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Abstract
The harmful influence of large-scale fossil utilization on the climate en-

hanced the need to exploit renewable heat sources such as solar radiation
or geothermal heat. In this view, the Organic Rankine Cycle is an attrac-
tive option for small- and medium-scale applications (from approximately
100 kWe up to 2 MWe). However, the characteristics of the organic fluids
and the conditions in which this apparatus operates, require complex ther-
modynamic modeling and often involves highly supersonic flows. Therefore,
the design of turboexpanders is very difficult because conventional methods
based on similarity criteria do not apply and the experience in the field of
organic compounds is very limited.

Therefore the present work proposes a methodology can be ultimately
applied to the design of turbine blades. Such an approach couples fluid-
dynamic analysis with a Genetic Algorithm for the optimization. In particu-
lar, the thesis’ aim is to optimize the shape of a two dimensional converging-
diverging nozzle for an organic compound to achieve given outflow conditions.
Moreover, different levels of approximation are evaluated: ideal- and real-gas
laws for the thermodynamics, while inviscid and viscous flows for the fluid-
dynamics. In the end, such problem resembles a turbine expansion and has
an immediate application to a wind tunnel for organic fluids currently under
construction at the Politecnico di Milano.
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Sommario
L’influenza nociva all’ambiente dell’impiego di combustibili fossili su larga

scala ha aumentato il bisogno di sfruttare risorse di energia rinnovabili come
la radiazione solare o il calore geotermico. In questa ottica, il Ciclo Rankine
Organico é un’opzione attraente per applicazioni di piccola e media scala (da
circa 100 kWe fino a 2 MWe). Tuttavia, le condizioni di impiego dei fluidi or-
ganici sono caratterizzate una termodinamica complessa che spesso coinvolge
anche flussi altamente supersonici. Perció, il progetto di turbine é molto dif-
ficoltoso poiché i metodi convenzionali basati sui criteri di similitudine non
possono essere applicati e l’esperienza nel settore per ora molto limitata.

Quindi il presente lavoro propone una metodologia che potrá essere utiliz-
zata per il progetto di palette di turbine. Tale approccio accoppia calcoli flu-
idodinamici con un Algoritmo Genetico per l’ottimizzazione. In particolare,
la tesi si occupa di ottimizzare la forma di un ugello convergente-divergente
bidimensionale per un fluido organico al fine di ottenere le condizioni di
scarico desiderate. Inoltre, si valutano diversi livelli di approssimazione: per
la termodinamica si considera sia la legge di stato del gas ideale, sia una
rappresentazione piú accurata come gas reale, mentre per le analisi fluido-
dinamiche sono analizzati sia flussi inviscidi che viscosi. Infine, il problema
assomiglia un’espansione in turbina ed ha un immediata applicazione in una
galleria del vento per fluidi organici al Politecnico di Milano.

Parole chiave: ugello, gas-reale, ottimizzazione, inviscida, viscosa
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Chapter 1

Introduction

− So what’s the plan, I know you got
one, so you might as well tell me what
it is?

1.1 Background

The strong economic growth that many developed countries have experi-
enced during the last two centuries was made possible by the large-scale
utilization of fossil energy sources such as coal, oil and natural gases. The
current depletion of easily accessible fossil energy reserves combined with
the exponentially growing world energy consumption has led to fossil-based
energy becoming a scarce commodity, as indicated by its continuous upward
price trends. Moreover, the harmful influence of larce-scale fossil utilization
on environment and climate, enhance the need of being able to exploit re-
newable energy sources such as solar radiation or geothermal heat [1]. In this
view, the organic Rankine Cycle (ORC) technology seems to be an attractive
option.

The main difference between ORCs and conventional Rankine Cycles us-
ing steam is the use of an organic compound as working fluid, which allows
for the optimal design of the cycle depending on both the power output
desired and the source/sink temperatures [2]. In fact, for small- to medium-
scale applications (from approximately 100 kWe up to 2 MWe), organic fluids
allow to achieve high isentropic efficiency in the turbine, which would not be
possible if steam were the process medium.
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The working fluid is found to enter the turbine stages in the so-called
dense gas region, namely it is in a thermodynamic state close to the critical
point in which the ideal gas approximation no longer holds. In this view,
the fluid-dynamic behavior of the ORC turbine may differ significantly from
the predicted one if the design process neglects the real gas effects. There-
fore, one of the challenges to fully exploit the ORC technology is the optimal
fluid-dynamic design of turbomachinery operating at these particular ther-
modynamic conditions.

1.2 Motivations

This thesis deals with the fluid-dinamic design of turbomachinery for ORC
applications. To understand the impact of the turbine on the cycle perfor-
mance, here is an example. Consider a regenerative Organic Rankine Cycle
with D4 as the working fluid for low power outputs and receiving power from
biomass combustion. Firstly, suppose the following heat source parameters:

• mass flow ṁHS = 4.5 kg/s;

• inflow temperature THS = 350oC.

Then, the cycle maximum temperature cannot exceed Tmax = 305oC because
of the thermal stability limit of the working fluid, while the minimum tem-
perature is fixed at Tmin = 103.5oC by the cold sink. The top and bottom
pressures are respectively Pmax = 10 bar and Pmin = 0.1 bar (figure 1.1).
Now, table 1.1 examines the impact of a one-percentage point increase in the
tubine efficiency on the energy output over one year (8000 hours). Supposing
an energy cost of 0.07 Euro/kWh [3], it allows a save of 595 Euro every year
for every unit. By projecting such savings over many years and many units,
these figures become very interesting, and justify an investment for even a
slight improvement of the turbomachinery performance.

1.3 Objectives

The aim of the present work is the design of a two dimensional nozzle working
with an organic fluid to achieve the desired outflow. On the one hand, the
expansion occurring in such a geometry resembles the one in a turbine stator

2
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Figure 1.1: Organic Rankine Cycle considered in the example, representation
in the T − s plane

Table 1.1: Impact on the cycle of a 1% increase in the turbine efficiency

turbine efficiency 80% 81%
mass flow [kg/s] 2.381 2.377
electric power output [kWe] 106.30 107.35
energy over 1 year [MWh] 850.4 858.9

while, on the other hand, it has a direct application in the TROVA1 wind
tunnel under construction at Politecnico di Milano for the calibration of
turbine probes. The exemplary conditions analyzed aim to show where the
non-ideal behavior of the gas becomes relevant.

The standard procedure to design a supersonic nozzle of minimal length
with uniform outflow is based on the Method of Characteristics (MoC), which
is thoroughly explained by Zuchrov and Hoffman [4]. However, that method-
ology allows only to design the diverging part of the duct, since the charac-
teristic lines do not exist in the subsonic flowfields, therefore the converging
part is left undefined. Furthermore, the Method of Characteristics deals with
inviscid flows only, being unable to evaluate the viscous effects, or turbulence.

The present work employs a Genetic Algorithm together with a Com-
putationa Fluid Dynamic (CFD) solver to optimize the shape of the nozzle
for the desired outflow, extending the work by Pasquale [5] to the real gas

1Test Rig for Organic Vapors
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Table 1.2: Projection on the save of money (thousands of Euros) with a 1%
increase in the turbine efficiency

units 1 50 1000
years

1 0.60 29.75 595.00
5 2.98 148.75 2975.00
10 5.95 297.50 5950.00
15 8.93 446.25 8925.00

models and viscous flows. In fact, the limits of this approach are mainly due
to the abilities of the CFD program to handle the different aspects, so that
the viscous effects can be accounted for in the design, if the flow solver can.
Moreover, the approach allows to evaluate what happens to the outflow uni-
formity if the nozzle has a shorter length than the MoC design. For instance,
this feature allows for compromises if the standard MoC design would be not
feasable in practice.

Finally, the coupling of a Genetic Algorithm with a CFD solver is very
expensive in terms of computational resources, but nowadays the methodol-
ogy has become affordable. Future plans aim at extending it to the design
of complex turbomachinery for ORC applications, where it seems the only
viable way. In fact, the interaction between subsonic and supersonic flows to-
gether with the complex geometries of a turbine stage make the MoC almost
useless.

1.4 Contents

The following three chapters offer an overview on the fundamental aspects
of the work, while the results are presented afterwards.

In particular, chapter 2 resumes the main features of the ORC technol-
ogy. Besides reporting the cycle configuration, the focus is placed on the use
of an organic fluid in place of steam, the flexibility it offers to the designer
and the advantage for a certain range of power outputs. Finally, a brief de-
scription of the TROVA facility is given, which represents the most direct
application of this work.

4
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Then, since in the ORCs the organic compounds tend to operate in ther-
modynamic states close to the critical point, the behavior of the fluid might
differ from the predicted one if the so-called “real gas effects” are not ac-
counted for. Chapter 3 explains what such effects are and underlines the
importance of using accurate thermodynamic models.

Successively, chapter 4 defines a general optimization problem: the de-
sign variables, the objectives and the constraints. The possible methods to
reach the optimal solution are discussed, but only the Genetic Algorithms
are selected. They mimic the process of natural selection beginning from an
initial set of candidate designs: at the end of the evolution only the fittest
individuals survive. In case of fluid dynamic optimization, the Genetic Al-
gorithm interacts with a flow solver to evaluate the quality of each individ-
ual: understandably, this direct approach might be very expensive in terms
of computational resources. Therefore, sometimes surrogate models can be
used in place of the flow solver to improve the time efficiency of the method
without losing its effectiveness. This approach is useful in many engineer-
ing branches and can be succesfully applied to the design of turbomachinery
components, especially when unconventional gasdynamics comes into play.

The applicative part of the thesis starts with chapter 5. Here, a two
dimesional converging-diverging nozzle is selected to inverstigate the real
gas effects, because it is the simplest geometry able to reproduce the same
expansion occurring in an ORC turbine. Since the Genetic Algorithm handles
a limited set of variables, the goal of this chapter is to describe the selected
geometry with the least set of parameters.

The following chapter 6 tests the methodology by performing the op-
timization according to a politropic ideal-gas and inviscid-flow models. The
selected fluid is MDM, a siloxane, here assumed to be in the ideal gas re-
gion. The notions of design variables and objective functions are applied to
the specific problem. Even though the simplicity of both the geometry and
the flow model might make this aspect superfluous, surrogate models are
thoroughly evaluated, because of their foreseen importance in the design of
complex turbomachinery components.

Then, chapter 7 improves the previous optimization employing an ac-
curate real-gas thermodynamic model. The analyzed expansion starts from
supercritical conditions, passes very close to the saturation curve and ends in
a highly supersonic condition. The non-ideality of the fluid emerges also from
a one-dimensional analysis, leading to a huge difference in the area ratios with

5
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respect to the ideal gas prediction. Actually, no supercritical ORC has been
designed yet, but they represent a realistic option for the near future.

However, an expansion similar to those of existing organic turbines is
analyzed in chapter 8. The starting conditions are subcritical, and the real
gas behavior of the fluid is seen to affect less the optimal solution than for
the supercritical case, even though such influence is still relevent.

Then, chapter 9 accounts for the viscous effects as well. After validating
the flow solver over a flat plate, the formulation of the problem is rediscussed.
In fact, while in the inviscid case the geometry can be rescaled afterwards
to an arbitrary reference length, now the Reynolds number appears, which
requires the choice of the reference length beforehand.

Finally, chapter 10 draws some conclusions and shows the perspectives
of the activity.

6



Chapter 2

The Organic Rankine Cycle

− I teach you all you need to know and
then you go off to make a million dol-
lars.

2.1 Overview

The concept of a heat engine using an organic working fluid is not new.
The use of both biphenyl and phenyl ether in a binary cycle with water
was proposed in the 1920s for powerplants. The first commercially available
organic Rankine heat engine was marketed by Ormat Industries Ltd. (Yavne,
Israel) in the early 1960s. It was designed to pump water for irrigation and
the power level was about 1 kWe.

In general, the ORC is a viable option from approximately 150 kWe up
to 2 MWe, with major interests to the lower temperatures and lower power
applications, for which they look far more attractive. These include solar
energy, geothermal energy, waste heat recovery, and power generation for
underwater or space applications. Some of the advantages of the ORCs may
be resumed in the following [6]:

• heat is added to the cycle through an heat exchanger, making it rela-
tively insensitive to the energy source;

• use of an appropriate working fluid allows the ORC to attain relatively
high efficiency with simple single-stage turbomachinery even with mod-
erate peak temperatures;

7
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• working fluid properties frequently allow regeneration, increasing the
Carnot efficiency;

• the moderate pressures and temperatures imply the use of conventional
materials, long life, reliability and low maintenance cost.

2.2 Rankine Cycle Configurations

Referring to figure 2.1, the basic Rankine cycle engine consists of a feed pump,
a vaporizer, a power expander and a condenser. Therefore, in the conven-
tional cycle the fluid undergoes four successive changes: reversible adiabatic
compression, pumping the liquid to the boiler; heating at constant pressure
converting the liquid to vapor; reversible adiabatic expansion, performing
work; cooling at constant pressure, condensing the vapor to liquid. The T −s
representation in figure 2.1 is typical for cycles employing steam as working
fluid, which is the medium originally used by James Watt.

Figure 2.1: Configuration of a basic Rankine engine and its representation
on the T − s plane, from [7]

However, to efficiently apply the Rankine cycle for power generation with
low-temperature heat sources (approximately from 70oC to 400oC) the work-
ing fluid must be an organic substance. In this case, the expansion phase is
usually characterized by a low enthalpy drop, leaving a high temperature at
the turbine exit and allowing the use of a regenerator to improve the cycle
efficiency (figure 2.2).

8
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Figure 2.2: Configuration of a Rankine engine with regeneration and its rep-
resentation on the T − s plane, from [7]

So far, the largest part of ORC has been designed to operate at sub-
critical maximum cycle pressures. However, a so-called supercritical cycle
further increases its efficiency, by increasing the average temperature of heat
addition, as shown in figure 2.3. Given the condensation pressure and tem-
perature, the increase in the maximum pressure implies a higher pump power
consumption and a larger temperature (and enthapy) drop during the expan-
sion, thus leading possibly to a multistage turbine. Moreover, the pump has
to provide a bigger compression ratio, and the use of a single pump might
lead to cavitation. Therefore two pumps may be necessary at the expense of
higher investiment costs. Finally, the exploration of gas dynamics and heat
transfer in supercritical organic fluids is at the beginning and currently the
supercritical organic cycle is just a promising notion.

2.3 Working Fluids

The performance of a turbine is set by many factors, including blade profiles,
but some dimensionless parameters based on the similarity rules are good
indicators of its overall efficiency. The specific rotational speed Ns is one of
them

NS = n

√
v̇out

∆his
(2.1)
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Figure 2.3: Supercritical and superheated cycle configuration on the left.
Efficiency (•) and electric power output (4) as function of maximum pressure
on the right, from [1]

where n is the dimensional rotational speed, v̇out is the volumetric flow rate
at stage outlet and ∆his is the isentropic enthalpy drop.

From equation (2.1), to achieve the optimal NS for a turbine with a high
enthalpy drop, a high dimensional rotational speed n is needed. For low-power
applications the flow rate is also small, and the results are excessive rotational
speeds which increase both stage losses and blade stresses. Therefore, water is
less suitable for low power applications because of the excessive ∆his during
the expansion with respect to an organic fluid. Moreover, steam density is
also higher and leads to steam turbines with volumetric flow rates so small
for low powers that the construction of the cycle components would not be
feasable.

Therefore, organic turbines tend to operate at low peripheral speeds and
small number of stages because of the lower enthalpy drop. Usually a small
specific work is associated with a large expansion ratio (even over 100), so
ORC turbines have to deal with supersonic flows and possible shock waves.

So, besides water, no other safe inorganic substance is suitable for Rankine
cycles, which leaves endless possibilities in the field of organic substances.
However, the field narrows rapidly when limitations and requirements are
specified, for example:

10
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• thermodynamic properties;

• chemical stability and compatibility with common materials of fabri-
cation;

• non-corrosiveness, non-toxicity, non-flammability;

• ready availability;

• low cost.

If the system requirements have been determined, it is possible to define
the optimum working fluid for that precise application. The most common
problem is the lack of documentation regarding the thermodynamic proper-
ties of synthetized compounds. The most important parameter is the peak
cycle temperature, which obviously requires the thermal stability of the fluid
up to those conditions. Moreover, another importan aspect is the shape of the
saturation curve. Contrary to water, most organic fluids suitable for power
generation have a complex molecule and a “dry” saturation curve, which
avoids the risk of condensation of the fluid during the expansion even with-
out superheating (figure 2.4).

Figure 2.4: Saturation curves in the T−s plane for water (left) and an organic
compound (right), from [8]

Among the many substance suitable for ORC applications, hydrocarbons
such as pentane, butane and toluene have to be remembered for their his-
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torical importance, but have flammability concerns as well. Besides, per-
fluorocarbons exibit favourable critical parameters but are costly and their
decomposition releases dangerous products (e.g. HF). Hydrofluorocarbons
are a better fit the lower temperature applications (geothermal, heat recov-
ery) due to their low critical temperature, but they have non-zero Global
Warming Potential. More recent proposals regard the siloxanes, which are
appropriate for the high temperature ORC (solar, biomass sources): they ex-
ibit zero Ozone Depletion Potential, almost zero Global Warming Potential,
low toxicity, low flammablility and low cost.

To summarize, the adoption of an organic compound in place of water
usually allows [2]:

• cycle configurations which are inaccessible with water, such as super-
critical cycles even at low temperature and pressure;

• lower cycle maximum pressures;

• a better match between the heating trajectory of the working fluid and
the cooling trajectory of the heat source;

• even for large source/sink temperature ratios, efficient thermodynamic
cycles with simple layouts and a often single-stage expander;

• to avoid fluid condensation at the end of the expansion;

• their use as a lubricant for the turbine;

• the direct coupling of the turbine rotor with that of the electrical gen-
erator, due to the low rotational speeds;

• the design of optimum turbine sizes for a wide range of power levels.

2.4 The TROVA Facility

In order to overcome the lack of experimental data on flows representative of
Organic Rankine Cycles turbine passages, a blow down wind tunnel for real
gas applications has been designed and it is under construction at Laboratorio
di Fluidodinamica delle Macchine (LFM) of Politecnico di Milano. The Test
Rig for Organic Vapors [9] is a blow down facility aimed to characterize
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organic vapor streams by means of independent measurements of pressure,
temperature and velocity.

As shown in figure 2.5, the plant is provided with storage tanks and ex-
periments cannot be continuous: the fluid under scrutiny, slowly vaporized
in a high pressure vessel, feeds a test section at a lower pressure. The test
section can be either a supersonic convergent-divergent nozzle or a turbine
blade row. The exhausted vapor is collected and condensed in a low pressure
tank; the loop is closed by liquid compression through a pump. Such oper-
ating system allows experiments on different operating conditions for a wide
variety of working fluids, even though compounds for ORC applications (par-
ticularly Siloxanes and Fluorocarbons) remain of major interest. Depending
on the fluid and boundary conditions, experiments may last from 20 seconds
to several minutes.

Figure 2.5: Sketch of the TROVA facility, from [9]

Although expansions occurring through ORC turbine blade passages are
the main research interest, the test rig is initially equipped with a straight
axis convergent-divergent nozzle. It performs a quasi-1D expansion, regarded
as the simplest stream representative of ORC turbomachinery passages flow
field.

The characterization of the real gas expansion can be performed by the
upstream measurement of total pressure and total temperature. Along the
expansion line, the contemporary direct measurement of static pressure and
velocity complete the investigation. Visualization of supersonic flow patterns
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can be arranged by Schlieren technique. In order to easily perform optical
measurements along the expansion line, a rectangular cross section nozzle
mounting a glass window has been chosen.
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Dense Gas Flows of Organic
Fluids

− All fighters are pig headed someway
or another, some part of them always
thinks they know better than you about
something.

3.1 Overview

Hydrocarbons, fluorocarbons and siloxanes in ORC power plants are often
used in conditions close to the critical point. Table 3.1 resumes the critical
conditions, as well as the molecular masses and the chemical formulas of
candidate working fluids. While for low reduced pressures and high reduced
temperatures the ideal gas law is a good and simple approximation of the
real behavior of the fluid, for thermodynamic states close to the critical point
(approximately 0.9 < P/Pc < 1.2 and 0.8 < T/Tc < 1.3) molecular interac-
tions have to be taken into account in modeling the fluid and the ideal gas
law becomes inappropriate.

Such differences can be resumed as a volumetric effect and a calorimetric
effect [10]. The former implies that the P − v − T relation of dense gases
is different from that of a perfect gas: in fact specific volumes are smaller if
compared to the ideal approximation, see figure 3.1. The latter implies that
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Table 3.1: Chemical formulas, molecular masses and critical values of candi-
date organic fluids

Chemical formula M (g/mol) Tc (K) Pc (atm)
Fluorocarbons
PP5 C10F18 462 565.2 17.3
PP10 C13F22 574 630.2 16.2
Hydrocarbons
toluene C7H8 92.1 591.8 40.7
decane C10H22 142.3 617.7 20.7
Siloxanes
MD4M C14H42O5Si6 459 653.2 8.0
D5 C10H30O5Si5 371 619.1 11.4

the heat capacity close to critical point tends to large values [10]:

Cv(v, T ) = C0
v (T ) + T

∫ v

∞

(
∂2P

∂T 2

)
v

dv (3.1)

where C0
v (T ) is the specific heat in the ideal-gas limit. The contribution of the

integral in equation 3.1 vanishes for the ideal (politropic or non-politropic)
gas, because of the degenerate nature if its equation of state Pv = RT .
Moreover, figure 3.2 shows the difference in the shape of the isentrope curves
between the ideal gas approximation and the real gas. The slope of the isen-
trope in the P − v plane is directly the speed of sound, which is quite a
relevant factor in gasdynamic problems.

3.2 Nonclassical Gasdynamics

The influence of molecular complexity has on the speed of sound trend is
found to have deep implications on the gasdynamic behavior of the fluid. In
particular, such gasdynamic behavior is in a strong relation to the funda-
mental derivative of gasdynamics, defined as [11]

Γ = 1− v

c

(
∂c

∂v

)
s

(3.2)
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Figure 3.1: Deviation from ideal gas, volumetric effect. Compressibility factor
in the reduced temperature-entropy diagram of toluene, from [1]

Figure 3.2: Deviation from ideal gas, calorimetric effect. Isentrope curves for
D6, from [1]. Correct isentrope from ideal gas model s1, wrong prediction of
the ideal gas model in the dense gas region s2, correct curve for dense gas s3,
and BZT behavior along s4
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Even the relatively simple van der Waals model [12] is sufficient to high-
light that complex molecules in conditions close to the critical point may
exibit values of the fundamental derivative less than unity, namely having
the the speed of sound dependence on the density reversed with respect to
the ideal gas (figure 3.3). This usually leads to classical gasdynamic phe-
nomena, but if Γ becomes negative, nonclassical phenomena are admissible
such as rarefaction shocks or isoentropic compressions. Fluids who exibit the
nonclassical phenomena over a finite range of temperature and pressure are
referred to as Bethe-Zel’dovich-Thompson (BZT) fluids after the authors who
made the first studies in the field.

Figure 3.3: Sound speed variation along the critical isotherm compared to
the ideal gas. Effects of attractive and repulsive forces are also shown, from
[12]

Gasdynamic behavior relation to the fundamental derivative can be sum-
marized as follows [11]:

• Γ > 1, classical (ideal gas) behavior, soundspeed increases with density;

• Γ = 1, classical (non ideal) behavior, soundspeed is constant with den-
sity, pressure is a linear function of density;
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• 0 < Γ < 1, classical (non ideal) behavior, soundspeed decreases with
density;

• Γ = 0, pressure is a linear function of specific volume;

• Γ < 0, nonclassical behavior.

From this viewpoint, a correct estimation of the fundamental derivative
is crucial for a correct estimation phenomenological behavior of the flow.
However, the extention of the negative-Γ region are strongly influenced by
the thermodynamic model adopted, sometimes happening that a model ad-
mits the existence of that region while another does not (see [13] for some
examples).

3.3 Thermodynamic Models

It has been shown that even a simple non ideal gas model can display the
features typical of the real gas. However, its accuracy is still low and many
other thermodynamic models are availabe to compute the fluids’ properties
more accurately. There exist different levels of sophistication, each of them
acceptable depending on the problem. In any case the model has to be con-
sistent to achieve robustness and accuracy: all the thermodynamic properties
have to be computed from the minimum set of information, usually a relation
for the pressure in the form P = P (v, T ) and another for the heat capacity
in the ideal gas state as function of the temperature C0

P = C0
P (T ).

A first class of thermodynamic models requires only the critical parame-
ters and the acentric factor of the fluid to define the P − v− T relation. For
example, the cubic Peng-Robinson-Stryjek-Vera equation of state (EoS) has
the form:

P =
RT

v − b
− a(T )

v(v + b) + b(v − b)
(3.3)

in which the aforementioned parameters enter in the definition of a and b,
the contributions of the attractive and repulsive intermolecular forces re-
spectively. Compared to the well-known polytropic ideal gas EoS, the PRSV
EoS allows for better predictions in the dense gas region, even though not so
accurate close to the critical point (P/Pc > 0.9).
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More accurate thermodynamic models are the so-called multiparameter
EoS. An example can be found in the Span-Wagner EoS, suitable for non-
polar and weakly polar fluids. This state-of-the-art EoS features the reduced
Helmholtz energy ψ = Ψ/RT as a function of the reduced density, δ = ρ/ρc
and the inverse of the reduced temperature τ = Tc/T . It overcomes the defi-
ciencies of the cubic Eos being extremely accurate also in the vicinity of the
critical point and has an excellent numerical stability compared with older
multi-parameter EoSs. For instance, the equation’s 12 parameters can easily
be determined from a restricted set of experimental measures, an important
feature when facing the limited amount of experimental data present in liter-
ature. Furthermore, due to its particular functional form, it returns realistic
predictions with a limited number of parameters, even for extrapolations
outside the range of availability of experimeltal data.

A polynomial expression for the ideal gas specific heat C0
P is often suffi-

cient for every EoS.

3.4 CFD Simulations

The software which will be used for the fluid dynamic simulation is zFlow,
a code developed primarily to solve the Euler equations for fluids in the clas-
sical dense gas and nonclassical regime [14]. The spatial approximation of the
Euler equations is constructed with an high resolution finite volume method
suitable for general unstructured and hybrid grids, allowing the straightfor-
ward treatment of domains of arbitrarily complex geometry. Based on the
works by Selmin [15] and Selmin and Formaggia [16], the implemented pro-
cedures can be regarded as an hybrid between the finite element (FE) and
finite volume (FV) methods. In fact, the finite volume metric quantities are
constructed on the basis of the Lagrangian polynomial shape functions typi-
cally used in finite element methods, making this type of FV schemes with a
centred numerical flux function identical to a classical FE discretization. The
high-resolution upwind discretization is constructed on the basis of the Roe
approximate Riemann solver generalized to the case of fluids characterized
by arbitrary equations of state according to Vinokur and Montagné [17]. This
class of discretization schemes is particularly well suited to the computation
of high Mach number flows such as those occurring in an ORC turbine.

Furthermore, in zFlow are implemented both explicit and implicit time
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integration schemes, being the implicit much more efficient when facing
steady-state solutions. Improving the time integration efficieny is crucial
when the the CFD code has to use complex thermodynamic models which
tend to slow down the single time advance. zFlow interacts with Fluid-
Prop [18], a state-of-the-art thermodynamic library for the calculation of
properties of pure fluids and mixtures, beyond the model of ideal gas.

Finally, a recent extension of the code allows for the solution of the
Reynolds-averaged compressible Navier-Stokes (RANS) equations coupled
with a non-standard implementation of the high- or low-Reynolds number
k − ω turbulence model to favor numerical stability [19].
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Nozzle Geometry Optimization
Strategy

− That’s the stupidest thing I’ve ever
heard of, how the hell we gonna do
that?

4.1 Definition of an Optimization Problem

The development of computational power during the last decades allowed the
use of numerical tools such as CFD with a high level of reliability, performing
the desired analysis in a reasonable amount of time, ranging from several
minutes to a few days. In this view, the new challenge for the designer is to
evaluate and compare many different configurations in order to find the one
that fits best his requirements, the optimum design.

As in all optimization problems, there are three points which should be
made clear at the beginning and which determine a large part of the final
result: the definition of performances (the objective function) representative
of the quality of the system, the choice of the indipendent variables and the
constraints which may limit the range of search [20]. For example, the chioce
of a set of independent variables may lead sooner to a better optimum than
another set of variables.

Optimization problems can be divided into single- and multi-objective,
depending on the number of the functions to be optimized. In general, a
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multi-objective problem is stated as following:

min fi(x) i = 1 . . . l
gj(x) ≤ 0 j = 1 . . .m
hk(x) = 0 k = 1 . . . n

xlp(x) ≤ xp ≤ xup(x) p = 1 . . . q

(4.1)

where x = (x1 . . . xq)
T is the vector of design variables. So, the optimization

problem (4.1) translates into minimizing a set of objectives fi(x), possibly
subject to constraints gj(x) or hk(x), and with the search range limited by
the last relation of (4.1).

Common engineering applications that involve the maximization of a per-
formance (such as efficiency) can be turned into a minimization problem by
taking the inverse value. In case of multi-objective optimizations, the objec-
tives often conflict one another (for example maximizing the strength of a
component while minimizing its weight) and does not exist a unique value of
x solution of (4.1). The so-called Pareto front analysis is a method to identify
a set of dominant solutions, such as in figure 4.1. However, when facing 4
or more objectives, the visualization of the front becomes less immediate, so
that fewer objectives are often preferable. This can be achieved by choosing
an appropriate set of weights wi and combining some of the objectives into
a single function:

F (x) =
l∑

i=1

wifi(x) (4.2)

Finally, two aspects need remarking. Firstly, the optimization process
involves a tradeoff between the computational effort (efficiency) and the value
of the optimum (effectiveness). Secondly, although the attainment of the
absolute optimum is the goal of any algorithm, the most important goal of
optimization is improving the current state.

4.2 Optimization Methods

In the research for the optimum, a sistematic sweep of the design space is
not feasable: supposing there are v values of the n design parameters, vn

functional evaluation are required. With both parameters of the order of 10
and accounting for the time of every single analysis, this way is definitely too
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Figure 4.1: Typical Pareto front for a 2-objective optimization problem. De-
sign A is dominated by design B, but design B and C do not dominate each
other

expensive. Past decades have seen a large development of efficient optimiza-
tion algorithms, which are allowed to modify the design parameters in order
to maximize its performance.

Currently, there is a wide variety of methods available. They can be sub-
divided depending on the order of derivatives of the objective function used.
For example, zero order methods use only the function values in their search
for the minimum, while first and second order methods use respectively the
first and second order derivatives. Zero order methods are ganerally more
expensive in term of computer resources because they require a larger num-
ber of function evaluation (so, a larger number of analysis), but never get
stuck in a local optimum. On the other hand, superior order methods require
less function evaluations but need the computation of the gradients as well,
which is no easy task, and they risk to converge on a local optimum. For
these reasons, zero order methods seem the most reliable option in terms of
the outcome.

For fluid dynamic applications there are examples adopting efficient Ge-
netic Algorithms (GA) zero order methods. GAs are based on the mechanisms
of natural selection to obtain the optimum. They start with an initial popu-
lation in which each individual is represented by a binary string containing
all the values of the parameters. The total length of the string depends from
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the number of parameters representing the individual and from the number
of bits dedicated to each parameter (the substring length, which stands for
the accuracy desired). It has to be taken into account that an extremely ac-
curate representation leads to a slow convergence to the optimum, while a
scarce resolution leads to a worse optimum configuration: for example it has
been reported that a substring length of 8 bits was the ideal value for the
optimization of the 3D radial turbine reported in [21].

From the initial population the GA, based on a mix of both random
choice and fitness indicators, selects couples of individuals to build succes-
sive generations. The two individuals selected as parents reproduce by the
so-called crossover: the binary strings are recombined at a randomly chosen
position generating two new individuals, the offspring. Besides crossover re-
production, also a mutation mechanism is used: this process changes a bit in
the binary sequence of the original state after the crossover. The mutation
allows the algorithm not to be trapped in a local minimum. By setting the
criteria of selection of the parents, the crossover and mutation probability,
the speed to converge to the optimum can be altered. The GA mechanisms
are resumed in figure 4.2.

Figure 4.2: Working principle of the Genetic Algorithm

During the evolutionary process, it is possible that the best individual is
lost by mutation or crossover. To prevent this loss of valuable information,
most GAs use the elitism strategy. In case the best individual of the new
generation is worse than that of a previous generation, the latter one will
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replace a randomly selected individual of the new generation. However, the
computational effort required is still too high because the GA needs a popu-
lation sufficiently large and enough generations to converge to the optimum,
which imply too many expensive analysis are necessary.

The present work makes use of the commercial software modeFron-
tier, a multipurpose optimization environment which implements all these
procedures.

4.3 Surrogate Models in Genetic Algorithms

To obtain better time performance without altering the quality of the final
result, faster but less accurate models can be used in place of many direct
evaluations. Such models (often referred to as surrogate or metamodels) have
already been applied for fluid dynamic analysis and design [22], [1]. Given a
generic individual x with the i-th performance being fi(x), the surrogate is

a function f̃i(x) such that ∣∣∣∣∣∣f̃i(x)− fi(x)
∣∣∣∣∣∣ < εi (4.3)

with εi sufficiently small.
The surrogate has no relation to the physical phenomenum and bases

his knowledge on a database to quickly estimate the quality of a candidate
design x. The metamodel has a some coefficients inside each f̃i that need to
be adapted to make f̃i a valid substitute for fi during the optimization: this is
the training process. A set of cases is analyzed with the highly accurate model
so that a series of input/output relations is known. Then, the metamodel’s
parameters are tuned to maximize the accuracy on those samples and now
the surrogate becomes able to make predictions also for other individuals. If
the training set is chosen wisely, the metamodel can extract the maximum
amount of information with little effort.

In any case, the two-level interaction allows the metamodel to adjust its
parameters during the optimization process even for a bad initial training.
In fact, the training database can be refined computing with the CFD solver
the more promising individuals according to the metamodel, in order to im-
prove its accuracy in the more promising directions. Figure 4.3 resumes the
optimization strategy just described.
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Figure 4.3: Flowchart of optimization system, retrieved from [22]. The scheme
shows the CFD solver, the metamodel and their mutual interaction through
the Genetic Algorithm

Surrogate models differ from each other by assuming different structures
for f̃i. The software modeFrontier allows a choice between many types
of metamodels, even though not each of them is suitable for fluid dynamics
applications. At the end, the selection of the most appropriate metamodel
is done directly by selecting a test set of x, by evaluating exactly their out-
puts fi(x), and by comparing it with the prediction of the metamodel f̃i(x)
as in equation 4.3. However, some general guidelines direct the initial re-
search. For instance, a polynomial approximation of the output functions is
not prone for fluid dynamics problems, because it is not expected any lin-
ear, quadratic, or cubic trend between the input variables and the outputs.
Similarly, the statistical models that require a large number of training sam-
ples seem inappropriate: regardless of their accuracy, the preparation of the
training database would be too expensive. Therefore, the focus shifts towards
those models able to make predictions from a limited training database, and
whose structure allows to account for the high non-linearity of the CFD prob-
lem. In the following, a brief description of some promising metamodels is
given.
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4.3.1 Artificial Neural Networks

Although Artificial Neural Networks (ANN) were initially designed to imi-
tate certain brain functions (character recognition, voice recognition, image
processing, etc), they can also be used as interpolators. Figure 4.4 gives a
schematic view of an ANN: elementary process units (the neurons) are ar-
ranged in layers and joined by connections of different intensity to form a
parallel architecture.

Figure 4.4: Artificial Neural Network with one hidden layer

Each element of the first input layer is connected to each neuron of the
first hidden layer. Suppose the ANN has n input variables x = (x1 . . . xn)T

and one hidden layer with h hidden neurons. The input given to the k-th
neuron of the hidden layer is given by

inhid
k =

n∑
p=1

whid
p,k xp + bhidk (4.4)

where the whid
p,k are the connection weights and the bhidk the bias given each

neuron. Then, to every neuron is associated a transfer funcition, for example

outhidk = FT (inhid
k ) =

1

1 + exp(−inhid
k )

(4.5)
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Finally, the output of the network is computed as

f̃i = FT

(
h∑
k=1

wout
k,j out

hid
k + boutj

)
(4.6)

where other weights and other bias come into play.

4.3.2 Radial Basis Functions Networks

Radial Basis Functions (RBF) networks belong to the same class as ANN,
however they have a different architecture and input to output relation. Fig-
ure 4.5 shows the architecture of a RBF network for a 2-dimensional input
and one hidden layer. In general, each hidden neuron j has a n-dimensional
input (x1 . . . xn) and vector cj ∈ Rn, which is the center of a nonlinear radial
basis function h : Rn → R. This activation funciton is proportional to the
distance of the input vector x to the center cj:

hj(x) = gj(||x− cj||) (4.7)

where is usually the Gaussian function determined by the amplitude σj:

gj(||x− cj||) = exp

(
−||x− cj||2

σ2
j

)
(4.8)

The closer x is to the center cj, the higher the output of the activation
function will be. The network output is obtained as the weighed sum of all
responses of the hidden layer:

f̃i =
h∑
j=1

wi,jhj(x) + bi (4.9)

4.3.3 Kriging

Kriging was initially developed by geologists to estimate mineral concentra-
tions over an area of interest given a set of sampled sites from that area. Suc-
cessively, the model was extended to a generic n-dimensional inputs, whereas
geostatistics considers only two-dimensional inputs.
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Figure 4.5: A 2D RBF network, with the position of RBF centers in 2D space.
From [22]

Kriging belongs to the family of linear least squares algorithms. However,
it is able to reproduce the observed data exactly (f̃i(x

obs) = fi(x
obs)), which

represents a major advantage over the other metamodels. The mathematical
form of Kriging consists of two parts:

f̃i(x) =
k∑
j=1

βjgj(x) + Z(x) (4.10)

with a linear regression of the functions gj(x) to catch the main trend of the
response and Z(x), a model of Gaussian stationary random process with zero
mean. An assumption is made on the mathematical form of the covariance
of Z(x), which is usually a Gaussian function. The parameters βj and the

function Z(x) are determined such that f̃(x) is the best linear unbiased

predictor. A linear estimator means that f̃(x) can be written as a linear
combination of the N observation samples:

f̃i(x) =
N∑
k=1

wk(x)fi(xk) (4.11)
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So, if x is an observed value (namely if x = xi), then

wk(xi) = 0 for k 6= i (4.12)

wk(xi) = 1 for k = i (4.13)

which makes the Kriging is an exact predictor on the observed points. A
more detailed review of the Kriging model can be found in [23].
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Definition of Nozzle Geometry

− You’re in a position to negotiate?

5.1 Introduction

The analysis of expansions occurring through ORC turbine blade passages
are the ultimate interest of the work. However, for a preliminary evaluation
of the real gas effects, a simpler geometry is equally acceptable. Therefore
a two dimensional converging-diverging nozzle is enough to reproduce an
expansion similar to that of ORC turbines in terms of pressure ratios and
discharge Mach number.

So, a nozzle with rectangular cross-sectional area is considered, so that
the flowfield is symmetric with respect to the x axis. The present task is
to describe the solid wall geometry with the least set of parameters, which
should allow at the same time sufficient flexibility to represent a wide variety
of configurations. The present parametrization has been taken from Pasquale
[5].

5.2 Parametrization

Two categories of parameters are employed to describe the solid wall. The
first one defines the general dimesions of the nozzle (lengths and areas), while
the second one gives the accurate description of the wall.

33



CHAPTER 5

5.2.1 Macroparameters

The geometry of the upper half of the nozzle is shown in figure 5.1. The fluid
enters from the left boundary and exits from the right one, while the lower
boundary is the axis of symmetry and the upper boundary the solid wall.

The total length of the nozzle is fixed to one and the only other dimen-
sional parameter is the throat area St. The other quantities are all scaled to
the throat area:

• inflow area Si = siSt

• inlet length Li = liSi

• outflow area So = soSt

• throat location Lc = lcSt

• throat curvature Ct = ctSt

in which the lower case nondimensional parameters are the variables of the
problem. The fixed total length is not a limiting factor because the inviscid
problem can be formulated either as a minimization of nozzle length for
constant throat area, or equivalently as a maximization of the throat area
for a fixed total length. In fact, a simple rescaling of figure 5.1 brings figure
5.2, which shows a fixed throat and a variable length. In the inviscid case the
rescaling does not affect the solution, while for the viscous calculations the
reference length influences Reynolds number. This problem will be discussed
later.

Moreover, figure 5.2 shows that fixing si, li and lc freezes the converging,
so that the parametrization allows also for diverging-only optimizations.

The aforementioned parameters are subject to some constraints. The
throat location must not exceed the total nozzle length, while the inflow
and outflow areas have to be greater than the throat. The straight duct
added upstream of the nozzle inlet aims to reduce the influence of the inflow
boundary condition on the solution, therefore it can be reasonably assumed
li = 1.
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Figure 5.1: Upper half of the nozzle geometry with a rectangular cross-
sectional area

Figure 5.2: Upper half of the nozzle rescaled to unitarian throat section

5.2.2 Accurate Wall Description

The converging-diverging wall shape of the nozzle is represented by cubic
B-spline curves, which are briefly presented in the following.

A B-spline curve B(u) of degree p can in general be written as

B(u) =
n∑
i=0

Ni,p(u)Pi (5.1)

where Pi is one of the n + 1 control points and n ≥ p, Ni,p are the basis
functions. The parameter u varies on the interval [u0, um], where u0 and um
are the first and last elements of a strictly increasing sequence of m + 1
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knots. The number of control points, the degree of the curve and the number
of knots are related one another by the relation

m = n+ p+ 1 (5.2)

For example, for a cubic B-spline (p = 3) the minimum number of control
points is n+1 = 4 and the corresponding number of knots ism = n+p+1 = 8.

To completely define a curve, the knot sequence also has to be fixed. In
general, for a given set of control points, it is difficult to judge which knot
sequence is the best choice. The easiest option is to choose a uniform spacing,
which is however too rigid in many cases. As a rule of thumb, better results
in terms of curve smoothness are obtained if the control point location is
somehow reflected in the knot sequence. In this work the knot sequence is
computed by a chordal parametrization.

In this work the solid wall of the nozzle is represented as a composition
of two consecutive cubic B-spline curves. The first curve Bc(u) is used for
the converging part and it ends at the throat area location T = (Lc, St). The
other curve Bd(u) represents the diverging part. These curves are defined by
nc+1 and nd+1 number of points respectively, and the shape of the upper wall
is controlled by the position of the control points for both curves. Moreover,
at the throat location, a fixed curvature value can be imposed preserving the
C2 continuity between the two curves if some additional constraints around
the junction point are satisfied. In the case of cubic curves, these conditions
concern only the two adjacent control points and the spacing of the first two
different knots for both curves.

The shape of both the converging and diverging walls is controlled by the
position of the unconstrained control points Pi = (xi, yi), each represented
by two parameters ξi and ηi. Such parameters vary in the interval [0, 1] and
represent the dimensionless distance from the known points (inflow, throat
and outflow), namely for the converging part

xi = ξiLc
yi = St + ηi(Si − St)

(5.3)

and similarly for the diverging part. So, even though might happen yi = St
for some control points, the minimum flow passage is always at the throat
location because the B-spline does not pass on the control points. Figure 5.3
shows a couple of examples of geometries obtainable.
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Figure 5.3: Example of geometries generated with the present parametriza-
tion, location of the global points (red) and location of the control points
(blue)

5.3 Test Geometry

The test geometry of figure 5.4 is considered to evaluate the capabilities
of the present parametrization. Such figure shows a two dimensional nozzle
designed with the Method of Characteristics featuring MDM as working fluid
[24]. That design is carried out with an accurate thermodynamic model for
the fluid which accounts for real gas effects.

Now, the goal is to accurately reproduce that geometry with the pa-
rameters introduced in this chapter. However, the MoC design neglects the
converging part, since the characteristic lines exist only in the supersonic
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Figure 5.4: Reference geometry and Mach number distribution according to
the Method of Characteristics, from [24]

region1, so the comparison can be made only for the diverging part.
Firstly, the throat section St and the converging length lc are fixed in order

to achieve the same length for the diverging part. Then, every parameter
related to the converging part is arbitrarily assumed. That leaves the throat
curvature ct, the outflow section so, and the position of nd control points for
the diverging part to be adjusted to the reference geometry.

In principle, the control points can be moved along both the (x, y) co-
ordinates by ruling the dimensionless parameters (ξ, η). However, their x
components are fixed according to arbitrarily imposed relations. For exam-
ple, the abscissa of the i-th control point can be placed according to a linear
or a cosine distribution

ξi =
i

nd + 1
(5.4)

ξi = 1− cos

(
π

2

i

nd + 1

)
(5.5)

so that

xi = Lc + (1− Lc)ξi (5.6)

1The MoC design starts from an approximate solution at the throat, such as the one
by Sauer [4]
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Then, the variance of the resulting B-spline to the reference geometry is
minimized with respect to the remaining variables ηi, ct and so. Figure 5.5
shows the results depending on the number of control points nd. The cosine
distribution is able to approach the reference even with a limited number
of parameters and increasing the number of control points does not lead to
substantial improvements. On the other hand, the linear distribution benefits
from increasing the number of free variables although it never reaches the
same accuracy as the cosine distribution.

In this way, the reference geometry can be recovered with the desired
level of accuracy.
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Figure 5.5: Variance of the B-splines with increasing number of control points,
with respect to the reference geometry. The linear and cosine x-distributions
correspond to equations (5.4) and (5.5) respectively
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Chapter 6

Optimization of an Ideal Gas
Nozzle

− Don’t you say that, don’t you say
that if it ain’t true!

6.1 Introduction

The present chapter applies the notions presented in chapter 4 to find the
optimal shape of a 2-D axial nozzle. The the criteria for the optimum and the
choice of the design variables will be explained in details, but first a working
fluid needs selecting.

As mentioned in chapter 2, the siloxanes represent one of the most attrac-
tive options for ORC applications: they have zero Ozone Depletion Potential,
very low Global Warming Potential and low cost. Even if they operate in
proximity of their thermal stability limit, their decomposition releases non-
toxic compounds. In this view, the compound selected is MDM, whose main
properties are reported in Table 6.1. Moreover, MDM is currently used in
many ORC plants, in which the flow can be accelerated to supersonic con-
ditions around M = 2.2 at the end of the turbine stator. Therefore, that
Mach number represents also the designed discharge conditions for the two
dimensional nozzle under examination.

Assuming a politropic ideal-gas model for the fluid, the absolute ther-
modynamic conditions are neglected, since the relevant parameters are the
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Table 6.1: Main properties of MDM

Complete Name Octamethyltrisiloxane
Chemical Formula C8 H24 Si3 O2

MM 236.5 kg/kmol
Tc 290.94 oC
Pc 14.15 bar
ρc 273.86 kg/m3

ratios. For example, according to the isentropic relations [4] is

Pe
P0

=

(
1 +

γ − 1

2
M2

e

) γ
1−γ

(6.1)

so that the discharge pressure Pe can be rescaled (afterwards and without
consequences) to an arbitrary reference value P0 for the same outflow Mach
number Me and specific heat ratio γ.

The only two parameters ruling the behavior of the fluid in the politropic
ideal-gas case are the specific gas constant R and the heat capacity ratio
γ. The former is the ratio between the universal gas constant and the fluid
molar mass, while the latter can be calculated from the number of active
degrees of freedom N as

γ = 1 +
2

N
(6.2)

In the dilute gas limit, the MDM features N = 115 [1], which leads to
γ = 1.017.

To have a preliminary idea of the dimensions of the nozzle, a simplified
approach allows to calculate the throat-to-exit area ratio as function of the
discharge Mach number and the heat capacity ratio. According to the one-
dimensional isentropic relations [4]

Se
St

=
1

Me

[
2

γ + 1

(
1 +

γ − 1

2
M2

e

)] γ+1
2(γ−1)

= 3.008 (6.3)

Now the discussion aims to build up thoroughly the optimization.
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6.2 Objectives

The desired characteristics of the optimal nozzle involve different aspects
which can be resumed as:

• uniform flow at nozzle exit;

• outflow angle at nozzle exit;

• dissipation within the nozzle;

• minimal nozzle length.

The first two targets can be treated together, since they concern either
the absolute Mach number and the flow angle, or the two components of the
Mach number: here is preferred the former formulation which allows for a
more immediate visualization of the two aspects, for example in the choice
of the relative weigths which will be discussed later. As for the dissipation
within the nozzle which is evaluated with the total pressure at the outflow,
it is treated as a constraint. In fact, if considering the total pressure loss in
the objectives means a penalty for the shock-affected geometries (so that the
Genetic Algorithm discards them earlier), it accounts for the numerical dis-
sipation as well. Since optimal geoemtries are shockless and non-dissipative,
at the end the numerical dissipation would be the only contribution, which
is an undesired effect. Finally, as previously stated, the last requirement is
equivalent to maximize the throat area.

All these objectives have to be quantified into one or more functions to
be minimized by the Genetic Algorithm. To select the number of objective
functions it is necessary to examine the type of the desired characteristics.
Excluding the total pressure, a three-objective optimization is nonetheless
superfluous since the first two items can be combined together into a single
objective representing the outflow quality. Moreover, a tradeoff exists be-
tween the nozzle length and such outflow quality because a reduction in the
length clashes with outflow performance. So, a separated objective must be
considered for the nozzle length, which makes the problem a two-objective.

While the second objective is of immediate formulation, the first objective
requires a simple elaboration of the CFD output. On the outflow boundary
the solution is a function only of the y coordinate and every variable of
interest is known. Being Z(y) the generic variable and Ztrg its target value
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for the optimization, the mean absolute deviation weighed for the mass flow
is computed as

φZ =
1

ṁ

∫ So

0

ρ(y)V(y) · n |Z(y)− Ztrg| dy (6.4)

where ρ(y) is the densit and V(y) ·n the component of the velocity normal to
the boundary. With the finite-volume discretization, the domain boundary
of interest is described by q cell boundaries, so that the integral 6.4 can be
calculated as

φZ =
1

ṁ

q∑
j=1

ρjVj · χj |Zj − Ztrg| (6.5)

where the χj are metric vectors accounting for the orientation and the size
of the generic j-th cell boundary (see [16] for their definition).

Computing in this way the functions related to the Mach number and
flow angle, they can be combined to obtain the second objective function. To
summarize, the multi-objective optimization problem statement reads

min
x
f1(x) =

1

St
(6.6)

min
x
f2(x) =

φM
σM

+
φα
σα

(6.7)

in which the σZ are user-defined weights and represent the deviation allowed
from the target values, while the vector x contains the design variables.

6.3 Design Variables

From the type of parametrization employed has emerged the necessity to
adopt at least the throat area St and the outflow dimesionless area so as
design variables. The converging part is considered fixed in all its components
because it is thought to have a minor influence on the outflow in the inviscid
case. The present analysis assumes also the inflow section and the throat
location fixed multiples of the throat section (reasonably si = 1.75 and lc =
3), therefore the converging part is fixed in all its components. The throat
curvature ct also is a free variable.
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As for the diverging part, the number of control points has to be selected.
The approach is to fix their xi coordinates, leaving only their vertical posi-
tions (controlled by the dimensionless ηi) as free variables. The figure 5.5 of
the previous chapter shows that a cosine distribution throughout the diverg-
ing part better approximates the optimal geometry for a real gas, with only
two control points. However, few conrol points seem to allow less flexibility
in describing unconventional geometries. Such geometries have to be taken
into account, especially when treating real gas cases.

Increasing the number of design variables slows down the optimization,
but the quality of the solution benefits. For the present case, a cosine distri-
bution with 3 control points is adopted, bringing the number of optimization
variables to 6.

6.4 Constraints

Virtually, no additional constraint is necessary for this optimization. How-
ever, the search space is limited in the following:

• the throat section must generate Lc < 1, therefore St < 1/lc;

• the outlet section must be greater than the throat section, therefore
so > 1;

• the yi of the control points must lay between the throat and the exit
sections, therefore 0 < ηi < 1.

Even the total pressure constraint is superfluous, because in general the
shock-affected geometries do not generate a uniform outflow. However, during
the selection the Genetic Algorithm tends to discard the individuals which vi-
olate the constraints, favoring the feasable designs. In this view, the following
constraint on the mean outflow total pressure P0,e helps

P0,e

P0

> 0.95 (6.8)

In this view, if the total pressure difference between inflow and outflow is
minimal, the flowfield is considered non-dissipative regardless of the actual
loss given by the numerical dissipation or the weaker shocks.
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6.5 Grid Generation

An elliptic grid generator allows to build the structured mesh which dis-
cretizes the domain, as shown in figure 6.1. The user-defined inputs are sim-
ply the number of nodes along the x and y directions. Increasing the number
of nodes leads to an accurate solution of the flowfield, but is more expen-
sive in terms of computational resources. With a Genetic Algorithm, tens
or hundreds of simulations are foreseen to reach a good design, therefore an
excessive mesh refinement would slow down the optimization too much. A
compromise has to be reached between the accuracy of the results and the
efficiency of the process.

For a nozzle running with ideal gas a reasonable choice is a grid of 150x40
nodes along the two directions [5]. A grid convergence study will be performed
for the real gas nozzle in the following chapter, which confirms the present
choice.

Figure 6.1: Example of a coarse structured mesh used for the ideal gas cal-
culations
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6.6 Metamodels

The metamodels represent a fundamental aspect to improve the efficiency
of the optimization, being able to estimate the objective functions without
recalling the time-consuming flow solver for every individual. Obviously, no
metamodel is required for the throat preformance f1 since it can be calculated
directly from one of the inputs.

Firstly, whatever the model, it has to be trained. Two values of each
designed variable are considered and the objective functions resulting from
each combination are evaluated with zFlow. Each variable can take either a
“low” or “high” value, positioned respectively at 25% and 75% of the design
limits. Therefore, for the 6 variables of the problem under consideration, the
initial training set is formed by ntrain = 26 = 64 samples which should allow
the metamodel to recognize the main trends of the input-output relations.
Then, a test set is defined by selecting ntest = 20 random samples xk from
the design space and analyzing them with the flow solver. By comparing such
results f2(xk) with the metamodel’s prediction f̃2(xk), the relative accuracy
on the second objective is evaluated as

E =
1

ntest

ntest∑
k=1

∣∣∣f̃2(xk)− f2(xk)∣∣∣
f2(xk)

(6.9)

The software modeFrontier has implemented a discrete variety of mod-
els, ranging from simpler polynomial approximations to more advanced mod-
els. Excluding from the analysis the simpler and more inaccurate methods
together with those requiring a very large training set, the following are taken
into consideration:

• Radial Basis Functions;

• Artificial Neural Networks;

• Kriging;

• Anisotropic Kriging;

• Gaussian Processes.
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Setting the model’s parameters to their default values, the test error is eval-
uated in figure 6.2 according to the equation (6.9). The initial predictions
are very rough, but they should increase their accuracy throughout the opti-
mization as the training database is expanded. From this analysis the Neural
Networkis is clearly the worst-behaving model but, since it has already been
employed in similar works [25], further investigations are undertaken.

Figure 6.2: Relative test error E2 on the objective f2 for different classes of
metamodels

In particular for single-output metamodels, given the number of inputs
nin = 6 and the number of training samples ntrain = 64, the maximum num-
ber of hidden nodes to have an overdetermined porblem for the calculation
of the network parameters is

nhid < nmax =
ntrain
nin + 2

= 8 (6.10)

For the present case, the defalut settings use one hidden layer and 5 hidden
neurons, but it has also been reported [1] that an underdetermined system
(for example with nhid ≈ 2nmax) might perform better, inducing spourious
oscillations which favour the exploration of a wider state space. The test error
as function of the number of hidden nodes is reported in figure 6.3, and no
clear trend emerges. Therefore, the Neural Networks are discarded in favour
of the Kriging, which is also an exact predictor for the observed points (see
section 4.3.3). Finally, remember that the optimization relies on the active
learning of the metamodel throughout the process, to improve its predictive
capability.
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Figure 6.3: Relative test error E2 on the objective f2 for Neural Networks
with varying hidden nodes nhid and one hidden layer

6.7 Initial Population

Besides the surrogate models, some good individuals should be provided in
the initial populaiton to further improve the efficiency of optimization. To
do so, other easier perliminary optimizations (with less free variables and a
single objective function) are built. Each of them fixes the throat section St,
eliminating it from the design variables and fixing the nozzle length as well.
Therefore the only objective considered is the outflow quality f2. The control
points are placed on the curve

ηi = 1− (1− ξi)m (6.11)

so that, being the abscissa fixed, the parameter m uniquely determines their
coordinates (figure 6.4). Assuming also the throat curvaturee ct as a fixed
parameter, the only free variable left are the exponent m and the discharge
section st. The resulting preliminary optimization is faster (involving fewer
design variables), but constraints the control points on a pre-determined
curve. For every throat section, the individuals with the better outflow quality
are used to initialize the multi-objective optimization.

Figure 6.5 shows a result of the described procedure. The exponential
constraint often leads to oblique shocks from the early stages of the diverging,
nonetheless the discharge Mach number represents a good starting solution.
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Figure 6.4: Position of the control points imposing the law 6.11, for different
values of the exponent

Figure 6.5: Example of a geometry obtained from the preliminary optimiza-
tion
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6.8 Results

For the present optimization the outflow quality is defined by the following
tolerances:

• σM = 0.025;

• σα = 1o.

After the initial training of the surrogate model with 64 samples, a first
optimization is run. Then, 5 individuals laying on the first pareto front are
evaluated with the flow solver, allowing to extend the training database.
The metamodel is re-trained and a more accurate optimization is performed.
In this way, after few iterations, the first pareto front stabilizes and the
optimization is considered concluded.

With the procedures just described, figure 6.6 shows the results of the
Genetic Algorithm after the last training of the surrogate model. The four
highlighted individuals are then analyzed with zFlow and the figures 6.7 and
6.8 report the results in term of outflow Mach number and flow angle, which
determine the objective function f2. Finally, figure 6.9 shows the diverging
shapes of the nozzles and their lengths, to appreciate how shorter nozzles
affect the quality of the solution. While the outflow angle always stays within
the imposed tolerance of 1o, the behavior of the Mach number is definitely
not satisfactory for the shorter nozzles (cases C and D).

6.9 Concluding Remarks

The performed optimization concerns only the diverging part of the nozzle.
The choice has been motivated by the limited influence the converging shape
has on the outflow quality.

Comparing this methodology for nozzle design with the Method of Char-
acteristics, the following differences emerge:

• the Method of Characteristics arbitrarily assumes the throat solution
(which is not physical), while the present optimization arbitrarily as-
sumes the converging shape (which can be physically imposed);

• the Method of Characteristics cannot treat subsonic flowfields, while
the present optimization can, by simply adding to the design variables
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Figure 6.6: Results of the Genetic Algorithm after the last training. Indi-
viduals are evaluated with a Kriging model. The highlighted cases will be
evaluated with the flow solver

some control points for the converging part and/or the location of the
throat lc;

• the Method of Characteristics cannot treat viscous or turbulent flow-
fields, while for the present optimization in principle it is possible (it
depends whether the flow solver can);

• a multi-objective optimization with a Genetic Algorithm shows the
tradeoff between different needs, allowing the designer a choice after
the optimization is concluded.
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Figure 6.7: Mach number profile along the outflow section for the four selected
cases
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Figure 6.8: Flow angle profile along the outflow section for the four selected
cases
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Figure 6.9: Diverging shapes of the nozzles for the four selected cases and
Mach number distribution
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Optimization of a Real Gas
Nozzle

− What I do wrong?
− Ok, you did two things wrong.

7.1 Introduction

In the previous chapter an optimization of a nozzle working with MDM was
conducted employing an ideal-gas model. In the present chapter, the same
type of optimization is carried out with a Span-Wagner equation of state.
The considered expansion starts from supercritical reservoir conditions of
P0 = 25 bar and T0 = 310oC: as mentioned in section 2.2, supercritical cycle
configurations have not been explored thoroughly yet, but might offer sig-
nificant advantages. The goal remains a homogenious outflow Mach number
of 2.2. The isentropic expansion, depicted in figure 7.1, passes very close to
the saturation curve, therefore the real gas effects are expected to strongly
influence the outcome.

In fact, an optimal shape according to the ideal gas model represents an
unacceptable solution for this supercritical expansion. As an example, figure
7.2 shows that the real gas model predicts an outflow Mach number of 1.52,
far below the target value.
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Figure 7.1: Supercritical expansion in the T − s thermodynamic plane

Figure 7.2: Optimal geometry for ideal gas. Comparison between ideal gas
(left) and real gas (right) models
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7.2 Grid Convergence Analysis

A grid convergence study is performed for the real gas on the nozzle of figure
5.4. That geometry is the result of a design with the Method of Characteris-
tics for the same conditions (P0 = 25 bar, T0 = 310.3oC and Me = 2.2). The
converging part is arbitrarily assumed, since it is not defined by the MoC.

Firstly, figures 7.4 report the results of an accurate simulation in terms of
Mach number and pressure. Such distributions well reflect the results of the
MoC (figure 5.4 [24]), giving a fairly uniform Mach number at the outflow
section.

Figure 7.3: Example of a coarse structured grid used for the real gas calcu-
lations

The grid convergence study has been conducted as a function of the num-
ber of nodes either along the x and y coordinates. Two Mach numbers are
taken as figures of merit at the outflow section: the first lays on the axis while
the second is on the wall. Then the relative error is evaluated as

E =
|M −Mex|

Mex

(7.1)

where as exact value Mex is considered the result from the finest 400x80-node
grid. From figure 7.5, also a relatively coarse grid of 100x20 nodes reduces
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the error to 1%. However, for all the inviscid optimizations, a grid of 150x40
nodes has been employed, which makes the solution almost grid-independent,
confirming also the choice for the ideal gas grid.

7.3 One Dimensional Analysis

Similarly to the previous chapter, to have a preliminary idea of the dimen-
sions of the nozzle, a one-dimenisonal isentropic approach is followed. The
thermodynamic properties of MDM, as results of the Span-Wagner equation
of state, are calculated with FluidProp [18].

With a real gas model there is no direct relation such as equation 6.3
to estimate the throat-to-exit area ratio and some intermediate passage is
needed. So, the entropy of the fluid is firstly calculated from the known
reservoir conditions P0 and T0 as

s̃ = s(P0, T0) (7.2)

Then, according to the energy conservation is

h(P0, s̃) = h(P, s̃) +M
c2(P, s̃)

2
(7.3)

Since the flow is considered isentropic, equation 7.3 determines the pressure P
corresponding to a given Mach number M . In case of supersonic outflow the
nozzle is chocked, therefore imposing Mt = 1 in equation (7.3) determines the
throat pressure Pt. Then, imposing Me = 2.2 for the outflow determines the
discharge pressure Pe. At this point every thermodynamic variable is known
at the throat and at the outflow as function of (P, s). The mass conservation
law allows to calculate the area ratio as

Se
St

=
ρtct

ρeMece
= 10.537 (7.4)

This area ratio is three times that of the ideal gas model.

7.4 Results

Keeping the same converging geometry of the ideal gas case, the diverging
shape is here optimized. Again, an initial training database for the meta-
model is made of 64 samples and it is successively refined. The optimization
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Figure 7.4: Mach number (left) and pressure (right) distributions for the test
case of MDM at reservoir conditions of P0 = 25 bar and T0 = 310oC
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Figure 7.5: Relative error on the outflow Mach number at the wall (top) and
at the axis (bottom)
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is stopped when the first pareto front stabilizes and re-trainings do not bring
actual improvements anymore. The present optimization has been stopped
after 150 direct zFlow evaluation, which means that about 90 re-training
samples have been used. This is found to be sufficient, since the test set em-
ployed to verify the accuracy of the metamodel shows limited improvements
in the later stages of the re-training (figure 7.6).
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Figure 7.6: Relative error of the metamodel as function of the additional
re-training samples. The test set is made of 10 samples

After the last training of the surrogate model, figure 7.7 shows the results
of the evolution according to the Kriging model. Again, four individuals
laying on the first pareto are selected and analyzed with zFlow and the
figures 7.8 and 7.9 show the results in term of outflow Mach number and
flow angle. Finally, figure 7.10 shows the diverging shapes of the nozzles and
their lengths. For the longer nozzles (cases A and B) the Mach number never
exceeds the imposed tolerance, while for the shorter the outflow uniformity
is not well attained.
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Figure 7.7: Results of the Genetic Algorithm after the last training. Indi-
viduals are evaluated with a Kriging model. The highlighted cases will be
evaluated with the flow solver
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Figure 7.8: Mach number profile along the outflow section for the four selected
cases
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Figure 7.9: Flow angle profile along the outflow section for the four selected
cases
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Figure 7.10: Diverging shapes of the nozzles for the four selected cases and
Mach number distribution
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7.5 Comparison with the Ideal Gas

The same optimization leads to very different results depending on which
gas model is employed, see figure 7.2. An optimum real gas nozzle is 3 times
bigger than its ideal gas counterpart, thus real gas effects cannot be neglected
in proximity of the critical point.

Figure 7.11: Comparison of two optimal geometries according to ideal and
real gas models

Such differences can be explained by looking at some thermodynamic
quantities. Figures 7.12 and 7.13 show the speed of sound and the funda-
mental derivative as functions of the pressure along the isentropic expansion.
Depending on the gas model employed, the throat conditions vary, with the
throat pressure predicted by the real gas being slightly higher1. According
to the real gas model the speed of sound is almost constant during the ex-
pansion, so that an increase in the velocity leads immediately to an increase
in the Mach number. However, the real gas predicts an increasing speed of
sound along most of the diverging part, so that the Mach number growth is
slower. Such trend of the speed of sound has been well documented also for
a van der Waals model [12], with a minimum close to the critical point.

Moreover, by recalling the quasi one-dimensional flow relation [4]

dM

dx
=

1 + (Γ− 1)M2

M2 − 1

M

S

dS

dx
(7.5)

1On the right of those conditions, at lower pressures, the flow is supersonic
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with S the local nozzle section, it is clear that the lower is Γ, the slower is
the increase in the Mach number for the same geometry variation.

So, in the early stages of the diverging the real gas predicts both a higher
Γ and more rapid Mach number growth (see figures 7.13 and 7.2). Then the
fundamental derivative decreases and this effect leads necessarily to a longer
nozzle with a bigger outflow section.

7.6 Influence of the Converging Part

To asses the influence of the converging part on the outflow, further inves-
tigations are undertaken. Always referring to the inviscid case, the three
geometries of figure 7.14 are analyzed. They have the same diverging part,
resulting from the optimization, while the converging is given arbitrarily.

Figure 7.15 reports the three Mach number profiles at the outflow. The
Mach number varies very little in comparison to the refernece tolerance, so
that considering a fixed converging in the optimization is reasonable. The
Method of Characteristics designs only the diverging part, but it assumes
the throat flowfield. This solution, though it is theroetically based, presents
the problem of finding a converging part which would lead to such flowfield.
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Figure 7.12: Speed of sound c = c(P, s̃) as function of the pressure along the
isentropic expansion. The expansion starts at P0 = 25 bar, T0 = 310oC
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Figure 7.13: Fundamental derivative Γ = Γ(P, s̃) as function of the pressure
along the isentropic expansion. The expansion starts at P0 = 25 bar, T0 =
310oC
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Figure 7.14: Geometries tested to evaluate the invluence of the converging
part on the outflow
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Figure 7.15: Outflow Mach number for the three converging geometrie tested
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Chapter 8

Optimization in Subcritical
Conditions

− Yeah, he does like to repeat himself.

8.1 Introduction

The previous chapter showed a significant difference in the shape of the op-
timal nozzle for a supercritical expansion depending on the thermodynamic
model adopted to describe the gas. The present chapter aims at the optimiza-
tion of a nozzle from subcritical reservoir conditions. In particular, P0 = 10
bar and T0 = 276.9oC are chosen, while the outflow Mach number is still
2.2, to be able to compare the results with the previous calculations. Such
expansion is represented in the T − s thermodynamic plane in figure 8.1.

The behavior of the speed of sound and of the fundamental derivative
is shown in figures 8.2 and 8.3. Differently from the supercritical expansion,
they now exibit monotonic trends, both tending to the ideal gas behavior
for low pressures. For these reasons, the nozzle shape should be closer to the
ideal gas prediction.
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Figure 8.1: Subcritical expansion in the T − s thermodynamic plane
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Figure 8.2: Speed of sound c = c(P, s̃) as function of the pressure along the
isentropic expansion. The expansion starts at P0 = 10 bar, T0 = 276.9oC
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Figure 8.3: Fundamental derivative Γ = Γ(P, s̃) as function of the pressure
along the isentropic expansion. The expansion starts at P0 = 10 bar, T0 =
276.9oC

8.2 Results

The results of the optimization are shown in figure 8.4 according to the
Kriging model. As always, four individuals are taken and evaluated with the
flow solver. The outflow is reported in figure 8.5 and 8.6. Finally, the shapes
of the four nozzles are in figure 8.7.

8.3 Recap

The subcritical optimization has brought a lenght of the diverging part com-
parable to the ideal gas results, even though with a bigger outflow section.
Furthermore, while in the supercritical expansion the Mach number is non-
monotonic along x, in the subcritical expansion such oscillatory behavior is
much less pronounced. As mentioned, this is due to the fundamental deriva-
tive which assumes higher values in the subcritical case.

Table 8.1 summarizes the results for the inviscid cases. No total condition
is needed for the ideal gas case because the pressure and area ratios are ruled
only by the specific heat ratio γ. Therefore, the ideal gas column might also
represent an expansion occurring in a dilute gas region, for which the ideal
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Figure 8.4: Results of the Genetic Algorithm after the last training. Indi-
viduals are evaluated with a Kriging model. The highlighted cases will be
evaluated with the flow solver

gas law is valid. In this view, moving towards the saturation curve alters
first of all the discharge pressure ratios, with the ideal gas model prediction
being twice bigger than the supercritical case. The compressibility factor Z =
Pv/RT strongly reduces towards the critical point, confirming the assertion
made in chapter 2 about the lower specific volumes for the same pressure
and temperature. The throat-to-exit area ratios are calculated with the one-
dimensional isentropic relations, while the diverging lengths ld are the results
of the optimizations. They are made nondimentional with the throat section,
namely ld = (1− Lc)/St from figure 5.1.

Then, rescaling the ideal gas results to the total conditions of the sub-
critical and supercritical expansions, the mass flow can be calculated in the
two cases

ṁ

St
= ρtut (8.1)

with respect to the throat. Table 8.2 shows again a big difference for the
supercritical expansion, in which the mass flow doubles from the ideal to
the real gas model. A difference of 8% concerns the subcritical case, despite
consistent variations affect both the sonic density and velocity, but they
partly compensate.
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Figure 8.5: Mach number profile along the outflow section for the four selected
cases
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Figure 8.6: Flow angle profile along the outflow section for the four selected
cases
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Figure 8.7: Diverging shapes of the nozzles for the four selected cases and
Mach number distribution
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Table 8.1: Summary of the conditions analyzed for the inviscid optimizations

Dilute Gas Subcritical Supercritical
Total Temperature T0 [oC] − 276.9 310.3
Total Pressure P0 [bar] − 10 25
Throat Pressure Ratio Pt/P0 0.603 0.659 0.705
Outflow Pressure Ratio Pe/P0 0.090 0.074 0.046
Reservoir Complessibility Factor Z0 1.000 0.623 0.306
Throat Complessibility Factor Zt 1.000 0.766 0.278
Outflow Complessibility Factor Ze 1.000 0.973 0.959
Outflow Area Ratio Se/St 3.008 3.933 10.537
Typical Diverging Lenght ld 12 11 35

Table 8.2: Mass flow, comparison between ideal and real gas models

ρt [kg/m3] ut [m/s] ṁ/St [kg/m/s]
Subcritical
Ideal Gas 31.4 139.6 4390
Real Gas 45.2 105.9 4787
Supercritical
Ideal Gas 74.1 143.8 10657
Real Gas 313.0 63.6 19919

75



CHAPTER 8

76



Chapter 9

Geometry Optimization
Accounting for Viscous Effects

− What you learn tonight?

9.1 Introduction

The present task is to perform the same shape optimization as chapter 7
accounting for the viscous effects. The software zFlow is able to solve both
the laminar and the Reynolds-averaged compressible Navier-Stokes. However,
the turbulent version of the software has not displayed acceptable robustness,
therefore this section is limited to the laminar effects only.

Anyway, the Reynolds number comes into play and it is calculated from:

• Lref which is the nozzle total length, resembling the chord of a blade;

• Vref given by the outflow Mach number and sound speed;

• ρref and µref given by the outflow conditions as well.

Accurate transport properties are not available in zFlow for the MDM,
so they are calculated with simpler models. For example the viscosity is a
function of the temperature by the following power-law:

µ = µref

(
T

Tref

)α
(9.1)
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which indeed is a strong approximation. Figure 9.1 shows the difference in the
viscosity along the isentropic expansion considered in the previous analysis.
In the present cases, α = 1.5 is considered the most appropriate to obtain a
good approximation in the last phases of the expansion.
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Figure 9.1: Viscosity µ = µ(T, s̃) along the isentropic expansion from P0 = 25
bar and T0 = 310oC to the design Mach number M = 2.2. Comparison
between the accurate estimation from FluidProp and the power-law 9.1

9.2 Validation of the Flow Solver over a Flat

Plate

Before starting the optimization of the nozzle, the flow solver is validated
over a flat plate at zero angle of incidence. The validation case concerns air
(treated as ideal gas) in the laminar regime. The simulations are performed
at M = 0.3 to resemble an incompressible flow, and Re = 6.75 · 106 based on
the length of the plate (L = 1 m). The origin of the reference frame is located
on the leading edge of the plate, while the computational domain allows for
a uniform inflow and extends to the end of the plate. The grid adopted is
shown in figure 9.2 and it is refined in proximity of the wall (the first cell has
a dimensionless height of 2.78 · 10−6 based on the plate length).
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Figure 9.2: Flat plate computational grid

The laminar case is compared to the Blasius exact solution. Firstly, the
velocity at the outflow is compared in figure 9.3, plotting the two nondimen-
sional components with respect to the similarity variable η

η =

√
U∞
ν∞x

y (9.2)

where U∞ is the asintoptic velocity and ν∞ is the kinematic viscosity. Sec-
ondly, since Blasius theory gives also the friction coefficient distribution along
the plate as

Cf =
0.664√
Rex

(9.3)

this comparison is made in figure 9.4. As for the laminar case, the zFlow
results are in good agreement with the theory.
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Figure 9.3: Velocity profiles for the laminar flat plate
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Figure 9.4: Friction coefficient along the flat plate, laminar case

9.3 Problem Definition

As shown in chapter 5, the absence of a reference length in the Euler equa-
tions made every rescaling possible without any consequence. In that case,
the problem could be formulated equivalently as a maximization of the throat
area with fixed length, or as a minimization of the total length with fixed
throat. For the viscous problem, the choice of a reference length makes this
assertion false, allowing two distinct formulations of the optimization prob-
lem:

1. Fixed Throat, Variable Length

In the first approach the throat section is imposed, while the total
length of the nozzle varies, thus varying the Reynolds number. The
present formulation consists of minimizing the total length while max-
imizing the outflow quality. Since the throat section rules the mass
flow, this is the better approach for the TROVA facility in which the
high pressure reservoir has been designed to guarantee certain running
times.

2. Fixed Length, Variable Throat

A second approach consists of fixing the total lenght of the nozzle and
the Reynolds number. This formulation aims at maximizing the throat
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section and seems better for turbine blades, in which the mass flow can
be adjusted by changing the number of nozzles for the stage.

Therefore, the throat height is fixed to ht = 11 mm, which is acceptable
in terms of running times and leads to neglectable blockage effects when
inserting the pressure probes [9]. Sticking with the same parametrization as
figure 5.2, the reference length is given by

Lref =
ht
St

(9.4)

9.4 Design Variables and Objectives

Nine variables are accounted for the viscous optimization:

• one control point for the converging part;

• five control points for the diverging part;

• the parameter St, which essentially determines the nozzle length;

• the throat curvature ct;

• the outflow section so.

A two-objective problem is still the the best choice, with one function
related to the length and the other to the outflow. However, the outflow ob-
jective accounts also for dissipation in terms of total pressure losses, because
they are maily due to viscosity, with the numerical dissipation becoming
neglectable. Therefore, the multi-objective optimization problem statement
reads

min
x
f1(x) =

1

St
(9.5)

min
x
f2(x) =

φM
σM

+
φα
σα

+
φP
σP

(9.6)

in which the φZ represent the mean error to the target, and the σZ are
user-defined weights (see section 6.2). The target values and tolerances are
reported in table 9.1.

No constraint is imposed because the total pressure is now part of the
objectives.
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Table 9.1: Target values and tolerances for the viscous optimization

Z Ztrg σZ
M 2.2 0.025

α [deg] 0.0 1.0
P0,e/P0 1.0 0.1

9.5 Mesh Generation

The domain simulated for the viscous calculations is shown in figure 9.5.
A straight path is added before the nozzle, so that the inflow condition of
uniform flow is still valid. Therefore the boundary layer starts to develop
from an infinitely sharp leading edge representative of the beginning of the
nozzle.

Then, the mesh has to be refined in proximity of the wall: the height h1
for the first computational cell should give y+ ≈ 1. By the definitions of the
nondimensional wall distance and the friction velocity

y+ =
h1uτ
ν

(9.7)

uτ =

√
τw
ρ

(9.8)

it is clear that finding h1 requires an estimation for the shear stress at the wall
τw, or the friction coefficient. Such estimation is made according to equation
9.3, valid for the flat plate.

The number of nodes along the y direction is selected to achieve the same
mesh resolution far from the wall as in the inviscid case (figure 9.6).

9.6 Results

The procedure is the same as in the previous chapters: a database is initially
created and successively refined to train the metamodel. The optimization is
run with the surrogate and after the last retraining, figure 9.7 is obtained.
Again, some cases are selected and analyzed with the flow solver to show
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Figure 9.5: Domain and boundary conditions for the viscous simulations

Figure 9.6: Mesh for the viscous calculations

how a reduction in the length affects the outflow. Figures 9.8 and 9.9 show
the results in term of Mach number and outflow angle.

Firstly, by looking at the outflow angle profile a longer nozzle seems nec-
essary according to the laminar solution with respect to their inviscid coun-
terparts. However, the bigger contribution to the outflow objective function
comes still from the Mach number. This is due mainly to the boundary layer,
where the velocity decreases and where the target Mach number cannot be
reached. The shape of the nozzles is reported in figure 9.10.
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Figure 9.7: Results of the Genetic Algorithm after the last training. Indi-
viduals are evaluated with a Kriging model. The highlighted cases will be
evaluated with the flow solver
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Figure 9.8: Mach number profile along the outflow section for the four selected
cases
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Figure 9.9: Flow angle profile along the outflow section for the four selected
cases
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Figure 9.10: Diverging shapes of the nozzles for the four selected cases and
Mach number distribution
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Chapter 10

Conclusions and Perspectives

− Maybe someone oughta count to ten.

10.1 Conclusions

The total conversion efficiency of energy conversion systems is dependent
on the efficiency of its components. This thesis tests a methodology for the
fluid dynamic design of turbomachinery components for Organic Rankine
Cycles in order to improve their overall efficiency. The methodology employs
a Genetic Algorithm (GA) coupled with the CFD solver to optimize the shape
of a converging-diverging two dimensional nozzle operating in the dense gas
regime. This nozzle could be used in the Test Rig for Organic Vapor wind
tunnel to perform experiments on organic fluids.

Usually, the Organic Rankine Cycles operate with heavy compounds in
the thermodynamic region close to the critical point. In such conditions, ne-
glecting the real gas effects leads to design not fulfilling the expectations. For
example, the present work highlights how the ideal gas approach underesti-
mates the size of the nozzle by three times in a supercritical expansion. This
is due to the non-ideal and non-monotonic behavior of the speed of sound,
which is seen to increase during a large part of the expansion. Accounting
for the viscous effects does not alter such conclusions.

In principle, GAs allow for automatic optimizations if every component
which they interact with (for example geometry modeler, mesh generator,
CFD analysis and post processor) can work without external intervention.
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In this view, robustness is the most pressing issue to reach for the flow solver,
which should be able to converge to the solution for any geometry the GA
asks for. zFlow displayed an excellent level of reliability for both the invis-
cid and the viscous cases. The importance of using in-house non-commercial
softwares for both the flow solution and the estimation of the thermophysical
properties of the gas lies in the knowledge of how the calculations are per-
formed and their level of accuracy. Moreover, if the solver crashes somewhere
in the analysis, it can be improved to overcome such problems, while with a
commercial software that is not possible.

On the other hand, the GA-based approach is very expensive from a
computational standpoint, because numerous CFD analysis are required to
reach a satisfactory design. However, improvements on the time efficiency of
the process are possible by employing different levels of sophistication for the
flow analysis, or even replacing it with a surrogate model. Such models are
trained to reproduce the input-output relation (namely they can estimate the
performance of a nozzle for a given geometry) and their prediction accuracy
can be refined during the course of the optimization. While the quality of
the results remain very good, the number of the flow analysis is reduced by
90%, thus resulting in a consistent save of time.

10.2 Perspectives

The future for the Organic Rankine Cycles seems very bright, but the knowl-
edge on organic fluids can still be improved, especially in the supercritical
conditions. Accurate thermodynamic properties are available only for a lim-
ited set of fluids and new experimental data are necessary to characterize a
wider set of substances.

Similarly, the TROVA wind tunnel initially aims at the calibration of
pressure probes in a converging-diverging nozzle for different organic fluids in
those particular conditions. Successively, tests on blade cascades are foreseen,
which would ultimately lead to direct measurments in industrial turbines.

On the other hand, the GA-based optimization is a very promising tech-
nique for turbomachinery design, especially with the growing computational
power available nowadays. By the way, when facing complex geometries and
complex equations of state for the description of the fluid, it is the only
viable way. Its limitations are basically set by the other softwares recalled,
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namely the mesh generator and the flow solver. While the results of this work
have been carried out with a structured grid generator appropriate for simple
geometries, other tools have been developed [26] to obtain automatically a
mesh in high-Reynolds regimes for arbitrary complex geometries.

The CFD solver zFlow is a powerful tool to simulate real gas flows.
Currently it displays a questionable robustness for the turbulent calculations
which does not allow a reliable coupling with the optimizer. However, it is
still under development for various aspects and the project’s conclusion is
scheduled within a few years.
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