classes, we produce the load behavior

through simple random number generator. When the goal is to generate workload

having 50% class-A and 50% class-B, we create a class-A when the random num-

ber ≥ 5 and class-B when ≤ 5 in the scale of (0-10). But this is not enough and

sufficient to conclude about the benefits of the proposed algorithms, as one of the

goals of this new techniques is to also handle unbalanced workload conditions. So we

generate another workload where we define two process. Process A generates a certain

percentage of class-A , class-B and Process B generates a different percentage of

the same classes. Both the process have a certain switching probability as shown in

Figure 6.7.

Figure 6.7: process I and II generate jobs of class a and b
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6.2.1 Admission Policy

6.2.2 Case : balanced workload

In this case, we use balanced mixture of class A and class B. i.e. we generate static

mixture of both the classes using the fixed random number generator as discussed

above. We generate different models, for e.g. we first simulate the system with fixed

20% of classA and then 40% of classA and so on. The results are shown in the tabular

6.9 and 6.10.

Figure 6.8: Case 1 with Window =100, Timeout(Age) = 100
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Figure 6.9: Response time comparision with window admission
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Figure 6.10: Throughput comparision with window admission
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Figure 6.11: Simulation example

6.2.3 Case : unbalanced workload

Here we use a loading matrix of

Lir =









100 1

1 100









(6.1)

Also we use two different process to generate mixture of classes. As seen in figure 6.7,

the process A generates one of the classes at 90-99% and the other process genarates

the same class at 1-10% probability. This results in a very unbalanced workload,

where initially we have only one of the classes and later the other class. As seen in

the figures 6.12 and 6.13, we can see that window mechanism coupled with the timeout

concept, provides excellent improvement in the system response time and throughput.

Hence here in this case we were able to demonstrate that using the presented concepts
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Table 6.5: [SR] and [SX] with unbalanced input

Mode [SR] [SX]

Without Window 6658.7320 0.0150

W=100 Timeout = 100 6007.8014 0.0166

W=1000 Timeout = 1000 5208.0126 0.0191

Table 6.6: System response time with redirection

C-1(%)W=100, TO=100, RD=95 Global Class-1 Class-2

20 5917.839009 3176.030423 6890.287610

40 5013.610755 4234.443032 5832.647553

50 5009.199387 4504.911331 5503.909721

60 5031.367791 4721.086050 5294.199805

and approach in the thesis, we were able to obtain good performance and behavior

of unabalanced input load.

6.2.4 Admission with redirection

As seen from the previous section that Window mechanism is not sufficient to achieve

enough improvement unless the network is very skewed and the input load has very

high degree of burst in one of the class. Hence we had proposed the redirection

mechanism where we redirect the jobs from the given node based on their timeout

value. The test and evaluation of such results are shown in the figures 6.14 and 6.15.
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Figure 6.12: Throughput comparision with unbalanced workload

Table 6.7: System throughput with redirection

C-1(%)W=100, TO=100, RD=95 Global Class-1 Class-2

20 0.016862 0.004317 0.012544

40 0.019938 0.010062 0.009905

50 0.020013 0.009994 0.009980

60 0.019882 0.009925 0.009962
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Figure 6.13: Response time comparision with unbalanced workload

69



Figure 6.14: Simulation with redirection: system response time

We can summarize from the above results that, window mechanism is excellent

to handle the unbalanced input load, when the mixture of the two classes is not even

and highly skewed. On the other hand when the input load is well balanced with

a good mixture of both the classes, then window and redirection provides us with

excellent improve in the performance indices. Also it was measured from simulation

results, that redirection obtained was low as 2% when the input workload was 50%

for class-1. The results show us conclusive evidence of benefits of the proposed

algorithms.
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Figure 6.15: Simulation with redirection: system throughput

71



Chapter 7

Conclusions

In the thesis as presented contains a runtime configuration aware performance opti-

mizing mechanism developed for a component based computing network. To sum-

marize once more, the underlying idea was to selectively admit a given class of jobs,

driven by the concepts of migration of bottleneck and common saturation sector to

improve the overall throughput or response time of a given network. The capability

of driving the new admission policy is achieved through the introduction of a window

component that keeps the unfavorable incoming jobs waiting in a queue.

The use of a Queueing Network model was used to simulate the proposed idea and

verify the theoretical increase in throughput and response time with various configu-

ration and work load mix. Effort was given to maximize the total utility at a given

Quality of Service.

As we have seen that during bottleneck migration, there is a switch between the

throughput or response time of the different classes in the network, based on the mix

in execution. We have seen that after a particular mixture the performance metrices
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of a particular class dominates the other. This property of a network can used by

window mechanism to favor a particular class and keeping the mixture of classes in

the node to such a range so that a particular class of jobs always dominates the other.

Also it has been seen that the global throughput and global response time is optimum

when the system is in this saturation sector.

The new routing policy proposed in the thesis responds to class mix of a given switches

servers in a given cluster when necessary. In addition, the admission control scheme

deals with system overloading, which guarantees that the underlying system can re-

spond to variable workload and unbalanced user requests. Performance evaluation

has been done via simulation for an experimental workload. The results are compared

with a system model that implements no special algorithm. Our experimental results

show that the combination of the admission control scheme and the proposed redi-

rection policy performs substantially better under various circumtances maintaining

a certain Quality of Service. Also the system provides excellent improvement in per-

formance for highly unbalanced system with unbalanced workload. Thesis has some

limits:

• it does not consider the additional waiting time introduced for unfavorable job

in computing the response time of a node.

• it does not consider the delay introduced by redirection and migration opera-

tions.

• it does not take the computational demand of a user request (and, consequently,

the impact of its redirection on other servers) into account.
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Figure 7.1: Overall Integration of all proposed methods
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Chapter 8

Discussions and Future Work

After the advent of Web 2.0 and Web 3.0, Internet applications need large amount

of resources and computation power to run their multi threaded N-tier architecture.

Large data centers and data warehouses need to manage increasing user information

and data. The mechanism of routing user requests to the correct application and data

server and subsequent request re-direction and load balancing are based on standard

routing protocols like Routing Information Protocol. Such algorithms developed from

graph theory are simply based on computing least cost path or shortest path to the

destination and is not sufficient to handle the temporary and unpredictable user de-

mand.

In large Internet data centers where the applications are installed on multiple server

nodes, the user [18] request cannot be routed to the various nodes in a static way and

needs knowledge of run time server load. Whether request redirection can improve

the user-perceived performance on real time and server conditions, remains an inter-

esting and open issue. State of art proposals are typically based on thresholds. For
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example, double-thresholds on number of connection and network load are exploited

in [8] to manage requests with the goal to reduce energy and network resource con-

sumptions. Other studies, such as [1], propose request management techniques for

large data centers that are based on a single threshold on the system load.

The methodology proposed in the thesis can be improved along several directions.

One of the major area of research is extension of the policy to include multiple classes

of requests on more than two stations. Also integration of the admission control pol-

icy with the equiutilization oriented routing, combined with the redirection of jobs

gives a very powerful tool to fully realize the potential on a real time large scale server

system. By simulation the effectiveness of the proposed algorithms, gives a capability

to maintain the QoS targets for users while giving a strong leverage on the increase

in the performance. Future works also include applying real time workload to the

simulator to understand the behavior of performance metrics in order to enhance the

mechanism.

SLA management, using the techniques discussed and developed in this thesis is one

of the important area of future work. As already discussed in the Chapter 2 about

workload characterization, if the input workload of a large network is functionaly di-

vided on the lines of applications hosted, the window mechanism can provide higher

SLA or performance metrics to a particular class of job in favor of the other. This

gives the possibility of negotiating a different SLA and QoS with different client de-

pending on the ability of paying for maintaining higher response time or throughput.

Another Routing policy developed during the thesis, but not based on common satura-

tion sector and bottleneck migration was Load Dependent Routing. Load Dependent

Routing is a routing where the packets are sent by a node to one of its forward nodes
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based on its own load and probability factor of the forwarding path. It requires knowl-

edge of the network topology to make routing decisions. The network administrator

configuring the routing rules should be aware of the cost of forward connections from

the specific node and also the average service demand of a particular class of job on

a specific node.

Please refer figure 8.1 where there is a Firewall which is connected to 3 nodes in a

given network. A node can be a very fast computer or cluster of computers or a cloud

on the internet, basically any processing unit connected to an I/O device. The user

requests are intercepted by the firewall node and then forwarded to the specific based

on a specific routing policy.

Figure 8.1: Routing based on load of Firewall F

The Node [C] has a very fast CPU and it can do complicated simulation or complex

mathematical equations very quickly. But this node also consumes lot of resources,

power and usage of this node costs the organization a lot of money. The Node [N]

has moderate CPU and I/O. This node can be assumed to be in house data center
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and processor of the organization and usage of this node does not cost the company

much and is normally used for day to day business. The final node has very high

powered I/O bus connected to the memory and hence it is excellent in writing and

reading data from the Hard Disc. This node is generally used for mass data upload

and download.

As a network administrator, on normal load circumstances, we want to use the node

[N] for day to day activity but during load burst and high demand we want to use

the node [C] or node [I] to meet the user requirement. This arrangement is beneficial

as extensive use of the high powered node [C] and [I] can cost the organization a lot.

Load Dependent Routing is specifically useful in above described scenario. Here the

network admin can set rules where the firewall can route request to the node [N] on

day to activity, but during specific high demand or load, can route the CPU bound

request to the node [C] and I/O bound request to the node [I].

Load Dependent Routing can be used to improve the Response Time or decrease the

Response Time as desired by the administrator of the particular network to achieve

benefits in power consumed. It can be used to specifically favor a particular class

of jobs which have higher priority to system resources than other class of jobs. The

algorithm can also be used to selectively drop network packets of particular class

to give priority to the other class of jobs. This algorithm along with the developed

algorithm in the thesis, provides an excellent future research area in controlling the

request admission in a large scale server center to improve the performance of the

system.

A variety of admission control mechanisms have been proposed in various journals to

manage web servers, most of which have focused on overload prevention. Elnikety et
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al. [16] developed a DB proxy that managed load on the DB server by performing

admission control on DB queries being sent from the second tier application server

to the third tier DB server, but did not report the effect this had on the content of

the pageview seen at the web browser. Cherkasova et al. [13] performed admission

control with the goal of maximizing the number of successful sessions and limiting

the amount of resources wasted on rejected sessions.

Study and analysis of bottlenecks is in itself a large topic of discussion. As discussed

in [17] for mission-critical applications such as e-commerce, N-tier systems have grown

in complexity with non-stationary workloads and inter-task dependencies created by

requests that are passed between the various servers. These complicating factors cre-

ate multi-bottlenecks such as oscillatory bottlenecks (where inter-task dependencies

cause the bottleneck to migrate among several resources) and concurrent bottlenecks

(where multiple bottlenecks arise among several resources). Multi-bottlenecks are

non-trivial to analyze, since they may escape typical assumptions made in classic

performance analysis such as stable workloads and independence among tasks. The

analysis done in this paper [17] also shows experimental evidence of multi-bottleneck

cases where several resources saturate alternatively.

In summary, the thesis potrays the implementation of some proposed algorithm using

the concepts of bottleneck migration and saturation sector. The scope of improve-

ment among different direction are immense, as hunderds and thousands of different

configurations have to be evaluated to arrive at the best possible decision. In general

performance optimization requires huge analysis, as every network serves a different

need, every configuration has different operating parameters, and every system can

react in a unique and unpredictable way to performance tweaks. The ideas presented
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in the thesis, opens new concepts and explores different techniques in the vast field

of performance and optimization in computer networks.
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