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Un ringraziamento particolare alla persone che hanno creduto in me

e a quelle che lo faranno.





INDEX

INTRODUCTION XI

0.1 INTRODUZIONE - Italiano . . . . . . . . . . . . . . . . . . . . . . . . . XI

0.2 INTRUDUCTION - English . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 State of Art 3

1.1 Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Overview and evolution in the last 50 years . . . . . . . . . . . . 3

1.1.3 Review of the humanoid robots . . . . . . . . . . . . . . . . . . . 5

1.1.4 Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.5 Main technological improvement of individual components . . . . 15

1.2 State of the Art - Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2 Biped Gait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.3 Equilibrium Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.4 Zero Moment Point and Foot Rotation Index . . . . . . . . . . . 18

1.2.5 Center of Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.6 Ground Reaction Forces . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.7 Statically and Dynamically Balanced Gait . . . . . . . . . . . . . 21

1.3 Overview of Control Strategies . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.1 Walking Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.2 Inverted Pendulum Method . . . . . . . . . . . . . . . . . . . . . 23

1.3.3 Passive-Dynamic Walkers . . . . . . . . . . . . . . . . . . . . . . 24

1.3.4 Other Control Strategies . . . . . . . . . . . . . . . . . . . . . . . 24

2 Modeling 27

2.1 The Mechanical models . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.2 Dynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.3 Coordinate re-Labeling Operator . . . . . . . . . . . . . . . . . . 29

2.1.4 Projection Operator . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Knee Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Dribbel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Compass Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Step Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

V



VI INDEX

3 Optimization 45

3.1 Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Optimization algorithm - General discussion . . . . . . . . . . . . . . . . 50

3.2.1 The Curves routine . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 The Costfun routine . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.3 The Projection routine . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.4 The Model routine . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.5 The Constraints routine . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.6 Optimization - Issues . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Compass Model: Optimization and Simulation 57

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 SVD - Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . 57

4.3 Research of Passive Dynamic Walking (PDW) . . . . . . . . . . . . . . . 61

4.4 PDW - Optimization Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.1 Results Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.2 Simulation and comparing - Part 1 . . . . . . . . . . . . . . . . . 64

4.5 PDW - Optimization Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.1 Results Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.2 Simulation and comparing Part 2 . . . . . . . . . . . . . . . . . . 66

5 Kneed Models: Optimization 69

5.1 Optimal Grade of Polynomials . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Optimization Results - General . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 K parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.2 Degenerate strikes . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.3 Optimizations Parameters . . . . . . . . . . . . . . . . . . . . . . 73

5.2.4 Algorithm to determine the number of possible SMs. . . . . . . 74

5.3 Group 1 - Dribbel Optimizations . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Dribbel - 2 strikes SM1∗ . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.2 Dribbel - 3 strikes SM2∗ . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Knee Optimization - Overview . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.1 Group 2 - 2 strikes SMs . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.2 Group 3 - 3 strikes SMs . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.3 Group 4 - 4 strikes SMs . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.4 Group 5 - 5 strikes SMs . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Summarizing the obtained results . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Comparison between best models . . . . . . . . . . . . . . . . . . . . . . 95

6 Trajectory Tracking Control 97

6.1 Dribbel and knee-locking mechanism . . . . . . . . . . . . . . . . . . . . 97

6.2 Uncontrolled Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Controlled motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.1 Dynamic Reference . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.2 Optimal control parameters . . . . . . . . . . . . . . . . . . . . . 102

6.4 Simulation with optimal control parameters . . . . . . . . . . . . . . . . 106

6.5 Compare with other movement trajectories . . . . . . . . . . . . . . . . 107



INDEX VII

7 Global stability of Dribbel 111
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Limit Cycle verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.3 Global Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

CONCLUSIONS 115

BIBLIOGRAFY 117



VIII INDEX



LIST OF FIGURES

1.1 Wabot 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 ASIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 ISAMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 QRIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Spring Flamingo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 HRP-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 WABIAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.8 Phases of dynamic bipedal gait. . . . . . . . . . . . . . . . . . . . . . . . 17

1.9 Supporting area during single and double support phase. . . . . . . . . . 18

1.10 Ground projection of Center of Mass (GCoM). . . . . . . . . . . . . . . 18

1.11 Forces and moments during single support phase. . . . . . . . . . . . . . 19

1.12 The possible relative position of ZMP and CoP: dynamically balanced
gait (left), unbalanced gait (the system as a whole rotates about the
foot edge and overturns) (middle), and intentional foot-edge equilibrium
( right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.13 Inverted Pendolum method . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.14 Passive Dynamic Walker . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Knee mechanical model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Dribbel walking motion of the gait. The most important event that
characterize its dynamic are highlighted. . . . . . . . . . . . . . . . . . . 28

2.3 Changing of roles between the legs in correspondence of the ground strike
(left) and not changing in correspondence of the knee strike (right). . . . 29

2.4 Snapshot of the motion of Knee model with circular feet. . . . . . . . . 34

2.5 Knee mechanical model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Knee walking motion of the gait. There are highlighted the most impor-
tant event that characterize its dynamic. . . . . . . . . . . . . . . . . . . 36

2.7 Dribbel mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 Dribbel mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 Dribbel walking gait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.10 Compass like bepedal walker. . . . . . . . . . . . . . . . . . . . . . . . . 40

2.11 Compass mechanical model. . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.12 Compass walking gait. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.13 Knee walking motion of the gait. There are highlighted the most impor-
tant event that characterize its dynamic. . . . . . . . . . . . . . . . . . . 42

3.1 Walking Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

IX



X LIST OF FIGURES
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INTRODUCTION

0.1 INTRODUZIONE - Italiano

In questa tesi si affronta il tema della camminata bipede in generale e nel suo speci-
fico, in riferimento ad alcuni dei più comuni (e semplici) sistemi camminatori di cui
è semplice descirverne la dinamica nel piano. I sistemi camminatori considerati nel
seguito della trattazione, sono: Il sistema a 2 g.d.l. chiamato Compass, quello a 3 d.o.f.
chiamato Dribbel, ed infine, un sistema a 4 d.o.f. chiamato Knee.
Il modello Compass è il modello camminatore bipede planare più semplice che si possa
pensare. È composto da due lik (che fungono da gambe) rigidi, uniti in corrispondenza
del punto di hip dal quale si diparte il busto. La massa dei due link viene concentrate
nei punti di ”hip” e a mezza lunghezza delle due gambe.
Il sistema può prevedere una camminata passiva in presenza di un suolo in discesa, e
con una particolare distribuzione dei parametri fisici.
Il modello meccanico Dribbel prevede 4 link, e quindi le ginocchia, e si impone che la
gamba di sostegno resti diritta, e che la gamba sollevata possa flettersi fino al momento
in cui avviene la prima completa estensione (”strike” al ginocchio). Da questo momento
in poi, fino alla fine del passo, il modello della camminata prevede che, attraverso il
meccanismo di blocco del ginocchio, la gamba rimanga diritta e faccia śi che il sistema
evolva fino alla fine come il sistema Compass descritto il precedenza.
Il modello Knee, prevede anch’esso 4 link ma non prevede il blocco della gamba di
sostegno per tutta la durata del passo, né il blocco del ginocchio al primo strike. Tut-
ti e tre i modelli presentano la medesima descrizione dell’impatto al suolo, oltre alla
definizione delle coordinate ottime visto come problema di minimizzazione di una data
funzione obiettivo, e al controllo del sistema di tipo inseguimento di traiettoria.
Il modello di contatto è stato implementato considerando le superfici a contatto ideal-
mente rigide. Si è inoltre suppesto che la condizione di entrambe le gambe a terra
sia istantanea. Questa permette di definire due fasi della camminata ben distinte. La
prima, descritta dalla dinamica continua, durante la fase di oscillazione della gamba
che inizia con lo stacco da terra di quest’ultima a seguito dello strike al suolo del passo
precedente; la seconda, descritta dalla dinamica impulsiva, quando il sistema bipede
impatta con il suolo.
Con lo stesso criterio sono stati modellati gli strike che avvengono in corrispondenza
delle ginocchia.
Altro minimo comune denominatore è la definizione delle coordinate ottime per un sis-
tema bipede che percorre un tratto in discesa di pendenza 3◦. In questa tesi, infatti, si
è cercato il movimento del sistema più efficente in termini di energia spesa per attuare
i giunti del meccanismo attraverso degli attuatori considerati comunque ideali e non

XV



XVI 0.1. INTRODUZIONE - ITALIANO

dissipativi. I sistemi sono considerati totalmente attuati con attuazione co-locata.
Il caso limite del movimento efficiente di un sistema camminatore bipede è il caso in
cui il sistema evolva nel tempo senza bisogno di attuazione. Questo è il caso dei sistemi
con dinamica passiva per i quali la perdita di energia meccanica associata alla dinami-
ca impulsiva del sistema (strike al ginocchio o al suolo) è completamente sopperita dal
contributo di energia potenziale dovuto al dislivello tra inizio e fine passo.
È stato dimostrato che la dinamica passiva esiste per alcuni sistemi bipedi ed in parti-
olare per il modello Compass analizzato in questa tesi. Ovviamente il comportamento
passivo del sistema dipende anche dalla sua distribuzione di massa e dalla pendenza del
suolo. Oltre a questi parametri fisici, il comportamento passivo si manifesta solamente
con determinate condizioni iniziali (stato iniziale del sistema).
Il movimento passivo del sistema Compass è stato indagato tramite l’algoritmo di ot-
timizzazione spiegato in seguito. Il compotamento passivo è stato verificato con una
simulazione del modello meccanico partendo da condizioni iniziali ottime. In aggiunta
si è indagata la postura ottima che permetterebbe al modello Compass di minimizzare
la perdita di energia cinetica all’impatto con il suolo. Per far questo si è analizzata la
perdita di energia cinetica all’impatto con un’analisi ai valori singolari definendo delle
direzioni di massima e minima perdita di energia al variare dello stato assunto all’is-
tante precedente l’impatto.
In seguito si sono analizzati i modelli provvisti di ginocchia e si è cercato il loro movi-
mento ottimo in riferimento ai parametri della camminata in analisi. La ricerca del
movimento ottimo dei sistemi viene affrontata come un problema di minimizzazione
di una certa funzione obiettivo che tiene conto della richiesta di coppia da parte degli
attuatori co-locati rispetto alle coordinate libere.
L’algoritmo di minimizzazione ottimizza la funzione obiettivo (OF ) ottenuta mediante
la risoluzione della dinamica diretta del sistema attraverso la definizione delle coordi-
nate libere (e velocità e accelerazioni) come funzioni polinomiali del tempo. In questo
modo, i parametri da ottimizzare sono i coefficienti dei polinomi che definiscono le co-
ordinate libere, oltre ai valori degli istanti temporali in cui avvengono gli strike che
sono previsti nel modello del passo.
Il passo infatti è caratterizzato dal numero (e tipo) di strike, nonché dal loro ordine
temporale di accadimento. Il movimento ottimo per il tipo di camminata analizzata
(camminata in discesa con pendenza 3◦), è risultato essere quello del modello Dribbel in
presenza di due strike, il primo in corrispondenza del ginocchio della gamba che oscilla,
e il seecondo al suolo a fine del passo.
Il risultato dell’ottimizzazione è il movimento ottimo in termini di energia richiesta agli
attuatori. In seguito si è proceduto all’analisi della stabilità in grande della cammi-
nata mediante simulazione numerica attribuendo come riferimento del controllo degli
attuatori, le curve ottime definite in fase di ottimizzazione. L’inseguimento delle curve
ottime è stato realizzato mediante un semplice controllore PD (proporzionale e deriva-
tivo).
I coefficienti proporzionale e derivativo del controllo sono stati scelti in modo da mini-
mizzare in lavoro compiuto dagli attuatori. La determinazione e taratura dei parametri
è stata effettuata considerando il sistema che evolve partendo dallo stato iniziale otti-
mo definito dalla routine di ottimizzazione implementata precedentemente. I parametri
trovati sono dunque i parametri ottimi che permettono al sistema di inseguire il suo
riferimento minimizzando il lavoro richiesto dagli attuatori. Con la legge di controllo
appena definita, si analizza la stabilità del sistema in grande andando a simulare la
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camminata perturbandone lo stato iniziale nell’intorno dello stato iniziale ottimo. Le
basi di attrazione definite per l’analisi di stabilità mostrano come il sistema controllato
sia molto robusto riuscendo a gestire perturbazioni anche di entità rilevante. Va detto
che in questa fase, non sono state implementate le saturazioni che caratterizzano gli
attuatori reali.

0.2 INTRUDUCTION - English

This Thesis was developed in Japan during my stage at JAIST (Japan Advanced Insti-
tute of Science and Technology). The purpose of the thesis was to analyse and develop
an efficient walking movement for the walking humanoids robots proceeding down-hill.
The main feature of such robots is the so-called hibrid dynamics i.e. the congiunction
between continuous dynamics equations of the links of the robots during the single-
support phase and impulsive dynamic equations in correspondence of the strikes that
happen during the gait.
The specific goals of this thesis are as follows.

- Develop a systematic way to construct an optimization algorithm in order to find
the most natural trend of coordinates for the walking robots treated in this thesis.

- Investigate the presence of the passive dynamic walking and verify the optimiza-
tion results trough simulation.

- Investigate the optimal movement of bipedal mechanisms with knees in order to
testify their natural walking and applying a control law in order to simulate the
walking down-hill, designing an energy efficient controller.

The search for the most efficient walking behavior has been faced combining the hybrid
dynamics with an optimization algorithm that allows to determine the time histories
of the free coordinates that minimize a specific cost function related to the torques of
the actuators.
The optimization algorithm is adaptable to the three different humonoids robots con-
sidered in this thesis: the Compass model, the Dribbel model and the Knee model, and
has shown that the best humanoid robot for walking down-hill is the Compass one, that
is able to walk down-hill without the necessity of actuations i.e. the so-called passive
dynamic walking.
Only considering the kneed models, Dribbel is the best for an efficient down-hill walking
and for this model it was introduced and an easy control law to let the system walk. In
fact, for the chosen characteristics of the model, no passive dynamic walking was found,
and so, it requires a control law in order to not falling down. The control law was a
trajectories tracking control law that uses like reference, the optimal trajectories coor-
dinates defined with the optimization algorithm. In the end, was tested the stability of
the walking perturbing the velocities of the free coordinates and observing its basin of
attraction. The results showed that the designed control law is really robust because
the basin of attraction are really large specially along some specific coordinates.
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State of Art

1.1 Robots

1.1.1 Definition

Robotics is a branch of science and engineering dealing with the study of robots. A
robot is a virtual or mechanical artificial agent. In practice, it is usually an electro-
mechanical machine which is guided by computer or electronic programming, and is
thus able to do tasks on its own. The mechanics of the robot, in the strict sense, is the
geometric, kinematic, dynamic and functional study of the robot. Typical arguments
are the determination of the geometrical structure of the robots and their components,
the determination of the trajectories, velocities and accelerations, the determination of
the forces and torques necessary to achieve the desired movements. In recent years,
robotics feeds relating to the advancement of innovative systems and mechatronics,
and due to developments in miniaturization, has left the bounds in the industry to
integrate, more and more, into social and relational life of individuals. According
to the report World Robotics 2010 Service Robots published in mid-September by the
Statistics Department of IFR (International Federation of Robotics), at the end of 2009
there were 76,600 commercial robots non-manufacturing active worldwide, with a total
value of 13.2 billion dollars. Of these 30% (23,200 units) was used for defense, 25% of
applications for agricultural or livestock (mainly milking) and 8% were cleaning robots
and robot for medical use. To follow with 7% were robots for underwater activities,
with 6% , both those used in the construction and demolition and those mobile robot
platforms for general use, with 5%, the robots used in logistics and finally, with 4%
those for rescue and safety. To the service commercial robots are then added those for
household use that, at the same date of 2009, amounted to about 5.6 million units:
in almost all of these cases, they are entertainment robots, robot vacuum cleaner and
a small part, is the robot mower. Still limited is the market for robots to assist the
handicapped, however, that, according to the report of the IFR, is expected to grow
substantially over the next 10 years. Will increase, in the near future, the market for
robots for personal transportation and for security and home surveillance.

1.1.2 Overview and evolution in the last 50 years

Around the world, a world leader in robotics is of course Japan, South Korea may
follow, but also America and Europe are challenging for the top three places with ups
and downs. There are many projects that are especially made for industrial robotics
and biomedical robotics.

3
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- U.S.A. military and space robotics - biomedical robotics

- EUROPE: Industrial robotics, biomedical robotics

- JAPAN: Industrial robotics - Personal robotics - Humanoids

- SOUTH KOREA- Humanoids -Services robotics - Personal robotics

Japan

The Japanese government has provided substantial aids to support the development of
robotic technologies, and in general, of the industrial activities. Research in robotics
has been driven primarily by MEXT (Ministry of Education, Culture, Sports and Tech-
nology) by METI (Ministry of Economy and Industry) and even the Ministry of Interi-
or, Posts and Telecommunications. For this reason, research robotics in Japan is very
active in all fields, especially in the field of humanoid robots and the human-robot inter-
action. The industry, however, is very active in developing industrial robots, advanced
and increasingly independent, by using A.I. and advanced sensors. The government
for its part, has been active in promoting and supporting various programs with the
aim of developing more and more not only to robotics but also the industrial activity
associated and induced. However, it seems important to emphasize that Japan can
put forward about the double of European researchers, but that the quality of the re-
searchers on the study level and qualification is lower than America or Europe. The
largest of these project in the recent years, plans to send humanoid robots to the moon
by il2020. At the Waseda University in Tokyo this project is led by Katsuhiko Shirai
and the cost is 2.2 billion dollars. By 2015 should be placed in orbit around the moon,
robots that would be able to monitoring and studying the moon. Then by 2020 there
would be the descent on the moon of the droids that would be laid near the lunar south
pole. Weighing approximately 330 kg and equipped with powerful tracks, the robot is
energized by solar panels due to some envelopes.

South Korea

In South Korea, the robotics research are stimulated by massive government invest-
ments in three ministries MIC, MOCIE and MOST, respectively, the Ministry of In-
formation and Communication Ministry of Commerce, Industry and Energy, Ministry
of Science and Technology that are developed in a variety of special plans of indus-
tries. She has also been created Academic Society for Engineering Robotics, which
has acquired a central role in the Korean community. It has the task of encouraging
the dissemination of knowledge in robotics into other institutions to organize robotic
competitions that have the purpose to create and stimulate a playful market.

United States of America

The research is on many fronts simultaneously. It has developed both in academic and
government centers, both in the private industrial sector and foundations. National
priorities have turned to nanotechnology, environment and information technology. The
military research of the DARPA (Defense Advanced Research Program Agency) had a
big increase in their scope and it may extend to security. Even in space applications, as
is traditional in the USA, is deeply felt, and, in these recent years, there is the project



CAPITOLO 1. STATE OF ART 5

developed jointly by NASA and General Motors, which has generated ROBONAUT
the first robot in space.

Europe

Europe currently represents an interesting situation in full and complete development
both as a market and as a researcher. In fact, the new European Union has opened up
new potential for market expansion and then the overall well-being of robotics. One of
the aims is to increase the integration between the countries of the union, another is to
encourage industry to innovate in order to increase overall competitiveness. For this,
were born EURON (European Robotics Network) and EUROP (European Robotics
Platform) that seeks to link the industrial and university programs in order to allow
the European potential to express themselves fully in the global competition of robotics.
The most important industries of Europe are ABB (Automation Brown Boveri) and
KUKA ROBOTIC. European companies are used to supplies outsources of specific parts
such as motors and sensors, in contradiction, for example, to the Japanese companies
that emphasize the vertical integration within them.

1.1.3 Review of the humanoid robots

The modern era of humanoid robotics began in 1973 with HIROKAZU KATO, a pro-
fessor of Waseda University (Tokyo). He oversaw the construction of a Wabot, the first
humanoid robot. Since 1990 many projects have been launched especially humanoid
robots in Japan, Europe and the United States. In Japan, as well as university and
research centers, including the Honda Corp has dealt with success of this argument
by presenting Asimo. Honda has built the first artificial legs in 1986. Even Sony has
been dedicated to projects of biped robots. In the U.S.A., larger projects have been
developed at the University of Utah, Vanderbilt University, NASA and MIT. In South
Korea is studied, at this time, the bipedal walking robot that is able to interact with
humans. In Europe, the most radical technological innovations come from nature. The
biorobotics and in particular the biometric robotics are areas where were studied bio-
logical systems and developed technologies that replicate the solutions devised taking
inspiration from nature of animals and even plants. It ’s the case for example of the
OCTOPUS project coordinated by the Scuola Superiore Sant’Anna in Pisa, where the
study of the common octopus is leading to the creation of new robotic technologies
with variable stiffness, and is leading to the construction of a robotic arm solely with
innovative materials, but able to perform actions of achievement and taking. The Po-
litecnico di Torino, after producing Isaac, has been working from years to organize the
Robocup with the aim to spread the interest in this type of study and be able to design
a humanoid team that can beat our National football team! Germany for its part,
has designed RunBot who beat the world record in speed which was held from Spring
Flamingo created by MIT. The problem of building a humanoid robot is very complex.
In fact, analyzing the human body from the point of view of the complexity of motion,
you get about 92 degrees of freedom. This is why people often prefer to divide the
problem into sub-problems and focus on the implementation of sub-parts of humanoid
robots. Future promises the presence of many robots in everyday life. Therefore it is
very important to study the perhaps most human characteristic of all: the uniquely
human features of flexibility and adaptability.
A number of the most successful biped robots is presented in the following:
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WABOT-1

Figura 1.1: Wabot 1

WABOT-1 was the first modern prototype humanoid robot. Its name derives from a
contraction of Waseda and robots.It ’was built under the supervision of Hirokatsu Kato
in the Department of Science and Engineering of the Waseda University in Tokyo in
1973. This robot is able to move with small steps with two legs, grasp simple objects
with two hands and is able to execute some basic speech interaction with people. It
has, in fact, a control system of the walk, a vision system and a voice system. It moves
in the environment thanks to the ability to assess directions and distances from the
objects using external sensors, including artificial eyes. Grab and transport objects
using hands with tactile sensors. Communicate with people in Japan using artificial
mouth and ears.

ASIMO

Asimo is a humanoid robot who has overcome the challenges and obstacles of walking
technology to tour the world and demonstrate his amazing feats of human activity.
ASIMO, a humanoid robot, was created by the Honda Motor Company, a producer of
cars, motorcycles and power products, as a new challenge in mobility — the develop-
ment of a two-legged humanoid robot that can walk. Standing at 4 feet 3 inches and
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Figura 1.2: ASIMO

weighing 119 pounds, the robot resembles a small astronaut wearing a backpack and
can walk or run on two feet at speeds up to 3.7 mph.

The Concepts Behind Asimo Back in 1986, the main concept behind Honda’s
robot was to create a robot with more viable mobility that would allows robots to help
and live in harmony with people. Research began by envisioning the ideal robot form for
use in human society. The idea was that the robot would need to be able to maneuver
between objects in a room and be able to go up and down stairs. For this reason it
had to have two legs, just like a person. In addition, if two-legged walking technology
could be established, the robot would need to be able to walk on uneven ground and
be able to function in a wide range of environments. Although considered extremely
difficult at the time, Honda set itself this ambitious goal and developed revolutionary
new technology to create a two-legged walking robot.

The Challenge of Two-Legged Walking Technology To achieve stable walking,
the following issues needed to be addressed:

- Not falling down even when the floor is uneven.

- Not falling down even when pushed.

- Being able to walk stable on stairs or slopes.

This is achieved by three posture controls that achieve stable walking. The first is Floor
Reaction Control which absorbs irregularities in the floor and controls the placement
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of the soles of the feet when falling is imminent. For example, if the tip of the robot’s
toe steps on a rock, the actual center of ground reaction shifts to the tip of the toe.
The floor reaction control then causes the toe to rise slightly, returning the center of
ground reaction to the target ZMP, or Zero Moment Point when the total inertia force
is zero. The target ZMP control, the next posture control, operates to prevent the
robot from falling if the robot leans too far over. The target ZMP control maintains
the robot’s stability. For example, if the robot starts to fall forward, its walking speed
is accelerated forward from the ideal walking pattern. As a result, the target ZMP
is shifted rearward from the actual floor reaction action point and a rearward falling
force is created which corrects the robot’s position. The final posture control, the Foot
Planting Location Control, uses side steps to adjust for irregularities in the upper torso
caused by target ZMP control. This stepping placement control idealizes the stride to
ensure the ideal relationship between torso speed and length of stride is maintained.

ISAMU

Figura 1.3: ISAMU

Isamu is a joint project of the University of Tokyo’s Jouhou System Kougaku Laborato-
ry (JSK Lab) and the Aircraft and Mechanical Systems Division of Kawada Industries,
Inc. (Tokyo, Japan). To date, the two organizations have teamed up to build two
Isamu robots - dubbed H6 and H7. The purpose of the project is to develop test-beds
for research into a wide range of applications for human interactive motion control
technology. For example, Kawada Industries intends to use Isamu as a platform to ex-
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plore potential commercial applications in markets like construction systems, disaster
relief, aids for the handicapped, rehabilitation and training devices, and amusement.
In an effort to mimic a degree of human-like movement, Isamu is endowed with thirty-
two degrees of freedom – six for each leg, one for each foot (toe joint), seven for each
arm, one for each gripper, two for the neck, and three for the eyes. The onboard com-
puter, equipped with dual 750MHz Pentium III processors running RTLinux, provides
real-time servo and balance compensation, and coordinates the robot’s 3D vision and
motion-planning software modules.Thanks to an ample battery pack, a wireless Eth-
ernet interface, and the powerful onboard computer, Isamu can operate without the
need for external cables or constant human intervention. A joystick can be used to
control the robot’s movements when direct human control is desired. It is able to walk
back and forth shifting of 25 cm at every step. Isamu is 1.5 meters high, weighs 55
kg and walks at speed of 2km / h. Isamu’s bipedal walk control system software was
developed by the Inoue-Inaba Laboratory, while the hardware and robotics structures,
including the servo-based level control system, were developed by Kawada Industries.
Kawada applied aircraft technologies to the body frame, resulting in a strong and light
structure.

QRIO

Figura 1.4: QRIO

QRIO is a humanoid robot, equipped with the latest in advanced recognition, mo-
tional control communications, information technology, and artificial intelligence. Its
programming allows it to protect itself should it lose balance, and should it fall, it
checks front and back, left and right, before getting up without any assistance. It can
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distinguish individual faces and voices, and can learn and memorize new words. Sony
explains that QRIO can also communicate with people based on internal judgments,
and express feelings through movements, conversations, and the use of a lighting sys-
tem.Looking like child astronauts, they can balance and dance with motor control so
smooth and fluid as to make grown men weep. In other respects, QRIO is a little dis-
appointing. His walking marks an improvement in robot technology, but it is still much
more of a shuffle than a stride. There are people doing more impressive robot control.
Intelligent servo actuators enable Qrio to walk on two feet, dance, climb and descend
stairs, not fall over when shoved, and even pick itself up when it takes a tumble. Using
twin CCD (charge coupled device) cameras, it can also recognize and identify faces.
Equipped with seven microphones and a speaker, Qrio is able to identify voices, talk,
sing, and understand about 20,000 words. It can also exhibit some limited emotional
responses, according to Sony. QRIO can walk on two feet and dance dynamically. To
make its arms and legs strong, and yet able to move fluidly, it was necessary to develop
an entirely new joint actuator. The realization of this Intelligent Servo Actuator (ISA)
made it possible to build a robot with compact body design that could move its body
smoothly and dynamically. QRIO moves with dynamic walking. Static walking means
the robot keeps its center of gravity within the zone of stability – when the robot is
standing on one foot, its center of gravity falls within the sole of that foot, and when
it is standing on two feet it falls within a multi-sided shape created by those two feet –
causing it to walk relatively slowly. In dynamic walking, on the other hand, the center
of gravity is not limited to the zone of stability – in fact it often moves outside of it as
the robot walks. People move using dynamic walking. It is equipped with technology
that uses a wide range of sensors to detect changes in the walking surface and respond
accordingly. QRIO determines the condition of the walking surface using four pressure
sensors in the sole of each foot to gather data on the amount of force being received
from the walking surface. If pushed by someone, QRIO will take a step in the direction
it was pushed to keep from falling over. The control system senses that it has been
pushed through the pressure sensors in the soles of its feet and its position sensors,
and acts to maintain stability. It can detect an outside force acting on it from front,
back, right or left. When QRIO determines that its actions will not prevent a fall, it
instinctively sticks out its arms, swivels its hips, and assumes an impact position. At
the same time, the control system instantaneously commands the servos in the joint
actuators to relax slightly. In this way it lessens the shock of the fall, enabling it to
survive unscathed.

Spring Flamingo

Is a planar bipedal walking robot. This robot was developed as an experimental
platform for implementing:

• Various walking algorithms

• Motion description and control techniques, particularly Virtual Model Control

• Force control actuation techniques, particularly Series Elastic Actuation

The goals of Spring Flamingo were the following (all have been met):

• Walk fast (0.75 meters/second). [Fastest speed achieved was 1.2 meters/second!]
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Figura 1.5: Spring Flamingo

• Walk efficiently. [Joint power – sum of torques times velocities – during walking
was as low as 15 Watts!]

• Be reliable (work 9 out of 10 attempts). [Over 200 successful demos covering over
15 miles of walking!]

• Have a large margin of stability and be robust to small disturbances (reasonable
pushes) [Recovered after being wacked by a pugil stick!]

• Be confident looking. [Fairly graceful looking when walking well.]

• Become a robotic workhorse - a robot which can be reliably used to perform
experiments without breaking. [Operational for over 3 years before breaking a
leg! Will be operational longer once leg is fixed.]

• Teach us how feet and actuated ankles can help in bipedal walking. [Taught quite
a bit! See papers below.]

Spring Flamingo was designed, built, and controlled by Jerry Pratt in 1996-2000. The
actuators were based on a design and prototype by Mike Wittig done for his Under-
graduate Thesis in 1995-1996. Robert Ringrose helped with the development software
which was a modification of his creature library and other lab simulation software.
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Dave Robinson helped with design advice, foot design, and machining. Dan Paluska
helped with assembly. Ann Torres helped with machining and named the robot based
on its appearance. However, Spring Flamingo doesn’t walk like a flamingo, nor is it in-
tended to. The robot has an actuated hip, knee, and ankle on each leg. An un-actuated
boom constrains Spring Flamingo’s roll, yaw, and lateral motion thereby reducing it
to a planar robot. All of Spring Flamingo’s motors are located in its upper body,
with power being transmitted to the joints via cable drives. Series Elastic Actuation is
employed at each degree of freedom, allowing for accurate application of torques and
a high degree of shock tolerance. The maximum torque that can be applied to the
hips and ankles is approximately 16 Nm while approximately 24 Nm can be applied
to the knees. The force control bandwidth we achieve is approximately 20 Hz. Spring
Flamingo weighs in at approximately 30 lbs (13.5 kg) and stands 3 ft (90 cm) tall.
Rotary potentiometers at the hips, knees, ankles, and boom measure joint angles and
body pitch. Linear compression springs are located in the actuators to implement Se-
ries Elastic Actuation. Linear potentiometers measure the spring compression. In all
there are six actuators and thirteen sensors on Spring Flamingo. We have implemented
simple walking algorithms for walking on flat terrain. With these algorithms, we have
successfully compelled the robot to reliably take consecutive un-aided laps as shown in
the MPEG video below. As of April 8, 1998, we have developed algorithms for sloped
terrain up to 15 degrees, as shown in the MPEG video below. As of Summer 1999
we have developed walking algorithms for fast walking up to 1.2 meters per second.
Some of these algorithms exploit the natural dynamics of the robot to allow for simpler
control with a more graceful result.

HRP-4

Japan has added another soldier to its humanoid robot army following last year’s fembot
supermodel.. The HRP-4 is the latest edition in the state-backed humanoid project. It’s
leaner, lighter, and can balance itself with yogic ease.Developed by bridge builder Kawa
Industries and the National Institute of Advanced Industrial Science and Technology
(AIST), the HRP-4 can stand on one leg, track faces and objects, and respond to voice
commands. HRP-4 sports a RoboCop look, but it’s more C-3PO. Designed under the
theme of a slim athlete, it weighs a mere 86 pounds including battery. That’s about 9
pounds less than its sister bot HRP-4C, which made waves last year modeling a dress
at a bridal fashion show in Osaka, as well as Japan Fashion Week in Tokyo. HRP-4
stands nearly 5 feet tall and has 34 moving joints, with seven in each arm, as well
as fingers than can move more precisely than earlier HRP models. Each arm has a
load capacity of about 1 pound. All joint motors are less than 80 watts for design
safety. A compact notebook computer can be installed in HRP-4’s back to increase
onboard data processing. Kawada and AIST have previously shown off how HRP bots
can be useful around the house, wielding power tools and pouring drinks. The HRP-
2 Promet has been shown walking on uneven terrain and even helping install wall
paneling. The video below shows HRP-4 introducing itself, showing off some moves
and tracking a man’s face (it stands on one leg at around 4:25). HRP-4 is the result
of over a decade of research by the public and private sector in Japan, and inherits
technology originally developed by Honda. The droid will go on sale for around 26
million yen (some $ 300,000; software not included) starting in January. Kawada and
AIST are targeting foreign and domestic research centers and universities as potential
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Figura 1.6: HRP-4

buyers. While I doubt they’ll find many, I’m glad to see the HRP project is moving to
commercialization after vast sums in investment. My fave HRP moment to date was
when it performed a charming folk dance several years ago. I hope it becomes not only
entertaining, but useful.

Wabian II

The acronym Wabian stands for Waseda BIpedal HumANoid. Wabian is a humanoid
robot equipped with a system control, capable of replicating the human walking. It uses
a sophisticated system of balance that, by coordinating the movement of the legs and
torso, is able to keep it in balance. The walk is balanced by using the movement of the
trunk. The movements are calculated offline by a method of learning. WABIAN has a
compliance control of the joints. The joints have a high damping coefficient for shock
absorption. The purpose with Wabian is to develop the mechanism for monitoring the
movement of human beings in terms of robotics and establish a technology base for
building the personal robots of the future. Specifications of Wabot are:

• Degrees of freedom 35

• Weight 107 kg

• Height 1.66 m

• Actuators AC servomotors, DC servomotors
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Figura 1.7: WABIAN

• control unit operations and Walking, PC / AT Pentium CPU board

• power cable

• speed 0.2 m / s for the transport of 2 kg

Wabian boasts a new swiveling pelvis and the ability to walk taking heel-to-toe strides
extending its leg much like humans do. This new design allows for a much more
natural looking walking motion. One of Wabian’s weak points is its immense power
consumption that only allows it to remain operational for 15 minutes when it is not
attached to an external power source. In addition, it appears that achieving the more
natural walking gate comes at a high price since Wabian is not able to negotiate even
the smallest of obstacles in its path. There are different versions of Wabian. The
version described here is carried out in 1995. Otherversions differ in terms of size
and implementation in general. For example Wabian-R2 is able to dance through the
development of coordination of the movements.

1.1.4 Other Models

In the following are reported other robots with a small description just to complete the
list of the most significant models that have been made.
RunBot is a bio-mechanical system of legs. Developed in Germany in 2006 by dr. Tao
Geng, it broke the record in speed, running at 3.5 leg lengths per second. It is direct
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controlled by the neurons - motors of its neuronal controller that is similar to what
occurs in human feet. Simulates a mechanism of synaptic plasticity that allows it to
adapt its locomotion to different soils. The robotic system has three levels (biomechan-
ical, spinal reflex and postural reflex).

ISAAC is a biped humanoid robot designed by the Politecnico di Torino in 2007. Ini-
tially, the project’s purpose was purely scientific but the fields of application are various
and embrace ideas from different disciplines starting with therapeutic ideas for people
with disabilities. The lower limbs are in fact able to reproduce the natural movements
of human legs using 6 degrees of freedom. Isaac is annually involved in RoboCup.

ATHLETE was created in 2009 by Ryuma Niiyama. This robot has real legs with a
design that mimics the musculoskeletal human body shape. Athlete’s legs contain sev-
en sets of artificial muscles, with six individually designed pneumatic actuators each,
like muscles of the human leg. To solve the problem of balance was mounted on the
trunk an inertial measurement unit that helps the body to orient properly, while the
touch sensors on each foot perceive the movements and sensations. Unlike traditional
humanoid running by changing the position of their joints, Athlete moves more like a
human being using their muscles and tendons to bounce on the ground and go.

MAHRU was presented in 2010. It ’s a project of South Korean scientists who created
the Institute for Science and Technology in Seoul. It is capable of performing various
household tasks but also to interact with humans. Can dance and imitate human ex-
pressions, can do even the faces. These capabilities make it to be the first emotional
robot. A humanoid capable of reacting to stimuli and stresses coming from outside.

SUREÑA 2: In date July 5, 2010 Iran, the University of Tehran, has unveiled its first
humanoid robot that looks a lot like ASIMO. It weighs 45 kg, is 1.45 m tall and moves
rather slowly. Iran has not dwelt in great detail during the presentation and the only
thing we know is that his name derives from an ancient Persian warrior.

1.1.5 Main technological improvement of individual components

Into the field of sensors, as well as vision sensors, the challenge is based on three in-
terrelated areas: the time response more and more high with more suitable sensors for
real-time, the use of network sensors (with its fusion-data) that can provide the robot
more flexibility for all types of activities, both traditional and advanced, and the use
of VR (Virtual Reality) to study architecture and FSR (Sensor Fusion Structures) for
the new robots. In the field of actuators, the advanced state of such equipment, is
essentially based on the miniaturization of classical systems and using new materials
that increase the efficiency. The class of actuators, however, is that which has under-
gone minor changes since its birth. The evolution that most concerns this topic is that
relating to nano-materials that have allowed the design of artificial muscles used in the
latest prototypes.

The key point about the structure of an autonomous robot is navigation and control.
In this areas, the technologies are in possession of the U.S.A. , while for navigation
in structured environments, the scepter is held by the European Union has developed
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many service robots. The most radical innovations draw from nature. The bio-robotics
and in particular the biometric robotics are areas where are studied biological systems
and are developed technologies that replicate the solutions devised by nature for animals
and even plants. It ’s the case for example of the OCTOPUS project coordinated by
the Scuola Superiore Sant’Anna in the study of the common octopus is leading to
the creation of new robotic technologies with variable stiffness, and is leading to the
construction of a robotic arm solely with innovative materials, but able to perform
actions of achievement and taking.

1.2 State of the Art - Modeling

1.2.1 Introduction

The basis for current humanoid walking research has been laid by Vukobratovic in
1969 [1] who was one of the first to analyze biped walking [2] and establish crite-
ria for balanced gait [3]. Since then, most research on biped walking is rooted in
these fundamental investigations. Trying to implement human-like locomotion capa-
bilities for robots, researchers have always been torn between a technological approach
and a biological approach. The former relies on concepts and techniques known from
robotics, where abilities are realized departing deliberately from the solution chosen
by the natural archetype. This approach can either be motivated by the attempt to
find a better solution or a lack of comprehension of nature. The biological approach on
the other hand starts by thoroughly analyzing the functioning of animals or humans.
These mechanisms are then adapted and translated into algorithms understandable to
machines. Information processing in animal and human brains is rather complex and
an analysis is often not possible with current technology; therefore assumptions on the
functioning of natural signal processing can be validated by implementing the concept
in a robot and observing its effect. Hence, there is a mutual benefit of a collaboration
for engineering, biology and neuroscience. This chapter gives a condensed summary
of the state of the art in humanoid biped walking after more than three decades of
research. Starting with an analysis of human gait, Sec 1.2 introduces some notions
commonly used in humanoid walking and criteria for balanced gait. An overview of the
most important control strategies is than given in Sec. 1.3.

1.2.2 Biped Gait

From the technical point of view, humanoid gait is often divided into different phas-
es. This discrimination is made, as bipeds show very different dynamical properties
depending on the number of ground contact points and the contact type. As shown
in Fig. 1.8, humanoid walking can generally be split into the double support phase,
where both feet have ground contact, and the single support phase with one foot being
at on the ground, while the other swings through the air. Especially for fast walking,
the swing phase is further classified into a pre-swing and a post-swing phase. During
the pre-swing phase the swing foot rolls about the toes, and the post-swing phase is
characterized by the swing foot landing on its heel and rolling about it.

Depending on the type of gait, not all phases can be observed. When robots are
walking very slowly, the pre- and post-swing phase are generally omitted, thus always
keeping the sole of the feet parallel to the ground. In very fast and dynamic motion on
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Figura 1.8: Phases of dynamic bipedal gait.

the other hand, the double support phase, with both feet on the ground, often is not
distinguishable; running is even characterized by a complete lack of a double support
phase, the single support phases are separated by a flight phase. The ground contact
being the supporting basis has a substantial influence on the ability to balance the
robot in an upright position. The great variety of ground contact situations however
constitutes the necessity for a more generic description of the foot contact situation.
Therefore the term supporting area has been introduced:

Definition 2.1: Supporting Area The supporting area is formed by the convex hull
about the ground support points.

Fig.1.9 illustrates this definition in the case of single and double support. During the
single support phase with only one foot having ground contact, the supporting area is
the convex hull about the foot contact area. The supporting area in double support
phase, however, comprises the contact area of both feet as well as the domain between
them.
The feet of walking robots are not attached to the ground and can slip or lift off. Hence,
forces can only be transmitted in one direction and friction forces and the gravitational
force alone ensure, that the support foot remains at a fixed position on the ground.
Therefore, the weight of the robot limits the applicable force and the lever arm becomes
decisive for the achievable torque. The lever arm being essentially determined by the
contact area, the supporting area becomes especially important for balanced walking.
Therefore the supporting area is a central part of all commonly used equilibrium criteria.

1.2.3 Equilibrium Criteria

To implement biped walking controllers it is essential to determine whether the robot
is in danger of tilting. Therefore, mathematical criteria for this property are discussed
in the following.

Ground Projection of Center of Mass
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Figura 1.9: Supporting area during single
and double support phase.

Figura 1.10: Ground projection of Center of
Mass (GCoM).

A motionless robot only experiences gravitational forces, which are exerted on all
parts of the robot. These forces can be replaced by a virtual force acting at the center
of mass (CoM)

pCoM =

∑
imipi∑
imi

(1.1)

of the robot, where denotes the mass of the -th link of the robot and the position of its
center of mass. The location of the center of mass is decisive for the equilibrium of the
robot. Its orthogonal projection to the ground is commonly referred to as the Ground
Projection of Center of Mass (GCoM) or the Normal Projection of the Center of Mass
(NPCM), see Fig.??. The location The location pGCoM of the GCoM is the point that
fulfills the relation: ∑

i

((pGCoM − pi)×mig) = 0 (1.2)

i. e. the GCoM is the point on the ground, where the sum of all moments exerted
on the motionless robot is zero. If the GCoM resides within the supporting area, the
gravitation force does not generate a tilting moment and the robot remains standing.
However, during fast locomotion, dynamic forces dominate static forces. As the GCoM
does not take these dynamic forces into account, it becomes meaningless and bipeds
may fall over although the GCoM resides within the supporting area. Hence other
criteria must be applied.

1.2.4 Zero Moment Point and Foot Rotation Index

Rotation of an object about a given axis requires the presence of a torsional moment.
Therefore, if the robot does not encounter a moment about the horizontal axes x and
y, i. e.

Mx = 0 My = 0 (1.3)

the robot is balanced.
From (1.3) follows the Definition of the Zero Moment Point:
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Definition 2.2: Zero Moment Point (ZMP). The Zero Moment Point xZMP is
the point, where the ground reaction force FR has to act to compensate all
horizontal moments Mx and My. See Fig.?? [4].

Hence, the robot is equilibrated, if the ZMP is within the supporting area. During
locomotion the robot experiences - besides the gravitation force FG,i acting at the center
of mass pi of the i-th link - dynamic forces: Accelerating masses entails an inertial force
FI,i and the corresponding moment MI,i, which also acts at pi. Furthermore there is a
resultant ground reaction force FR, which can be decomposed into a vertical component
FR,v and a horizontal component FR,h, i. e. FR = FR,v + FR,h. Accordingly the
moment can be broken up into M = M v + Mh. Thus, the dynamic equilibrium
during motion is expressed by the equilibrium of forces and moments:

FR,v + FR,h +
∑
i

(F I,i + FG,i) = 0 (1.4)

pZMP × FR +
∑
i

pi × (F I,i + FG,i)+
∑
i

M I,i +MZMP,h +MZMP,v = 0 (1.5)

According to (1.3), the horizontal component of the moment is zero, MZMP,h = 0.
Substituting in (1.5), solving (1.4) for FR and inserting into (1.5), solving (1.5) yields

(pi − pZMP )× (F I,i + FG,i) +
∑
i

M I,i = 0 (1.6)

Equation (1.6) allows another interpretation of the ZMP: The Zero Moment Point
(ZMP) is the point on the walking ground surface at which the horizontal compo-
nents of the resultant moment generated by active forces and moments acting on
human/humanoid links are equal to zero [4].

Figura 1.11: Forces and moments during
single support phase.

Figura 1.12: The possible relative posi-
tion of ZMP and CoP: dynamically balanced
gait (left), unbalanced gait (the system as
a whole rotates about the foot edge and
overturns) (middle), and intentional foot-edge
equilibrium ( right).

In 1999, Goswami [5] introduced the notion of foot rotation indicator (FRI), also known
as imaginary ZMP (iZMP) [4]. The FRI is physically identical to the ZMP and both
points coincide as long as ZMP/FRI remain inside the supporting area. But unlike the
ZMP, the FRI is allowed to leave the supporting area, see Fig. 16. Although the gait is
not balanced anymore (unbalanced gait), the FRI still has a useful interpretation: the
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distance of the FRI to the supporting area is a measure for the degree of instability of
the gait and hence can give some invaluable information when controlling a stumbling
biped. Technical feasibility of such motion is not clear and has not been proven yet.
The concept of the ZMP being a physical approach, is very useful in numerical simu-
lations, as it can easily be calculated from the system state. In hardware experiments
however, this information is not necessarily known and measurement often is subject
to considerable noise. Hence, another criterion, that can be evaluated more easily, is
desirable.

1.2.5 Center of Pressure

Most humanoid robots are equipped with force-torque-sensors at the feet of the robot.
Therefore the Center of Pressure criterion results directly from evaluating those sensors.

Definition 2.3: Center of Pressure. The Center of Pressure (CoP) is defined as
the point on the ground where the resultant of the ground reaction forces acts
[6].

There are two types of interaction of the foot with the ground: the normal forces
FN,i and the frictional tangential forces F T,i. The CoP is the point:

pCoP =

∑
i piFN,i∑
i FN,i

(1.7)

where the resultant FR =
∑

i FN,i acts; pi is the vector from the origin to the point of
action of force FN,i and FN,i = |FN,i|. As the interaction between foot and ground is
always unilateral, FN,i ≥ 0 holds. Hence, pCoP always lies within the supporting area.
In [6], Goswami proved that ZMP and CoP are identical during single support phase
for balanced walking. This identity implies that definitions referring to the ZMP can
be applied accordingly using the CoP. The ZMP is easy to compute and therefore well
suited for gait generation, while the CoP can easily be measured and hence is more
suitable for control of a walking robot. Due to their identity, these criteria can be used
interchangeably thus facilitating computation. Besides criteria for a balanced robot,
there are restrictions on the ground reaction forces to avoid slipping or lifting off.

1.2.6 Ground Reaction Forces

As already mentioned, the ground reaction forces determine fixed contact of the support
foot with the ground. Therefore, to maintain ground contact, the vertical component

FR,v > 0 (1.8)

of the ground reaction force FR as defined in Fig.??, must always be positive. Otherwise
the foot lifts off the ground and the robot cannot be controlled anymore. Slipping of
the support foot is avoided by restricting the horizontal component FR.h to remain
within the so-called friction cone√

F 2
R,x + F 2

R,y = FR,h ≤ µRFR,z (1.9)

where µR is the friction coefficient. The equilibrium criteria introduced in this chapter
are evaluated in most walking control algorithms. Furthermore, they help to determine
the difference between slow, static motion and fast, dynamic walking.
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1.2.7 Statically and Dynamically Balanced Gait

As already mentioned, dynamic forces like Coriolis, centrifugal and inertial forces, dom-
inate the static gravity forces with increasing walking velocity. The dynamic forces can
usually be neglected in slow motion, hence a common classification of walking gait
distinguishes between statically and dynamically balanced gait.

Definition 2.4: Statically balanced motion. The movement of a robot is called
statically balanced, if the GCoM and the ZMP always remain within the sup-
porting area during the entire motion [7].

Accordingly, fast motion taking into account dynamic forces is referred to as dynami-
cally balanced motion.

Definition 2.5: Dynamically balanced motion. If the ZMP resides within the sup-
porting area during the motion of a human / humanoid while the GCoM leaves
the supporting area, then this motion is called dynamically stable.

Note that Def.1.2.7 is a special case of Def. 2.5, as GCoM and ZMP are identical
for a motionless robot. Obviously, the maximum achievable step length for statically
balanced gait is limited compared to dynamically balanced gait [8]. The terms and
criteria explained in Sec. ?? are the fundament for humanoid walking control. The
following section gives an overview of the most commonly used control strategies.

1.3 Overview of Control Strategies

For humanoid biped robots, the problem of equilibrated robust walking is most fun-
damental and current solutions yet remain unsatisfactory for real world application.
There are three fundamentally different approaches to humanoid walking control: One
strategy assumes very accurate models of the real robot and its environment. Using
this model for physically consistent motion generation, the approach relies on close ac-
cordance of the calculated dynamics with the real hardware behavior. Another starting
point is to use a rather simple and abstract model of the dynamic behavior and achieve
accordance with reality by feedback control. The third research direction can be sub-
sumed as nature inspired control techniques. These include methods based on neural
networks, fuzzy logic or genetic algorithms and are generally inspired by the idea to
enable robots to act in unknown environments and to react on unforeseen events. One
of the most popular approaches based on a simplified model is the inverted pendulum
method belonging to the category of strategies relying on feedback control.

1.3.1 Walking Control

A core task for humanoid walking robots is the actual walking controller, generally con-
sisting of a gait pattern generator and the balance control. For this problem, there exist
two fundamental approaches: one possibility to set about this matter is to rely on a
very accurate model of the walker and to compute gait trajectories trusting in sufficient
accordance of the model with reality. The other direction relies an on approximating
the robot dynamics by a simple model with reduced system states, e. g. an inverted
pendulum. Accordance of the simplified model with the real dynamics is ensured by
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Figura 1.13: Inverted Pendolum method

feedback control. In the first approach, the trajectories are generally computed of-
fline incorporating many constraints like balanced or energy efficient walking. As the
trajectories are inherently balanced, only little control is required to compensate distur-
bances. Besides the accurate model of the robot dynamics, this method also assumes
that commanded gait trajectories are closely matched by the real motion. Another
difficulty arising from the approach with pre-calculated walking patterns is the size
of the necessary database with gait trajectories, as variations in step length, walking
direction, speed or ground inclination generally require recalculated dedicated walking
patterns. Therefore it is useful to have a means of correcting the posture of the robot by
superposing the pre-calculated pattern with a correction term thus correcting posture
errors or adapting trajectories to new situations, e.g. adjusting at ground trajectories
to walking on slopes. A method allowing such modifications is named Jacobi Compen-
sation. The method uses Jacobian matrices to translate desired cartesian motions of
selected parts of the body into corresponding joint space motions. The inverted pendu-
lum method is a walking control strategy that classes as a simplified model approach.
The robot dynamics are described by an inverted pendulum where the pendulum base
coincides with the robot support foot and the pendulum mass represents robot center
of mass. Most of the control methods of bipedal walking requires reference trajectories,
including continuous-time methods based on PID controllers, computed torque and
sliding mode control, etc. Traditionally, the main control problem is how to specify
the trajectories that have to be followed (In this thesis was developed an optimization
method for the specification of the coordinates trajectories). Only few methods adopt
control strategies without need for a reference trajectory.
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Figura 1.14: Passive Dynamic Walker

1.3.2 Inverted Pendulum Method

Miura and Shimoyama [9] studied the inverse pendulum approximation for the control
of the Biper-3 robot. Later on, Kajita et al. [10] extended the inverse pendulum
approach and tested its validity on various robots. In this approach, the dynamics
of the robot are approximated by those of an inverted pendulum linearized about the
upper equilibrium point. The mass is concentrated at the center of mass (CoM) of the
robot, and the base of the pendulum coincides with the support foot of the robot, as
illustrated in Fig.19. Based on this dynamic model, an appropriate location for the
foot placement can be computed in order to counterbalance the tilting motion. Errors
between the computed motion of the inverted pendulum and the real motion of the
robot must be compensated by feedback control. One solution is to use the actuated
ankle joint and apply a small correction torque. However, the single mass inverted
pendulum is a non-minimum phase system, which imposes problems for controlling
the ZMP. Therefore Napoleon et al. [11] proposed an extension towards a two mass
inverted pendulum to overcome this deficiency. Sugihara [21] proposed a method to
manipulate the location of the center of mass using the whole body motion, and to
control the evolution of the inverted pendulum through ZMP manipulation. As the
Inverted Pendulum Method is very flexible and gait patterns can be computed online,
it is used in many humanoids.
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1.3.3 Passive-Dynamic Walkers

Contrary to the previous active control methods, where joint angles and ground re-
action forces are measured and precisely controlled, passive dynamic walkers achieve
biped walking without electronic support. Passive dynamic walkers [13] are mechanical
devices designed specifically for walking down shallow slopes. They have no motors
or controllers, yet they can exhibit humanlike motions. This is achieved by exploiting
their natural dynamics, i. e. passive walkers have been mechanically designed such
that a machine of this class will settle into a steady, periodic gait without active con-
trol or energy input. Energy loss due to friction or impact is compensated by utilizing
the potential energy of the slope converting it into kinetic energy. This idea was first
introduced and examined by McGeer ([14] and [14]) in 1989. One very interesting
observation with passive walking are very smooth trajectories giving the impression
of human-like gait. This reinforces the observation of high energy efficiency of human
gait. In 2001, Ruina et al. [16] succeeded in building the first three-dimensional, kneed,
two-legged, passive-dynamic walking machine, the Cornell Passive Walker, see Fig. 20.
Thus they proved the theoretic considerations to be valid. In this experiment, the two
dimensional model by McGeer is extended by adding specially curved feet, a compliant
heel and mechanically constrained arms thus achieving a harmonious and stable gait.
However, passive walkers are very sensitive to initial conditions and can only walk at
a dedicated speed imposed by the mechanical construction. Thus transferring the idea
of passivity to actuated humanoids is an interesting challenge addressed by many re-
searchers. An intermediate mixture between passive walkers and actuated humanoids
has been introduced by Spong [17], who showed that by adding a single actuator to a
passive walker, energy loss can be compensated. It is even possible to add energy to the
system such that the robot can climb up slopes. Various energy efficient biped walkers
have been built [18], e. g. the Cornell Biped shown in Fig. 1.14, the Delft biped, or the
MIT learning biped. An established measure to compare efficiency between humans
and bipeds of different size is the cost of transportation:

ct = (energyused) / (weight× distancetraveled) (1.10)

It is useful to distinguish between the specific energetic cost cet of transportation and the
specific mechanical cost cmt of transport, where cet reflects the total energy consumed
by the system and cmt only considers the mechanical work of the actuators. The 13-
kg Cornell Biped, for example, walking at 0.4 m/s has and . Humans are similarly
energy effective, walking with cet ≈ 0.2, as estimated by the volume of oxygen they
consume, and cmt ≈ 0.05. By contrast, the Honda humanoid Asimo is estimated to
have cet ≈ 3.2 and cmt ≈ 1.6. Thus Asimo uses at least 10 times the energy (scaled)
of a typical human. These data confirm that adopting concepts from passive walkers
to humanoid robots constitutes an important aspect towards autonomous and energy
efficient walking.

1.3.4 Other Control Strategies

There are various other methods to achieve balanced humanoid walking. Yamaguchi
et al. [19] solved the problem to obtain trajectories inversely from a desired ZMP
movement; the upper body motion is used to compensate the moment about the desired
ZMP. This strategy has been implemented in the Waseda Leg and Wabian series. Miura
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and Shimoyama [20], who developed the Biper robots, controlled his robots by foot
placement feedforward control. This method yields an asymptotically stable periodic
gait. A method to manipulate the ZMP has been presented by Sugihara ([21] , [22]).
Based on an inverted pendulum model, the CoM is controlled through a Jacobian
such that the ZMP shows the desired behavior. Apart from these classical control
approaches, there are approaches to mimic the human neuro-system by employing
neural networks [23] or to emulate the central pattern generator [24] as it can be found
in human beings. Another direction employs genetic algorithms or neural networks to
acquire and improve gait trajectories on an evolutionary basis [25].
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CAPITOLO 2

Modeling

2.1 The Mechanical models

The mechanical models treated in this thesis are of three kinds. One of them is the
most simple walking mechanism that should show a passive behavior walking downhill;
it is the Compass like bipedal robot It will called Compass. The second one, is the
bipedal walking robot with knees, with 3 d.o.f. that is a mechanism that is a little
bit more complicated rather than the compass one, and has a behavior that’s much
closer to the human walking. This mechanism is called in literature Dribbel, and so,
it will call. The third, again, is a bipedal walking robot with knees wih 4 d.o.f. and
the assumption will be really different from the ones done for the 3 d.o.f. It will called
Knee model. All the models can be practically obtained from the model Knee simply
eliminating one or two of the four degrees of freedom that Knee has.

Figura 2.1: Knee mechanical model.

Taking a look to the Fig.2.1, if the stance leg is blocked (means that the coordinate
q4 = 0) it is obtained the Dribbel model. Otherwise, if are blocked both the legs (

27



28 2.1. THE MECHANICAL MODELS

q4 = 0 and q6 = 0 ), it’s obtained the model Compass. That’s, for allow us to say
that everything (every equation or matrix or relation) proposed in the following, can
be derived from the relative one referred to the model Knee. How can be noticed in
the figure 2.1, the walking model present not only the minimum set of coordinates for
describing its dynamic, but present also two coordinates ( q1 and q2 ) that define the
position along the slope, of the stance leg’s foot. These two cooridinates are important
for describing the velocities constraints at the moment of the ground impact.

2.1.1 Model Analysis

To obtain a model of one of the mechanisms that is suitable for the analysis, we make
the assumptions that only one foot is on the ground at the same time, the double-
supporting phase is instantaneous, the gait is symmetric, and the motion of the mecha-
nism is such that the stance leg’s foot remains on the ground throughout the whole step.

A step starts at t = 0 with the swinging leg that begin to swing along the walking
direction. Then, the walking motion continues smoothly until the instant t = Tkneej >
0 that could happen on the swing or on the stance leg’s knee. This strike couldn’t
happen if, for example, we are considering the Compass model. After that, the swing
phase continue, and depending on how many knee strikes will occur, it is possible to
individuate as many time instants Tkneej , where j = 1 · · ·Ns − 1, that refers to the
instants of the knees strikes. After all the knees strikes, if they occur, the continuous
dynamic develop until a time instant t = T in which happen the strike on the ground
of the swing foot. Under those assumptions, the analysis model of a step of one of
the three models proposed in this thesis, can be split into Ns continuous phases, each
delimitated between the time instants outlined before. The figure 2.2 below, is showing
a typical walking motion of the model with 3 d.o.f. (Dribbel) with just two strikes per
single gait; the first happen on the knee and the last one on the ground. The red leg
indicates the swinging leg and with the azure, is indicated the stance leg.

Figura 2.2: Dribbel walking motion of the gait. The most important event that characterize
its dynamic are highlighted.

2.1.2 Dynamic Equations

The three models proposed, present, obviously, different motion equations but they can
be simbolically expressed by the same matricial equation:
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M (q) q̈ +C (q, q̇) q̇ + V (q) = τ (2.1)

Where M (q) ∈ Rm×m is the mass matrix of the system and collects the inertial terms,
C (q, q̇) ∈ Rm×m collects together elements of centrifugal force and Coriolis forces, the
term V (q) ∈ Rm×1 collects the elements of gravity, while τ ∈ Rm×1, Is the vector of
torque applied to the system. m is the number of degrees of freedom of the considered
mechanism (the length of the vector q).

2.1.3 Coordinate re-Labeling Operator

The coordinate relabeling operator is a matrix that has the task to re-label the coor-
dinate after a single strike if it needs to be re-labeled. In fact, in correspondence of
the ground strike, the coordinates have to be re-labeled because there is the change of
roles between the two legs: the leg was swinging become the stance, and the opposite.
Despite of this, in correspondence of the knee strike, no re-labeling operator is needed
because there is no change of roles between the legs.

Figura 2.3: Changing of roles between the legs in correspondence of the ground strike (left)
and not changing in correspondence of the knee strike (right).

Depending on the considered mechanical system, the re-labeling operator changes, but
there is a common base over the three different proposals. First of all, it needs to be de-
fined the variables vectors of the different mechanisms that are reported in the table 2.1

Where qi is the vector of coordinates that really explain the dynamic of the system,
while q̄i ∈ Rm+2×1 is the vector of generalized and extended coordinates including
the two coordinates q1 and q2 that define the position of the stance leg’s foot. With
i = K,D,C. The i, with one of its three meanings, stands for the model that begins
with that letter.

K = Knee D = Dribbel C = Compass (2.2)

In the following, the various models can be considered how derived from the much
complex one that is Knee. In fact, Dribbel is the model obtained from Knee just
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Knee qK =


q3
q4
q5
q6

 q̄K =



q1
q2
q3
q4
q5
q6



Dribbel qD =

 q3
q5
q6

 q̄D =


q1
q2
q3
q5
q6


Compass qC =

[
q3
q5

]
q̄C =


q1
q2
q3
q5



Tabella 2.1: Scheme for the evaluation of number of possible SMs for the imposed number of
strikes

imposing the coordinate q4 = 0 for all the gait long. As so, Compass is obtained
imposing q4 = 0 and q6 = 0. Dough, it is possible to define the re-labeling operator
for the model Knee, and then, evaluate the operator Gi of the other models like a
consequence. The re-labeling operator for Knee, is defined like:



q1
q2
q3
q4
q5
q6

 = q̄K → qK =


q3
q4
q5
q6

 → GK =


1 1 1 1
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2.3)

The other re-labeling operators GD and GC are evaluated considering the matrix full
of zeros and on the first row the value 1, and on the main diagonal, the value -1 but
on the position Gi (1, 1) = 1. The size of the matrix is m×m, remembering that m is
the number of degree of freedom of the considered mechanism, and so, is equal to the
size of the vector qi. So, we obtain the following other operators:

GD =

 1 1 1
0 −1 0
0 0 −1

 GC =

[
1 1
0 −1

]

The matrix Gi relates the coordinates before and after the impact to the ground of the
relative mechanism. {

qi (t+)r = Giqi (t−)
q̇i (t+)r = Giq̇i (t+)

(2.4)
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Where qi (t+)r and q̇i (t+)r are the relabeled coordinate and velocity vectors of the i-
model at the initial instant of the next step, and qi (t−) and q̇i (t−) are the coordinate
and velocity vectors of the i-model at the final instant of the current step.

2.1.4 Projection Operator

Rigid Contact

The Euler-Lagrange differential equation works well to describe the dynamics of a
biped robot while one foot is on the ground and the other leg is swinging above the
ground. However, kinetic energy is lost when the swinging foot strikes the ground,
resulting in a dramatic change in the Lagrangian of the robot. We might modify the
Euler-Lagrange equations at the time of the ground impact to model the continuous
loss of energy. Some researchers have attempted this task by modeling the surface of
the ground as a series of springs and dampers ([27] and [28]). While such a model
results in continuous equations that hold throughout the impact, it does so at the cost
of increased complexity. For example, the compliant contact model described by [26]
allows for a wide range of surface properties and other situations. However, for the
purpose of modeling walking robots, it has two main problems. The first problem is
that as the surfaces in contact become stiffer, the dynamics in the collision phase be-
come faster. This leads to a dynamic model described by stiff differential equations;
a model with relatively fast dynamics (the collision dynamics) as well as relatively
slow dynamics (the other motions of the system). Simulation of such system requires
special integration methods in order to ensure the accuracy of the results as well as
acceptable simulation speeds, and simulation of the collision phase will be relatively
slow. The second problem relates to the analysis of the models. A walking cycle of a
robot consists of a single-support phase, in which one foot is more or less fixed to the
ground and one foot is above the ground, and a double-support phase, in which both
feet are on the ground and support is transferred from one foot to the other. Of these
two phases, the single support phase is generally the longest, and for some walking
configurations, the double-support phase completely disappears as the surface stiffness
increases. However, the compliance in the contact model prevents the stance foot from
being exactly fixed to the ground, and the double-support phase from being exactly
instantaneous, thus making the analysis of the overall cycle overly cumbersome. For
these two reasons, in this section, it is presented a simpler contact model. This model
is suitable for contact situations in which the stiffness and damping are large enough
to permit approximating them by an instantaneous dissipation of energy on impact.
The advantage of this model is that the analysis becomes simpler, especially for certain
types of walking robots where the double support phase becomes a simple momentum
reset between consecutive steps. In general, it is not so easy to replace compliant con-
tact by instantaneous impulsive contact. Aspects that are unimportant in compliant
modeling (such as the exact order in which points of the bodies come in contact with
each other) suddenly change the outcome of the simulation significantly in the case of
impulsive contact modeling (Acary & Brogliato 2003 [29]). Furthermore, the presence
of finite friction and slip requires various extra modeling assumptions to ensure a single
deterministic solution of the dynamic equations (Glocker 2001 [30], Glocker 2004 [31]).
To avoid such problems, it was chosen to restrict the work to the following class of
contact situations:
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• Instantaneous and fully plastic contact (zero restitution).

• No simultaneous collisions.

• No sideways slipping.

• Support is instantaneously transferred from the stance leg to the swing leg.

These assumptions are a reasonable approximation for most walking robots.
As the starting point for the rigid contact model, it is taken a mechanical system of
the form: {

M̄ i (q̄i) ¨̄qi + C̄i

(
q̄i, ˙̄qi

)
˙̄qi + V̄ i (q̄i) = τ i − J I (q̄i)

T λI

0 = J I (q̄i) ˙̄qi
(2.5)

Where M̄ i (q̄i) ∈ Rm+2×m+2 is the enlarged mass matrix of i-model by considering
variables the vector q̄i ∈ Rm+2×1 and no more q̄i ∈ Rm+2×1 , J I (q̄i) ∈ Rm+2×2, is the
jacobian matrix obtained from the geometrical conditions at impact if the strike is the
one on the ground, and J I (q̄i) ∈ Rm+2×2 , if the strike is the one on the knees. The
rows of J I (q̄i) descibe the direction of the contact wrenches and contain information
from the contact kinematics, in order to know when and at what position the contact
forces act. λI ∈ R2 is the vector of undetermined Lagrange multipliers in the context
of the impulsive forces, while the relation 0 = J I (q̄i) ˙̄qi represents the conditions of the
constraints of the velocities. The rigid contact model describe what happen on impact,
i.e. when impulsive constraint forces λI set the velocities of the contact point to zero.
There are defined ti as the time of impact, and t− and t+ as the time instants just
before and just after impact, i.e. mathematically as t− = ti − ε and t+ = ti + ε with
ε → 0. Using this notation, can be indicated the velocity constraint of equation 2.5 as

J I (q̄i) ˙̄qi
∣∣
t=t+

= 0 (2.6)

Where were used t+ (the time just after impact) since the momentum (M̄ i ˙̄qi) is discon-
tinuous at impact t = ti and hence, not well defined. Can be integrated the dynamic
equation (2.5) over the impact phase, i.e. from t− to t+, which results in the following.∫ t+

t−

M̄ i ¨̄qidt =

∫ t+

t−

(
−C̄i ˙̄qi − V̄ i + τ i − JT

I λI

)
dt (2.7)

M̄ i ˙̄qi (t+)− M̄ i ˙̄qi (t−) = −JT
I

∫ t+

t−

λIdt (2.8)

Where it is assumed that the terms −C̄i ˙̄qi−V̄ i and τ i have finitely large magnitude and
hence, zero integral between t− and t+. If sobstitute the expression (2.8) for M̄ i ˙̄qi (t+)
into (2.7), we obtain an expression for λI as

0 = −JT
I (q̄i)M̄ i (q̄i)

−1

(
M̄ i ˙̄qi (t−) + JT

I (q̄i)

∫ t+

t−

λIdt

)
(2.9)

∫ t+

t−

λIdt =
(
JI (q̄i)M̄ i (q̄i)

−1 JT
I (q̄i)

)−1
J I (q̄i) ˙̄qi (t−) (2.10)
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The inverse of the matrix J IM̄
−1
i JT

I exists if and only if the rows of JT
I are linearly

indipendent, i.e. if the constraint force magnitudes λI are uniquely determined. In-
stead of explicity computing and using λI , can be also substitute eqaution (2.10) into
equation (2.8) to obtain an expression for the velocity after impact ˙̄qi (t+) as

˙̄qi (t+) =

(
I − M̄

−1
i JT

I

(
J IM̄

−1
i JT

I

)−1
J I

)
˙̄qi (t−) = P proj ˙̄qi (t−) (2.11)

The Projection Operator P proj assume different shape in according with the considered
mechanism, and according with the considered strike (if it happen on the stance leg’s
knee or on the swing leg’s knee or on the ground). ˙̄qi (t+) and ˙̄qi (t−) are respectively
the vectors of velocities before and after impact of the i-model. J I (q̄i) is the generic
Jacobian setting the geometrical conditions at a generic impact, and so, it may vary
depending on the considered strike of one of the three models.
It is possible to consider the Jacobian for the model Knee and then, evaluate the others
of Dribbel and Compass with simple considerations like done before for the re-labeling
operator. The Jacobian for the strike to the ground, for model Knee is defined by
JKf (q̄K):

JKf (q̄K) =

[
1 0 J13 J14 J15 J16
0 1 J23 J24 J25 J26

]
(2.12)

Where:

J13 = −ll cos (q3)− lu cos (q3 + q3) + lu cos (q3 + q4 + q5) + ll cos (q3 + q4 + q5 + q6)

J14 = −lu cos (q3 + q3) + lu cos (q3 + q4 + q5) + ll cos (q3 + q4 + q5 + q6)

J15 = lu cos (q3 + q4 + q5) + ll cos (q3 + q4 + q5 + q6)

J16 = ll cos (q3 + q4 + q5 + q6)

J23 = −ll sin (q3)− lu sin (q3 + q3) + lu sin (q3 + q4 + q5) + ll sin (q3 + q4 + q5 + q6)

J24 = −lu sin (q3 + q3) + lu sin (q3 + q4 + q5) + ll sin (q3 + q4 + q5 + q6)

J25 = lu sin (q3 + q4 + q5) + ll sin (q3 + q4 + q5 + q6)

J26 = ll sin (q3 + q4 + q5 + q6)

That Jacobian matrix defined above, is the one referred to the strike on the ground.
The other Jacobian matrix are evaluated simply remembering the relation in terms of
coordinate variables between the mechanisms. In fact, The Jacobian matrix for Dribbel
striking on the ground is obtained deleting the fourth column of the matrix JKf (q̄K)
and imposing the coordinate q4 = 0 into the other members. In particular will see
in the latter, that Dribbel has the characteristic to behave like a 2 d.o.f. model (like
Compass) the end of the gait, and so, the Jacobian JDf (q̄D) is evaluated deleting
also the sixth column of JKf (q̄K) and imposing the coordinate q6 = 0 in the other
members. With the same considerations The Jacobian matrix of Compass JCf (q̄C) is
evaluated in the same way and it is equal to the JDf (q̄D).
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JCf (q̄C) = JDf (q̄C) =

[
1 0 0 (ll + lu) cos (q3)
0 1 −2 (ll + lu) sin (q3) − (ll + lu) sin (q3)

]
(2.13)

Note that we can use the same coordinate vector q̄C because of the compass posture
that the two model assume at the end of the gait. In this formulation was imposed
the symmetry of the gait at the end with the relation q5 = −2q3. For the strikes
on the knees, the jacobian matrix is simpler and starting from the one related to the
mechanism Knee, we can find the two JKk1 and JKk2 related to the two possible strikes
on the knee1 (of the stance leg) and knee2 (of the swing leg):

JKk1 =
[
0 0 0 1 0 0

]
JKk2 =

[
0 0 0 0 0 1

]
(2.14)

Dealing about the other mechanisms, the only other that can exibit one strike on the
knee, is Dribbel, and in particular can exibit the only strike on the knee2 (swing leg).
The related jacobian is obtained like before, eliminating the fourth column from the
JKk2. It is obtained the vector JDk2:

JDk2 =
[
0 0 0 0 1

]
Where JDk2 ∈ Rm+2×1

2.2 Knee Model

Figura 2.4: Snapshot of the motion of Knee model with circular feet.

. The figure (2.4) shows Knee model movement with a series of napshot. The model
in the figure has circular feet but the mechanism’s model we will study in the following
doesn’t provide circular feet. The mechanism consists of four legs that are connected
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in pairs so that both, internal and external legs are moving synchronously. This type
of connection was used for the first time by British researcher McGeer (1991) [?]. He
discovered this interesting way to build a three-dimensional walker mechanism (robot),
behaves essentially as a two-dimensional mechanism. The pairs of legs, in fact, preserve
the robot from falling sideways. The leg pairs are joined in two concentric aluminum
tubes, which contain most of the electronics as well as a motor and a torque sensor. The
knees of the robots are equipped with mechanical stops (knee-cups) whose function is
to avoid over-extension of the legs. The robot’s feet are small plates of metal U-shaped
and are aligned with the leg kept simple elastic bands. The robot is implemented as
fully actuated with the presence of actuators in rotational joints (knees and chest) and
ankles.

Dynamic model of Knee

Simulation Model
In order to develop a simulation of the model Knee, we make the assumption that

the links of the robot are considered rigid and the joints, ideals. Assuming values
taken from literature for the main physical characteristics of the system, looking at the
figure 2.5, we recognize 3 characteristic points of our model: The Hip point, and those
which characterize the knee joints. The model thus provides a concentrated mass at
Hip point , another one in the middle of the upper part of each leg and another one
in the bottom part of the legs. Each concentrated mass has inertia associated with
its corresponding. Other physical parameters of the robot in question are the lengths
of the upper and lower part of the leg respectively defined by the parameters ll and
lu. The feet are modeled in order to make the contact happen on a single point and
they have no spatial extension and coincide with the end point of the lower part of
the legs. Have been used the values of the mass, center of mass, and inertia of these
four rigid bodies as adopted in Duindam and Stramigioli dissertation [26]. There were
assumed the mass of the links to be distributed uniformly, and the mass of the joints
to be concentrated in a point. The values of physical parameters are shown in table
2.2 below.

mH 3,0 [kg]
ml 1,6 [kg]
mu 1,52 [kg]
Jl 0,0592 [mm4]
Ju 0,0663 [mm4]
ll 0,43 [m]
lu 0,47 [m]

Tabella 2.2: Physical parameters of Knee model.

From the Fig.2.5 we can see the degrees of freedom (d.o.f.) of the model. The degrees
of freedom are four (or six if we consider the coordinates that links the robot’s po-
sition at the origin of the reference system) and are defined with that nomenclature:
q1, q2, q3, q4, q5 and q6. The coordinates q1 and q2, are those that define the position of
the foot of the stance leg with respect to fixed reference system. The remaining coordi-
nates q3, q4, q5 and q6, are the rotational coordinates of the rotations of linear elements
that constitute the legs of the robot. The first coordinate q3, is absolute because it
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Figura 2.5: Knee mechanical model.

is the rotation of the stance leg respect to the perpendicular to the ground, while the
remaining q4, q5 and q6 are related to rotations are immediately preceding, and so are
relative coordinates. The system is moving along a downhill with a slope γ and in the
following is shown an example of the walking gait.
It is show the movement behavior of the Knee mechanism highlighting the main im-
portant events that happen during the walking. The step model used, provides the
presence of three strkes during the gait.

Figura 2.6: Knee walking motion of the gait. There are highlighted the most important event
that characterize its dynamic.

The step model presented in Fig.2.6 is providing a series of three strikes that happen
with this order: the first strike happen on the knee of the stance leg (knee1 ), the
second one on knee2 and the last one on the ground. The model develop like a four-link
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mechanism for all the duration of the gait.

2.3 Dribbel Model

Fig.2.7 shows Dribbel, the kneed walking robot developed by Dertien (2005) [33], Beek-
man (2004) [32] and van Oort (2005) [34] at the University of Twente. It is a mechanism
consisting of four legs (the same treated for the model Knee), which are connected in
pairs, such that both the two outer legs and the two inner legs move together. The
knees of the robot have mechanical kneecaps that prevent them from hyper-extending.
They also contain electromagnets that can be actuated in order to hold the leg straight.
The feet of the robot are same described with the Knee model. Finally, all joints are
equipped with rotational encoders that measure the joint angles. Inspired by human
locomotion, we choose to activate the magnets on the knees during the whole stance
phase, such that knee buckling is prevented. When the stance foot releases the ground
(as detected by the contact switch), the magnet is deactivated and the knee is free to
flex during the swing phase. Then, before the lower leg hits the kneecap on its forward
swing, the magnet is reactivated in order to catch and hold the lower leg straight for
the subsequent stance phase. Dribbel is similar to the planar kneed robot developed
before. The only differ on the fact that Knee model doesn’t provides the mechanical
locking at the kneecup that the Dribbel do.

Figura 2.7: Dribbel mechanism
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Dynamic model of Dribbel

Simulation model

To develop a simulation or an optimization model of Dribbel, we make the assumption
that the links of the robot are rigid and the joints ideal as previously. We also assume
that the legs move in pairs, meaning that the inner legs move together and the outer
legs move together, in particular the lower legs. Have been used, in addition, the same
values of mass, center of mass, and inertia of the ones used with Knee. Take a look
to the table 2.3 and the figure 2.8 that highlights the Dribbel’s physical parameters
(the same of Knee model) and also the position of the joints, and the setup of the
coordinates q1 through q6 as indicated.

Figura 2.8: Dribbel mechanism

mH 3,0 [kg]
ml 1,6 [kg]
mu 1,52 [kg]
Jl 0,0592 [mm4]
Ju 0,0663 [mm4]
ll 0,43 [m]
lu 0,47 [m]

Tabella 2.3: Physical parameters of Dribbel model.

Since the robot was constructed to behave like a planar walker, we construct a me-
chanical model that only represents the lateral behavior of the robot. In addition, was
modelled the feet as point feet, and possible contact with the ground as rigid contact.
The resulting model can be used for simulation of the planar behavior of Dribbel. The
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particular thing that differs from the Knee model, is the fact that the coordinate q4 = 0
for all the duration of the gait.

Figura 2.9: Dribbel walking gait

Figure 2.9 shows a single step of Dribbel that is split into two phases: the first phase
from foot lift-off until knee strike (modeled as a three-link mechanism), and the second
phase from knee strike until foot strike (modeled as a two-link mechanism). It is
possible to swich between these two configurations due to the knee locking mechanism
implemented for Dribbel. This mechanism, consists in mechanically lock the swing leg
in correspondence of the knee strike before the one on the ground. The locking happen
introducing a desired torque acting to the relative coordinate q6 that has the purpose
to keep the leg straight till the end of the gait.

2.4 Compass Model

The compass model is the one like in the figure 2.10. Compass was developed by
many authors since a long time but the main important results in studing this kind
of mechanism were proposed by Goswami 1998 [5] and [5], with his studies involving
stable passive limit cycles and bifurcations. It is a mechanism consisting of four strigth
legs which are connected in pairs, such that both the two outer legs and the two inner
legs move together. The feet are little wheels and that means that the surface of the
feet in contact with the ground is circular, thing that, how proved by F. Asano [38], is
very effective on the walking efficiency.

Compass has characterized by the fact that is one of few models that can exibit a
passive dynamic walking proceding downhill along a certain slope with some particular
physical characteristics. The model is simply made by two straight legs jointed at the
hip point through a rotational joint. How can be easily noticed from the figure 2.10,
the walker needs to be tested with help of some platforms that ensure that the model
doesn’t fall down cause of premature strikes on the ground of the swing leg’s foot (this
could happen cause of the same length of the two legs). These strikes can happen due
to some perturbations of the walking behavior or because not optimal initial conditions.

Dynamic model of Compass

Simulation Model
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Figura 2.10: Compass like bepedal walker.

To develop a simulation model of Compass, is assumed that the links of the robot
are rigid and the joints ideal. It is also assumed that the legs move in pairs, meaning
that the ineer legs move together with the outer legs. The value of mass that have been
used are summarized in the table below:

Figura 2.11: Compass mechanical model.

The physical values are taken from Goswami 1998 [6]. The physical parameters are
shown also in the figure 2.11 where are shown also the coordinates from q1 to q4. Since
the robot was constructed to behave like a planar walker, we construct a mechanical
model that only represents the lateral behavior of the robot. In addition, was modeled
the feet as point feet, and possible contact with the ground as rigid contact. The re-
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mH 5,0 [kg]
m 1,0 [kg]
l 1,0 [m]

Tabella 2.4: Physical parameters of Compass.

sulting model can be used for simulation of the planar behavior of Compass.

The model consists of two legs with a concentrated mass m in the middle of each
leg, linked with a joint in top position of mass mH . The feet come in contact with the
ground which is tilted of an angle γ as shown in the figure 2.11.

The figure 2.12 below, is representing the walking gait in which are highlighted the
main important instants.

Figura 2.12: Compass walking gait.

2.5 Step Model

The hypothesis of this thesis are that the entire walking cycle is symmetric. That
means the gait is the same considering the phase in which the left leg of the system is
pivoted on the ground for walking, and the phase in which the right leg do it. That is
possible only after the re-labeling operator that re-allocate the right coordinates to the
right joints.

The Step Model (SM) is the precise description of the most significant events that
characterize the step during its developing. In order to clarify the concept, we must
assume that the dynamics of a walker mechanism, such as those analyzed in this thesis,
is an impulsive dynamic, as a sequence of impulsive events (strikes) interacting with the
continuous dynamic of its own mechanism. The model is, thus, a characterization of
the walk carefully defined the number of strikes and their temporal order of occurrence.
The number of strikes and the order have to be, obviously congruent with the physical
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constraints and with the symmetry of the walking cycle. Take a look to the figure
below:

Figura 2.13: Knee walking motion of the gait. There are highlighted the most important
event that characterize its dynamic.

Making an example, can be noticed how the step model (SM) shown in the figure 2.13
above is defined. The mechanical model used for this example is Knee. The Step Model
provides three different strikes in the following order:

• Strike of the knee of the stance leg (knee1 )

• strike of the knee of the swing leg (knee2 )

• strike of the foot of the swing leg on the ground (final instant of the gait)

That step’s model highlights the main important instants of the walking in correspon-
dence of which, the impulsive dynamic interact with the continuous one. With those
assumptions, the analysis model of a step brings that the gait can be split into three
continuous phases: between t = 0 and t = Tknee1, then between t = Tknee1 and
t = Tknee2 and then, between t = Tknee2 and t = T . Where Tknee1 is the instant
of the strike that happen on the knee of the stance leg (relative to the coordinate q4),
Tknee2 is the same of before for the swing leg’s knee (relative to the coordinate q6
) and T is the final time of the gait in which happen the strike to the ground. The
SM considered with this example, is one of the possible SMs can be created just, for
example, adding other strikes referring to the stance or to the swing leg. This con-
cept has been introduced in order to investigate the influence of the impulsive dynamic
on the continuous dynamic of the walking system. In fact, the optimization routine
implemented in the next chapter, was designed considering the SM of the walking
gait like an input of the routine and so, modifying this inputs, we will investigate the
effects of the impulsive dynamic (referring to the number of strikes and their order)
over the continuous (referred to the natural walking behavior of the mechanisms). The
optimization algorithm, as constructed, requires that have been set, in advance, the
SM we want to investigate, and this brings as a consequence, that a huge number of
optimization routines have to be performed in order to give a sort of generality to the
research. This is a limitation for the algorithm. This problem was studied, but the
problem is the very functioning of the optimization routines that did not allow great
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results in this direction. I found it difficult for the optimization to combine the man-
agement of continuous parameters such as coefficients of polynomials (these will be the
parameters of the optimization routines better described in the following paragraph),
with the management of discrete parameters as required, moreover, from the introduc-
tion of parameters like the number of strikes and the order of occurrence of the latter.
Furthermore, the automatically recognition of the strike (if there is) by the MatLab
routine is an operation that is hard to reconcile with the optimization of the parame-
ter’s vector xp, since the very advent of the strike made sure that the parameters that
in this moment are satisfying the constraints of the optimization, immediately after
the strike, they don’t do it anymore, (due to the projection and re-labeling operator)
and this ensure that the optimizer diverges from that position that, just an instant
before it, he evaluated be good and in the direction of the optimal solution. These and
other problems are the basis of the decision to drop the general optimization algorithm
(i.e. that would be responsible not only to optimize the parameters vector xp but also
the number and order of timing of any strikes of the model, if they occur), and to
concentrate on an algorithm that would be of general validity, however, but that is
capable to optimize the coordinates of the system with the number and temporal order
of the strikes assigned. This type of algorithm is valid, in general, if it’s possible to
establish that any other SM produce an optimization worse (from the point of view
of the objective function) than the considered one. This was faced performing a huge
amount of optimizations, varying a great amount of possible SMs and evaluating from
time to time the Objective Function (OF ) value J . The table3.2 below is showing the
nomenclature and symbolism used to completely determine a SM .

Symbol Description

str Locate the strike of any kind (to the ground or knee).
Ns Number of strikes.
γ Slope of the terrain. [rad]

∗ ∗ ∗ Temporal order of occurrence of strikes ( E.g. 1 2 gr. - 1 and
2 refer to the strike taking place at the knee, respectively, for
the stance leg and for the swing leg).

n Degree of the polynomials which represents the independent
coordinates.

γnNsstr ∗ ∗ ∗ Acronym that identify the step’s model with all its
parameters.

gr Reference to the strike that happens to the ground at the end
of the gait.

Tabella 2.5: Nomenclature and symbolism used to completely determine a Step Model.

For example, one SM defined: 345str1 1 2 1 gr, is a model that provides the descent
of the mechanism on a plane with a slope of three degrees, with a grade of polynomials
equal to four, which presents five strikes. The first two occur at the knee of the stance
leg (which can be identified with the number 1 that refers, precisely, to the stance leg),
then one at the knee of the swing leg (number 2 is referring to the swing leg), then
again another one at the knee of the stance leg and at the end, of course, the one
that happens on the ground (gr ). As one can easily imagine, for the three mechanical
models I had considered in this chapter (i.e. Knee, Dribbel and Compass), but in
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general, for any bipedal walker, cannot be present a number of strikes less than one per
gait that correspond to the only presence of the strike to the ground at the end of the
gait. That is, in addiction, a binding condition for the optimization.
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Optimization

3.1 Optimization Algorithm

In order to study walking behavior, we have to find walking gaits of a mechanism: pe-
riodic motions of the links of the mechanism that, together with interactions with the
ground, produce a net overall displacement along the ground. Next section describes
a technique to find efficient walking gaits using numerical optimization. The following
section then, describe the modeling and analysis of the three proposed walking mech-
anisms: Compass, Dribbel and Knee. The simplified models, which were developed in
the previous sections, as in general any mechanism that can be thought, has a dynamic
that is described by a set of differential equations that describe the movement, and so
the continuous dynamic, since the beginning of the step up to the end. Then, there
are the equations of projection and re-labeling that link the positions and angular ve-
locities in correspondence of the strikes, to the positions and velocities just after the
strike. The structure of the walking is, more or less, the same for all the models pro-
posed in this thesis, and figure 3.1 is giving an example: The figure 3.1 illustrates the
model of a planar bipedal walking robot with knees (Dribbel model) and highlights a
certain period of time for the walk cycle that consists of two steps, one with his left
foot centered on the floor and one on his right foot.

Figura 3.1: Walking Cycle.

The cycle of the walk is considered as the union of the step during which acts as a pivot
the left leg, plus the phase in which acts as a pivot the right leg. This cycle is repeated
over time (starting from point A after posture H ), and is also symmetric with respect
to both left and right legs. If we use the coordinates q (t) to describe the movement of
the robot with the left foot centered on the ground, we can then use a mapping G to
describe the symmetrical movement focusing on the right foot. The cycle of the total
movement A−E −A can also be represented as a conjunction of two single gaits (the
one starting from A to E and the other starting from E to A again) of which the first

45
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is described by the coordinates q (t) and the second, by the coordinates Gq (t).
An important aspect of the research of efficient walking is what is called the Passive
Dynamic Walking, which is the search for natural, not actuated, periodic movement
of the mechanism (also called passive limit cycle), that appears sometimes in circum-
stances that have a path with a sharp downhill slope along the way.
The existence of this limit cycle depends on the configuration of the robot, its mass
distribution and of the presence, of course, of a downhill sole. If a passive limit cycle
exists, this may be attractive (stable) or not (unstable). For defining a limit cycle we
have firstly introduce the state variables vector defined like:

x = [q, q̇]T

The flow of x is the trajectory which begins at the initial condition x (0) = x0 and
ends at x (t) . The flow is denoted ϕ (x0, t) to explicitly show dependence on initial
condition and time. If, for some initial condition x∗ and some time T .

ϕ (x∗, t) = x∗ (3.1)

we say the flow ϕ (x∗, t) is a periodic solution. Although difficult to visualize in higher
dimensions, a periodic solution in two or three dimensions would look like a closed
loop (take a look to the figure 3.2). If the periodic solution is isolated - that is, there
is a neighborhood around it containing no other periodic solutions - then we call it
a limit cycle. If all trajectories beginning in some neighborhood around a limit cycle
converge to the limit cycle, we say it is stable. We give the name basin of attraction
to the neighborhood surrounding a stable limit cycle which contains all the initial
conditions that will converge to the limit cycle. For our robot models, a limit cycle
in the state space indicates that a physical robot will walk continuously under the
same initial conditions. We can start the robot with an initial set of joint angles and
angular velocities and allow it to evolve over time until the nonsupport foot strikes
the ground. If, after the ground impact, the robot begins its step with positions and
velocities identical to the previous step, we see a periodic solution of the flow. If it
turns out that the robot returns to the periodic solution despite small perturbations, we
conclude that this periodic behavior is a stable limit cycle. A passive limit cycle draws
energy solely from the acceleration of gravity, replacing the kinetic energy lost during
impacts with energy gained from the change in potential energy during each step. The
biped walking system Compass described in this thesis demonstrated passive limit cycle
([5], [38], [39]); it was shown how the system walk continuously down shallow slopes.
Mechanisms to be able to perform a passive dynamic walking, have an autonomous
dynamic and therefore the initial conditions completely determine the motion. The
deterministic function F (∗) that maps the initial conditions at the beginning of a step
up to the initial ones of the next step, then the combination of continuous dynamics,
projection operator and the re-labeling operator of coordinates, is called return map
(stride function) and it serves as a Pointcaré map for the system that maps the the state
values of the system from one step to another into the Pointcaré surface. A Poincare
surface samples the flow (defined before ϕ (x∗, t) ) once every period. The effect is much
like a strobe light that illuminates a walking human at the same time during each step.
If, over time, the strobed images become identical, the human has settled into a stable
walking pattern. In a similar manner, if the points on a Poincare surface converge to a
single point, we have found a stable limit cycle. As the name suggests, a Poincare map
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is a mapping from one point to another on the Poincare surface. For an example take
a look to the figure 3.2.

Figura 3.2: Pointcaré Map.

The map shows the initial conditions of the mechanism that map themselves through
the integration of continuous dynamic and through the projection operators and, the re-
labeling operator. Since the Poincaré map involves integration of nonlinear differential
equations, it is usually not available symbolically, and searching for fixed points is hence
a numerical problem. As an example, see Goswami et al. (1998), [36] for a detailed
study of the Poincaré map of the compass-gait walker. The approach of searching for
fixed points of the Poincaré map is very useful in passive dynamic walking, as it has few
degrees of freedom (just the initial conditions of the system, which are often partially
fixed due to the choice of the starting point of a cycle). However, it relies on the
restriction to autonomous systems, i.e. systems with zero control input, or at least an
input that is chosen a priori. When walking down a slope, zero-input limit cycles have
been shown to exist for various walking mechanisms. However, for walking on level
ground, purely passive walking cycles generally do not exist, since the kinetic energy
lost during impact cannot be recovered fromgravity. Some ideal walking mechanisms
can be found that touch the ground with zero velocity (Gomes & Ruina 2005 [40]) and
hence do not loose energy on impact, but these are exceptions. Thinking about walking
on general surfaces (whether uphill or downhill), we don’t have to carry out a search
for the pure passive movement, but at this point it is possible looking for a natural
and efficient one. In this way, however, we must consider the mechanism directly and
fully actuated (are actuated all the coordinates of the system) by ideal back-driveable
motors, and therefore, the natural and efficient movement of the mechanism is the
one for which the actuators are required to spend the small amount of torque that’s
possible. Passive dynamic walking, in fact, is solely the extreme case that does not
require any torque to the actuators, but if this movement does not exist, the best we
can do is to find the movement that requires the least amount of torque that’s possible.
Here, then, we can refer the problem to an optimization problem which aim is to find
the optimal movement in terms of energy consumption of the actuators in order to
make the system be able to make a step consistent with the physical and kinematic
constraints of the walking. In order to properly determine a measure for the amount of
torque, we define a function in the space of torques representing the cost of actuation.
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For convenience we consider a function defined in the form τTQ (t) τ , a quadratic form
in the space of torques τ (t) = τ (q (t) , q̇ (t) , q̈ (t)), dependent of the time and of the
configuration of the robot and of its velocities and accelerations. So we can define
the problem of finding an efficient step as the following minimization problem: The
problem of search for an efficient step is the problem of finding the coordinates of the
joints q (t) that solve,

min
q(t)

∫ T

0
τT (t)Q (t) τ (t) dt (3.2)

Where the matrix Q (t) is semi-positive definite. The minimization algorithm is then
liable to the following constraints:

τ (t) = τ (q (t) , q̇ (t) , q̈ (t)) This equality constraint forces the optimization, and
then the research of the optimal coordinate, to be
bound to the dynamics dictated by its dynamic
equation.

q+r = Gq− Equality constraint which expresses the relationship
between coordinates at the beginning of step q+r

and coordinates at the end of step q− through the
re-labeling operator.

q̇+r = G · Pproj (q−) · q̇− Equality constraint that represent the link defined
by the operator of projection of the velocity after a
strike.

Tabella 3.1: Main Constaints of the minimization problem

Where τ (q, q̇, q̈) is the dynamics of the system, G , describes the re-labeling of the
coordinates, P proj (q) is the projection of the moment due to the impact (a generic
impact - ground or knee), and where q− = q (t−) and q+r = q (t+)r, are respectively
the coordinates at the instant before impact, and at the instant immediately after that,
with re-labeling.

The problem is therefore to find the coordinates of the joints q (t) for a step (between
t = 0 and t = T ) so that the total integration of the torque τ (t) is minimized in the
metric Q (t), and so that the initial conditions (q+r, q̇+r), are compatible with the final
conditions ( q−, q̇−) projected and re-labeled. The relation, for example, between q̇+r

and q̇− is the successive projection P proj (q) of the moment due to of the impact and
the re-labeling of the projected velocities with the operator G. Additional constraints
may be added, for example, to enforce a certain walking speed or to require that the
period of the walk T > 0, or many others. Find the optimal trajectories q (t) that solve
the problem defined above, is a problem of infinite dimensions, and then we introduce
an approximation in finding the optimum gait. Then the trajectories of the joints are
parameterized as polynomial functions of time:
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qi (t) =
n∑

j=0

bijt
j = bi0 + bi1t+ bi2t

2 + ...+ bikt
n (3.3)

For each coordinate qi (t) and for some integer constant n > 0 . The i runs the related
coordinate from 1 to m where m is the number of degrees of freedom of the mechanism
under analysis. The advantage of taking a polynomial base to build the coordinates
upon is that’s easy to derive and the calculation of velocities and accelerations of the
coordinates of joints ( q̇ (t) and q̈ (t) ), are of immediate resolution, and also for the fact
that they are suitable for approximating functions that change slowly over time,just as
I expect the coordinates to be. This is because rapid changes in the functions imply
a large amount of torque of the actuators, but the optimization algorithm obtain the
movement with the minimum actuation. The problem then is modified as follows: The
problem of finding an efficient and approximate gait, is the problem of finding the
parameters bij that solve:

min
bij

T

N

N∑
p=1

τT (tp)Q (tp) τ (tp) (3.4)

Where Q (t) is a semi - positive definite matrix and N is a positive integer, and T is
the period of the gait. The problem is subject to the following constraints:

τ (tp) = τ (q (tp) , q̇ (tp) , q̈ (tp)) This equality constraint forces the optimization, and
then the research of the optimal coordinate, to be
bound to the dynamics dictated by its dynamic
equation.

qi (t) =
k∑

j=0
bijt

j Constraint linking the parameters to optimize bij to
the evaluation of the coordinates.

q+r = Gq− Equality constraint which expresses the relationship
between coordinates at the beginning of step q+r

and coordinates at the end of step q− through the
re-labeling operator.

q̇+r = G · Pproj (q−) · q̇− Equality constraint that represent the link defined
by the operator of projection of the velocity after a
strike.

Tabella 3.2: Main Constaints of the minimization discetized problem

Where τ (q, q̇, q̈) is the dynamics of the system, G , describes the re-labeling of the
coordinates, P proj (q) is the projection of the moment due to the impact (a generic
impact - ground or knee), and where q− = q (t−) and q+r = q (t+)r, are respectively
the coordinates at the instant before impact, and at the instant immediately after that,
with re-labeling.
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The result of the optimization problem is the vector of coordinates q (t) representing
the trajectories more natural and efficient in terms of actuation. This means that the
algorithm can be used to find a natural and efficient step also for mechanisms moving
up-hill or in other circumstances in which the passive dynamic walking does not exist.

3.2 Optimization algorithm - General discussion

In this section, there will be presented all the routines that constitute the optimization
algorithm. There are presented in order to describe the meaning and the function of
every subroutine, and how these interact to each other. The algorithm was implemented
in MatLab and consist essentially in using the function fmincon from the library of
MATLAB functions. This function allows us to find the minimum of a function that’s
subject to nonlinear equality or inequality constraints. The algorithm minimizes a
certain objective function J defined in the space of torques τ (q, q̇, q̈) (See previous
section 3.1) to obtain the optimal curves that represent mechanism’s coordinates in the
space of a step. For the optimization, needs to be defined the mechanical system used,
and the Step Model (SM). The considered parameters are, therefore, the coefficients
of polynomials bij and the time instants when the strikes occur. That said, a kind
of optimization routines includes a main script from which are set all the sensitive
parameters, of the optimization of the model we are considering:

Parameters Description

links Number of links that make up the analyzed
mechanism.

n Degree of polynomials representing the coordinates
of the system.

PT Number of stikes (depending on the analyzed
model).

PM Number of the intrinsic parameters of the system
(mass, inertia and length of links).

γ Downhill slope of the terrain.
xp Vector containing the parameters to optimize.

Tabella 3.3: Parameters of the optimization routine

The variables of the optimization are all collected into the parameter’s vector xp defined
as

xp =
[
b11 b12 . . . b1j b21 b22 . . . b2j . . . param body param time

]T
(3.5)

Where param body is the vector that collect all the physical parameters (the ones are
keps constrained during the these optimizations), and param time is the vector that
collect all the time instant of the various strikes provided by the SM . The parameters
bij are in number equal to n ·PT · links and define all the PT · links parts of coordinates
with a polynomial of grade equal to n.
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Here in the table 4.1 are defined also the references to the others MatLab sub-
routines, each performing some specific functions required by the optimization.

Sub-routine Description

Costfun The routine in MatLab, which defines the objective
function we want to minimize. (the same for all
configurations).

Constraints The routine in MatLab, which defines the con-
straints of equality and inequality that has the
system.

Curves MatLab routine that builds, getting input vec-
tor xp of the parameters to optimize, the curves
representing the coordinates of the system.

Model The routine that solves the direct dynamic of the
system with the coordinates like input.

Projection The routine implements the operator of projection
and re-labeling of the coordinates when a strike
occurs.

Plotstep The routine does the representation of the opti-
mized curves, represent the stick-diagram of the gait,
and, in general, all the graphs or diagram useful for
represent the results of the optimization.

Tabella 3.4: Sub-routines of the minimization algorithm

The parameters called param body that, as I previously mentioned, are all intrinsic
parameters of the system (mass, inertia, and lengths of links). These were considered
in the algorithm, not as external and fixed parameters, but as internal parameters,
and they also need to be optimize with the criterion of minimization previously shown.
For the study and analysis that is presented, we need to consider the system, with the
physical parameters fixed. For this reason, the physical parameters of the system were
included as constraints in the Constraints routine in order to un-constrain these bonds
if you want to optimize one or another physical parameter.

3.2.1 The Curves routine

The parameters to optimize are dependent on the mechanical model and the SM .
These are the coefficients bij of polynomials of degree n defined in the section 3.1,
which represent the coordinates of the mechanism. In addition to these factors, are
optimized also the time-instants when the strikes defined in the SM occur. The time
period of the duration of the step (which coincides with the time at which the last
strike, the ground strike, happens ), is, therefore, considered to be broken into as many
parts as dictated by the number of strikes ( Ns) used in the optimization model. In this
way, the coordinates will be broken too and evaluated in multiple time periods. Each
subinterval is then, time basis for the definition of coordinates of the given subinterval.
Then we will get a set of parameters to optimize that will be, in number, amounting to
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n · links ·PT , in addition to the parameters that identify the time values of strikes, plus
the ones defining the prysical parameters. n is the grade of the polynomials representing
the coordinates, links is the number of links which make up the system, and PT , is the
number of strikes occurring during the gait. For each subinterval of time, therefore,
will be defined a number equal to links curves obtained using the relationship defined
in the previous paragraph:

qi (t) =

n∑
j=0

bijt
j = bi0 + bi1t+ bi2t

2 + ...+ bikt
n (3.6)

Where i is the index that runs the values between 1 and the value links , while j
runs values from 0 up to n . This report is implemented in the routine of MatLab
Curves , evaluating on time t ∈ [0, Tk] (Where Tk is the i-th generic instant at which a
strike occur), and as coefficient bij the values that are evaluated from each iteration to
another of the optimization.

3.2.2 The Costfun routine

The routine Costfun, however, implements the calculation of the objective function
that we want to minimize in the optimization process. The routine includes in its
implementation another routine (Model), which calculates the direct dynamics of the
mechanical system and obtains the value of the energy of torques of actuators that are
equal, in number, to the degrees of freedom of the system (bacause the system is fully
actuated). The calculation of the value of the actuation τ k (Value of the actuation for
the individual k-th time interval), is used to calculate the objective function that we
want to minimize. It is reproduced below:

J =

params∑
k=1

 Tk

Nk

Nk∑
p=1

τT
k (tp,k)Q (tp,k) τ (tp,k)

 (3.7)

Where Q (tp,k) is the weights matrix semi-definite positive and Nk is a positive integer
that defines the number of points of discretization which is discretized the k-th time
interval, and Tk is the k-th period that goes from the initial instant of time ranging to
T1 , if we consider the first interval, and ranges from Tk−1 to Tk for subsequent periods.
The function thus defined, is a quadratic function of the actuation of the system and
presents a matrix of weights that for simplicity and generality have been considered
always equal to the identity matrix in the various optimizations .

3.2.3 The Projection routine

The entire optimization algorithm also presents an additional routine that serves to
implement the projection function of speed and re-labeling of the coordinates after
each strike. In particular, the function of re-labeling and the projection of velocities
are implemented in a routine called projection performing both operations simultane-
ously: First, the projection of the velocity after a strike is expressed by the following
relationship,

˙̄qi (t+) =

(
I − M̄

−1
i JT

I

(
JIM̄

−1
i JT

I

)−1
J I

)
˙̄qi (t−) = P proj ˙̄qi (t−) (3.8)
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The second (i.e. the operator to re-label), however, is not always present (this is only
for the strike to the ground), and when present, is characterized by the matrix G . The
operation is implemented using the following equation:{

q (t+)r = Gq (t−)
q̇ (t+)r = Gq̇ (t+)

(3.9)

Before making the re-labeling operation, there is the need of making an extraction
operation from the vector ˙̄q (t+). In fact, after the projection operator, is obtained, like
result, the vector ˙̄q (t+) that is different from the one used by the re-labeling operator
( q̇ (t+)). For obtaining the vector q̇ (t+) needs just a simple extraction operation due
to the matrix Eex defined below:

q̇ (t+) = Eex ˙̄q (t+) Eex =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (3.10)

With regard to the relations just given, M̄ (q̄) ∈ Rm+2×2 is the mass matrix of the
system, the matrix G, is the operator of re-labeling, while the function P proj is the
projection operator of the velocities operating between the velocities just before im-
pact and getting those one immediately after that. This is subsequently re-labeled for
obtaining q̇ (t+)r. As is easily understood, if the strike is one of those that occur at the
level of the knees of the system, the model does not need to re-label the coordinates
after the strike, while if this happens on the ground, the matrix G exists, and has
different forms depending on the mechanical model considered. The matrix J I , as
seen above, that is the Jacobian matrix, obtained by setting the geometric condition
at the impact. Obviously JI changes depending on the impact (strike) and the model
considered.

3.2.4 The Model routine

The routine Model takes care of solving the continuous dynamic of the mechanical
system. The routine implements the resolution of the differential, second order matrix
equation that defines the system’s dynamics. The equation is presented in most cases
with the following form:

M (q) q̈ +C (q, q̇) q̇ + V (q) = S (q)u (3.11)

Where M (q) ∈ Rm×m is the mass matrix of the system and collects the inertial terms,
C (q, q̇) ∈ Rm×m collects together elements of centrifugal force and Coriolis forces, the
term V (q) ∈ Rm×1 contains the terms due to the potential energy of the system, while
is the control action and S (q), because of the co-location of the actuators, in the cases
analyzed, will always be considered equal to the identity matrix. m is the number
of degrees of freedom of the considered mechanism (the length of the vector q ). In

practice, the routine solves the equation above, obtaining values τ
∆
= S (q)u and then

evaluating the objective function. To do that takes as inputs the coordinates, velocities
and accelerations ( q (t), q̇ (t) , q̈ (t) ) previously evaluated by the routine Curves, and
calculate the direct dynamic.
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3.2.5 The Constraints routine

The routine called Constraints is the one that contains all the inequality and equality
constraints that drive in a certain way the optimization. The script manages two large
matrix in which are defined the constraints of strict inequality (matrix C), and the the
equality constraints (matrix Ceq ). Many of the constraints that are set in routine,
derive from considerations dictated by common sense and by my own, but also our
own, experience (we humans) on bipedal walking and on constraints that the walker
requires.
Others are purely dictated by mechanical constraints of the walk and by the model
itself, as, for example, prevention of over-extension of the two links (that make up the
leg) straddling the knees (not for Compass), or as the constraint of no penetration of
the foot of the system in the ground during the swing phase (ground clearance ), etc.
Additional constraints are dictated by the fact that is considered just a single step
for the optimization of the system and, therefore, the walk is considered symmetrical
respect the two phases of the walking cycle (symmetric respect the phases in which
is the left leg to be focused on the ground and the other in which is the right one to
be focused). This type of constraints ensures that the angular positions (the degrees
of freedom of the model are all revolute-type) of the coordinates are the same at the
beginning and at the end of the step, naturally taking into account the re-labeling op-
erator.
One of the constraints derived, for example, by common sense and human experience,
is the constraint to limit the flexion of the leg in a narrower range, or to limit the am-
plitude of the decoupling between the two legs with the related rotational coordinate
q5 . Or again, to set manually the preferential direction towards which the system will
evolve with his continuous dynamic.
As is known, for optimization of highly non-linear objective functions, and in general,
very complex and having several parameters, it is often necessary to use re-iterations of
the optimization routines un-constraining, iteration after iteration, further constraints
constructed ad hoc to allow the optimizer to proceed groping toward the optimal so-
lution. Therefore, the additional constraints to guide the research are: constraints on
the velocity of the rotational joints, and constraints on time instants, constraint on the
final instant (strike to the ground) or to the instants in which the knee strikes happen.
These constraints will be unlocked now and again, to get the best seeked results.

3.2.6 Optimization - Issues

The problems of the optimization routines are those outlined in the section 3.1. In
addition there is the fact that the optimization algorithm, and in general the optimiza-
tions of very non linear functions, are very dependent by the initial condition. In that
case, the vector ( xp) of the parameters to be optimized has to be initialized at the
beginning of the optimization routine. The inizialization was done imposing random
values to each of the parameters composing the xp vector. The results, generally are
strongly influenced by the chosen initial condition; for that reason, every singol opti-
mization made for apport the results to this thesis was launched several times with
different initial conditions, in order to validate the obtained results. The correct result
was the one that showed the best trajectory behavior in terms of actuation cost. This
problem, in other words, is related to the presence (because of the non linearity of the
motion equations) of relative minimum points of the Objective Function (OF) toward
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which the optimization algorithm could tend because of the choice of the initial condi-
tions. Changing the initial conditions (for several times - generally three times), assure
that there are much more possibilities to tend toward the absolute minimum of the OF
despite of the relative one. There are some cases in which the optimization algorithm
doesn’t converge to a reasonable solution, and there is the need to ever-constrain the
optimization in order to drive the routine in the fisrt iterations. For doing that, there
is the need to over-constrain the optimization for the first iteration steps, and then,
unlock these, continuing the algorithm. For that reason, the result is strongly influ-
enced by the choice of the additional constraints added because of this problem. These
constraints, so, have to be congruent with the expected walking and with the physical
limits of the system. In the majority of the cases, the most common constraints used
for drive the optimization toward a reasonable direction are those one dictated by the
common sense of what the walking should be, and by our own personal experience of
human walkers. Some of those are the ones trated in the section 3.2.5 and generally
they refers to physical constraints dealing with penetration into the soil, walking di-
rection, over-extension of the legs, etc. and to human walking knowledge dealing with
ranges into which the coordinates of the system may vary. All those constraints may
influence the result of the optimization and so, could be appropriate vary the additional
constraints between the various optimizations tests of the singol step model in order to
better validate the obtained results.
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CAPITOLO 4

Compass Model: Optimization and Simulation

4.1 Overview

In this chapter is analyzed the simpler mechanical bipedal model (Compass) walking
down-hill. The purpose is to show the Passive Dynamic Walking (PDW) that this
mechanism can exhibit with some characteristics of slope and physical parameters.
Those characteristics were taken from Goswami 1998, [36] that was one of the first
researcher to demonstrate, in simulation, the PDW of Compass. In this chapter was
firstly analyzed the impact posture and characteristics of the final conditions though
the singular value analysis, and then, was developed the optimization routine for the
optimal coordinates of Compass, and then it is tested its dow-hill walking behavior
in simulation. It is expected that the coordinates trends found with optimization and
simulation routines are almost equal.

4.2 SVD - Singular Value Decomposition

The efficiency of a walking cycle is partly determined by the mechanical energy loss
during the cycle, and partly by the non-idealness of the actuators of the system. The
first aspect is analyzed in this section and the second one, is not treated in this thesis.
More precisely, we focus here on the energy loss due to the impact of the feet with the
ground at the end of each step. Other mechanical losses, such as friction are ignored.
As I showed in the chapter 2, the relation between velocities before and after impact
(section 2.1.4) can be useful to express the lost of the kinetic energy on impact written
in terms of velocities as:

∆Ehs =
1

2

(
˙̄q+

)T
M̄ (q̄) ˙̄q+ − 1

2

(
˙̄q−

)T
M̄ (q̄) ˙̄q− ≤ 0 (4.1)

By substituting (2.11) into (4.1) and eliminating ˙̄q+ , we can arrange ∆Ehs as follows:

∆Ehs =
1

2

(
˙̄q−

)T
JT

I X
−1
I JI ˙̄q− (4.2)

And considering ˙̄q− = H · q̇− Where

H =


0 0
0 0
1 0
0 1

 (4.3)
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just because the velocities of the coordinates q1 and q2 are zero in correspondence of
the instant immediately before the strike. this yields: ∆Ehs =

1
2

(
q̇−

)T
HTJT

I X
−1
I JIHq̇−

XI =
(
JIM̄

−1
JT

I

)−1 (4.4)

Note, here, that H , JI and XI are only function matrices of qi . H is a matrix
that has the purpose to construct the vector ˙̄q− from q̇−. This is possible just because
during the swing phase the two velocities q̇1 and q̇2 are zero.
JI is the jacoian matrix defined in the section 2.1.4.
Let α (in radians) be the absolute value of the half inter-leg angle at the transition
instant. The angular position in Figure 4.1 (posture at the impact) can be expressed
as q3 = −α and q4 = 2α. The following matrix D ∈ R2×2 .

D := HTJT
I X

−1
I JIH (4.5)

Only becomes a function matrix of α . The dissipated kinetic energy finally yields

∆Ehs = −1

2

(
q̇−

)T
D (α) q̇− (4.6)

The matrix D was treated as a matrix function of α and mH/m , the ratio between
the hip point mass and the mass of each leg.
The kinetic energy loss on impact is hence, a quadratic function of the impact velocities
at the last instant of the gait (q (T )) depending generally on the inertial properties of
the system as well as the posture (the coordinates q (T ) ) on impact. If we consider
Compass, and assume a symmetric walking cycle with instantaneous double-support
phase, we can write the energy loss as a quadratic function of only q̇3 and q̇4 , with
D (α) a positive semi-definite 2 × 2 matrix. For general m and mH , the symbolic
representation of D (α) is too large to fit here, but for m → 0 , it is simply:

D (q) |m→0 =

[
mH sin2 (q4) 0

0 0

]
(4.7)

This make sense intuitively: for m = 0 , the velocity q̇4 does not influence the energy
loss, since the inertia of the swing leg around the hip is zero and hence, no energy is
stored in the swing leg. Furthermore, as illustrated in figure 4.1, the velocity of the hip
mass changes from being tangent to a circle around one leg, to tangent a circle around
the other leg, and the impulsive force on impact removes the part of the pre-impact
velocity that is not along the post-impact circle.
Hence, if the circles are close to each other, little is removed and hence little energy is
lost, whereas if the circles are orthogonal to each other, the remaining velocity is zero
and hence all energy is lost. For general nonzero m , the matrix D (q) is too complex to
study directly. Instead, we study its generalized principle directions (i.e. the velocity
directions that result in minimal and maximal energy loss on impact. The principle
directions of a real symmetric matrix X , are given by the singular value decomposition
(Trefethen & Bau 1997 [41]) i.e. the decomposition of X as:

X = UΣV T = UΣUT = U

 σ1 0
. . .

0 σn

UT σ1 ≥ . . . ≥ σn ≥ 0 (4.8)
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Figura 4.1: Comparison of the hip velocity before (q̇−) and after (q̇+) impact for two impact
angles q4.

With U an orthogonal matrix, and U = V since X is symmetric. The numbers σi on
the diagonal of the matrix Σ are called the singular values of X . Note that the values
σi may be zero. In fact, the rank of X is equal to the largest value r such that σr ̸= 0 .
For i > r, σi = 0 . The matrix X can act as a quadratic form on vectors x, i.e. it can
map a vector x to a number xTXx. When this quadratic form is applied to the unit
sphere (all vectors satisfying xTx = 1 ), the resulting set of vectors

(
xTXx

)
x forms

an ellipsoid, and the radii of this ellipsoid are precisely equal to the singular values
σi. Furthermore, the principle axes of the ellipsoid are given by the columns of the
matrix UT (the first column of UT is the vector that is enlarged most by the quadratic
form, and the last column of UT is the vector that is enlarged least). We cannot use
this singular value decomposition directly to study the singular value of D , since the
unit sphere q̇T q̇ = 1 has no physical meaning and would give coordinate-dependent
results. Instead, we study the effect of D on vectors satisfying q̇TM (q) q̇ = 1, i.e.
directions with constant kinetic energy. To adapt the singular value decomposition
to this situation, we use the Cholesky factorization M (q) = GT (q)G (q) (which
exists since M is positive definite and symmetric), and determine the singular value
decomposition of X = G−TDG−1 . This decomposition again provides the principle
directions of the quadratic form when applied to the unit sphere xTx = 1 . In addition,
if we parameterize the vectors x as x = Gq̇, we see that this decomposition gives the
principle directions of the quadratic form:

xTXx = (Gq̇)T
(
G−TDG−1

)
(Gq̇) = q̇TDq̇ (4.9)

When applied to the space

xTx = (Gq̇)T (Gq̇) = q̇TMq̇ (4.10)

And hence, the singular value decomposition, constructed in this way, describes phys-
ically meaningful principle values σi and corresponding principle directions, given by
the columns of G−1UT . Note that the singular values must be between zero and one,
since no more that 100% and no less than 0% of the kinetic energy can be lost on
impact.

Figures 4.2 and 4.3 shows a plot of the singular values for the compass bipedal walker
with varying mass ratio mH : m and impact angle q4 (T ) . Figure 4.4 shows the
singular values and lists several principle directions for the impact velocity q̇, with
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Figura 4.3: Minimum Singolar Value.

Figura 4.4: Trend of the singular values with mH/m=1.

the parameters fixed at m = 1[kg] and mH = 5kg. The figure shows the singular
values describing the energy loss, i.e. the extreme cases of maximum possible loss and
minimum possible loss. For general velocities not aligned with any of the principle
directions, the energy loss will be somewhere between the singular values, i.e. in the
darker area between the two curves in Figure 4.4.

For a given angle of impact, the velocity could then be chosen closer to the efficient
direction to minimize energy loss. However, for some configurations (namely q4 = π/2
or mH = 0 ) the two singular values are the same, and hence the energy loss is constant
for all velocity directions. The singular value analysis provides bounds on the energy
loss during impact, and indicates efficient velocity directions for the end of a step. In
this way, it can help suggest efficient walking strategies. For example, looking at Figure
4.4, it is efficient for small impact angles q4 (T ) to have an impact velocity that has
large q̇3 and small q̇4 (i.e. moving the stance leg more than the swing leg), since then,
the energy loss will be close to the lowest singular value. Note that the efficiency of
the continuous dynamics is not taken into account yet, so the gaits that are the most
efficient overall may still have less efficient impact angles and velocities. Besides for
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efficient studies, the energy loss computed into equation (4.6) can be used in the search
for purely passive dynamic walking motion. For such motions, the gravitational energy
converted to kinetic energy during a step must be equal to the kinetic energy lost on
impact at the end of a step. For the compass model, this gives the following equation:

∆P [n] = ∆K [n] = ∆Ehs

P− [n]− P+ [n] = K+ [n+ 1]−K− [n]

−2g (2m+mH) sin (γ) sin
(
1
2q

−
4

)
= −1

2 q̇
T
−D (q) q̇−

(4.11)

Which any passive (or otherwise energy-continuous) gait must satisfy. This equation
also gives bounds on the minimally and maximally achievable speeds of the robot. If we
choose for example m = 1[kg], mH = 5[kg] , g = 9.81[m/s2] , γ = 3◦ and q−4 = 0.5[rad],
we obtain that ∆P [n] = −1.78[J ] per step. Since the singular values of D are 1.0 and
0.22, it means that the kinetic energy on impact must be at least 1.78[J ] and at most
1.78/0.22 = 8.08[J ]. No passive limit cycles can exist for velocities outside this range
(at least for this choice of parameters).

4.3 Research of Passive Dynamic Walking (PDW)

The mechanisms that may show a passive attitude downhill there are not so many,
and as noted in Previously, the existence of a passive gait of a mechanism generally
depends on the mass distribution and angle of inclination of the terrain along which
the system moves in addition to the layout of the system. The passive walking exists
solely for robots that move downhill in order to exploit the gravitational force and
therefore be able to compensate the loss of energy upon impact with the ground with
the supplement of energy due to the potential energy that is converted into kinetic
energy. One mechanism that has this type of walking, is the easier one we can imagine
how bipedal walker mechanism and it is the compass like bipedal robot here called in
this thesis Compass. This model was studied for a long time both for its simplicity (in
fact, its equations of motion are relatively simple that they can also be easily calculated
manually), and also because it is studying the simple mechanisms that we can easily
understand some particular behavior of walker mechanisms that, for the complex ones
is not of easy observation (e.g. passive stable limit cycles, or the phenomenon of
bifurcation - See from literature [6]). An important aspect of this mechanism is the
fact that there is just one type of SM that is possible. In fact, the model provides just
one strike at the end of the gait (the one of the feet to the ground), and then the cycle
re-start again from the same initial conditions. This aspect of this particular walking
system make the optimization be easy and not computationally onerous, because there
is just one SM to test (remember that SM have to be an input of the optimization
routine) and so, there are not additional discrete parameters to add to the optimization
routine.

4.4 PDW - Optimization Part 1

The optimization algorithm for this particular mechanism, is developed as was described
in the section 3.1 about the general treatment. Therefore the optimization parameters
are those in the table 4.1. It was chosen the configuration for which it is reached
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a passive gait ([36]) and was not investigated over the results that the variability of
certain parameters may change.

Parameters Description

links 2 (right and left leg).
n 6 (Degree of polynomials)
PT 1 (there is only the strike on the ground).
PM 3 (masses and length of links).
γ 3◦[deg]
xp Parameter vector of length equal to 18 (n · links · PT + PT + PM )

Tabella 4.1: Parameters of the optimization routine 1 - Compass Model

The parameters param body, are in number PM , as specified in chapter 2, and were
bound within the sub-routine Constraints in order to fix them. The three parameters
are:

mH 5[kg]
m 1[kg]
l 1[m]

Tabella 4.2: Physical Parameters of Compass Model

The physical data of the system are corresponding to parameters of real systems whose
lab tests showed the passive behavior. How was said previously, the optimization needs
to be droven to the right direction by adding new constraints to the minimization
process and then, after some iterations, remove them in order to find the correct result.
The other constraints we considered are for example:

• The imposing a value for the final step time ( T ).

• The imposing of determined initial positions of the variables.

• The definition of a certain range in which the coordinates may vary.

The optimization converge to a result that is outlined as follow:

J (Cost Function) 0.0009572[]

T (Step Period) 0, 6079[s]

Tabella 4.3: Optimization results 1

As we know, the optimization routine has like output also the coefficients of the polyno-
mials which relate to the coordinates of the walker. The coordinates are reconstructed
through the relation:

qi (t) =

n∑
j=0

bijt
j = bi0 + bi1t+ bi2t

2 + ...+ bikt
n (4.12)
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Where i is the index that’s related to the i − th coordinate, j is the index that scan
the values from 1 to n that is the degree of the polynomial, t is the time vector, and
bij are the coefficients of the polynomial, the ones have been just optimized.

4.4.1 Results Part 1

They are shown the results that are summarized by the feature of the coordinates
position and velocity, and by the stick-diagram (respectively Fig.4.5 and Fig. 4.6).
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ordinates of the Compass model. Opt.
1.

I want to represent the diagram below that is named Stick-diagram that represents the
gait of the walking system as a set of overlapping photographs of many snapshots of
the movement from the beginning of the step to the end.

Figura 4.7: Stick diagram of the optimal gait. Opt. 1.

How we can see from the figure 4.7, we obtain a step that’s characterized by the fact that
the foot of the swing leg is constantly (apart the first moments of the step) grazing the
ground and then the impact happen with a moderate downward velocity that makes
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the impact be energy lost efficient. The downward velocity of the foot in that case
is approximately 0.37[rad/s]. The optimization result doesn’t give us any knowledge
about the walking stability. For having an idea, we have to simulate the system with
the obtained initial conditions and no actuation on the joints. We obtained the initial
conditions like follows,

q+ =

[
0.279
−0.559

]
q̇+ =

[
−1.165
0.571

]
(4.13)

That’s the initial status of the optimization of the walking system’s gait and the units
are respectively [rad] and [rad/s].

4.4.2 Simulation and comparing - Part 1

So, we simulate and we obtain the following results:
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Figura 4.8: Comparison between the simulation results and optimization results of the
compass like bipedal model ( qo, are the optimized coordinates and qs are the simulated ones).

4.5 PDW - Optimization Part 2

The comparison of the two developments of the graphs is showing the coordinates
evaluated respectively with the optimization solver (dashed line) and with the simulator
(solid line), we can notice how the simulated curves starts with the initial condition
imposed, taken from the ones of the optimization results, but it diverges soon (after
few seconds) from the optimization curve because of the problem that the swing leg is
not swung high enough, and the robot falls.
Apparently, although the computed gait is natural (indeed, the uncontrolled robot
initially follows the computed trajectory perfectly), it is not stable.
The results suggest that stable walking may be obtained by raising the swing leg higher
above the ground, in order to ensure that the foot makes contact and the next step can
start. We can add an additional constraint to the optimization problem to enforce this,
for example, a constraint that forces for the final downward velocity of the swing foot
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(just before impact) to be larger than some positive number v. The downward velocity
(towards the ground) is given by the time-derivative of the relation 4.14 that describes
the position of the foot of the swing leg (p2 ). The constraint refers to the component
along the y axes. [

p2x
p2y

]
=

[
q1 − sin (q3) + sin (q3 + q5)
q2 + cos (q3)− cos (q3 + q5)

]
(4.14)

The additional constraint is:

ṗ2y = − sin (q3) q̇3 + sin (q3 + q5) (q̇3 + q̇5) ≤ −v (4.15)

For some large enough v > 0 (was chosen v = 0.7 [m/s]). Running the optimization
routine gives result with J = 0.0017, so, higher than before (as expected since have
been added a constraint), and the trajectories (positions and velocities) are shown in
figures 4.9.

4.5.1 Results Part 2

The results are shown in the table 4.4 below:

J (Cost Function) 0.00179991[]

T (Step Period) 0, 7783[s]

Tabella 4.4: Optimization results 2

The optimized curves, position and velocities.
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ordinates of the Compass model. Opt.
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Figura 4.10: Optimal velocities of the
coordinates of the Compass model. Opt. 2.

The optimization produce some results that are different from the ones reported in the
section 4.4. Looking at the figures 4.9 and 4.10 reported above, we con notice how the
coordinate q5 is much more flat at the end of the gait respect the other that can be seen
in the figure 4.5. As supporting that, we can notice how the velocity of the coordinate
q5 , now, has negative value in correspondence of the end of the gait. In addiction we
can say that the optimization produce a result that have to be considered symmetrical
for an entire walking cycle. That means the values of the optimal curves at the end of
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Figura 4.11: Stick diagram of the optimal gait. Opt. 2.

the gait, after using the re-labeling operator, have to be the same at the values of the
curves at the beginning of the same gait. Thi is obtained constraining the optimization
with some constraints that allow us to reach that symmetry. Note the relation for the
re-labeling of the coordinates and the result in the Figure ??.

q+ = Gq− =

[
1 1
0 −1

]
q− ⇒

{
q3+ = q3− + q5−
q5+ = −q5−

(4.16)

More explicitly, we can notice the stick-diagram in the Figure 4.11, that highlights
the posture of the mechanism during a single gait. In contradiction with the previous
stick-diagram, the swig leg, now, swung higher than before, in order to ensure and
satisfy the constraint we add to the optimization. The value of the downward velocity
of the swing leg’s foot is, now, 0.899[rad/s]. Like said before, the optimization result
doesn’t give us any knowledge about the walking stability. For having an idea, we have
to simulate the system with the discovered initial conditions and no actuation on the
joints. We have obtained values for the initial conditions of the optimized results like
follows,

q+ =

[
0, 299
−0, 598

]
q̇+ =

[
−1, 075
0, 705

]
(4.17)

That’s the initial status of the optimization of the walking system’s gait and the units
are respectively [rad] and [rad/s].

4.5.2 Simulation and comparing Part 2

Showing the results of the simulation we can compare the previous results with the
actual ones.
The result in this section show that, at least for this simple example, passive walking
gaits can be found. The fact that there is still a nonzero cost function is due to the
approximation of the trajectories by polynomials. The consequence of the approxima-
tion is also visible in the non perfect trace of the simulated curves (solid lines - red and
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Figura 4.12: Comparison between the simulation results and optimization results of the
Compass ( qo, are the optimized coordinates and qs are the simulated ones).

azure) on the optimized curves (dashed lines - green and blue). This approximation
doesn’t impede the search for stable passive limit cycles, since if the limit cycle is sta-
ble with some practical region of attraction, it should attract the solution obtained by
this polynomial approximation. For control purpose, the question whether an efficient
limit cycle is stable or not is not so important; The controller can stabilize the cycle
in case of disturbances anyway (provided that the system has enough control inputs).
The important aspect of the optimized cycles is that nominally, little or no energy is
required to follow them, and hence, that nominal walking is efficient.
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CAPITOLO 5

Kneed Models: Optimization

Introduction In this chapter it is investigated the walking of the kneed models. In
particular Knee and Dribbel models.
The mechanical models are the ones described in the chapter 2. The purpose is to
investigate which is the much more effective mechanism for walking downhill and if the
passive dynamic walking exists for these particular two systems (Dribbel and Knee).
In this Section it is firstly analyzed the optimal degree of polynomials n that better suits
the coordinate trends trading off with computational burden. Then, it is developed the
optimization routine for the model Dribbel first, and then for Knee model. These
optimizations take into account not all the possible SMs for the mechanisms, but with
some considerations about the cost function J , it will be possible to find reasonable
results in according to the searched optimal gait.

5.1 Optimal Grade of Polynomials

In this section is treated a sensitivity analysis on the parameter n, the degree of the
polynomial functions will represent the coordinates of the system.
For doing that, we made a series of tests with different step models, varying the param-
eter n, and observing how the cost function J , is consequently varying. There were
considered SMs referred to both Dribbel and Knee in order to validate the analysis
in general for both the kneed models treated in the following sections. In order to
make these tests, we have to determine the SMs with which having some samples of
optimizations results in order to further validate the research. For that purpose, I con-
sidered three SMs referring to Knee, and one referred to Dribbel. They are presented
in the table 5.1.

I want to investigate the minimum value of n beyond which we don’t have a significant
reduction of the cost function J . That would mean that a higher value of n doesn’t
produce a better optimization in the sense of cost of actuation. The investigation starts
performing the various optimizations. The sensitivity analysis for discovering the best
n parameter consists in a trade-off between the computational burden due to the high
degree of the polynomials and the minimum cost function value. This analysis was
done with the four SMs described before. The parameter n was made vary between
the values 4 and 9 and for every optimization, was evaluated the objective function
value J . The results are shown in the figure below.

Taking a look to the figure 5.1, we notice how increasing over 6 the value n, of the degree
of polynomials, the optimization doesn’t produce a significant improvement (the cost
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Step Model (SM) Description

Model 1 3n4str1 1 2 gr Knee mechanism providind 4 strikes during the gat.
The order of the strikes is defined by the sequence
1 1 2 gr (1 is referred to the stance leg and 2 to the
swing leg).

Model 2 3n4str1 2 1 gr Knee mechanism providind 4 strikes during the gat.
The order of the strikes is defined by the sequence
1 2 1 gr (1 is referred to the stance leg and 2 to the
swing leg).

Model 3 3n3str1 2 gr Knee mechanism providind 3 strikes during the gat.
The order of the strikes is defined by the sequence
1 2 gr (1 is referred to the stance leg and 2 to the
swing leg).

Model 4 3n2str2 gr∗ Dribbel mechanism (the ∗ define a Dribbel’s SM)
providind 2 strikes during the gat. The order of the
strikes is defined by the sequence 2 gr (1 is referred
to the stance leg and 2 to the swing leg).

Tabella 5.1: Step Models for the definition of the optimal degree of polynomials

function is stable around the lower value and it doesn’t decrease). Another thing have
to be noticed, is that the three models that refers to Knee (models 1,2 and 3) have
almost the same values of the objective function J . At this point of this treatment,
is difficult to say way the three models have almost the same cost function value for
n ≥ 6 . Otherwise, it could be reasonable to think that whereas the first two models (1
and 2) differs only for the order of the strikes (indeed the number of the strikes is the
same, 4, and the order is different: model 1 has a series like 1 1 2 gr, and model 2 has a
series like 1 2 1 gr ), the two models are redundant in the number of strikes (probably
due to the two strikes that happen on the leg 1), and so the order of them has a poor
influence on the objective function value. Analog consideration have to be made fot
the model 3, that has one strike less than the models 1 and 2 but, for the same reason,
it reachs the same objective function value of the previous models (This could be a
proof of the presence of a redundant strike in the models 1 and 2). The model 4, that’s
referred to Dribbel, reachs a lower value of J but it stabilzes its value, also, for n ≥ 6.
It is shown, for example, the differences between the coordinates evaluated considering
the optimization with model 2 and value n = 6 and n = 9 . The figures 5.2 and 5.3 are
showing that the differences between the two optimizations are negligible.

In the figure 5.2, there are represented all the coordinates of the optimization with n = 6
in blue, and of the optimization with n = 9 in red. Figure 5.3, indeed, is reported the
maximum value of the error between the two optimization. The error is calculated like
punctual difference between the coordinates for each time instant. This is not exactly
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Figura 5.1: Diagram that shows the minimum number of parameter n that is useful for a
proper optimization.
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Figura 5.2: Comparison between the two
optimizations with model 2 described before.
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Figura 5.3: Histogram of the error between
the two optimization with model 2 described
before.

strict to do, because of the time vectors of the two results. In fact the final time instants
are different and this brings that the instant in which the coordinates are evaluated are
different from the two optimizations and so, the punctual difference from coordinates
value at the same instant is not strictly correct in meanings. Otherwise, the two models
have a final time instant that is not exactly the same but that is really close to each
other. This brings as result that the punctual difference could be done without heavy
practical errors. Indeed, the maximum value of the error is approximately 0.005 [rad]
obtained with the coordinate q4 and it is almost the 1% of the maximum coordinate
excursion. In conclusion we have found the minimum value of the parameter n that is
useful for obtaining a good optimization result. We take the minimum value in order
to lighten the computational burden derived from the evaluation of the polynomials of
high degree, for all the various optimization we will perform. Instead, all the following
optimizations will be implemented with fixed n and equal to 6.
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Figura 5.4: Graph with the areas of the first
part and second part of the gait highlighted.

Figura 5.5: Stick Diagram representing the
shape of the gait.

5.2 Optimization Results - General

Before performing the optimizations, it’s useful define some useful concepts in order to
better understand the results. In the following will be presented first, the parameter K
for better clarifying the energy consumption of the actuators, and then, the concept of
the degenerate strikes that will be useful to drive the research of the optimal movement
of the mechanisms.

5.2.1 K parameter

In order to quantify the energy consumption associated to each degrees of freedom
during a step, a K parameter for each d.o.f. is introduced. The K parameter is defined
as:

Ki =

∫
|τi| dt (5.1)

where i is the index of the i− th torque τi (i-th element of the vector τ ).
Note that J is the weighted sum of the squared τ vector, whereas K, is the integral
over the step period of the absolute value of each τi.
One interesting instant that allows to separate the gait into two phases is the instant
in which the swing leg passes the stance leg forward along the walking direction. This
instant is characterized by the coordinate q3 equal to zero.
Figure ?? shows the time histories of the d.o.f. during a single gait split into the two
phases defined by q3 = 0 From now on, it will called the phase evidenced in figure ??
with a light yellow color with the term first part of the gait and the other phase with
the term second part of the gait. The K parameter has been evaluated for each of the
parts outlined before.

5.2.2 Degenerate strikes

First to say, is that the degenerate strikes are always those which happen on the knees
(coordinates q4 and q6 ). Remember that, for making the optimization be possible to
converge, the number of strikes and their order, is defined a priori in the optimization
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Figura 5.6: Example of result of an optimization routine. The SM is providing 5 strikes.

routine. This involves that, if the dynamical behavior of the mechanical model require
a lower number of strikes than the ones provided by the SM, the strikes in surplus, will
be positioned in order to minimize the OF and reduce the loss of efficiency. Thus, these
strikes are often placed really close to the instant at which the relative coordinates of
the two knees ( q4 and q6) are reaching the zero line with a low velocity. This usually
occurs at the beginning or at the end of the gait due to the symmetry of the walking
gait due to the fact that the walking with knees will assume at the end (with the
parameters used in this thesis), an approximated compass posture that is proper of
compass bipedal mechanism. The strikes which position is collocated like explained
before, are called degenerate, and the considered SM is probably not the optimal one.

For these considerations, we can notice that in figure 5.6 (taken as example for illus-
trating the problem) there are at least two degenerate strikes. They are the two strikes
that practically overlap the one to the ground at the end. Also the other strike on the
knee1, the one that happen approximately at t = 0, 1, could be considered degenerate.
That is, because it happen in an area in which the relative coordinate q4 was grazing
the ground with a really low derivate. The only non degenerate strike in this exam-
ple is the one that happen on knee2. This strike happen at the instant around which
the coordinate doesn’t graze the zero line with moderate velocity. Contrary it strikes
strongly (it reach the zero line with a high derivate) and after that, it diverges from
that point with a really different slope. The degenerate strike, usually, doesn’t provide
a changing into the trend coordinates behavior, because of the less strength with which
it happen due to the low derivate of the related coordinate at the impact instant. The
presence of degenerate strikes is a sign of redundant strikes in the SMs, or a sign of the
need of a different mechanical model for the walking particular purpose.

5.2.3 Optimizations Parameters

Before performing the optimizations we need to define the optimization parameters.
The optimizations parameters are the following:
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γ 3◦

n 6
StepModel varying

The parameters are the same for all the following optimizations in order to make the
results be comparable.

5.2.4 Algorithm to determine the number of possible SMs.

It was decided to proceed with the optimizations, collecting them per groups in order
to better understand the results step by step. It was performed first, the optimizations
that refer to Dribbel and then the others, referred to Knee. The ones referred to Dribbel
are collected in the group one, and the others, are collected in the groups from two to
five, depending on the number of strikes of each group. Each group, in general, contains
a certain number of possible SMs can be admissible with the considered number of
strikes.
The number of possible SMs combinations, in general, could be evaluated with the
following algorithm:

• Individuate the number of the strikes.

• The number of the strike variables is the number of the strikes minus one because
the strike to the ground has a fixed position and it’s always situated at the end
of the gait.

• If the number of strikes is 2, there are just 2 possible combinations.

• If the number of strikes is grather than 2, assign the amount of strikes variables
to the knee1 or knee2 in order to assign all the strikes variables to the knees in
order to satisfy all the possible combinations (for example if strike var. is 2, we
have to assign first 1 strike to each of the knees. Then 2 strikes to one knee and
zero to the other and later do the opposite).

• Evaluating the number of combination for each assignment by the following
equation:

Cj =
n!

m1!m2! · · ·ml!

Where n is the number of the strike variables and m1,m2, · · ·ml are the l mul-
tiplicities of the elements of the strike variables (taken in some order). Cj is the
j-th multinomial coefficient where j is the index that runs all the combination of
the assignments of strike variables that is possible.

• Sum all the coefficients Cj and obtain the number Np of possible permutations
that is possible to have changing the order of the strikes for a determine number
of strikes per gait.

At the end, we obtain the number Np of possible SMs into the group of optimizations.
We have to try the different step models in order to find the proper one for the walking
down-hill under test.
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5.3 Group 1 - Dribbel Optimizations

In this section, it is investigated the step models of Dribbel and its effects on the gait
efficiency. For doing that, have been done a series of optimizations varying the step
models and observing how the objective function (J) changes.
The step model is defined like explained in the section 2.5 by some discrete parameters
that have to be defined before starting the optimization algorithm. The mechanical
model is the one treated in the section 2.3 and it provides the presence of only strikes
on knee2 and, of course, the one to the ground. For how the SM is defined, an infinite
number of step models can be developed for this group of optimizations, simply adding
an increasing number of strikes on the knees. Otherwise, the best in terms of cost of
actuation is the one that provides just one strike on knee2 and, at the end of the gait,
the last one on the ground.
The best model, so, has only two strikes and is named with the nomenclature SM1∗.
Moreover, it will be investigated another SM that provides two knee2 strikes in order
to show the worsening of the walking efficiency taking into consideration more than
one strike on knee2.
The model is named SM2∗. The table below is summarizing the two SMs used in this
group of optimizations.

SM1∗ 362str2 gr∗
SM2∗ 362str2 2 gr∗

The sign ∗ is used to highlight the fact that the SM is referring to an optimization
with Dribbel mechanism (because have been used the same notation for the codes of
both the Knee and Dribbel models).

5.3.1 Dribbel - 2 strikes SM1∗

Let’s investigate, first, the SM1∗. Running the optimization routine we obtain the
results showed in the figures 5.7 and 5.8.

How can be noticed from the figures, the variable q4 is kept locked to the value zero for
all the duration of the gait. This could be observed in particular in the stick diagram
in the figure 5.8. It shows the posture of the system during the gait and we can notice
how the stance leg remains straight for all the duration. Notice that the mechanical
lock happens after knee2 strike (represented by the coordinate q6 that reaches the value
zero) and after that, the coordinate q6 remains locked till the end of the gait. The OF
value of this optimization is J = 0, 012. For a better understanding on the energy
torque consumption, can be shown the histogram (figure 5.9) of the K parameters of
the torques taken individually.

The numbers of x axis are referring to the torques of the system respectively to τ3, τ5
and τ6. How can be understand from the histogram, the torque that is much required
is τ6, but, how better understandable later, the amount of torque required is very low
compared with the following results.
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Figura 5.7: Trend of the curves representing
the position of the links of the mechanical sys-
tem (Dribbel) with SM1∗. In the figure are
represented the instants in correspondence of
which the strikes happen.

Figura 5.8: Stick Diagram representing the
shape of the gait. 2 strikes SM1∗

5.3.2 Dribbel - 3 strikes SM2∗

This model is providing 3 strikes per gait.
This model was tested because it wants to demonstrate how other different models over
the SM1∗ will provide worst results in terms of walking efficiency.
With this model two knee strikes are expected, and for ensures the mechanical lock of
the swing leg happen only in correspondence of the second knee2 strike.The results are
shown in the figures 5.10 and 5.11.

The coordinates trend in the figure 5.10 is showing the presence of the two knee2 strikes.
Despite of this, one of them, the second in time order, have to be consider degenerate.
Only by zooming the area between the two strikes on knee2, can be noticed how the
coordinate q6 swings very a little bit far from the zero line till the second strike happen,
and then the mechanical lock is activated. This model have a problem of redundancy
of strikes and so, this SM is not proper for describe an efficient walking behavior.
The objective function value in this case is J = 0, 234 that is much higher that be-
fore. Some considerations could be done also with the histogram of energy torques
consumption in the figure 5.12.

How can be easily noticed, the much required torque is, like before, τ6, but the global
amount of torques energy is the very much more respect to the previous model (SM1∗).
In the histogram the scale of the y axis is kept equal to the scales used for the previous
histogram obtained in the previous section. This was done, in order to be able to
compare the histograms.
The other optimizations adding more strikes to the SM have been gave up because the
OF values of each were much higher as many strikes have been added. In conclusion
the best SM for the 3 d.o.f. mechanism walking down-hill, is the SM1∗. It will be
compared with the best results of others groups of optimizations. In the following are
investigated the results obtained with optimizations using Knee model.
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Figura 5.9: Histogram representing the cost of actuation with the parameter K for each of
the joint actuators. It’s referring to the optimization with SM1∗

5.4 Knee Optimization - Overview

In this section, I have investigated the step models of the 4 d.o.f. mechanism (Knee)
and its effects on the gait efficiency.
To show the results, it was decided to divide the various optimizations into groups for
better understand.
The groups are divided depending on the number of the strikes that happen during
the gait period. For example, the investigation will start from the optimizations with
various SMs that provide two strikes in the gait period. Inside that group, we analyze all
possible combinations of SMs that could be allowed by the mechanism constraints and
then, we change the group considering one with a higher number of strikes (proceeding
in ascending order we will take the group with 3 strikes) and we do the same of before.
That method allow us to discover strengths and weaknesses of each group in order to
discover a guideline for optimizations which are subsequently, allowing us to be able to
drive the analysis choosing or discarding the subsequent SMs, if they are suitable or
not to the walking behavior.

5.4.1 Group 2 - 2 strikes SMs

The research starts with the assumption that the step model provides at least one
strike to the knee (for example the one of the swing leg) because we are investigating
the effect of the knee strikes on the walking gait, against the compass model that has
the only strike to the ground. With these assumptions, the easiest step model we
can find, for that particular mechanical system, is the SM providing two strikes: for
example, one on the knee of the swing leg, and the last one to the ground. The number
of possible combinations for this group of step models is evaluable from the algorithm
of the paragraph 5.2.4 that is concretized like:

In that case the evaluation of the number of combination that are permitted is simple
and the value is 2. The two different step models are:
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Figura 5.10: Trend of the curves represent-
ing the position of the links of Dribbel with
SM1∗. In the figure are represented the in-
stants in correspondence of which the strikes
happen.

Figura 5.11: Stick Diagram representing the
shape of the gait. 3 strikes SM2∗

2 Strikes Possible com-
binations

Multinomial Coeff.

⇓
{

1 k1
0 k2

C1 =
n!

m1!m2!
= 1

1 = 1

1 Strike Variables

{
0 k1
1 k2

C2 = 1

Total ⇒ Np = 2

Tabella 5.2: Scheme for the evaluation of number of possible SMs for the imposed number of
strikes

SM1 362str1 gr
SM2 362str2 gr

The parameters of the optimization are all the same and are the one detailed before in
the section 5.2.3.

2 Strikes - SM1

The SM provides two strikes: one on the knee of the stance leg and the other on the
ground. The optimization routine shows the following results:

For a better understanding of the energy consumption associated to the actuation
torques we are reporting the K parameter histogram:

We can see from the histogram that the joint that requires the greatest torque is q6
for which the parameter K is approximately equal to 0.35. In addition, can be noticed
how the greatest amount of torque required happen in the second part of the gait.
The curves of the Fig. 5.13, in particular the ones that define the coordinates q4 and q6,
have an unexpected development during the gait. In particular, the coordinate q6 graze
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Figura 5.12: Histogram representing the cost of actuation with the parameter K for each of
the joint actuators. It’s referring to the optimization with SM2∗
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Figura 5.13: Trend of the positions of
the links with 2 strikes SM1. In the fig-
ure are represented the instants (circles) in
correspondence of which the strikes happen.

Figura 5.14: Stick Diagram representing the
shape of the gait. 2 strikes SM1

the zero value at t ≃ 0, 6 without impacting with it and this is an unexpected behavior
of the optimized curves that may mean that an additional strike for that coordinate
needs to be added in the SM .
The coordinate q4, in addition, is grazing the zero line for all the duration of the gait.
Because of this, the strike on knee1 is degenerate. This is an unexpected behavior
and could be an indicator of the fact that a different number of strike or a different
dynamical model could be more suitable to this walking purpose.

Thus, from these consideration, can be plausible to think that an additional strike
on the knee2 seems to be necessary for the walking efficiency.
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Figura 5.15: Histogram representing the parameter K. The numbers from 3 to 6 are the
torques relative to the i-th joint. 2 strikes SM1

2 Strikes - SM2

The other possible step model, involving the presence of two strikes, is the case in
which we have the presence of the knee strike on the swing leg and not on the stance
leg (SM2 362str2 gr). The parameters of the that optimization are the same of the
one before, and so, the results are shown below:
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Figura 5.16: Trend of the positions of the
links with the SM2. In the figure are repre-
sented the instants (circles) in correspondence
of which the strikes happen.

Figura 5.17: Stick Diagram representing the
shape of the gait. 2 strikes SM2

Like before, I represent the same histogram for a better understanding of the costs of
the actuation.
Like was done before, the histogram in the figure 5.18 is representing the amount of
torque required during the whole gait, considering torques individually. Like before, the
torque that is required the most is the one related to the coordinate q6 that reaches the
value approximately of 0.23. So, the amount of torque required with SM2 is smaller
than the one obtained with SM1. In addition, the amount of the torque τ6 is less
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Figura 5.18: Histogram representing the parameter K. The numbers from 1 to 4 are the
torques relative to the i-th joint. 2 strikes SM2

required because of the presence of the knee2 strike in the second half of the gait.
The other torques are not required like τ6 is, and they are comparable with the values
obtained with the optimization with the SM1 (figure 5.15).

We report the objective function values of the two optimization showed below:

2 Str - SM1 J = 0, 326
2 Str - SM2 J = 0, 209

How we can see from the table above, the model that presents a lower cost in terms of
actuation is SM2. These optimizations show how the presence of the strike on knee2
(if it happen in the second half of the gait period ) is effective for the gait efficiency.
Dealing with the coordinate q4 , can be noticed that it always grazes the zero value
during the whole duration of the gait. Like before, it’s unexpected, and could be an
indicator of the fact that the mechanical model used is wrong (remember the results
obtained with Dribbel model). This is well understandable also in the stick diagram
(Fig.5.17) above, where we can notice how the upper part of the stance leg remains
aligned with the lower part for all the gait long.

5.4.2 Group 3 - 3 strikes SMs

The second group it is investigated is the one that provides 3 strikes for the SMs every
gait. The number of the SM of that group is defined through the algorithm defined in
the previous paragraph. The algorithm provides the scheme that defines the number
of possible combinations of SMs that can be seen in the table 5.3.
At the end we obtain a number of Np = 4 different SMs for that group and we obtain
the following table that summarize the different four SMs
We had considered all the models for trying to understand if there are some configu-
rations that produce an efficient optimization in terms of costs of actuation. For that
analysis we run the optimization of all of the SMs and we’ll make some considerations
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3 Strikes Possible com-
binations

Multinomial Coeff.

⇓
{

1 k1
1 k2

C1 =
n!

m1!m2!
= 2

1 = 2

2 Strike Variables

{
2 k1
0 k2

C2 = 1

{
0 k1
2 k2

C3 = 1

Total ⇒ Np = 4

Tabella 5.3: Scheme for the evaluation of number of possible SMs for the imposed number of
strikes

3 Str - SM1 363str1 2 gr
3 Str - SM2 363str2 1 gr
3 Str - SM3 363str1 1 gr
3 Str - SM4 363str2 2 gr

about the objective function value J and on the shape of the coordinates graph. The
analysis starts running the optimization with the SM1. The parameters are the same
of the previous group in order to let the results be comparable.

3 Strikes - SM1

The model provides three strikes in order for which happen first, the strike to the knee1
(i.e. the stance leg’s knee), second, the strike to the knee2 (i.e. the swing leg’s knee)
and, at the end of the gait, the strike to the ground. The Fig. 5.19 represents the
trend of the curves of the position evaluated by the optimization routine and the stick
diagram Fig. 5.20.

How we can see from the figure 5.19, the trend of the coordinates is almost regular and
the instant of the strikes are neat separated and well defined into the gait. Despite of
this, the coordinate graph, like the optimizations of the group 1, show an unexpected
trend. In fact, the coordinate q4 has a trend for which it swings very close around the
value zero and it remains the same for all the duration of the gait. This fact brings as
result that the strike on knee1, the one that happen at t ∼= 0, 2, could be considered
degenerate cause of the proximity of the coordinate q4 to the zero line in that area.
The objective function, in this case, has value J = 0, 1051.

3 stikes - SM2

Let’s analyze the optimization that uses the SM2. That model provides three strikes
in order for which happen first, the strike to the knee2, second, the strike to the knee1
and, at the end of the gait, the strike to the ground. The optimization parameters are
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Figura 5.19: Trend of the positions of the
links with the SM1. In the figure are repre-
sented the instants (circles) in correspondence
of which the strikes happen.

Figura 5.20: Stick Diagram representing the
shape of the gait. 3 strikes SM1

the same of before, and so, we can plot the results in terms of trend of coordinates and
stick diagram.
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Figura 5.21: Trend of the positions of
the links with 3 strikes SM2. In the fig-
ure are represented the instants (circles) in
correspondence of which the strikes happen.

Figura 5.22: Stick Diagram representing the
shape of the gait. 3 strikes SM2

From the figure above we can notice how the shape of the gait is very different from the
one analyzed before. In that case, we can notice how the swing leg swings higher than
the case of before, and the coordinate q6 swings much less than the one obtained with
SM1. This fact is probably due to the presence of the knee2 strike before the knee1
strike and that make the system be less efficient than the one before. The efficiency is
testified by the value of the objective function that is much higher and it’s J = 0, 511.
Like before, we can notice the degeneration of the strike on knee1 despite of the strikes
are spaced enough into the gait. In addition, we notice how the line in green, that is
referred to the coordinate q4 , is grazing the zero line for all the duration of the gait.
That is, how said before, a sign of the inadequacy of the mechanical model or of the
SM used. The other optimization results that missing in that group are showed below
and they refers to the optimizations routines that use the SMs 3 and 4 (read from
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the Table ??). The optimization parameters are always the same in order to make the
optimizations be comparable.

3 stikes - SM3 and SM4
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Figura 5.23: Trend of the positions of
the links with 3 strikes SM3. In the fig-
ure are represented the instants (circles) in
correspondence of which the strikes happen.

Figura 5.24: Stick Diagram representing the
shape of the gait. 3 strikes SM3
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Figura 5.25: Trend of the positions of
the links with 3 strikes SM4. In the fig-
ure are represented the instants (circles) in
correspondence of which the strikes happen.

Figura 5.26: Stick Diagram representing the
shape of the gait. 3 strikes SM4

The previous results are better understandable if we also report the OF values of
the various optimization routines. For the optimization with the SM3, the OF value
is J = 0, 599, and for the optimization with SM4, the OF value is J = 0, 397 .
Considering the entire group of optimizations, the better result in terms of cost of
actuation is the result obtained with the SM1 (J = 0, 1051 ), the other results have
a much higher OF value and so, they are less suitable to characterize this particular
type of walking down-hill.
It’s interesting to investigate the reason why and the characteristics of the SMs are not
suitable. It was discarded the model that provides the knee2 strike before the knee1
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strike, and the model that has no strikes on the knee2. These models had the worse
optimization results ( J = 0, 599 and J = 0, 511 respectively). The SM4, that provides
2 strikes for knee2 has a better result (comparing for example with the SM2) because
of the presence of another strike on the knee2 in the second half of the gait period (take
a look to the figure 5.25). This shows how the knee2 strike is effective for the walking
efficiency, but the presence of two knee2 strikes worst the results than the case with
just one knee2 strike. It is well highlighted in the histograms 5.27 and 5.28.
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Figura 5.27: : Histogram representing the
cost of actuation of the torques singularly, in
which is highlighted the share between the
two parts of the gait. It’s referring to the
optimization with SM2.
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Figura 5.28: Histogram representing the
cost of actuation of the torques singularly, in
which is highlighted the share between the
two parts of the gait. It’s referring to the
optimization with SM4.

The first histogram is referring to the optimization with SM2, and the second, to
the one with SM4. The pieces in red are the share of torques are referred to the
first part of the gait, and the pieces in yellow, are referring to the second part. The
two models differs substantially of the presence of one additional strike on q6 for the
optimization with SM4. It could say that, because the presence of the strike referred
to the coordinate q4 (degenerate), for SM2, doesn’t produce a consistent effect on the
dynamic behavior of the walking system. That can be reasonably observed in the figure
5.21 in which can be noticed that in correspondence of the instant in which the strike of
q4 happens, there are no evident perturbation of the behavior of the other curves (thing
that happens, for instance, in correspondence of the instant of the strike referred to q6
, and the curves behave much different as stronger is the strike we are considering).
The fact could be verified also numerically showing the values of the velocities of the
coordinates before and after impact.

The table 5.4 above, is showing the velocities pre and post knee1 impact of the op-
timization routine with the SM2. Note that the velocity of the coordinate q4 is zero
after impact how is expected. The velocities post impact are showing a global deviation
from the velocities pre impact that is in percentage around 1%. The global deviation
from the velocities is evaluated with the following equation (5.2):

dev% =
norm (q̇−)− norm (q̇+)

norm (q̇−)
(5.2)

The amount of global deviation of the values of the table 5.4 is very poor comparing
with the deviation between the velocities are referred to the strike to the knee2 that is
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Velocities
pre

Value
[rad/s]

Velocities
post

Values
[rad/s]

q̇1− −1.0348 q̇1+ −1.1124
q̇2− −0.1590 q̇2+ 0
q̇3− 0.7322 q̇3+ 0.6598
q̇4− −1.3361 q̇4+ −1.3457

Tabella 5.4: Tables representing the values of velocities just before the knee1 impact, and just
after that. The values refers to the optimization results with the SM2.

around of 20%. The values of the velocities pre and after knee2 impact are reported in
the table 5.6.

Velocities
pre

Value
[rad/s]

Velocities
post

Values
[rad/s]

q̇1− −0.9370 q̇1+ −0.9358
q̇2− −0.1316 q̇2+ −0.1603
q̇3− 0.6475 q̇3+ 0.4459
q̇4− −0.6935 q̇4+ 0

Tabella 5.5: Tables are reporting the velocity values just before and just after the knee2
impact. The values are referred to the optimization with SM2.

How can be noticed from the tables above, the velocity value of the coordinate q̇4 after
impact is zero as expected. Looking at the figures 5.27 and 5.28 they are showing that
τ4 has a consistent decrease (from the opt. with SM2 to the one with SM4 ) because
of the happening of the second knee2 strike in the second half of the gait. Despite
of this, the happening of the strike on knee2 is not always effective for the walking
efficiency. In fact, the comparison between the two figures 5.29 and 5.27 is showing
how the presence of knee2 strike has opposite effect on walking efficiency.

In the figure 5.29 is shown the histogram of K parameter of the optimization with
SM1, compared with the figure 5.27 that’s referring to the one with SM2. Both the
models are providing one strike on knee1 and one on knee2, but the order is changed.
The one referring to SM1, is much more effective that the one referring to the SM2. In
particular, can be noticed that both the part of the gait are stressed the less than the
others of the figure 5.27. For instance, if the strike on knee2 happen in the second part
of the gait, the strike would be effective for the walking efficiency, but if it happen on the
first part, it will be not effective, and it will reduce the performances. In conclusion, the
model that suits better the efficient walking behavior, is the one (SM1) that provides
the knee2 strike in the second part of the gait period. The trend coordinates is the one



CAPITOLO 5. KNEED MODELS: OPTIMIZATION 87

3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Torque [N/mm2]

K
 p

ar
am

et
er

 

 

first part
second part

Figura 5.29: Histogram representing the cost of actuation of the torques singularly, in which
is highlighted the share between the two parts of the gait. It’s referring to the optimization
with SM1

shown in the figure 5.19 and the OF value is J = 0, 1051 . In further optimizations we
would like to individuate, in advance, the models we are sure will provide worst results
in according with the considerations made in this paragraph and in the previous.

5.4.3 Group 4 - 4 strikes SMs

We are now investigating the group of SMs that are characterized for having four strikes.
The number of possible SMs is evaluated with the algorithm presented before and in
particular we obtain the following diagram.

4 Strikes Possible com-
binations

Multinomial Coeff.

⇓
{

2 k1
1 k2

C1 =
n!

m1!m2!
= 6

2 = 3{
1 k1
2 k2

C2 = 3

3 Strike Variables

{
0 k1
3 k2

C3 = 1{
3 k1
0 k2

C4 = 1

Total ⇒ Np = 8

Tabella 5.6: Scheme for the evaluation of number of possible SMs for the imposed number
of strikes
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Step
Model

Summary
Code

SM1 364str1 1 2 gr
SM2 364str1 2 1 gr
SM3 364str1 2 2 gr
SM4 364str2 1 1 gr
SM5 364str2 1 2 gr
SM6 364str2 2 1 gr
SM7 364str1 1 1 gr
SM8 364str2 2 2 gr

How can be seen from the scheme in the table 5.6, this group provides a maximum
number of Np = 8 different SMs but with the previous considerations made for the
groups 2 and 3, we can individuate some of them that are not proper for our purpose,
in order to not reporting the results for not complicate over the treatment.
Table ?? that follows, is summarizing the possible SMs we can have in this group.

The table above is representing all the eight possibilities of SMs.
Remembering the previous results and considerations, we can indicate in advance the
models will provide worst results. They are the models are providing only strikes on
one of the two knees (for example the SM8 and SM7) , and the models that provide
the happening of the strikes of the knee2 in the beginning of the gait (for example
models SM6, SM5, SM4). We are sure that the OF values we can find running those
optimizations will be higher or much higher than the results we can obtain with the
other SMs.
For Instance, we can show the only results of the models SM1, SM2 and SM3. The
parameters of the various optimizations are the same of the optimizations before. Let’s
show the results of the optimization with the SM1.

4 Strikes - SM1

The above results are showing how the trend of the curves is similar to the best ones
of the previous group. (I’m referring to the SM2 of the group 2 and SM1 of the group
3). This optimization show an OF value that is J = 0, 1069 and that’s comparable
with the other OF values of the best optimizations of the other groups analyzed till
now. From the figure 5.30 we can notice how both the strikes on the knee1 have to
be considered degenerate. The first, because of the proximity to the beginning of the
gait period, and the second, because the trend of the coordinate q4 (the one in green)
is almost linear and grazing the line of zero how the optimizations analyzed before.
(That could be a confirm of the fact that the dynamical model used for describing the
behavior of that mechanism walking down-hill could be un-optimal).

4 Strikes - SM2

How can be noticed, the model provides the strikes in that order: first, happen the
strike on knee1, then the strike on knee2 and then again, on knee1. The results in
the graphs above, have almost the same shape of the curves found in the previous
optimization. From the figures 5.32 and 5.30 we can notice how the change of model
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Figura 5.30: Trend of the curves represent-
ing the position of the links of the mechanical
system with the SM1. In the figure are repre-
sented the instants in correspondence of which
the strikes happen.

Figura 5.31: Stick Diagram representing the
shape of the gait. 4 strikes SM1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s]

po
si

tio
ns

 [r
ad

]

 

 

q
3

q
4

q
5

q
6

Figura 5.32: Trend of the curves represent-
ing the position of the links of the mechanical
system with the SM2. In the figure are repre-
sented the instants in correspondence of which
the strikes happen.

Figura 5.33: Stick Diagram representing the
shape of the gait. 4 strikes SM2

between these two optimizations (the one with SM1 and SM2), doesn’t produce a
considering difference in terms of OF value. In fact, in that case, J = 0, 1047, that
is really close to the one obtained before. Like previously, the coordinate q4 (the one
in green) is grazing the zero line and both the strikes on knee1 have to be considered
degenerate. This can be observed in the coordinate graph because the happening of the
degenerate strikes doesn’t produce a significant variation into the coordinates behavior
because of the pour strength with which the strike happen. The fact that the OF value
is close to the one obtained with the optimizations made for the groups 1 and 2, allow
us to understand that additional strikes (those degenerate) are redundant and some of
them need to be removed because they don’t produce any advantage for the walking
efficiency.
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4 Strikes - SM3

The model is the SM3 and it is providing first, the strike on knee1 and then, two
strikes in a row on knee2. That model shows the results we can see in the figures 5.34
and 5.35:
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Figura 5.34: Trend of the curves represent-
ing the position of the links of the mechanical
system with the SM3. In the figure are repre-
sented the instants in correspondence of which
the strikes happen.

Figura 5.35: Stick Diagram representing the
shape of the gait. 4 strikes SM3

The OF value of this optimization is J = 0, 1124. The value is a little bit different, and
worst, from the ones obtained before, and that’s because the presence of two strikes
on knee2 doesn’t procure any improvement in the walking efficiency but moreover, it
hampers the natural behavior that the model would have with the presence of only one
knee2 strike. In this SM can be noticed two degenerate strikes: the first one is the one
on knee1 and the second is the knee2 strike that happen at t ∼= 0, 6 . The figure 5.36
is showing the histograms reporting the value of the parameter K of both the SMs 2
and 3 in comparison.

From the figure 5.36, can be notice that the two SMs have more or less the same trend
of parameter K. The presence of the additional strike on knee2 with the SM3 ensures
that the results in terms of parameter K, are a little bit worst respect to the one with
SM2, and the worsening is distributed quite uniformly over the four torques. For this
group we can take like the proper model, the SM2, the one with the knee2 strike
between the other two knee1 strikes. The choice was made considering the model with
the lower value of the parameter J . Despite of this, the knee1 strikes are degenrate
and so, this model is not proper for this walking purpose.

5.4.4 Group 5 - 5 strikes SMs

The number of possible combinations of SMs is obtained with the same algorithm we
used for the other groups. The algorithm is sintesized by the scheme in the table 5.7:

The number of the possible SMs for that group of strikes is Np = 16 different SM .
They are summarized in the tables below.

The table ?? is reporting all the codes of the possible SMs we can have performing five
strikes per gait. How was done for the group 4, we will not test every possible model
because the timing of every single optimization is computationally onerous, and test
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Figura 5.36: Histogram representing the comparison between the K parameters of the
optimizations with SM2 and SM3.

5 Strikes Possible com-
binations

Multinomial Coeff.

⇓
{

4 k1
0 k2

C1 =
n!

m1!m2!
= 24

24 = 1{
3 k1
1 k2

C2 = 4

4 Strike Variables

{
2 k1
2 k2

C3 = 6{
1 k1
3 k2

C4 = 4{
0 k1
4 k2

C5 = 1

Total ⇒ Np = 16

Tabella 5.7: Scheme for the evaluation of number of possible SMs for the imposed number of
strikes

every single model could take too much time.
For this reason, it will test the only models that it’s already known that could be proper
for the down-hill walking. Our considerations are driven by the results obtained from
the previous optimizations.
In fact, we obtained that the proper model for that walking must provide one strike
on knee2, and the others four (we are considering 5 strikes for that group) on knee1.
These results allow to discard all the models from SM6 to SM16, because they all
provide more than one strike on knee2, and the SM1, because it doesn’t provide any
strike on knee2. From some other considerations made in the previous paragraphs, the
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Step
Model

Summary
Code

Step
Model

Summary
Code

SM1 365str1 1 1 1 gr SM9 365str2 1 1 2 gr
SM2 365str1 1 1 2 gr SM10 365str2 1 2 1 gr
SM3 365str1 1 2 1 gr SM11 365str1 2 1 2 gr
SM4 365str1 2 1 1 gr SM12 365str1 2 2 2 gr
SM5 365str2 1 1 1 gr SM13 365str2 1 2 2 gr
SM6 365str1 1 2 2 gr SM14 365str2 2 1 2 gr
SM7 365str1 2 2 1 gr SM15 365str2 2 2 1 gr
SM8 365str2 2 1 1 gr SM16 365str2 2 2 2 gr

happening instant of the knee2 strike during the gait is really important. Was obtained
that if the strike happen in the first half of the gait (and in particular if it happen long
before the swing leg has passed the stance leg), the strike is not effective on the walking
efficiency and the cost of actuation rise up consistently. For that reason we decided to
show the only optimizations that could produce good results in term of value of the
OF .

5 Strikes - SM3 and SM4
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Figura 5.37: Trend of the curves represent-
ing the position of the links of the mechanical
system with the SM3. In the figure are repre-
sented the instants in correspondence of which
the strikes happen.

Figura 5.38: Stick Diagram representing the
shape of the gait. 5 strikes SM3

The results of the figures above, are completely understandable if we report the value
of the OF for both the optimizations. The optimization with the SM3 has J = 0, 1081
and the one with SM4 has J = 0, 267. These results are showing how the best model
for that group is the SM3. Can be said, in addition, that both the models SM3 and
SM4 present three degenerate strikes each. The additional strikes on the knee1 are not
effective for the walking efficiency but, moreover, they are redundant and unnecessary.
In fact, the SM4 provides the happening of the two latest strike on the knee1 almost at
the end of the gait and they are practically overlapped to the final strike on the ground.
In general, all the knee1 strikes have to be considered degenerates, because of the
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Figura 5.39: Trend of the curves represent-
ing the position of the links of the mechanical
system with the SM4. In the figure are repre-
sented the instants in correspondence of which
the strikes happen.

Figura 5.40: Stick Diagram representing the
shape of the gait. 5 strikes SM4

coordinate that grazes the ground for all the duration of the gait. This is an unexpected
behavior of the optimization results probably due to the improper mechanical model
used. It seems to be much proper the 3 d.o.f. model (Dribbel) used in the optimizations
of the group 1.

5.5 Summarizing the obtained results

Remembering the other optimizations made with other groups of strikes we can sum-
marize a little, the obtained results. In the group 1 were investigated the optimizations
involving the 3 d.o.f. mechanism. Those results had shown how that mechanical model
is proper for walking down-hill because of the fix stance leg and the compass posture at
the moment of the strike to the ground. In this group of optimizations, the best is the
one that provide only one knee2 strike and it doesn’t presents degeneration. The other
model, the SM2∗ that provides two knee2 strikes, showed the presence of one degener-
ate strike. With the group 2, were studied the SMs related to the 4 d.o.f. mechanical
model. Was obtained that the presence of the strike on knee2 was very relevant in the
efficiency of the walking gait. On the other hand, we found an unexpected thing in
the walking behavior. The coordinate q4 in fact, always graze the line of zero without
moving far from it. This fact was a little bit unexpected and other models adding
more strikes were investigated in order to check it out. The comparison between the
two figures 5.14 and 5.16 is showing the deep differences between the two only models
provided into this group, and the value of the OF strongly bends towards the SM is
providing the knee2 strike (SM2) The OF value in that case was J = 0, 23.
Considering the group 3, was confirmed the hypothesis done with the models of the
group 2. The model that better suits the walking downhill is the model that provides
the knee2 strike into the gait. From the figure 5.19, we can see how the shape of the
curves and their trends are really similar to the ones found for the model with two
strikes (figure 5.16). The OF value, also, is close, despite of this, it leads us to choose
the model with three strikes because it’s better (OF value J = 0, 1051 ). The knee1
strikes are all degenerate strikes because of the trend of the coordinate q4. At this
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Group Relative Step
Model

Group 1 - 2 Strikes, Dribbel SM1∗
Group 2 - 2 Strikes, Knee SM2
Group 3 - 3 Strikes, Knee SM1
Group 4 - 4 Strikes, Knee SM2
Group 5 - 5 Strikes, Knee SM3

point the choice seems to be driven by the previous results. Increasing the complexity
of the models adding new strikes to the SMs, some models that behave similar to the
one with 3 strikes obtained before are expected to find. In addition, that model is
expected to be the best for that group of SMs. The model would be something that
provides just one strike on the knee2, and missing strikes on the knee1. That’s because
of the previous optimizations results and considerations. With the group 4, how said
before, the best SM was the one showed in the figure 5.32. That model is really close
to the one outlined before with the three strikes models. They differs obviously on the
presence of an additional strike on the knee1 for the model of the fourth group. This
additional strike is positioned after the knee2 strike, and that seems to be degenerate
as well as the others knee1 strikes, because happens really close to the end of the gait
in which happen the strike on the ground. This could be due to the redundancy of the
strikes for this SM or due to the mechanical model used (remember that with the 3
d.o.f model, the knee1 strikes were not allowed and so, no possible degenerate strike
on that knee could happen). For the optimizations of the fifth group was obtained the
best SM to be the SM3 whose coordinates trend is shown in the figure 5.37.
The model provides three degenerate strikes symptom that there are unuseful strikes
provided by this SM . After this group of optimizations, was decided to not go further
with adding strikes to the SMs because it was found that the results obtained with
the optimizations of the group 3, 4 and 5 (Indeed with 3, 4 and 5 strikes each) were
almost the same (considering the optimal solution of each group) and the models were
providing degenerate strikes as much as additional strikes were considered. Proceeding
further with the addition of the strikes, the results in terms of J doesn’t change but
rather, they increase a little bit as much as the strikes are added.
The table ?? is collecting the best optimization SM for every group.

The figure 5.41 is showing the results of the best optimizations of each group without
the ones of the group 1 (the one related to Dribbel).

How it is easily to notice, the best SMs for the groups 3, 4 and 5, have almost the
same J value, a little bit increasing between the best SMs of the group 4 and 5. This
is an interesting result because, how said before, increasing the number of strikes over a
certain value (in that case the minimum is four strikes really close to the value obtained
with three strikes), it doesn’t procure a benefit on the walking efficiency.
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Figura 5.41: Values of the OFs of the best optimization of each group.

5.6 Comparison between best models

The group 1 reveal the best model to be SM1∗ that present an OF value J = 0, 012.
This model shows a result that is much less than the best value we obtained with the
Knee optimizations. Comparing, for example the model SM1∗ of the group 1 with the
SM2 of the group 3 (that’s the best for the Knee optimizations), can be obtained the
figures 5.43 and 5.44.
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Figura 5.42: Comparison between the best SMs of Dribbel and Knee optimizations.

The above histograms are showing how the differences are neat especially on the torque
related to the coordinate q6. In addition, the great amount of energy cost of actuation
for the Knee model is happening in the second half of the gait period. In the first half,
the energy cost is really small. Contrary, the amount of energy cost with Dribbel model
is concentrated in the first half of the gait and the cost of actuation in the second half,
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Figura 5.43: Histogram reporting the
K parameters of the SM1∗ with Dribbel
mechanism.
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Figura 5.44: Histogram reporting the K pa-
rameters of the SM1 with Knee mechanism
with 3 strikes.

is much less than in the first part, and the combination of the two parts of actuation
ensure that is obtained a better results in terms of J respect to the Knee model.
After all the previous optimizations was obtained that the model that best fits the
bipedal down-hill walking (with our imposed parameters) is Dribbel with SM1∗. The
SM is defined such as happen one strike on the knee2 and, at the end of the gait, the
one on the ground. The best coordinates are, therefore, the one reported in the figure
6:
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Figura 5.45: Trend of the curves representing the position of the links of the mechanical
system (Dribbel) with the SM1∗. In the figure are represented the instants in correspondence
of which the strikes happen.



CAPITOLO 6

Trajectory Tracking Control

Introduction In this chapter it will simulate the optimal trajectories found in the
previous chapter (5) with the optimization method. It was found that the optimal
kneed mechanism for walking down-.hill with the parameters outlined in the section
5.2.3, is Dribbel. The optimization routines gives as result the coordinates trend visible
in the figure . This coordinate trend is related to the SM1∗ described in the section
5.3.1 which presents only two strikes during the gait. The first strike happen on the
knee2 approximately at the middle of the gait, and the second one is the final strike
on the ground. The objective function value in that case is equal to J = 0, 012 that is
much higher than the one obtained with the optimization of Compass. This could mean
that Dribbel couldn’t exhibit a passive dynamic walking over a terrain with the value
of slope we imposed that is γ = 3◦. Anyway, the purpose is to test it in simulation for
verify these statements and eventually applying a certain control law in order to make
it to walk. The mechanical model was described in the section 2.3 How was said for the
simulation of the model Compass, the optimization routine doesn’t say anything about
the stability of the walking cycle, and, this need to be proved with the simulation of
the model. The simulation model, needs to provide the implementation of knee locking
mechanism because of the walking behavior of this particular walker.

6.1 Dribbel and knee-locking mechanism

The walking of this model is the one shown in the figure 6.1.

The walking motion was divided into four phases. The knee is unlocked at toe-off, and
the thigh and shank of the nonsupport leg swing freely (a) until the angle of the shank
once again matches the angle of the thigh. At this point the knee is fully extended, and
the biped experiences an instantaneous impact as the knee strikes its limit and locks (b).
The thigh and shank of the nonsupport leg now swing as one unit, effectively reducing
the model to the simplicity of the compass gait biped (c) until the tip of the nonsupport
leg collides with the ground in another impact (d). Again we assume an instantaneous
transition from nonsupport leg to support leg, and the biped immediately begins taking
another step. The phase (c) in which the mechanism behaves like a compass bipedal
walker is characterized by having the swing leg locked in straight position due to the
electromagnets in the knee-cups. This particular behavior of the mechanism is modeled
considering an additional control action (activated only on the swing leg’s knee) into
the mechanical equation that has the purpose to keep the leg straight after the knee
strike. The equation changes like in the following:

97
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Figura 6.1: The four phases of the down-hill walking with Dribbel

M (q) q̈ +C (q, q̇) q̇ + V (q) = τ − JT
r λr (6.1)

Where M̄ i (q̄i) ∈ Rm×m is the mass matrix of system and collects the inertial terms,
C (q, q̇) ∈ Rm×m collects together elements of centrifugal force and Coriolis forces, the
term V (q) ∈ Rm×1 collects the elements of gravity, while τ ∈ Rm×1 is the vector
of torque applied to the system and JT

r λr is the locking torque that ensures to keep
straight the swing leg. m is the number of degrees of freedom that in this case is equal
to 3. While the knee is unlocked, λr = 0 When the nonsupport knee is fully extended,
we want to enforce the locking constraint q6 = 0 to keep the nonsupport leg straight.
Differentiating this constraint is obtained q̇6 = 0 or[

0 0 1
]
q̇ = 0 (6.2)

Defining Jr =
[
0 0 1

]
, differentiating again could be obtained:

Jrq̈ = 0 (6.3)

And it’s possible to solve the equation (6.1), for q̈ and finding:

q̈ = −M (q)−1 [C (q, q̇) q̇ + V (q)− τ + JT
r λr

]
(6.4)

And reducing the notation defining h (q, q̇) = C (q, q̇) q̇ + V (q) − τ , it is possible to
substitute equation (6.4) into (6.3) obtaining:

Jrq̈ = −JrM (q)−1 [h (q, q̇) + JT
r λr

]
(6.5)

And solving for λr is obtained:

λr =

{
0 if knee unlocked

−
[
JrM (q)−1 JT

r

]−1
JrM (q)−1 h (q, q̇) if knee locked

(6.6)
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The two different values of λr have to be implemented into the dynamic equation in
order to switch correctly from the 3 d.o.f. configuration to the one with 3 d.o.f. as well,
but behaving like 2 d.o.f. model.

6.2 Uncontrolled Simulation

In this section it will investigated if the passive dynamic walking for Dribbel exists.
For doing that, let’s simulate the model with no control action τ = 0, except the one
required for the knee locking mechanism (JT

r λr ). The simulation starts with the same
initial conditions obtained with the optimization algorithm:

q (t0) =

 0, 252
−0, 505

0

 q̇ (t0) =

 −1, 44
0, 270
0

 (6.7)

Where q (t0) and q̇ (t0) are the initial state variables of the model under simulation.
Their units are respectively [rad] and [rad/s]. The simulation routine produce the
results shown in the figure 6.2.
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Figura 6.2: Comparison between the simulation of the uncontrolled Dribbel, and the optimized
curves. Dash line are the optimized curves, and solid line is the simulation.

In the figure is showed the trends of the optimized positions with dashed line, and the
trends of the simulated positions with solid line. Notice how the coordinate q6 reaches
the zero value in correspondence of the knee strike, and then, it remains the same till
the end of the singe gait. Moreover, the figure 6.2 is showing how the simulation of
the robot with optimal initial conditions and zero control effort (except knee locking)
highlights that the computed gait is not fully passive. While the ankle (q3) and hip
(q5) joints passively follow the computed gait quite closely, at least in the initial phase,
the knee joint ( q6) deviates severely. Still, despite this difference, the computed gait is
a fair approximation of a passive (or at least efficient) motion of the walker and indeed
the uncontrolled robot takes a few step before falling over.
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6.3 Controlled motion

Like obtained in the previous section, the passive dynamic walking for Dribbel, with the
characteristics used in this thesis, doesn’t exist. In order to make the robot walk with
the optimal trajectories found in the previous chapter, we need to introduce a controller
with a control law in order to make the system follow the reference trajectories defined
before. It is chosen to use a type of PD control law, because of the co-located nature
of the control actions, that will provide stability on trajectories tracking purpose.
The control law is defined like:

u = kp (qr − q) + kd (q̇r − q̇) (6.8)

Where the parameter kp is the gain of the proportional control referred to the differ-
ence between the reference position and the simulated position; the parameter kd is the
derivative gain referred to the difference between the velocities (reference and simulat-
ed).
There are used the same gains for all the three control actions u ∈ R3×1 referred to
the three degrees of freedom. The main problem with this control law is modeling the
tracking of the trajectories during the simulation routine. This problem is characterized
by the fact that the reference trajectories are discontinuous in correspondence on the
final instant of a step. The problem is that the system is controlled with a PD control
law, and so, it will follow the reference as better as the controller is well performed
depending by the gains kp and kd. Despite of this, there will always be a difference
between the simulated and the reference curves. This difference could be a problem
in correspondence of a strike (ground) if the reference curves reaches the strike con-
figuration in advance respect the simulated ones. This is, because immediately after
that, the reference changes and the simulated curves, that have not reached its strike
instant jet, are forced to follow the reference that is different despite of the reference
just before the strike (this is due to the re-labeling operator of the coordinates).
This could be easily understand considering the figure 6.3. In this figure is shown the
final instant of a step that links to the next step. The represented function has no other
meaning but the one to show this problem’s mechanism.

Figura 6.3: Problem of trajectory tracking for hibrid mechanical systems.

The dashed line is the reference, and the solid line is the simulated coordinate. How we
can see, if the reference line reaches its strike instant before the simulated one does it,
the reference changes an instant after, and the simulated curve is forced to follow the
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new reference function before having its strike. This condition is conceptually wrong to
do it but in practice, it never happen because the little difference, that is kept between
the reference and the simulation due to some proper gains of the control law (this is
true for the non perturbed walking behavior). Anyway, in the following is introduced
a dynamic reference in order to avoid the problem outlined before.

6.3.1 Dynamic Reference

The problem about the discontinuity of the reference, practically speaking, is not a
severe problem if the magnitude of the difference between the reference and simulated
curves is little. This is obviously dependent, in general, by the magnitude of the control
action. The dynamic reference consist into extend the reference along the polynomial
function defined for the considered part of the gait. In particular, remembering what
was said in the section 3.1, the reference of every part of the gait, bounded by the
various strikes that happen, is defined by the use of polynomial functions ( Np in
numbers) whose coefficients are the parameters optimized into the optimization routine.
The extension of the reference is made along the polynomial function defined by its
coefficients. In practice, when the reference trajectories reach the strike instant, if the
simulated curves have not reached the strike criterion jet (for example, the knee2 strike
criterion is q3 = 0 ), the reference is extended along its polynomial function till the
strike criterion is reached even by the simulated curves. The figure 6.4 is showing this
mechanism and the area of extension is highlighted.

Figura 6.4: Dynamic reference mechanis.

For some appropriate gains values, the extended reference will be absorbed in the next
steps by the control law; it is appropriate to chose the gains in order to consider this
type of re-absorption. The definition of the polynomial is the one made in the section
3.1, and it is defined into the time range t ∈ [0, Trk] where Trk is the time instant of
the k− th strike happen during the walking cycle. The subscript r stands for reference
and indicates the time instant is the one of the reference curves. If, during the walking,
the position reference reaches the strike configuration before the simulated curves does,
the reference is extended over to the range t ∈ [0, T ∗

rk].
T ∗
rk is the extended time instant of the k − th strike that coincides with the simulated

walking model time strike. The choice of extending the reference along the polynomial
functions is dictated by the fact that the regularity of the functions between the strikes,
and their smoothness due to the optimization, are properties that allow us to extend
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preserving the direction that the reference had at the strike instant. This is true only if
the extension persist in a small time range. This happen for all the practical simulations
we had tested in the following (Otherwise some problems happen when the perturbation
of the state variables is introduced).
This mechanism is used also for the intermediate strikes of the gait. The knee strikes are
characterized by a consistent change into the reference slope of the coordinates trend
(like shown in the figure 6.10), and using this reference mechanism, the reference strike
instant’s characteristics are preserved till the effective strike instant of the simulated
model happen. The figure 6.10 is showing the configuration for which the knee strike
happen.
The configuration provides the relation q3 = 0 at the time instant Tknee.
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Figura 6.5: Particular of the knee strike of a simulation result.

The figure is zooming the particular of the knee strike. Notice how the reference line
( qr3 - dashed) should change slope in correspondence of the intersection with the zero
line because of the strike that occur. Despite of this, the reference is extended along the
polynomial function in order to make the simulation follow a proper reference (reference
that has the same direction of the function defined at the strike instant’s reference) till
the strike happen in correspondence of q3 = 0 . When the simulated model reaches the
strike configuration (t=Tknee), the reference is reset and it starts again from t=Tknee,
with the polynomial function of the next part of the walking cycle.

6.3.2 Optimal control parameters

In this section are evaluated the parameters kp and kd that are the gains of the pro-
portional and derivative part of the control law respectively. These gains, have been
set making some consideration on the work (W ) required by the walking system. The
Work for every step is defined like:

Wk =

∫ Tk

0
τ k · qkdt [J ] (6.9)
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Where τ k is the vector of the torques value of the k− th step of the walking and qk is
position vector of the values of the k − th step. This analysis is computed considering
the non perturbed motion of the system beginning with the optimal initial conditions
obtained in the section 5.3.1. The value of the work done by the system is evaluated
for the only first step of the entire walking simulation because it is investigated the
optimal values of parameters kp and kd that makes the system to remains close to the
desired trajectories without diverge from it. In fact, how can be seen from the figure 6.2,
that illustrates the trend of the coordinates with zero control effort and optimal initial
conditions, the system falls down in the third step of its walking, and so, considering the
only first step, preserve to consider values of work of divergent steps like, for example,
the third in the figure 6.2. This happen for same couple of gains that are too little for
keep the system stable, and make it diverges after few steps. The figure ?? is showing
the surface of the work values evaluated making the parameters kp and kd vary into
the ranges: kp ∈ [0, 350] and kd ∈ [0, 150] . All the simulations performed, end at
tf = 3.5 [s] that consist, if the gait is stable, to performing an amount of 6 entire steps.
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Figura 6.6: Surface representing the work of the actuators varying the control input
parameters.

The figure is highlighting the point that individuates the minimum of the surface in
the domain defined before. How can be easily noticed, the surface has a neat minimum
(the minimum is represented by the red mark) in correspondence of really low values
of both the parameters kp and kd. The 3D figure was cutted in correspondence of zero
values of the parameter kd for let the figure to be represented properly, because for
those values, the work (W ) provided very high valors. So, another important thing is
that for lower values (close to the zero) of the parameters, especially for lower values of
the parameter kd , the control system quickly diverges from the optimum. The quickly
diverge is due to the fact that the control actions doesn’t reach so good to keep the
coordinate system to follow the reference, and so, the error (position and velocities
errors) rises, and the control actions, and consequently the work do the same.
The loss of optimality of the control actions can worst till the case in which the system
becomes unstable. It is, for example, when both the parameters are zero. For higher
values from the minimum of kp and kd, the W arise, but less sharply that previously
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and for really high values ( kp more than 300, and kd more than 140), the surface tends
to stabilize its trend around a certain value. Says that, it could be effective focus the
research around the minimum value found in the figure 6.6, thickening the mesh of the
surface and focusing on a much more little range of parameters. From the previous
considerations can be investigated the first part of the previous parameters range in
order to find a local minimum point of the surface that suits our purpose of finding the
lowest possible values of the parameters that ensures stability of the walking (at least
for the first 6 steps).
The figure 6.7 is plotting the desired surface defined into restricted ranges of parameters.
This time, kp ∈ [0, 30] , and kd ∈ [0, 15] .
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Figura 6.7: Surface representing the work of the actuators varying the control input
parameters. It’s a detail of the figure 6.6.

Zooming the area, it is easy to notice how the figure shows a local minimum point of
the surface, and it happen for reasonable low values of the parameters. The minimum
is in correspondence of kp = 19, 5 and kd = 5, 5 . It is important to notice how the
surface, for lower value of the parameters, rise up consistently till the maximum that
is obtained, like expected, in correspondence of the edges in which kp = 0 and kd = 0.
The surface, in addition, rise a little bit for higher values of the parameters (higher
than kp = 19, 5 and kd = 5, 5 ), and then it tends, for high values of the parameters, to
the values of the figure 6.6 showed before. That means that a local minimum value of
the surface exists and we can use that minimum for identifying the optimal parameters.
The optimal parameters are:

kp = 19, 5 kd = 5, 5 (6.10)

The obtained results are better defined considering also the RMS function of the po-
sition error. Those results, in fact, are the best in terms of work computed from the
actuators but nothing is known about the position error we make with these parameters.
Indeed, it is useful to define the quantity:

RMSerr,k = errk
2 + σ2

err,k

[
rad2

]
(6.11)
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errk = qr,k − qk [rad] (6.12)

Where errk is the mean of the position errors ( errk) of the k − th step, σerr,k is
the standard deviation of the errors in the k − th step length, and qr,k is the position
vector of the reference defined in the k − th step. The RMS of the position error is
a value defined with the same characteristics with which was defined the work of the
system. The value is defined for the only first step, and the system is let started with
the optimal initial conditions and with no perturbation.
The obtained surface with the same range of parameters kp ∈ [0, 30], and kd ∈ [0, 15]
is the following figure 6.8;
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Figura 6.8: Surface representing the RMS of the error between simulated and reference curves
varying the control input parameters.

The figure 6.8 is showing the trend of the RMS surface varying the control action’s
parameters. The red mark on the edge of the domain is the local minimum of the
surface, defined in this domain, and the green mark, is the one related to the mini-
mum of the work defined in the figure 6.7; the minimum of RMS is, like expected, in
correspondence of the maximum value of the parameters (in this domain kp = 30 ,
and kd = 15 ), and this is because the control law is always stable due to the control
actions nature and this brings the fact that the error always decrease while increasing
the control parameters.
Physically happen that the control action is much more performant than the optimal
one defined before, and make the system follow the reference much better and quickly
than before, and the position error globally reduce. In this way reduce also the extend-
ed period of each single step due to the dynamic reference described in the previous
section. The extended period of the reference trajectories is function of the control
actions, and in particular, as much the control action is performing, as the extend-
ed period is short, and, to the limit, it becomes zero (that means perfect trajectories
tracking).



106 6.4. SIMULATION WITH OPTIMAL CONTROL PARAMETERS

6.4 Simulation with optimal control parameters

At moment, Dribbel needs to be tested with the optimal control parameter in order
to verify the statements about its stability and good tracking. The parameters of the
simulations are:

- No perturbation of the initial state.

- 3◦ slope of the terrain

- tf = 3, 5 [s] final time of the simulation

- kp = 19, 5

- kd = 5, 5

- x0 = x0,opt initial state conditions are the optimized one

- SM of the walking is SM1∗ with its reference trajectories qr, q̇r and q̈r

All these parameters provide the following coordinate trends result shown in the figure
6.9.

0.5 1 1.5 2 2.5 3

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time [s]

po
si

tio
ns

 [r
ad

]

(c) Position Reference and simulated [rad]

 

 

qr
3

qr
5

qr
6

q
3

q
5

q
6

Figura 6.9: Trend of the simulated and reference coordinates with optimal control law.

Looking at the figure 6.9, can be noticed how the system is stable (the control law
is able to drive the system’s coordinates despite of the tendency of being unstable),
and evolves in time, emulating the reference with a good precision and accuracy. The
amount of error is shown in the figure 6.10 below, and can be noticed how the most of
the position error is related to the coordinate q6 , and the amount is around 3.5 ∗ e− 3
[rad]. At the beginning of the figure the transitional during which the error is going
to stabilize, is probably due to the problem of how many significant digits have been
considered in the definition of the initial conditions of the simulation routines.
From the figure 6.11 can be noticed how the most of the work done by the actuators is
done by the torque τ6 referred to the coordinate q6 . The amount of work done by the
actuators for every step is around the value of W = 0, 012 [J].
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Figura 6.10: Error between the real positions and the reference of the three coordinates.
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Figura 6.11: Work per step; the three columns azure, purple and pink are represented the
work of the toque 3, 5 and 6 respectively.

6.5 Compare with other movement trajectories

The obtained controlled movement of the previous pharagraph is the one with which the
minimum control input is required, and for which the walking is stable. For prove it, it
is useful to test other movement trajectories as reference, and control the system with
the control law defined before. These movemets are obtained trhough the optimization
algorithm imposing some other constraints to the optimization routine. The constraints
were for example:

- Imposing a knee strike’s time instant.

- Impose a final time instant of the gait.
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With these additional constraints, the obtained movements of the system are tested in
simulation with the same control law defined before. The results are the following in
the figures 6.12, 6.13 and 6.14 Imposing knee strike’s time instant referred to the final
time tf − Tknee1 = 0, 15 is obtained:
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Figura 6.12: Trend of the curves represent-
ing the optimizaed coordinates.
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Figura 6.13: Trend of the simulated and ref-
erence coordinates with optimal control law
befined in the previous pharagraph.
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Figura 6.14: Work per step; the three columns azure, purple and pink are represented the
work of the toque 3, 5 and 6 respectively.

And for and imposed final time instant tf = 0, 65 the results are in the figures 6.15 and
6.16
In this case the amount of work for the only first step is around W = 0, 057 [J], amost
5 times the value obtained with the optimal movement obtained in the figure 6.11.
How was expected, the control law designed in the previous paragraph is not able to
drive the coordinates movements as well as was done for the optimal trajectories of
the figure 6.9. Can be noticed how the control law defined before is not sufficient for
a perfect trajectory tracking and it causes instability of walking considering both the
simulations shown in the figures 6.15 and 6.12. How was said in the section 4.5.2, for
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Figura 6.15: Trend of the curves represent-
ing the optimizaed coordinates.
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Figura 6.16: Trend of the simulated and ref-
erence coordinates with optimal control law
befined in the previous pharagraph.

control purpose, the question whether an efficient limit cycle is stable or not is not so
important, because it is always possible to keep the walking stable chosing some high
enough coltrol parameters. Otherwise in this case we are talking about an efficient
controlled walking limit cycle that is unstable with zero control effort. This bring as
consequence that a minimum of control input energy is required for make the walking
be stable over time.
With these considerations, the analysis of stability of this controlled system should
be interesting considering the stability with its nominal control action that is the one
obtained in the section 6.3.2.
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CAPITOLO 7

Global stability of Dribbel

7.1 Introduction

In this chapter, it is investigated the walking stability of Dribbel ’s motion found in the
previous chapters. The walking stability, as outlined before, has not a real sense with
a control purpose. In this case, otherwise, the walking limit cycle obtained with the
control law defined in the section 6.3.2, is such that the control input is optimal in
the sense of trajectories tracking and control action effort (in particular it was found
the optimal control parameters that minimize the work done by the actuators). In this
sense, the purpose of the stability analysis is to investigate the stability of Dribbel walk-
ing down-hill with the optimal control input parameters defined before. The stability
anasysis was developed introducing some perturbations on the system’s state variables
at the beginning of the first step, in order to observe the walking behavior, and if the
system falls down after a certain number of steps (unstable) or if the perturbation is
re-absorbed from the control law and the system continue along its walking limit cycle
(stable).
The concept of walking limit cycle is defined in the section 3.1. To study the of stability
of the walking cycle have to be considered the step-to-step function (Stride function)
of which was discused, again, in the section 3.1.

7.2 Limit Cycle verification

The first step of the analysis of the stability of Dribbel walking is to determine the
walking limit cycle that in this case should be represented by the obtained result of
the optimization routine. For verifying the walking limit cycle we can use another
optimization function of MatLab (lsqnonlin) that solves the last-squares non linear
problem of finding the state variable vector x∗ for which

x∗ = F (x∗) (7.1)

where F (∗) is the step-to-step function, that maps the initial conditions of a step into
themselves of the next step, through the integration of continuous dynamic and through
the projection operators and, the re-labeling operator in addition to the knee locking

mechanism. x is the state variables vector defined like
[
q3 q5 q6 q̇3 q̇5 q̇6

]T
.

x∗ is the fixed point, meaning that the output of the function is the same as the input.
The limit cycle is obtained numerically imposing the minimization of the difference
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between the input and output state varibles minx |F (x)− x| . The implementation
of the previous minimization gives as result the x∗ state variable vector of the limit
cycle walking of the system. The minimization function provides a initial state varibles
vector from which make the minimization proceeding and it was chosen the obtained
optimal state initial vector. The obtained x∗ is really close to the optimal initial state
variables x0,opt defined with the optimization routine of the section 5.3.1.

x∗ =



0, 2527
0, 5053

0
−1, 1437
0, 2693

0

 x0,opt =



0, 2525
0, 5051

0
−1, 1439
0, 2690

0

 (7.2)

The differences between the two state vectors are really pour probably due to numerical
errors of the optimization routine. From the obtained new state variables x∗ , we can
run the simulation of the walking down-hill of Dribbel and verify the limit cycle that’s
expected to obtain with these initial conditions. The limit cycle could be easily shown
through the limit cycle diagram shown in the figure 7.1.
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Figura 7.1: Limit Cycle Diagram. The dark marks indicate the state value of the steps initial
conditions.

The obtained curves are showing how, for every coordinate of the system, the initial
position state variables are mapped the same at the beginning of every step through
the step-to-step function F (∗) (it is not understandable from the diagram but the
simulation was performed for a series of 6 steps in a row). The state variables obtained
is the vector x∗ that is a fixed point of the Poincaré surface into the Poincaré map
showed in the figure 3.2 in the section 3.1.

7.3 Global Stability

The stability analysis was developed considering the Global stability analysis of the
walking mechanism through the use of Basin of Attraction Diagrams. The analysis of
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Figura 7.2: Basin of attraction ∆q̇6 - ∆q̇5
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Figura 7.3: Basin of attraction ∆q̇6 - ∆q̇3

simulation starts from this initial optimal condition perturbating the nominal initial
state (the velocities in particular) and observing the evolution of the coordinates over
time during the walking. There are simulated the dynamics for different velocities using
the fixed point positions of the coordinates of the system ( q3 = 0, 2527, q5 = 0, 5053 and
q6 = 0 ). This method is taken from the one proposed by [42]. A state is considered
stable if its last two consequtive steps of the walking have an initial condition state
vector difference that is within a threshold of 0,001 [rad] for the positions and 0.01
[rad/s] for the velocities . It is also assumed that if a large amount of steps are taken
(50), the model will walk forever. The resulting figures of the basin of attraction
are shown in Figures 7.2, 7.3 and 7.4 with the fixed point marked with a black plus
marker. The basin of attraction are characterized by markers over the considered range
of perturbations, of different colors depending on if the walking is stable or not (red
mark if the walking is unstable, and green if it is).
The basin of attraction have on their axis the perturbation of the state variables.
Considering the perturbation ∆q̇6, is important to say how the respective basin of
attractions in the figures 7.2 and 7.3, present a black line in correspondence of the
value zero of the perturbation ∆q̇6, dividing the diagrams in two areas. The area of
negative values of the perturbation is admissible because there is congruency between
the perturbation and the physical constraints of the model. The area with positive
values, otherwise, is not admissible, because at the beginning of the gait Dribbel has a
compass posture and is not allowed to the lower part of the legs to over-extend. For
those reasons, these diagrams have to be considered for the only area with negative
values of the ∆q̇6 perturbation. The velocities of the initial state vector are defined like
defined in the eqaution (7.3).

q̇ = q̇∗ +∆q̇ (7.3)

Where q̇∗ is the fixed point velocity vector, and ∆q̇ is the vector of the perturbations.
For an easy representation, there were shown the basin of attraction considering two
perturbed velocities at a time. The basin of attraction diagrams are shown in the
following.

How can be easily notice from the figures 7.2, 7.3 and 7.4 is that the range in which
the velocity q̇3 may vary (obtaining a stable walking) is very narrow comparing with
the ranges of the velocities q̇6 and q̇5 that produce a stable walking also with really
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Figura 7.4: Basin of attraction ∆q̇5 - ∆q̇3

high disturbances. For example, taking a look to the figure 7.2, can be noticed how the
velocity q̇6 may vary in a very large range of values of disturbaces. From the figures
emerges that the possible values of the disturbances for which the walking remain stable
is very different from the various considered coordinates. In particular, can be noticed
how the maximum amount of disturb (for which the walking is stable) on q̇6 is (more
or less) one order of magnitude bigger than the disturb on q̇5 and another order of
magnitude bigger than q̇3 disturb. That means that on stability purpose, a disturb
on the velocity of the coordinate q3 compared with a disturb of the same value, but
acting on the coordinate q6, for example,is much more effective to bring the system to
be unstable because of the little basin of attraction that the system has along the axes
of the q̇3 disturb.
For the stability analysis it was considered the ground clearance of the swinging foot
like a determinant parameter for the stability. In particular, if the swinging foot hits
the groung (ground clearance gc = 0) before the time instant in which the knee2 strike
should happen, the simulation is stopped and the walking is considered unstable because
the constraints of the walking model were violate (the compass posture at the end of
the gait was not reached).
Another aspect that is important to outline, is that the dynamic reference that is used
to drive the trajectories tracking control, was not providing saturation on a certain lim-
it value. This brings that when the area of extension of the reference is big (caused, for
example by great perturbances), the reference continue evolving along its polynomial
function without saturate. if the entity of the extension is big, the reference changes in
unexpected way due to the polynomial and the controlled system try to track the refer-
ence introducing the necessery torques to the actuated joints. The dynamic reference,
was developed for using with no applyed perturbations or at least, with just a little
perturbation on the state variables. If the amount of the perturbation is consistent,
the approach with dynamic reference is not proper and should be modified for example
adding a saturation on the references coordinates or thinking another way to construct
the reference.



CONCLUSIONS

In this thesis were analyzed the three mechanical bipedal walkers called Compass,
Dribbel and Knee. It was found that the best model for walking down-hill is Compass,
because (with the physical parameters chosen in this thesis) is the only one that can
exhibit a passive dynamic walking.
With the example of Compass, it was tried to find an efficient walking movement for
the kneed models in order to walk along a terrain of 3◦ slope. The obtained results from
the optimization algorithm shows how Dribbel is the best kneed model for the studied
walk. The obtained results outlined how the best SM for this particular mechanism
is the one that provides only two strikes during a single gait. The first one happen in
correspondence of the knee2 and the second one, at the end of the gait, to the ground.
The optimization algorithm was constructed considering the objective function (OF )
related the torques of the ideal back-driveble actuators, whose are functions of the co-
ordinates and velocities and accelerations of the system. This algorithm was developed
in order to optimize the parameters of the polynomial functions that describe the co-
ordinates over the entire gait period. The optimization results have been considered
of general validity cause of the great amount of optimization routines performed for
considering the most of the possible combinations of step models describing the walking
behavior of the mechanical models.
The optimization results, and the simulation also, showed how no passive dynamic
walking was found for Dribbel and that the obtained passive walking was unstable.
After that was developed a control action in order to make Dribbel to walk performing
a stable walking. The control action was developed with a simple PD control law, but
the parameters of the controller (kp and kd) were obtained such as they minimuze the
work done by the actuators over a single gait period. The parameters obtained in such
way, are optimal parameters for a stable and energy efficient walking behavior. The
obtained parameters were used in order to evaluate the stability of the walking per-
turbing the velocity vector q̇ around its nominal values that are the ones obtained from
the optimization algorithm. The result was that the control law is really robust for
perturbations acting on the velocity q̇6 and q̇5 allowing perturbations bigger that one
order of magnitude respect of the maximum value of the velocity for the q̇6 and of the
same order of magnitude for q̇5. The velocity q̇3 is, on the other hand, really sensitive
to the perturbations; in fact there are allowed perturbations of approximately one order
of magnitude less than the maximum value reached during the nominal walking gait.
The obtained walking motion for Dribbel was the most efficient one and the applyed
control law was defined to be optimal for a stable walking. Those conclusions are valid
for the considered bipedal models (with their physical parameters) and for the control
law used in this thesis. changing the physical parameters or the control law, the results
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may change consistently.
The parameters used are the most common ones used in the litterature that referred
to real walking systems developed in the recent years.
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