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Abstract

Evolutionary Algorithms have become popular in the literature because of

their effectiveness as heuristic search strategies for complex combinatorial

optimization problems. This work focuses on the analysis of the Estimation

of Distribution Algorithms, often presented in the literature as an evolution

of Genetic Algorithms, where classical genetic operator have been replaced

by statistical operators, such as model selection, estimation and sampling.

The behaviour of this class of algorithms can be interpreted as a stochas-

tic walk on the densities of the statistical model employed, i.e. subset of

the probability simplex. In this work we propose to map the variables in

the optimization problem to a new set of variables. By introducing an in-

dependence model over the transformed variables we implicitly define low

dimensional models in the original probability simplex. We introduce a cri-

terion based on information theory to chose among such models that can

be interpreted from the point of view of Information Geometry. We pro-

pose to use such approach as a models selection strategy in the context of

EDAs. This leads to the proposal of a novel class of Estimation of Distribu-

tion Algorithms which is able to solve multivariate problems by employing

sequences of low dimensional statistical models.
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Sommario

Il calcolo evolutivo e in particolare gli algoritmi evolutivi sono stati protag-

onisti di notevole interesse per la loro efficacia nel campo della risoluzione di

problemi combinatori di ottimizzazione. Questo lavoro si focalizza sull’analisi

di un’evoluzione degli algoritmi genetici basata sull’utilizzo di distribuzioni

e modelli di probabilitá: gli algoritmi EDA (Estimation of Distribution Al-

gorithms). Il comportamento di tali algoritmi puó essere interpretato come

l’evoluzione, guidata da metodi di ricerca stocastica, di una distribuzione

all’interno di un particolare spazio di probabilitá. L’approcio introdotto im-

plica l’utilizzo di modelli parametrici che identifichino tale distribuzione. La

scelta del modello, il numero di parametri usati e le caratteristiche della fun-

zione obiettivo del problema di ottimizzazione (funzione fitness), risultano

critici per una efficace convergenza verso soluzioni globalmente ottime. Par-

tendo da una generale analisi delle problematiche legate al comportamento

del metodo della discesa del gradiente esatto del valor medio della funzione

fitness, si cerca di collegare tali criticitá alle difficoltá di convergenza degli

algoritmi EDA basati su modelli di indipendenza a n parametri. Questo

lavoro introduce un nuovo metodo di trasformazioni delle variabili collegato

all’uso di mappe, che permette di ottenere un insieme di problemi equiv-

alenti caratterizzati da criticitá diverse. Tale metodo puó essere visto anche

come un modo per generare, dal modello di indipendenza, nuovi modelli

a n parametri, che possono essere impiegati per la risoluzione del medes-

imo problema. Viene quindi presentato un algoritmo per la produzione e la

scelta dei modelli, che permette agli algoritmi EDA di essere caratterizzati

da migliori proprietÃ rispetto al problema della convergenza. In parti-

colare, sfruttando i risultati della teoria della geometria dell’informazione,

viene proposto un criterio per scelta dei modelli basato sulla minimizzazione

della distanza di Kullback-Leibler. L’algoritmo presentato ha permesso di

ottenere buoni e incoraggianti risultati in termini di numero di valutazioni

della funzione fitness e di capacitá nel raggiungimento della soluzione ot-

tima, in modo particolare se confrontato con altri algoritmi EDA a modello
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univariato. Tale lavoro si pone quindi come punto di partenza per lo studio

di tecniche di trasformazioni delle variabili per la scelta dei modelli, allo

scopo di incrementare le prestazioni degli algoritmi EDA.
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Chapter 1

Introduction

Various interesting real-world problems regard the optimization of pseudo-

boolean fitness functions, i.e., real valued functions defined over a set of

binary variables. No polynomial time algorithm is known which is able to

find the solution for a general instance of these problems and it is common

belief that such an algorithm is impossible to design [1]. Evolutionary Algo-

rithms have become popular in the literature because of their effectiveness

as heuristic search strategies for these problems.

Genetic Algorithms and Estimation of Distribution Algorithms, two fam-

ilies of stochastic search strategies belonging to the Evolutionary Algorithms

class, work by evolving a population of candidate solutions which is used

to iteratively generate new individuals by means of stochastic operators.

This work focuses on the analysis of the Estimation of Distribution Algo-

rithms, often presented in the literature as an evolution of Genetic Algo-

rithms, where classical genetic operator have been replaced by statistical

operators, such as model selection, estimation and sampling. EDAs explic-

itly employ a probability model which is used to learn the features in the

candidate solutions that are responsible of good fitness values. At every it-

eration the better fitness individuals in the population are selected and the

density belonging to the model that better fits this sample is chosen. A new

population is then generated by sampling from this distribution. The main

question which arises here is under which conditions the sequence of densi-

ties considered leads to sample the global optimum for the fitness function

with high probability.



2 Chapter 1. Introduction

In EDAs, at every iteration a new density belonging to a the probabil-

ity model employed is chosen to generate new candidate solutions. This

behaviour can be interpreted as a stochastic walk on the manifold of the

probability distributions belonging to the model. Experiments have shown

that the mean fitness of the individuals in the populations increases almost

monotonically but often the best candidate solution found by these algo-

rithms is a local optimum for the fitness function. This leads to conjecture

that the probability of EDAs to find the global optimum for the fitness func-

tion are strictly related to the choice of the model and in particular to the

shape of the expected value of the fitness function. We start discussing a

variety of example to validate this conjecture. In particular, we show that

in these examples the probability for an EDA to find the global optimum for

the fitness function is related with the number and the position of the criti-

cal points in the expected value of the fitness with respect to the probability

model employed.

It is known in that the most effective EDAs are those which employ

a complex and expressive probability model which is able to enclose and

reproduce the interactions among variable values in the selected, high fit-

ness individuals. One example is Bayesian Optimization Algorithm [29],

which uses Bayesian Networks as probability models. Another example is

Distribution Estimation using Markov Random Fields [10]. The main issue

here is the computational complexity of the model selection, estimation and

sampling operators employed by these algorithms.

In this work we propose to map the variables in the optimization prob-

lem to a new set of variables by means of one-to-one maps defined on the

space of the candidate solutions. By introducing an independence model

over the transformed variables we implicitly define low dimensional models

in the original probability simplex. Each one of these models encloses a

different structure of interactions among random variables. We introduce a

criterion based on information theory to chose among such models that can

be interpreted from the point of view of Information Geometry.

We propose to use such approach as a models selection strategy in the

context of EDAs. In particular we perform the model selection and the

estimation steps at the same time: we choose the low dimensional model

among the ones defined which contains the density that causes the minimal

information loss when the selected individual sample is represented with the

chosen distribution. This leads to the proposal of a novel class of Estimation

of Distribution Algorithms which is able to solve multivariate problems by

employing sequences of low dimensional statistical models.

This work is organized as follows:
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In Chapter 2 the Genetic Algorithms and the Estimation of Distribution

Algorithms are introduced along with the main ideas and issues.

In Chapter 3 the mathematical framework used throughout the rest of

this work is introduced. First we define the optimization problems the evo-

lutionary algorithms are designed to solve. Then we five an overview of the

main results from Information Geometry.

In Chapter 4 a number of examples are studied and we show the corre-

lation between the probability of EDAs to find the global optimum for the

fitness function and the shape of the expected value of the fitness function

w.r.t. the statistical model employed.

In Chapter 5 we introduce the idea of mapping the variables in the

optimization problem to a new set of variables by means of one-to-one maps

defined on the space of the candidate solutions. In this chapter we show how

an independence model can be introduced over the transformed variables

and how this leads to the definition of new low dimensional models in the

original probability simplex.

In Chapter 6 a novel EDA is proposed: Function Composition Algorithm.

It uses an heuristic search strategy based on results of Information Geome-

try to perform the model selection and estimation steps. The algorithm is

discussed in detail along with a theoretical analysis of its behaviour.

In Chapter 7 the experimental results of the application of FCA on some

known test function are presented. FCA is compared with two algorithms

known in the literature: Population Based Incremental Learning [6] and

Stochastic Gradient Descent [22].

In Chapter 8 conclusion and further work are discussed.
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Chapter 2

Genetic Algorithms and

Estimation of Distribution

Algorithms

Evolutionary algorithms have become popular in the literature because of

their effectiveness as heuristic search strategies for complex combinatorial

optimization problems. Informally, most of this search strategies try to

mimic what happens in nature: the survival abilities of living beings are

constantly measured by the environment and only the most suited are al-

lowed to survive. This selection pressure is what drives the evolutionary

process and makes species change and adapt to the natural environment over

generations. In Evolutionary Algorithms the end user specifies a function

which measure the quality of the solutions for his application and the search

strategy maintain a population of candidate solutions on which selection is

applied by means of the fitness function. In this chapter we review some

techniques ad approaches introduced in evolutionary computation, start-

ing from the analysis of the Genetic Algorithms (GAs) and the Estimation

of Distribution Algorithms (EDAs). In particular in the first section, we

present the structure of the Genetic Algorithm, the genetic operators and

their effects. In the second section the Estimation of Distribution Algorithms

are discussed, as an evolution of GAs, with an analysis of their properties

and the main advantages they have introduced.

where a population (a multi-set) of candidate feasible solutions is evolved
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from one to another and

2.1 Genetic Algorithms

Genetic Algorithms are a particular type of Evolutionary Algorithms intro-

duced by John Holland in 1975 [19]. They are inspired by natural genetics

and evolutionary theories of Charles Darwin [14]. With GA it is possible to

solve an optimization problem by a stochastic search, where the optimiza-

tion problem is defined as the minimization (maximization) of a function f .

GAs evolves a population (a multi-set) of candidate feasible solutions gen-

erating new individuals by means of the application of stochastic operators

to the current population. GAs are typically used in a black-box contests,

when the analytic form of the function f to be optimized is unknown or, in

general, when an exact algorithm is intractable in terms of computational

complexity. Various types of GAs have been proposed, here we introduce

the Simple Genetic Algorithm SGA [16, 23], well known and studied in the

literature.

2.1.1 Algorithm

A GA, basically, evolves a population P of m individuals, that represents a

state of evolution (current solution). Every individual, also called chromo-

some, is a string x of n genes. A gene, in the simplest case, is a boolean

variable {0, 1} and its value is called allele. During one iteration of the algo-

rithm, there are two main steps: selection and reproduction. The selection

allows to choose the best individuals, measured by the fitness function f(x),

to be used to generate the next population. Reproduction is the process

of generating new individuals starting from the current population. It is a

combination of two operators, crossover and mutation, which are applied

in sequence. Crossover generates two new individuals (children) by recom-

bination of genes of two strings (parents). Mutation is an operator that

randomly changes the individual alleles. It is possible to summarize the

algorithm in the following steps:

1. Create the initial population

2. Evaluate the fitness of the entire population with f(x)

3. Select the best individuals for reproduction

4. Create the new individuals with crossover and mutation
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5. Evaluate the fitness of the new population

6. Verify if one of the termination conditions is reached, else go to step 3

The algorithm starts from a population of individuals (usually random),

generates a new population at each iteration, and evaluates every individual

of a population by a fitness function f(x), that measures a quality of every

string. Here two cases arise: in the first case, called white-box contest, the

analytic expression of the function f is known. In the second case, called

black-box contest, few informations are known about the structure of the

fitness function and only a procedure, e.g. an algorithm, is given to evaluate

the fitness of candidate solutions. It is important to notice that the single

fitness function evaluation, in some contexts, can be time consuming. This

aspect can be critical in a GA, when the number of f(x) evaluations is

generally high.

In the third step, k individuals in the current population are selected

by selection operator, according to the selection rate α (selected portion of

population). The probability p(x) of an individual to be selected depends

on the type of the selection applied and on f(x). From the selected popula-

tion Ps, two individuals are randomly chosen and recombined by Crossover

operator, that exchanges some alleles between individuals, with a certain

schema. In this way, is possible to preserve the alleles of parents in the

next population. The reproduction process is completed by mutation, that

changes a genes of the new individuals with a certain probability.

At the end of each iteration the algorithm ends if the optimal solution

is found. In some cases, e.g., in a black-box contexts, the fitness value of

the optimum is unknown, thus the algorithm ends if one of the following

termination conditions is verified:

• Suboptimal solution is found and satisfies minimum criteria

• Maximum number of generations is reached

• Maximum computational time is reached

The behaviour of the algorithm depends mainly on the type of genetic op-

erators used. In the next section they are discussed in depth.

2.1.2 Genetic Operators

Here we present the basic concepts and the most common genetic operators

of selection, mutation and crossover.
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Selection

Selection represents one of the most important operator in the GAs. As

happens in nature, it allows to reveal the individuals with best fitness. The

degree to which the best individuals are favoured in the selection is usually

called Selection pressure. A comprehensive analysis of selection in Evolu-

tionary Algorithms can be found for example in [24] and [27].

One type of selection is Proportional Selection. This operator assigns

the probability to be selected to an individual, proportionately to the fitness

value, as follows:

p(x) =
f(x)∑
P f(x)

where P is the population set, x ∈ P is an individual of the population and

f(x) > 0 ∀ x . Note that, in general, the Proportional Selection can be

also used with negative function with an appropriate offset. Let consider an

n = 3 boolean variables example problem defined as the maximization of

the function f(x) = {number of ones of x}, where the starting population

is P = {110, 000, 111, 010, 110}. The probability to select the individual

x1 = 110 is

p(x1) =
f(x1)∑
P f(x)

=
2

8

Another type of selection is Tournament Selection. This method con-

sists in the creation of several tournaments, each composed of ts randomly

selected individuals, where ts is the tournament size. In every tournament

k < ts individual are selected by means of Proportional Selection. The main

advantage of Tournament Selection is the tuning of the selection pressure

through the modification of the tournament size ts.

The less sophisticate type of selection method is Truncation Selection. In

this method, the individuals are ordered by fitness values and the k highest

rated are selected. Let consider the example above, with k = 3. Trun-

cation selection order the population P by the fitness function, obtaining

Po = {111, 110, 110, 010, 000}, and select the first k individual. The selected

population is Ps = {111, 110, 110}.
Finally, a further selection method is Ranking Selection. In this method

the population is ordered by fitness and a value depending on its rank is

assigned to each individual. The probability of an individual to be selected

is:

p(x) =
r(x)∑
P r(x)

where r(x) is a rank function. Let reconsider the example above. Ranking

Selection order the population P by the fitness function, obtaining Po =
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{111, 110, 110, 010, 000}. The rank values associated to the individual of Po
are: r(111) = 1, r(110) = 2 + 3, r(010) = 4 and r(000) = 5. The selection

probability of x1 = 010, for example, it is

p(x1) =
r(x1)∑
P r(x)

=
4

15

There also other selection schemas, for example see Boltzman Seletion

[25].

Crossover

Crossover is the main operator in the process of reproduction. With crossover

it is possible to maintain certain sequences of alleles of selected individuals in

the next generations. The basic purpose of this operator is to increment the

probability of generating new individuals with high fitness, by recombining

the genetic material of good and selected individuals.

The first crossover operator that was introduced is One-point Crossover.

It generates a random value sp from 1 to n, that represents the splitting

point, where n is the length of the string. One-point Crossover selects two

random parent individuals and makes two children individuals exchanging

the first part of the strings, according to the selected splitting point. This

method can be extended by adding more splitting points. Let consider an

example with two parent individuals

xp1 = 110|11000 xp2 = 100|01011

and splitting point sp = 3. Applying One-point Crossover we obtain two

child individuals

xc1 = 100|11000 xc2 = 110|01011

Another common type of crossover is Uniform Crossover. In this case,

the operator makes two child individuals as function of a random crossover

mask. Crossover mask is a string of length n and each bit is set to one

or zero according to the uniform distribution. Uniform Crossover generates

two children as a copy of parent individuals, each bit of the first child is

exchanged with the corresponding bit of the second child when the associated

bit in the crossover mask is one, and remain the same otherwise. Let consider

an example with two parent individuals

xp1 = 11011000 xp2 = 10001011
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and the crossover mask cm = 11000010. Applying Uniform Crossover we

obtain two child individuals

xc1 = 10011011 xc2 = 11001000

Mutation

Mutation is an operator, analogous to the biological mutation, which is ap-

plied in order to maintain a genetic diversity in the population. The main

effect of mutation is to increase the exploration power of the reproduction

process, i.e the ability of the algorithm to generate different individual in

terms of alleles. In fact, in absence of this operator, for example, is im-

possible to include new alleles in the population that do not exist in the

previous one. The mutation operator is typically implemented flipping ev-

ery bit with a fixed small probability µ, that it is called mutation rate. Let

consider for instance the population P = {100, 110, 010, 000, 110}. In this

case crossover can not generate any individual with the last gene equals to

1, because there is no individual in P with this allele. Otherwise, mutation

can insert it changing the last bit of any individual in P .

In a GA it may be important to keep in each iteration the best individual

at the previous iteration, because it represents the current best solution for

the problem. It can be lost during reproduction, and even during selection

with certain non-deterministic schemas. In order to avoid this problem,

at each iteration the e best fitness individuals are preserved in the new

generation. This technique is called Elitism.

2.1.3 Schema Theorem and Building Block Hypothesis

From the GA behaviour, Holland observed that in some problems the best

individuals found in a population share some sequences of adjacent alleles

of length j � n. This sequences, called Building Block, if composed in a

strings of length n, generate, with high probability, new individuals with

higher fitness value. However, Building Block can be destructed during the

recombination of the individuals by Crossover operator. The Holland’s orig-

inal theoretical explanation of this observations is the Schema theory, that

it is based on the concept of schema. For individuals of length n, a schema

is a subset of the space Ω in which all the chromosomes share a partic-

ular set of defined values. Schemata are represented as strings extended

with a wildcard symbol ∗, e.g. Ω = 0, 1N the schema (1 ∗ ∗) represents the

chromosomes (100), (101), (110), (111). A schema S is characterized by the

order o(S), which is the the number of defined (non-wildcard) positions,
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and by the length δ(S), which is the distance between its first and last de-

fined positions. Now we can express the probability of selecting schema S

at generation t, under the proportional selection assumption, as:

P (S, t) =
m(S, t)f(S, t)

Mf̄(t)
= E[m(S, t+ 1)]M

where M is the population size, m(S, t) is the number of instances of schema

S in t, f(S, t) is the mean fitness of the individuals that matching the schema

in t and f̄(t) is the mean fitness of the entire population in t.

The crossover and mutation operators change the individuals, thus modify

the distribution of schema in the population. Under single point crossover,

the (lower bound) probability that the schema S survive at generation t is:

P (S survives) = 1− P (S does not survive) = 1− δ(S)

n− 1
Pdiff (S, t)

where Pdiff (S, t) is the probability that the second parent individual does

not match schema S.

The probability of not changing all o(S) non ∗ genes by mutation, where pm
represents the mutation probability, is:

(1− pm)o(S)

Usually pm � 1, thus we can approximate the last expression as:

(1− pm)o(S) ≈ 1− o(S)pm

It represent the (lower bound) probability of an order o(S) schema S, which

survive at generation t.

Theorem 1. (Schema Theorem) The expected number of schema S at gen-

eration t+ 1 when using a canonical GA with Proportional Selection, single

point crossover with rate pc and gene wise mutation with rate pm is:

E[m(S, t+ 1)] ≥ m(S, t)f(S, t)

f̄(t)
{1− pc

δ(S)

1− n
Pdiff (S, t)− o(S)pm}

A more generic form for the Schema Theorem might take the form:

E[m(S, t+ 1)] ≥ m(S, t)α(S, t){1− β(S, t)}

Specifically, the schema S survives when α(S, t) ≥ {1− β(S, t)}. This is the

basis for the observation that short (defining length), low order schema of

above average population fitness are favoured by GAs. This is known as the

Building Block Hypothesis.
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2.2 Estimation of Distribution Algorithms

The Estimation of Distribution Algorithms, sometimes called Probabilistic

Model-Building Genetic Algorithms PMBGA, are a particular evolution of

GAs. The term EDA was introduced in 1996 by Muhlenbein and Paaß[26].

The approach proposed with EDAs consist in replacing the GAs reproduc-

tion operators with new ones based on probability distributions.

More precisely, a subset of all the possible probability distributions over

n binary variables is chosen as the search space and the distribution among

those which better fits the selected fraction of the population is chosen.

Then a new population is obtained by sampling from this distribution. This

paradigm was mainly introduced in order to perform an effective and effi-

cient search. In GAs, indeed, the individuals of population can be seen as

a multiple solutions that evolve at the same time. In EDAs, the current

solution can be seen as a model distribution that represents multiple indi-

viduals that share certain characteristics. This approach permits to learn

the dependencies among the problem variables and reach better solutions

(correlated exploration). In the next section we introduce this concepts in

depth.

2.2.1 Probabilistic Model

Every function can be characterized by the type and the order of interactions

among variables. We say that there is an interaction between two or more

variables x1, x2, ...xn if the effects on the fitness of the value of x1 depends

on the values of the other x2, ..., xn variables. Let us consider, for example, a

boolean 3-variable function f(x) = −10x1x2 +x3. In this case, we have high

fitness values when x1 = −x2. This can be seen as an interaction of order 2

among x1 and x2. In a population, the interactions among the variables of

the f function can be revealed by the occurrences of the alleles.

In EDAs the interactions are expressed explicitly through the joint prob-

ability distribution associated with the variables of the individuals selected

at each generation. The estimation of the model, in EDAs, allows to learn

the interactions among the variables, in order to generate, by sampling from

the model probability distributions, new individuals with similar correla-

tions. EDAs are typically classified in univariate, bivariate and multivariate,

by the order of variable interaction that theirs probabilistic model includes.

There are many types of models used in EDAs. PBIL [6] is a univariate

algorithm and its model is represented by the vector of marginal probabili-

ties. In PBIL, as in other univariate algorithms, such as Univariate Marginal
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Distribution Algorithm UMDA [26] and Compact Genetic Algorithm cGA

[17], the joint probability distribution, becomes the product of the marginal

probabilities of n variables:

p(X) =

i∏
i=1

p(Xi)

where X = (X1, ..., Xn) is the vector of variables.

On the other side, Bayesian optimization algorithm BOA [29], is an example

of multivariate EDA, based on a Bayesian network. Bayesian networks are

composed by nodes that represent variables and edges that encode the joint

probability distribution:

p(X) =
n∏
i=1

p(Xi|ΠXi)

where ΠXi is the set of Xi parents nodes in the network and p(Xi|ΠXi) is

its conditional probability. This model can describe all the possible distri-

butions and allows to do a full correlated exploration.

The characterization of the model is very critical in EDAs. A complex

model, generally, permits to encode more variable interactions and obtain

better performance. However, complex models require a high number of

parameters and a difficult process of estimation and sampling.

2.2.2 PBIL

Population Based Incremental Learning, is one of the first EDAs that was

proposed. It is based on a simple representation of the model, the vector

of marginal probability. The n components of this vector are the expecta-

tion values of the associated variables. In each iteration, the population is

selected, the vector of the marginal probability is estimated and new indi-

viduals are sampled from the current distribution according to a learning

rate parameter γ.

Let us consider an example of a PBIL iteration, where n = 3, f =

x1 + 2x2 − x3, m = 8 and learning rate γ = 1. The algorithm starts and

create a initial random population

P1 = {100, 101, 110, 111, 001, 000, 100, 010}

The evaluation of the fitness and the selection are applied over the popula-

tion (we consider Truncation Selection, with selection rate s = 0.5)

P1e = {f(100) = 1, f(101) = 0, f(110) = 3, f(111) = 2,



14
Chapter 2. Genetic Algorithms and Estimation of Distribution

Algorithms

f(001) = −1, f(000) = 0, f(100) = 1, f(010) = 2}

P1s = {110, 111, 010, 100}

The vector of the marginal probability is estimated

p(X)1 = (
3

4
,
3

4
,
1

4
)

A new m individuals are sampled according to this distribution

P2 = {110, 010, 110, 101, 110, 100, 110, 011}

The algorithm ends when the convergence is reached, i.e., the population is

composed by m equal individuals, that correspond to the solution found.

2.3 Conclusions

In this chapter we have presented a compact review of the main ideas

and concept of evolutionary algorithms. We presented Genetic Algorithms

and the Estimation of Distribution Algorithms as examples of evolutionary

search strategies.



Chapter 3

The Mathematical

Framework

In this section we present the theories and the results which form the

background for this work. Here we define precisely and present some results

the optimization of pseudo-boolean functions and their stochastic relaxation.

Later the main results from Information Geometry[5] are discussed. This

theory regards the introduction of a geometrical structure on the manifold

of the probability distributions

3.1 Pseudo-boolean Optimization

In this section the problem of optimizing a class of real-valued functions

defined over binary variables, i.e., f : {−1, 1}n → R is introduced. These

functions are called pseudo-boolean functions. A comprehensive review of

the pseudo-boolean optimization problem can be found in [8].

3.1.1 The Problem

In the following, instead of the usual 0/1 encoding for variables, we use the

following harmonic map: y ∈ {0, 1}, x ∈ {−1, 1}, x = (−1)y. Moreover, the

domain Ω of f is {−1, 1}n. Sometimes we use “−” and “+” as short-cuts

for −1 and +1.

Given a pseudo-boolean function f and a vector of binary variables
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(x1, x2, ..., xn), we want to find the global minimum (maximum).

(P ) min f(x), x ∈ Ω

We call a point x, sometimes indicated with x, a candidate solution for

the problem (P ). We also refer to elements in Ω as individuals, because of

the population based approach to the problem (P ) of the GAs and EDAs

search strategies. f(x) is often called the fitness function since it often

measures the quality of x ∈ Ω.

3.1.2 Pseudo-boolean Functions

It is well known that every pseudo-boolean function has a unique represen-

tation given by the square-free multi-linear polynomial

f(x) =
∑
α∈I

cαx
α (3.1)

The following multi-index notation used is here and throughout all this

work: I ∈ {0, 1}n, I∗ = I\{0}, α = (α1, α2, ..., αn) ∈ I and xα =
∏
i∈1...n x

αi
i

where xi is the i-th component of the x vector. In the following we use a

lexicographic ordering for the vector indices α: −1 ≺ +1 and 0 ≺ 1. Multi-

indices with cardinality 1, i.e., there is a single one in the index, is often

used to indicate binary variables. So for instance a three variables vector

is written as (x100, x010, x001), the coefficient vector c of a two variables

pseudo-boolean function is
(
c00, c01, c10, c11

)
and if n = 2 and α = 11 we

have that

xα = x(11) =
∏
i∈1...n

xαii = x1
10x

1
01 = x10x01

In the (3.1) expansion there are at most 2n coefficients cα. In the fol-

lowing we call L the set of all the indices of not-null coefficients.

It is always possible to calculate the cα coefficients. Note that the com-

plexity of this operation could is, in the general case, the same as solving

the problem (P ). One way to do this is to exploit the following relation

between the values of f and its coefficients:

cα = E0[f(x)xα] =
1

2n

∑
x∈Ω

f(x)xα

where E0[·] is the expected value of the argument with respect to the uniform

probability distribution
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Proof.

E0[f(x)xα] = E0[
∑
β∈L

cβx
βxα] = E0[cα] = cα

since E0[xαxβ] = 1 iff α = β and 0 otherwise.

3.1.3 Stochastic Relaxation

Call P the manifold of all the probability distributions over a set of n random

variables, i.e., all the distributions such as

p(x) : Ω→ [0, 1]

s.t.
∑
x∈Ω

p(x) = 1

and a parameters vector ξ that uniquely identifies a distribution in P. We

write pξ to indicate the distribution p with parameters ξ and pξ(·) for its

joint probability function.

Consider now the map

Epξ [f ] : P → [min f,max f ] ∈ R

where Epξ is the expected value calculated w.r.t. the distribution pξ and

reads as

Epξ [f ] =
∑
x∈Ω

pξ(x)f(x)

It is easy to see that Epξ = max f if and only if the following holds for p

p(x) > 0⇒ f(x) = maxf (3.2)

that is, the probability of the vector x is greater than zero if f(x) is a global

maximum. The same considerations holds for the minima of f . If f is not

constant over Ω the distributions p such as (3.2) holds are distribution with

reduced support, i.e., there exist at least one x ∈ Ω such as p(x) = 0.

In this work we address the stochastic relaxation of the problem (P ),

that is, we look for the minima of the map previously defined:

(R) minEpξ [f ], p ∈ P

It is known that the problem (P ) and (R) are equivalent. More precisely,

the following theorem holds.

Theorem 2. Given the unconstrained optimization problem (P ) and its

associated stochastic relaxation (R)
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1. (P ) and (R) are equivalent, i.e., given a solution to either one it is

immediate to obtain the solution for the other one.

2. Call Ω′ ⊂ Ω the set of points where f reaches its global optimum. The

solutions to (R) are distributions with reduced support included in Ω′.

3. There exists a sequence of parameters ξn such as limn→+∞ sξn = s′

and Es′ [f ] = minf .

The two problems (P ) and (R) have the same complexity, which is ex-

ponential in the number of variables in the general case. This mean that

no search strategy can be designed to be both fast and correct in finding

solutions for every instance of (P ) or (R). The difference of considering the

stochastic relaxation is that the domain of the new variables is a subset of

R, so it is continuous instead of discrete. This allows us to apply techniques

that came from continuous optimization field.

In general 2n−1 parameters are needed to represent a distribution in P.

We discuss this point in detail in later sections. If a subset M ⊂ P of dis-

tribution is chosen, for example the set of all independent distributions over

n variables, and the search is restricted to this set, under some conditions

all the solution to (P ) are implied by solutions to the problem (R′)

(R′) minEpξ [f ], p ∈M

In particular we require that the topological closure ofM includes distribu-

tions with reduced support included in Ω′.

3.2 Parametrizations for P

In the previous section the stochastic relaxation of the combinatorial op-

timization problem (P ) has been introduced. The search space for this

problem is the probability simplex P. In this section we present three possi-

ble parametrizations for P, i.e., three ways for defining a coordinate system

on this space.

3.2.1 The A matrix

We introduce here the linear transformation matrix An that is useful in

later sections to specify the transformation, or coordinate change, between

different parametrizations, i.e.,

An =

[
1 1

1 −1

]⊗n
.
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Here the symbol ⊗ indicates the Kronecker Product, A2 = A1 ⊗ A1 and

An = An−1 ⊗A1.

Due to the properties of the Kronecker product, An is always invertible,

since A1 is invertible. Moreover A−1
n can be derived from An with:

A−1
n =

1

2n
An.

3.2.2 Raw Parameters ρα

We can identify generic probability distributions by specifying all the val-

ues of its joint probability function p(x1, x2, ..., xn). The cardinality of the

domain of the joint probability function is 2n, so we have 2n different pa-

rameters ρα, called raw parameters. In particular,

ρα = p
(
x =

(
(−1)α1 , (−1)α2 , ..., (−1)αn

))
.

Two constraints apply here: ∑
α∈I

ρα = 1

and

∀α ∈ I, 0 ≤ ρα ≤ 1.

The first constraint can be used to obtain one parameter as a function of all

the others, actually reducing the number of free parameters by 1.

The set of the ρ which satisfy the constraints above can be represented by

a polytope call probability simplex which in two variable is the tetrahedron

in Figure 3.1. On the border we have distributions whose support is not

full, i.e., p(x) = 0 for some x ∈ Ω. In particular, the vertices are the the

δ(x) distributions for which p(x) = 1.

3.2.3 The Expectation Parameters ηα

Another way to specify a generic probability distribution p ∈ P is to de-

termine all the α-moments ηα, known in the literature as the expectation

parameters,

ηα = Ep[Xα] =
∑
x∈Ω

xαp(x)

where p(x) is the joint probability. It is easy to see that η0 is always 1, so

like in the previous case there are 2n − 1 free parameters.

Moreover, from the non-negativity constraints on ρ one can derive a set

of inequalities Aη ≥ 0 that identify the domain of the η vector, called the
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Figure 3.1: The probability simplex

marginal polytope. This can also be determined by the convex hull of the

xα monomials evaluated for each x ∈ Ω. Details can be found in [31] and

[7]. We introduce here an example.

Consider the two variable case, i.e., x = (x10, x01). Every probability

distribution p can be parametrized with the vector η = {1, η01, η10, η11}:

η01 = Es[x01] η10 = Es[x10] η11 = Es[x01x10]

The values of the three monomials xα monomials are

x01 x10 x01x10

-1 -1 +1

-1 +1 -1

+1 -1 -1

+1 +1 +1

The expectation polytope, the domain of the η vector, is given by the

convex hull of the four points (−1,−1,+1), (−1,+1,−1), (+1,−1,−1) and

(+1,+1,+1), shown in Figure 3.2. This is a three-dimensional polytope and

can be expressed as a linear transformation of the probability simplex.

Using the expectation parameters one can express the joint probability

function in a compact way:

p(x; η) = 2−n
∑
α∈I

ηαx
α. (3.3)



3.2. Parametrizations for P 21

Figure 3.2: The expectation polytope

It is possible to convert the η vector in the equivalent ρ and vice-versa

by means of the An matrix defined before, i.e.,:

η = Anρ,

ρ = 2−nAnη.

3.2.4 The Natural Parameters θα

A third possible parametrization is obtained by introducing an exponential

map. Since the logarithm of the joint probability of a generic distribution

is a pseudo-boolean function, we can expand it as:

log p(x; θ) =
∑
α∈I

θαx
α =

∑
α∈I∗

θαx
α − θ0,

or, in a more compact form, log ρ = Anθ, where the log function is applied

element-wise to the components of the vector ρ. The parameters θα are

known in the literature as natural parameters.

As always, the constraint that all probabilities sum to one must hold

and the normalizing factor θ0, usually written as −ψ(θ), can be obtained

from the other parameters:

ψ(θ) = −θ0 = − log
[∑
x∈Ω

exp{
∑
α∈I∗

θαx
α}
]
.

Since ex > 0, ∀x ∈ R, the components of the θ vector are free and θα
can take any value in [−∞,+∞].

This parametrization only covers P>, the set of strictly positive proba-

bility distributions, i.e., p(x) ∈ P s.t. p(x) > 0 ∀x ∈ Ω.
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3.2.5 From η to θ Parameters

Consider a distribution p and its η and θ parametrization. A way to convert

one parameter vector into the other can be derived exploiting the matrix

relationship given before and the fact that An is always invertible. It follows

that

η = An exp(Anθ) (3.4)

θ = 2−nAn log(2−nAnη) (3.5)

where the log and the exp functions are applied element-wise.

3.3 Probability Models

As it has been shown in the previous section, to represent a generic prob-

ability distribution 2n − 1 parameters are required. We are interested in

defining statistical models M ⊂ P such as every distribution in M can be

uniquely identified with a lower number of parameters. Moreover, a desir-

able property for such model would be to be closed in topological sense,

i.e., they should include all the distributions which are limits of sequences

of distributions in the model itself. We use these models as search spaces

for the stochastic relaxation problem (R).

3.3.1 The Exponential Family

The family of distributions which can be parametrized with the θ vector is

called the exponential family [9]. Its joint probability reads as

p(x, θ) = exp

( ∑
i∈1...n

θiTi(x)− ψ(θ)

)
, θi ∈ R, (3.6)

where Ti are called canonical or sufficient statistics. Since we deal with

binary domain the sufficient statistics are pseudo-boolean functions them-

selves, so Ti reduce to xα and Equation (3.6) reads as:

p(x, θ) = exp

(∑
α∈I∗

θαTα(x)− ψ(θ)

)
. (3.7)

Since p(x, θ) > 0 for every θ, none of the distributions with reduced

support is included in exponential family. It is possible to show that this

model is a proper subset of P and it is not topologically closed, i.e., there

exist distributions q = limn→+∞ p(·, θn) that are not included in M.
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It is possible to define the extended exponential family [13] as the union

of the exponential family and its topological closure and to give conditions

that have to hold for the reduced support distributions to belong to the

closure. For example, if all the sufficient statistics xα with |α| = 1 appear

in the model then every δ(x) distribution with support equal to an element

x in Ω belongs to the extended exponential family. As a consequence, a

solution for (R) implies a solution for (P ). For details see [22].

From the observation above and the fact that the θ parameters are free,

follows that the exponential family seems an appropriate choice for defining

models in P. We can identify a statistical model by choosing a subset of

the xα identified by indices α ∈ L ⊂ I. The choice of the corresponding

monomials allows to determine which interaction among the variables in x

are enclosed in the model.

We discuss here an example. We want to find the θ parametrization of

all the independent distributions of two variables, i.e., the ones for which

p(x1, x2) = p1(x1)p2(x2). Since pi(xi) reads as

pi(xi) = eθi,1xi+θi,0

it follows that

p(x1, x2) = e(θ1,1x1 + θ1,0)e(θ2,1x2 + θ2,0).

Since the canonical statistic x1x2 does not appear in the expansion it follows

that a parametrization for these distribution is (θ00, θ01, θ10, 0). Like in the

general case θ00 can be derived from the other parameters θα, so that

θ00 = − log
[ ∑
x∈{−1,1}2

exp{
∑

α∈{01,10}

θαx
α}
]

=

= − log
(
e−θ01−θ10(1 + e2θ01)(1 + e2θ10)

)
It follows that there are only two free parameters. We can see here that to

exclude interactions between x1 and x2 in the model, it is enough to set to

0 the related θ11 coefficient.

The condition given before on sufficient statistics holds for the indepen-

dence model, so every distribution with reduced support on one vertex of

the probability simplex is included in the closure of this model. We show

here an example of how this can be seen by direct calculations. Consider

the reduced support distribution p such as p(1, 1) = 1. We have that

p(1, 1) =
e2θ01+2θ10

(1 + e2θ01)(1 + e2θ10)
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lim
θ01,θ10→+∞

p(1, 1) = 1

This means that there is a sequence of parameter θ such as it admits as

limit the desired reduced support distribution, thus it belongs to the clo-

sure of the model. Same considerations hold for the other reduced support

distributions.

The Gibbs Distribution

We present here a well known model belonging to the exponential family,

useful for the theoretical analysis of the stochastic relaxed problem (R).

Consider a pseudo-boolean function f as defined in Section 3.1.2 and the

probability distribution

p(x, β) =
e−βf(x)

Z(β)

Z(β) =
∑
x∈Ω

e−βf(x)

with β ≥ 0. In statistical physics literature this is known as the Gibbs (or

Boltzmann) distribution [15], f(x) is the energy function, the parameter β

the inverse temperature and the Z(β) the partition function.

Here the function f(x) can be seen as the only sufficient statistic T (x)

of an exponential family model and it can be decomposed with the usual

expansion. The monomials xα appear and the joint probability can be ex-

pressed by (3.7), with θ = −βc and −Z(β) = 1/ψ(θ).

If we look at the limits of the parameter β we have that for β → 0,

p(x, β) tends to the uniform distribution over Ω, while for β → +∞ the

limit is the distribution with reduced support on the minima of f(x). More-

over, ∇βEβ[f ] = −V arβ[f ]. This means that the derivative of the expected

value of f w.r.t. the distribution pβ is always negative, thus Eβ decreases

monotonically to its minimum value as β tends to +∞.

In principle the Gibbs distribution seems a good candidate model for

the stochastic relaxation problem since its limit is a global optimum for

(R). Moreover, the probability of sampling the global optimum for f from

p(x, β) can be increased easily increasing β. The problem is that in order

to employ the Gibbs distribution we need an explicit analytical expression

for f and an efficient way to compute the partition function Z(β), which

involves a summation over 2n components. The Gibbs distribution can be

generalized in a way such that for β → 0 p(x, β) is a given distribution.

One result is that the curve described by the Gibbs for different β values

in the space of distributions follows the gradient of the expected value of

the fitness function w.r.t. distributions in P in the θ parametrization.
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3.3.2 Sub-models in the η Parametrization

Let us first introduce the example of the previous section in the η parametriza-

tion. The constraint p(x1, x2) = p1(x1)p2(x2) translates into

E[x1x2] =
∑

Ω

p(x1, x2)x1x2 =
∑

x1∈{−1,1}

p(x1)
∑

x2∈{−1,1}

p(x2) =

= E[x1]E[x2] = η10η01.

So a parametrization for all the independent distributions over two variables

is η = {1, η01, η10, η01η10}. Like in the θ parametrization, we have two free

parameters out of four.

The problem with the η parametrization is that in the general case is

not easy to obtain the domain of the parameters. In fact usually a number

of inequalities exponential in the number of variables is involved in the

definition of the marginal polytope. It is important to note that if an ηα
is not a free parameter in the sub-model considered it is not zero but a

non-linear function of the other η parameters.

3.4 The Expected Value of f

In this section we analyse the expected value of the fitness function f cal-

culated with respect to a distribution p as a function of the parameters of

p. This function is the subject of the optimization for the stochastic relax-

ation (R) and can be argued that its shape influences the abilities of search

strategies for (R) to find the optimum for Ep[f ].

Consider a distribution p ∈ P and a pseudo-boolean function f whose

set of non-null coefficients is identified by the set of indices L ⊂ I. Ep[f(x)]

is defined as

Ep[f(x)] =
∑
x∈Ω

p(x)f(x) =
∑
x∈Ω

ρx

(∑
α∈L

cαx
α

)

Here one can exploit the η parametrization of p to write Ep in a somewhat

simpler way.

Ep[f(x)] = Es[
∑
α∈L

cαx
α] =

∑
α∈L

cαEp[xα] =
∑
α∈L

cαηα

It is immediate to see that only the ηα parameters for which the correspond-

ing coefficient cα in f is not null appear in this expansion. Moreover, Ep
is a linear function of the η parameters. Note that in the worst case there
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are 2n not null cα coefficients and thus Ep can be a linear function of an

exponential number of variables.

As a consequence, the following result holds for the the derivatives of

the Ep
∂Ep[f(x)]

∂ηα
= cα, ∀α ∈ L

The gradient vector is constant and not-null for every point η in the domain.

Up to now we have evaluated the expected value of f on a generic dis-

tribution parametrized with a vector of 2n − 1 parameters. As explained

before, one usually chooses a subset of M ⊂ P as the search space for the

stochastic relaxation problem. This usually means limiting the number of

free parameters. We are interested in studying the expected value of the fit-

ness function on the defined sub-model. In the following we write EM[f ] to

indicate the expected of f with respect to probability distributions p ∈ M.

We start presenting an example, then we state some general result.

Consider the independence model over two binary variables x10, x01.

We have already shown the η parametrization for this class of probability

distributions and we know that it is η = (1, η01, η10, η01η10). The expected

value of the fitness function over this model reads as

E[f(x)] = c00 + c01η01 + c10η10 + c11η01η10.

The function is not linear, its gradient

∇E[f(x)] =

{
c01 + c11η10

c10 + c11η01

could cancel for some values of η.

If we solve the system 
∇E[f ] = 0

−1 ≤ η10 ≤ 1

−1 ≤ η01 ≤ 1

we can derive conditions on the c vector for the presence of critical points

in the interior of the η domain. In particular for this example we obtain

|c11| ≥ |c01| ∧ |c11| ≥ |c10|.

If this condition on the cα coefficients hold and thus we have a critical

point inside the η domain, it is meaningful to evaluate the function Hessian

matrix to gather informations about the nature of the critical point. We omit
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Figure 3.3: The expected value of f(x) = x10− 2x01 + 4x10x01 over the independence

model as a function of η01 and η10.

calculations here but it is easy to see that the eigenvalues of the matrix are

always λ1,2 = ±c11. They are not null and have opposite sign, thus the

critical point is a saddle point.

In this example we have shown that the expected value of f calculated

on a model M can have critical points. Here we give a condition for the

linearity of the expected value as a function of the η parameters:

Theorem 3. If every ηα such that cα appears in the expansion of f is a

free parameter of M, then EM[f ] has no stationary points.

The proof follows immediately looking at the formulas derived at the

beginning of the section. If cα is not null then the monomial cαηα appears

in the expansion of EM[f ]. If ηα is free in the model η parametrization

then it cannot be derived from the others (e.g. η11 = η01η10 in the previous

example), thus the function is linear and its gradient constant.

This means that if the model is chosen to be expressive enough to capture

all the interaction between variables present in the function f , then the

expected value of f calculated on the model is linear in the η parameters.

If the coefficients of f are not known we can not be sure that the condition

previously stated holds. However, in general we chose to work with low

dimensional model for computational reasons and thus with models which

do not include all the interactions among variables existing if f . This implies

that the the expression of E[f ] is non linear and its landscape could contain
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critical points. However the following result holds, whose proof can be found

in [21].

Theorem 4. Consider a model M. If EM[f ] admits a stationary point for

some distribution p ∈M then p is a saddle point.

To the best knowledge of the authors the weakest sufficient condition

that guarantees that expected value of f on the chosen model has no saddle

points is not known. Note that if the expected value of the fitness function

in the η parametrization is not linear, in the general case its gradient has

zeros (i.e. saddle points), inside or outside the η vector domain.

We end this section introducing a theorem that relates the gradient of

E[f ] with the covariance between the sufficient statistics and the fitness

function in the θ parametrization. This theorem suggests a way to estimate

the gradient vector in a point p given a sample from the distribution and

the fitness evaluations for each element in the sample.

Theorem 5. Consider a model M and its θ parametrization

1. ∂Eθ[f ]
∂θα

= Covθ(f, Tα).

2. pθ ∈ M is a stationary point for Eθ[f ] if and only if Covθ(f, Tα) = 0

∀α such that the sufficient statistic Tα is included in the model.

Further details can be found in [21].

3.5 Information Geometry

Information Geometry proposes to introduce a geometrical structure to

study probability distributions in a statistical model M ⊆ P of the prob-

ability distributions. The Riemannian geometric structure was introduced

by Rao [30]. Csiszár studied the geometry of the f -divergence in detail and

applied it to information theory [12], [11]. Nagaoka and Amari developed

a theory of dual structures [28] and unified all of those theories in the dual

differential-geometrical framework [2].

In this section we first recall some concepts from information theory and

then we move to a brief presentation of the main Information Geometry

results used in this work.

3.5.1 Entropy and Mutual Information

In information theory, Entropy is a measure of the uncertainty associated

with a random variable, or equivalently, it is a measure of the average in-

formation content one is missing when he does not know the value of the
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random variable. The concept was introduced by Claude E. Shannon in 1948

[33]. In the discrete case, the Entropy H(x) of a random variable x ∈ Ω

whose distribution is p reads as:

H(x) =
∑
x∈Ω

p(x) log[p(x)] = Ep
[

log p(x)
]

Another useful concept which comes from information theory is the Mu-

tual Information between two random variables x and y. This quantity

measures the mutual dependency of the two variables, or equivalently, how

much uncertain one is about the value of y once it is known the value of x.

For example, if x and y are independent then if we know the value of x we

can not say anything about the value of y. Thus the Mutual Information

between x and y is zero. Formally the Mutual Information I(x, y) reads as:

I(x, y) =
∑
x,y∈Ω

p(x, y) log
[ p(x, y)

p(x)p(y)

]
,

where p(x, y) is the joint probability and p(x), p(y) are the marginal prob-

abilities of x and y.

3.5.2 The geometry of P

Consider a family of probability distributions M = p(·, ξ) over n variables

where ξ is a vector of parameters that uniquely identifies a distribution (i.e.

the η or the θ vector). M can be regarded as a k-dimensional manifold

having ξ as a coordinate system, where k is the dimension of the ξ vector.

This manifold is Riemannian and the Fisher G information matrix plays

the role of the Riemannian metric tensor.

gij = E
[
∂ log p(x, ξ)

∂ξi

∂ log p(x, ξ)

∂ξj

]
.

The squared distance between two nearby distributions reads as

ds2 =
∑

gij(ξ)dξ
idξj = 2KLD[p(x, ξ) : p(x, ξ + dξ)]

where KLD is the Kullback-Leibler Divergence [20], also called relative en-

tropy. This is a measure of the loss of information (in terms of entropy)

when a true distribution p is approximated with a model distribution q. In

infinitesimal neighbourhood the KLD becomes symmetric and is related to

the metric defined on the manifold.

It turns out that there are two meaningful and not equivalent ways of

defining straight paths, or geodesics, connecting two points p and q on this

manifold, the linear mixture of the η or θ coordinates:
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m-geodesic: (1− α)ηp + αηq
e-geodesic: (1− α)θp + αθq

Here m stands for mixture and e for exponential. It turns out that the

η coordinate system is m-flat while the θ one is e-flat.

These two coordinate systems have the following crucial property: the

directions of small changes along different axes are mutually orthogonal.

More precisely

〈∂θα , ∂ηβ 〉 = E
[
∂ log p(x)

∂θα

∂ log p(x)

∂ηβ

]
= δαβ

where δαβ is the Kronecker delta.

This allow us to introduce an analogous of the Pythagoras theorem:

consider three distributions p,q,r such as the e-geodesic connecting r and q

is orthogonal to the m-geodesic connecting p and r. Then we have

D[p : q] = D[p : r] +D[r : q]

where D is the Kullback-Leibler Divergence.

Figure 3.4: Orthogonality of e and m geodesics and Pythagoras theorem equivalent.

3.5.3 k-cut Mixed Coordinate System

The orthogonality property introduced in the previous section can be used

to define a new coordinate system that enlightens the hierarchical structure

of the correlations between variables in probability distributions. Details

can be found in [3], [4].
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Consider the following partitions of coordinates:

θ = (θk, θk∗)

η = (ηk, ηk∗)

here k is a short-cut and indicates the set off all the multi-indexes such as

|α| ≥ k and k∗ is its the complement, i.e. all the α such as |α| < k. The θk∗
are called the higher order interactions.

A probability distribution can be equivalently parametrized with any of

the partitions

(ηk, θk∗)

The point is that in this parametrization any change in the θk∗ coordinates

does not change the ηk part; the other way round holds as well. Keeping

the marginals ηk constant defines an m-flat sub-manifold Mk(ηk) of P which

includes all the distributions with the same marginals and different higher

order interactions. For different values of ηk the different sub-manifolds do

not overlap and define a foliation of P. Another foliation is defined by the

e-flat sub-manifolds Ek∗(θk∗) composed by the distributions which have the

same higher order interaction θk∗ but different marginals.

3.5.4 Projections

Given a generic distribution p we define

p(k) = arg min
q∈Ek∗ (0)

D[p : q]

This is the closest distribution to p among the ones with no intrinsic inter-

actions more than k variables, in terms of Kullback-Leilber divergence. The

k-cut parametrization of p(k) has the same marginals ηk of p and θk∗ = 0.

We are actually making an orthogonal projection of the distribution p on the

sub-manifold Ek∗(0). Because of the properties stated before, this means

moving on the m-geodesic connecting the two distribution p and p(k) on the

m-flat manifold Mk(ηk).

Again, for the orthogonality of the involved sub-manifolds, p(k) can be

equivalently written as the projection of the uniform distribution p(0) on the

manifold Mk(ηk(p)). This means moving on the e-geodesic connecting p(0)

and p(k) on the e-flat manifold Ek∗(0), that is:

p(k) = arg min
q∈Mk(ηk(p))

D[q : p(0)]
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We discuss an example here. A generic distribution p over 3 variables

is given along with its η parametrization. We are interested on the nearest

distribution to p between the ones with no interactions of order k > 1, i.e.

we want to find the distribution q ∈ E1(0) that is nearest to p in terms

of Kullback-Leibler Divergence. This means to project p orthogonally on

the sub-manifold E1(0). We introduce the k-cut parametrization of p, with

k = 1. It reads as:

(η001, η010, η100; θ011, θ110, θ101, θ111).

For what has been said before, it is immediate to write the 1-cut parametriza-

tion for the distribution q. It is

(η001, η010, η100; 0, 0, 0, 0),

since it has the same marginals of p but no interactions of order k > 1.

The problem with this parametrization is that in the general case we do

not have an explicit expression for p(x, (ηk, θk∗)). So we would like to de-

termine the full θ parametrization of q. To do this we exploit the Legendre

transformations which relate directly the parameters θα and ηα. We have

that:

θα =
∂ϕ(η)

∂ηα

ηα =
∂ψ(θ)

∂θα

where ϕ(η) is the negative entropy of the distribution as a function of the

η vector and ψ(θ) is the partition function. Since q is the independent

distribution over three variables we have that its entropy decomposes in the

sum of the entropies of the marginal distributions qi

Hq(η) =
∑

i∈{1,2,3}

Hq1(η)

Since p(xi, η) = (1 + ηixi)/2 we can write the entropy of the i-th variable as

Hqi =
1 + ηi

2
log

2

1 + ηi
+

1− ηi
2

log
2

1− ηi
.

Going forward with the calculations we have

θi =
∂ϕ(η)

∂ηi
=

∂

∂ηi

[
−
∑

Hqi(ηi)
]

=
∂

∂ηi

[
−Hqi(ηi)

]
=

1

2
log
[1− ηi

1 + ηi

]
.

Here we used an intuitive short-cut with the indices of the vectors η, and θ,

i.e. ηi is the marginal of the i-th variable. The usual multi-index notation
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would have been η001 for the third variable, η010 for the second, and so on.

Since the relevant parameters are only three, this simplification can be used

without risk of confusion.

This procedure of decomposing a distribution in its k-order reductions

is related to the concept of Max-Likelihood estimation and model fitting.

These results about the sub-manifold geometries can be used to give

another expression of the mutual information between a set of random vari-

ables. Consider a generic distribution p. We have that

I(p) = D[p : p(1)] =
∑

k∈{2,...,n}

D[p(k) : p(k−1)] =

= D[p : p(n−1)] +D[p(n−1) : p(n−2)] + ...+D[p(2) : p(1)].

This allows us to distinguish precisely between k-order interactions between

variables in a distribution. More precisely, we have that D[p(k) : p(k−1)]

measures precisely the amount of interactions of order k.

Figure 3.5: Probability distribution decomposition in terms of k-order interactions
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Chapter 4

The Expected Value of the

Fitness function

The stochastic relaxation problem (R) was defined in the previous chapter as

the problem of finding the distribution s in P for which the expected value of

the fitness function f calculated over the distribution p is optimum. Usually

the search space for the problem (R) is limited to a sub-manifold M ⊂ P.

In this chapter we concentrate on example fitness functions in two or three

variables and we present an in depth analysis of EM[f ] as a function of the

η and θ parametrization of the distributions belonging to the independence

model. This chapter is organized as follows: first motivations for this anal-

ysis are presented, along with the definition of the Exact Gradient Descent

search strategy for (R). This strategy is used to investigate the relations

between the expected value of the fitness function and the convergence pro-

prieties of real search strategies for (R). In the following sections, we study

analytically some two and three variables fitness functions when the model

considered is the independence model. The last sections cover some results

which allow to generalize the observation drawn from the studied examples.

4.1 Motivations

All population based search strategies iteratively produce new populations

of candidate solutions applying different reproduction and selection oper-

ators to the current individuals till some termination criterion is satisfied.
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There is an interpretation which holds for the great majority of evolutionary

search strategies: their behaviour can be interpreted as a stochastic walk in

the manifold of the probability distributions P. For the Estimation of Dis-

tribution Algorithms this is straightforward since they employ distributions

belonging to a fixed model M ⊂ P to generate populations. For Genetic

Algorithms this is more complex since new individuals are generated with

operators such as crossover and mutation which work directly on candidate

solutions and even if the populations can be interpreted as samples form

probability distributions in P it is difficult to characterize the model they

belong to. A comprehensive discussion of this point of view for GAs can be

found in [38].

Experimental analysis on the behaviour of various evolutionary algo-

rithms show that the mean value of the fitness function over the population

improves almost monotonically during the optimization process. Some in-

tuition about this fact can be gained observing that most of the search

strategies are based on some kind of selection scheme that removes from

the populations the poorest fitness individuals, thus explicitly improving

the mean fitness f . One way to interpret this observation is the following:

evolutionary search strategies perform a local search in M such as the new

distribution p′ has an expected fitness greater than the current one. Thus

it can be argued that the performances of evolutionary search strategies are

influenced by the shape of the expected value of f calculated on the model

M. We show an example of this fact in the next section.

4.1.1 The PBIL Behaviour

The Population Based Incremental Learning algorithm was introduced in

Chapter 2 to clarify the basic EDA ideas and techniques. Recall that at

every iteration PBIL fits an independent distribution p using the selected

individuals as sample and generates a new population sampling from p.

Interpreting this behaviour as suggested in the previous section, PBIL per-

forms a stochastic walk on the manifoldM of the independent distributions

over n variables.

It has been proven in [18] that PBIL, for big enough populations, is

always able to find the global optimum for f in the case it is linear in the

x variables, i.e., all of its cα coefficients with |α| > 1 are zero. This means

that the distribution with reduced support on the global optimum for f is

the only attractor for the PBIL search strategy. On the other hand, it is

known that if f is non linear other attractors could exist.

Consider now two pseudo-boolean function f and g whose coefficients
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vectors are cf = (0, 1, 2, −4) and cg = (0, 1, 2, −0.5). An approximation of

the dynamics of PBIL under the hypothesis of infinite population has been

determined experimentally by executing PBIL with a population four orders

of magnitude bigger than the cardinality of the domain Ω.

Figure 4.1: PBIL gradient field for f

Figure 4.2: PBIL gradient field for g
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In Figure 4.1 two different attractors can be seen in η = (1,−1) and

η = (−1, 1) so there exist initial conditions starting from which the PBIL

algorithm is not able to converge to the global optimum. The function f is

non linear and this result was expected. Instead in the second figure only one

attractor can be seen, corresponding to the global optimum for g, even tough

the function is non linear. Note that EM[f ] has a saddle point in (0.5, 0.25),

i.e., in the interior of the η domain, while the saddle point for EM[g] lays in

(4, 2), outside the parameter domain. Here M is the independence model.

This result generalizes for all two variable fitness functions: if the expected

value of f calculated over the independence model has a saddle point inside

the parameters domain then there exist two attractors for the PBIL search

strategy. The proof is given in later sections. It is still an open issue if

this connection with the expected fitness function shape generalizes to more

than one variable.

4.1.2 The Exact Gradient Descent Strategy

In this section we present a local greedy search strategy that is explicitly

connected with the structure of the expected fitness function and whose

convergence properties are intimately related with the presence of critical

points in the expected value of the function f .

It is well known that the gradient of a function is the vector that repre-

sents the direction of steepest ascent. This local information can be used to

update the parameters of the current distribution, for example

η(t+ 1) = η(t) + γ∇Eη(t)[f ]

where γ is a learning rate.

We know from the Information Geometry theory, presented in the second

chapter, that the geometry defined on the space of the probability distri-

butions belonging to a model M is not Euclidean, points that have equal

euclidean distance in the space of the parameters may represent distribu-

tions with different Kullback-Leibler distance in the manifold P. Moreover,

the axes of the parameters space are not orthogonal. Thus the gradient does

not exactly indicate the direction of steepest ascent of EM[f ]. The exact

approach would be to use the natural gradient instead:

∇̃Ep[f ] = I−1
p ∇Ep[f ]

where Ip is the Fisher information matrix evaluated on the distribution p.

Note that the Exact Gradient Descent search strategy can not be ap-

plied on real problem since calculating the exact gradient has a complexity
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exponential in the number of variables. In fact this requires to know all the

cα coefficients or, equivalently, to evaluate f for every x ∈ Ω. This can be

seen remembering the expansions of the expected fitness function given in

Chapter 3.

Given the interpretation of the behaviour of EDAs and GAs proposed

in the previous section it seems reasonable to consider the performances of

the Exact Gradient Descent search strategy as a lower bound for the perfor-

mances of evolutionary algorithms which explicitly employ the same model

M as EGD. One of the reasons is that EGD is greedy and deterministic

and it converges in general to a local optimum for EM[f ], depending on the

shape of the expected fitness function on the considered model M.

4.2 The shape of the Expected Fitness function

In this section we analyse the expected value of a fitness function f over the

independence model. We are interested in characterizing its critical points

and the attraction basins for the Exact Gradient Descent search strategy.

Now we introduce some example cases in two and three variables.

4.2.1 Two Variables Case

Expected Fitness Function with Saddle Point

Let us consider a specific example of two variables case. The fitness function

is:

f(x) = x10 − 2x01 + 4x10x01

and its expected value calculated on the independence model (η11 = η01η10)

is:

E[f(x)] = η10 − 2η01 + 4η10η01

We can now evaluate the gradient of the expected value as:

∇E[f(x)] =

{
−2 + 4η10

1 + 4η01

The condition |c11| ≥ |c01|∧|c11| ≥ |c10| is satisfied, thus the expected fitness

function has a saddle point in η10 = − c01
c11

= 0.5, η01 = − c10
c11

= −0.25. Note

that the gradient vector components, in the two variable case, are always

linear in ηα.

The trajectories of the gradient in the space η10, η01 are shown in Figure

4.3. Is easy to see how the space is divided in two attraction basins; there ex-

ist a local optimum in η = (1, 1) and the global optimum is in η = (−1,−1).
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In cases like this the ability of the Exact Gradient Descent search strategy to

converge to the global optimum depends on the starting distribution. The

dimensions of the attraction basins are defined by the position of the sad-

dle point, thus, if the optimum distribution has a big attraction basin, an

Exact Gradient Descent search strategy reaches the optimum distribution

with high probability.

Figure 4.3: Trajectories of the Exact Gradient Descent search strategy for f in the η

parametrization

Now we analyse the two variable case in the natural parametrization θ.

The expected value of the fitness function read as:

E[f(x)] =
eθ10−θ01(c00 + c10 − c01 − c11)

e−θ10−θ01 + eθ10−θ01 + e−θ10+θ01 + eθ10+θ01
+

+
e−θ10+θ01(c00 − c10 + c01 − c11)

e−θ10−θ01 + eθ10−θ01 + e−θ10+θ01 + eθ10+θ01
+

+
e−θ10−θ01(c00 − c10 − c01 + c11)

e−θ10−θ01 + eθ10−θ01 + e−θ10+θ01 + eθ10+θ01
+

+
eθ10+θ01(c00 + c10 + c01 + c11)

e−θ10−θ01 + eθ10−θ01 + e−θ10+θ01 + eθ10+θ01

The gradient vector of the expected fitness function is:

∇E[f(x)] =


4e2θ01((1+e2θ10)c01+(−1+e2θ10)c11)

(1+e2θ10)(1+e2θ01)
2

4e2θ10((1+e2θ01)c10+(−1+e2θ01)c11)
(1+e2θ10)

2
(1+e2θ01)
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The coordinate of the critical points for ∇Eθ[f ] are

θ̄ =

{
(log

[
−
√
−c10 + c11√
c10 + c11

]
, log

[
−
√
−c01 + c11√
c01 + c11

]
),

(log

[
−
√
−c10 + c11√
c10 + c11

]
, log

[√
−c01 + c11√
c01 + c11

]
),

(log

[√
−c10 + c11√
c10 + c11

]
, log

[
−
√
−c01 + c11√
c01 + c11

]
),

(log

[√
−c10 + c11√
c10 + c11

]
, log

[√
−c01 + c11√
c01 + c11

]
)

}
.

At most one of these solutions can be real, thus belonging to the θ parameters

domain. One reason for this comes from the fact that there can be at

most one saddle point in the η parametrization and it is known that the

critical points in Eθ[f ] are the same as in the η domain, once the coordinate

conversion (3.5) has been applied.

Let us consider the function f of the previous example and its expected

value w.r.t. the independence model in the θ parametrization, i.e., θ11 = 0.

E[f(x)] =
eθ10+θ01

e−θ10−θ01 + eθ10−θ01 + e−θ10+θ01 + eθ10+θ01
+

+
e−θ10−7θ01

e−θ10−θ01 + eθ10−θ01 + e−θ10+θ01 + eθ10+θ01
+

+
e−θ10−5θ01

e−θ10−θ01 + eθ10−θ01 + e−θ10+θ01 + eθ10+θ01
+

+
eθ10+3θ01

e−θ10−θ01 + eθ10−θ01 + e−θ10+θ01 + eθ10+θ01
.

Substituting the coefficient values in the previously expressions, we have

that the saddle point for Eθ[f ] is at

θ =
(1

2
log(3), −1

2
log(

5

3
)
)
.

In the Figure 4.4 the expected value of the fitness function expresses in

the natural parametrization θ is shown, while in Figure 4.5 can be seen some

Exact Gradient Descent trajectories. Remember that the domain of the θα
parameters is (−∞, ∞).



42 Chapter 4. The Expected Value of the Fitness function

Figure 4.4: The expected value of f calculated over the independence model as a

funciton of θ01 and θ10

Expected Fitness Function without Saddle Point

We consider now another two variable fitness function f :

f(x) = 2x10 − 4x01 + x10x01

In this case, considering the independence model, the saddle point condition

is not satisfied and the components of the gradient vector of the expected

fitness function are never zero at the same time. The expected value of f , as

a function of the η parameters, is shown in Figure 4.6. There exists only one

attraction basin in the domain of the η parameters and an Exact Gradient

Descent strategy always converges to the global optimum as it can be seen

in the Figure 4.7.

Domain and Eigenvectors

The absence of the saddle point in the expected fitness function does not

mean that the saddle point does not exists, but implies that is out of the

parameters domain (note that, when c11 tends to 0, the modulus of the

coordinates of the saddle point tends to ∞). The saddle point, although

it is outside the domain, has an effect on the shape of the expected value

of fitness function in the domain. In particular, in the two variables case,
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Figure 4.5: Trajectories of the Exact Gradient Descent search strategy for f in the θ

parametrization

it can creates different basins, i.e., Exact Gradient Descent strategies can

converge to sub-optimal solutions.

We consider now the example fitness function:

f(x) = −1.2x10 + x10x01

In this case the saddle point condition is not satisfied, thus the saddle point

of the expected fitness function is out of the domain. Its position is

∇E[f(x)] =

{
η10 = 0

−1.2 + η01 = 0
=⇒

{
η10 = 0

η01 = 1.2

It is possible to see that the eigenvectors associated to the saddle point of

the expected fitness function are always (1, −1) and (−1, 1). We can see

in Figure 4.8 that the eigenvector trajectories divide the domain in multiple

basins. The gradient trajectories do not cross the eigenvector trajectories

and can only end on the border.

Note that the gradient vector of the expected fitness function in the do-

main and on the border is never zero. This observation, in the domain,
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Figure 4.6: The expected value of f calculated over the independence model as a

funciton of η10 and η01

Figure 4.7: Trajectories of the Exact Gradient Descent search strategy for f in the η

parametrization

derives from the absence of saddle points of the expected fitness function.

On the border, we must consider the component of the gradient vector as-

sociated to the unconstrained coordinate. This component is the projection
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Figure 4.8: Trajectories of the Exact Gradient Descent search strategy for f in the η

parametrization (The gradient trajectories on the border of the domain are not repre-

sented). In red, the eigenvector of the saddle point for E[f ].

of the gradient on the border and, in general, can be zero only if the con-

cerned edge links two vertices with the same fitness. This case is impossible

if the edge is crossed by an eigenvector trajectory. This comes from the the

values of the eigenvectors, which are always the same in the two variable

case, as we have already seen. In particular, the eigenvector trajectories are

straight lines, because the gradient is linear, and always cross the border

with |π4 | angle. This implies that the projection of the gradient on the bor-

der in correspondence of the intersection with the eigenvector trajectories is

never zero, because the eigenvector trajectories never cross the border with

perpendicular angle.

Now we consider the trajectories of the gradient between the basins. As

we have seen in the example above, in the η parametrization, gradient trajec-

tories of the expected fitness function are limited into their basin. However,

the gradient trajectories reache always the border of the domain. Since the

gradient can not be zero on the border if an eigenvector trajectory crosses

it, then there exists always a gradient trajectory, driven by its projection on
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the border, which crosses the eigenvector trajectory and reaches the basin

of the optimum distribution.

Considering the last example, we can calculate that one of the eigenvector

trajectories crosses the border in η10 = 0.2, η01 = 1. If we constrain the

gradient vector of the expected fitness function on the border of the domain,

where η01 = 1, we obtain:

∇E[f(x)] =

{
0

−0.2

The first component of the gradient, that corresponds to the projection of

the gradient on the border, is not zero in η10 = 0.2, η01 = 1 and on all

the edge, thus, as we have already seen, the gradient trajectory crosses the

eigenvector trajectory on the border and reaches other basin.

Figure 4.9: Projection of the gradient of the expected fitness function on the border of

the domain in correspondence of η10 = 0.2, η01 = 1

Now, we reconsider the last example in the natural parametrization θ. It

is possible to compute the θ coordinates for every point η belonging to the

eigenvector trajectories previously found, applying the coordinate conversion

(3.5) given in the previous chapter.
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Figure 4.10: Eigenvector trajectories represented in θ parametrization by coordinate

conversion

As we have already seen, the border, in the natural parametrization, is

never reached, thus we expect to see that the gradient trajectories of the ex-

pected fitness function can not cross the eigenvector trajectories. However,

in η and θ parametrizations the trajectories of the gradient of the expected

fitness function are not the same, thus the eigenvector trajectories obtained

in η parametrization and expressed in θ are not, in general, gradient tra-

jectories in θ. The Figure 4.12 shows some gradient trajectories in θ found

solving numerically the associated differential equations. As can be seen,

the gradient trajectories can cross the η eigenvector trajectories. From an

experimental analysis, results that the gradient trajectories can always reach

the optimum basin in a finite time, starting from a finite values of θ coordi-

nates. In addition, the time required to reach the optimum basin rises when

the θ coordinates increase, because, in general, the module of the gradient

vector decreases in the proximity of the reduced support distributions. Note

that, from some starting points, the gradient trajectories reach the optimum

basin covering all quadrants.

In conclusion, the effect of the eigenvector trajectories in the domain

cause an increment of the time to reach the optimum basin from the gradient

trajectories. We can define the general conditions on the position of the
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Figure 4.11: The expected value of f calculated over the independence model as a

function of θ01 and θ10

saddle point of the expected fitness function, in η parametrization, that

guarantee a total absence of eigenvector trajectories in the domain, as:{
η01 < |η10| − 2

η01 > |η10|+ 2

4.2.2 Three Variables Case

Expected Fitness Function with Saddle Points

Now we analyse the three variables case. The fitness function has the fol-

lowing form:

f(x) = c000 + c100x100 + c010x010 + c001x001 + c110x100x010+

+c101x100x001 + c011x010x001 + c111x100x010x001

and the gradient vector of the expected fitness function corresponds to:

∇E[f(x)] =


c001 + c101η100 + c011η010 + c111η100η010

c010 + c110η100 + c011η001 + c111η100η001

c100 + c110η010 + c101η001 + c111η010η001
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Figure 4.12: Gradient trajectories of the expected fitness function, represented in θ

parametrization, when the saddle point is out of the domain

We take a specific example case with the following fitness function:

f(x) = −x100 − 2x010 − 4x001 + 16x100x010x001

Note that it has no second order monomials. We can express the gradient

vector as:

∇E[f(x)] =


−4 + 16η100η010

−2 + 16η100η001

−1 + 16η010η001

We verified the presence of the saddle points, finding the zeros of the ex-

pected value of the fitness function. In this example there are the following

two saddle points:{
(η100 = − 1√

2
, η010 = − 1

2
√

2
, η001 = − 1

4
√

2
),

(η100 =
1√
2
, η010 =

1

2
√

2
, η001 =

1

4
√

2
)

}
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Figure 4.13: Saddle points in the highlighted region have eigenvectors not crossing the

η parameters domain.

The Figure 4.14 represents some trajectories of the Exact Gradient Descent

over the independence model that show the behaviour of this search strat-

egy. This specific example shows that, when the number of variables is

greater than two, the expected fitness function can have more than one sad-

dle point. This observation is important, because the presence of multiple

critical points implies, in general, a presence of multiple local minima. If

the gradient vector of the expected fitness function is set to zero, in fact, we

obtain a second order equation.

∇E[f(x)] =


c001 + c101η100 + c011η010 + c111η100η010 = 0

c010 + c110η100 + c011η001 + c111η100η001 = 0

c100 + c110η010 + c101η001 + c111η010η001 = 0

=⇒

=⇒ (−c110c101c111 − c100c
2
111)η2

10 + (2c010c101c111 − 2c100c011c111)η10+

+(−c001c110c011 + c010c101c011 − c100c
2
011 − c010c001c111) = 0

Saddle Points of Constrained Independence Submodels

We consider a three variables example with the following fitness function:

f(x) = x100 + 2x010 + 10x001 − 4x100x010
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Figure 4.14: Trajectories of the Exact Gradient Descent search strategy for f in the η

parametrization

Note that the function has few monomials and no third order interactions.

The gradient vector of the expected fitness function is:

∇E[f(x)] =


10

2− 4η100

1− 4η010

As it can be seen, the gradient vector is constant in relation with the third

variable, thus the gradient module can never be zero and the expected fit-

ness function has not saddle points. The Figure 4.15 shows the cube that

represents the neighborhood relationships between the elements of the do-

main, based on the hamming distance. On the vertices of the cube, the

corresponding fitness values are indicated. Note that in this case, every ver-

tex on the cube face {(+−+), (++−), (−+−), (−−−)} has a lower fitness

value with respect to each vertex of the opposite face. This forces the gra-

dient trajectories to be directed from the first face to the opposite, thus the

first gradient component is always grater then zero (in this case constant).
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Figure 4.15: Representation of the neighborhood relationships between the elements of

the domain, based on the hamming distance. (On the vertices, the fitness values are

indicated

As it can be seen in the Figure 4.16, the trajectories that starts from any

point of the domain end on the face {(+−+), (+ + +), (−+ +), (−−+)}.
Now we limit the analysis of the problem on the independence submodels

Figure 4.16: Two views of the Exact Gradient Descent trajectories in the η parameter

space.
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constrained on the cube face {(+−+), (+++), (−++), (−−+)}, where the

variable x001 is set to 1. This corresponds to consider, for some aspects, the

two variable problem defined by the fitness value of the face. With x001 fixed

to 1, the first component of the gradient vector is zero, thus we can limit

our analysis to the last two components. We calculate the position of the

saddle point of the expected fitness function on the face of the constrained

independence submodel, as do in the two variable case, thus:

∇E[f(x)] =

{
2− 4η100 = 0

1− 4η010 = 0
=⇒

{
η100 = 2

4

η010 = 1
4

The saddle point of the consider submodel is in the domain and, as we have

previously seen, not represent a saddle point of the independence submodel,

however it can create two different attraction basins as shown in the Figure

4.16. This example is very significant, because reveals that the saddle points

of the expected fitness function of the constrained independence submodels,

in absence of saddle points of the expected fitness function of the indepen-

dence model, can create different attraction basins, thus an Exact Gradient

Descent search strategy can converge to a local minima.

4.3 On the Position of the Saddle Points

In this chapter we present some simple proofs about the two variable fit-

ness functions and the shape of their expected fitness over the independence

model. We consider these considerations useful to get a deeper understand-

ing of the relation between fitness functions, expected fitness over a sub-

model and convergence abilities of exact gradient descent search strategies.

4.3.1 High Order Interactions

We have seen that the coefficients cα with |α| > 1 represent interactions

between variables in the fitness function. The more these coefficients are

high the more the non-linearity of f influences the behaviour of a search

strategy.

We have already introduced the conditions that have to hold for the

saddle point to be inside the parameters domain in the two variable case.

In the following figure the locus of the saddle point as a function of c11

has been plotted for the two variables function f = x10 + 2x01 + c11x10x01.

When the interaction between x10 and x01 is high enough then a saddle

point appears in the domain and search strategies could fail to converge to

the global optimum.
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Figure 4.17: Locus of the saddle point as a function of c11

For the three variables case the conditions on the coefficients for a saddle

to exist inside the parameters domain become much more complex. In fact

there are eight coefficients involved and the equations ∇E[f ] = 0 are non

linear. However we have seen in an example in previous sections how an

high c111 coefficient could lead to the presence of even two saddle points

inside the η domain. Thus we conjecture that the shape of the expected

fitness calculated on a sub-model is strictly related to strength of the de-

pendencies between variables in the fitness function that are not captured

by the considered model.

4.3.2 Again on the Saddle Point Position

In this section we focus on the behaviour of a greedy search strategy when

its search space is restricted to the border of the independence model and we

show that it converge to the global optimum for f if and only if the saddle

point for EM[f ] is outside the domain of the η parameters.

As it is presented in detail in the following chapter, the independence

model covers a two dimensional surface in the three dimensional space of

the probability simplex. This surface includes four out of the six edges,

in particular, are included in the model the edges for which the variables

assignments have hamming distance 1. For example, the edge connecting

(1, 1) and (1,−1) is included in the independence model, while the one from

(1, 1) to (−1,−1) is not. It is possible to see that the expected value of f over

these edges is a linear combination of the fitness of the two edges, depending

on the position, and that the gradient is constant and directed towards the
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vertex with higher fitness. Consider the function f whose fitness values are

shown in the table below. A graph can be used to show the dynamics of

an Exact Gradient Descent strategy when its search space is reduced to the

borders of the independence model. As we can see in the Figure 4.18 EGD

not converge to the global optimum for certain starting condition.

x10 x01 f(x10, x01)

-1 -1 2

-1 1 3

1 -1 4

1 1 1

Figure 4.18: Graph representation of the dynamics on the border of the independence

model

It is possible to compute the c coefficients for f and check for saddle pres-

ence in the interior of the η domain. The coefficients are c = (5
2 , 0, −1

2 , −1)

and the saddle points coordinates are η = (−1
2 , 0). As we have show in the

previous sections, in this case EGD does not converge to the global optimum

for f for certain starting conditions. We have also seen that this could hold

even for more advanced strategies.

Now we show that since the expected value of f calculated on the inde-

pendence model has a saddle point in the interior of the η domain the same

holds for every function that has the same dynamics as f on the border of

the model. This is done by showing that the saddle point for f does not

move outside the η domain if the fitness values of f are perturbated pre-

serving the directions of travel of EGD on the border of the independence

model.

First consider a function f ′ for which f ′(x10, x01) = γf(x10, x01). It

holds that cα,f ′ = cα,f . The γ factors cancel in the expression of the saddle
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point position for f ′, thus it is the same as for f . This shows that scaling

all the values of the fitness does not change the position of the saddle point.

Consider now the class F ′ of two variables functions with the same image

values of f except for f−−. To preserve the dynamics on the border of the

independence model f−− can assume all the values in the range (f−+,−∞).

Note that if f−− = f−+ the dynamics on the border are not the same since

on the edge (−1,−1), (−1, 1) the gradient would be null in every point. We

can give the saddle point coordinates as a function of f−−:

η =
(−f++ + f+− − f−+ + f−−
f++ − f+− − f−+ + f−−

,
−f++ − f+− + f−+ + f−−
f++ − f+− − f−+ + f−−

)
For functions belonging to F ′ we have

η =
( f−−
−6 + f−−

,
−2 + f−−
−6 + f−−

)
The locus of the saddle point has been plotted as a function of f−− in

Figure 4.19. It is always inside the η domain. Note that if f−− is eliminated

and η2 is expressed as a function of η1 it holds that η2 = (1 + 2η1)/3.

Figure 4.19: Locus of the saddle points of f ′ as a function of f ′−−

This can be proven formally. One has to show that
|n1| = |

a+ f−−
b+ f−−

| ≤ 1

|n2| = |
c+ f−−
b+ f−−

| ≤ 1

where a = −f+++f+−−f−+, b = f++−f+−−f−+ and c = f++−f+−+f−+,

for every f++, f+− and f−+ such as

f+− > f−+ > f++ > f−− (4.1)
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We have gone through all the calculations and found out that a sufficient

condition for this to hold is:

a > b < c ∧ f−− ≤
1

2
(−a− b) ∧ f−− ≤

1

2
(−b− c)

It is possible to see expanding a, b and c that this condition holds for every

fitness assignment that preserves (4.1). Note that the strict inequalities

translates immediately in the requirements on f . For example

c > b⇒ f++ < f−+

Similar results can be derived for f−+, f+− and f++. This result, along

with the global scaling property stated before, can be used to reconduct

every function for which EGD behaves like in Figure 4.18, when its search

space is restricted to the border of the independence model, to the case of

f . Since E[f ] calculated on the independence model has a saddle point in

the interior of the η domain the same holds for every such a function. This

shows that for the two variables case the presence of local minima for EGD

on the border of the independence model implies the presence of a saddle

point in E[f ] and thus that EGD and other search strategies converge to a

local optima for f when the entire independence model is given as the search

space.

There are other possible dynamics that involve a saddle point in the

expected fitness but it is possible to see that they are just rotations or

symmetries of the f case.

4.3.3 The Attraction Basin Which Includes the Uniform Dis-

tribution

Consider an exact gradient descent search strategy with the uniform distri-

bution as the initial condition. In this section we prove that this strategy

converges to the global optimum for every two variables fitness function.

We consider a generic two variable problem, with the optimum in (−1, 1).

Note that the choice of optimum element is arbitrary, and the demonstration

does not lose generality. The fitness values can be express by the sum of the

coefficients cα with the proper signs as follows:

f−− = c00 − c10 − c01 + c11

f−+ = c00 − c10 + c01 − c11

f+− = c00 + c10 − c01 − c11

f++ = c00 + c10 + c01 + c11
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As already seen in the previous results, if the problem has a saddle point in

the domain, the attraction basins are opposite, i.e., x1 opt = −x1 subopt, x2 opt =

−x2 subopt . In our specific example, the problem has a local minima in

(1,−1). We can express some conditions on the fitness of the elements of

the domain, based on the knowledge of the optimum position, as follows:

f−+ > f+−
f−+ > f−−
f+− > f−−
f−+ > f++

f+− > f++

=⇒

=⇒



c00 − c10 + c01 − c11 > c00 + c10 − c01 − c11

c00 − c10 + c01 − c11 > c00 − c10 − c01 + c11

c00 + c10 − c01 − c11 > c00 − c10 − c01 + c11

c00 − c10 + c01 − c11 > c00 + c10 + c01 + c11

c00 + c10 − c01 − c11 > c00 + c10 + c01 + c11

=⇒

=⇒



c01 > c10

c01 > c11

c10 > c11

−c10 > c11

−c01 > c11

=⇒


c01 > c10 > c11

−c10 > c11

−c01 > c11

The last condition of the coefficients cα permits to characterize the follow-

ing three cases on the position of the saddle point (remembering that its

coordinates are η10 = − c01
c11

, η01 = − c10
c11

):

1. 

c01 > 0

c10 > 0

c11 < 0

c01 > c10 > c11

−c10 > c11

−c01 > c11

=⇒


c01
c11

< 0 =⇒ η10 > 0
c10
c11

< 0 =⇒ η01 > 0

|c01| > |c10|, c01c10 > 1 =⇒ η10
η01

> 1

The coordinate η10 and η01 are in the first quadrant and the position

of the saddle point is always under the bisector, thus the uniform

distribution is in the optimum basin.
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Figure 4.20: Locus of saddle point when c01 > 0, c10 > 0, c10 < 0

2. 

c01 > 0

c10 < 0

c11 < 0

c01 > c10 > c11

−c10 > c11

−c01 > c11

=⇒

{
c01
c11

< 0 =⇒ η10 > 0

|c10| < |c11|, c10c11 < 1 =⇒ 0 > η01 > −1

The coordinate η10 and η01 are in the second quadrant, thus the uni-

form distribution is always in the optimum basin.

3. 

c01 < 0

c10 < 0

c11 < 0

c01 > c10 > c11

−c10 > c11

−c01 > c11

=⇒


|c01| < |c11|, c01c11 < 1 =⇒ η10 < 0, η10 > −1

|c10| < |c11|, c10c11 < 1 =⇒ η01 < 0, η01 > −1

|c01| < |c10|, c01c10 < 1 =⇒ 0 < η10
η01

< 1

The coordinate η10 and η01 are in the third quadrant and the position

of the saddle point is always under the bisector, thus the uniform

distribution is always in the optimum basin.
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Figure 4.21: Locus of saddle point when c01 > 0, c10 < 0, c10 < 0

Figure 4.22: Locus of saddle point when c01 < 0, c10 < 0, c10 < 0

Note that this does not imply that we have found the perfect search strat-

egy since calculating the exact gradient vector ∇EM[f ] has computational

complexity exponential in the number of variables.
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4.3.4 The Locus of the Saddle Point in PBIL

In this section we determine analytically the position of the saddle point for

the dynamics of the PBIL algorithm under the infinite population assump-

tion.

Consider a pseudo-boolean function f and suppose its optimum and sub-

optimum are located, without loss of generality, in (1, 1) and (−1,−1). We

have shown in the previous sections that since these two value assignments

have no variable value in common, E[f ] has a saddle point.

Let s be a starting independent distribution characterized by its marginal

probabilities. Here we use the following short-cut notation for the marginal

probabilities: p1 = p(x10 = 1) and p2 = p(x01 = 1). Since the infinite

population hypothesis holds, R[(1, 1)] = p1p2, R[(1, 1)] = (1 − p1)(1 − p2)

and so on. Here with R[x] we mean the fraction of individuals x in the

population.

Figure 4.23: Representation of the population after sampling and before selection

The composition of the population after selection is shown in Figure 4.23

where we have assumed, again without loss of generality, that f+− > f−+.

Selection discards the last 1−α elements, where α is the selection rate. After

selection the new distribution is estimated from the resulting population.

Suppose it holds

p1p2 < α ≤ p1p2 + (1− p1)(1− p2) (4.2)

This means that the selected population contains all the optimal individuals

and part of the sub-optimal ones. All the individuals of the types (1,−1)

and (−1, 1) are discarded. The Max-Likelihood estimators of p1 and p2 thus

are

p̂1 =
p1p2

α
p̂2 =

p1p2

α
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We are looking for distributions such as p̂1 = p1 and p̂2 = p2, or, in other

words, the initial distributions such as the process of sampling, selection

and estimation returns the same marginal probabilities. This holds when

p1 = p2 = α. Substituting this in the condition (4.2) we have that

α2 < α ≤ α2 + (1− α)2

that holds for every α ∈ (0, 1/2]. This means that for every alpha in this

range the distribution with p1 = p2 = α is a saddle point for PBIL. Consider

now another case, suppose it holds that

p1p2 + (1− p1)(1− p2) ≤ α ≤ p1p2 + (1− p1)(1− p2) + p1(1− p2) (4.3)

this means that the selection preserves all the (1, 1), (−1,−1) individuals

and part of the (1,−1) ones. Call k = α−p1p2− (1−p1)(1−p2) the number

of the (1,−1) individuals. The Max-Likelihood estimator this time reads as

p̂1 =
p1p2 + k

α
p̂2 =

p1p2

α

The distributions such as p̂1 = p1 and p̂2 = p2 are the one for which a =

p1 = 1− p2. Substituting this into (4.3) we have that 1/2 ≤ α < 1.

We have shown that if it holds that f++ < f−− < f+− < f−+ for every

selection rate α there is a distribution s such as the gradient perceived by

the PBIL algorithm in s is null. We have gone through similar calculations

and derived similar results for the other possible fitness configuration that

imply a saddle point in the expected fitness on the independence model.

Moreover it can be shown with the same technique that the PBIL gradient

is never null if the function f has no saddle point inside the parameters

domain.

This example shows how the convergence properties of real search strate-

gies can be influenced by the landscape of the expected value of the fitness

function f .

4.4 Conclusions

In this section we have presented an in depth analysis of the expected value

of a pseudo-boolean function f calculated over the independence model for

some two and three variables example. In those cases we have derived the

exact expressions of E[f ] in the η and θ parametrization, we computed the

positions of the critical points and in some cases we were able to give con-

ditions on the coefficients cα for these to exist in the parameters domain.
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At the same time we analysed the behaviour of a theoretical search

strategy based on the exact gradient descent of E[f ], trying to relate its

performance with the shape of this function. We observed that the presence

of critical points in E[f ] could prevent this strategy to converge to the global

optimum for certain starting condition. We have seen that the same happens

for a real search strategy, PBIL, which explicitly uses the same probability

model ∇E[f ] was calculated on.

In the last section we proved, at least for the two variable case, the

importance of analysing the behaviour of a greedy search strategy confined

on the border of the independence model along with other minor results

about the structure of E[f ] and the position of the saddle point for the

PBIL strategy in the two variable cases.

Even if the mathematical tools employed in this analysis were not pow-

erful enough to gives results for higher dimensional cases, the study of these

examples enabled us to achieve deeper understanding about the problem

and form the basis for the development of the rest of this work.
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Chapter 5

Transformations of Variables

We have seen in the previous chapter how the performances of evolutionary

search strategies could be influenced by the critical points in the expected

value of the function f to be optimized. We have related this fact to the

presence of more than one attractors for the Exact Gradient Descent search

strategy. In this chapter we introduce the class T of the one-to-one maps

between elements of the search space Ω and its sub-class Lk. We discuss the

idea of composing the fitness function with maps in T or Lk and we analyse

the effects of these compositions on the expected value of f . We show how

improvements in the performance of EGD strategy can be achieved if the

proper map is chosen. The concepts and the ideas discussed in this chapter

forms the core of this work.

5.1 Concepts and Definitions

In this section the class T of one-to-one maps between elements in Ω is

introduced.

5.1.1 The Idea

Consider a pseudo-boolean function f , defined over the domain Ω = {−1, 1}n,

and the one-to-one function

T (x) : Ω→ Ω
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This map associates a variable assignment y to every x ∈ Ω. We are inter-

ested in the composition of the function f with T , i.e., in the pseudo-boolean

function g

g : Ω→ R

g(y) = f ◦ T = f(T (x))

Let us discuss an example.

f(x10, x01) x10 x01 T [(x10, x01)] y10 y01 g(y10, y01)

2 -1 -1 ⇔ -1 1 2

3 -1 1 ⇔ 1 -1 3

4 1 -1 ⇔ 1 1 4

1 1 1 ⇔ -1 -1 1

The two functions f and g are different and thus is natural to expect

that the same holds for their coefficients vectors c and d. In fact the two

coefficients vector cα =
(

5
2 , −

1
2 , 0, −1

)
and dα =

(
5
2 ,

1
2 , 1, 0

)
.

The function g has the same multi-set of images as f . More precisely,

consider the following set of variables assignments

Nf (a) = {x ∈ Ω|f(x) = a}

It holds that

|Nf (a)| = |Ng(a)| ∀a ∈ R (5.1)

This comes from the fact that T is one-to-one. Obviously these sets have

cardinality greater than zero for at most 2n different fitness values a. Intu-

itively, T simply permutes the values of f over the domain Ω.

The condition (5.1) allow us to introduce a notion of equivalence between

pseudo-boolean functions defined over n variables:

f ≡T g ⇔ ∀a ∈ R |Nf (a)| = |Ng(b)|

where T is the class of all the possible maps T . Essentially, we say that f

is T -equivalent to g if the values of g are a permutation of the f ones with

respect to the domain Ω, that is, g can be written as the composition of f

with an appropriate map T . Note that if g = f ◦ T then f = g ◦ T−1. The

existence and the uniqueness of the inverse of T map is guaranteed by the

fact that T has been defined to be one-to-one.

The introduction of this notion of equivalence is motivated by the fact

that for every map T and every functions f, g = f ◦ T it holds that

min
x∈Ω

f(x) = T−1
[

min
y∈Ω

g(y)
]
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so to the ends of finding a solution for the problem (P ) it makes no difference

if we consider the function f or any other g ≡T f . Let us show with an

example how the composition of the function f to be optimized with a

proper map T affects the stochastic relaxation of f . Consider again the

functions introduced in the previous example. Their expected value on the

independence model read, as always, as

E[f ] = 5
2 −

1
2η01 − η01η10 E[g] = 5

2 + 1
2η01 + η10

Remember the coefficients vector calculated before. The original function

expected value has a saddle point in η = (−1
2 , 0) while E[g] is linear in

the η parametrization. This means that there are respectively two and one

attractors for the Exact Gradient Descent strategy. Remembering the results

of the previous chapter we can conclude that evolutionary search strategies

perform better optimizing g than f .

Note that this improvement depends entirely on the specific map applied.

The one we applied here produced good results but this is not true in general.

Consider the inverse example, i.e., g is the function to optimize and T−1 is

the proposed map. This time opposite effects are obtained: the expected

value of f = g ◦ T−1 with respect to the independence model has a saddle

point inside the η domain while the g one is linear in the η parametrization.

5.1.2 T as Vector-valued Pseudo-boolean Function

Consider again the map T (x) : Ω → Ω. It is possible to express T (x) as a

vector-valued function

T (x) =
(
t1(x), t2(x), ..., tn(x)

)
(5.2)

In the following we use the usual multi-index notation for the sub-elements

of T , which are ordered like the x variable vectors. So for example y010 =

t010

(
x100, x010, x001

)
.

Every th is a function defined on the vector of binary variables x and

has {−1, 1} as image set. They are pseudo-boolean functions and the usual

expansion holds:

th =
∑
α∈I

ch,αx
α

Thus every possible map can be characterized by the n vectors of 2n coeffi-

cients ch,α. In the following ch is the coefficient vector of h-th component of

T and ch,α is the α coefficient in the multi-linear expansion of th(x), so for

example c010,011 is the coefficient of the monomial x010x001 in the expansion
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of t010. We sometimes use the intuitive short-cut 100 = 1, 010 = 2 and so

on for multi-indices with cardinality one.

Note that this expansion of T is very expressive. Only few assignments

for the th coefficient vectors represent valid one-to-one maps belonging to

class T . We deal with this point later.

The expression (5.2) allow us to compute directly the expression of f ◦T
starting from the monomial expansion of f .

f
(
T (x)

)
=
∑
α∈I

cα
∏

h∈1...n

th(x)αh (5.3)

Intuitively, one has to substitute every instance of the variable xh in the

expansion of f with the k-th component of the vector-valued function T (x).

Consider the following two variables example:

T (x10, x01) =
(
− x10x01, −x01

)
c10 =

(
0, 0, 0,−1

)
c01 =

(
0,−1, 0, 0

)
x T (x)

x10 x01 −x10x01 −x01

-1 -1 -1 1

-1 1 1 -1

1 -1 1 1

1 1 -1 -1

It can be seen inspecting the table that this coefficients assignment makes

T one to one. We now derive the expansion of g = f ◦ T using (5.3).

f = c00 + c10x10 + c01x01 + c11x10x01

g = f ◦ T = c00 + c10

(
− x01x10

)
+ c10

(
− x01

)
+ c11

(
− x01x10

)(
− x01

)
=

= c00 − c10x01 + c11x10 − c01x10x01

Remember that x2
α = 1. So we have that the g coefficients vector is d =

(c00, c11, −c10, −c01).

In this section we have presented the class of the one-to-one variable

maps T : Ω→ Ω and the idea that composing elements of this class with the

fitness function to be optimized. Hints were given on how the composition

with the proper map T ∈ T could lead to improvements in the performances

of EGD.
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5.2 Probability Models and the T Maps

In this section we show how the variable maps of the class T can be used to

define probability models over the binary variables x.

Consider the binary variables vector x, a variable map T ∈ T and the

vector y = T (x). x and y both take values in Ω. Let now MT be a

probability model defined over the transformed variables y. It still defines

a family of distribution with Ω as support, so for example sampling from

the uniform distribution over the y variables we obtain, on average, every

element of Ω with equal probability. We are interested in which is the

probability model obtained if the map T−1 is applied on the support of

distributions in MT , i.e., in the distributions over the x variables such as

p(x = T−1[y]) = p(y = y) ∀y ∈ Ω (5.4)

In other words the joint probability p(y = y) gives the probability that the

y variables take the value y ∈ Ω. Every y can be mapped back on the x

variables with T−1, i.e., x = T−1(y) and thus the equivalent joint probability

on the x variables is specified completely.

Note that definition (5.4) completely specifies the distribution over the

x variables since T has been defined to be one-to-one. This also implies

that every distribution over the y variables is mapped on one and only one

distribution on the x variables. This gives another interpretation of the

maps T ∈ T . We have seen that is defined to associate in a on-to-one way

elements in Ω. Now we have extended this point. Since joint probabilities

are functions whose domain is Ω we can apply maps in T to their domain

obtaining new joint probability functions and thus defining an equivalence

relation between probability distributions. This point becomes clearer in

the following.

IfMT is specified in the η parametrization the following holds. Consider

the ηx,α component of the η parameters vector

ηx,α = E[xα] = E[
∏
i∈1...n

t−1
i (y)] (5.5)

The generic t−1
i component of the inverse map T−1 is a pseudo-boolean

function of the y variables. So once the products are expanded and the

squared terms replaced with 1 the argument of the expected value is a

pseudo-boolean function of the y variables. Since E[yα] = ηy,α the expected

value translates into a linear function of the ηy,α parameters. We deal with

an example later to clarify this point.
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A very important observation, related to the equivalence of (P ) and

(R), take place here. Note that a distribution with reduced support on

one variable assignment, !∃ y such that p(y) = 1, retain this property when

the map T−1 is applied. In other words, the number of vertices of the

probability simplex which are included in a model MT is equal to the one

of the corresponding M over the untransformed variables, even though in

general the vertices are different in the two models.

In the following we examine in depth a two variable example that is

simple enough to expose clearly and analytically a number of concept and

observations.

5.2.1 A two Variable Example

Consider the independence modelM1 defined over two binary variables x10

and x01. Its η parametrization is

ηx =
(

1, ηx,01, ηx,10, ηx,10ηx,01

)
This model has two free parameters and it covers a two dimensional sur-

face in the three dimensional expectation polytope. The same surface is

represented in the probability simplex in Figure 5.1.

Figure 5.1: The two variables independence model in the probability simplex
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Let now T1 ∈ T be the variable map

y = (y10, y01) = T1(x10, x01) =
(
x10x01, x01

)
Because of the definition of T y10 and y01 are again two binary variables

whose domain is {−1, 1} and thus an independence modelM2 can be defined

over them. Its parametrization in the ηy space is again

ηy =
(

1, ηy,01, ηy,10, ηy,10ηy,01

)
We want to characterize the probability distributions obtained picking

a distribution s from M2 an then applying T−1 over its support, i.e., given

the parametrization ηy of s we want to find its corresponding ηx vector in

the untransformed variable space. First note that T−1
1 = T1 since x−1

α = xα
for binary variables with domain {−1, 1}, i.e.,

x = T−1
1 (y) =

(
y10y01, y01

)
We employ (5.5) to obtain ηx,α as a function of the two free parameters of

M2: ηy,01 and ηy,10:

ηx,01 = E[x01] = E[t−1
01 (y10, y01)] = E[y01] = ηy,01

ηx,10 = E[x10] = E[t−1
10 (y10, y01)] = E[y10y01] = ηy,11 = ηy,10ηy,01

ηx,11 = E[x01x10] = E[t−1
01 (y10, y01)t−1

10 (y10, y01)] = E[y2
01y10] = ηy,10

Thus we have that

ηx =
(

1, ηy,01, ηy,10ηy,01, ηy,10

)
One immediately sees that this vector does not represent an independent

distribution over the two variables x10, x01 since ηx,11 6= ηx,10ηx,01. So we

have a model over the x variables with two free parameters for which it

holds that η10 = η01η11. We have seen how every distribution in this model

has a T -equivalent distribution in the independence model defined over the

variables y = T (x).

This model again covers a two dimensional surface in the expectation

polytope, different by the previous one, as it can be seen in Figure 5.2(a).

Another modelM3 can be defined in a similar way, considering the map

z = T2(x) =
(
x10, x10x01

)
Its η parametrization with respect to the untransformed variables x10 and

x01 can be determined directly T−1 in the expansions of ηx,α. The result is

ηx =
(

1, ηz,10ηz,01, ηz,10, ηz,01

)
The surface it covers in the probability simplex is shown in Figure 5.2(b).
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Figure 5.2: ModelsM2 (left) andM3 (right) represented as surfaces in the probability

simplex.

5.2.2 The Borders of the Independence Models

Comparing Figures 5.1, 5.2(a) and 5.2(b) it is possible to see that the set

of edges of the probability simplex tetrahedron included in the models are

different while the vertices belongs to all the modelsM1,M2 andM3. This

happens because the maps T ∈ T are defined to be one to one, thus every

vertex is mapped onto another and every vertex of the simplex belongs to

the independence model. Consider for example the family of independent

distributions over the y10 and y01 variables whose ρ parametrization is shown

in the table below, where β ∈ (0, 1). These distributions belong to M2.

y10

y01 -1 1

-1 β 0

1 1− β 0

It is clear that these distributions have reduced support and that they

compose the edge connecting the vertices (−1,−1) and (−1, 1) of the prob-

ability simplex in the y variables. Consider now the distributions obtained

by applying T−1
1 (y) to the support of these distributions. This family is

defined over the x10 and x01 variables and its ρ parametrization is shown in

the table below.

x10

x01 -1 1

-1 0 β

1 1− β 0
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These distributions again have reduced support and lay on the edge

between (−1, 1) and (1,−1) in the probability simplex in the x variables. It

is possible to see that these distributions do not belong to the independence

model over x10 and x01. One way to see this is to compute the marginal

probabilities p(x10 = 1) = β and p(x01 = 1) = 1 − β and notice that

p(1, 1) = 0 6= β(1− β) for all values of β ∈ (0, 1). In fact this edge does not

belong to the independence model M1.

Suppose now that the function f to be optimized has two global optima

in x = (−1, 1) and x = (1,−1). This means that all the reduced support

distributions s over the x variables such as p(x = (1,−1) = β and p(x =

(−1, 1)) = 1 − β are global optima for E[f ] and thus solutions for (R).

We have seen that the only distributions of this family that belong to the

independence model over the x variables are the ones obtained for β = 0

and β = 1. This comes from the fact that such distributions lay on an edge

of the probability simplex that is not included in the independence model.

Note that this edge is included in the independence model defined over the

y variables.

These observations allow us to get more insight in the examples in Section

5.1.1. We had seen that the function g(y) = f(x) ◦ T can present dynamics

on the border of the independence model different from the f ones. Now

this becomes clearer since the border of the independence model defined

over the y variables is, in general, different from the one associated to the x

variables.

5.2.3 The Mixed Parametrization

The Amari’s mixed parametrization, introduced in Section 3.5.3, it is useful

to get further understanding of the structure of the models introduced in

the previous section. In this section we derive the mixed parametrization

(1, ηx,01, ηx,10, θx,11) as a function of the free η parameters of the indepen-

dence models defined over the transformed variables y and z.

Consider the model M2. Its ηx parameters vector is

ηx =
(

1, ηy,01, ηy,10ηy,01, ηy,10

)
So we already have three component of the mixed parameters vector. One

way to compute the missing θ11 parameter is to apply the relation (3.5) and

obtain the θ vector as a function of the η parameters. We have that the

mixed parametrization of M2 is(
1, ηy,01, ηy,10ηy,01,

1

4
log
[ (1 + ηy,10)2

(−1 + ηy,10)2

])
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In Figure 5.3(a) the surface representing the model has been plotted in

the three dimensional space of the mixed parametrization. The plane with

mixed parametrization (1, ηx,01, ηx,10, 0) is the independence model M1.

Remember that θx,11 ranges in (−∞, ∞).

Figure 5.3: M2 andM3 in blue, the independence model over the x variables in purple

Note that when θx,11 = +∞ the two model cover the diagonals of the up-

per and lower faces of the infinite parallelepiped which forms the parameters

space. These diagonals corresponds to the edge of the probability simplex

connecting the vertices (1, 1), (−1,−1), for the upper face, and (−1, 1),

(1,−1) for the lower one. This can be seen intuitively. When θx,11 = +∞
there is complete correlations between the variables values, so for example

knowing x01 one can completely determine x10 = x01. This means that

a variable assignment (1,−1) cannot come from distribution on the upper

diagonal.

Again, remembering that θx,11 is orthogonal to ηx,01, ηx,10 and that in

the mixed parametrization it encodes pure correlation between the random

variables x01 and x10, it is possible to see that most of distributions belonging

to M2 are not independent and the degree of correlation depends only on

ηy,10. This seems straightforward since y10 = t10(x) = x01x10.

Solving the equation θx,11 = 0 shows that the distributions of the inde-

pendence model M1 such as their parametrization is ηx = (1, ηx,01, 0, 0)

belong also toM2. A notable distribution included in this set is the uniform
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distribution ηx = (1, 0, 0, 0).

Similar results hold for the model M3. Its mixed parametrization is(
1, ηz,01ηz,10, ηz,10,

1

4
log
[ (1 + ηz,01)2

(−1 + ηz,01)2

])
Again it is possible to see that the distributions ηx = (1, 0, ηx,10, 0) are

included in both M1 and M3. Note that the uniform distribution is the

only point, apart from the four vertices of the probability simplex, that

belong to all the three models.

In this section we have presented the idea of defining a probability model

My over binary variables and then to apply the inverse map T−1 over the

support of the distributions belonging toMy, thus obtaining a new probabil-

ity modelMx. We have characterized some example models and shown how

the reduced support distributions included inMx andMy can be different.

In the next section we give some more results about the class T .

5.3 Existance Theorem

In this function we show how, in principle, every optimization problem (R)

for f can be reconduced to an equivalent one on g = f ◦T ∈ T for which the

Exact Gradient Descent strategy always converge to the global optimum for

E[f ]. The argument proceed as follows: first we introduce a class of pseudo-

boolean functions for which ∇E[f ], calculated over the independence model,

is always positive. This means that for this functions there exists only one

attractor for the Exact Gradient Descent search strategy. Then we show

that every pseudo boolean function f is T -equivalent to the proper element

of the previously defined class.

Note that the proof is not constructive so in this section we do not

provide a procedure to obtain g whose complexity is not higher that the one

of solving (R). A technique that goes in this direction is presented in later

chapters.

5.3.1 A Particular Pseudo-boolean Function

Let us consider a pseudo-boolean function f defined over n variables such

as it holds that

∀a, b ∈ Ω a >L b⇒ f(a) >= f(b) (5.6)

where >L is the lexicographic ordering with −1 ≺ 1. In other words, the val-

ues of f are increasing once the domain has been ordered lexicographically.

An example of a function for which this holds is
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x10 x01 f(x10, x01)

-1 -1 1

-1 1 2

1 -1 3

1 1 4

Each component of the gradient of E[f ] calculated over the independence

model is always grater then zero. This is intuitive since we can always

achieve an improvement of the value of E[f ] increasing the marginal proba-

bilities p(xα = 1). We prove this more formally.

Consider the first variable x1. It holds that f(1, ·) ≥ f(−1, ·). The

expected value of f over the independence model reads as

E[f(x)] =
∑

i∈{−1,1}

 ∑
J∈{−1,1}n−1

p(i, J)f(i, J)


We have that p(i, J) = p(i)p(J). The marginal probability p(J) is a proba-

bility distribution itself, the former reads as

E[f(x)] =
∑

i∈{−1,1}

p(i)

 ∑
J∈{−1,1}n−1

p(J)f(i, J)

 =

= p(x1 = 1)E[f(1, ·)] + p(x1 = −1)E[f(−1, ·)]

Remembering that the marginal p(xi) = 1
2(1+ηixi) we can write the previous

in the η parametrization. Let a = E[f(1, ·)]− E[f(−1, ·)]:

E[f(x)] =
a

2
η1 +

E[f(1, ·)] + E[f(−1, ·)]
2

Note that a does not depend on η1. It can be seen that if (5.6) holds then

E[f(1, J)] ≥ E[f(−1, J)]. In fact we have that E[f(1, J)] assumes his lowest

value when the distribution p(1, J) has reduced support Ω′ included in the

set of the minima of f(1, J). Similar considerations hold for the maximum

of E[f(−1, J)] and, because of the fitness ordering condition, it holds that

min f(1, J) ≥ max f(−1, J) with equality if and only if f(x) = c ∀x ∈ Ω. So

we have that
∂E[f ]

∂η1
=
a

2
≥ 0

with equality if and only if the function is constant. Note that this already

implies that for every non-constant function of the class we are examining

E[f ] over the independence model has no saddle points inside the η domain.
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For the k-th variables the expansion shown before generalize as:

E[f ] =
∑

H∈{−1,1}k−1

p(H)
[
E[f(H, 1, ·)]p(xk = 1) + E[f(H,−1, ·)]p(xk = −1)

]
Similarly, let aH = E[f(H, 1, ·)]− E[f(H,−1, ·)]. We have that

E[f ] =
∑

H∈{−1,1}k−1

p(H)
[aH

2
ηk +

E[f(H, 1, ·)] + E[f(H,−1, ·)]
2

]

Again, p(H) does not depend on ηk because of the independence assump-

tion and it is possible to see that E[f(H, 1, ·)] ≥ E[f(H,−1, ·)] for every H.

This implies that the partial derivative of E[f ] with respect to ηk is a sum

of non-negative terms.

Note that for greedy search strategies confined on the border of the

independence model there exist no local minima. In fact it is easy to see

that for every value assignment that is not a global optimum there always

exists another one with better fitness at hamming distance 1.

5.3.2 The Correct Map in T

We have seen in the previous section that if the images of f monotonically

increase once the domain Ω has been ordered lexicographically, then ev-

ery component of ∇E[f ] calculated over the independence model is always

greater than zero. This implies that the global optimum for E[f ] is the

only attractor for the Exact Gradient Descent strategy on the independence

model. It is clear that there always exist a map T ∈ T which reorders the

fitness values over the domain in a way that the property (5.6) holds for

f ◦ T = g. Thus the following theorem holds. Let f be a pseudo-boolean

function over n variables:

Theorem 6. There always exists a function g = f ◦ T with T ∈ T such

as an Exact Gradient Descent search strategy always converges to the global

optimum for E[g].

Remember that

min
x∈Ω

f(x) = T−1
[

min
y∈Ω

g(y)
]

This result can also be interpreted with the ideas presented in the pre-

vious section. The following equivalent theorem holds. Consider a pseudo-

boolean function f defined over the x variable vector, a variable map T ∈ T
and an independence model defined over y = T (x), MT .
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Theorem 7. There always exists a map T such as an Exact Gradient De-

scent search strategy on the model MT always converges to the global opti-

mum for E[f ].

Let us discuss a three variable example. Consider the pseudo-boolean

function f with coefficients vector

c =
(

0, 4, 2, 0, 1, 0, 0, −16
)

Remembering the lexicographic ordering on for the coefficient vectors, it is

possible to see that this function has no interactions of order two between

variables. However, there is a strong interaction of order three. We have

analysed a similar function in Section 4.2.2 and we have already seen that

it has two saddle points inside the parameters domain. Lets write explicitly

all the eight fitness values of the function.

x100 x010 x001 f(x)

-1 -1 -1 9

-1 -1 1 -15

-1 1 -1 -19

-1 1 1 21

1 -1 -1 -21

1 -1 1 19

1 1 -1 15

1 1 1 -9

It is possible to see looking at the disposition of fitness values over the

domain that there are various local optima on the border of the indepen-

dence model. For example f(1,−1, 1) is not a global optimum and all of its

neighbours at hamming distance 1 have lower fitness: f(−1,−1, 1) = −15,

f(1, 1, 1) = −9 and f(1,−1,−1) = −21. We have already seen that since

there are two saddle points in the expected value of f calculated on the inde-

pendence model the EGD strategy in general converges to a local optimum

for E[f ]. Consider now the following map T :

T (x100, x010, x001) =
(
− x100x010x001, x001, x010

)
If f is composed with T we have the following function g
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x100 x010 x001 g(x) = f ◦ T
-1 -1 -1 -21

-1 -1 1 -19

-1 1 -1 -15

-1 1 1 -9

1 -1 -1 9

1 -1 1 15

1 1 -1 19

1 1 1 21

The property (5.6) holds so the function g has no saddle points inside the

parameters domain. This implies that the EGD strategy converges to the

global optimum for E[f ◦ T ] from every starting distribution. This example

is an application of Theorem 6. However, up to now no simple way to obtain

the map T ∈ T which achieves these results has been given.

5.4 A Subclass of T

In this section we introduce the class L1 ⊂ T and its extension Lk by means

of the composition operator. This allows us to easily generate variable maps

to be composed with f such that they are one-to-one and whose inverse is

straightforward to compute.

5.4.1 Motivations

Since the effect of the T maps is essentially a permutation of the fitness

values over the domain Ω, the cardinality of the class T is strictly related to

the number of possible permutations of 2n elements, where n is the number

of variables, that is (2n)!, higher than the cardinality of the search space Ω.

Thus, Theorems 6 and 7 seem to be difficult to exploit in practice.

The observations and results of the previous sections suggest that the

interesting maps are only those which are able to change the EGD perfor-

mances. The class T includes these maps and many others that are not

useful to this end.

The Role of the Negation

Consider the class of maps such as they only negate the values of some

variables, i.e., a = (1,−1), T (a) = (1, 1). An example of map of this class is

Ta(x) =
(
t100(x), t010(x), t001(x)

)
=
(
− x001, x010, x100

)



80 Chapter 5. Transformations of Variables

It is possible to see that these kind of maps do not change the behaviour of

greedy search strategy on the border of the independence model. In fact if

the variable assignments x = a and x = b are neighbours, i.e., their hamming

distance is 1, T (a) and T (b) are still neighbours. This happens because the

same sets of variables have been negated in each assignment.

The Role of the Variable Swap

Consider now the class of the variables maps such as they only perform a

swap of the values of a variable couple, i.e., a = (−1, 1), T (a) = (1,−1). An

example of a map of this class is

Tb(x) =
(
x100, x001, x010

)
These kind of transformations do not change the dynamics on the border

of the independence model. Again this comes from the fact that if the

variable assignments a and b are neighbours the same holds for T (a) and

T (b).

Consider now the final example in Section 5.3.2. We considered a three

variable function f whose expected value over the independence model had

two saddle points. We found that the function g = f ◦ Tc has no saddle

points in its expected value over the same model. Remember that

Tc(x) =
(
− x100x010x001, x001, x010

)
It is possible to see that

Tc = Ta ◦ Tb ◦

Td︷ ︸︸ ︷(
x100x010x001, x010, x001

)
If the properties of maps such as Ta and Tb where true it should be possible

to discard Ta and Tb and employ only Td, in which the negations and the

variables swaps have been eliminated. It is possible to see that the coefficient

vector d of the function g = f ◦ Td is

d =
(

0, 4, 2, −16, 0, 0, 0, 1
)

and that the two saddle points for E[g] calculated over the independence

model lay outside the parameters domain.

On the Coefficients of tα

Another problem with the class T raises when these maps have to be repre-

sented and applied. We have seen two ways of doing this. The first method
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consist in giving all the 2n associations b = T (a), which can be immediately

discarded because of excessive complexity. Alternatively, one can specify

all the not null coefficients of the pseudo-boolean functions th composing T .

The problem with this approach is that it seems difficult to specify and check

constraints on the ch,α coefficients to guarantee that each th co-domain is

{−1, 1} and that T (x) is one-to-one.

5.4.2 The Single Product Maps L1

Here we define the class of the single product variables maps L1. This class is

composed by the maps T (x) for which at most one variable is replaced with

the product of other two while the others retain their value. An example is

the three variables map

T (x) =
(
x100x010, x010, x001

)
More precisely, the following condition has to hold on the functions t com-

posing a map T ∈ L1

!∃ α
(
tα = xαxβ ∧ ∀γ(γ 6= α⇒ tγ = xγ)

)
where the multi-indices α, β, γ considered by the quantifiers are limited to

the ones with cardinality 1. Note that the operations such as minus and

variable swap discussed in the previous section, considered useless to our

ends, have been explicitly forbidden. In the following we call L(xα, xβ) the

single product map in which xα is replaced with xαxβ.

The only th different from the identity map is tα = xαxβ. Its co-domain

is {−1, 1} and |Nth(1)| = |Nth(−11)| = 2. This implies that every T ∈ L1

is one-to-one. Moreover, since x−1
α = xα we have that xα = t−1

α (y) = yαyβ,

thus T−1 = T .

It is possible to see that the vector of coefficients d of the function g =

f ◦ T ∈ L1 it is always a permutation of the c one. This happens because

every element of the n variables pseudo-boolean function basis is mapped

into another one, eventually the same.

Note that the class L1 is composed by n(n − 1) ≈ n2 non equivalent

maps.

5.4.3 The Class Lk

The class L1 includes only a small subset of the maps in T . We can expand

this class including all the maps obtained composing in every possible way
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the elements of L. More precisely, we have that

Lk = Lk−1 ∪
( ⋃
l∈L, m∈Lk−1

m ◦ l
)

So Lk is composed by every possible composition of n maps belonging to L,

for example L3 3 L = L1 ◦L2 ◦L3 with L1, L2, L3 ∈ L1. Since every element

of the composition sequence is one-to-one the same holds for the map result

of the composition. Remembering the proprieties of the inverse maps of

elements in L1 it is easy to see that the inverse map L−1 is obtained simply

reversing the order of the composition sequence, so L−1 = L3 ◦  L2 ◦ L1.

It holds also for Lk that the coefficients vector d of the function g =

f ◦ T ∈ Lk is a permutation of c. Note that there exist permutations of

coefficients that are not achievable with a map in Lk. It is easy to find a

counter example. Consider the three variable function f whose coefficients

are c = (0, 3, 2, 1, 0, 0, 4, 0) and consider the function g such as its coefficients

vector is c with c001 and c110 swapped. It is possible to see that the image

set of g is not a permutation of the f one, so there not exists a map L ∈ Lk

that achieves this inversion. Note that does not exist such a map either in

T . It is still an open issue whatever exist or not coefficient swaps which do

not alter the image set of f and are not achievable with maps in Lk.
Another observation is that there are few non trivial reordering of the

image values of f that cannot be produced composing f with a proper map

belonging to Lk. Here is a counter example. Consider a three variable

function f . We want to find the map T that achieves f(T (a)) = f(a) if

a /∈ {(1, 1,−1), (1, 1, 1)} and f(T (1, 1,−1)) = f(1, 1, 1), i.e., we ask for a

map T that swaps in g = f ◦ T the fitness of the two values assignments

(1, 1, 1) and (1, 1,−1). The result is

T (x) =
(
x001, x010,

1

2
(x001 − x100x001 − x001x010 − x100x010x001)

)
This maps comprises sums of x monomials that are not achievable composing

transformations of the class L1.

It is not easy to give results about the cardinality of the class Lk, es-

sentially because there exist sequences of compositions that represent the

identity map Tid, i.e., the map for which T (x) = x ∀x ∈ Ω. For example, it

is possible to see with some verbose calculations that for n = 3(
L(x100, x010) ◦ L(x010, x001)

)4
= Tid

Here we employed the intuitive notation (a ◦ a) = a2. This suggest that

the class Lk could have regular algebraic properties with respect to the
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composition operator. We conjecture that the cardinality of the class Lk is

substantially smaller than |L1|k ≈ n2k. Moreover, since the class T is finite,

the same holds for L∞ ⊂ T .

5.5 Conclusions

In this chapter we have introduced the class T of the one-to-one maps be-

tween elements in the domain Ω. We have seen that these maps allow the

introduction of two notion of equivalence. The first regards pseudo-boolean

functions: two functions f and g are said to be T -equivalent if there exists

a map T ∈ T such as g = f ◦ T , or equivalently, f = g ◦ T−1, where T−1

is the inverse map of T , whose existence is guaranteed by the fact that T is

one-to-one. We have seen that it makes no difference to the ends of finding

a solution for the problem (P ) if we consider the function f or any other

g ≡T f . We have also proven that if the map T is properly chosen the Ex-

act Gradient Descent search strategy over the independence model always

converges to the optimum for E[f ◦ T ].

The second notion on equivalence regards probability models. We have

seen how a map T ∈ T can be applied to the support of probability dis-

tributions and how this procedure can be applied to models in order to

produce new ones, T -equivalent to the original. We have developed an ex-

ample in two variables and we have shown how a bundle of n free parameters

probability models can be associated to the independence model. We have

reinterpreted the previous result with this notion of equivalence and we

have shown that for every function f there is a model T -equivalent to the

independence model for which the Exact Gradient Descent search strategy

always converge to the global optimum for E[f ].

However, we still lack for a strategy to find the map in T for which

these convergence results hold. We have defined the class Lk and we have

shown that this is a proper subset of T . The class Lk is defined in a way

such that its elements are easily enumerated and the inverse maps are easily

computed. This properties are critical if a search in the space of the maps

has to be performed. It is still an open issue if the same results for T hold

also for Lk.
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Chapter 6

FCA: A new Algorithm

We have seen in the previous chapter how variable maps of the class Lk

can be defined and the effects of the compositions of these maps with the

fitness function to be optimized. In this chapter we propose a strategy

to choose the proper map in Lk to compose with f , based on results from

information geometry. We show how two mapping and un-mapping steps can

be introduced in the Population Based Incremental Learning strategy and

how these affect its performances. This chapter is organized as follows. First

we review the basic EDAs principles and assumptions, then the novel FCA

search strategy is presented and described in detail. Then the behaviour of

FCA on the simple yet inspiring two dimensional case is studied analytically.

In the last part of the chapter the observed behaviour of FCA with some

two variable fitness functions is analysed to confirm the theoretical analysis.

6.1 The Kullback-Leibler Divergence and the EDAs

Idea

In Chapter 2 we presented a brief review of the Estimation of Distribution

Algorithms as an evolution of the Genetic Algorithms. The main difference

between these two class of Evolutionary Algorithms lies in the reproduction

operators. While the GAs employ operators such as crossover and mutations

which produce new individuals working directly on the genetic material of

the ones in the selected population, EDAs do this estimating the probability

distribution which, according to an heuristic, better “fits” the selected pop-
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ulation and then produce a new generation of candidate solutions sampling

from this distribution.

The background assumption which has to hold for EDAs to work as ex-

pected is the following: the probability distribution which is fitted on the

sample of the selected individuals is able to capture the features of these

candidate solutions which are responsible of the high fitness. These features

manifest themselves by means of correlations between variable values or,

from an Information Theory point of view, by the presence of mutual infor-

mation between variables. Thus it is critical for the performance of EDAs

that the mutual information between variables in selected individual is not

lost during the estimation and sampling phases. This depends heavily on

the family of probability distribution chosen for the estimation process, i.e.,

the probability model employed. Let us clarify this point with an example.

Suppose that after sampling and truncation selection the population is

composed by two individuals with equal fitness:

x f(x)

+1 −1 +1 −1 +1 −1 10

−1 +1 −1 +1 −1 +1 10

The selection phase has favoured these two individuals which manifest

full correlation between pairs of adjacent variables, i.e., x1 = ±1 and xh =

−xh−1. The desired behaviour of the EDAs estimation and sampling phases

is the reproduction of this feature in the next generation. Suppose now that

the model employed by the EDA of this example is the independence model.

It is easy to see that the independent distribution for which this sample has

maximum Likelihood is the uniform distribution and that a sample from this

does not produce individuals preserving the correlations which leaded to high

fitness values. This happens because the mutual information between two

independent variables is always zero, thus the information on the relations

among different variable values available in the selected population is all lost

during the estimation step. For a discussion of the effects of reproduction

operators on EDAs and GAs exploration abilities see [36]. This example

shows how the choice of the probability model employed by the EDAs is

crucial for them to work as expected and heavily depends on the structure

of the interaction among variables in the fitness function f .

In Chapter 3 we have introduced the Kullback-Leibler Divergence as the

metric defined over the manifold of the probability distributions P. For two

distributions over the discrete domain Ω it reads as

D[p : q] =
∑
x∈Ω

p(x) log
p(x)

q(x)
= Ep

[
log

p(x)

q(x)

]
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An interpretation in terms of information theory is the following. If p is a

true distribution and q a model distribution, D[p : q] is a measure of the

loss of information when p is approximated by q. For instance, in case a

bivariate distribution p(x01, x10) is approximated with the independent dis-

tribution having the same marginals p(x01), p(x10) we lose the correlations

between variable values, i.e., the mutual information between x01 and x10

I(x01, x10) = D[p(x01, x10) : p(x01)p(x10)].

This reasoning leads to conclude that a good strategy to perform the

EDA estimation step is to chose the distribution q ∈M such as

q = arg min
s∈M

D[s : p] (6.1)

where p is the distribution representing the population after selection andM
is the model employed. Note that this corresponds to choose the distribution

s ∈M for which the likelihood of the population after selection is maximum.

This is well known in the EDAs literature, for example see [37].

6.2 FCA, a Novel Search Strategy

We have seen in the previous chapter how a n free parameter model can be

associated with every variable map T of the class T . We have shown that

these models are T -equivalent to the independence model defined over the

transformed variables y = T (x). The main result of the previous chapter is

the fact that for every function f there exists a map T such that the expected

value of f calculated over the model associated with T has no saddle points

and its gradient is always non negative. We have seen that in general, if

this condition holds for EM[f ], the Exact Gradient Descent strategy always

converges to the global optimum for E[f ]. What we lack is a strategy to

chose the correct map T to apply among the others in T , which we have

shown to have a cardinality grater than the original search space Ω.

Informally, the FCA strategy tries to iteratively build the map L in Lk

such that its associated model is the nearest in terms of Kullback-Leibler

Divergence to the distribution of the selected individuals. Once the map

L has been chosen, the distribution belonging to the independence model

defined over the mapped variables y = L(x) is estimated using the selected

population as sample. This procedure ensures that the minimum amount

of mutual information between variable values in the selected individuals is

lost during the model estimation step. We discuss this point in detail in

later sections.
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6.2.1 An Iteration of FCA

The search strategy proposed in this chapter is a variation of the classical

PBIL iteration. We introduce two new steps: one before the estimation

step and the other after the new population has been sampled from the

estimated distribution. In these steps we first apply a variable map T and

then its inverse T−1.

1. Evaluate fitness and perform truncation selection on the population

2. Apply a map T ∈ Lk to the individuals in the selected fraction

of the population

3. Perform a Max Likelihood estimation of the independent distribution

s using the mapped selected individuals

4. Sample a new population from s

5. Apply the inverse map T−1 on the new population

It is possible to see that the only difference between an iteration of the

PBIL search strategy is the employ of the maps T and T−1 before and af-

ter the estimation step. This rather subtle steps makes the difference since

even if the distributions estimated and sampled from belong to the inde-

pendence model, this is done working with variables assignments which are

transformed by means of the map T . This implies that the actual model we

are working with is different from the independence model and it depends on

the particular map applied. In other words FCA chooses at every iteration

a map T ∈ Lk and makes a step in its stochastic walk in the manifold of the

distributions P along a model T -equivalent to the independence model.

6.2.2 The Choice of T ∈ L∞

In this section we address the problem of how the proper map T can be cho-

sen efficiently. We propose to exploit the KLD minimization (6.1) to chose

the variable map Lk to apply. Consider a map T ∈ L∞ and a population

after selection P . We have

• The distribution representing the selected individuals P

• The distribution PT obtained mapping with T the support of P

• The independence model defined over the transformed variables y =

T (x), MT . Remember that this model is different from the indepen-

dence model over the untransformed variables x.
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• The projection of PT on MT , P
(1)
T .

Here with the term projection we mean the Information Geometry con-

cept presented in Section 3.5.4. In the following we use the Amari’s notation

to indicate projections, e.g. P (1) is the distribution with the same marginals

as P but no interactions among variables, i.e., the independent distributions

nearest to P in terms of Kullback Leibler Divergence.

We propose to choose the map T ∈ L∞ such as

T = arg min
L∈L∞

⋃
Tid

D[PL : P
(1)
L ] (6.2)

In other words, our goal is to apply the map T such as the selected in-

dividuals mapped with T best resemble an n variables independent sample.

This implies that the projection of the distribution PT on the independence

model MT over the transformed variables cause the minimal mutual infor-

mation loss obtainable with models associated with the L∞ family.

However, it is computationally infeasible to perform the minimization

proposed in (6.2). We propose to employ the following greedy iterative

strategy to obtain an approximation of (6.2). The initial map T0 is set to

be the identity map Tid. At iteration t the following map is considered

Tt = Tt−1 ◦ arg min
L∈L1

D[PTt−1◦L : P
(1)
Tt−1◦L] (6.3)

In other words at every iteration we compose the map found at previous

iteration Tt−1 with the element L in L1 such as the model associated with

the resulting map Tt = Tt−1 ◦ L is closer to the distribution PT .

This process ends when one of the following conditions holds:

• Every element L ∈ L1 has been considered and for each of those

D[PTt−1◦L : P
(1)
Tt−1◦L] ≥ D[PTt−1 : P

(1)
Tt−1

]. In other words, no further

KLD reduction is achievable composing Tt−1 with more elements in

L1.

• When the number of elements belonging to L1 which have been com-

posed to form T is greater than the k parameter. This implies restrict-

ing the search space in (6.2) to Lk.

• (Optional) Every element in L has been considered and for each of

those the reduction of Kullback-Leibler Divergence with respect to the

previous iteration map Tt−1 is lower than a certain threshold λ. More

precisely, for all L ∈ L1 it holds that D[PTt−1 : P
(1)
Tt−1

] − D[PTt−1◦L :

P
(1)
Tt−1◦L] ≤ λ.
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The third ending condition has been introduced since it has been ob-

served during experiments that the last iterations of the greedy minimization

procedure (6.3) often lead to very small improvements in terms of KLD and

thus it is not clear if they are meaningful or only dependant on the stochas-

tic noise present in the selected population. It is difficult to characterize a

good choice of λ since the Kullback-Leibler Divergence values encountered in

the minimization step vary substantially and depend on a number of factors

such as the number of variables n, the size of the selected population, the

fitness function f and the parametrizations of the distributions considered.

Remember for example how two pairs of distributions with equal euclidean

distance in the η parameter space could have different KLD in the manifold

of probability distributions P. As we show in the next chapter, the choice

of the KLD threshold λ is critical for the performances of the FCA search

strategy.

The iterative greedy strategy (6.3) in general does not return the same

result as (6.2) since in principle there can be distributions s for which there

not exists an L ∈ L1 such as

D[sL : s
(1)
L ] < D[s : s(1)]

but the map which achieves such KLD reduction lives in Lk with k ≥ 2.

In other words, two concatenation steps could be needed to achieve KLD

reduction. We conjecture that the quality of the approximation obtained

with the iterative greedy search depends heavily on the structure of the

interaction between variables in P , and thus in f .

6.2.3 How the KLD is Computed

Here we address the problem of how, given T ∈ Lk, D[PT : P
(1)
T ] can be

computed. First the map T is applied to every individual in the selected

population obtaining their transformed counterpart y. Then the distribution

PT is computed counting the occurrences of each individual y ∈ Ω

PT (y) =
N [T (x)]

|P |

The projection P
(1)
T on the independence model over the y variables is

determined computing the marginal probabilities p(yα = 1) with the Max-

Likelihood estimators

p̂(yα = 1) =

∑
y∈PT yα

|P |
Since PT is independent, is joint probability factorize in the product of

the marginals, thus for computing the KLD we simply have to calculate
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D[PT : P
(1)
T ] =

∑
j∈Ω|PT (j)>0

PT (j)
[

log[PT (j)]−
∑
α

log[p(yα = jα)]
]

(6.4)

where |α| = 1.

The cardinality of Ω is exponential in the number of variables but the

populations employed in EDAs in general do not exceed n2 individuals, thus

PT (y) = 0 for most of the y ∈ Ω.

6.2.4 Introducing a Learning Rate γ

Most of the Estimation of Distribution Algorithms do not allow that the

probability distribution used to sample the new population changes “too

much” between successive iterations. This is done to limit the misleading

effects of “unlucky” samples on the convergence of EDAs search strategies.

Let us assume the independence model is employed. At iteration t a new

probability distribution ŝ is estimated from the selected population. Usually

the distribution st−1 from which the current population has been sampled

is not discarded but is mixed with s. For instance, in the η parametrization

ηt+1 = γηŝ + (1− γ)ηt−1

With γ ∈ (0, 1]. This corresponds to choose a point along the e-geodesic

connecting ŝ and st−1 as the resulting probability distribution at iteration t.

γ is called learning rate This slows down the velocity of parameters changes

along the search strategy iteration and helps slowing down the convergence.

In the FCA search strategy it is difficult to characterize this geodesic

since the distributions ŝ and st−1 in general belong to different models. So

the same is achieved at populations level. At iteration t, a fraction (1−γ) of

individuals belonging to the population before selection at iteration t−1, and

thus coming from st−1 is added to the sample drawn from the distribution

ŝ.

6.2.5 Computational Complexity

Here we evaluate the computational complexity of the search strategy pro-

posed. This gives a measure of how the execution time depends on the

number of variables in the fitness function and how it scales when the prob-

lem size increases. For each iteration, given the number of variables n, the

class of maps Lk considered and the population size m we have that for each

iteration step the worst case computational complexity is
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1. Fitness evaluation: m times the complexity of evaluating f(x)

2. Truncation selection: O(m logm)

3. Choice of T ∈ Lk and Max-Likelihood estimation: O(kn2m)

4. Sampling: O(nm)

5. Apply T−1: O(mk)

It is possible to see that most of the FCA steps have a computational

complexity which is linear or constant with respect to the number of vari-

ables n. Unfortunately we have that the choice of L by means of the greedy

KLD minimization strategy (6.3) has a complexity that goes with the square

of the number of variables while the complexity of other univariate EDAs is

generally linear in the number of variables and in the population size. This

is because the cardinality of L1 is n(n− 1) ≈ n2.

Another aspect which has to be considered is that the the parameters

k and m can be related to n, e.g. it is possible to empirically determine

the minimum population size and L1 concatenation length for the FCA

search strategy to exhibit good performances as a function of the number

of variables n. Thus the complexity of the second step is in general higher

than n2.

As a further remark, note that the number of fitness function evaluations

is critical since in most applications this task is non trivial and could hide

the core algorithm complexity. Note that FCA evaluates the fitness of at

most m individual per iteration, like PBIL and most of the other EDAs.

This means that in most of the real world applications, in which the fitness

evaluation is computationally expensive, FCA could have a running time

comparable to the PBIL one.

6.3 The two Variable Case

In this section we analyse the behaviour of the FCA search strategy dealing

with a two variables fitness function. We first try to derive analytically the

behaviour of the algorithm when the infinite population hypothesis holds,

then we compare the results with the observed behaviour of FCA.

6.3.1 Theoretical Analysis

In this section we assume that the expected value of the fitness function

calculated on the independence model has a saddle point and we try to char-

acterize the starting distributions for which the KLD minimization strategy
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proposed in the previous section leads to the choice of the correct model

MT .

In order to do this, we use a similar technique as in Section 4.3.4: first we

make hypothesis on which individuals are contained in the population after

selection, then we compute which distributions can lead to these populations

after sampling and selection with rate α. Knowing the composition of the

selected population allows us to write the expressions for D[P : P (1)], D[PT :

P
(1)
T ] and thus decide if a variable map is applied by FCA or not for the

starting distribution considered.

Figure 6.1: Representation of the population after sampling and before selection

Consider a 2 variables pseudo-boolean function whose fitness ordering

over the domain is, without loss of generality, f(1, 1) > f(−1,−1) > f(1,−1) >

f(−1, 1). Recall the structure of the population after selection, sketched

in Figure 6.1. Let s be a starting independent distribution for the FCA

search strategy such as its marginal probabilities p01 = p(x01 = 1) and

p10 = p(x10 = 1) satisfy

p01p10 < α < p01p10 + (1− p01)(1− p10) (6.5)

where α is the truncation selection rate. The distributions that satisfy this

condition are the one in the highlighted region of Figure 6.2. Condition (6.5)

specifies that, if the infinite population hypothesis holds, after truncation

selection the population is composed only by individuals (1, 1) and (−1,−1).

The distribution representing the population is shown in the following table.

x10

x01 -1 1

-1 1− p01p10
α 0

1 0 p01p10
α
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Figure 6.2: Independent distributions which satisfy (6.5) in the η parametrization, with

α = 1
2

Let us now compute the Kullback-Leibler Divergence between this dis-

tribution and its projection on the independence model s(1). This is eas-

ily found with the Max-Likelihood estimators of the marginal probabilities,

which both reads as

p̂10 = p̂01 =
p01p10

α

Thus the s(1) distribution is

x10

x01 -1 1

-1 (1− p01p10
α )2 p01p10

α (1− p01p10
α )

1 p01p10
α (1− p01p10

α ) (p01p10α )2

The Kullback-Leibler Divergence reads as

D[s : s(1)] =
p01p10

α
log
[ α

p01p10

]
+
(

1− p01p10

α

)
log
[ α

α− p01p10

]
> 0

Remember that D[p : q] ≥ 0 for every p, q and D[p : q] = 0 if and only if

p = q. Since clearly s(1) 6= s for every value of α ∈ (0, 1) we have that the

KLD between s and s(1) is never null.

Consider now to apply the L1 map T = L(x10, x01). The other map in

the class L1, L(x01, x10) leads to identical results and it is never considered

in this section. Since T (1, 1) = (1, 1) and T (−1,−1) = (1,−1), after all the
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individuals have been mapped with T the distribution sT representing the

transformed population is:

y10

y01 -1 1

-1 0 1− p01p10
α

1 0 p01p10
α

To compute D[sT : s
(1)
T ] one first estimates the marginal probabilities

pβ = p(yβ = 1). {
p̂10 = 1

p̂01 = p10p01
α

Looking at the marginal probabilities it is easy to see that sT = s
(1)
T thus

we have that D[sT : s
(1)
T ] = 0 for all α, s such as condition (6.5) is satisfied.

This means that when FCA searches for the map T ∈ L1 which minimizes

the D[sT : s
(1)
T ] it chooses T = L(x10, x01) for every starting distribution

that satisfy (6.5) and for every function with the same values ordering as f .

Consider what follows.

• We know that in the two variable case if the expected value of f

calculated over the independence model has a saddle point inside the

parameters domain then this never holds for E[f ◦ L(x10, x01)].

• If the function f has no saddle point it is possible to see that opposite

results holds and FCA never chooses to apply the map L(x10, x01) for

distribution which satisfy (6.5).

This allows us to conclude that, at least for the two variable case and the

starting distributions considered, the KLD minimization strategy employed

by FCA leads to a favourable model choice. Note that the PBIL search strat-

egy, if the infinite population holds, never converge to the global optimum

for the starting distributions considered.

Consider now another set of starting distributions such that they all

satisfy

p01p10+(1−p01)(1−p10) < α < p01p10+(1−p01)(1−p10)+p10(1−p01) (6.6)

Look at the highlighted region in Figure 6.3. If a distribution s satisfies this

condition it means that sampling from s and then performing truncation

selection with rate α the resulting population is composed only by the in-

dividuals (1, 1), (−1,−1) and (1,−1). The distribution s representing these

populations is shown in the following table.
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Figure 6.3: Independent distributions which satisfy (6.6) in the η parametrization, with

α = 1
2

x10

x01 -1 1

-1 (1−p01)(1−p10)
α k

1 0 p01p10
α

k = 1− p01p10 + (1− p01)(1− p10)

α

The expressions of D[s : s(1)] and D[sT : s
(1)
T ], where T = L(x01, x10),

are quite verbose and difficult to compare analytically. We know that the

expected fitness of f calculated on the independence model has a saddle

point so we are interested in which are the distributions satisfying (6.6)

such as FCA find convenient to apply T and thus switch to an independence

model over the y = T (x) variables.

We have determined numerically the subset of s satisfying condition (6.6)

and such as

D[s : s(1)] > D[sT : s
(1)
T ] (6.7)

The set of distributions for which (6.7) holds is highlighted in red in Figure

6.4

It is possible to see in Figure 6.4 that there exist a set of distributions

near the vertex (1,−1) for which the independence model on the x variables

is nearer in KLD to the distribution representing the selected population
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Figure 6.4: The set of independent distributions which satisfy conditions (6.6), in red,

with α = 1
2

and thus no map T is applied. Remember that FCA behaves like PBIL if

no map is applied, thus the trajectories starting from the neighbourhood of

η = (1,−1) move towards the center of the parameter space and enter the

region in which the independence model over L(x10, x01) becomes nearer.

The third set of starting distributions considered is the one for which

holds that

p01p10 + (1− p01)(1− p10) + p10(1− p01) < α < 1 (6.8)

The distributions which satisfy this condition are shown in Figure 6.5. After

sampling from s satisfying (6.8) and performing truncation selection with

rate α each variable assignment still exists in the selected population. This

case is similar to the previous one. We have determined numerically the

set of distribution for which D[s : s(1)] > D[sT : s
(1)
T ], highlighted in red in

Figure 6.6.

Like in the previous case, there exist a set of distributions near the vertex

(−1, 1) for which the independence model on the x variables is nearer in KLD

to the distribution representing the selected population and thus no map T

is applied. Note the symmetry of such distributions with respect to the ones

in Figure 6.4. Again, like in the previous case the same reasoning lead us

to conclude that trajectories starting in the neighbourhood of (−1, 1) move

towards the center and then to the global optimum, first on the independence
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Figure 6.5: The set of independent distributions which satisfy conditions (6.8) with

α = 1
2

Figure 6.6: The set of independent distributions which satisfy conditions (6.6), in red,

with α = 1
2

model over the x variables and then on the one defined over the transformed

variables y = T (x).

The last subset of starting independent distributions, i.e., the ones for
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which holds

0 < α < p01p10 (6.9)

is trivial since the population after selection is composed only by individuals

(1, 1), which are global optima for f . Since the resulting distribution s has

reduced support on one vertex of the probability simplex it belongs to both

the independence models on the x and the y = T (x) variables. Thus both

D[s : s(1)] and D[sT : s
(1)
T ] are zero. Convergence to the global optimum is

thus achieved in one step for every starting distribution that satisfies (6.9).

We have seen in this section how selection reveals correlations between

variable values of the best solutions and how the KLD minimization strategy

proposed is able to suggest the correct model in the two dimensional case.

6.3.2 Observed Algorithm Behaviour

In this section we discuss the behaviour of our implementation of FCA and

we show that with large enough population it resembles the one derived in

the previous section.

Here we deal with the sample function f whose coefficient vector is

c =
(5

2
,

1

2
, 0, 1

)
This function has the same fitness ordering assumed in the previous section

analysis: f(1, 1) > f(−1,−1) > f(1,−1) > f(−1, 1). We already know that

this ordering implies the presence of a saddle point in E[f ] calculated on the

independence model. From the f coefficients we have that its coordinates

are η = (0, −1
2). In Figure 6.9(b) we have plotted the dynamics of the PBIL

search strategy dealing with the function f .

To represent the dynamics of FCA three dimensions are needed since in

general the distributions the populations are sampled from do not belong to

the independence model. We have already seen in the previous chapter that

there exists three two-dimensional models M1, M2 and M3 which can be

defined over the x variables in terms of variables maps in L1. See Section

5.2.3.

All the trajectories have been plotted running the FCA algorithm on

function f with population size 10000, selection rate α = 0.5 and learning

rate 0.7 to slow down the convergence. In this section we always refer

to the models M1, the independence model over the x variables, purple

in the figures, and M2, the independence model associated with the map

L1 = L(x10, x01), blue in the Figures.

In firgure 6.7 we have plotted the trajectory of FCA starting from the

initial independent distribution η = (−1
2 ,−

1
2). As foreseen, the modelM2 is
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nearer thenM1 to the distribution of the selected individuals, thus the map

L(x10, x01) is applied. It is possible to see that once L(x10, x01) is chosenM2

is never left and trajectories progressively tend to the model till convergence

to the global optimum in (1, 1, +∞). Note that if the learning rate is set

to 1, i.e., every individual of the population at iteration k − 1 is discarded,

for this starting condition the distribution representing the selected part of

the population already has θ11 = +∞ at iteration 2. Thus the algorithm

immediately jumps on the edge (−1,−1), (1, 1) of the probability simplex

and then follows it till convergence in (1, 1).

Running FCA starting from distributions satisfying condition (6.5) it is

possible to see that there is a small set of distributions in the neighbourhood

of the independent distribution η = (−1,−1) starting from which FCA con-

verges to (−1,−1). This region gets smaller and smaller as the population

increases, better approximating the infinite population behaviour.

Figure 6.7: A FCA trajectory starting from distribution the independent distribution

η = (− 1
2 ,−

1
2 )
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In the previous section we have seen that there exist two sets of distri-

bution in the neighbourhood of η = (−1, 1) and η = (1, −1) for which the

independence model is preferred to both M2 and M3. In Figure 6.8 we

have plotted the trajectory starting from the distribution η = (−0.95, 0.95),

which satisfies condition (6.7). It is possible to see that FCA moves towards

the inner part of the independence model for some iterations, then applies

the map L(x10, x01), switches to M2 and keeps following it till convergence

in (1, 1,+∞).

Figure 6.8: A FCA trajectory starting from distribution the independent distribution

η = (−0.95, 0.95)

It is interesting to look at the projection of trajectories on the inde-

pendence model, some of which have been plotted in Figure 6.9(a). It is

important to note the trajectories in general do not lay on the independence

model and this is the reason why they are so different from the PBIL ones.

From Figure 6.9(a) is clear that almost all the starting distribution are in-
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cluded in the attraction basin of the global optimum (1, 1). This confirms

the analysis of the previous section.

Figure 6.9: The projection on the independence model of some FCA trajectories on the

left and some of PBIL on the right both maximizing function f

Consider now the fitness function g whose coefficient vector is c =

(0, 1, 3, 0.5). The expected value of g calculated over the independence

model has no saddle point inside the η domain, thus we expect that no map

T is applied by FCA and that its behaviour resembles the PBIL one. In

Figure 6.10(a) and 6.10(b) some of the trajectories of FCA and PBIL have

been plotted for different starting distributions. These figure confirms the

analytical results for functions with no saddle point in their expected fitness

over the independence model.

In this section we have analysed the behaviour of the proposed the

proposed map selection strategy based on the greedy minimization of the

Kullback-Leibler Divergence. We have seen that this strategy leads to the

choice of a good map for the two dimensional case by means of analytical

analysis of the KLD expressions and of simple experiments with our imple-

mentation of FCA

6.4 Conclusions

In this chapter we have proposed a novel search strategy based on the choice

of univariate models associated with variables map belonging to the class

Lk. We consider this strategy as the first and most intuitive way to try to

exploit the previous chapter results and intuitions.

FCA employs an univariate probability model defined over the variables
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Figure 6.10: The projection on the independence model of some FCA trajectories on

the left and some of PBIL on the right both maximizing function g

y = T (x) where T is an opportune map in Lk. The choice of the map

T is done by means of a greedy Kullback-Leibler Divergence minimization

technique which tries to minimize the amount of mutual information lost

during the traditional EDAs estimation and sampling steps.

We have analysed the behaviour of this strategy in the two variable case

by means of analytical comparison of the KLD expressions and then we

observed the real trajectories followed by our FCA implementation. The

results of the last section suggest that the KLD minimization procedure

proposed could actually lead to the choice of a model on which the expected

value of the fitness function is easy to traverse for a gradient based search

strategy.

In the following chapter we analyse the behaviour of the FCA search

strategy on bigger and more complex fitness functions.
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Chapter 7

Experimental Results

In Chapter 4 and 5 we have presented the results of an analysis of the

relations between the expected value of a pseudo-boolean function f , cal-

culated over a certain probability model M, and the performance of search

strategies for the (R) problem. In Chapter 6 we have proposed the Function

Composition Algorithm, a novel search strategy belonging to the Estimation

of Distribution Algorithms family. FCA exploits a wide family of univari-

ate models associated with variable maps of the class Lk which are chosen

by means of a Kullback-Leibler Divergence minimization technique. The

analysis conducted on the two variable case gave encouraging results. In

this chapter we present the preliminary experimental results which came

from the application of the FCA search strategy on two well known test

functions, Alternate Bits and F3-Deceptive. After an introduction to these

fitness functions and the software tools employed, we discuss a preliminary

tuning of the critical parameters of FCA: selection and learning rates, KLD

minimization threshold and population size. Then we compare the perfor-

mances of FCA with the already mentioned Population Based Incremental

Learning and Stochastic Gradient Descent strategy in terms of best and

average solution found after a fixed number of iterations.

7.1 Experimental Framework

In this section we describe the experimental environment in which FCA

has been tested and compared with other reference search strategies. This
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include the two pseudo-boolean fitness functions Alternate Bits and F3-

Deceptive, the two reference search strategies PBIL and SGD and the Evop-

tool software suite which was used to implement FCA and run the experi-

ments.

7.1.1 Test Fitness Functions

In this sections we discuss the two fitness function we have used in the FCA

experiments: Alternate Bits and F3-Deceptive.

Alternate Bits

Alternate Bits [10], also called 1D Checkerboard, is a pseudo-boolean func-

tion which introduce dependencies between couples of adjacent variables

defining a chain-like structure. The value of a variable relative to its neigh-

bours in the chain is taken into account and higher fitness are achieved when

adjacent variables take different values.

More precisely, starting from the second variable one fitness point is

gained if xh = −xh−1. The first variable value has no relevance. It is easy

to see that there exists two global optima for Alternate Bits, which are

obtained with x1 = ±1 and xh = −xh−1, and that the maximum for f(x) is

n− 1. A three variables example is the following:

x100 x010 x001 f(x)

-1 -1 -1 0

-1 -1 1 1

-1 1 -1 2

-1 1 1 1

1 -1 -1 1

1 -1 1 2

1 1 -1 1

1 1 1 0

The cα coefficients are the followings. The pairwise dependencies between

neighbours variables are visible in the coefficients c110 and c011.

c000 = 1 c001, c010, c100 = 0 c110, c011 = −1
2 c101, c111 = 0

This fitness function is interesting since it is one of the simplest which

include structured pairwise dependencies. The lack of the coefficients cα
with |α| = 1 makes essential to employ probability models more complex

than the independence one to enclose the features of good fitness individuals.
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F3-Deceptive

The F4-Deceptive fitness function belongs to the wider class of Deceptive

Functions which appeared in the literature to show the limit of Genetic

Algorithms. As presented in Chapter 2 One of the key assumptions of genetic

algorithms is that the best fitness individual can be obtained composing

small subsets of variable assignments, often called Building Blocks, which

by themselves produce good fitness. It can be shown that this is equivalent

to assume that the maximum order of dependencies among variables is at

most k � n, where n is the number of variables.

In deceptive functions there are building blocks which can be composed

to produce high fitness but the optimum obtained in this way is not the

global one. In Figure 7.1 it is possible to see the fitness landscape of a

five variables deceptive function. Note that there are position independent

building blocks, i.e., xh = 1, which composed lead to fitness 4. Instead the

highest fitness is achieved with x = {0, 0, 0, 0, 0}.

Figure 7.1: The fitness landscape of a 5 variables trap function

For the FCA experiments we have employed a order three deceptive

function whose fitness values over the domain Ω are shown in the following

table.

x100 x010 x100 f(x100, x010 x001)

-1 -1 -1 1

-1 -1 1 0

-1 1 -1 0

-1 1 1 0.8

1 -1 -1 0

1 -1 1 0.8

1 1 -1 0.8

1 1 1 0.9
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The coefficients of the polynomial expansion of f are

c =
(

0.5375, 0.0875, 0.0875, 0.0875, 0.1375, , 0.1375, 0.1375, −0.3125
)

The expected value of f calculated over the independence model has two

saddle points in

η =
{

(−0.248186,−0.248186,−0.248186), (1.12819, 1.12819, 1.12819)
}

In our experiments we have juxtaposed k F3-Deceptive [32] to form an

n = 3k variables fitness function. These test functions are interesting since

they allow us to test the performance of search strategies dealing with several

high order structured dependencies between variables.

7.1.2 Reference Algorithms

For this preliminary experiments on the performances of FCA, two search

strategies have been chosen as reference: Population Based Incremental

Learning and Stochastic Gradient Descent.

The first has been already described in Chapter 2 and it was analysed as

a reference all throughout this work. At every iteration PBIL estimates the

independent distribution which better fits the selected population sample

by means of max-likelihood estimators of the marginal probabilities. A new

population is then sampled from this distribution. PBIL explicitly moves

along the independence model defined over the x variables.

Like PBIL, FCA employs an independence model, but defines it over the

variables y obtained mapping x with an opportune variable map T in the

class Lk. It has been shown that this actually enrich the class of models

available while keeping fixed and equal to n the number of free parame-

ters required to fully characterize a probability distribution. PBIL was thus

chosen since it allows to evaluate precisely the effect of the function compo-

sitions while keeping fixed the rest of the search strategy parameters.

The other reference algorithm, Stochastic Gradient Descent, tries to ap-

proximate the theoretical Exact Gradient Descent strategy on the indepen-

dence model kept as reference all throughout this work. At every iteration

an approximation of ∇E[f ] over the independence model is calculated using

a subset of selected individuals from the population by means of the covari-

ance besed estimator proposed in Theorem 5. Details about SGD can be

found in [21]. This strategy, when the infinite population assumption holds,

follows the projection of the gradient ∇E[f ], calculated for distributions in

P, on the modelM employed, which in our case is the independence model.

Thus if EM[f ] has a saddle point SGD should converge to a local minima of
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E[f ] for certain starting conditions. We employ SGD with the independence

model and we keep its performances as a reference when the expected fitness

calculated over the model employed is known to have saddle points.

7.1.3 Figures of Merit

For this preliminary analysis of FCA we have chosen two figures of merit:

• Best fitness individual found

• Mean population fitness

We have chosen to sample this values after 25 iterations. This value

has been chosen to be high enough to allow all algorithms to converge. To

obtain meaningful values and noise independent values we have considered

the average of these figures of merit over various runs of the compared

algorithms.

7.1.4 Software Tools: Evoptool

Evoptool is an optimization toolkit that implements a set of algorithms

based on the Evolutionary Computation paradigm. Evoptool provides a

common platform for the development and test of new search strategies, in

order to facilitate the performance comparison activity. The toolkit offers

a wide set of benchmark problems, from classical toy examples to complex

tasks, and a collection of implementations of algorithms from the Genetic

Algorithms and Estimation of Distribution Algorithms paradigms. We have

extended the Evoptool implementation of the PBIL algorithm to include the

proposed KLD minimization strategy for the choice of T ∈ Lk.
It is important to note that the graphs produced by Evoptool are scaled

in a way that every fitness function f implemented returns values in the

range [0, 100]. In Evoptool all the algorithms are meant to maximize the

value of the fitness function.

7.2 Tuning Algorithm Parameters

In this section we discuss a preliminary analysis on the effect of the parame-

ters which characterize the FCA search strategy: the selection and learning

rates, and threshold on the minimum acceptable KLD reduction during the

iterative building of the map T ∈ Lk.
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7.2.1 The KLD Threshold

As it was already anticipated in the previous chapter, to avoid model over-

fitting on a noisy selected population, especially with low selection rates

or small populations, it seems reasonable to stop the application of fur-

ther maps in L1 when these produce a KLD reduction lower than a certain

threshold.

Since the Kullback-Leibler Divergence depends on a number of factors

such as the number of variables n, the size of the selected population, the

fitness function f and the parametrization of the distributions considered,

it seems unreasonable that a fixed value for the threshold leads to good

performances. An example of this fact is discussed in later sections.

In our experiments we have chosen to limit the overall maximum KLD

reduction which can be achieved composing f with a map in Lk. More

precisely, we allow the concatenation of the current map T with another

element L ∈ L1 if the KLD associated with T ◦ L is greater than 0.2 times

the one associated with Tid, i.e., the identity map. All the experiment

discussed in this chapter are run with this policy.

However, it could also be reasonable to consider no threshold at all and

limit the overall number of concatenations allowed with the parameter k.

The performances obtained with this setting are discussed in one case in

later sections.

7.2.2 Learning and Selection Rates

Here we discuss the effects of the learning and selection rates on the per-

formances of the FCA search strategy. A number of experiments have been

performed on the maximization of the 20 variables Alternate Bits function

with different selection rate α and learning rate γ. The k parameter char-

acterizing the class Lk of maps considered was set to 10000 to approximate

the behaviour with L∞. We observed different behaviours with different

population sizes.

In Figure 7.2 the best fitness and the average population fitness (averages

of 100 runs of FCA) at iteration 25 are plotted as a function of the selection

rate α. γ has been kept fixed and equal to 1 for all the runs. It is possible

to see that when the population is very small with respect to the size of Ω

the best results are obtained with average selection rates.

In Figure 7.3 again the best fitness found at iteration 25 has been plotted

as a function of the learning rate γ for the best and the worst selection rates,

0.4 and 0.8 to check the effects of the learning rate when the selection rate

is kept fixed. It is possible to see that when the learning rate is introduced,
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i.e., γ < 1, and part of the population of the previous iteration is reinserted

in the current one, the performances deteriorate.

Figure 7.2: f and best fitness found at iteration 25 with n = 20, m = 100, k = 10000,

γ = 1. Average of 100 runs.

Figure 7.3: Best fitness found at iteration 25 with n = 20, m = 100, k = 10000,

alpha = 0.4 on the left, α = 0.8 on the right. Averages of 100 runs.

A different behaviour is observed when the population gets bigger, for

example m = 2000. In Figure 7.4 the best fitness and the average popula-

tion fitness (averages of 100 runs of FCA) at iteration 25 are plotted as a

function of the selection rate α. γ has been kept fixed and equal to 1 for

all the runs. It is possible to see that the performances deteriorate for low

selection rates when the figures of merit are sampled at the end of iteration

25. This happens mainly because the velocity of the parameters change is

slowed down with low selection rates and at iteration 25 convergence is not

reached. Another effect is that low fitness individuals are preserved in the

selected population, are translated into the model and reintroduced in the

next iteration.

In Figure 7.5 we have again plotted the best fitness found at iteration 25
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for the best and the worst selection rates, 0.2 and 0.8 to check the effects of

the learning rate when the selection rate is kept fixed. It is possible to see

that when the selection rate is 0.2 the learning rate γ does not change the

performances, i.e., the global optimum f(x) = 100 is found for every rate γ.

When α is 0.8 the introduction of a learning rate generally worsen the FCA

performances.

Figure 7.4: f and best fitness found at iteration 25 with n = 20, m = 2000, k = 10000,

γ = 1. Average of 100 runs.

Figure 7.5: Best fitness found at iteration 25 with n = 20, m = 2000, k = 10000,

alpha = 0.2 on the left, α = 0.8 on the right. Averages of 100 runs.

These preliminary results lead us to conclude that learning rate 1 and

high selection rates are good parameters choice. However, we use α = 0.5

and for the rest of experiments, in order to compare FCA with other refer-

ence algorithms for which this parameter is fixed to 0.5 for implementation

reasons. We employed γ = 1 both for FCA and PBIL.

Note that, because of the way the learning rate has been defined in FCA,

at every iteration 1− γ new individuals are sampled to keep the population

size fixed to n. This means that if γ < 1 fewer fitness evaluations are
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performed and thus at iteration t a smaller fraction of the search space Ω

has been explored w.r.t. the case γ = 1. In some real-world applications

the number of fitness evaluation is critical since this task is complex and

time consuming. A more accurate analysis of the effects of the learning rate

should take into account the best fitness individual found as a function of

the number of fitness evaluations performed.

7.3 Test Case: Alternate Bits

In this section we analyse some experimental results of FCA on Alternate

Bits function. In particular, we discuss the case with n = 20, k = 1÷10000,

α = 0.5, γ = 1 and m = 20÷1000, in relation with the reference algorithms,

after 25 iterations and 50 runs. We consider selection rate 0.5 in order

to maintain an uniform comparison with the Evoptool implementation of

PBIL. Note that from now on all reference algorithms figures of merit are

calculated on the average of 200 runs.

7.3.1 The Effects of the Choice of Lk

The Figures 7.6 and 7.7 show the average and the best fitness found as

a function of the maximum number of L1 maps k that the algorithm can

concatenate. Note that FCA gives good results starting from k ≈ n. We

verified, with further tests, that this observation is, in general, always true,

for different n and f . We consider k = 2n a general rule in order to ensure

best results in terms of best fitness found and computational time. Since

FCA behaves like PBIL when k = 0, note that the use of maps always

increases the performances.

7.3.2 The Population Size

The Figures 7.8 and 7.9 show the average and the best fitness found as

a function of the population size m. Note that the performances of FCA

are worse than PBIL for small population sizes. We conjecture that this is

related to the fact that with too small population sizes the stochastic noise

in the selected population becomes dominant and the choice of the Lk maps

is inaccurate.
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Figure 7.6: Alternate Bits: f at iteration 25, as function of k, with n = 20, m = 1000,

alpha = 0.5. Averages of 100 runs.

Figure 7.7: Alternate Bits: Best fitness at iteration 25, as function of k, with n = 20,

m = 1000, alpha = 0.5. Averages of 100 runs.



7.3. Test Case: Alternate Bits 115

Figure 7.8: Alternate Bits: f at iteration 25, as function of m, with n = 20, m =

100000, alpha = 0.5. Averages of 100 runs.

Figure 7.9: Alternate Bits: Best fitness at iteration 25, as function of m, with n = 20,

k = 100000, alpha = 0.5. Averages of 100 runs.
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7.4 Test Case: F3-Deceptive

In this section we analyse the behaviour of FCA on the F3-Deceptive fitness

function in a 3-variables and n-variables cases.

7.4.1 3-variables Case

In this section we analyse one execution of FCA on 3-variable F3-Deceptive

function with m = 10000 (infinite population approximation) and the k = 2

(with no threshold level). In the first iteration, the KLD values associated

to any L1 map are shown in Table 7.1, where T1 ◦ T2 = TF3 is the selected

map.

T1 KLD(f ◦ T1) KLD(f)

L(x100, x010) 0.40695 0.45402

L(x100, x001) 0.40695 0.45402

L(x010, x100) 0.405697 0.45402

L(x010, x001) 0.408407 0.45402

L(x001, x100) 0.405697 0.45402

L(x001, x100) 0.408407 0.45402

T1 = L(x010, x100)

T2 KLD(f ◦ T1 ◦ T2) KLD(f ◦ T1)

L(x100, x010) 0.40695 0.405697

L(x100, x001) 0.358627 0.405697

L(x010, x100) 0.45402 0.405697

L(x010, x001) 0.339054 0.405697

L(x001, x100) 0.357374 0.405697

L(x001, x100) 0.290731 0.405697

T2 = L(x001, x100)

Table 7.1: KLD values associated to any L1 map for the first iteration of the FCA

algorithm on F3-Deceptive

From the composition of the function f with the map TF3, we obtain the

function g characterized by the coefficients:

cF3 =
(

0.5375, 0.0875, 0.0875, 0.0875, 0.1375, 0.1375, 0.1375, −0.3125
)

and the fitness values:
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x100 x010 x001 g(x) = f ◦ TF3

-1 -1 -1 0

-1 -1 1 0.8

-1 1 -1 0

-1 1 1 1

1 -1 -1 0.8

1 -1 1 0

1 1 -1 0.8

1 1 1 0.9

The expected value of the fitness function g has no saddle points. Since

the n-variables F3-Deceptive function is decomposable in equal 3-variables

functions (building blocks), the absence of saddle points from the expected

fitness function implies that we expect better performances for a Exact

Gradient Descent search strategy, when the TF3 map is applied on every

3-variables function, e.g., 6-variables function, TF3,6 =
(
L(x010000, x100000)◦

L(x001000, x010000) ◦ L(x000010, x000100) ◦ L(x000001, x000010)
)

. Note that the

KLD minimization strategy proposed returned a map T such that a E[f ◦T ],

calculated on the independence model, has no saddle points.

At the second iteration, the algorithm reselect the same map. In the

third iteration the map changes in T5 ◦ T6, where T5 = L(x100, x010), T5 =

L(x010, x001). The analytical analysis of g(f ◦ T5 ◦ T6), omitted here, shows

that the maps T5 ◦ T6 removes critical point from the expected fitness func-

tion, as we have already seen for the map TF3, thus we can consider the map

T5 ◦ T6 and TF3 equivalent. In later iterations, the distribution representing

the selected population has reduced support and move towards a vertex of

the probability simplex. In these situations no map is applied since every

vertex belongs to all the models associated with maps in L1.

This example confirms that the KLD minimization could represent a

good map selection strategy for the F3-Deceptive function.

It is possible to see that a fixed constant threshold on the minimum

accepted KLD reduction for a map in L1 to be considered, for example

0.1 for this case, could lead FCA to apply no map and thus employ the

independence model and achieving no saddle point removal. This is a further

confirm that this parameter is critical for the FCA performances.

7.4.2 n-variables Case

Now we analyse some experimental results of FCA on F3-Deceptive function,

when n = 21, k = 1÷ 10000, α = 0.5, γ = 1 and m = 21÷ 2100, in relation

with the reference algorithms, after 25 iterations and 50 runs.
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As it can be seen in Figures 7.10 and 7.11, FCA reaches its best per-

formance starting from k ≈ 21 = n. This confirms the results previously

seen in the Alternate Bits case, concerning to the choice of k. Note, in Fig-

ures 7.12 and 7.13, that, starting from small population size (m = 42), the

average and best population fitness of FCA are always greater than those

of reference algorithm PBIL. In this case, the modular structure of the F3

function permits to obtain a good KLD estimation with a small population.

Note that the population size seems to weakly influence the performances of

PBIL and SGD. This is a reasonable behaviour for those algorithms when

the function is deceptive.

Figure 7.10: F3-Deceptive: f at iteration 25, as function of k, with n = 21, m = 1050,

alpha = 0.5. Averages of 100 runs.

7.5 FCA without the KLD Threshold

The experimental results that we have presented in the previous section

are generated with FCA with the KLD threshold, in order to limit a num-

ber of L1 maps applied at each iteration and reduce a computational time.

However, the best performance of FCA are obtained when the threshold is

not applied, because the algorithm can reach a better KLD reduction. Let

consider an Alternate bits function, with n = 20, k = 1 ÷ 10000, α = 0.5,

γ = 1 and m = 20÷ 1000. The Figures 7.14 and 7.15 show the average and

the best fitness of each iteration. As it can be seen, the optimum is always
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Figure 7.11: F3-Deceptive: Best fitness found at iteration 25, as function of k, with

n = 21, m = 1050, alpha = 0.5. Averages of 100 runs.

Figure 7.12: F3-Deceptive: f at iteration 25, as function of m, with n = 21, k =

100000, alpha = 0.5. Averages of 100 runs.
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Figure 7.13: F3-Deceptive: Best fitness found at iteration 25, as function of m, with

n = 21, k = 100000, alpha = 0.5. Averages of 100 runs.

reached from FCA, starting from the first iterations. This results confirm

that the absence of the KLD threshold increments always the performances.

7.6 Conclusions

In this chapter we presented experimental results of FCA maximizing two

well known fitness functions: Alternate Bits and F3-Deceptive. This func-

tions are known to be difficult to optimize for search strategies which does

not employ a complex probability model expressive enough to encode order

two and three interactions between variables.

The preliminary results presented in this chapter seem to confirm the

proposed KLD minimization strategy as a good model selection technique.

We conjecture that the expected value of the fitness functions evaluated on

the n parameters models found by FCA has less saddle points and attrac-

tion basins with respect to the independence model. This is the main reason

why FCA performs better than SGD and PBIL. Note that these two algo-

rithms employ the independence model while FCA uses a family of n free

parameters models associated with maps in the class Lk .

However, a number of aspects of FCA should be deeper investigated.

These include:
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Figure 7.14: Alternate bits: f over iterations, with n = 21, k = 100000, alpha = 0.5,

m = 1000. Averages of 100 runs.

Figure 7.15: Alternate bits: Best fitness over iterations, with n = 21, k = 100000,

alpha = 0.5, m = 1000. Averages of 100 runs.
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• Best and average fitness found as a function of the number of fitness

evaluations.

• FCA comparison with reference search strategy with similar complex-

ity.

• The effective number of attraction basins for the Exact Gradient De-

scent strategy on the models found by FCA.

• Compare FCA with SGD when the model employed by SGD is more

complex than the independence model.

• Timing analysis.

These analysis could result in FCA optimizations and further performances

improvements.



Chapter 8

Conclusions and Further

Work

In this work we have addressed some of the issues which arise when

evolutionary search strategies are employed in the problem of optimizing a

pseudo-boolean function f . In particular we focused on the Estimation of

Distribution Algorithms. In these search strategies a population of candidate

solutions is employed and a the fraction of “good” ones is used to estimate

a probability distribution belonging to a model M, which is later sampled

to form a new generation of individuals. The main issue in the design of

EDAs is the fact that the trajectory drawn by these search strategies in the

M sub-manifold often converges to a distribution with reduced support in

one local optimum for f .

In this work we related this search strategies to the stochastic relaxation

of the function f which is the problem of optimizing its expected value

calculated over a distribution belonging to the model M. We have shown

various examples of how the convergence properties of EDAs could be related

to the presence of various attractors for the Exact Gradient Descent strategy

on EM[f ]. In EDAs, a common approach to the problem of convergence to

sub-optimal solutions for f is usually addressed increasing the complexity

of the model M employed. A well known example of this solution is the

already cited Bayesian Optimization Algorithm, which employees a very

complex and expressive family of probability distributions based on Bayesian

Networks to perform the estimation and sampling phases. This allows to
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reduce the mutual information loss during the estimation and sampling steps

and thus progressively enclose the features of good solution in the estimated

distribution. In this way the sampled population resembles the selected

fractions of the individuals and thus the exploration of the search space

is guided by the fitness relevant features which appears in the population.

Note that in most of the cases the family of the probability distributions

employed by the algorithms is chosen at design time and thus is fixed.

In this work we have proposed an alternative approach: instead of choos-

ing a fixed and expressive model at the beginning of the search process, we

propose to switch dynamically among a bundle of simple models that we

appositely defined. In particular we introduced the concept of one-to-one

maps which associate each variable value assignment in the search space Ω

with another one, eventually different. These maps between individuals can

be employed to define an equivalence relation between probability models.

A bundle of univariate models are obtained defining an independence model

over a vector of binary variables and then applying a map to the support of

the distributions belonging to this model.

The model choice is done during the whole search process by means of an

Information Geometry criterion based on the minimization of the Kullback-

Leibler Divergence, a notion of distance for the manifold of the probability

distributions. In particular, we propose to chose every iteration the model

which contains the nearest distribution to the selected population in terms of

KLD. This procedure aims to minimize the mutual information loss during

the estimation and sampling steps while keeping fixed and low the model

complexity. This is considered positive since the estimation and sampling

phases are easier in terms of computational complexity when simple models,

e.g. univariate, are employed.

We designed and implemented an novel EDA, Function Composition

Algorithm which at every iteration searches for a map T and then maps the

selected population with T and estimates an independent distribution from

these individuals. The model selection is achieved indirectly thanks to the

composition of f with the map T . The addition of the map building phase

based on the KLD minimization increases the complexity which is quadratic

in the number of variables.

Experiments have been done to test the performances of FCA and com-

pare it with Population Based Incremental Learning, another strategy which

employs an univariate probability model, and Stochastic Gradient Descent,

which instead tries to approximate the behaviour of the theoretical Exact

Gradient Descent strategy. The experiments regarded the maximization of

the pseudo-boolean functions Alternate Bits and F3-Deceptive, which are
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known for containing structured order 2 or 3 interactions between variables.

The preliminary results are encouraging, showing that the addition of the

map selection and application step improves the performances in every case,

leading FCA to reach the global optimum for f in almost all runs, given big

enough populations. However, this is achieved with an increased complexity.

Further investigations should be done comparing FCA with similar complex-

ity algorithms, or, differently, when the same maximum running time or the

number of fitness evaluation are fixed.

Further Work

In this work we have presented the idea of composing the function f to be

optimized with a one-to-one map T . We have shown that if T is properly

chosen, search strategies could find better solutions when optimizing f ◦ T .

The proposed strategy FCA is an extension of the PBIL search strategy to

include a step in which the map T is built with an iterative greedy KLD min-

imization strategy. This approach can be employed to extend other search

strategy, for example Bayesian Optimization Algorithm. The composition

f ◦ T can be made transparent for the overlying search strategy. This is

done simply applying T−1 every time the fitness of an individual has to be

evaluated. This would lead to a further enrichment of the class of the mod-

els employed by search strategies at the price of an extra computationally

intensive step in which the map T to compose with f is chosen properly.

A different idea came from the analysis of the FCA behaviour on the

test fitness function employed. We observed that the choice of the map T

at the first iteration is often decisive. More precisely, the maps chosen in

following iterations are often very similar to the one at the first iteration.

This suggest that the KLD minimization technique could be also employed

as the model building step for strategies which are known to perform very

good once a proper model has been selected. For example, a Stochastic

Gradient Descent could be performed on the model employed in the first

iteration of FCA. This could also be an experiment to solve the main open

question about the KLD minimization heuristic which is, essentially, if it is

able to find the model in which EM[f ] has no saddle points or more than

one attractor still exists for an Exact Gradient Descent search strategy.

A completely different direction is given when the composition of maps

T with the function f to optimize is interpreted as a change of the encoding

or, equivalently, as a non trivial genotype-phenotype mapping. The main

observation is the fact that certain representations of the same information

are more favourable for the evolutionary process. It has been shown in [34]



126 Chapter 8. Conclusions and Further Work

that a selection pressure on the representation (the genotype) is indirectly

induced by the fitness based selection on the individuals (the phenotype)

every time the encoding is not fixed. This means that there are certain

encodings which more likely produce good fitness individuals. This suggest

that the active searching of the map T could be replaced by an evolutionary

process in the space of the representations which proceeds along with the one

on the individuals. This is called σ-evolution. One comprehensive theory of

the evolution of the representation analysed with information geometry can

be found in [35].
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