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Sommario

In quanto segue si descrive lo sviluppo di un ottimizzatore da utilizzare du-
rante il progetto aerodinamico preliminare di un’ala di un generico velivolo da
trasporto transonico. Si presentano inoltre i risultati per l’ottimizzazione di
un’ala rigida ed elastica.
Durante il progetto preliminare è necessario poter esplorare quante più soluzioni
progettuali possibili nel minor tempo possibile ed a questo scopo sono necessari
strumenti a bassa fedeltà veloci e quanto più possibile affidabili. A questo scopo
è stata utilizzato il codice a reticolo di vortici AVL la cui esecuzione richiede
pochi secondi sui moderni computer di tutti i giorni. L’aerodinamica lineare dei
codici a reticolo di voritci, e la loro generalizzazione al regime comprimibile sub-
sonico attraverso la correzione di Prandtl Glauert, non può essere utilizzata in
una ottimizzazione transonica a causa dell’eventuale insorgere di urti ed effetti
non lineari che non possono essere modellati; a questo scopo è stata sviluppata
una procedura di correzione, basata sulla teoria delle striscie, dei dati di AVL
tramite polari bidimensionali ottenute con il codice CFD EDGE. Nel caso aero-
elastico la struttura è stata modellata in MSC NASTRAN con semplici elementi
di trave.
Come riferimento si è preso il velivolo tre superfici X-DIA sviluppato al Poli-
tecnico Di Milano: ne è stata ottimizzata la geometria dell’ala utilizzando come
variabili lo svergolamento di sette sezioni lungo l’apertura. In tutti i casi si è
utilizzata la tecnica delle superfici di risposta, in particolare per l’ottimizzazione
rigida è stata utilizzata la tecnica del gradient enhanced kriging, mentre nel caso
aeroelastico è stato utilizzato la tecnica del kriging nella sua formulazione clas-
sica. In tutti i casi, tranne l’ottimizzazione aerostrutturale, il design of exper-

iment iniziale è stato raffinato con un approccio di ricerca globale dell’ottimo
chiamato Efficient Global Optimization. Per l’ottimizzazione dell’ala si è se-
guito un approccio innovativo: anzichè consentire un incremento di momento
picchiante per un determinato coefficiente di portanza di progetto l’ala è stata
ottimizzata chiedendo che il velivolo sia trimmato in condizioni di crociera per
ogni geometria proposta dall’ottimizzatore. Il problema del trim del velivolo
è stato affrontato utilizzando tutte le superfici disponibili, con l’obiettivo di
ottenere una riduzione complessiva della resistenza di trim rispetto alla configu-
razione con canard ad incidenza fissa, come nella versione originale dell’X-DIA.
Utilizzare sia il canard sia il piano di coda orizzontale complica il problema del
trim dal momento che non ne esiste più una soluzione unica; si è pertanto deciso
di ricorrere ad una nuova procedura di ottimizzazione, per la quale sono stati
considerati diversi algoritmi di ottimizzazione, comprese nuovamente le superfici
di risposta e la ricerca diretta tramite un metodo del gradiente. Si è deciso di
utilizzare la ricerca diretta principalmente per la sua abilità nel gestire i vincoli
e per la sua facilità di implementazione. La sensibilità alla condizione iniziale
dell’ottimizzatore non si è dimostrata significativa, essendo le variazioni della
funzione obiettivo dell’ordine del decimillesimo del coefficiente di resistenza, nor-
malmente espresso in dragcount, e solitamente inferiore suggerendo un insieme
di progetto relativamente piatto anche quando fosse utilizzata la correzione tran-
sonica di cui si è discusso prima. In sostanza

• l’ottimizzatore aerodinamico propone una geometria per l’ala, una distri-
buzione di twist
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• si procede al trim del velivolo utilizzando il metodo del gradiente

• si valuta il coefficiente di resistenza, corretto per la comprimibilità e la
viscosità, del velivolo in equilibrio.

Ovviamente la soluzione ottima sarà quella di minor resistenza, almeno nel caso
della sola ottimizzazione aerodinamica.
La correzione di comprimibilità è stata applicata alla sola ala ogni volta che
una chiamata di AVL si è resa necessaria, mentre gli effetti di comprimibilità
sulle superifici di controllo sono stati modellati tramite la correzione di Prandtl
Glauert di cui sopra, questo perchè agli alti numeri di Mach l’impegno delle
superfici di controllo è minimo cosicchè esse non risentono di significativi effetti
non lineari: in queste condizioni la correzione di Prandtl Glauert può essere
utilizzata.
La correzione transonica sviluppata è stata imposta chiedendo che il coefficiente
di portanza locale di AVL e di EDGE bidimensionale in quelle sette stazioni
utilizzate per l’ottimizzazione aerodinamica sia lo stesso per i due codici, condi-
zione che si può fare verificare tenendo in considerazione l’incidenza indotta ed
utilizzando un termine di svergolamento aggiuntivo alle geometrie di AVL. La
richiesta condizione di eguaglianza tra i coefficienti di portanza dei due codici
è risolta nuovamente attraverso l’imposizione di un problema di ottimizzazione
non lineare per la presenza stessa dell’incidenza indotta: questo problema è
stato affrontato con le tecniche standard della regressione ai minimi quadrati
non lineari.
Una volta che l’uguaglianza tra i coefficienti di portanza è stata soddisfatta è
possibile calcolare l’angolo di incidenza effettivo delle sette sezioni ed entrare
cos̀ı nelle polari dei profili per ricavarne resistenza e momento picchiante, da cui
ne segue la distribuzione degli stessi lungo l’apertura e, tramite integrazione, i
coefficienti globali relativi all’ala. La ricostruzione del coefficiente di resistenza
è necessario nella procedura di ottimizzazione aerodinamica, permettendo di
introdurre sia il contributo viscoso sia il contributo dell’urto, mentre il coeffi-
ciente di momento e la sua distribuzione sono fondamentali sia per affrontare il
problema del trim sia per il ciclo aeroelastico.
La natura bidimensionale di questa correzione, ed in generale della teoria delle
strisce cui ci si è rifatti, non è in grado di tenere in alcuna considerazione
eventuali effetti tridimensionali. Ci si aspetta che questi siano significativi in
prossimità dell’estremità alare e molto meno nella parte interna a causa del ri-
dotto angolo di freccia.
I risultati dell’ottimizzazione cos̀ı ottenuti sono quindi confrontati con verifiche
EDGE tridimensionali e saranno tratte conclusioni sulle differenze tra i due
modelli.
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Abstract

A computational tool to be used early in the wing design phase of a generic
transonic transport aircraft has been developed and results for both a rigid and
elastic optimization will be presented.
During early design phases runtime is a serious issue so that fast low level code
are needed. Here the AVL Vortex Lattice Method has been used throughout
the work for it can be run quickly on everyday computers. Being in the tran-
sonic regime some sort of correction need to be applied to AVL since it cannot
account for the presence of shock waves and Prandtl Glauert theory cannot
be relied upon in an optimization environment. A strip-theory-like correction
has then been developed using two dimensional transonic CFD data from the
EDGE code. Wing structure is modelled in MSC NASTRAN using a classical
stick model.
The three surface X-DIA rigid aircraft has been taken as a reference and its main
wing has been twist-optimized at seven different spanwise station by means of
a gradient enhanced kriging. The original design of experiment is refined by
means of the Efficient Global Optimization (EGO) approach. A novel approach
to wing optimization has been followed: instead of allowing for a maximum
increase in wing pitching moment at design lift coefficient the aircraft is to be
trimmed at each design sites. The trim problem is dealt with using all three
surfaces, with the objective of reducing trim drag with respect to a fixed canard
aircraft as is the original X-DIA aircraft.
Using both canard and horizontal tail adds some complexity to the trim prob-
lem since no unique solution exist any more: this issue is addressed setting up
another optimization process.
Different optimization strategies has been considered for this purpose includ-
ing simple kriging, gradient enhanced kriging and a gradient based constrained
optimization process which, by the way, turned out to be the most suitable be-
cause of its constraints handling capabilities. Trim sensitivity to its initial guess
has been considered but it appeared to be of no concern resulting in just one
dragcount, and usually less, drag difference suggesting a relatively flat design
space even when the correction was on.
Consequently this work consists of two nested optimizations:

• the aerodynamic optimization procedure gives a candidate twist distribu-
tion

• the aircraft is trimmed with a gradient based method

• the corrected trimmed aircraft drag coefficient is evaluated.

Obviously the optimum twist distribution will be the one with the lowest pos-
sible drag, at least for a pure aerodynamic optimization.
Compressibility correction is applied to the main wing only any time an AVL run
is needed; control surfaces compressibility effects are handled with the aforemen-
tioned Prandtl Glauert theory. At high Mach number control surfaces deflec-
tions are small so that no shock is seen on their surfaces and Prandtl Galuert
theory works fairly well. Transonic CFD correction is applied requiring that
AVL and EDGE lift coefficient at those wing stations used during the aerody-
namic optimization is the same taking into account induced incidence by means
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of a fictitious twist term. Lift coefficient equality is a non linear problem for
the presence of the induced incidence itself and we address it with a non linear
least square technique.
Once lift coefficient equality is satisfied one can enter airfoil drag and pitching
moment curve using the effective angle of attack to compute drag and pitching
moment coefficient distribtution from CFD. Drag reconstruction allows to take
shock and viscous drag into account to be used in the overall twist optimizer
while the pitching moment is needed in both the trim optimization process and
in the jig-1g loop of the flexible wing.
The two dimensional nature of the developed strip-theory correction cannot ac-
count for three dimensional effects, that we believe are significant at wing tip
and much less at inboard stations because of the low sweep angle.
AVL twist-optimized wing will then be analyzed in a three dimensional CFD
computation and results from this two different fidelity model will be compared.
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Chapter 1

Descrizione dell’attività

In questo capitolo si propone una breve descrizione del lavoro svolto. Tutti i
necessari dettagli e i risultati possono essere trovati nei capitoli a seguire.

1.1 Introduzione

Si può affermare che negli ultimi anni l’ottimizzazione numerica di ali e di ogni
parte fondante di un velivolo sia diventata una disciplina a sè stante. Al fine
di introdurre il lavoro si cerca qui di fare una breve e non esaustiva descrizione
delle diverse fasi di progetto di un aereo, e di un ala in particolare.
Come noto il progetto di un aeroplano è un processo lungo ed iterativo che
al giorno d’oggi coinvolge modelli di differente accuratezza in diverse fasi del
progetto stesso. Agli inizi del progetto i progettisti hanno solo un’idea gene-
rale dell’aeroplano e la necessaità di esplorare quante più soluzioni progettuali
possibili nel minor tempo possibile richiede che siano utilizzati semplici mo-
delli analitici. Tuttavia, anche in questa fase del progetto è possibile utilizzare
tecniche di ottimizzazione numerica al fine di estrarre quante più informazioni
possibili dai modelli semplificati a disposizione. Con l’avanzare del progetto si
utilizzano modelli sempre più raffinati e computazionalmente onerosi, cosicchè
l’uso di calcolatori ad alte prestazioni diventa necessario. Quanto appena detto
è poi particolarmente vero per il progetto aerodinamico dell’ala. Una volta che
il progetto preliminare e quello di dettaglio sono stati conclusi si procede alla
fase produzione.
Con il significativo incremento delle prestazioni anche dei calcolatori di tutti i
giorni si è inevitabilmente fatta strada la tentazione di utilizzare i modelli raf-
finati sin dalle primissime fasi del progetto al fine di diminuire drasticamente
il tempo necessario per la vendita1. Questa tentazione scontra tuttavia con i
comunque lunghissimi tempi di calcolo richiesti dal modelli avanzati e dall’alto
livello di dettaglio richiesto dai modelli stessi2: una soluzione al problema può
quindi essere quella di ricorrere a metodi computazionali che richiedono il minor
numero di dettagli pur garantendo la massima accuratezza possibile, in accordo
con le ipotesi fatte nella loro deduzione.

1Inteso come time to market
2Si pensi al livello di dettaglio richiesto dalla preparazione della geometria di un’ala per

un calcolo CFD
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Nell’ambito appena descritto lo scopo del presente lavoro è facilmente intui-
bile: l’obiettivo è quello di sviluppare uno strumento da poter utilizzare nelle
primissime fasi del progetto di un aereo transonico che richieda il minor det-
taglio possibile, ma che faccia anche uso degli strumenti più avanzati possibili.
In quest’ottica l’aerodinamica è decritta da un codice a reticolo di vortice che
sui calcolatori moderni può essere eseguito in pochi secondi. Le nonlinearità
caratteristiche dell’aerodinamica transonica richiedono che una correzione sia
applicata ai risultati lineari dei metodi a reticolo di vortici: sono state quindi
usate soluzioni CFD bidimensionali, che ormai possono essere ottenute velo-
cemente sui laptop computer di tutti i giorni, per applicare una correzione ai
risultati VLM, simile nel principio alla rinomata teoria delle striscie.
Come configurazione di riferimento si è preso l’innovativo X-DIA. Dal mo-
mento che l’X-DIA è stato concepito per esplorare diverse soluzioni aeroelas-
tiche l’aeroelasticità deve essere tenuta in considerazione anche in questo lavoro,
e questo è stato fatto utilizzando un economico modello a travi in NASTRAN.
L’obiettivo è quello di ottimizzare il velivolo trimmato in crociera per la mi-
nima resistenza utilizzando come variabili di progetto lo svergolmaneto di sette
sezioni. Trattandosi di un velivolo a tre superfici, utilizzate tutte per il trim, il
problema dell’equilibrio deve essere affrontato risolvendo un ulteriore problema
di ottimizzazione.
Per l’ottimizzazione aerodinamica sono stati abbondantemente utilizzati metodi
di approssimazioni quali le superfici di risposta e il kriging, mentre per risolvere
il problema del trim si è utilizzato un metodo del gradiente.
I risultati delle ottimizzazioni sono infine stati verificati con calcoli CFD tridi-
mensionali al fine di poter giudicare lo strumento progettato.

1.2 Analisi e ottimizzazione tramite superfici di

risposta

Per l’ottimizzazione aerodinamica, e più in generale in tutto il lavoro, sono stati
abbondantemente utilizzati dei metodi di approssimazione quali le superifici di
risposta e il kriging, sia quello classico sia quello aumentato con il gradiente
della funzione approssimata.
Il primo e probabilmente più diffuso metodo di ottimizzazione è quello medi-
ante superifici polinomiali di risposta, i cui coefficienti sono determinati tramite
il metodo dei minimi quadrati. Sono metodi molto diffusi, ma sono anche ca-
ratterizzati da alcuni svantaggi, in particolare l’incapacità di seguire comporta-
menti fortemente non lineari della funzione che si sta approssimando. E’ noto
che il successo della loro approssimazione dipende anche dal design of experi-

ment e difettano di una chiara procedura di raffinamento dello stesso.
Alcuni dei problemi appena citati possono essere superati con l’uso del krig-
ing, uno strumento molto di moda negli ultimi anni e che è nato nella geo-
statistica. Essendo possibile dividere l’approssimazione data dal kriging in un
modello medio più una deviazione è intuitivo capire come questo strumento sia
in grado di approssimare meglio eventuali comportamenti non lineari. Inol-
tre, dal momento che si assume che la deviazione dal modello medio sia il
frutto di un processo gaussiano stazionario, è possibile definire un er-
rore di approssimazione e, ulteriormente, la probabilità di miglioramento at-
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tesa rispetto alla attuale migliore osservazione della funzione approssimata.
Quest’ultima possibilità rende particolarmente vantaggioso l’uso del kriging e lo
svincola dall’iniziale design of experiment, dal momento che è possibile raffinare
quest’ultimo ovunque sia massima la probabilità di miglioramento attesa. Sono
inoltre state proposte modifiche alla versione originale del kriging, e di partico-
lare rilievo, anche perchè sono state qui utilizzate, sono quelle che prevedono di
sfruttare, oltre alla informazioni sulla funzione approssimata, anche quelle sulle
sue derivate; in questo caso si parla di cokriging, diretto od indiretto a seconda
di come si utilizzino le informazioni sulle derivate.

1.3 Procedura di ottimizzazione

Come indicato in precedenza l’obiettivo di questo lavoro è l’ottimizzazione aero-
dinamica di un’ala transonica. Le variabili di ottimizzazione sono lo svergola-
mento di sette sezioni lungo l’apertura alare. La funzione obiettivo di questa
ottimizzazione è la resistenza globale del velivolo equilibrato che, grazie alla
procedura di correzione, è la somma della resistenza indotta e della resistenza
dovuta alle non linearità del flusso.
Il velivolo oggetto dell’ottimizzazione è il Target Aircraft, una versione in-
grandita dell’X-DIA. Questo è un velivolo a tre superifici e si è deciso di utilizzare
sia il piano di coda orizzontale sia il canard al fine di trimmare il velivolo. L’uso
indipendente delle tre superfici fa si che per affrontare il problema dell’equilibrio
del velivolo in crociera sia necessario risolvere un nuovo problema di ottimiz-
zazione, non essendo più valida la procedura tipica descritta nei manuali di
meccanica del volo. Una volta che il velivolo è stato trimmato si procede alla
costruzione della funzione obiettivo della ottimizzazione aerodinamica, cosicchè
il risultato di questa ottimizzazione sarà la resistenza dell’aeroplano in equilib-
rio.
Ogni volta che sono necessari i coefficienti aerodinamici, sia nel caso del trim
sia nel caso dell’ottimizzazione aerodinamica, si applica la procedura di cor-
rezione che consiste nel richiedere che la distribuzione in apertura del coeffi-
ciente di portanza del codice a reticolo di vortici sia coincidente con la distri-
buzione di portanza ottenuta dai dati bidimensionali CFD una volta che sia
stato tenuto in considerazione l’incidenza indotta. Per soddisfare questa condi-
zione si utilizza un termine di svergolamento fittizio il cui effettivo valore si
determina con un’altra procedura di ottimizzazione, utilizzando la tecnica dei
minimi quadrati nonlineari.
Nel caso aeroelastico la procedura di correzione è anche utilizzata per determi-
nare i carichi agenti sulla struttura.
Infine si è deciso di includere nella ottimizzazione aerodinamica anche un con-
tributo strutturale, determinato in seguito ad una richiamata ad un fattore di
carico pari a n = 2.5.

1.4 Risultati dell’ottimizzazione

In primo luogo si è deciso di ottimizzare l’ala isolata del velivolo al fine di
prendere confidenza sia con la procedura di correzione implementata sia con
il comportamento di un’ala a freccia negativa. Al termine dell’ottimizzazione
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l’ala ottimizzata è stata verificata con un calcolo CFD tridimensionale. I risul-
tati ottenuti sono incoraggianti, considerando l’alto livello di approssimazione
presente nella procedura sviluppata, anche se i coefficienti aerodinamici sono
leggermente sovrastimati.
Nel caso del modello completo, con tutte e tre le superfici, il confronto con l’ala
in configurazione originale dimostra un miglioramento di 3 counts, ma un’analisi
approfondita dimostra anche un design space ragionevolmente piatto. L’analisi
della distribuzione di carico tra le tre superifici dimostra che l’ottimizzatore
tende a scaricare l’ala e ad impegnare le superific di controllo in maniera leg-
germente maggiore rispetto alla configurazione originale. Una nuova verifica
con un calcolo CFD tridimensionale dimostra ancora una volta la validità dello
strumento progettato, anche se in questo caso i coefficienti sono leggermente
sottostimati, probabilmente perchè la correzione discussa è stata applicata solo
all’ala principale. Analizzando i coefficienti relativi all’ala si possono trarre però
le stesse conclusioni tratte per il caso test dell’ala isolata.
Nel caso del velivolo elastico il miglioramento stimato dallo strumento qui pro-
gettato è di soli due counts, tuttavia le verifiche ad alta fedeltà confermano
questo trend. La distribuzione di svergolamento sotto carico dell’ala elastica co-
incide ragionevolmente con quella dell’ottimizzazione rigida, con un solo count di
differenza tra l’ala rigida e quella flessibile, e questo conferma che effettivamente
è stato raggiunto l’ottimo, ottimo piuttosto piatto per giunta dal momento che
la distribuzione di twist a scalo è stata leggermente modificata, con riferimento
ad esigenze costruttive, rispetto alla proposta originale dell’ottimizzatore.
L’inclusione di un termine strutturale alla funzione obiettivo aerodinamica per-
mette di portare a termine un trade study evidenziando esigenze opposte tra
aerodinamica e struttura.

1.5 Conclusioni e sviluppi futuri

In questo lavoro è stato presentato lo sviluppo di un ottimizzatore aerodinamico
da utilizzare durante le fasi preliminari del progetto. Tutti gli obiettivi attesi
sono stati raggiunti. La necessità di disporre di uno strumento rapido e suffi-
cientemente accurato è stata soddisfatta ed è stata ottimizzata l’ala del Target

Aircraft tenendo in considerazione l’aerodinamica, le strutture e la meecanica
del volo.
Il centro di questo lavoro è la procedura di correzione che consente al codice
aerodinamico AVL di tenere in debita considerazione le eventuali onde d’urto.
Tuttavia, invece di utilizzare AVL in tutto il lavoro si è deciso di sfruttare le
sue caratteristiche di linearità attraverso l’uso di tecniche di approssimazione
che hanno consentito di poter risolvere il problema dell’ottimizzazione con ef-
fettivamente pochi runs aerodinamici, riducendo ulteriormente il costo compu-
tazionale. Esattamente uno degli obiettivi che ci si era posti inizialmente.
I risultati di questa ottimizzazione sono stati confrontati con calcoli CFD ad alta
fedeltà ed è stato trovato un buon accordo tra i due metodi, ma, ciò che è più
importante, la procedura sviluppata appare in grado di stimare correttamente le
variazioni delle figure di merito tipiche dell’ottimizzazione aerodinamica quando
confrontata con gli stessi risultati CFD. Questo ha due maggiori conseguenze:

• lo strumento sviluppato può essere utilizzato nell’ambito del progetto pre-
liminare per esplorare quante più soluzioni possibili con un costo compu-
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tazionale minimo

• può essere usato in una ottimizzazione multidisciplinare multifedeltà come
modello a bassa fedeltà, riducendo di molto anche il costo complessivo del
progetto avanzato. Si suggerisce per il futuro l’utilizzo del multifidelity

kriging. Nel caso si rimanga in un ambito esclusivamente computazionale
si raccomanda l’uso del gradient enhanced multifidelity kriging

Lo strumento sviluppato può quindi essere utilizzato sia per equilibrare il ve-
livolo, sia per la sua ottimizzazione in configurazione di crociera: questo ha
rappresentato un aspetto caratteristico del presente lavoro, dal momento che il
trim del velivolo è più utilizzato per la determinazione dei carichi agenti che non
per la valutazione delle performance aerodinamiche. Il confronto con il modello
ad alta fedeltà, che pure ha dato buon accordo, come detto sopra, deve essere
portato a termine in modo più formale attraverso uno studio di convergenza
di griglia per il modello CFD ad alta fedeltà, argomentazione che qui non è
stato possibile portare a termine a causa delle limitate risorse computazionali
disponibili.
Relativamente ai piccoli incrementi osservati tra la configurazione originale e
l’ala ottimizzata si ritiene che siano dovuti alla natura delle variabili utilizzate
e al loro limitato numero. In futuro si dovrebbe consentire almeno la variazione
della forma dei profili, attraverso opportuna parametrizzazione, ed in questo
caso si ritiene che i miglioramenti dell’ottimizzazione saranno significativi.
La distribuzione di portanza ottenuta dall’ottimizzazione aerodinamica tende a
caricare maggiormente le estremità alari. Questa caratteristica è comune a tutte
le ali a freccia, ma qui si ritiene sia anche dovuta alla natura dell’ala a freccia
negativa, come descirtto durante l’analisi dei risultati. Questa distribuzione di
portanza è sconsigliabile da un punto di vista della sicurezza del volo perchè
tenderà a far stallare prima le estremità, anche se calcoli a bassa velocità non
sono stati effettuati. In una futura ottimizzazione si consiglia di tenere in consi-
derazione anche questo aspetto, anche se un vantaggio del velivolo tre superfici
è proprio quello di avere il canard: indipendentemente dalla distribuzione di
portanza dell’ala se il canard stallasse prima dell’ala principale farebbe nascere
un momento picchiante in grado di abbassare l’incidenza del velivolo ed allon-
tanare l’ala dalla condizione di stallo, avendo ancora a disposizione il piano di
coda orizzontale per il controllo longitudinale.
I risultati dell’ottimizzazione rigida ed elastica dello svergolmento sotto carico
di crociera sono ragionevolmente gli stessi a conferma che è stato raggiunto il
vero ottimo possibile. In entrambi i casi è stato trovato un design space piatto
e si ha l’impressione che questo sia dovuto alla procedura di correzione, anche
se in letteratura è possibile trovare diverse discussioni riguardo la natura piatta
del insieme di progetto aerodinamico.
La superficie di risposta aerostrutturale necessita certamente di ulteriori ana-
lisi con l’obiettivo ultimo di costruire il fronte di Pareto, ma in generale gli
studi comparativi qui condotti hanno dimostrato che le esigenze aerodinamiche
e strutturali sono in contrasto, e il designer deve tenere effettivamente in consi-
derazioni entrambe. In futuro si intende aggiungere anche un contributo relativo
alle qualità di volo alla presente ottimizzazione multidisciplinare.
Relativamente alle tecniche di ottimizzazione si è d’accordo con quanto si rin-
viene facilmente in letteratura. Non esiste un algoritmo di ottimizzazione unico
per tutti i problemi. Ciascun problema ha le sue peculiarità che devono essere
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tenute in debita considerazione, cos̀ı come ogni procedura di ottimizzazione pre-
senta i propri vantaggi e svantaggi. In ogni caso si ritiene l’uso delle superfici di
risposta più vanataggioso rispetto ai metodi diretti dal momento che forniscono
al progettista una maggiore quantità di informazioni che può successivamente
essere utilizzata.
Infine i buoni risultati ottenuti sono stati certamente favoriti dalla limitata frec-
cia del Target Aircraft cosicchè lo strumento qui sviluppato andrebbe verificato
su ali con freccie maggiori. Ci si aspetta un deterioramento dei risultati a causa
dei maggiori effetti tridimensionali.
Come obiettivo ultimo ci si pone quello di realizzare questa procedura di ottimiz-
zazione anche con strumenti ad alta fedeltà cercando, comunque, di contenere
l’onere computazionale e temporale ricorrendo, ancora, all’uso delle superfici di
risposta.
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Chapter 2

Introduction: wing

optimization

It’s safe to state that over the past few years wing optimization has matured
to a discipline of its own. A wing - optimization literature search quickly ends
up with plenty of papers where the most different approach to the optimization
problem are investigated. Here I’ll try to sort things out a bit in order to set
the stage for the work to be described later.
As well known aircraft design is a long iterative process involving different fi-
delity models at different design phases. At the beginning of the design process
designers just have a basic idea of the overall aircraft so that simple analytical
model as those described in [47] are needed. Even at this stage, Mason [8] and
then Raymer [47, 13] shown that one can use optimization procedure to enhance
its design. As the design keeps going aircraft models get more and more refined
and this is true for the wing too. During these advanced phases high speed
computers are needed because of the time consuming nature of aircraft mod-
els simulations. Focusing on the aerodynamic design of the wing, in the past
designers chose main wing parameters based on experience, nowadays it’s com-
mon to rely once more upon optimization procedure, as thoroughly described
by Jameson in [32]. Once the whole airplane has gone through this detailed
design phase it is supposed to go into production.
But with the wide spread of high speed personal computers the temptation, and
maybe the ultimate long term goal, is that of running expensive and detailed
simulation since the beginning of the design phase with the underlying idea that
the sooner one works on detailed models the shorter will be the time to market.
Especially with wing design CFD applications in mind, the use of detailed mod-
els since the beginning looks weird at least; even not considering run time issues
associated with CFD simulations the need for a detailed geometrical description
CFD has makes it an unviable option at the beginning of the design process.
What one can try to do, while still holding on the idea of using computational
methods in the early stage of the design process, is to rely on those methods that
require as few geometrical details as possible while retaining the most possible
accurate flowfield description keeping run time issues away.
Things get even worse when there’s the need to consider structural elastic effects,
something common nowadays because high speed aircraft are usually character-
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ized by very flexible wings.
With the above picture in mind the aim of the present work is easily set: to
develop a fast tool to be used to help the design of a transonic aircraft using
as little geometrical detail as possible, while heavily relying on the highest level
computational methods available. As stated above, traditionally during prelim-
inary designs simple analytical formulae were used, today however even laptop
computer can run simple aerodynamics codes, as a vortex lattice method, in
a couple of seconds so that their power can be fully exploited. Being in the
transonic regime however means that shock waves will most likely be present.
Indeed the goal of a pure aerodynamic optimization is a shock-free wing, and
since these features can only be captured by an advanced CFD methods we
need a way to make the VLM feel the shocks. Since our aim is to keep the
computational cost down we will compute 2D airfoil CFD solutions and apply
a strip-theory like correction to the bulk VLM results.
As the reference configuration aircraft we take the innovative X-DIA aircraft:
it’s innovative because it’s a three surface aircraft, intended to take advantage
of the presence of both the canard and the horizontal tail to reduce trim drag,
and because it’s exploit some unique aeroelastic concept [49, 2, 48], so that
aeroelasticity need to be taken into account. To do this we will be using a cheap
beam-like finite element model that can be run quickly on everyday computers.
Our main goal is to optimize wing’s twist for drag minimization purposes: usu-
ally wing optimization is performed on a isolated wing model, or even on a whole
airplane model taking into account trim issue only by specifying a pitch mo-
ment constraint [32]. While this is certainly the most common approach there’s
no gaurantee that this twist optimization process will yeld the best possible
trimmed wing. Besides, we had the canard to keep into account, considering
that while it should help in reducing trim drag it will certainly affect the aero-
dynamic of the main wing: we then came up with an innovative procedure to
optimize the wing. At every twist configuration to be evaluated the optimizer
need to solve the trim problem so that the optimized wing will really be the best
possible wing in cruise. However, we are dealing with a three surface aircraft
and to trim the aircraft we need to set up another optimization routine, so that
we have two nested optimization: the aerodynamic optimization routine gives
a candidate configuration, and once the trim optimization routine manage to
trim the aicraft we can proceed to aerodynamic or aerostructural cost function
evaluation. Results achieved this way will then be checked with a couple of
CFD runs as the final validation of the method.
We heavily relied on metamodeling technique, both regressing response surface
and interpolating techniques such as the kriging: rigid twist optimization is
performed with a gradient enhanced kriging, while aerelastic wing optimization
is operated with a traditional kriging. Initial DOEs are sistematycally refined
by means of the expected improvement approach in the rigid case while for the
aeroelastic wing we used a large sampling plan of 750 design sites: this allowed
us to achieve a global optimum according to our specified cost function. The
trim problem is dealt with using a gradient based algorithm: local convergence
may be an issue here, but it turned out it wasn’t, suggesting a flat design space.
This work is structured as follows: the next chapter, chapter three, will be spent
on pure theoretical aspects of surrogate based analysis and optimization, chap-
ter four will go specific on the procedure used in the aeroelastic optimization,
mainly describing the transonic correction procedure. Chapter five will present
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applications with rigid and aeroelastic optimization results. Finally in chapter
six we’ll draw conclusions and investigate possibile future development.
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Chapter 3

Surrogate based analysis

and optimization

In this chapter we are going in some of the mathematical details of those sur-
rogate methods used in this work. What follow is by no means a thorough
review of metamodeling techniques and applications, neither it is supposed to
be exahustive with respect to mathemathical details and derivations.
In the first section a review of the most meaningful literature is given, then
metamodeling techniques will be presented.

3.1 Literature review

When first facing the subject of optimization one can certainly get confused by
the amount of literature on the subject.
Just to scratch the surface of response surface methods and metamodeling one
should consult the excellent work from Forrester, Sobester and Keane [35].
There the reader can find a general picture of metamodeling, including de-
sign of experiment, regressing response surface, Radial Basis Function, kriging
methods and support vector regression, with the emphasis on the kriging and
its various aspect. Close to the book goes the paper from the same authors [3]
and the works of Queipo et al. [43]. Especially in [3] one get the idea that in the
aerospace field the most use metamodeling techniques are response surface and
kriging methods. This idea is further developed in Giunta [1], where the author
compares regressing against interpolating metamodels, and in Simpson et al.
[52] where a multidisciplinary optimization environment is taken into account.
Application of response surface methods to transonic aerodynamic design can
be found in the work from Kim et al. [22] and in that from Mason et al [50]
regarding the supersonic regime.
A thorough description of the kriging as applied to the aerospace industry can be
found in the work from Booker [9] where an interesting discussion on the initial
DOE can also be found. Since that plenty of work regarding kriging application
to aerodynamic or multidisciplinary design can be found in the literature. To
name just a few there’s the work of Chiba [33], that of Keane [36] and the one
of Kroo et al. [15]. In all of these work the reader can find anything from simple
application of the basic kriging to the multifidelity kriging. Works from Alonso
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et al [11], Mavriplis et al. [54] and Laurenceau et al. [27, 28] deals with the
powerful gradient and hessian enhanced kriging. A compulsory reference here,
because of the expected improvement approach used later, is also the work of
Jones et al [14]. Finally we’d like to note that all the surrogates used in this
work have been handled with the powerful MatLab Surrogates Toolbox from
Viana [53].
Changing the subject to the most common direct optimization methods one
can find a very good review with applications in the work from Keane et al
[44]. There one can find a description of most of the methods used here, either
global or local; an intresting description in global optimization methods applied
to multidisciplinary optimization can also be found in Hajela [18]. Many appli-
cation of gradient based methods with the adjoint method can be found in most
jobs from Jameson, e.g. [31, 23, 24]. Their details will not be dealt with here.

3.2 Metamodeling techniques

Different metamodeling techniques aims at cheaply simulate the behaviour of
an expensive engineering black box function. Let’s say here that f(x) is the
expensive k-variable continuous black box function that we want to simulate, so
that x ∈ D ⊂ Rk. From now on D will be referred as the design space. Beyond
continuity we can grasp at the function only by means of discrete samples

y(xi) = f(xi) i = 1 . . . ns

that are expensive to run and therefore need to be handled with care, ns being
the number of samples. Once the set (xi, y(xi)) has been gathered we will build

up an inexpensive approximation f̂(x) to the true function f(x). Different

metamodeling techniques differ in the way f̂(x) is obtained.
There are many ways to define the initial set (xi, y(xi)), called the sampling

plan: full factorial design, latin hypercube, orthogonal arrays and many other.
While it is known that the goodness of fit of the response surface depends on
the initial sampling plan here only latin hypercube sampling has been used
because functions to be fitted were either simple function, such as hyperplane
or hyperparabola, or because after the initial sampling plan some sort of error
based refinment is used. Description of how to build a latin hypercube can be
found in [35] and in the literature there referenced, while a review of some of
the available design of experiment technique can be found in [43].

3.2.1 Polynomial response surface methods

Polynomials response surface methods are probably the most widely used form
of surrogate model. They develop the approximation model by fitting the sample
data using a least square regression technique. The true response can be written
in the following form:

y(x) = f(x) + ǫ (3.1)

being f(x) the unknown response function and ǫ a random error. Polynomial
approximation of equation 3.1 at sampled locations can be written as

yi =

m
∑

j=0

βjx
j
i + ǫi i = 1, ..., ns (3.2)
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or in matrix form as
y = Xβ + ǫ (3.3)

being y = [y1, ..., yns ]
T
, and

X =
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(3.4)

β is the (m × 1) regression coefficients’ vector, ǫ is an (ns × 1) vector of random
errors and m the order of the polynomial.
The vector of least squares estimator is determined by minimizing the classical
quadratic figure of merit

L =

ns
∑

i=1

ǫ2i = (y − Xβ)T (y − Xβ) (3.5)

so that
b =

(

XTX
)−1

XTy (3.6)

A questions remains about the order of the polynomial to be used, indeed some
authors suggest to determine the appropriate order using a statistical approach.
No matter what the estimated order is, using high order polynomial might
lead to data over-fitting and unwanted oscillations, the well known Gibbs phe-
nomenon.
Some authors also argue that polynomial response surface model are not well
suited to capture non-linear, multi-modal, multi-dimensional design space such
as those encountered in engineering design even though they still prove use-
ful when parameters’ range is limited and when dealing with a low dimensions
design space; while this might be true when considering general engineering
function, in the case of aerodynamics optimizations convergence to local mi-
nima, as that eventually assured by low degree polynomials response surface,
should not be considered as an issue. Indeed classical gradient based optimiza-
tion methods used for these kinds of problems converge always to the same
minimum, as shwon by Jameson [23, 24, 31, 6, 32, 4]. Indeed, many works
can be found were polynomial response surface methods are used in transonic
aerodynamic optimization, such as reference [5]. One serious drawback might
be the dependence on the initial sampling plan and the lack of a clear-cut infill
point strategy. This matter will be addressed later while discussing the efficient
global optimization approach.
An advantage of polynomial response surfaces is the ability to quickly identify
the effect of each variable in the design space from regressing equation 3.2, a
very quick model fitting process and response evaluation, and the ability to yeld
an equation for the approximated function.
In this work up to second order polynomial response surface have been used.

3.3 The kriging method

The kriging method has its origin in geostatistics and has been first applied
to engineering design by Sacks et al. [30]. Since that pioneering work a lot of
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kriging variants have been proposed, the most famous are the multifidelity and
the gradient enhanced kriging. We will provide details only for those kriging
variants used here, starting from the simple kriging from Sacks and Booker
[9, 30].

3.3.1 Simple Kriging

While still in the framework of function approximation the kriging technique
uses a two component model written as

y(x) = f(x) + Z(x) (3.7)

f(x) being a global underlying model, or mean model, and Z(x) is the realization
of a stationary gaussian random process that creates a localized deviation
from the mean model; its covariance matrix is

Cov (y (xi) , y (xj)) = σ2R [R(xi,xj)] (3.8)

where R is the correlation matrix obtained computing a user specified correla-
tion function R(xi,xj) between any two sampled data points xi and xj .
We’ll leave the correlation function aside for a while to get the whole picture of
the kriging method.
Traditionally the mean model is a constant, but this is not a constraint, indeed
in this work up to second order polynomial mean models have been used. For
the purpose of the following discussion let us consider a constant mean model.
In this case f(x) = β, so that equation 3.7 is

y(x) = β + Z(x) (3.9)

and the estimated model of equation 3.9 is

ŷ = β̂ + rT (x)R−1
(

y − f β̂
)

(3.10)

ŷ is the (ns × 1) column vector of response data and f is an (ns × 1) column
vector filled with ones.
There’s one last term from equation 3.10 that need to be specified and that is
the vector r(x) which is the correlation vector between x and the sampled data
points, namely

rT (x) = [R(x,x1), R(x,x2), ..., R(x,xns)]
T

(3.11)

The value for β̂ comes from a generalized least square solution

β̂ =
(

fT R−1f
)

−1
fTR−1y (3.12)

Basically, chosen the correlation function, one can evaluate the correlation vector
at a given point r(x) and β̂ and in this way compute the kriging approximation to
the true unknown function. As stated above the correlation matrix R(xi,xj) is
evaluated chosing a correlation function. There exist many correlation functions
and in principle one can use any continuous function, but in practice the most
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used are Gaussian exponential1

R(xi,xj) = exp

[

−

k
∑

t=1

θt|xit − xjt |
2

]

(3.13)

and spline function

R(xi,xj) =

k
∏

t=1







1 − 15 (θt|xit − xjt |)
2

+ .5 (θt|xit − xjt |)
3

0 ≤ θt|xit − xjt | ≤ 0.2

1.25 (1 − θt|xit − xjt |)
3

0.2 ≤ θt|xit − xjt | ≤ 1
0 θt|xit − xjt | ≥ 1

(3.14)

This two correlation function are compared in figure 3.1. The choice of the

Figure 3.1: Comparison between gaussian and correlation function used in this
work

correlation function is rather arbitrary, and among the two most used some
authors claim to get better matrix conditioning with the spline function. We
didn’t experience any matrix conditioning issue when using gaussian correlation
function in the work to follow and we also repeatedly compared gaussian with
spline function experiencing negligible differences.
No matter what correlation function is used it will always depend on some pa-
rameter or set of parameters, that we called θt here, that need to be determined
before the kriging response can be computed. Values of θ are computed max-
imizing the maximum likelihood estimate, actually minimizing the following
functional

J (θt) = −

[

ns ln σ̂2 + ln ‖R (θt) ‖
]

2
(3.15)

1Please note that some authors use also

R(xi,xj) = exp

[

−
k
∑

t=1

θt|xit − xjt |
pt

]

leaving pt to be determined with the maximum likelihood estimation to be described later.
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where the variance of the random process σ̂ is defined as

σ̂ =

(

y − f β̂
)T

R−1
(

y − f β̂
)

ns
(3.16)

As can be seen by applying proper substitution for β̂ and σ̂ in 3.15 the func-
tional is non linear and some kind of global search needs to be emplyed2.
Once all the θk values have been found one can build the kriging response:
by switching from polynomial response surface to kriging the user has lost the
expression for the response, having gained a nonlinear function modeling capa-
bility.
Should the number of training data be too high, either because of a large ini-
tial sampling plan or because of an ad hoc refinement process, all the matrix
operation involved in kriging build up process and model estimation might take
a long time to be performed, in that case a multi - CPU parallel approach is
necessary. While in the work to follow no parallel approach has been pursued it
has been found that when the number of training data is more than a thousand
a parallel approach is recommended.

3.3.2 Gradient enhanced kriging

If first derivatives of the true function evaluated at design sites are known it
is possible to use this information to build a more accurate response surface.
Indeed if higher order derivatives are available one can think of using all this
information to augment the kriging. There are basically two ways to accom-
plish this: the first one, called direct cokriging, exploits gradient information
directly, while the second, named indirect cokriging, retains the original kriging
formulation on an increased number of sampled data located in the proximity
of the original sample point. These added sample points are determined by a
Taylor series expansion using gradient information, namely

xadd
i = xi + ∆xi

y
(

xadd
i

)

= y (xi) + ∆xT
i

∂y(xi)
∂x

(3.17)

Both methods have been used, the first being more cumbersome in its derivation
but probably more accurate, the second being extremely easy to apply but less
accurate. Both can be generalized to higher order derivative so that a choice
among the two is more a matter of personal taste. In the work to follow we
used the direct cokriging approach, and it will be outlined here.
In the original kriging method the covariance matrix of Z(x) in equation 3.7 is
equation 3.8. The covariance of the direct cokriging method should be modified
to account for gradient information:

Cov (y (xi) , y (xj)) = σ2R [R(xi,xj)]

Cov
(

y (xi) ,
∂y(xj)

∂xk

)

= σ2R
∂R(xi,xj)

∂xk

Cov
(

∂y(xi)
∂xk

, y (xj)
)

= −σ2R
∂R(xi,xj)

∂xk

Cov
(

∂y(xi)
∂xk

,
∂y(xj)

∂xl

)

= −σ2 ∂R(xi,xj)
∂xk∂xl

(3.18)

2Usually genetic algorithm or pattern search
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so that the covariance matrix of the gradient enhanced kriging looks like

Rc =





Cov (y (xi) , y (xj)) Cov
(

y (xi) ,
∂y(xj)

∂xk

)

Cov
(

∂y(xi)
∂xk

, y (xj)
)

Cov
(

∂y(xi)
∂xk

,
∂y(xj)

∂xl

)



 (3.19)

Kriging prediction equation remains the same in the cokriging too, so that

ŷc = β̂c + rT
c (x)R−1

c

(

yc − fcβ̂c

)

(3.20)

and
β̂c =

(

fT
c R−1

c fc
)

−1
fT
c R−1

c yc (3.21)

the difference here being that

yc =
[

y(x1), y(x2), . . . , y(xns),
∂y(x1)

∂x1
,

∂y(x1)
∂x2

, . . . ,
∂y(xns)

∂xk

]

is the vector of sampled data and associated derivative with respect to each
variable,

fc =
[

1, 1, . . . , 1, 0, 0, . . . , 0
]

is a vector of ns ones and ns × k zeros and

rT
c (x) =

[

Rc(x,x1), Rc(x,x2), . . . , Rc(x,xns)
]T

Parameter estimation is performed as in the standard kriging.

3.3.3 Infill strategy

As stated above polynomial response surfaces suffer the lack of an ad hoc infill
point strategy with which refine the initial sampling plan. One might search the
response surface to find its minimum and, after evaluating the true function,
add the location of this minimum to the original sampling plan. While this
approach might certainly work when considering simple single-minimum func-
tion, there is no guarantee that it will converge to the global optimum in case
of multi-minima non linear function. Actually this convergence depends heavily
on the intial design of experiment. If the DOE puts a design site near the global
minimum then there’s the chance to find the global minimum by the refinement
approach stated above, but if this won’t happen the procedure will get stucked
in just a local minimum. Using higher order polynomial might work in getting
out of local minimum but suffers the already mentioned drawback of unwanted
oscillations so that this approach is practically unviable.
One of the main advantage of the kriging method is that, since a gaussian ran-
dom process has been postulated in its derivation, an equation for uncertainty
estimation is available, see e.g. [35, 30],

Ŝ(x) = σ̂

(

f − rT (x)R−1r(x) +

(

f − fR−1r(x)
)2

fT R−1f

)

1

2

(3.22)

One possible infill strategy is then to find maximum uncertainty location, evalu-
ate the true function and then augment the initial sampling plan. This approach
is extremely useful when the goal is to build up an accurate approximation of
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the unknown function and will certainly work in an optimization environment,
its convergence to the global minimum will most likely be slow because the infill
criteria is minimizing uncertainty and makes non inference on the true function
whatsoever.
To accelerate convergence to a global optimum, and keeping in mind the gaus-
sian random process assumption, one can try to find the location where the
amount of improvement on the best observed value so far is maximum. In order
to do this it’s necessary to define the probability of improvement upon the best
value so far, namely I(x) = ymin − y(x), ymin being the best observed value
so far and y(x) being kriging response at location x. The expected amount of
improvement is then

E [I(x)] =

{

I(x)Φ
(

I(x)
σ̂(x)

)

+ σ̂(x)φ
(

I(x)
σ̂(x)

)

σ̂(x) > 0

0 σ̂(x) = 0
(3.23)

and we add an infill point to the original sampling plan where equation 3.23 is
highest; this location is often searched with a global search method. In equation
3.23 Φ is the cumulative normal distribution function, while φ is the normal
probability density function.
This is Jone’s Efficient Global Optimization algorithm [14], and it is arguably
one of the most efficient global optimization methods available3; its complete
algorithm can be stated as follows:

1. True function evaluation at original sampling plan

2. fit the kriging

3. search for maximum expected improvement location

4. evaluate true function at the above maximum expected improvement lo-
cation

5. iterate points two, three and four until maximum number of true function
evaluations is reached

Following this approach there might be the chance that once the global optimum
has been found, the procedure outlined above will add another infill point very
close or even at the same location of the optimum just found, resulting in matrix
conditioning issue. This situation can be avoided by adding a distance check

on every new infill point: when the infill point is close to an already sampled
location the optimization process is stopped.
On a practical approach, considering the advent of massively parallel computa-
tion, one might want to add more infill point at a time. One way would that
of using a multiple start procedure with a local optimizer when looking for the
maximum expected improvement. Another approach is that of fitting differ-
ent surrogate and add an infill point where each surrogate suggest it is needed
according to a user specified criterion: this might work well as a standalone
application or even when using an ensemble of surrogate, see the work of Viana
for more details [16, 17, 51].

3Many variants of the methods has arisen since then, the most notable being the Gener-

alized Expected Improvement and the Weighted Expected Improvement. None of them has
been used in this work.
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Chapter 4

The optimization

environment

In this chapter we will describe the tools used in the optimization process and
how it was set up. We won’t dwell in VLM details, but we’ll describe our
correction procedure at length, and detail the aerostructural optimization pro-
cess. Aircraft under optimization will be described first. Flowcharts for our
optimization processes can be found in figures 4.1, 4.2 and figure 4.3

Figure 4.1: Flow chart for twist optimization, rigid aircraft

4.1 The Target Aircraft

The aircraft currently under optimization is the Target Aircraft, an upscaled
variant of the X-DIA model which is a proof-of-concept aeroelastic aircraft
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Figure 4.2: Flow chart for twist optimization, elastic aircraft

model used in the framework of the UE-founded 3AS1 project.
The TA three surface airplane features a 15 degs negative sweep mid-wing with
a T tail configuration as can be seen in figure 4.4. Geometrical details can be
found in table 4.1.

Scientific debate about the three surface aircraft is endless. Many authors
claim for three surfaces superiority, as Kendall in [40, 39, 38], because of the
theoretical ability to trim the aircraft with the minimum induced drag possible,
no matter where the center of gravity is, provided both the canard and the
horizontal tail are independently operated. The situation however is not so
clear-cut, drawbacks being additional weight, complexity and interference drag
[47], but it is believed that the TA configuration could results in a synergic
cooperation between structure and aerodynamic toward weight saving and drag
reduction [42].
Cruise conditions for the target aircraft are as in table 4.1

4.2 Twist optimization environment

The design goal of the present work is to develop a geometry with the lowest
drag in cruise, which at the same time satisfies lift and pitching moment con-
straints: to do this we take seven spanwise main wing station of the baseline
three surface X-DIA aircraft and use their twist as design variables leaving fixed
their geometric properties.

Many other constraints are possible, geometric constraints on the shape of
the wing and structural constraints are the most common, but these have not
been applied here because of the nature of our design variables. Later we will
address root bending and torque moment minimization toghether with drag
minimization in a multiobjective environment.

1The Active Aeroelastic Aircraft Structures project
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Figure 4.3: Flow chart for twist optimization, elastic aircraft, 2.5 g trim

Based on the above ideas, the mathematical formulation of the optimization
problem may be expressed as follows.

min CD

w.r.t.

CL = CLdesign

CM@CG
= 0

(4.1)

This is not the most common approach to define a wing optimization problem:
usually one look for the minimum drag wing that yelds the design lift coefficient
with a maximum allowed increase in pithcing moment, so that, see Jameson et
al [6], the problem is stated as

min CD

w.r.t.

CL = CLdesign

CM ≥ CMmin

(4.2)

The optimization problem of equation 4.2 is defined this way because usually
only the wing is modeled in the computational environment. When, fuselage,
engine and tails are modeled their geometry is held fixed during the optimization
just to account for aerodynamic effect on the wing under optimization, lift and
pitching moment constraints being a way to keep the trim problem into account.
On the other hand, optimization problem formulation as in equation 4.1 deals
explicitly with the trim problem: our optimum wing is a wing that has the
mimimum trimmed drag coefficient. This is achieved by modeling the wing,
the canard and the horizontal tail and chosing canard, horizontal tail deflections
and angle of attack to trim the aircraft everytime a set of aerodynamic design
variables is evaluated: basically every time a set of design variables, a twist
distribution, is evaluated a trim problem for the three surface aircraft is solved.
We believe this is a more realistic and accurate way to optimize the wing,
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Symbol Meaning Value

S
[

m2
]

Wing surface 75
b [m] Wing span 30
AR Wing Aspect Ratio 12
λ Wing Taper Ratio 0.5

Λ [degs] Wing Sweep Angle -15
Root airfoil NACA 632 − 215
Tip Airfoil NACA 632 − 212
MAC [m] Mean Aerodynamic Chord 2.59

SC

[

m2
]

Canard surface 25
bC [m] Canard span 14.14
ARC Canard Aspect Ratio 8
λC Canard Taper Ratio 0.5

ΛC [degs] Canard Sweep Angle 0
Root airfoil NACA 632 − 215
Tip Airfoil NACA 632 − 215
MACC [m] Mean Aerodynamic Chord 1.837

SHT

[

m2
]

Tail surface 40
bHT [m] Tail span 11.8
ARHT Tail Aspect Ratio 7
λHT Tail Taper Ratio 0.5

ΛHT [degs] Tail Sweep Angle 20
Root airfoil NACA 64 − 009
Tip Airfoil NACA 64 − 009

MACHT [m] Mean Aerodynamic Chord 1.7519

Table 4.1: TA’s geometric properties

Altitude [ft] 26000
Mach number [-] 0.67

MTOW [Kg] 37173.54

Table 4.2: Cruise conditions for the target aircraft

because we are explicitely keeping trim drag into account and that’s something
that cannot be done formulating the optimization problem as in equation 4.2.
Finally, the present approach is similar in principle to that of Ricci et al [42], the
difference being that their trim and drag minimization problems are carried out
all toghether with the use of an adaptive composite wing and a fixed incidence
canard, while we retain a more conventional wing structure, trimming a fixed
geometry wing.

4.3 Aeroelastic optimization

As described above the TA is an upscaled version of a proof-of-concept aeroe-
lastic aircraft, so that aeroelasticity need to be taken into account.
When wing flexibility is included, previous chapters’ formulation does not change,
however things are a little bit diffferent. When performing a rigid wing opti-
mization the analyzed geometry is supposed to be the 1-g wing, namely the
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Figure 4.4: Target Aircraft’s configuration

optimizer-suggested shape of the wing is thought to be the one under cruise load.
On the contrary, when considering an aeroelastic optimization the optimizer-
suggested geometry will be the jig geometry2, and the 1-g geometry will come
out as part of the solution process, see also [29].
In this work only the wing is considered flexible and its structure is modeled
in MSC-NASTRAN with beams elements, while point-mass elements provide
inertia loads, and an iterative approach to the aeroelastic problem has been
undertaken:

• aerodynamic loads are computated on the supposed rigid surface. As will
be explained below, we will just enter our kriging approximation of span-
wise lift coefficients and build up spanwise pitching moments coefficients,
see section 4.6

• aerodynamic loads transfer to the FEM model by means of an appropriate
interface. Since we have spanwise aerodynamic loads available we just need
to interpolate these loads at FEM nodes coordinate, and we do that using
a cubic spline. See figure 4.8

• structural deformations computation by means of the finite element model,
equation 4.3

Ku = f (4.3)

where K is wing’s stiffness matrix, u nodal displacements’ vector and f is
nodal loads’ vector, which is the sum of aerodynamic and gravity loads3

• structural deformations transfer to the aerodynamic mesh with an appro-
priate interface. Having nodal rotations we, again, interpolate them with
a cubic spline to find the new wing twist, see figure 4.9. This effective twist

2Provided gravity forces are taken into account, see [45]
3Actually we could have approximated NASTRAN behaviour with a kriging with a linear

mean model, but we decided to leave it at that
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Figure 4.5: CATIA CFD model of the Target Aircraft. Note in red the simmetry
plane

distribution is used as a new boundary condition for a new aerodynamic
solution

• Iterate until convergence

We deem the aerostructural loop to be converged when the difference be-
tween current and previous tip rotation is less than a specified tolerance. This
tolerance was set on the basis of a sensitivity of global aerodynamic coefficients
to local twist, so that to perform a jig - 1g loop usually 8, and no more than 10
iterations were needed.

4.4 Three surface aircraft trim

As stated abover we’re dealing with a three surface aircraft and we decided to
operate the canard and the horizontal tail independently to achieve a trimmed
condition.
The basic idea behind the three surface aircraft is that by having a lifting
surface ahead of the main wing aircraft’s induced drag should be less, however,
as seen on the Piaggio P-180 and on the baseline X-DIA aircraft, canard is
usually fixed, its deflection being decided during design, and is not used for
trim. On the contrary, we reasoned that to fully exploit three surfacce aircraft
advantage canard deflection too should be used to trim the aircraft, and it
should be operated indipendently of the horizontal tail [40, 39, 38]. While this
might be an unconvential design solution it is not different in principle to what
is already implemented on most modern commercial aircraft for the horizontal
tail. Basically the horizontal tail is split in two different part, the horizontal
stabilizer and the elevator, but for trim purposes the entire horizontal surface
is used as a control. We are assuming we can do the same on the canard too
without incurring in an excessive weight penalty.
This choice adds some complexity to the problem as is going to be described

31



Figure 4.6: AVL vortex lattice model of the Target Aircraft

below.
For a two surface aircraft the trim problem is stated as

CL = CL0
+ CLαα + CLδ

δ = nzW
q∞S

CM@CG
= CM0

+ CMαα + CMδ
δ = 0

(4.4)

In equation 4.4 α is aircraft angle of attack, δ is horizontal tail deflection,
CLα , CLδ

, CMα , CMδ
are well known flight mechanics aerodynamic derivative,

nz is aircraft load factor, W is aircraft’s weight, q∞ is dynamic pressure and S

is aircraft’s reference surface. In the incompressible regime this is an algebraic
linear system of equation, while in the transonic regime this is a non linear
system. Disregarding linearity, the main point here is that for a two surface
aircraft, such as the one descirbed by equation 4.4, there are two equations and
two unknowns so that the system is closed and the solution unique no matter
what the employed aerodynamic model is.
For a three surface aircraft there will be three unknowns with two equations

CL = CL0
+ CLαα + CLδc

δc + CLδe
δe = nzW

q∞S

CM@CG
= CM0

+ CMαα + CMδc
δc + CMδe

δe = 0
(4.5)

In equation 4.5 δc is canard deflection and δe is horizontal tail deflection. To close
the system and trim the aircraft one has to add a condition like the minimization
of the trim drag so that the close three surface aircraft trim problem is

min CD

w.r.t.

CL = nzW
q∞S

CM@CG
= 0

(4.6)

This is an optimization problem in three variables, namely angle of attack,
canard and horizontal tail deflections, and many different approach were con-
sidered here, including simple kriging, gradient enhanced kriging and gradient
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Figure 4.7: MSC/NASTRAN employed stick model for aeroelastic computations

Figure 4.8: Load transfer between the aerodynamic model and the FEM

based optimization methods4. While they all succeeded5 the direct gradient
based method has been preferred because of a more simple and immediate im-
plementation; a multiple restart approach shown a less-than-a-count sensitivity
to the initial guess suggesting a reasonably flat design space.

4Global search has been considered too but they would have let the CPU time of the overall
aerodynamic optimization suite grows too high. Beside, as explained later, it turned out that
they were not needed

5When using any of the two kriging methods above lift and pitch constraints were applied
with the penalty function method and we found that the following objective function was well
suited to trim the aircraft

F = CD + 100
(

CL − CLdesign

)

2

+ 50 (CM )2
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Figure 4.9: Twist transfer between the FEM and the aerodynamic model

4.5 Transonic vortex lattice correction

The vortex lattice method is a well known aerodynamic tool that provide accu-
rate and useful result in the incompressible regime at a very limited CPU cost,
whose details can be found in [25, 26] and will not be dealt with here.
VLM methods rely on linear aerodynamic theory so that they cannot be used in
the transonic regime. Their generalization in the compressible low Mach regime
is achieved with Prandtl Glauert or similar theory, yielding good results because
the flow is shock free. These corrections cannot however be trusted in an op-
timization environment, for their assumption will certainly be heavily violated
because of exploration of an unfavourable non-shock-free zone of the design
space. Considering transonic aerodynamic optimization this means that even
though the optimum will be a shock free solution, for which Prandtl Glauert
theory can give good result, the optimizer will need to evaluate possible non-
shock-free design, and in this case Prandtl Glauert correction cannot be trusted
upon, feeding the optimization algorithm with inaccurate information. This is
even more true considering the global search nature of the EGO algorithm used
here.
To circumvent this problem, while retaining upon a simple geometry descrip-
tion needed in early design phases, we apply a correction procedure to the
VLM method based upon two dimensional quick-to-evaluate CFD results. We
will basically require local lift coefficient from the VLM to be equal to 2D
transonic CFD data once local induced angle of attack has been take into ac-
count. This idea is not a novel approach, previous studies can be found in
[44, 37, 19, 20, 10, 36, 46], but we believe it is innovative in the way it is
achieved.
As an off-line phase of the correction process two dimensional transonic airfoil
polars6 has been computed for each of the seven spanwise station with the EDGE
flow solver, see figure 4.10. We used a structured O-grid, figure 4.11, with low

6Pitching moment coefficient computed at chord’s quarter point
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Reynolds number resolution and the Spalart Allmaras turbulence model, judging
convergence with a order-of-magnitude residual drop criteria, force convergence
and eddy viscosity, figures 4.12 and 4.13.

Figure 4.10: Two dimensional root and tip airfoils polars

Figure 4.11: Two dimensional high quality structured mesh used for airfoil
polars computations

Airfoil polars were computed at reference freestream Mach number M =
0.65, the one that stem from simple sweep theory applied to the main wing,
namely

Msweep = M∞ cos (Λ) (4.7)

and M∞ is the TA cruise mach number, see table 4.1. With these CFD data
we can start the correction process. We ask AVL local lift coefficient at those
spanwise station mentioned above to be equal to CFD lift coefficient taking into
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Figure 4.12: Typical convergence history for two and three dimensional compu-
tations

Figure 4.13: Eddy viscosity contours for the root airfoil at α = 6 deg

account the induced angle of attack computed with AVL. Since in general this
will not be true, we’ll iterate until this condition is satisfied adding an extra,
fictitious twist to the original one as explained below. There are many ways to
do this, we found the most efficient is to state the problem as an optimization
problem. Writing the cost function as

F (TWIST2) =
7
∑

i=1

(

CLAV Li
(α1i) − CLCF Di

(α2i)
)2

(4.8)

we state that

α1i = AOA + αindi + TWIST1i + TWIST2i i = 1 . . . 7
α2i = AOA + αindi + TWIST1i i = 1 . . . 7

(4.9)
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Figure 4.14: Mach contours for the root airfoil at α = 6 deg

being TWIST2i
the fictitious twist value necessary to achieve the minimum

of the functional in equation 4.8, i.e. the optimization variables, and AOA being
the overall aircraft’s angle of attack.
Basically what is happening here is this: first the aerodynamic twist optimiza-
tion algorithm will give a candidate TWIST1 (1 × 7) vector of wing twist
section, second we set up the optimization problem in 4.8 using the vector
TWIST2 as the optimization variable. Once this optimization problem has
been solved we proceed to evaluate the aerodynamic twist-optimization cost
function.
Equation 4.8 can be minimized using any optimization algorithm available, but
thinking of it as a non linear least square problem helps in reducing the overall
number of function evaluation required since common gradient based non linear
least square techniques, we used the powerful MatLab lsqnonlin, can be used.
Optimization initial guess was not an issue because of low values’ cost function
achieved7. There remain one question open, namely where to apply optimiza-
tion problem 4.8 in the overall twist optimization process, and possible answers
are as follows:

• on line, during twist optimization iteration and keeping AVL in the loop

• on line, during twist optimization iteration, AVL out of the loop and
output from AVL being approximated by a surrogate

• off line, building surrogates of any element of TWIST2 vector that satisfy
equation 4.8.

The first option is unfeasible because it would rise the CPU time too much,
violating our primary goal. Second option might succeed, while the third one is
the one that we actually used.

7Usual cost function was
F = 1e − 9

and change in initial guess resulted only in one order of magnitude variations at most
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Keeping AVL in the loop is simply too expensive and we do not actually need
it because of the aformentioned linearity of vortex lattice method. Main VLM
assumption is linearity so that VLM results are linear too, and this holds true
for spanwise lift coefficient and angle of attack, as can be seen in figures 4.17
and 4.18 for a two variable twist vector case.

Figure 4.15: Local lift coefficient linearity for a two variables case

Figure 4.16: Local induced angle of attack linearity for a two variables case

Because of this, there’s no real reason to keep AVL in the loop, there’s only
the need to build up a surrogate of each spanwise lift coefficient and induced
angle of attack, and this can be done with a limited number of AVL calls. For
this purpose we actually used a latin hypercube sampling made up of 450 design
sites. However, note that local lift coefficient and induced angle of attack depend
on wing twist, aircraft angle of attack, canard and horizontal tail deflections, so
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Figure 4.17: Local lift coefficient for the fourth twist section. Slices from the
ten dimensional design space

Figure 4.18: Local induced angle of attack for the fourth twist section. Slices
from the ten dimensional design space. Contours are in radians

that each surrogate is a ten variables surrogate.
What we need are local lift coefficient and induced angle of attack at those seven
spanwise station used in the aerodynamic twist optimization in order to match
CFD and VLM results. We could have kept AVL in the optimization process
4.8 but it turned out it was extremely computational expensive. Exploiting the
full advantage of AVL’s linearity we decided to mimick AVL-needed data using
some sort of surrogate, all we need is to know what variables affects local lift
and induced incidence. Evidently we can write equations 4.10 and 4.11

CLi = CLi (AOA, δc, δe,TWIST) i = 1 . . . 7 (4.10)
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αindi = αindi (AOA, δc, δe,TWIST) i = 1 . . . 7 (4.11)

and here TWIST is the sum of both TWIST1 and TWIST2. Since
TWIST is a (1 × 7) vector, local induced angle and lift coefficients depend
upon a total of ten variables.
However it turns out that AVL local coefficients are noisy8 so that among all
the surrogate we decided to use polynomial response surface of order one9.
Having taken the use of metamodeling this far we subsequently decided to build
surrogates also of AVL global lift, induced drag coefficients, canard and hori-
zontal tail lift and pitching moment too. Again we can write

CL = CL (AOA, δc, δe,TWIST)
CDind

= CDind
(AOA, δc, δe,TWIST)

CLcanard/Htail
= CLcanard/Htail

(AOA, δc, δe,TWIST)

CMcanard/Htail
= CMcanard/Htail

(AOA, δc, δe,TWIST)

(4.12)

so that with a total of 450 AVL evaluations we mimicked AVL throughout

the activity; for all lift and pitching moment coefficients we retained a PRS of
order one while for the induced drag we, obviously, used a PRS of order two10.
Now we don’t need AVL anymore when minimizing equation 4.8: for a given
set of flight control variables and TWIST1 vector the non linear least square
technique used gives a TWIST2 vector guess. With each element of it we enter
the response surface approximation of equation 4.11, so that we can evaluate
equation 4.9, and the approximation of equation 4.10. Upon entering each 2D
CFD airfoil polar with each α2 vector’s element we get CLCF Di

i = 1 . . . 7 in
equation 4.8 and we can proceed to minimization.
Once equation 4.8 has been minimized we have a relation of the form

TWIST2 = f (AOA, δc, δe,TWIST1) (4.13)

and that’s all we need to apply the correction. Now we have to choose either to
keep optimization problem 4.8 in the twist-optimization loop, or to build up a
surrogate of equation 4.13, actually one surrogate each element of the TWIST2

vector. To take a decision we reasoned that equation 4.8 should be linear up to
CFD stall angle, deviating from linearity there on: this behaviour can be easily
approximated by the kriging, see figure 4.19 for a two dimensional test case.
Glancing at equation 4.13 we see that the TWIST2 vector is, again, a function
of ten variables therefore we built a (1750 × 10) latin hypercube design, run
the non linear least square problem and then fit the kriging: time to fit was
significant, but we managed to fit all seven kriging in approximately an hour.
Now the correction process is completed: as the twist optimization algorithm
gives the twist distribution, vector TWIST1 in equation 4.9, and the trim
suite gives a set of flight control we can enter twist correction kriging and get
the necessary TWIST2 vector to satisfy equation 4.8.
We decided to apply the described correction procedure to the main wing only
fot the sake of simplicity, we do not believe that this will be a major source

8An undesirable feature shared by any vortex lattice method
9Results from a regressing kriging gave the same result as well but we opted for PRS

because of the slight speed improvement in computing the response
10It turned out that global coefficients are much less noisy than local ones
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Figure 4.19: Kriging approximation of the second element of the TWIST2

vector in equation 4.13 for a two dimensional test case.

of error for at high speed control surfaces deflections should be small and no
shock is expected on control surfaces: in this situation simple Prandtl Glauert
correction suffice.

4.6 Coefficients buildup

Once the TWIST2 vector has been determined from the kriging using the
design twist vector TWIST1 and the set (AOA, δc, δe) we can compute all
aerodynamic coefficients needed. Aircraft overall lift, which is the first of the
two constraints in equation 4.6, induced drag and control surfaces’ pitching
moment coefficients come from surrogate approximation of equation 4.12; we’re
left with main wing coefficients computation. With the second of equation 4.9
we enter two dimensional airfoils polar to get local lift11, drag and moment
coefficients: upon spanwise integration of local drag coefficients, equation 4.14,

CDCF D = 2

∫ b/2

0

c(y)CD2D dy (4.14)

we get main wing viscous and shock drag coefficients, c(y) being main wing
chord distribution. Overall aircraft drag coefficient, neglecting control surfaces’
pressure and viscous drag, is

CD = CDIND + CDCF D (4.15)

Equation 4.15 is the cost function of the aerodynamic optimization problem 4.1.
Wing pitching moment coefficient is computed in the same fashion, equation

11To be precise two dimensional lift coefficient can either be taken from two dimensional
CFD data or from AVL kriging approximation of equation 4.10 because we have satisfied
equation 4.8
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4.16,

CMwing = 2

∫ b/2

0

c(y) (CMCF D + e(y)CL2D ) dy (4.16)

e(y) being distance between local quarter chord and center of gravity location12.
Once CMwing has been computed the overall aircraft pitching moment is

CM@CG
= CMwing + CMcanard

+ CMHT ail
(4.17)

which is the last of the two constraints in the trim optimization problem 4.6.
When dealing with an aerostructural case we also use local lift and pitching
moment coefficients to load the finite element model. In this cases local lift is
defined as in equation 4.18

l(y) = q∞c(y)CL2D (4.18)

where q∞ = γ
2p∞M2

∞
is the freestream dynamic pressure; quite the same way

local torque moment is as in equation 4.19

my(y) = q∞c(y) (CM2D + d(y)CL2D ) (4.19)

e(y) being distance between local quarter chord and elastic axes.

Figure 4.20: Drag and moment coefficients build up

12Actually we should be using CZ instead of CL but we’re under small angles assumption
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Chapter 5

Optimization results

Having described the optimization suite we built up in the previous chapter,
we’re now going to see some of the achieved results. We will start with an
isolated wing test case, then switch to the the full TA aircraft. Design vari-
ables are twists of those seven spanwise station discussed above. They will all

be left free to vary between a minimum of −5 degrees and a maximum of 5
degrees1, see table 5.1. For both the isolated wing and the whole aircraft re-
sults will be compared against EDGE three dimensional computations with the
Spalart-Allmaras turbulence model and a y+ = 1 boundary layer resolution2.
CATIA CAD models, e.g. figure 4.5, have been paramterized in all the relevant
varibles, meaning seven spanwise sections’ twist and canard and horizontal tail
deflections. Main wing’s airfoil, see table 4.1, have been defined with the use of
CST parameterization [41, 7].
In order to perform meaningful comparisons between optimized and baseline
three dimensional geometries all computational unstructured3 meshes have
been generated with the same settings through the use of appropriate scripts:
in building the meshes, see for examples figure 5.1, we followed guidelines’ from
the third AIAA Drag Prediction Workshop [12] as far as possible according to
the limited computational resources available.

Minimum Maximum
Twist [deg] −5 5
AOA [deg] 0 3

δ [deg] −5 5

Table 5.1: Bounds for both the aerodynamics and the twist optimization
throughout the work

1Different twist parameterizations have been considered too, one that allowed a maxi-
mum twist increment between two consecutive section have actually been employed but no
significant advantage could be gained from its use

2Geometrical first cell height has been taken from two dimensional data
3Boundary layer has been resolved with anisotropic tetrahedral elements
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Figure 5.1: Close up view unstructured mesh. Note anisotropic tetrahedral
element to accurately resolve the boundary layer

5.1 Isolated wing test case

As the first application of the optimization environment described in the previ-
ous chapter we decided to consider a simple isolated wing test case. The wing
is the same negative sweep X-DIA aircraft wing, see figure 5.3, but no control
surfaces are present in the model. We performed a constrained optimization
of this wing both in the incompressible regime, where AVL results were not
corrected, and in the transonic regime, where we used our correction procedure;
lift and pitching moment constraints can be found in table 5.2.
Results achieved in this section will give us a feeling of a negative sweep wing
behaviour and data to judge full aircraft optimization results.

Value
CLtarget 0.35
CMtarget -0.38

Table 5.2: Lift and pitching moment constraints for the isolated wing optimiza-
tion’s test case. These values has been chosen because they’re representative of
main wing’s Target Aircraft loads

5.1.1 Incompressible isolated wing test case

Here we present incompressible vortex lattice optimization of the TA main wing.
Being in the incompressible regime means that AVL results can be trusted and
no correction need to be applied. We will first optimize induced drag under a
lift constraint, then we will add a pitching moment constraint as in equation 4.2.
To the seven design variables discussed above we also let the angle of attack free
to vary. As an optimization algorithm we used a kriging with a second order
polynomial mean model and gaussian correlation function. The original DOE
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Figure 5.2: Far field view of the unstructured three dimensional mesh

has been refined with the EGO approach.
For the lift constrained optimization we used the cost function described in 5.1

F = CD + 100
(

CL − CLtarget

)2
(5.1)

Lift constraint has been satisfied, no bound has been reached or violated and
the optimum induced drag coefficient is

CD = 32 counts

and spanwise load distribution can be seen in figure 5.4 This is no surprise,
we achieved a nearly elliptical lift distribution in good agreement with Prandtl
lifting line theory. Close to the root lift start to decrease because root airfoil is
not allowed to twist, this should help simulating fuselage effects.
Just for comparison purpose it is important to note that this wing pitching
moment coefficient, referred to the same location as the center of gravity would
be found for the whole aircraft, is

CM@CG
= −0.4025

When including a pitching moment constraint things get a little bit different.
We applied the same optimization procedure as for the lift constrained wing,
just changing the cost function to equation 5.2

F = CD + 100
(

CL − CLdesign

)2
+ 50

(

CM − CMtarget

)2
(5.2)

Spanwise load distribution for this optimization can be seen in figure 5.5
Both constraints are satisfied, no bounds has been reached or violated while

the induced drag coefficients is

CD = 47 counts

With the added constraint we lost 15 counts and the nearly elliptical lift dis-
tribution. This is an important result to keep in mind for a very similar lift
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Figure 5.3: AVL isolated wing model

distribution will be seen when considering full aircraft results. This is a con-
sequence of the negative sweep wing: most inboard airfoils are far away from
pitching moment reference point so that they can have less lift with respect
to tip airfoil which are quite close to the moment reference point and need to
produce much more lift in order to satisfy the pitching moment constraint. This
is an extremely undesirable feature from an airworthiness point of view for the
most outer part of the wing will stall first, but more about this will be said
later.

5.1.2 Transonic isolated wing test case

Here we’re going to analyze results from a transonic wing optimization. The
main difference from the previos section is the presence of our correction process
discussed in the previous chapter. We have chosen the same cruise condition as
that of the Target Aircraft, see table 4.1, and while relying upon the same cost
function as in equation 5.1, we have here

CD = CDIND + CDCF D (5.3)

the same as in the full aircraft optimization, equation 4.15. Lift constraint
is satisfied, no bound has been reached or violated and the corrected drag
coefficient is

CD = 134 counts

and for the purpose of comparison wing pitching moment is

CM@CG
= −0.4876

Spanwise lift distribution can be seen in figure 5.6, and once more a nearly ellip-
tical lift distribution has been achieved. We decided to evaluate baseline wing’s
performance for the purpose of comparison with the optimized wing. Results
are reported in table 5.3: since wing’s angle of attack has been used as a vari-
able during the optimization, we run the baseline wing at the appropriate angle
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Figure 5.4: Optimized incompressible spanwise lift distribution. Lift-
constrained isolated wing test case

of attack to achieve the target lift coefficient, finding out that we just gained
3 counts in the optimization. Lift distribution comparison between the baseline
and optimized wing can be found in figure 5.7.

CD CL CM

Baseline 137 0.35 -0.5044
Optimized 134 0.35 -0.4876

Table 5.3: Comparison between baseline and optimized wing

Applying a pitching moment constraint changes lift distribution in figure
5.6 considerably, exactly as in the incompressible case. We use the same cost
function as in equation 5.2 with the drag coefficient defined as in equation 5.3.
Both constraints are satisfied, no bound has been reached or violated but this
time the drag coefficient is

CD = 156 counts

Spanwise lift distribution can be seen in figure 5.8 where once again we can see
how the most outer part of the wing is loaded and how lift distribution changes
in the transonic regime because of our correction process.

Having achieved results for the isolated wing test case it’s appropriate that
we proceed to a comparison with three dimensional CFD results. CFD com-
putation for the lift constrained wing at the same angle of attack as predicted
by our optimization process shows that our optimizer has driven us towards
a shock-free wing4. Overall lift, drag and pitching moment coefficients can be
seen in table 5.4. These are very good results, especially considering the very

4As Jameson pointed out in [32] the attainment of a shock-free flow is a demonstration of
a successful drag minimization
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Figure 5.5: Optimized incompressible spanwise lift distribution. Lift and pitch-
constrained isolated wing test case

high level of approximation involved in our optimization process, even though
coefficients are a little bit overpredicted. In order to understand if we can rely
on our optimization procedure, both in a preliminary design environment and
in a more advanced design phase using it as a low fidelity model, we need to
compare optimized wing’s EDGE results with those from the baseline, aiming to
understand if our optimization process is able to capture coefficients variations
accurately, and this can be seen in table 5.5. It can clearly be seen that the
optimized wing has effectively less drag than the baseline wing. Coefficients are
overpredicted by EDGE for both the baseline and optimized wing, but it would
look like increments are predicted correctly.

CD CL CM

AVL corrected 134 0.35 -0.4876
EDGE 163 0.3639 -0.4634

Table 5.4: Comparison between AVL optimized wing and EDGE evaluation of
the optimized geometry at the same angle of attack predicted by AVL.

CLtarget CL CD CM

BASELINE 0.35 0.3668 (0.35) 168 (137) -0.4845 (-0.5046)
Optimized 0.35 0.3639 (0.35) 163 (134) -0.4634 (-0.4876)

Table 5.5: EDGE comparison between optimized and baseline wings, AVL cor-
rected results in parenthesis for ease of comparison
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Figure 5.6: Optimized compressible spanwise lift distribution. Lift-constrained
isolated wing test case

Figure 5.7: Comparison between baseline and optimized spanwise lift distribu-
tion. Isolated wing test case

5.2 Target Aircraft rigid wing optimization

In this section we present results for full aicraft rigid optimization.
Just for this optimization we used the gradient enahanced kriging with the initial
sampling plan refined with an expected improvement approach something not
commonly seen in the literature; with this approach we manage to achieve the
optimum with a total of 150 design sites. Gradient of the cost function has been
computed with a second order central finite difference scheme: saying that our
goal F is a function of the design parameter5 xi then the approximation of the

5As stated many times, design parameters here are seven local twist angles so that i = 1 . . . 7
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Figure 5.8: Optimized compressible spanwise lift distribution. Lift and pitch-
constrained isolated wing test case

cost’s function derivative is equation 5.4

∂F

∂xi
≈

F (xi + hi) − F (xi − hi)

2hi
(5.4)

being hi a small variation in each design parameter; as well known computation
of function’s derivative by means of finite difference is extremely expensive when
the function is expensive to evaluate. Based on equation 5.4, we need 2n+1 func-
tion’s evaluation each design sites, n being the number of parameters. Here F is
the trimmed drag coefficient so that every time we are computing a derivative
according to equation 5.4 we actually need to set up two different trim optimiza-
tion problems 4.6. Having seven design variables means that the computational
cost to gather all information necessary to build up the gradient enhanced krig-
ing is that of fifteen trim optimization problems each design site. We can afford
this CPU cost here, but when including aeroelasticity in the optimization this
will not be true anymore. Beside, the improvement of the gradient enhanced
kriging with respect to the simple kriging is not so evident when one needs to
compute gradient by means of finite difference for simple kriging approximation
with an augmented sampling plan will most likely perform the same as that of
a gradient enhanced kriging with a reduced sampling plan but with gradient
computed by means of finite difference.
A comparison between the baseline and the optimized rigid wing is reported in
table 5.6 and figure 5.9 gives the different spanwise load distribution highlight-
ing once more that a negative sweep wing gives as less drag as possible loading
the outer part of the wing while relieving the root, as seen also in figures 5.5
and 5.8.

Being a full aircraft optimization it is interesting to investigate control sur-
faces’ loading, and this is done in figure 5.10.

The main wing gives a slightly smaller contribution to the overall lift coef-
ficient, canards gives almost the same contribution and the optimized configu-
ration uses a lot more horizontal tail than the baseline. The small difference
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CDIND CDCF D CDT OT

Baseline 55 101 156
Optimized 53 101 154

Table 5.6: Overall aircraft drag for both the baseline and optimized rigid wing

Figure 5.9: Optimum trimmed spanwise lift distribution. Rigid case

Figure 5.10: Control surfaces loads distribution. Rigid case

in canards’ lift gives rise to a significantly higher pitching moment coefficient
for the optimized configuration that needs to be counteracted by the horizon-
tal tail increased lift and pitching moment, main wing pitching moment being
significantly smaller, see absolute values in table 5.7.

Basically what the optimizer has done is to put as less load as possible on
the main wing to reduce the induced drag, and this has been achieved with a
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Baseline Optimized
CLwing 0.3386 0.32
CLcanard

0.0925 0.0966
CLHT ail

0.0106 0.025
CMwing -0.4773 -0.4256
CMcanard

0.5338 0.5578
CMHT ail

-0.0564 -0.1322

Table 5.7: Three surfaces’ load distribution for both the baseline and optimized
configurations

lift and pitching moment reduction with respect to the baseline configuration.
The lift reduction requires the canard and the horizontal tail to give more lift,
pitching moment going along with it.
Comparison between the baseline and the optimized twist spanwise distribution
can finally be seen in figure 5.12: it looks like the optimum spanwise twist
distribution is parabolic and not linear as in the baseline wing. This behaviour
is confirmed for the aeroelastic optimization too, see below.
In order to asses if the gradient enhanced exepcted improvement approach has
been successful in its search, and since we just take a few seconds to perform
a trimmed-drag evaluation we decided to use a genetic algorithm to search
both the true function and its gradient enhanced kriging approximation. The
direct search ended up with the same trimmed drag level but a different twist
distribution. Kriging evaluation of the direct search optimum’s location yielded
once more the same drag level, namely those 154 counts of table 5.6. Working
the other way around the kriging global search gave again the same drag level
as above but with another twist distribution. On this basis we conclude that
our kriging approximation is working effectively and that we have achieved
a flat design space, see also figure 5.11.

Figure 5.11: Slices of the flat trimmed-drag design space. Contours are in
counts. Rigid case
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Figure 5.12: Twist and spanwise lift distribution for both the baseline and
optimized rigid wings

We will now compare results obtained with our optimization process against
full three dimensional CFD evaluations.
We achieved a shock free wing, as in the isolated wing test case, and control sur-
faces are shock free too, which is important for flight mechanics considerations
and confirm that no control surfaces’ lift correction was needed. Overall EDGE
lift, drag and pitching moment coefficients can be found in table 5.8. These are
very good results, but let’s look at them in details: lift coefficient is close to
the target coefficient but underpredicted for both cases, most likely because we
didn’t apply any correction to either of the control surfaces, and obviously the
pitching moment coefficient goes along with it. Drag coefficient is substantially
overpredicted for both configurations, but this is not a real issue because of the
same reasone above, namely no correction has been applied to control surfaces
so that there’s no real business in accurate overall drag prediction. Despite all
the approximations involved we have a reasonable trimmed optimized configu-
ration which performs better than the baseline one. It would look like that a
count difference in drag is not much: the two CFD results are at the appropriate
angle of attack for each configurations6, but are not at the same lift coefficient,
baseline configuration giving less lift and yet giving more drag. This means that
at the same lift coefficient it will most likely give more drag, induced drag at
least. We have no room here to assess this statement with a CFD solution, for
we would need to set up the trim optimization problem 4.6 and that would get
too computational intensive; beside a small increment between the optimized
and the baseline configuration is seen in the corrected vortex lattice results too:
this happens because we used only sections’ twist angle as design variables and
this probably allows for small improvement as those achieved here.
We go even deeper in analyzing EDGE’s results looking at control surfaces’

load in table 5.9
Beside the fortuitous lift coefficient match for the baseline wing these results

6The angle of attack that results from the trim optimization problem 4.6
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CL CD counts CM

Baseline 0.4201 (0.4417) 283 (156) −0.0559 (0)
Optimized 0.4382 (0.4417) 282 (154) −0.0695 (0)

Table 5.8: EDGE three dimensional results for baseline and optimized configu-
rations, VLM corrected results in parenthesis for ease of comparison

Baseline Optimized
CLwing 0.3386 (0.3386) 0.3370 (0.32)

CLcanard
0.0738 (0.0925) 0.0788 (0.0966)

CLHTail
0.0077 (0.0106) 0.0224 (0.025)

CMwing -0.4379 (-0.4773) -0.4076 (-0.4256)
CMcanard

0.4166 (0.5338) 0.4456 (0.5578)
CMHT ail

-0.0346 (-0.0564) -0.1075 (-0.1322)

Table 5.9: EDGE three surfaces’ load distribution for both the baseline and
optimized configurations, VLM corrected results in parenthesis for ease of com-
parison

confirm isolated wing test case results of the previous section. Control surfaces
lift is a little bit underpredicted and so is the pitching moment, horizontal tail
loads being better than canard’s loads for the horizontal tail features symmetric
airfoil with a twenty degrees sweep at low angle of attack, and in this situation
the simple Prandtl-Glauert corrected VLM method gives good approximation
to a more advanced CFD solution; nevertheless these are excellent results.

5.3 Target Aircraft wing aeroelastic optimiza-

tion

Here we present optimization results for the three surfaces’ elastic Target Air-
craft with a simple kriging on a 750 design of experiments with no expected
improvement. We used a second order polynomial mean model with gaussian
correlation function to fit the aeroelastic data.
Once the model has been fit we search it with a genetic algorithm, and the op-
timum found is then checked with a call to the true function to assess accuracy
of the kriging prediction.
The kriging has given us good accuracy, however the proposed jig twist distribu-
tion looks like in figure 5.13. This is clearly an unacceptable twist distribution
on a manufacturing basis and its a possible drawback of allowing each twist sec-
tion to vary independently of all the others. Upon further investigations of the
kriging and true function evaluations we found out that this design space is once
more flat, see figure 5.16 and we managed to turn this feature to our advantage,
changing twist of the fourth spanwise station to a more acceptable value, as can
be seen again in figure 5.13: from now on we will refer to the optimized wing
meaning the modified optimized wing. Figure 5.15 gives a comparison between
the baseline and optimized 1 − g wing while in figure 5.14 we compare 1 − g

and rigid optimized twist distribution: they look pretty much the same and this
suggest that this is really the true optimum twist distribution and highlights
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how flat the design space is since the difference between the rigid wing optimiza-
tion and the aeroelastic optimization is just one count. Comparison with the
baseline wing can be found in table 5.10, while control surfaces’ loading can be
found in figure 5.17 and in table 5.11. One drag count has been lost with respect
to the rigid wing optimization, nevertheless the optimized wing still performs
better than the baseline. Loads’ distribution among canard, horizontal tail and
main wing reveals that the optimized wing produces less lift than the baseline
as in the rigid case, but between the two optimized wings the elastic one gives
significantly less lift, while the two baselines go the other way around. In both
the baseline and optimized elastic case canards give more lift than the rigid
case; horizontal tail load for the baseline configuration is almost zero while for
the optimized wing is higher than in the rigid case.

Figure 5.13: Optimizer proposed jig twist distribution and its modification

CDIND CDCF D CDT OT

Baseline 54 102 156
Optimized 53 102 155

Table 5.10: Overall aircraft drag for both the baseline and optimized elastic
wing

Now we compare these results with three dimensional CFD computations
once more. We can basically draw the same conclusion as for the rigid wing
comparison, overall CFD coefficients can be found in table 5.12 while control
surfaces’ loads can be found in table 5.13, however for the elastic case there is a
more significant difference between main wing’s CFD and corrected-VLM loads.
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Figure 5.14: Rigid and aeroelastic optimized 1 − g twist distribution

Figure 5.15: Baseline and optimized 1-g twist distribution

Baseline Optimized
CLwing 0.3506 0.3079
CLcanard

0.0881 0.1005
CLHT ail

0.0030 0.0332
CMwing -0.4926 -0.4061
CMcanard

0.5075 0.5807
CMHT ail

-0.0162 -0.1758

Table 5.11: Three surfaces’ load distribution for both the baseline and optimized
aeroelastic configurations
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Figure 5.16: Slices of the flat trimmed-drag design space for the elastic wing as
function of jig twist. Contours are in counts

CL CD counts CM

Baseline 0.4240 (0.4417) 285 (156) −0.0486 (0)
Optimized 0.4397 (0.4417) 283 (155) −0.0814 (0)

Table 5.12: EDGE three dimensional results for baseline and optimized aeroelas-
tic configurations, VLM corrected results in parenthesis for ease of comparison

Baseline Optimized
CLwing 0.3566 (0.3506) 0.3314 (0.3079)

CLcanard
0.0693 (0.0881) 0.0813 (0.1005)

CLHTail
-0.0019 (0.0030) 0.0270 (0.0332)

CMwing -0.4569 (-0.4926) -0.4121 (-0.4061)
CMcanard

0.3907 (0.5075) 0.4518 (0.5807)
CMHT ail

0.0175 (-0.0162) -0.1211 (-0.1758)

Table 5.13: EDGE Three surfaces’ load distribution for both the baseline and
optimized configurations, VLM corrected results in parenthesis for ease of com-
parison

5.4 Target Aircraft wing aerostructural optimiza-

tion

In this section we present results for a multidisciplinary optimization. We used
the same 750 design of experiments of the previous optimization for a structural
cost function evaluation at the same flight speed as the aerodynamic cost
function but at a pull-up load factor of nz = 2.5g: we gathered bending moment
and torque data and fit them with a kriging with a first order polynomial mean
model and gaussian correlation function. The multidisciplinary optimization is
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Figure 5.17: Control surfaces loads distribution. Aeroelastic case

then set up with the cost function described in equation 5.5

F = w1CD + w2abs (Cbending + Ctorque) (5.5)

being w1 and w2 two different optimization weights for which hold w1 +w2 = 1.
Cbending and Ctorque are bending moment and torque coefficients defined as in
equation 5.6

Cbending =
Mbending

q∞bS

Ctorque =
Mtorque

q∞bS

(5.6)

By varying w1 weight we perform a trade study between aerodynamics and
structures, see figure 5.18; this is just a preliminary study, results presented
here are by no means definitive. We will be studying this design space deeply in
the future but we believe some conclusions can be drawn here as well. Beside,
a more formal approach would certainly be that of building a Pareto front [34].
For this optimization we didn’t perform any EDGE comparison for we believe

results from previous sections have shown enough reliability.
In figure 5.19 we can see spanwise 2.5g lift distribution. When the aerodynamics
contribution in equation 5.5 is significant the outer part of the wing is loaded
most. For the purpose of comparison in figure 5.19 there is also the 2.5g pull-up
lift distribution for the optimized elastic wing of the previous section. They
basically behave the same from an aerodynamic point of view, there is just one
count difference, and consequently we believe that we could fix that bumpy
behaviour changing the jig twist and exploiting the flatness of the design space
as we did before; we believe this will also be true when the structural weight in
equation 5.5 increases, but this statement need further investigations.
As the structural weight start to increase, or either the aerodynamic weight
start to decrease, the optimizer tends to move the aerodynamic load toward
wing root, unloading wing tip.
This behaviour is maximum when w1 = 0.25 so that the aerodynamic part is
less significant. Loading the outboard part of the wing rise both the bending
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Figure 5.18: Trade study between aerodynamic and structure

and torque moment (the torque moment because of the negative sweep wing)
because of the distance between outboard stations and the root. Evidently,
aerodynamics and structural needs disagree and a multidisciplinary optimization
can help get the best out of both. Indeed while it is evident from figure 5.18
that the lower the bending and torque moment the higher will be the trimmed

drag coefficient it is also true that bending moment and torque reductions go
along with a reduction of wing’s weight, hence a reduction of the trimmed drag

coefficient7. Hence there is an evident need for a multidisplinary optimization.

Figure 5.19: Different spanwise main wing 2.5g pull-up lift distribution varying
w1 weight

7If aircraft’s weight decreases the target lift coefficients in equation 4.6 decreases and the
induced drag at least will decrease too
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Chapter 6

Conclusions and future

works

We presented an aerodynamic optimization procedure intended to be used dur-
ing early design phases of a transonic aircraft. All goals have been achieved.
The need for a fast and computational inexpensive algorithm has been satisfied
and Target Aircraft’s wing has been optimized in a multidisciplinary environ-
ment that included aerodynamics, static aeroelasticity and flight mechanics.
The core of this work is the correction process needed to make the fast vortex
lattice method feel the presence of an eventual shock wave. Instead of keeping
the VLM AVL code in the loop its main features have been exploited with the
extensive use of metamodeling techniques: this significantly reduced the number
of actual AVL evaluation and increased the optimizer speed while allowing for
a significantly large design space. Exactly the goal we had in mind.
Results from our optimization have been compared with a high fidelity CFD
flow solver and they have been found in reasonable good agreement, but, most
important, this VLM-corrected optimization procedure can detect coefficients
variations in a reasonably accurate way when compared to the high fidelity flow
solver, and this has two major consequences:

• it can be used in a preliminary aerodynamic design environment to explore
a large number of very different configurations

• it can be used in a multifidelity multidisciplinary optimization process as
a low fidelity model. The use of the multifidelity kriging is suggested since
this approach is finding its way through the design process [21, 35, 44, 55].
If relying only upon computational methods I would like to suggest a mul-
tifidelity gradient enhanced kriging, because of the very good performance
of gradient enhance kriging found here and in the literature.

This tool can be effectively used both to trim the aircraft and to evaluate its
trimmed drag for aerodynamic shape optimization: this particular point has
been another novel idea of the present work, for aircraft trim has usually been
considered to evaluate aircraft load, while here has been used both for aerody-
namics and structural purposes.
Despite all this a more torough comparison between this low fidelity and the
high fidelity CFD models should be carried out with a grid convergence study
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on each configuration tested, but this subject has not been pursued any further
here because of the limited computational resources available. Regarding the
achieved results those small improvement seen are most likely due to the nature
of the design variables and their limited number. As a future work one should
also allow two dimensional airfoil shape to vary, and in that case we believe
there will be a much higher improvement once the optimization has been com-
pleted. The optimum spanwise trimmed lift distribution is seen to load wing
tips much more than wing root and is not elliptic as one might expect: isolated
wing incompressible and compressible lift and pitch constrained optimization
confirmed this behaviour. The distance of each wing section to the center of
gravity should be considered as an explanation. This load distribution is un-
desirable from an airworthiness point of view for at high angles of attack wing
tip will likely stall before the root and might lead to premature shock stall or
buffet when the load is increased at high speed [32]. In a possible future work it
might be interesting to add a lift-distribution penalty term to the aerodynamic
optimization, something as in equation 6.1 should suffice,

Fstall =
1

2

∫

y

(Cl − Cld)2 (6.1)

This is a modified version of an inverse design cost function as proposed by
Jameson in [32] and Cld is the desired lift coefficient distribution that is in-
tended to be used in the current framwork; when reverting to the use of high
fidelity CFD models lift coefficient distribution should be replaced by pressure
distribution.
With the stall issue in mind it should be also considered that if the canard
stalls before the wing then it will give rise to a nose down pitching moment that
will reduce the angle of attack and prevent the wing to reach its stall angle,
while still having the horizontail tail to provide for additional control. This
could be another possible advantage of a three surface aircraft, but this subject
needs to be investigated further with high fidelity models in a multidisciplinay
environment that includes, at least, both aerodynamics and flight mechanics,
something that has never been done yet.
Both the rigid and the elastic optimizer gave almost the same 1− g twist distri-
bution and this suggest that the true optimum has indeed been reached. A flat
design space has been found: we are under the impression that the correction
process is responsible for this, but it is also known that aerodynamic design
spaces are indeed flat, see Jameson [32, 6, 4].
The aerostructural optimization needs further investigation so that a Pareto
front can be built and trade studies can be performed, here we just scratched
the surface of it. However it is evident that aerodynamic and structure have
different needs and it is appropriate to keep into account both in an aircraft
design environment. In the future we also plan to add an handling qualities
term to our multidisciplinary cost function.
Regarding the optimization techniques used I agree with the well knwon say-
ing that there’s no final optimization algorithm, each problem has its own need
and must be treated consequently; also each optimization algorithm has its own
advantage and disadvantage that need to be taken into account. However the
use of metamodeling techqniques leaves more freedom to the designer an feed
him/her with much more information about the design space that can be ap-
propriately exploited.
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As a final warning we conclude that those good results achieved above have
been facilitated by the low sweep Target Aircraft’s wing: the tool developed
here should be tested on a higher sweep wing too. We expect its results to
deteriorate because of more pronounced three dimensional effects, but it should
be capable of giving reasonably accurate results again.
As a ultimate goal one can set the minimization of trimmed drag of the aeroe-
lastic aircraft in a high fidelity environment in a reasonable amount of time,
something we believe can be achieved with extensive use of metamodeling again.
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