

POLITECNICO DI MILANO

V Facoltà di Ingegneria
Laurea in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

Integration of biomolecular interaction data in a
genomic and proteomic data warehouse

Advisor: Prof. Marco Masseroli, Ph.D

Co-advisor: Eng. Giorgio Ghisalberti

 Final Thesis by: Arif Canakoglu
 ID Number:. 709607

Academic year 2009-2010

POLITECNICO DI MILANO

V Facoltà di Ingegneria
Laurea in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

Integration of biomolecular interaction data in a
genomic and proteomic data warehouse

Thesis by: ___________________________
(Arif Canakoglu)

Advisor: ___________________________
(Prof. Marco Masseroli)

Academic year 2009-2010

Acknowledgements

First of all, I wish to thank to Prof. Masseroli for his guidance and support from the initial to the final

level of my thesis and also thank to Giorgio Ghisalberti for his support and help resolve my

problems.

Thanks to all of my friends who are support me difficulties not only for the university life but also

difficulties of living abroad, Mercan, Tugce, Ugur, Guzide, Burak, Anil my housemates Riccardo,

Giulia and Giorgia, and all that I forgot to write here.

Last but not least thanks to my beloved family for their endless love and precious support to me.

Thanks also to everyone I forgot...

Page | II

Table of Contents
1 Abstract ... 1

2 Introduction .. 5

2.1 Genomic and proteomic research .. 7

2.2 Controlled vocabularies, ontologies and functional annotations ... 8

2.3 Biomolecular databanks .. 10

2.3.1 Data file formats... 13

2.4 Difficulties in comprehensively using available biomolecular data 15

2.5 Genomic and Proteomic Data Warehouse (GPDW) ... 15

2.5.1 Data and metadata schema ... 16

2.5.2 Software framework for automatic creation and updating of GPDW 17

3 Thesis goals .. 24

4 Extension of GPDW software framework for biomolecular interaction data management 25

4.1 Data import procedures ... 25

4.2 Data integration procedures ... 26

4.3 Metadata computation and storing .. 26

5 Considered biomolecular interaction databanks ... 30

5.1 IntAct: an open source molecular interaction databank .. 33

5.2 MINT: the Molecular INTeraction databank .. 33

6 Design of GPDW sections for biomolecular interaction data .. 34

6.1 Conceptual schema .. 35

6.2 Logical schema .. 38

7 Implementation of automatic procedures for biomolecular interaction data import 41

7.1 Tabular file format ... 41

7.2 XML file format .. 44

8 Validation and testing ... 47

8.1 Quantification of imported data and running times... 47

Page | III

9 Conclusions .. 51

10 Future developments ... 52

11 Bibliography.. 53

Page | IV

List of figures

Figure 1 Moore's Law .. 10

Figure 2 Internet domain survey host count... 11

Figure 3 Databank growth.. 12

Figure 4 Biomolecular databanks and their correlations ... 13

Figure 5 Data file formats .. 13

Figure 6 Tabular file types ... 14

Figure 7 Structure of GPDW framework ... 17

Figure 8 Sequence diagram of the main tasks of the implemented ... 18

Figure 9 Sequence diagram of the main tasks of the implemented ... 21

Figure 10 Import level relation between same feature ... 25

Figure 11 Integrate level relation between same feature ... 26

Figure 12 Metadata schema of feature unfolding tables .. 27

Figure 13 Metadata schema of source to feature unfolding tables .. 28

Figure 14 Metadata schema if scource2feature_association_display_url .. 30

Figure 15 Example of PSI MI. ... 32

Figure 16 Complex expansion algorithms ... 33

Figure 17 Conceptual schema of interactions between protein and protein. 36

Figure 18 Conceptual schema of interactions between dna sequence and protein. 37

Figure 19 Logical schema of interactions between protein and protein. ... 39

Figure 20 Conceptual schema of interactions between dna sequence and protein. 40

Figure 21 Tabular loader workflow ... 44

Figure 22 Interaction .. 45

Figure 23 XML loader workflow ... 46

Page | V

List of tables
Table 1 Logical schema legend colors of tables .. 38

Table 2 Loader execution time ... 47

Table 3 Number of entries in interaction tables ... 48

Table 4 Number of entries in similarity tables ... 48

Table 5 Number of entries in IntAct interaction related tables .. 50

Table 6 Number of entries in MINT interaction related tables ... 50

Page | 1

1 Abstract
The growing available genomic information provides new opportunities for novel research

approaches and original biomedical applications that can provide effective data management

and analysis support. In fact, integration and comprehensive evaluation of available

controlled data can highlight information patterns leading to unveil new biomedical

knowledge.

The goal of bioinformatics is to organize databases, analyze the knowledge acquired in the

genome and proteome and finally store, retrieve and monitor effectively the information

available today. There are many public Web databases that allow online consultation and

provide the possibility to download such information freely.

However these data, which are available and important to biologists, doctors and researchers,

are very heterogeneous and distributed. Therefore it is needed a tool that overcomes cross-

search problem on various data-sources and returns the information which is not possible to

get from individual data sources.

For this purpose, in the University of Politecnico di Milano, a project, Genomic and

Proteomic Data Warehouse (GPDW), is creating a data warehouse that integrates information

from many sources of genomic and proteomic data on the basis of a conceptual framework

that relates molecular entities and biomedical characteristics (features).

The primary goal of this Thesis is to develop an extension for biomolecular interaction data

on the GPDW framework and the second goal is to implement the integration of such type of

data, from two considered databanks, to the GPDW project, by using the framework

extension implemented as first goal of the Thesis.

After this abstract, chapter 2, Introduction, of this Thesis is about the conceptual meaning of

bioinformatics, with the origins and the historical development of the discipline and the tasks

and goals of the discipline. Then information about genomic and proteomic fields is briefly

explained. Next the chapter talks about controlled vocabularies, ontologies and functional

annotations and their usage in bioinformatics. In this first part, the main concepts of

bioinformatics are given. Thereafter, it is introduced another important part of the

bioinformatics, regarding biomolecular databanks and data, and the current difficulties of

Page | 2

using such biomolecular data. This chapter continues giving information about the GPDW

project and its current status.

In chapter 3, the goals of the Thesis are discussed.

In chapter 4, the extension of the GPDW project for integrating biomolecular interaction data

and the necessary development to be achieved for this extension are discussed. This is

explained in the chapter subsections as data importing procedures, for importing data from

external databanks, and data integration procedures, which is about integration of the data

into the data warehouse and metadata computation and storing, which is as about storing the

metadata of the data warehouse into the metadata schema of the database.

In chapter 5, the databanks considered in this Thesis are presented by explaining some

general, historical and statistical information; information about the provided types of data

and files are also given.

In chapter 6, the design of the integration of the considered databank data is described. This

mainly generated entity relationship diagrams and logical diagrams of the considered

databank data.

Chapter 7 describes the software architecture and methodologies implemented for the

automatic import of data from the databank provided data files, the contents of those files,

and the design choices and strategies adopted to achieve a correct and consistent import.

Chapter 8 shows some quantitative results related to the imported data and the time taken to

import them.

In chapter 9, the conclusions, which confirm the legitimacy of the design choices and

activities undertaken to achieve the objectives, are discussed.

Chapter 10 includes references to books, scientific articles and web sites referred in the

elaboration of this Thesis.

Page | 3

Sommario

Le crescenti informazioni genomiche disponibili offrono nuove opportunità per nuovi

approcci di ricerca e originali applicazioni biomediche, in grado di fornire un'efficace

gestione dei dati e il supporto all’analisi. Infatti, l'integrazione e la valutazione globale dei

dati controllati disponibili può evidenziare modelli di informazione che permettono di svelare

nuove conoscenze biomediche.

L'obiettivo della bioinformatica è quello di organizzare banche dati, analizzare le conoscenze

acquisite del genoma e del proteoma e, infine, archiviare, recuperare e controllare in modo

efficace le informazioni attualmente disponibili. Esistono molte banche dati Web pubbliche

che consentono la consultazione on-line e forniscono la possibilità di scaricare liberamente

tali informazioni.

Tuttavia questi dati, che sono disponibili ed importanti per biologi, medici e ricercatori, sono

molto eterogenei e distribuiti. Pertanto è necessario disporre di uno strumento che permetta di

superare i problemi di ricerca tra le varie fonti di dati ed in grado di restituire le informazioni

che non è possibile ottenere dalla consultazione di singole fonti dati. A tal fine, presso il

Politecnico di Milano, è stato creato un progetto denominato Genomic and Proteomic Data

Warehouse (GPDW): si tratta di un data warehouse che integra le informazioni provenienti

da molte fonti dati genomiche e proteomiche, sulla base di un quadro concettuale che si

riferisce ad entità molecolari e caratteristiche biomediche (funzionalità). L'obiettivo primario

di questa tesi è quello di sviluppare un'estensione per l’interazione biomolecolare di dati nel

framework GPDW, mentre il secondo obiettivo è quello di implementare l'integrazione di

questo tipo di dati, provenienti da due banche dati considerate utilizzando l'estensione

implementata come primo obiettivo della tesi.

Dopo questo riassunto, nel capitolo 2, Introduzione riguarda il significato concettuale della

bioinformatica, le origini e lo sviluppo storico della disciplina, nonché i compiti e gli

obiettivi. In seguito vengono brevemente fornite informazioni sulla genomica e proteomica. Il

capitolo successivo tratta i vocabolari controllati, le ontologie e le annotazioni funzionali ed il

loro utilizzo nella bioinformatica. In questa prima parte, vengono spiegati i concetti principali

della bioinformatica. Successivamente, è introdotto un altro elemento importante della

bioinformatica, riguardante le banche dati biomolecolari e le attuali difficoltà di utilizzare tali

Page | 4

informazioni. Questo capitolo continua fornendo informazioni sul progetto del GPDW ed il

suo stato attuale.

Nel capitolo 3 sono discussi gli obiettivi della Tesi.

Nel capitolo 4 sono trattati l'estensione del progetto GPDW per l'integrazione di dati di

interazione biomolecolare e lo sviluppo raggiunto per questa estensione. Questo aspetto è

spiegato nelle sottosezioni del capitolo, tra cui le procedure di importazione di dati da banche

dati esterne, le procedure di integrazione dei dati che riguardano l'integrazione dei dati nel

data warehouse, e la memorizzazione e creazione dei metadati, che riguardano la

conservazione dei metadati del data warehouse nello schema dei metadati del database.

Nel capitolo 5 sono presentate le banche dati considerate in questa tesi, spiegando alcune

informazioni generali, storiche e statistiche, come anche informazioni sui tipi di dato e i tipi

di file forniti.

Nel capitolo 6 è descritto il progetto di integrazione delle banca dati considerate. Sono stati

realizzati diagrammi entità-relazione e diagrammi logici delle banca dati prese in

considerazione.

Il capitolo 7 descrive l'architettura software e le metodologie attuate per l'importazione

automatica dei dati dai file forniti dalle banche dati, il contenuto di tali file, e le scelte

progettuali e le strategie adottate per raggiungere una corretta e consistente importazione.

Il capitolo 8 mostra alcuni risultati quantitativi relativi ai dati importati e il tempo necessario

per importarli.

Nel capitolo 9 vengono discusse le conclusioni, che confermano la legittimità delle scelte

progettuali e le attività intraprese per raggiungere gli obiettivi.

Il capitolo 10 include riferimenti a libri, articoli scientifici e siti web a cui si fa riferimento

nell’elaboratodi questa tesi.

Page | 5

2 Introduction
Bioinformatics (1) is the application of statistics and computer science to the field of

molecular biology.

Bioinformatics and computational biology involve the use of techniques including applied

mathematics, informatics, statistics, computer science, artificial intelligence, chemistry, and

biochemistry to solve biological problems usually on the molecular level.

In general, the aims of bioinformatics are three-fold. First, at its simplest bioinformatics

organizes data in a way that allows researchers to access existing information and to submit

new entries as they are produced. While data-curation is an essential task, the information

stored in these databases is essentially useless until analyzed. Thus the purpose of

bioinformatics extends much further. The second aim is to develop tools and resources that

aid in the analysis of data. Development of such resources dictates expertise in computational

theory, as well as a thorough understanding of biology. The third aim is to use these tools to

analyze the data and interpret the results in a biologically meaningful manner. Traditionally,

biological studies examined individual systems in detail, and frequently compared to them

with a few that are related. In bioinformatics, we can now conduct global analyses of all the

available data with the aim of uncovering common principles that apply across many systems

and highlight novel features.

Over the past few decades, major advances in the field of molecular biology, coupled with

advances in genomic technologies, have led to an explosive growth in the biological

information generated by the scientific community. This deluge of genomic information has,

in turn, led to an absolute requirement for computerized databases to store, organize, and

index the data and for specialized tools to view and analyze the data.

A biological database is a large, organized body of persistent data, usually associated with

computerized software designed to update, query, and retrieve components of the data stored

within the system. A simple database might be a single file containing many records, each of

which includes the same set of information. For example, a record associated with a

nucleotide sequence database typically contains information such as contact name; the input

sequence with a description of the type of molecule; the scientific name of the source

organism from which it was isolated; and, often, literature citations associated with the

sequence.

Page | 6

Thus bioinformatics is the field of science in which biology, computer science, and

information technology merge to form a single discipline. The ultimate goal of the field is to

enable the discovery of new biological insights as well as to create a global perspective from

which unifying principles in biology can be discerned. At the beginning of the "genomic

revolution", a bioinformatics concern was the creation and maintenance of a database to store

biological information, such as nucleotide and amino acid sequences. Development of this

type of database involved not only design issues but the development of complex interfaces

whereby researchers could both access existing data as well as submit new or revised data.

In order to study how normal cellular activities are altered in different disease states, the

biological data must be combined to form a comprehensive picture of these activities.

Therefore, the field of bioinformatics has evolved such that the most pressing task now

involves the analysis and interpretation of various types of data, including nucleotide and

amino acid sequences, protein domains, and protein structures. The actual process of

analyzing and interpreting data is referred to as computational biology. Important sub-

disciplines within bioinformatics and computational biology include:

• the development and implementation of tools that enable efficient access to, and use

and management of, various types of information.

• the development of new algorithms (mathematical formulas) and statistics with which

to assess relationships among members of large data sets, such as methods to locate a

gene within a sequence, predict protein structure and/or function, and cluster protein

sequences into families of related sequences.

The first challenge facing the bioinformatics community today is the intelligent and efficient

storage of this mass of data. It is then their responsibility to provide easy and reliable access

to this data. The data itself is meaningless before analysis and the sheer volume present

makes it impossible for even a trained biologist to begin to interpret it manually. Therefore,

incisive computer tools must be developed to allow the extraction of meaningful biological

information.

There are three central biological processes around which bioinformatics tools must be

developed:

• DNA sequence determines protein sequence

• Protein sequence determines protein structure

• Protein structure determines protein function

Page | 7

The integration of information learned about these key biological processes should allow us

to achieve the long term goal of the complete understanding of the biology of organisms.

2.1 Genomic and proteomic research
Genomics is a discipline in genetics concerning the study of the genomes of organisms. In

particularly, it focuses on the structure, content, function and evolution of genomes. It is

based on bioinformatics in order to process and display enormous amount of data.

The next step in relation to genomics has led to the identification of a new discipline called

proteomics. The term proteome defines the entire protein complement in a given cell, tissue

or organism. In its wider sense, proteomics research also assesses protein activities,

modifications and localization, and interactions of proteins in complexes. It is very much a

technology-driven enterprise, and this collection of reviews reflects the progress made and

future developments needed to identify proteins and protein complexes in biological samples

comprehensively and quantitatively with both high sensitivity and fidelity. The term

"proteomics" was first coined in 1997(2) to make an analogy with genomics, the study of the

genes. The word "proteome" is a blend of "protein" and "genome", and was coined by Marc

Wilkins in 1994 while working on the concept as a PhD student.

The area of genomic and proteomic research concerns activities based on molecular research

of transcripts and proteins expressed in a cellular compartment. This area is very

multidisciplinary and requires the integration of biochemical, bioanalytic, bioinformatics and

biomolecular knowledge. Unlike the genome, the proteome is a far more complex and

dynamic system, which undergoes radical changes both in ontogeny and in various

physiological and pathological states. The proteome of each cellular type of an organism is its

unique character. Only a small part of potentially active genome is transcribed and translated

in a certain type of cells, with the number RNA copies which does not strictly correlate to the

number of proteins synthesized in these cells. Other factors determining the proteome

variability include mRNA editing, alternative splicing, co- and posttranslational modification,

and processing. It should be noted that the "DNA => RNA => protein => phenotype" concept

could be applied with confidence only in the case of monogenic diseases. However, even in

such a case phenotypes are substantially modulated by many factors. Most of the proteins

display functional activity, and qualitative (synthesis of new proteins, posttranslational

modifications) and quantitative (differences in expression level, encoded expression)

Page | 8

proteome analysis could provide valuable information on the dynamics of genome expression

in varying conditions.

2.2 Controlled vocabularies, ontologies and functional

annotations
Controlled vocabularies (3) provide a way to organize knowledge for subsequent retrieval in

an orderly, readable and preferably unique. They can be indexed for using simply and quickly

by computer. A controlled vocabulary consists of a set of selected terms and they are

approved by the designer, in contrast to natural language vocabularies, where there is no

restriction on the vocabulary. Controlled vocabularies solve the problems of homographs,

synonyms and polysemes by a bijection between concepts and authorized terms. In short,

controlled vocabularies reduce ambiguity inherent in normal human languages where the

same concept can be given different names and ensure consistency.

Each term in this controlled vocabulary is uniquely identified by an alphanumeric code that

represents a particular concept or feature.

In the context of genomic annotation, there are a lots of controlled vocabularies that can be

divided into two main categories:

• flat controlled vocabulary or terminology: the entities in the vocabulary are not

structured or linked through relationships;

• structured controlled vocabularies or ontologies: the words in the vocabulary are

structured hierarchically, from most generic (root) to the most specific (leaf) through

relationships characterized by a particular semantic meaning.

In continuation of the current thesis will tend to limit the terms such as gene or protein, when

the topics will be valid for both objects, so you will prefer the expression biomolecular

entities to include both terms in a single subject.

A controlled vocabulary provides a methodology for organizing knowledge in an orderly,

readable and preferably so unique that it can be used simply and quickly by a computer. A

controlled vocabulary consists of a set of terms selected and approved by the designer of the

same,

Page | 9

this is in contrast with natural language as in the latter there are no restrictions on the

vocabulary used and is therefore made possible the presence of homographies, synonyms and

polysemy. These factors, which in fact would increase the ambiguity of information, are

absent, or nearly so, in controlled vocabularies.

Controlled vocabularies provide a way to organize knowledge for subsequent retrieval in an

orderly, readable and preferably unique. They can be indexed for using simply and quickly by

computer. A controlled vocabulary consists of a set of selected terms and they are approved

by the designer, in contrast to natural language vocabularies, where there is no restriction on

the vocabulary. Controlled vocabularies solve the problems of homographs, synonyms and

polysemes by a bijection between concepts and authorized terms. In short, controlled

vocabularies reduce ambiguity inherent in normal human languages where the same concept

can be given different names and ensure consistency.

Each term in this controlled vocabulary is uniquely identified by an alphanumeric code that

represents a particular concept or feature.

In the context of genomic annotation, there are lots of controlled vocabularies that can be

divided into two main categories:

• flat controlled vocabulary or terminology: the words in the vocabulary are not structured or

linked through relationships;

• structured controlled vocabularies or ontologies: the words in the vocabulary are structured

hierarchically, from most generic (root) to the most specific (leaf) through relationships

characterized by a particular semantic meaning.

Ontology (4) is a formal representation of knowledge as a set of concepts within a domain,

and the relationships between those concepts. It is used to reason about the entities within that

domain, and may be used to describe the domain.

Some biomedical ontologies are:

• ChEBI (Chemical Entities of Biological Interest): dictionary and ontological

classification of molecular entities focused on ‘small’ chemical compounds

• Gene Ontology (GO): controlled vocabularies for molecular functions, biological

processes and cellular components of gene products

• Systems Biology Ontology (SBO): controlled vocabularies and ontologies for systems

biology, especially in the context of computational modeling

Page | 10

• NCBI taxonomy: controlled vocabulary and classification of organisms

• MI ontology: (5)and it is an OBO ontology which is defined below:

Open Biomedical Ontologies (abbreviated OBO; formerly Open Biological Ontologies) is an

effort to create controlled vocabularies for shared use across different biological and medical

domains. As of 2006, OBO forms part of the resources of the U.S. National Center for

Biomedical Ontology, where it will form a central element of the NCBO's BioPortal.

2.3 Biomolecular databanks
Since the building of the first computers, and especially in the last fifteen years the power of

computers has experienced an exponential growth, in agreement with Moore's Law which

states: "The performance of the processors and the number of transistors on it are doubling

almost every 2 years.", as seen from the graph in Figure 1.

Figure 1 Moore's Law

In parallel to this development and consequently also Internet has evolved in a manner
equally sudden (Figure 2). The great growth of the Internet has contributed to the
development of bioinformatics.

Page | 11

Figure 2 Internet domain survey host count

The biological databases contain wide spectrum data fields of molecular biology.

It is essential that these databases are easily accessible and that it provided an intuitive system

of questions to enable researchers to obtain specific information about a particular biological

argument.

They were created specialized databases for particular subjects such as:

• Databases of scientific literature;

• Databases of taxonomy;

• Databases of nucleotides;

• genomic databases;

• Databases of protein;

• Banks microarray data.

As shown in Figure 3, the databases have been a large increase in recent years:

Page | 12

Figure 3 Databank growth

Different databases provide different access methods:

• Access via the Web interfaces (HTML or XML): The information is unstructured data

and they are heterogeneous interfaces, and query results are for single sequence and

so it requires much time for answers.

• Access via Web Services: This service is available for a few databases with a limited

number of items and it is for people who have some computer skills.

• Access via FTP servers: it is the necessary re-implementation of the database locally.

• Direct access: this is rarely used for safety issues and it shows the lack of a common

vocabulary.

Figure 4 shows the largest databases on the Web.

Page | 13

Figure 4 Biomolecular databanks and their correlations

2.3.1 Data file formats

The databases can provide the same data in different formats. There is no common standard
for the file type and format which represent information. Genomic data are usually provided
with different types of files, as shown Figure 5.

Figure 5 Data file formats

Page | 14

The flat file type is defined as a structured text file containing values and relations of these

values. In the field of genomic data, a flat file is a text file in which each row has a different

semantics and the semantics are defined by the label which is inserted at the beginning of the

line. It is possible that in the same line there can be two or more labels where the successive

labels specify the semantics of the previous ones, and if the beginning of a line is not

indicated by any particular label, the line inherits the semantics of the previous line.

In tabular text format, the data are organized into rows and columns separated by one or more

separators. In this case, the semantic value of a given position depends on its row and

column. Figure 6 shows the different types of existing tabular file.

Figure 6 Tabular file types

The headings in this type of file help to understand the contents of the file.

Some databanks provide their data as SQL dump file: DBMS specific and different DBMS or

earlier versions of the same DBMS cannot import them properly.

XML or eXtensible Markup Language, a meta-language is created and managed by the

World Wide Web Consortium (W3C) is used to create new language to describe structured

documents and acts as a means of exporting data from heterogeneous sources. Because of

these characteristics many databases provide their data in XML format. The structure of the

instance of an XML document can be described by the Document Type Definition (DTD) or

XML-Schema.

Some banks provide genomic data in standard XML but some in RDF.

Page | 15

The Resource Description Framework (RDF) is the basis proposed by W3C for the encoding,

exchange and reuse of structured metadata provides interoperability between applications that

exchange information over Web

2.4 Difficulties in comprehensively using available

biomolecular data
First, there are geographically distributed databases which can include duplicate data. In

recent year it is working on the integration of these data into one central database. For this

purpose GPDW and other data integration systems can manage and maintain the content.

There is, first, the problem of managing the large amount of heterogeneous data to integrate

and to offer the users as a system as homogeneous as possible.

Secondly there is the issue concerning the controlled vocabulary, despite claiming to be as

orthogonal to each other, there are relationships between a controlled vocabulary set and

another, if these vocabularies are managed by different organizations.

Finally, there are problems concerning the goodness of annotations in databases, the

difficulties faced by the curators to validate new records and the difficulty in managing and

maintaining such records.

This thesis tries to give an answer, efficiently and effectively, these issues in the development

of data warehouse developed in the laboratories of Politecnico di Milano.

2.5 Genomic and Proteomic Data Warehouse (GPDW)
To effectively take advantage of the numerous genomic and proteomic information sparsely

available in many heterogeneous and distributed biomolecular databases accessible via the

Internet, we previously developed the Genome Function INtegrated Discoverer (GFINDer)

project (http://www.bioinformatics.polimi.it/GFINDer/) (6,7). GFINDer is a publicly

available Web system used by several thousand worldwide scientists (we counted about

110,000 accesses from more than 6,000 distinct IP addresses in the last 5 years). GFINDer

supports comprehensive statistical enrichment analysis and data mining of functional and

phenotypic annotations of large-scale lists of user-classified genes, such as those identified by

high-throughput biomolecular experiments. It automatically retrieves annotations of several

functional and phenotypic categories from different sources, identifies the categories enriched

Page | 16

in each class of a user-classified gene list and calculates statistical significance values for

each category. Moreover, GFINDer enables the functional classification of genes according

to mined functional categories and the statistical analysis of the classifications obtained,

aiding better interpretation of high-throughput experiment results.

GFINDer is based on a multi-organism genomic and proteomic data warehouse (GPDW). In the

GPDW several controlled terminologies and ontologies, which describe gene and gene product

related biomolecular processes, functions and phenotypes, are imported and stored together with

their associations (annotations) with genes and proteins of several organisms. In the GPDW all

such data from several different databases are integrated by interconnecting the imported

annotations to the genes and proteins they refer to by means of their provided IDs and cross-

references.

2.5.1 Data and metadata schema

The GPDW has four main schemas:

• metadata: where are stored information about the metadata, as for example name of

the data sources and their features ,etc.

• public: where are stored all the different types of data of imported and integrated data

• flag: where are stored information about encoded fields (i.e. fields that act as labels

for other fields (data fields) in a data record)

• log: where are stored data that are used by developers for the testing

The flags schema describes all the information that regards encoded flag fields. Indeed in the

public schema tables or log schema tables, which are correlated to public schema, we have

some data that have been encoded, in the flag schema we want to store the mapping between

the encoded value and the name of the flag.

The log schema describes all the data has errors in the public schema tables. This schema

contains the duplicated or erroneous data from data sources.

In metadata schema, they are described the data contained in the public database: name of

main tables, name of encoded fields, name of all source and features, which feature are

provided by each source, which feature/source relations or annotations are provided by each

source, which source are imported and which are synthesized, which source/feature is

Page | 17

ontological, which sources/features have history or similarity data and in which tables they

are stored, and many other information

In public schema, there are all the tables that contain all the imported and integrated data in

the GPDW.

In this schema there are different types of tables, grouped by two macro-areas: imported

tables and integrated tables. Integrated tables are generated after all the import procedure is

finished.

2.5.2 Software framework for automatic creation and

updating of GPDW

GPDW framework handles the import and integration process, starting from the creation of a

database that contains the metadata necessary for the operation of the application.

The method for integration of heterogeneous data collected from the web is divided in two

macro-phases:

• import data from different sources

• integration of imported data.

It is performing these operations automatically by the software architecture whose main

components are identified in Figure 7.

Figure 7 Structure of GPDW framework

Page | 18

2.5.2.1 Data import procedures

The data import operations require execution of the following standard processes and in

particular requiring the registration of the data source definition file data_source.xml.

There are four main components of import procedures:

• ImportManager;

• Importer;

• Parser;

• Loader.

The main tasks performed by the implemented automatic procedure in the data import step of

the integration factory are illustrated in the sequence diagram in Figure 8.

For each importer

For each loader

Import Manager Importer Loader parser

configure

run

run

For each record

token

parsing file

Inserting db

Figure 8 Sequence diagram of the main tasks of the implemented

Page | 19

The procedure is guided by an Import manager that configures an Importer for each

considered data source and starts the procedure. Since each importer is designed to be self

contained, data from many different sources can be imported in parallel to speed up the

process. Each source specific importer coordinates a set of Loaders (a loader for each data

file, or group of homogeneous data files, taken from the source) and a set of Parsers (a parser

for each data file format). Our framework provides a number of parsers: some standard

parsers for the most common data formats and ad hoc designed ones for some unusual

formats. Each parser extracts the data from its associated input files and produces data tokens

usable by the loader. Loader and parser use a producer–consumer pattern. Each loader is

responsible for associating a semantic meaning to the tokens produced by the associated

parser(s) and inserting them into the data warehouse.

On the imported data that describe ontology, the Import manager also performs a standard

unfolding processing of the ontology DAG. Unfolding is done in order to speed up

subsequent computational analysis on such data and their annotations. It is performed by

inserting into the data warehouse an explicit association between each term (node) of the

ontology and all its ancestors. Since the DAG may contain more than one path between a

node and its ancestors, all possible paths are also recorded. After the unfolding has been

completed, each node is tagged with its position in the DAG and its levels (for each possible

path, the distance between the node and the root of the DAG). In addition, the Import

manager computes also the Lowest Common Ancestor (LCA) [31] for each pair of nodes in

the ontological DAG; this is a fundamental component for evaluating the similarity between

two terms of an ontology according to the various metrics that are commonly used to analyze

the similarity between genes or proteins based on their ontological annotations.

Each actor of the data import process is independent from the others: the import manager

manages importers via a standard interface based on java reflection; the parser is aware of the

data file format, but agnostic of the semantic of the file; the loader receives data in a standard

format and inserts them in the proper data warehouse table fields. The importing is built to be

very flexible and to allow adding new sources as easily as possible. To reach this objective,

the process is guided by a XML configuration file that contains the list of registered data

sources to be imported, the list of all the high level features (biomolecular entities or

biomedical features) described by the data to be imported, and theirs bindings. In this file,

metadata represent the characteristics of each data source in terms of features (what

biomolecular entities or biomedical features are described by the source data), structure

Page | 20

(whether the feature data are ontological, i.e. describe a hierarchical graph), and relationships

with other data sources. Each biomolecular entity and biomedical feature is then defined in

term of its components (according to the data to be imported) by using two orthogonal sets of

information metadata: its structure, which is later mapped to one or more tables in the data

warehouse, and its bindings, which are used to populate those tables.

The importing framework assigns to each imported “data record” an OID, which is unique

across the data warehouse. It is used as the primary identification of the data entries, since

there is no guarantee that the IDs provided by the different sources do not conflict with each

other. In order to ensure correctness of imported data, a set of rules has been defined to check

and identify the IDs (see Section 5.1). Such rules are used by the ID Matcher, an additional

component of our framework that acts as mediator between the loaders and the data

warehouse. The main role of this mediator is to identify the type of each ID in order to insert

the information in the appropriate data warehouse tables. During this process, each inserted

tuple is also coupled with provenance meta-data to track its source.

Since the input data may contain errors and the structure of the input data files is subject to

modifications in their subsequent versions, which are loaded by the automatic updates of the

data warehouse, checking of input data is strictly enforced. Verification is done in three steps:

during parsing, during data loading and at the end of the process. Both parsers and loaders are

designed and coded to be robust w.r.t. changes in the structure of the input. Parsers are

generally able to complete their task even when small modifications of the input format are

detected (e.g., a new column in a tabular file, or a new attribute in a XML file) and they are

able to detect (and point out) the modifications, even if they are unable to automatically deal

with them. Loaders are decoupled from the actual format of the input, so they mainly deal

with the correctness of the data extracted by the parsers. In doing so, they also call the

previously described ID Matcher, which is also responsible for signaling unknown ID types

in the input data. At the end of the import process, index, unique, primary and foreign key

integrity constraints are defined and enforced upon the data warehouse tables. This allows

detecting possible data duplications and inconsistencies, and improving subsequent access

time to the imported data.

2.5.2.2 Data integration procedures

The main tasks automatically performed in the data integration step of our factory are

described in the sequence diagram in Figure 9. They can be grouped into an aggregation and

Page | 21

an integration phase. In the former, data from the different sources imported in the previous

data import step are gathered and normalized into a single representation in the instance-

aggregation tier of our global data model. In the latter, data are organized into informative

clusters in the concept-integration tier of the global model.

Figure 9 Sequence diagram of the main tasks of the implemented

During the initial aggregation phase, integrated tables of the features described by the

imported data are created and populated. Then, similarity and historical ID data are created

by translating the IDs provided by the data sources to our internal OIDs. Both similarity and

historical ID data are extremely valuable for subsequent data integration tasks. The former

ones express similarity between different entries of the same feature (e.g., homology between

genes or proteins, or alias of feature IDs). The latter ones, which are sometimes provided by

Page | 22

the data sources, describe obsolete feature IDs and the IDs to which they have been

propagated. Unfolding of their translated OIDs is performed, so as to associate repeatedly

superseded and discontinued IDs to the latest IDs before their OID translation. These

integrated similarity entries are also marked as inferred through historical data in order to

keep full track of their generation process. Special translation tables for biomolecular entity

and biomedical feature IDs are also created by using translated similarity data and unfolded

historical ID data. These tables serve as main entry points to explore the data warehouse,

since they allow the conversion from a number of diverse and possible obsolete user-

provided identifiers to a set of current OIDs, usable to navigate the data warehouse.

Finally, relationships (annotations) between pairs of feature entries are created by performing

OID translation of the imported relationship data expressed through the “native” IDs. In

doing so, relationship data are coupled with the related feature entries. Due on the imported

data sources and on their mutual synchronization, relationship data may refer to feature

entries, or even features, that have not been imported in the data warehouse. In this case,

missing integrated feature entries are synthesized and marked as such (i.e., inferred through

synthesis from relationship data). However, if a missing entry has an obsolete ID and through

unfolded translated historical data it is possible to extract a more current ID for it, the

relationship is first transferred to the latest ID and is marked as inferred through historical

data. This relationship translation policy preserves, between the integrated data, all the

relationships expressed by the imported relationship data and allows their subsequent use for

biomedical knowledge discovery (e.g., by transitive closure inference, involving also the

synthesized entries).

During the final integration phase, by doing a similarity analysis, it is tested whether single

feature instances from different sources represent the same feature concept. In this case, they

are associated with a new created single concept OID. Different biomolecular entity concept

instances are also further integrated under a single gene concept when they represent

biomolecular entities related to the same gene. New entries can then be inferred from the

integrated data (e.g., annotations can be inferred from other annotations by transitive closure

inference). The Inferred field is used in all integrated tables to keep track of the method of

inference used to derive an entry. Furthermore, a summary quality value for each concept

instance is calculated based on the source specific instances contributing to the concept

instance and their Inferred attribute value.

Page | 23

At the end of the integration process, on all integrated tables the defined index, unique,

primary and foreign key integrity constraints are enforced in order to detect (and resolve)

possible data duplications and inconsistencies, thus improving the time of access to the

integrated data, as well as their overall quality.

2.5.2.3 Metadata procedures

In metadata schema, they are described the data contained in the public database: name of

main tables, name of encoded fields, name of all source and features, which feature are

provided by each source, which feature/source relations or annotations are provided by each

source, which source are imported and which are synthesized, which source/feature is

ontological, which sources/features have history or similarity data and in which tables they

are stored, and many other information

As it is written in the chapter 2.5.1Data and metadata schema, metadata schema store

information about the metadata, as for example name of the data sources and their provided

features

Metadata procedures are the function and class which are generate the the tables explained in

the previous section. There was some problem in unfolding of the metadata and they are not

optimized.

Page | 24

3 Thesis goals
The integration of biomolecular data is an important aspect of the bioinformatics research.

Especially in biomolecular researches, it is possible to answer questions of interest by

analyzing the various types of data and knowledge available in order to obtain evidences in

support of the searched answer. The number of completely sequenced genomes is increasing

at a rapid speed, as the amount of available proteomics data is. All these different types of

data present a huge challenge for data integration, because they are usually stored in different

databases without overall data standards or universal links. To a certain amount, data can be

linked ('integrated') through manual, literature-based curation, but, with the quantity of

available data continuing to increase exponentially, automatic methods for data integration

need to be developed. The project GPDW (Genomic and Proteomic Data Warehouse) is

working on this problem. The GPDW project aims not only to create a local data warehouse

that integrates records from different databases, but also to keep the integrated information

frequently updated.

This Thesis has, as primary purpose, the extension of the procedures in the GPDW

framework for the integration of biomolecular interaction data; the second Thesis objective is

to use these extensions to import and integrate the information provided by some databases

that are not yet considered in the project GPDW.

Especially the development of the second objective requires:

• Conceptual and logical modeling of interaction data from the considered databases;

• Implementation of interaction data importing procedures, through the use of

automated parser of standard data and specifications according to the specific data file

type, to extract data from considered files and import them into the data warehouse;

• Configuration of automatic procedures for the importing and integration of interaction

data into the data warehouse and reporting anomalies in the data.

Page | 25

4 Extension of GPDW software framework for

biomolecular interaction data management
Before this thesis is developed, GPDW project is implemented for only the relations of the

different features. The project is updated to cope with also the relations between same feature

types.

4.1 Data import procedures
In this part first of all it was added new type of table template to feature_definitions.xml.

Previously all the features has different types of the integration so the source and destination

id can be called directly with the [feature name]_id, however when the name of the feature

are same this become a problem because they have the same name in the database which is

not possible. So it becomes [feature_name]1_id and [feature_name]2_id as seen in the Figure

10

Figure 10 Import level relation between same feature

The necessary changes are done which is using this template automatically and they are

updated if they are not checking if the which is created by using this template and all the

hardcoded part of the import phase which are working on the relation tables. They were

Page | 26

rewrite to check if the features are same then add 1 or 2 at the end of the feature name in

ordered.

4.2 Data integration procedures
In this part first of all it was added new type of table template to feature_definitions.xml.

previously all the features has different types of the integration so the source and destination

id can be called directly with the [feature name]_id, however when the name of the feature

are same this become a problem because they have the same name in the database which is

not possible. So it becomes [feature_name]1_id and [feature_name]2_id as seen in the Figure

11

Figure 11 Integrate level relation between same feature

4.3 Metadata computation and storing
As mentioned before metadata schema contains metadata information of the public schema.

Some processes are not working optimized and correctly. The most important change is on

the unfolding of feature association and source to feature association. This unfolding

procedure is designed to create metadata in Figure 12 and Figure 13:

Page | 27

feature

PK feature_id

U1 feature_xml_id
 feature_name
 whole_feature_name
 description
 parent_feature
 is_biomolecular_entity
 is_supporting_feature
 is_ontology
 has_unfolding
 has_history
 has_similarity
 feature_table_name
 relationship_table_name
 history_unfolded_table_name
 similarity_table_name
 id_translation_table_name

feature_unfolded

PK,FK3 path_id

FK1,I1 feature1_id
FK2,I2 feature2_id
 distance

feature_path_component

PK,FK2 path_id
PK ord

FK1,I1 feature_id

feature_path

PK path_id

 autoassociation_included

Figure 12 Metadata schema of feature unfolding tables

Page | 28

Figure 13 Metadata schema of source to feature unfolding tables

For generating these tables the algorithm below is used:

Page | 29

unfold()

 for each "node" defined in database(from source2feature table or feature table)

 "children":find all connected nodes of the "node"

 if there is no children create a new path with a new path_id

 and also insert "node" to path_componant table with this path id order 0

 continue with the next "node"

 elsif

 create a new path with a new "pathId" contains starts with this node(as order = 0)

 and also insert "node" to path_componant table with this path id order 0

 push "node" to "stack"

 for each "children" as "child"

 (stack now contains only "node)

 call unfoldRecursive function:with pathId,node as ancestorNode,child as
currentNode,1 as ord, stack as "stack"

 endfor

 pop "stack"

 endif

 endfor

endunfold

unfoldRecursive(pathId,ancestorNode,currentNode,ord,stack)

 insert "currentNode" to path_componant table with "pathId", "ord" as order //each recursive call ord increase by 1

 insert "ancestorNode","currentNode" to unfolded table with "ord" as distance(because order is also shows the
distance to ancestor node)

 "children":find all connected nodes of the "currentNode"(in both case from node1->node2 or node2->node1)

 for each "children" as "child"

 //checking a loop before adding current node to stack in order to allow only same node to same node
path once and consecutively

 if "stack" is not contains "child"

 stack.push(currentNode);

 /* Clone the path */

 create a "newPathId" and add path table

 add elements to path_component table with "newPathId" from ancestorNode to currentNode
with their order.

 call unfoldRecursive function:with "newPathId", "ancestorNode" as ancestorNode,child as
currentNode,"ord"+1 as ord, stack as "stack" (currentnode added to stack)

 stack.pop();

 endif

 endfor

endunfoldRecursive

This algorithm is allows loop only if the cycle is consecutively in a node and only once.

Page | 30

For the feature case, there are not many associations so the unfolding is not generating so many path. However

for the source to feature the current number of associations and the connections between association lead to

nearly 200 millions of tuples in the unfolded table. This much of data(huge tables) will make the data warehouse

slow. So the algorithm updated to traverse the association graph till a given number of depth. The system is

traversing till this fixed depth.

This thesis also added a new table to metadata schema which is source2feature_association_display_url table.

This is necessary for the sources which is not importing any feature but the relations. So this display_url table

for the association is showing the url of the database for this association. The data is taken from the

data_sources.xml in the path data_sources/data_source_definition/feature/display_urls. The metadata schema of

this table is in Figure 14. So for each couples of source feature pair and reference id the url is inserted into

database.

source2feature_association

PK,FK4 source1_id
PK,FK2 feature1_id
PK,FK3 source2_id
PK,FK2 feature2_id
PK,FK1 reference_id

 imported_association_table_name

source2feature_association_display_url

FK1,U1 source1_id
FK1,U1 feature1_id
FK1,U1 source2_id
FK1,U1 feature2_id
FK1,U1 reference_id
U1 display_url_prefix
U1 display_url_suffix
 display_class
 description

Figure 14 Metadata schema if scource2feature_association_display_url

5 Considered biomolecular interaction

databanks
The considered databanks have information about molecular interactions (MIs) by extracting

experimental details from work published in peer-reviewed journals. In another words, the

data available in the databases originates entirely from published literature and is manually

annotated by expert biologists to a high level of detail, including experimental methods,

conditions and interacting domains.

Page | 31

The IntAct and MINT projects support PSI-MI 2.5 standard. The PSI MI format is a data

exchange format for molecular interactions. This thesis is focused on mainly MITAB2.6 and

PSI-MI XML v2.5. MITAB is data interchange format, a common tab delimited format XML

standart is described below:

The Proteomics Standards Initiative Molecular Interaction XML format (PSI MI)(5) was

developed by the Proteomics Standards Initiative, one initiative of the Human Proteome

Organisation (HUPO). The aim of the initiative is to develop standards for data representation

in proteomics to facilitate data comparison, exchange and verification. One of those is the PSI

MI standard for protein–protein interaction. The format is intended for exchange of data on

protein interactions.

All data in PSI MI are structured around an entry. An entry describes one or more

interactions that are grouped together for some reason. Note that a PSI MI model is not

intended to be a pathway, an entry can be any set of interactions. In the entry the two tags

source and the availabilitylist are used for describing the source of the data, usually an

organization, and where the data can be accessed, typically a database. The experimentlist

describes experiments and links to publications where the interactions are verified.

The pathway itself is described via the interactorlist, which is a list of proteins participating in

the interaction, and the interactionlist, a list of the actual interactions. For each interactor

information about, for instance, substructure can be defined. For each interaction it is possible

to set the type of interaction and also a database reference to more information about the

interaction. The type of the interaction, e.g. aggregation, is chosen from an externally defined

controlled vocabulary, that can be chosen by the user. The participating proteins are

described by their names or references to the interactorlist. It is also possible to set a

confidence level for detecting this protein in the experiment, the role of the protein and

whether the protein was tagged or overexpressed in the experiment. In addition each

interaction has a description of availability and experiments which normally are references to

the lists above.

Finally, the attributelist gives the user the possibility to add further information that does not

fit into the entries above. Extra attributes can be used in all the parts described above. An

abbreviated example pathway represented in PSI MI is shown in Figure 15.

Page | 32

Figure 15 Example of PSI MI.

There can be two types of interactions which are binary and complex. The binary interaction

is an interaction between only two interactors; however complex interactions are between

with multiple interactors. In the data warehouse the complex interactions are imported as

multiple binary interactions. There are two main algorithms for this:

• Spoke expansion: Links the bait molecule to all prey molecules. If N is the count of

molecule in the complex, it generated N-1 binary interactions.

• Matrix expansion: Links all molecule to all other molecule present in the complex. If

N is the count of molecule in the complex, it generated (N*(N-1))/2 binary

interactions.

Page | 33

Figure 16 Complex expansion algorithms

5.1 IntAct: an open source molecular interaction

databank
IntAct(8) is an open-source, open data molecular interaction database and toolkit. Data is

abstracted from the literature or from direct data depositions by expert curators following a

deep annotation model providing a high level of detail. IntAct contains over 200.000 curated

binary interaction evidences. In response to the growing data volume and user requests,

IntAct now provides a two-tiered view of the interaction data. The search interface allows the

user to iteratively develop complex queries, exploiting the detailed annotation with

hierarchical controlled vocabularies. Results are provided at any stage in a simplified, tabular

view.

It is possible to download PSI MI XML 2.5 format and MITAB2.6(definition can be found:

ftp://ftp.ebi.ac.uk/pub/databases/intact/current/psimitab/README) version with additional

columns.

It has one single tabular file that contains all the relations with name intact.txt and has

multiple XML files with divided publication ids. The procedure runs all these XML files and

import them to database.

5.2 MINT: the Molecular INTeraction databank

The Molecular INTeraction database (9) (MINT) aims at storing, in a structured format,

information about molecular interactions (MIs) by extracting experimental details from work

Page | 34

published in peer-reviewed journals. At present the MINT team focuses the curation work on

physical interactions between proteins. Genetic or computationally inferred interactions are

not included in the database. Over the past four years MINT has undergone extensive

revision. The new version of MINT is based on a completely remodeled database structure,

which offers more efficient data exploration and analysis, and is characterized by entries with

a richer annotation. Over the past few years the number of curated physical interactions has

soared to over 95 000. The whole dataset can be freely accessed online in both interactive and

batch modes through web-based interfaces and an FTP server. MINT now includes, as an

integrated addition, HomoMINT, a database of interactions between human proteins inferred

from experiments with ortholog proteins in model organisms

(http://mint.bio.uniroma2.it/mint/).

MINT databank contains interactions only between protein and protein.

It has a single tabular file for binary interactions with name [creation date]-mint-full-

binary.txt and another tabular file that contains complex interactions with name[creation

date]-mint-full-complex.txt and has multiple XML files not to create huge files with name

full[id number].psi25.xml.

6 Design of GPDW sections for biomolecular

interaction data
The design of the database is organized in three steps:

• Conceptual design: This phase is to create the conceptual or ER (entity relationship)

diagram that represents the informal specifications of the database in terms of a

complete formal description but independent of the criteria used in the performance

management system based data. In these representations, it is not taken into account

neither the manner in which this information will be encoded nor efficiency of

programs that will use this information;

• Logical design: This phase is to translate the conceptual schema, which is defined in

the previous phase, the model of the data representation adopted by the management

system of the database used. In this phase, the logical schema, a logical data model

refers to a as in the preceding stage, is generated that refers to a as in the preceding

http://mint.bio.uniroma2.it/mint/�

Page | 35

stage and the representation is independent of physical details. In this case, the design

choices are based on optimization criteria necessary operations on data.

• Physical Design: In this stage, the logical schema is completed with the specification

of physical data storage, file organization and indexes. This phase refers to a physical

data model and depends on the specific data management system chosen.

The first two phases provide for the creation of the schemes through the use of design

software, which in this case Microsoft Visio ® is used, and the physical design is performed

by an automated framework, thanks to the information source and features defined in the

XML configuration file.

The schemas are designed for tabular format (MITAB) and XML format (PSI MI XML)The

interactions can be between:

• protein and protein

• transcript and transcript

• dna sequence and dna sequence

• small molecule and small molecule

• transcript and protein

• dna sequence and protein

• protein and small molecule

• transcript and small molecule

• dna sequence and small molecule

6.1 Conceptual schema
Figure 17 and Figure 18 show the conceptual diagram of the database of interaction between

protein and protein and interaction between dna sequence and protein, respectively. The other

interactions are similar to these two.

Attributes shown in red are not imported into database.

Page | 36

PROTEIN

1:N

1:N

 1:1

Has

Has

 1:1

RELATION
IMPORTED

Reference

 PSI-MI ID

name

Interaction
detection
method

 PSI-MI ID

name

Publication

Source ID
Source name

Expansion

0:n

0:n

unit

value

Interaction
type

Source ID
Source name

 Interaction alt.
ID

Confidence

Interactor 1
experimental

role

 PSI-MI ID

Interactor 2
experimental

role

Interactor 1
biological role

Interactor 2
biological role

Interactor 1
xref

0:n

Interactor 2
xref

0:n

Publication 1st author
0:1

Interaction ID

name

 PSI-MI ID

name

 PSI-MI ID

name

 PSI-MI ID

name

Interactor 1
alias

Interactor 2
alias

 Source ID
Source Name

Source ID
Source Name

0:n

0:n

Taxonomy ID

Taxonomy ID

0:1

Interactor 1
attribute

nameAc
value

0:1
0:1

name
0:n

Interactor 2
attribute

nameAc
value

0:1
0:1

name

0:n

Interaction
attributenameAc

value

0:1
0:1

name
0:n

Taxonomy ID

Interactor 1
feature

0:n

0:1

Range
0:1
0:1
0:1
0:1

0:1
0:1

1:n

begin

end

Type
 PSI-MI ID

name

Interactor 2
feature

0:1

1:n

Type
 PSI-MI ID

name

0:n

Negative

inference

0:0

Start status

Begin interval

End interval

End status

PSI-MI ID
name

PSI-MI ID
name

begin
end

begin
end

Range
0:1
0:1
0:1
0:1

0:1
0:1

begin

end

Start status

Begin interval

End interval

End status

PSI-MI ID
name

PSI-MI ID
name

begin
end

begin
end

Detection
method

 PSI-MI ID
name

0:1

Detection
method

 PSI-MI ID
name

0:1

Interactor 1
alt. ID

Interactor 2
alt. ID

 Source ID
Source Name

Source ID
Source Name

0:n

0:n

Interaction xref
 Source ID

Source name

0:n

Source ID
Source name

Source ID
Source name

Interactor 1
type

 PSI-MI ID

Interactor 2
type

name

 PSI-MI ID

name

Association type

Has

RELATION

1:1 Has

1:1

0:1

Reference

0:N

0:N
Interaction ID

Interaction
detection
method

 Interaction
type

0:1

PSI-MI ID
name

PSI-MI ID
name

 Confidence
value

unit

0:n

Interaction
attribute

nameAc
value

0:1
0:1

name
0:n

Reference

 0:N

 1:1

 1:1 SIMILARITY

 0:1

Has

HasReference

0:N

 0:N

Is similar to

SIMILARITY
IMPORTED

 1:1

1:1Is similar to
Taxonomy2 ID

 0:N
 Similarity type

Taxonomy1 ID

Similarity type

Inferred

Association type

Expansion

Negative
Inferred

Type
0:1

Type
0:1

Type
0:1

Type
0:1

Type
0:1

Type
0:1

Type
0:1

Type
0:1

Taxonomy name

Taxonomy name

0:1

0:1

Interactor 1
taxonomy

Interactor 2
taxonomy

Host organism
taxonomyTaxonomy name

0:1

Figure 17 Conceptual schema of interactions between protein and protein.

Page | 37

1:N 1:N

 1:1

Has

Has

 1:1

RELATION
IMPORTED

Reference

 PSI-MI ID

name

Interaction
detection
method

 PSI-MI ID

name

Publication

Source ID
Source name

Expansion

0:n

0:n

unit

value

Interaction
type

Source ID
Source name

 Interaction alt.
ID

Confidence

Interactor 1
experimental

role

 PSI-MI ID

Interactor 2
experimental

role

Interactor 1
biological role

Interactor 2
biological role

Interactor 1
xref

0:n

Interactor 2
xref

0:n

Publication 1st author
0:1

Interaction ID

name

 PSI-MI ID

name

 PSI-MI ID

name

 PSI-MI ID

name

Interactor 1
alias

Interactor 2
alias

 Source ID
Source Name

Source ID
Source Name

0:n

0:n

Taxonomy ID

Taxonomy ID

0:1

Interactor 1
attribute

nameAc
value

0:1
0:1

name
0:n

Interactor 2
attribute

nameAc
value

0:1
0:1

name

0:n

Interaction
attributenameAc

value

0:1
0:1

name
0:n

Taxonomy ID

Interactor 1
feature

0:n

0:1

Range
0:1
0:1
0:1
0:1

0:1
0:1

1:n

begin

end

Type
 PSI-MI ID

name

Interactor 2
feature

0:1

1:n

Type
 PSI-MI ID

name

0:n

Negative

inference

0:0

Start status

Begin interval

End interval

End status

PSI-MI ID
name

PSI-MI ID
name

begin
end

begin
end

Range
0:1
0:1
0:1
0:1

0:1
0:1

begin

end

Start status

Begin interval

End interval

End status

PSI-MI ID
name

PSI-MI ID
name

begin
end

begin
end

Detection
method

 PSI-MI ID
name

0:1

Detection
method

 PSI-MI ID
name

0:1

Interactor 1
alt. ID

Interactor 2
alt. ID

 Source ID
Source Name

Source ID
Source Name

0:n

0:n

Interaction xref
 Source ID

Source name

0:n

Source ID
Source name

Source ID
Source name

Interactor 1
type

 PSI-MI ID

Interactor 2
type

name

 PSI-MI ID

name

Association type

Has

1:1 Has

1:1

0:N

0:N

Type
0:1

Type
0:1

Type
0:1

Type
0:1

Type
0:1

Type
0:1

Type
0:1

Type
0:1

Taxonomy name

Taxonomy name

0:1

0:1

Interactor 1
taxonomy

Interactor 2
taxonomy

Host organism
taxonomyTaxonomy name

0:1

DNA
SEQUENCE

0:N

1:1

 1:1 Has

Has

0:N

 0:N

Is similar to

 1:1

1:1 Is similar to

0:N

Reference

SIMILARITY
IMPORTED Taxonomy2 ID

Taxonomy1 ID

Similarity type

Reference

SIMILARITY

0:1

Inferred

PROTEIN

Reference

0:N

 1:1

 1:1 SIMILARITY

 0:1

Has

HasReference

0:N

 0:N

Is similar to

SIMILARITY
IMPORTED

 1:1

1:1Is similar to
Taxonomy2 ID

 0:N

Taxonomy1 ID

Similarity type

Inferred

RELATION

0:1

Reference

Interaction ID

Interaction
detection
method

 Interaction
type

0:1

PSI-MI ID
name

PSI-MI ID
name

 Confidence
value

unit

0:n

Interaction
attribute

nameAc
value

0:1
0:1

name
0:n

Association type

Expansion

Negative
Inferred

Similarity type Similarity type

Figure 18 Conceptual schema of interactions between dna sequence and protein.

The interaction between below are like in Figure 17:

• protein and protein

• transcript and transcript

• dna sequence and dna sequence

• small molecule and small molecule

The interaction between below are like in Figure 18:

• transcript and protein

• dna sequence and protein

• protein and small molecule

Page | 38

6.2 Logical schema
The logical schema is showing the type of the tables and their attributes.

The type of the tables is based on their background color as shown in Table 1.

Color of table Type of table

. ID translation table 

. Relation or annotation integrated table 

. Similarity integrated table

. Integrated table

. Relation or annotation imported table

. Similarity imported table
Table 1 Logical schema legend colors of tables

It is necessary to identify some more aspects:

Bold fields show required attributes.

The field with PK is table's primary key.

The field with FK is foreign key to another table. The links show also the foreign key

between two tables.

The field with UX shows the unique key. U1 unique key can be defined as pseudo primary

key and U2 of the related tables is necessary for to integrate the table.

The field with IX shows the index of the table

The fields with * and + are encoded fields. The values of fields with * are stored in the flag

schema of the database. The values of fields with + are stored in the metadata schema of the

database.

The Figure 19 and Figure 20 show the logic diagram of the molecular interaction databases.

Page | 39

protein

PK protein_oid

U1 source_id
U1 +source_name
 +reference
 +feature_type
I1 taxonomy_id
 is_obsolete
I2 *inferred
I3 protein_concept_oid

protein2protein_imported

PK annotation_oid

I1,U1,U2 protein1_id
I1,U1,U2 +origin_data_source
I2,U1,U2 protein2_id
I2,U1,U2 +destination_data_source
U1,U2 +reference
 +reference_file
 *association_type
U1,U2 interaction_id
U2 *interaction_detection_method_id
U2 *interaction_detection_method_name
 publication_id
 *publication_source_name
I3 taxonomy1_id
I4 taxonomy2_id
U2 *interaction_type_id
U2 *interaction_type_name
U2 *expansion_method
 *interactor1_biological_role_id
 *interactor1_biological_role_name
 *interactor2_biological_role_id
 *interactor2_biological_role_name
 *interactor1_experimental_role_id
 *interactor1_experimental_role_name
 *interactor2_experimental_role_id
 *interactor2_experimental_role_name
 *interactor1_type_id
 *interactor1_type_name
 *interactor2_type_id
 *interactor2_type_name
 host_organism_taxonomy_id
I5,U2 negative

interactor_feature_4_protein2protein_imported

FK1,U1,I1 annotation_oid
U1 interactor_number
U1 *range_start_status_id
U1 *range_start_status_name
U1 *range_end_status_id
U1 *range_end_status_name
U1 range_begin
 range_begin_interval_end
 range_end_interval_begin
U1 range_end
U1 *interactor_feature_type_id
U1 *interactor_feature_type_name
 *detection_method_id
 *detection_method_name
 +reference_file

interactor_alt_id_4_protein2protein_imported

PK,FK1,I1 annotation_oid
PK interactor_number
PK source_id
PK *source_name

 *alt_id_type
 +reference_file

interactor_alias_4_protein2protein_imported

PK,FK1,I1 annotation_oid
PK interactor_number
PK source_id
PK *source_name

 *alias_type
 +reference_file

interaction_alt_id_4_protein2protein_imported

PK,FK1,I1 annotation_oid
PK source_id
PK *source_name

 *alt_id_type
 +reference_file

confidence_4_protein2protein_imported

PK,FK1,I1 annotation_oid
PK *unit

 value
 +reference_file

interactor_xref_4_protein2protein_imported

PK,FK1,I1 annotation_oid
PK interactor_number
PK source_id
PK *source_name

 *xref_type
 +reference_file

interaction_xref_4_protein2protein_imported

PK,FK1,I1 annotation_oid
PK source_id
PK *source_name

 *xref_type
 +reference_file

interactor_attribute_4_protein2protein_imported

FK1,I1,U1 annotation_oid
U1 interactor_number
U1 *attribute_name
U1 *attribute_name_ac
U1 *value
 +reference_file

interaction_attribute_4_protein2protein_imported

FK1,I1,U1 annotation_oid
U1 *attribute_name
U1 *attribute_name_ac
U1 *value
 +reference_file

protein2protein

PK annotation_oid

FK1,I1,U1 protein1_oid
FK2,I2,U1 protein2_oid
U1 +reference
 *association_type
I3 *inferred
U1 interaction_id
 *interaction_detection_method_id
 *interaction_detection_method_name
 *interaction_type_id
 *interaction_type_name
 *expansion_method
I4 negative

interaction_attribute_4_protein2protein

FK1,I1,U1 annotation_oid
U1 *attribute_name
U1 *attribute_nameAc
U1 value

confidence_4_protein2protein

PK,FK1,I1 annotation_oid
PK *unit

 value

protein_similarity_imported

U1,I1 protein1_id
U1,I1 +source1_name
U1,I2 protein2_id
U1,I2 +source2_name
U1 +reference
 +reference_file
I3 *similarity_type
U1,I4 taxonomy1_id
U1,I5 taxonomy2_id

protein_similarity

PK,FK1,I1 protein_oid
PK,FK2,I2 similar_protein_oid
PK +reference

I3 *similarity_type
I4 *inferred

protein_id_translation

U1,I1 protein_id
U1,I1 +source_name
FK1,U1,I2 translated_protein_oid
I3 taxonomy_id
 is_obsolete_oid
I4 *inferred
I5 translated_protein_concept_oid

Figure 19 Logical schema of interactions between protein and protein.

Page | 40

protein

PK protein_oid

U1 source_id
U1 +source_name
 +reference
 +feature_type
I1 taxonomy_id
 is_obsolete
I2 *inferred
I3 protein_concept_oid

dna_sequence2protein_imported

PK annotation_oid

U2,I1,U1 dna_sequence_id
U2,I1,U1 +origin_data_source
U2,I2,U1 protein_id
U2,I2,U1 +destination_data_source
U2,U1 +reference
 +reference_file
 *association_type
U2,U1 interaction_id
U2 *interaction_detection_method_id
U2 *interaction_detection_method_name
 publication_id
 *publication_source_name
I3 taxonomy1_id
I4 taxonomy2_id
U2 *interaction_type_id
U2 *interaction_type_name
U2 *expansion_method
 *interactor1_biological_role_id
 *interactor1_biological_role_name
 *interactor2_biological_role_id
 *interactor2_biological_role_name
 *interactor1_experimental_role_id
 *interactor1_experimental_role_name
 *interactor2_experimental_role_id
 *interactor2_experimental_role_name
 *interactor1_type_id
 *interactor1_type_name
 *interactor2_type_id
 *interactor2_type_name
 host_organism_taxonomy_id
I5,U2 negative

interactor_feature_4_dna_sequence2protein_imported

FK1,I1,U1 annotation_oid
U1 interactor_number
U1 *range_start_status_id
U1 *range_start_status_name
U1 *range_end_status_id
U1 *range_end_status_name
U1 range_begin
 range_begin_interval_end
 range_end_interval_begin
U1 range_end
U1 *interactor_feature_type_id
U1 *interactor_feature_type_name
 *detection_method_id
 *detection_method_name
 +reference_file

interactor_alt_id_4_dna_sequence2protein_imported

PK,FK1,I1 annotation_oid
PK interactor_number
PK source_id
PK *source_name

 *alt_id_type
 +reference_file

interactor_alias_4_dna_sequence2protein_imported

PK,FK1,I1 annotation_oid
PK interactor_number
PK source_id
PK *source_name

 *alias_type
 +reference_file

interaction_alt_id_4_dna_sequence2protein_imported

PK,FK1,I1 annotation_oid
PK source_id
PK *source_name

 *alt_id_type
 +reference_file

confidence_4_dna_sequence2protein_imported

PK,FK1,I1 annotation_oid
PK *unit

 value
 +reference_file

interactor_xref_4_dna_sequence2protein_imported

PK,FK1,I1 annotation_oid
PK interactor_number
PK source_id
PK *source_name

 *xref_type
 +reference_file

interaction_xref_4_dna_sequence2protein_imported

PK,FK1,I1 annotation_oid
PK source_id
PK *source_name

 *xref_type
 +reference_file

interactor_attribute_4_dna_sequence2protein_imported

FK1,I1,U1 annotation_oid
U1 interactor_number
U1 *attribute_name
U1 *attribute_name_ac
U1 *value
 +reference_file

interaction_attribute_4_dna_sequence2protein_imported

FK1,I1,U1 annotation_oid
U1 *attribute_name
U1 *attribute_name_ac
U1 *value
 +reference_file

dna_sequence2protein

PK annotation_oid

FK1 dna_sequence_oid
FK2,I2,U1 protein_oid
U1 +reference
 *association_type
I3 *inferred
U1 interaction_id
 *interaction_detection_method_id
 *interaction_detection_method_name
 *interaction_type_id
 *interaction_type_name
 *expansion_method
I4 negative

interaction_attribute_4_dna_sequence2protein

FK1,U1,I1 annotation_oid
U1 *attribute_name
U1 *attribute_nameAc
U1 value

confidence_4_dna_sequence2protein

PK,FK1,I1 annotation_oid
PK *unit

 value

protein_similarity_imported

I1,U1 protein1_id
I1,U1 +source1_name
I2,U1 protein2_id
I2,U1 +source2_name
U1 +reference
 +reference_file
I3 *similarity_type
I4,U1 taxonomy1_id
U1,I5 taxonomy2_id

protein_similarity

PK,FK1,I1 protein_oid
PK,FK2,I2 similar_protein_oid
PK +reference

I3 *similarity_type
I4 *inferred

protein_id_translation

U1,I1 protein_id
U1,I1 +source_name
FK1,U1,I2 translated_protein_oid
I3 taxonomy_id
 is_obsolete_oid
I4 *inferred
I5 translated_protein_concept_oid

dna_sequence

PK dna_sequence_oid

U1 source_id
U1 +source_name
 +reference
 +feature_type
I1 taxonomy_id
 is_obsolete
I2 *inferred
I3 dna_sequence_concept_oid

dna_sequence_similarity_imported

I1,U1 dna_sequence1_id
I1,U1 +source1_name
I2,U1 dna_sequence2_id
I2,U1 +source2_name
U1 +reference
 +reference_file
I3 *similarity_type
I4,U1 taxonomy1_id
U1,I5 taxonomy2_id

dna_sequence_similarity

PK,FK1,I1 dna_sequence_oid
PK,FK2,I2 similar_dna_sequence_oid
PK +reference

I3 *similarity_type
I4 *inferred

dna_sequence_id_translation

U1,I1 dna_sequence_id
U1,I1 +source_name
FK1,U1,I2 translated_dna_sequence_oid
I3 taxonomy_id
 is_obsolete_oid
I4 *inferred
I5 translated_dna_sequence_concept_oid

Figure 20 Conceptual schema of interactions between dna sequence and protein.

The interaction between below are like in Figure 19:

• protein and protein

• transcript and transcript

• dna sequence and dna sequence

• small molecule and small molecule

The interaction between below are like in Figure 20:

• transcript and protein

• dna sequence and protein

• protein and small molecule

Page | 41

7 Implementation of automatic procedures for

biomolecular interaction data import
In this section, the processes are performed, the design choices made for the import of data

and explaining the technical solutions used are explained.

7.1 Tabular file format
The tabular files can be downloaded ftp server of the databanks and these are one file for

IntAct and Two files for MINT. In MINT case binary interactions and complex interactions

are in separate files.

There are 40 columns from the MINT database and 31 columns for the IntAct case. First 15

columns are same for both databanks. The other columns are defined in the databanks’ read

me files.

First 15 columns are described as below:

1. Unique identifier for interactor A, represented as databaseName:ac, where

databaseName is the name of the corresponding database as defined in the PSI-MI

controlled vocabulary, and ac is the unique primary identifier of the molecule in the

database. Identifiers from multiple databases can be separated by "|". It is

recommended that proteins be identified by stable identifiers such as their UniProtKB

or RefSeq accession number.

2. Unique identifier for interactor B.

3. Alternative identifier for interactor A, for example the official gene symbol as

defined by a recognised nomenclature committee. Representation as

databaseName:identifier. Multiple identifiers separated by "|".

4. Alternative identifier for interactor B.

5. Aliases for A, separated by "|". Representation as databaseName:identifier. Multiple

identifiers separated by "|".

6. Aliases for B.

7. Interaction detection methods, taken from the corresponding PSI-MI controlled

Vocabulary, and represented as darabaseName:identifier(methodName), separated by

"|".

Page | 42

8. First author surname(s) of the publication(s) in which this interaction has been

shown, optionally followed by additional indicators, e.g. "Doe-2005-a". Separated by

"|".

9. Identifier of the publication in which this interaction has been shown. Database

name taken from the PSI-MI controlled vocabulary, represented as

databaseName:identifier. Multiple identifiers separated by "|".

10. NCBI Taxonomy identifier for interactor A. Database name for NCBI taxid taken

from the PSI-MI controlled vocabulary, represented as databaseName:identifier.

Multiple identifiers separated by "|". Note: In this column, the

databaseName:identifier(speciesName) notation is only there for consistency.

Currently no taxonomy identifiers other than NCBI taxid are anticipated, apart from

the use of -1 to indicate "in vitro" and -2 to indicate "chemical synthesis".

11. NCBI Taxonomy identifier for interactor B.

12. Interaction types, taken from the corresponding PSI-MI controlled vocabulary, and

represented as dataBaseName:identifier(interactionType), separated by "|".

13. Source databases and identifiers, taken from the corresponding PSI-MI controlled

vocabulary, and represented as databaseName:identifier(sourceName). Multiple

source databases can be separated by "|".

14. Interaction identifier(s) in the corresponding source database, represented by

databaseName:identifier

15. Confidence score. Denoted as scoreType:value. There are many different types of

confidence score, but so far no controlled vocabulary. Thus the only current

recommendation is to use score types consistently within one source. Multiple scores

separated by "|".

The loader java files are different for the MINT and IntAct and they are used the same

procedure for inserting into database.

Each file consist of three sub filed divided by first field which is external database name and

a colon (:) and the id of the field and in the parenthesis the name for the id.

Each column is parsed and then after checking the correctness of the data they are imported

into database. The automatic parser class is implemented and makes the fields ready to use

them. Parse the field of the line is done by this class.

Page | 43

After parsing the data it is checking the correctness of the data especially the id is recognized

by the system or not. If so it inserts the data into database.

As explained in the chapter 2.5.2, each databank has an importer that imports each file with

loader of appropriate source. Tabular loader of each databank(MintMitabLoader or

IntActMitabLoader) is an extension of a generic loader(MitabLoader.java). MitabLoader has

an object which is MIUtils which has database insert methods and data checking methods.

Those methods are used also by the XML loaders.

The expansion of the complex interaction in tabular format is given by the data source.

Currently both MINT and IntAct are using spoke model

Page | 44

 NO

 SI

is there is a new ?
linere

is the line a header?if the line
headers

parse file for each line
of file
 line

 SI

parse the fields of line

is the fieldds has any error such as
interaction type source id not

matchedc with dat?a h

 NO

 SI

put warning on logger

Insert data into
appropriate relation

table.

Insert data into
appropriate related

tables.

Insert data into
similarity tables.

 NO

Flush and commit all
tables of all relation

Turn back to importer.

 NO

Figure 21 Tabular loader workflow

7.2 XML file format
XML files were generated with the schema in the link:

 http://psidev.sourceforge.net/mi/rel25/src/MIF25.xsd.

Page | 45

The parser of XML was implemented by PSI-MI Developer on Google codes. This parser

parses the interaction automatically and then it is easy to get the interactions. It parses all the

data in the xml file and returns the easily manageable java class.

After automatic parse the necessary columns of the database is found with traversing parsed

XML. The XML parser is also using the same procedure with the tabular parser for checking

the data quality and inserting into database. The importing additional tables are also done

with this parser. The common procedures are explained in the previous sub-chapter.

The XML file has structure as below for each interaction:

Figure 22 Interaction

So it is easy to parse XML calling for all file for each interaction and adding them to

database.

The expansion of the complex interaction in XML file format is given by the data source. If

the all the interactor of interaction are neutral then matrix algorithm is used and if the

interaction is prey- bait model then spoke algorithm is used.

Page | 46

is there is a interaction

parse each file

parse the fields of
interactor

is the interactor has any error such
as interaction type source id not

matched with data

 NO

 SI

put warning on logger

Insert data into
appropriate relation

table.

Insert data into
appropriate related

tables.

Insert data into
similarity tables.

 NO

Flush and commit all
tables of all relation

Turn back to importer.

 NO

Figure 23 XML loader workflow

Page | 47

8 Validation and testing

8.1 Quantification of imported data and running times
Following tables contains running times of import phase and number of imported entries.

Table 2: show the execution time of the importer and number of relation entries and number

of all entries in relation tables and their related tables.

Table 4: show the number of entries in similarity tables.

Table 5 and Table 6 show number of entries of interaction related tables from IntAct and

MINT databanks, respectively.

Databank Name of file
Number of

tables
populated

Number of
relation
entries

Number
of all

entries

Execution
time(sec)

MINT

2010-12-15-mint-full-
binary.mitab26.txt 11 116880 1632032 248

2010-12-15-mint-full-
complexes.mitab26.txt 11 8207 138689 23

IntAct intact.txt 98 271522 13608653 1621

Table 2 Loader execution time

Databank Name of file Interaction name
Number of

entries

MINT

2010-12-15-mint-full-
binary.mitab26.txt protein to protein 116880

2010-12-15-mint-full-
complexes.mitab26.txt protein to protein 8207

IntAct intact.txt protein to protein 268051

IntAct intact.txt protein to
small_molecule 1936

IntAct intact.txt protein to transcript 559

IntAct intact.txt protein to
dna_sequence 913

IntAct intact.txt dna_sequence to
dna_sequence 10

Page | 48

IntAct intact.txt dna_sequence to small
molecule 20

IntAct intact.txt transcript to transcript 11

IntAct intact.txt transcript to small
molecule 1

IntAct intact.txt small molecule to
small molecule 21

Table 3 Number of entries in interaction tables

Databank Name of file
Feature
name

Number of
entries

MINT

2010-12-15-mint-full-
binary.mitab26.txt protein 496

2010-12-15-mint-full-
complexes.mitab26.txt protein 276

IntAct intact.txt protein 697620

IntAct intact.txt small_molecule 1166

IntAct intact.txt transcript 0

IntAct intact.txt dna_sequence 0

Table 4 Number of entries in similarity tables

Table name
Number of

entries

confidence_4_dna_sequence2dna_sequence_imported 0
confidence_4_dna_sequence2protein_imported 0

confidence_4_dna_sequence2small_molec_imported 0
confidence_4_protein2protein_imported 0

confidence_4_protein2small_molec_imported 0
confidence_4_small_molec2small_molec_imported 0

confidence_4_transcript2protein_imported 0
confidence_4_transcript2small_molec_imported 0

confidence_4_transcript2transcript_imported 0

Page | 49

interaction_alt_id_4_dna_sequence2dna_sequence_imported 12
interaction_alt_id_4_dna_sequence2protein_imported 1366

interaction_alt_id_4_dna_sequence2small_molec_imported 28
interaction_alt_id_4_protein2protein_imported 354150

interaction_alt_id_4_protein2small_molec_imported 2192
interaction_alt_id_4_small_molec2small_molec_imported 29

interaction_alt_id_4_transcript2protein_imported 631
interaction_alt_id_4_transcript2small_molec_imported 1

interaction_alt_id_4_transcript2transcript_imported 15
interaction_attribute_4_dna_sequence2dna_sequence_imported 2

interaction_attribute_4_dna_sequence2protein_imported 413
interaction_attribute_4_dna_sequence2small_molec_imported 10

interaction_attribute_4_protein2protein_imported 27213
interaction_attribute_4_protein2small_molec_imported 221

interaction_attribute_4_small_molec2small_molec_imported 3
interaction_attribute_4_transcript2protein_imported 55

interaction_attribute_4_transcript2small_molec_imported 0
interaction_attribute_4_transcript2transcript_imported 0

interaction_xref_4_dna_sequence2dna_sequence_imported 0
interaction_xref_4_dna_sequence2protein_imported 0

interaction_xref_4_dna_sequence2small_molec_imported 0
interaction_xref_4_protein2protein_imported 0

interaction_xref_4_protein2small_molec_imported 0
interaction_xref_4_small_molec2small_molec_imported 0

interaction_xref_4_transcript2protein_imported 0
interaction_xref_4_transcript2small_molec_imported 0

interaction_xref_4_transcript2transcript_imported 0
interactor_alias_4_dna_sequence2dna_sequence_imported 0

interactor_alias_4_dna_sequence2protein_imported 987
interactor_alias_4_dna_sequence2small_molec_imported 0

interactor_alias_4_protein2protein_imported 473423
interactor_alias_4_protein2small_molec_imported 1826

interactor_alias_4_small_molec2small_molec_imported

interactor_alias_4_transcript2protein_imported 469
interactor_alias_4_transcript2small_molec_imported 0

interactor_alias_4_transcript2transcript_imported 0
interactor_alt_id_4_dna_sequence2dna_sequence_imported 40

interactor_alt_id_4_dna_sequence2protein_imported 7332
interactor_alt_id_4_dna_sequence2small_molec_imported 82

interactor_alt_id_4_protein2protein_imported 2598669
interactor_alt_id_4_protein2small_molec_imported 14104

interactor_alt_id_4_small_molec2small_molec_imported 84
interactor_alt_id_4_transcript2protein_imported 3778

interactor_alt_id_4_transcript2small_molec_imported 4

Page | 50

interactor_alt_id_4_transcript2transcript_imported 62
interactor_attribute_4_dna_sequence2dna_sequence_imported 1

interactor_attribute_4_dna_sequence2protein_imported 139
interactor_attribute_4_dna_sequence2small_molec_imported 21

interactor_attribute_4_protein2protein_imported 20565
interactor_attribute_4_protein2small_molec_imported 2492

interactor_attribute_4_small_molec2small_molec_imported 38
interactor_attribute_4_transcript2protein_imported 152

interactor_attribute_4_transcript2small_molec_imported 1
interactor_attribute_4_transcript2transcript_imported 11

interactor_feature_4_dna_sequence2dna_sequence_imported 0
interactor_feature_4_dna_sequence2protein_imported 0

interactor_feature_4_dna_sequence2small_molec_imported 0
interactor_feature_4_protein2protein_imported 0

interactor_feature_4_protein2small_molec_imported 0
interactor_feature_4_small_molec2small_molec_imported 0

interactor_feature_4_transcript2protein_imported 0
interactor_feature_4_transcript2small_molec_imported 0

interactor_feature_4_transcript2transcript_imported 0
interactor_xref_4_dna_sequence2dna_sequence_imported 0

interactor_xref_4_dna_sequence2protein_imported 34103
interactor_xref_4_dna_sequence2small_molec_imported 25

interactor_xref_4_protein2protein_imported 9723538
interactor_xref_4_protein2small_molec_imported 59228

interactor_xref_4_small_molec2small_molec_imported 44
interactor_xref_4_transcript2protein_imported 9555

interactor_xref_4_transcript2small_molec_imported 1
interactor_xref_4_transcript2transcript_imported 16

Table 5 Number of entries in IntAct interaction related tables

Table name

Number of
entries
(binary

interaction
file)

Number of
entries
(binary

interaction
file)

confidence_4_protein2protein_imported 149948 7144
interaction_alt_id_4_protein2protein_imported 19184 4807

interaction_attribute_4_protein2protein_imported 424229 46653
interaction_xref_4_protein2protein_imported 790 821
interactor_alias_4_protein2protein_imported 866025 70009

interactor_alt_id_4_protein2protein_imported 0 0
interactor_attribute_4_protein2protein_imported 0 0
interactor_feature_4_protein2protein_imported 34348 1020

interactor_xref_4_protein2protein_imported 20628 28
Table 6 Number of entries in MINT interaction related tables

Page | 51

9 Conclusions
The main result of this Thesis is the implementation of software automated procedures for the

importing and integration of genomic and proteomic interaction data provided by

bioinformatics databanks. These procedures are integrated into the GPDW project that

continues to develop into the final version providing an integrated and consistent data

warehouse, which will be made available to researchers with the addition of the important

interaction data considered in this Thesis.

This Thesis work was divided into three main stages:

1. analysis of the existing architecture of the GPDW framework in order to identify

possible design errors and optimization of components;

2. definition and implementation of procedures for automatic importing and integration

of biomolecular interaction data.

3. application of the implemented procedures to import, in the GPDW data warehouse,

data supplied by IntAct and MINT databanks; this stage developed in the following

different steps:

a. analysis of data from each source file, description of data and conceptual and

logical design of relational model for each considered databank;

b. development of Parser, Importer and Loader software classes for specific

interaction data, by extending the generic classes available, for extracting data

from the considered sources and their automated importing in the data

warehouse; the importing procedures have been designed by taking into

account the goals and requirements defined, considering the need to develop

capabilities that can be inherited and reused;

c. integration with the existing software architecture and changing the structure

of the XML configuration file for the import of new data;

d. use of developed software for the creation of new parts of the GPDW data

warehouse and import into them the considered interaction data;

e. testing and verification of the developed software and its use; this step

involved the quantification of the imported data, their errors and

inconsistencies detected by the automatic verification procedures

implemented, and evaluation of the times taken for the importation and control

of such data.

Page | 52

10 Future developments
In order to meet the goal of creating GPDW, it is needed to complete the implementation of

the automatic integration activities, and to increase the number of databanks whose data are

imported into the GPDW; this will generate a huge amount of structured data representing

consolidated information and knowledge available worldwide, which will constitute the

knowledge base that will enable the Virtual BioInformatics Lab users to efficiently analyze,

and enrich biomedical experimental results, in order to translate new experimental findings

into a better understanding of the underling biological mechanisms involved.

The method for importing the data considered in this Thesis, which is currently applied only

to data from the MINT and IntAct databanks, will be applied also to other databanks that

provide Molecular Integration data files.

In addition, a softer module dedicated to download data files provided by the various

databanks considered in the GPDW project will be implemented in order to support the

maintenance of constantly updated information in the GPDW.

In the near future, the public access to GPDW data warehouse will be possible. The idea is to

provide various Web services that will help the answer of classic bioinformatics problems in

order to support scientists and researchers in the analysis of experimental data.

Page | 53

11 Bibliography

1

.

Masseroli M. Biomolecular databanks. Bioinformatica e biologia computazionale per la

medicina molecolare. [Online].; 2009. Available from:

http://www.bioinformatics.polimi.it/masseroli/bbcmm/dispense/9_BiomolecularDataBanks

.pdf.

2

.

Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA,

Hughes G, Humphery-Smith I, Williams KL, Hochstrasser DF. From proteins to

proteomes: large scale protein identification by two-dimensional electrophoresis and amino

acid analysis. Bio/technology (Nature Publishing Company). 1996 Jan; 14(1): p. 61-5.

3

.

Karl Fast, Fred Leise and Mike Steckel. What is a controlled vocabulary? [Online].; 2011.

Available from:

http://www.boxesandarrows.com/view/what_is_a_controlled_vocabulary_.

4

.

Masseroli M, Pinciroli F. Using Gene Ontology and genomic controlled vocabularies to

analyze high-throughput gene lists: three tool comparison. Computers in biology and

medicine. 2006 Jul-Aug; 36(7-8): p. 731-47.

5

.

Hermjakob H, Montecchi-Palazzi L, Bader G, Wojcik J, Salwinski L, Ceol A, Moore S,

Orchard S, Sarkans U, et al. The HUPO PSI's molecular interaction format--a community

standard for the representation of protein interaction data. Nature biotechnology. 2004 Feb;

22(2): p. 177-83.

6

.

Masseroli M., Galati O., Pinciroli F. GFINDer: genetic disease and phenotype location

statistical analysis and mining of dynamically annotated gene lists. Nucleic Acids

Research. 2005 Jul 1; 33(Web Server issue): p. W717-W723.

7

.

Masseroli M., Galati O., Pinciroli F. GFINDer: Genome Function INtegrated Discoverer

through dynamic annotation, statistical analysis, and mining. Nucleic acids research. 2004

Jul 1; 32(Web Server issue): p. W293-300.

8

.

Aranda B, Achuthan P, Alam-Faruque Y, Armean I, Bridge A, Derow C, Feuermann M et

al. The IntAct molecular interaction database in 2010. Nucleic acids research. 2010 Jan;

38(Database issue).

9 Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L,

http://www.bioinformatics.polimi.it/masseroli/bbcmm/dispense/9_BiomolecularDataBanks.pdf�
http://www.bioinformatics.polimi.it/masseroli/bbcmm/dispense/9_BiomolecularDataBanks.pdf�
http://www.boxesandarrows.com/view/what_is_a_controlled_vocabulary_�

Page | 54

. Cesareni G. MINT: the Molecular INTeraction database. Nucleic acids research. 2007 Jan;

35(Database issue): p. D572-4.

	Abstract
	Introduction
	Genomic and proteomic research
	Controlled vocabularies, ontologies and functional annotations
	Biomolecular databanks
	Data file formats

	Difficulties in comprehensively using available biomolecular data
	Genomic and Proteomic Data Warehouse (GPDW)
	Data and metadata schema
	Software framework for automatic creation and updating of GPDW
	Data import procedures
	Data integration procedures
	Metadata procedures

	Thesis goals
	Extension of GPDW software framework for biomolecular interaction data management
	Data import procedures
	Data integration procedures
	Metadata computation and storing

	Considered biomolecular interaction databanks
	IntAct: an open source molecular interaction databank
	MINT: the Molecular INTeraction databank

	Design of GPDW sections for biomolecular interaction data
	Conceptual schema
	Logical schema

	Implementation of automatic procedures for biomolecular interaction data import
	Tabular file format
	XML file format

	Validation and testing
	Quantification of imported data and running times

	Conclusions
	Future developments
	Bibliography

