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Abstract

In the present work we discuss and extend an existing Bayesian Hierarchical Gaus-

sian Process Model (BHGP) used to integrate data with different accuracies. The

low-accuracy data are the deterministic output of a computer experiment and the

high-accuracy data come from a more precise computer simulation or a physical

experiment. A Gaussian process model is used to fit the low-accuracy data. Then

the high-accuracy data are linked to the low-accuracy data using a flexible ad-

justment model where two further Gaussian processes perform scale and location

adjustments. An empirical Bayesian approach is chosen and a Monte Carlo Markov

Chain (MCMC) algorithm is used to approximate the predictive distribution at

new input sites. The existing BHGP model is then extended in order to model

the more general situation where also the low accuracy data come from a physical

experiment. A measurement error term needs to be included in the model for the

low-accuracy data and the MCMC prediction method is accordingly adjusted. The

BHGP model is implemented in Matlab and a validation study is performed to

verify the developed code and to evaluate the predictive performance of the model.

The extended BHGP model is then applied to a set multi-sensor metrology data

in order to model the surface of an object. The low-accuracy data are measured

with an innovative optical-based Mobile Spatial Coordinate Measuring System II

(MScMS-II), developed at Politecnico di Torino, Italy, and the high-resolution

data are acquired with a Coordinate-Measuring Machine (CMM). Comparing the

BHGP model with other existing methods allows us to conclude that significative

improvements (by 11%−22%) in terms of prediction error are achieved when low-

resolution and high-resolution data are combined using an appropriate adjustment

model.

12



Sommario

Nel presente lavoro si analizza e si estende un modello bayesiano gerarchico che

sfrutta i processi gaussiani (BHGP) con lo scopo di integrare dati con diversa accu-

ratezza. I dati a bassa accuratezza provengono da un esperimento computazionale

deterministico, mentre quelli ad elevata accuratezza da una simulazione numer-

ica più precisa o da un esperimento fisico. Un processo gaussiano modella i dati

a bassa accuratezza, mentre un modello flessibile di aggiustamento collega i dati

molto accurati a quelli poco accurati, sfruttando due ulteriori processi gaussiani

che svolgono la funzione di parametri di scala e di localizzazione. Si adotta un

approccio bayesiano empirico per fare inferenza sui parametri del modello e si

sfrutta un algoritmo Markov Chain Monte Carlo (MCMC) per approssimare la

distribuzione a posteriori predittiva in corrispondenza di nuovi punti sperimentali.

Il modello BHGP esistente viene esteso in modo da poter essere applicato al caso

più generale in cui anche i dati a bassa accuratezza provengono da un esperimento

fisico. Un temine di errore casuale è introdotto nel modello dei dati a bassa ac-

curatezza e i passi dell’algoritmo MCMC devono essere corretti di conseguenza.

Dopo aver implementato il modello in Matlab, si svolge uno studio di validazione

per verificare la correttezza del codice e le prestazioni del modello in termini pred-

ittivi. Il modello BHGP viene infine applicato a dati di metrologia, provenienti

da due distinti strumenti di misura a coordinate. I dati a bassa accuratezza sono

misurati con un innovativo dispositivo portatile per la misura a coordinate su larga

scala (MScMS-II) sviluppato presso il Politecnico di Torino, mentre quelli ad ele-

vata accuratezza sono acquisiti con una macchina di misura a coordinate (CMM).

Paragonando il modello BHGP ad altri modelli analizzati, si riscontra un signi-

ficativo miglioramento delle prestazioni (dall’11% al 22%) in termini di errore di

predizione, quando i dati multi-risoluzione sono combinati usando un opportuno

modello di aggiustamento.
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Introduction

In any scientific context researchers often have to deal with the analysis and syn-

thesis of data from different types of experiments. Integrating data from distinct

sources in an efficient way is a challenging topic.

Such data usually represent the same response of interest but they may be

generated using different mechanisms (physical or computational) or different nu-

merical methods. Qian and Wu [QW08] describe three situations that occur in

general:

1. data sets generated from each mechanism have the same characteristics and

share the same trend, so that it would be almost impossible to discern the

sources;

2. data from each source share no similar patterns, have different magnitudes

and appear to have very little in common;

3. each data set has different characteristics but shows similar trend and be-

havior.

In the first case the differences between each data set can be ignored and a single

model could be used to fit data from all the available sources. Unfortunately this

does not happen often in practice.

When we face data from the second category it is reasonable to infer that no

efficient method could be adopted to integrate such data. Further investigation

on the experiments is required. Researchers should try to consider again the

underlying assumptions and better understand the differences in the mechanisms

of data generation.

The last situation is the one that mostly occurs in practice and is the one discussed

in the present work. The standard approach consists of analyzing data from each

source separately. However, it has been acknowledged in a variety of situations

14



Introduction 15

that performing integrated analysis may lead to stronger conclusions than distinct

analysis. The methods of data analysis that use all the available information from

every data source is often referred to - in literature - as combining information,

borrowing strength or meta-analysis.

As pointed out in the report from US National Science Council (1992) [US 92],

combining information has quite a long history. It dates back to the XIX century,

when Legendre and Gauss invented the Least Squares. While trying to estimate

the orbit of comets and determine the meridian arcs in geodesy they used astro-

nomical observations from different observatories.

In the XX century techniques for integrating information from separate stud-

ies were developed by researchers in many scientific fields, from agriculture to

medicine, from physics to social sciences. These methodologies are very similar

one another, sometimes even identical, but the terminology differs from field to

field.

In the last few decades the problem of efficiently integrating multi-source data has

become the subject of increasing interest in many different contexts. Advance in

computer sciences and development of efficient numerical methods has recently

allowed researchers to develop several ways of modeling such data.

Here we illustrate and extend the model developed by Qian and Wu [QW08]

to integrate low-resolution and high-resolution data.

The authors treat the common situation in which two data sets coming from

sources with different accuracy are available. One source provides data with high

accuracy, but it is expensive to run and also time-consuming. It is the case of

physical experiments or complex detailed computer simulations. The other source

may be another computer experiment that is faster and cheaper to run but gives

more approximate results.

[QW08] uses a Gaussian process model to smoothly fit the low-resolution data

from the approximate computer experiment. Then, in a second step, the high-

resolution data are linked to the low-resolution data using a flexible adjustment

model where two Gaussian processes perform scale and location adjustments.

In order to predict the output of the high-resolution experiment at untried points

the authors adopt a hierarchical Bayesian approach. This choice has the main

advantage of incorporating the uncertainty on the unknown model parameters

directly in the Bayesian formulation. In addition, it allows to compute a Bayesian

predictive distribution for the high-resolution output at untried points given the
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training data.

The purpose of the present work is to discuss and extend the model by [QW08]

in order to deal with the the more general situation where the low-accuracy data

also come from a physical experiment.

The model will be implemented in Matlab and a validation study of the developed

code will be performed.

Finally the extended Bayesian Hierarchical Gaussian Process Model will be applied

to a set of coordinate metrology data coming from measuring systems with different

accuracies.



Chapter 1

Gaussian process models for

multi-resolution data

In the present chapter we address the matter of integrating multi-resolution data

using Gaussian process models.

This topic of study arises as a part of a research project (Progetto Integrato 2008)

on Large Scale Metrology that involves Politecnico di Milano, Politecnico di Torino

and Università degli Studi del Salento.

First of all, we introduce the Gaussian random Process and we show how it is used

to model the output of computer experiments or, more in general, correlated data.

Then, we introduce two Gaussian process models for integrating multi resolution:

the data fusion model by [Qia+06] and the Bayesian Hierarchical Gaussian Process

(BHGP) model in the version proposed by [QW08].

1.1 The role of experimentation in scientific research

The aim of experimentation is to answer specific research questions.

In order to study complex systems, the first step is to collect data to analyze.

Statistics has provided the methodologies for designing and carrying out empirical

studies.

Design of Experiments (DOE) is a discipline that dates back to the beginning of

the XX century. Earliest techniques were developed by Fisher in the 1920s and the

early 1930s, while he was working as a statistician at the Rothamsted Agricultural

Experimental Station near London, England. He introduced the systematic use of

Statistics in the design of experimental investigations and his pioneering work set

17
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the foundations for modern DOE [Mon01].

Later on, designed experiments were used in a wide variety of scientific contexts

and new techniques were developed. For instance, the Response Surface Method-

ology (RSM), developed by Box and Wilson in chemical and process industry in

the 1950s, or case-control clinical trials in medical research are still largely used.

Once experimental data are collected, appropriate techniques are required for

data synthesis and analysis. For example, Fisher developed techniques to deal with

physical experiments. Analysis of Variance (AnOVa) is a systematic technique to

separate treatment effects from random error. Replication, randomization and

blocking are used to reduce the effect of random error.

In any scientific or technological context, most of the systems studied are ex-

tremely complex. For this reason, the task of performing physical experiments to

analyze complex processes is rarely achievable. This is due to the high costs or the

long time required by the experimentation. Sometimes, for instance in the case

of large environmental systems, such as weather models, it is even impossible to

design and carry out the experiment procedures [Sac+89].

In the last few decades a new way of conducting experiments, i.e. via numerical

computer-based simulations, has become increasingly important.

1.2 Literary review

A significative number of studies by different authors has proven that an integrated

analysis of data with different scales and resolutions leads to better results than a

separate analysis, combining strength across multiple sources.

The research topic addressed in the present work arises as a step of a PRIN (Pro-

getto Integrato) research project titled “Large-scale coordinate metrology: study

and realization of an innovative system based on a network of distributed and

cooperative wireless sensors”. This project is characterized by a tight collabora-

tion between three Research Units. The first one, based in Politecniclo di Torino

is mainly involved in the development/adjustment and metrological characteriza-

tion of the wireless sensor system. The second, based in Politecnico di Milano,

focuses on the metrological performance evaluation of the system and in the inte-

gration with a further optical system. The third, based in Università degli studi

del Salento, is mainly involved in the study and development of mathematical

models for integrating data obtained from systems with different resolutions.
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The Bayesian approach for treating multi-resolution models that use Gaussian

Processes to fit the observed data has raised increasing research interest in the last

ten years.

Xia, Ding, and Mallick, in their recent work submitted to Technometrics [XDM08],

provide a detailed review on methodologies developed to integrate deterministic

computer simulations with different accuracies or computer simulations with data

from physical experiments. They distinguish two main schools of thought on the

matter.

They cite the work by Reese et al. [Ree+04] as an example of the first kind of

approach identified in literature. Reese et al. analyze data sets observed from three

distinct sources: computer experiment, physical experiment and expert opinion.

First, they fit an appropriate model for data from each source. Then, they combine

all the three sources of information, after using an appropriate flexible integration

methodology that takes into account uncertainties and biases in the different data

sources. They analyze all the data simultaneously using a Recursive Bayesian

Hierarchical Model (RBHM).

In the second kind of approach identified by Xia et al., first a single-resolution

model, typically for the low-resolution data, is developed, then a model for high-

resolution data that uses low-resolution data as input variables is built. Such

model is often called linkage model as it connects high resolution to low-resolution

data by performing a scale transformation and a shift of location.

This is exactly the approach proposed by Qian and Wu in [Qia+06] and [QW08],

that we decided to follow in the present work.

Kennedy and O’Hagan [KO01] build a Gaussian Process model to fit the data

from a computer experiment then, they use the data from a physical experiment

to adjust the model parameters in order to fit the model to the observed data.

This process, known as calibration, is implemented in a Bayesian framework.

The work by Higdon et al. [Hig+04] is quite similar to [KO01]. Again a Bayesian

approach combined with the use of Gaussian Process aims to calibrate the param-

eters of a computer simulator using field data (from a physical experiment). The

authors mainly stress the role of uncertainty quantification in the whole Bayesian

construction.

Finally, [XDM08] is a very interesting work itself. Xia, Ding, and Mallick provide

a real case application of [QW08] in metrology, i.e. the same field of the applica-

tion study we faced. They use high-resolution data measured with a highly precise



1.3 The Gaussian random process 20

Coordinate Measurement Machine with a touch probe (CMM) and low-resolution

data acquired with a less precise CMM with optical/laser sensor (OCMM). They

develop a Gaussian-process model that is more suitable to fit data measured with

a coordinate measurement systems compared to the usual universal kriging model

[XDW07]. Like we do in the present work, they build a BHGP model that takes

into account the measurement error for both the low-resolution and high-resolution

data, but they mainly focus on the problem of the misalignment of the experimen-

tal points of the two measurements sets.

Though it does not use a Bayesian approach, the work by Qian and Wu, to-

gether with Seepersad, Joseph and Allen [Qia+06], deserves to be mentioned. The

work [QW08] that followed, consists of a further development of this 2006 paper.

First, a Gaussian Process model is used to approximate the low-resolution data.

Then, a location-scale adjustment model that uses information from a small set of

high-resolution data is used to improve the accuracy of the prediction. In [Qia+06]

the scale change is modeled using a linear regression that can only account for lin-

ear changes in the scale parameter. In the case of [QW08], the use of a Gaussian

process model for both the scale and location parameters allows to take into ac-

count more complex changes from low-accuracy and high-accuracy data.

In the present work we focus our attention on the model illustrated in [QW08] and

we follow the Bayesian approach proposed by Qian and Wu in their 2008 work.

1.3 The Gaussian random process

Suppose X is a fixed subset of Rd having positive d-dimensional volume. We say

that Y (x), for x ∈ X, is a Gaussian random Process (GP) provided that for

any k ≥ 1 and any choice of x1, ...,xk in X, the vector (Y (x1), ..., Y (xk)) has a

multivariate normal distribution.

As a direct consequence of this definition, GPs are completely determined by

their first and second order moments, i.e. their mean function

µ(x) = E[Y (x)]

and covariance function

C(x1,x2) = Cov[Y (x1), Y (x2)]



1.3 The Gaussian random process 21

for x1,x2 ∈ X.

In practice, GPs are required to be nonsingular, i.e. for any choice of in-

put x the covariance matrix of the associated multivariate normal distribution

is nonsingular. This property brings great advantages in calculating conditional

distribution (of Y (xi)|Y (xj)).

To fulfil the objective of being good interpolators (predictors), Gaussian Pro-

cess models must assure that their sample path exhibits certain regularity and

smoothness properties. Smoothness is achieved with separability (Doob, 1953).

Thus the GPs we use are chosen to be separable.

Another issue concerns the fact that the output of a computer experiment

at training input points represent a single draw of a stochastic process. When

predicting the output at a new point, the process must exhibit some regularity

over X. Thus, in order to allow valid statistical inference about the process based

on a single draw, ergodicity is a required property.

Therefore we restrict our attention to strongly stationary GPs.

The stochastic process Y (·) is strongly stationary if, for any h ∈ Rd, any x1, ...,xk ∈
X with x1+h, ...,xk+h ∈ X, then (Y (x1), ..., Y (xk)) and Y (x1+h), ..., Y (xL+h)

have the same distribution.

When applied to GPs the above definition is equivalent to requiring that (Y (x1), ..., Y (xk))

and (Y (x1+h), ..., Y (xk+h)) always have the same mean and covariance, i.e. they

have the same marginal distribution for every x.

Moreover it is not difficult to show that the covariance function of a stationary

GP must satisfy:

Cov(Y (x1), Y (x2)) = C(x1 − x2)

i.e. every couple of points with the same orientation and the same distance will

have the same covariance.

An even stronger requirement is isotropy, which means that a GP is invariant

under rotations. This property can be expressed as:

Cov(Y (x1), Y (x2)) = C(∥ x1 − x2 ∥)

where ∥ · ∥ is the Euclidean Distance, ∥ h ∥= (
∑

i h
2
i )

1/2.

Isotropic Gaussian processes imply that the associated multivariate normal vectors

have the same covariance for any couple of equidistant input points.
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A GP is completely defined by its mean and covariance function C(·). In many

applications the covariance structure of the process is expressed in terms of both

the process variance σ2Y and the process correlation function defined as follows:

R(h) =
C(h)

σ2Y
for h ∈ Rd.

Correlation functions of stationary GP must be symmetric about the origin and

positive semidefinite.

A typical class of desirable correlation functions is the one that links the correlation

between errors to the distance between the corresponding points. Euclidean dis-

tance is not adequate for this purpose because it equally weights all the variables.

The following weighted distance is preferred:

d(x1,x2) =

k∑
j=1

ϕj |x1j − x2j |pj ϕj > 0, pj ∈ (0, 2].

Given this distance definition, a whole class of correlation functions is introduced

under the name of power exponential correlation functions:

R(x1,x2) = exp {−d(x1,x2)} = exp

−
k∑
j=1

ϕj |x1j − x2j |pj

 (1.1)

where ϕj > 0 and pj ∈ (0, 2].

Parameters ϕ = (ϕ1, ..., ϕk), called scale correlation parameters, control how fast

the correlation decays with distance, i.e. the activity of correlation along the

coordinate directions as a function of distance, and p = (p1, ..., pL), called power

parameters, control the smoothness of the sample path of the GP.

Every power-exponential function, for ph ∈ (0, 2], is continuous at the origin,

though none, except the one with ph = 2, is differentiable at the origin. When the

correlation function (1.1) has ph = 2 it is called Gaussian correlation function:

R(x1,x2) = exp

−
k∑
j=1

ϕj |x1j − x2j |2
 (1.2)

Figures (1.1) and (1.2) from [SWN03] show the effect of varying the power

ad scale parameters on the sample paths of a GP over [0, 1] with the Gaussian
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correlation function (1.4).

For power parameters p ∈ (0, 2) the sample paths are non-differentiable as seen in

the panels (b) and (c) from figure (1.1). For p = 2 the sample paths, represented

in the panel (a), are infinitely differentiable.

Figure (1.1) shows that, when the scale parameter θ decreases, the correlation

decreases as well and the sample paths show a behavior closer to the one of random

noise (panel (c)). As θ increases, the correlation increases (panel (b)). When the

correlation parameters approaches 1 the sample path become closer to the process

mean 0.

Figure 1.1: The effect of varying the power parameter on the sample paths of a GP
with power exponential correlation function. Four draws from a GP(µ, σ2, θ, p),
with µ = 0, σ2 = 1.0, θ = 1.0 and respectively p = 2.0 (a), p = 0.75 (b) and
p = 0.2 (c) [SWN03].
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Figure 1.2: The effect of varying the scale parameter on the sample paths of a GP
with power exponential correlation function. Four draws from a GP(µ, σ2, θ, p),
with µ = 0, σ2 = 1.0, p = 2.0 and respectively θ = 0.5 (a), θ = 0.25 (b) and
θ = 0.1 (c) [SWN03].

1.4 Computer experiments

Thanks to the advance in mathematical and computational modeling techniques,

the technological progress and the enhancement of computational power, the use

of computer experiments has become widespread in the last few decades. Mathe-

matical modeling of complex systems and their implementation as computational

codes has become common practice in any context of scientific research. Computer

experiments allow one to obtain precise and reliable results, with significant sav-

ings in time and resources. In addition an important advantage is the possibility

of running simulations with the desired level of accuracy.

1.4.1 Characterstics of computer experiments

Computer experiments are designed to have highly multidimensional input, that

consists of scalar or functional variables. The output may be multivariate as

well and usually represents the response of interest. Most of the cases treated

in literature involve a small set of k input variables, usually denoted with xi =

(xi1, ..., xik), i = 1, ..., n, and a single scalar output variable y(xi) [Sac+89].

A common feature of many computer experiments is that their output is de-
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terministic. This means that the response variable is not affected by random mea-

surement error and if such a computer code is run with the same input variables

it gives the same response.

The lack of random error makes computer experiments different from physical

ones and ad hoc techniques are required to analyze and model the output of com-

puter experiments. As a matter of fact replication, randomization and blocking

are of no use in the design and analysis of computer experiments and the adequacy

of a model to fit the data depends only on the systematic bias.

Modeling computer experiments as realizations of random processes allows one

to tackle the problem of quantifying the uncertainty associated with predictions

using fitted models.

1.4.2 Modeling computer experiments outputs with a Gaussian

Process model

Works by Sacks et al. [Sac+89], Santner, Williams, and Notz [SWN03] and Jones,

Shonlau, and Welch [JSW98] illustrate a very popular statistical model for fitting

the deterministic output of computer experiments. The goal is predicting the

response at untried input and estimating prediction uncertainty.

The response of the computer experiment is modeled as the the realization of

a random process. This approach is adopted from a branch of Statistics known

as Spatial Statistics where it goes under the name of kriging. (see the work by

Cressie [Cre93])

The stochastic process is described as the combination of a linear regression term

that depends on the input variables xi and a stochastic process Z(·):

Y (xi) =

k∑
j=0

fj(xi)βj + Z(xi) = f(xi)
Tβ + Z(xi) i = 1, ..., n (1.3)

where f(xi) = (f0(xi), f1(xi), ..., fk(xi))
T is a vector of known linear or non-linear

functions of the input variables and β = (β0, β1, ..., βk)
T is a vector of unknown

regression coefficients.

Z(·) is a zero mean stochastic process completely characterized by its first and

second order moments.

In Spatial Statistic literature model (1.3) is known as universal kriging.

A very popular choice in literature is the Gaussian random process previously
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described. Gaussian Process models work as good interpolators when modeling

the deterministic output of computer experiments. Moreover they are very flexible

when representing complex nonlinear dependencies.

The GP model illustrated in equation (1.3) has the mean term that is a linear

function of f(xi). This implies that Y (xi) is a non-stationary process according

to the definition provided in Section 1.3. This particular form of the GP model

allows us to have more flexibility. Stationarity properties are though retained by

the GP Z(·) that models the residual part.

Jones, Shonlau, and Welch [JSW98] give some intuitive justifications of the

modeling choice of (1.3), in particular of the choice of assuming a correlation

structure for the residual term Z(·).
For instance, assume that the residual term of the linear regression model (1.3) is

a normally distributed i.i.d. error, Z(·) ∼ N(0, σ2). Suppose we have determined

some suitable functional form for the regression terms. The assumption of Z(·) to
be a random error does not stand when modeling the output of a computer code.

As said above the output of computer experiment is not affected by random inde-

pendent error due to measurement or noise. Since the output is deterministic, any

lack of fit comes exclusively from modeling errors, i.e. incomplete set of regression

terms fj(xi), j = 1, ..., k. This allows us to write the residual term as a function

of the input, Z(xi). Moreover if Y (xi) is continuous, the error is also continuous

as it is the difference between Y (xi) and the continuous regression terms. So, if x1

and x2 are two close experimental points, then the errors z(x1) and z(x2) should

also be close. Thus it is reasonable to assume that the residues are correlated.

A typical choice for the correlation structure is the Gaussian correlation func-

tion:

R(x1,x2) = exp

−
k∑
j=1

ϕi|x1j − x2j |2
 , ϕi > 0, ∀j = 1, ..., k (1.4)

where the scale correlation parameters ϕ = (ϕ1, ..., ϕk) control how fast the correla-

tion decreases with distances, i.e. the “activity” of correlation along the coordinate

directions as a function of the distance.

As stated in Section 1.3, the correlation function belonging to the this class are

continuous and infinitely differential at the origin and determine the sample path

of the corresponding GP to be smooth (infinitely differentiable).
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1.5 Gaussian Process models for multi-resolution data

Here we illustrate the two Gaussian Process models developed by Qian and Wu

[QW08] in both their works [Qia+06] and [QW08].

As previously outlined, the authors consider the situation in which two kinds

of experiments provide data with different resolutions. There is a low-accuracy

experiment (LE), fast to run, but approximate, and a high-accuracy experiment

(HE), detailed but expensive.

LE and HE are supposed to have a common set of k factors x = (x1, ..., xk). The

set of design variables for LE is denoted with Dl = {x1, ...,xn}. The corresponding
low resolution data are indicated with yl = (yl(x1), ..., yl(xn))

T . The design set

for HE is denoted with Dh = {x1, ...,xn1} and the corresponding high-resolution

data are yh = (yl(x1), ..., yl(xn1))
T . We assume that the number of available LE

data is greater than the number of HE data (n > n1), since HE data require longer

times and more resources to be computed. Thus we assume that Dh ⊂ Dl without

loss of generality.

The main purpose of these model is prediction of the HE response at untried input

points (x0 ̸∈ Dh).

1.5.1 Low-accuracy experimental data

The authors treat the case in which LE data come from a computer experiment.

Thus the modeling techniques described in Section 1.4.2 apply.

The model for LE response is:

yl(xi) = f
T
l (xi)βl + ϵl(xi) i = 1, ..., n, (1.5)

where f(xi) = (f0(xi), f1(xi), ..., fk(xi))
T is a vector of known functions and

βl = (βl0, βl1, ..., βlk)
T is a vector of unknown regression coefficients.

ϵl(·) is assumed to be a zero mean Gaussian Process. Its covariance function

depends on the process variance σ2l and ϕl, a vector of unknown correlation pa-

rameters. These parameters are the scale correlation parameters that appear in

the Gaussian correlation function in the form (1.4):

Rl(xj ,xm) = exp

{
−

k∑
i=1

ϕli(xji − xmi)
2

}
, j,m = 1, ..., n (1.6)
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where ϕli > 0, ∀i = 1, ..., k and the power correlation parameter is set to 2. As

previously explained this particular class of correlation functions produces sample

paths of the corresponding GP that are infinitely differentiable. Given that R(·, ·)
belongs to the Gaussian correlation functions class, the GP ϵl(·) is completely

defined by its mean µ (which is 0), its variance σ2l and its correlation parameters

ϕl. For simplicity we will refer to it as GP (0, σ2l ,ϕl). It directly follows that

yl(xi) ∼ GP (fTl (xi)βl, σ
2
l ,ϕl).

[Qia+06] and [QW08] introduce the assumption that the factors considered in

the experimentation have linear effect on the output, i.e. fTl (xi) = (1, xi1, ..., xik)
T .

Moreover, they state that “[...] inclusion of weak main effects in the mean of a

Gaussian Process can have additional numerical benefits for estimating the corre-

lation parameters. [...] For a large number of observations [the likelihood function

of yl] can be very small regardless the values of ϕl. As a result, ϕl cannot be

estimated accurately”. This statement is confirmed by results of the numerical

examples provided in the paper.

[SWN03] specifies the following prior distributions on the unknown parameters

of the model:

p(σ2l ) ∼ IG(αl, γl)

p(βl|σ2l ) ∼ N(ul, vlI(k+1)×(k+1)σ
2
l )

p(ϕli) ∼ G(al, bl) ∀ i = 1, ..., k.

(1.7)

with the following structure:

p(βl, σ
2
l ,ϕl) = p(βl, σ

2
l )p(ϕl) = p(βl|σ2l )p(σ2l )p(ϕl) (1.8)

assuming that βl and σ
2
l are both independent of ϕl.

If LE were the only source available, given the Gaussian process prior for

the true realization of the computer experiment and the priors for the unknown

model parameters, it would have been possible to compute the posterior predictive

distribution of y(x0)|yl,ϕl as the following noncentral t distribution [SWN03]:

y(x0)|yl,ϕl ∼ T1(ν1, µ1, σ
2
1), (1.9)
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where the correlation parameters ϕl are known and ν1, µ1 and σ21 are defined as:

ν1 = n+ ν0, ν0 = 2al, c0 =
√
bl/al,

µ1 = f l(x0)µ+ rl 0R
−1
l (yl − Flµ),

µ =

(
FTl R

−1
l F+

1

vl
In×n

)−1(
FTl R

−1
l yl +

ul
vl
In×n

)
,

β̂l =
(
FTl R

−1
l F

)−1 (
FTl R

−1
l yl

)
,

σ21 =
Q2

1

ν1

1− [ fTl (x0) rTl 0 ]

[
− 1

vlIn×n
FTl ,

FTl Rl

]−1 [
f l(x0)

rl 0

] ,

Q1 = c0 + yTl [R
−1
l −R−1

l Fl(F
T
l R

−1
l Fl)

−1FTl R
−1
l ]yl+

(ul − β̂l)T [vlIn×n + (FTl R
−1
l Fl)

−1](ul − β̂l),

rl 0 = [Rl(x0,x1), ...,Rl(x0,xn)]
T .

(1.10)

The probability density function of (1.9) is:

p(z) =
Γ((ν1 + 1)/2)

σ1(ν1π)1/2Γ((ν1/2)

[
1 +

1

ν1

(z − µ1)
2

σ21

]−(ν1+1)/2

. (1.11)

1.5.2 High-Accuracy experimental data

Since LE data are not very accurate and HE data are available, it is convenient

to integrate the two data sets in order to improve the quality of the prediction

model.

Qian and Wu propose two different adjustment models: Adjustment model I,

described in [Qia+06] and Adjustment model II, described in [QW08].

1.5.3 Adjustment model I (“QW06”)

In [Qia+06] the following adjustment model to link the high-resolution data to the

low-resolution is proposed:

yh(xi) = ρ(xi)yl1(xi) + δ(xi) (1.12)

where the scale parameter ρ(·) is a linear regression function:

ρ(xi) = ρ0 +

k∑
j=1

ρjxij , j = 1, ..., n1, (1.13)
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and the location parameter δ(·) is assumed to be a stationary GP (δ0, σ
2
δ ,ϕδ), with

mean δ0, variance σ
2
δ and correlation parameters ϕδ. The correlation structure is

defined by the Gaussian correlation function:

Rδ(xj ,xm) = exp

{
−

k∑
i=1

ϕδi(xji − xmi)
2

}
j,m = 1, ..., n1. (1.14)

We address Adjustment Model I as “QW06”.

1.5.4 Adjustment model II (“QW08”)

In the paper [QW08] the high-resolution data are connected to the low-resolution

data using a flexible adjustment model in the form:

yh(xi) = ρ(xi)yl(xi) + δ(xi) + ϵ(xi) i = 1, ..., n1. (1.15)

Here ρ(·) ∼ GP (ρ0, σ
2
ρ,ϕρ) and δ(·) ∼ GP (δ0, σ

2
δ ,ϕδ). They respectively work as

scale and location parameters. Their Gaussian correlation functions are respec-

tively:

Rρ(xj ,xm) = exp

{
−

k∑
i=1

ϕρi(xji − xmi)
2

}
, (1.16)

Rδ(xj ,xm) = exp

{
−

k∑
i=1

ϕδi(xji − xmi)
2

}
j,m = 1, ..., n1. (1.17)

If HE data come from a physical experiment, measurement error must be taken

into account and it is modeled by ϵ(·) ∼ N(0, σ2ε), such that ϵ(xi)⊥ϵ(xj), ∀i ̸= j.

yl(·), ρ(·), δ(·) and ε(·) are assumed independent.

We address Adjustment Model I as “QW08”.

1.5.5 Specification of prior distributions of the unknown param-

eters

The model defined by equations (1.5) and (1.15) includes several unknown pa-

rameters θ. [QW08] addressed the inferential analysis on such parameters in a

Bayesian framework and they call the model a Bayesian Hierarchical Gaussian

Process Model (BHGP).

For an overview on Bayesian Inference refer to Appendix A.1.
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The unknown parameters θ are grouped into three sets:

θ1 = (βl, ρ0, δ0)

θ2 = (σ2l , σ
2
ρ, σ

2
δ , σ

2
ϵ )

θ3 = (ϕl,ϕρ,ϕδ)

respectively mean, variance and correlation parameters.

If we make the assumption that the mean and the variance parameters are

both independent of the correlation parameters, the prior distribution of θ can be

assumed to have the following structure:

p(θ) = p(θ1,θ2,θ3) = p(θ1,θ2)p(θ3) = p(θ1|θ2)p(θ2)p(θ3) (1.18)

where the last equality is true because p(θ1,θ2) = p(θ1|θ2)p(θ2) always holds.
This choice simplifies a lot the definition of the parameter priors.

The problem of choosing an adequate set of prior distributions for the model

parameters is not trivial at all. In the hierarchical framework, the choice of a set

of adequate parameter values for the priors could be difficult. For this reason it is

tempting to use non-informative priors. The problem with non-informative priors

is that they often lead to improper posterior distributions, that are completely

useless for inference purposes.

Given these observations, [QW08] selects the following proper priors:

p(σ2l ) ∼ IG(αl, γl)

p(σ2ρ) ∼ IG(αρ, γρ)

p(σ2δ ) ∼ IG(αδ, γδ)

p(σ2ϵ ) ∼ IG(αϵ, γϵ)

p(βl|σ2l ) ∼ N(ul, vlI(k+1)×(k+1)σ
2
l )

p(ρ0|σ2ρ) ∼ N(uρ, vρσ
2
ρ)

p(δ0|σ2δ ) ∼ N(uδ, vδσ
2
δ )

p(ϕli) ∼ G(al, bl)

p(ϕρi) ∼ G(aρ, bρ)

p(ϕδi) ∼ G(aδ, bδ) ∀ i = 1, ..., k.
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IG(α, γ) denotes the Inverse-Gamma distribution with density function:

p(z) =
γα

Γ(α)
z−(α+1) exp

{
−γ
z

}
z > 0.

G(a, b) is the Gamma distribution with the density function:

p(z) =
ba

Γ(a)
z(a−1) exp{−bz} z > 0.

It can be noticed that the prior structure of the mean and variance parameters

is the same of the well known Normal-Inverse Gamma conjugate model.

The specification of the prior of the correlation parameters ϕl, ϕρ and ϕδ depends

on the choice of the correlation function. In the case of the Gaussian correlation

function a common choice is a Gamma prior distribution [BCG04]

Now that the BHGP model is completely defined the next step is the prediction

of yh at untried point x0, given the training data yh and yl.



Chapter 2

Bayesian prediction and

MCMC sampling in

multi-resolution data modeling

In the present chapter we focus our attention on the Bayesian Hierarchical Gaus-

sian Process (BHGP) model by [QW08] introduced in Section 1.5.

Once the Gaussian Process model for LE data and the linkage model for HE data

are defined and the prior distributions for the unknown parameters θ are cho-

sen, the BHGP model is complete. In order to predict yh(·) at untried point, the

Bayesian posterior predictive density function p(yl(x0)|yh,yl) needs to be com-

puted.

Here we describe the method proposed in [QW08] to approximate the posterior

predictive density function.

Then we extend the BHGP model proposed in [QW08], in order to model the more

general situation where both the low-accuracy data and the high-accuracy data

come from a physical experiment, i.e. they are affected by measurement error.

We also modify the procedure for approximating the posterior predictive density

function to take into account the introduced modifications.

At first we assume that the untried input point x0 belongs to Dl, but is not a

point in Dh. Later on we will relax this assumption.

33
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2.1 Bayesian predictive density function

The prediction of yh(x0) given the LE and HE training data is computed with the

Bayesian predictive density function p(yh(x0)|yh,yl) defined as follows:

p(yh(x0)|yh,yl) =
∫
θ1,θ2,θ3

p(yh(x0),θ1,θ2,θ3|yh,yl) dθ1dθ2dθ3

=

∫
θ1,θ2,θ3

p(yh(x0)|yh,yl,θ1,θ2,θ3)×

× p(θ1,θ2,θ3|yh,yl) dθ1dθ2dθ3.

(2.1)

The integral in θ1,θ2,θ3 (2.1) of the joint posterior distribution of (yh(x0),θ1,θ2,θ3)

is quite complicated. It could even be impossible to compute analytically. A

Markov Chain Monte Carlo (MCMC) algorithm is used to approximate such pre-

dictive distribution.

2.1.1 MCMC algorithm to approximate the Bayesian predictive

density

Banerjee, Carlin, and Gelfand [BCG04] describe a two-step algorithm to estimate

the predictive Bayesian density (2.1).

1. First M posterior samples
(
θ
(i)
1 ,θ

(i)
2 ,θ

(i)
3

)
, i = 1, ...,M , are drawn (after a

properly chosen burn-in period) from the joint posterior distribution of the

parameters p(θ1,θ2,θ3|yh,yl).

2. Then the predictive Bayesian density p(yh(x0)|yh,yl) is computed as a Monte

Carlo mixture of the form:

p̂m(yh(x0)|yl,yh) =
1

M

M∑
i=1

p
(
yh(x0)|yl,yh,θ

(i)
1 ,θ

(i)
2 ,θ

(i)
3

)
. (2.2)

The posterior sampling in step one requires some care.

It would be preferable to marginalize the joint posterior distribution of the param-

eters p(θ1,θ2,θ3|yh,yl) and compute independent estimates of (θ1,θ2,θ3) directly

using their marginal posterior distributions. Unfortunately closed form marginal-

ization of posteriors is rarely achievable in practice. As a result the posterior sam-

pling of (θ1,θ2,θ3) needs to be carried out using an MCMC sampling method.

For an overview on MCMC sampling techniques applied to Bayesian Inference re-

fer to Appendix A.2.
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In this particular case, we have to sample 7 + 3k parameters (3 mean parameters,

4 variance parameters and 3k correlation parameters, where k is the number of

regression variables).

2.1.2 Joint posterior distribution of the model parameters

The joint posterior distribution of the unknown parameters (θ1,θ2,θ3) is:

p(θ1,θ2,θ3|yl,yh) ∝
1

(σ2l )
n/2

exp

{
− 1

2vlσ
2
l

(βl − ul)
T (βl − ul)

}
×

× 1

(σ2ρ)
1/2

exp

{
−(ρ0 − uρ)

2

2vρσ2ρ

}
· 1

(σ2δ )
1/2

exp

{
−(δ0 − uδ)

2

2vρσ2δ

}
×

× (σ2l )
−(αl+1) exp

{
− γl
σ2l

}
· (σ2ρ)−(αρ+1) exp

{
−γρ
σ2ρ

}
×

× (σ2δ )
−(αδ+1) exp

{
− γδ
σ2δ

}
· (σ2ϵ )−(αϵ+1) exp

{
− γϵ
σ2ϵ

}
×

×
k∏
i=1

(
ϕ
(αl−1)
li exp{−blϕli} · ϕ

(αρ−1)
ρi exp{−bρϕρi} · ϕ(αδ−1)

δi exp{−bδϕδi}
)
×

× 1

|Q|1/2
exp

{
−1

2
(yh − ρ0yl1 − δ01n1)

TQ−1(yh − ρ0yl1 − δ01n1)

}
×

× 1

(σ2l )
n/2|Rl|1/2

exp

{
− 1

2vlσ
2
l

(yl − Flβl)
TR−1

l (yl − Flβl)

}
(2.3)

where Q = σ2ρA1RρA1 + σ2δRδ + σ2ϵ I(k+1)×(k+1), A1 = diag{yl(x1), ..., yl(xn1)}
and the correlation matrices Rl, Rρ and Rδ depend respectively on the unknown

correlation parameters ϕl, ϕρ and ϕδ, as shown in Equations (1.6) and (1.16).

Refer to Appendix C.1 for the intermediate computations.

The posterior distribution (2.3) has a very complicated form. Sampling of all

the 7 + 3k unknown parameters from such a distribution, i.e. performing a fully

Bayesian analysis, arises several computational issues, in particular for the set of

3k correlation parameters θ3 = (ϕl,ϕρ,ϕδ). In fact, the correlation parameters

all appear in (2.3) as elements of four complicated matrix determinants and in-

versions: |Q|, Q−1, |Rl| and R−1
l . This makes the fully Bayesian analysis nearly

impossible to carry out in reasonable computational times.

The full conditional distributions for the correlation parameters in the fully bayesian
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case are computed in Appendix C.4

In particular, what makes the sampling of the correlation parameters in the

fully bayesian framework really awkward can be summarized as follows:

- the full conditional distributions of ϕl, ϕρ and ϕδ do not belong to any

known family of distributions, so an MCMC algorithm should be used;

- in order to minimize the number of matrix determinants and inversions at

each iteration of the MCMC algorithm, multivariate sampling of ϕl first and

then (ϕρ,ϕδ) may seem the most reasonable choice. On the contrary having

to simultaneously draw several parameters with the Metropolis algorithm

cause the acceptance rates to be too small, and consequently the convergence

times are very slow.

To overcome this difficulty, [QW08] proposes to implement an empirical Bayesian

analysis by previously computing posterior point estimates of the correlation pa-

rameters θ3 for computational convenience.

2.2 The empirical Bayesian approach

The empirical Bayesian approach is quite popular in every context that uses (hier-

archical) Gaussian process models for fitting functional responses (see for instance

[SWN03], [KO01], [Bay+07]).

See Appendix A.4 for a brief explanation of empirical Bayesian approaches to

Bayesian inference.

In [QW08] the analysis is carried out in two subsequent steps:

a. First the correlation parameters are estimated for computational convenience

by setting them at the values of their posterior modes, that are computed by

solving an optimization problem that will be discussed in subsection 2.2.1.

b. Then the estimates of the correlation parameters are plugged into the BHGP

model and from now on (ϕl,ϕρ,ϕδ) will be considered as they were known.

The authors justify such approach quoting what [Bay+07] says on the matter:

Full justification of the use of the plug-in maximum likelihood estimates

for the (correlation parameters) is an open theoretical issue. Intuitively,

one expects modest variations in parameters to have little effect on



2.2 The empirical Bayesian approach 37

the predictors because they are interpolators. In practice,“Studentized”

cross-validation residuals (leave-one-out predictions of the data nor-

malized by standard error) have been successfully used to gauge the

“legitimacy” of such usage (...). Only recently, Nagy, Loeppky and

Welch [NLW07] have reported simulations indicating reasonably close

prediction accuracy of the plug-in MLE predictions to Bayes (Jeffreys

priors) predictions in dimensions 1− 10 when the number of computer

runs = 7×dimension.

This approach of course implies that the estimation uncertainty of the correlation

parameters is not taken into account in the prediction process.

2.2.1 Estimation of the correlation parameters

The correlation parameters θ3 = (ϕl,ϕρ,ϕδ) are estimated using the their pos-

terior modes, i.e. the values that maximize their marginal posterior distribution

(assuming it is unimodal). Such approach is chosen because it is the easiest way

to compute a point estimate of unknown parameters in the Bayesian framework

because it provides the answer to the point estimation problem by solving an

optimization problem [BCG04], once the marginal posterior distribution is known.

The marginal posterior distribution of θ3 is:

p(θ3|yh,yl) =
∫
θ1,θ2

p(θ1,θ2,θ3|yh,yl)dθ1dθ2 =

=

∫
θ1,θ2

p(θ1|θ2)p(θ2)p(θ3)L(yh,yl|θ1,θ2,θ3)dθ1dθ2 =

= p(θ3)

∫
θ1,θ2

p(θ1|θ2)p(θ2)L(yh,yl|θ1,θ2,θ3)dθ1dθ2

(2.4)

because p(θ3) is independent of θ1 and θ2.

To ease the load of the MCMC computations a new parametrization for the

variance parameters θ2 = (σ2l , σ
2
ρ, τ1, τ2) is introduced:

(σ2l , σ
2
ρ, τ1, τ2) = (σ2l , σ

2
ρ,
σ2δ
σ2ρ
,
σ2ϵ
σ2ρ

). (2.5)

Such reparametrization eases the sampling of σ2ρ from its full conditional distri-

bution. In fact the Bayesian computations lead us to a set of full conditional

distributions belonging to known distribution families for both σ2l and σ2ρ. If we
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used the original parametrization for θ2 we would get only one known-form full

conditional distribution for σ2l .

As a consequence the integrand in (2.4) becomes:

p(θ1,θ2,θ3|yl,yh) ∝
1

(vlσ
2
l )
n/2

exp

{
− 1

2vlσ
2
l

(βl − ul)
TR−1

l (βl − ul)

}
×

× 1

(vρσ2ρ)
1/2

exp

{
−(ρ0 − uρ)

2

2vρσ2ρ

}
· 1

(vδτ1σ2ρ)
1/2

exp

{
−(δ0 − uδ)

2

2vρτ1σ2ρ

}
×

× (σ2l )
−(αl+1) exp

{
− γl
σ2l

}
· (σ2ρ)−(αρ+1) exp

{
−γρ
σ2ρ

}
×

× (τ1σ
2
ρ)

−(αδ+1) exp

{
− γδ
τ1σ2ρ

}
· (τ2σ2ρ)−(αϵ+1) exp

{
− γϵ
τ2σ2ρ

}
· σ4ρ×

× 1

(σ2ρ)
n1/2|M|1/2

×

× exp

{
− 1

2vρσ2ρ
(yh − ρ0yl1 − δ01n1)

TM−1(yh − ρ0yl1 − δ01n1)

}
×

× 1

(σ2l )
n/2|Rl|1/2

exp

{
− 1

2vlσ
2
l

(yl − Fβl)
TR−1

l (yl − Fβl)

}

(2.6)

where M = Wρ+τ1Rδ+τ2In1×n1 , Wρ = A1RρA1, A1 = diag{yl(x1), ..., yl(xn1)}
and the correlation matrices Rl, Rρ and Rδ depend respectively on the correlation

parameters ϕl, ϕρ and ϕδ alone.

After integrating out βl, ρ0, δ0, σ
2
l , σ

2
ρ, (2.4) becomes proportional to an ex-

pression that depends on ϕl, ϕρ, ϕδ:

p(θ3|yh,yl) ∝ L1(ϕl,ϕρ,ϕδ) =

=p(ϕl) | Rl |−1/2| H1 |−1/2

(
γl +

bT1 H
−1
1 b1 − c1
2

)−(αl+
n
2 )

· p(ϕρ)p(ϕδ)×

×
∫
τ1,τ2

(a2a3)
−1/2 | M |−1/2

(
b23 − a3c3

2a3
+ γρ +

γδ
τ1

+
γϵ
τ2

)−(n1
2
+αρ+αδ+αϵ+1)

×

× τ
−(αδ+

3
2)

1 τ
−(αϵ+1)
2 dτ1dτ2,

(2.7)
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where L1(ϕl,ϕρ,ϕδ) is the non-normalized posterior distribution of θ3 and:

H1 =
1

vl
I(k+1)×(k+1) + FTl R

−1
l Fl,

b1 = −2
ul
vl

− 2FTl R
−1
l yl,

c1 =
uTl ul
vl

+ yTl R
−1
l yl,

a2 =
1

vρ
+ yTl1M

−1
l yl1 ,

t1 = a2
(
1Tn1

M−11n1

)
−
(
yTl1M

−11n1

)2
,

t2 = −2

(
a2
(
yThM

−11n1

)
−
(
yTl1M

−11n1

)(uρ
vρ

− yTl1M
−1yh

))
,

t3 = a2

(
u2ρ
vρ

− yTl1M
−1yh

)
−
(
uρ
vρ

− yTl1M
−1yh

)2

,

a3 =
1

vδτ1
+ a−1

2 t1,

b3 = −2
uδ
vδτ1

− a−1
2 t2,

c3 =
u2δ
vδτ1

+ a−1
2 t3.

For a detailed description of the integration steps see the Appendix in [QW08].

The posterior mode estimator of θ3 is given by:

θ̂3 = (ϕ̂l, ϕ̂ρ, ϕ̂δ) = arg max
ϕl,ϕρ,ϕδ

L1(ϕl,ϕρ,ϕδ)

s.t. (ϕl,ϕρ,ϕδ) > 0

(2.8)

Given the particular formulation of the model, the LE parameters are independent

from the HE parameters. This allows us to split Problem (2.8) into the following

independent problems:

ϕ̂l = argmax
ϕl

p(ϕl) | Rl |−1/2| H1 |−1/2

(
γl +

4c1 − bT1 H
−1
1 b1

8

)−(αl+
n
2 )

s.t. ϕl > 0

(2.9)
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and:

(ϕ̂ρ, ϕ̂δ) = arg max
ϕρ,ϕδ

p(ϕρ)p(ϕδ)

∫
τ1,τ2

(a2a3)
−1/2×

× | M |−1/2

(
4a3c3 − b23

8a3
+ γρ +

γδ
τ1

+
γϵ
τ2

)−(n1
2
+αρ+αδ+αϵ+1)

×

× τ
−(αδ+

3
2)

1 τ
−(αϵ+1)
2 dτ1dτ2

s.t. (ϕρ,ϕδ) > 0.

(2.10)

The optimization problem (2.9) is deterministic and can be solved using a stan-

dard nonlinear optimization algorithm (e.g. a Quasi-Newton method). The second

optimization problem involves the computation of an integral in τ1 and τ2 and re-

quires a more elaborate solution technique, called Sample Average Approximation

(SAA).

2.2.2 Sample Average Approximation method

Problem (2.10) can be recast as:

(ϕ̂ρ, ϕ̂δ) = arg max
ϕρ,ϕδ

∫
τ1,τ2

f(τ1, τ2)p(τ1, τ2)dτ1dτ2 =

=arg max
ϕρ,ϕδ

Eτ1,τ2 [f(τ1, τ2)]

s.t. (ϕρ,ϕδ) > 0.

(2.11)

where:

f(τ1, τ2) =p(ϕρ)p(ϕδ)(a2a3)
−1/2 | M |−1/2 ×

×
(
4a3c3 − b23

8a3
+ γρ +

γδ
τ1

+
γϵ
τ2

)−(n1
2
+αρ+αδ+αϵ+1)

×

× exp

{
γ1
τ1

}
exp

{
γ2
τ2

}
.

(2.12)

p(τ1, τ2) is the joint density function of τ1 and τ2, where:

τ1 ∼ IG(αδ +
1

2
, γ1), τ2 ∼ IG(αϵ, γ2). (2.13)

and τ1 and τ2 are independent.

Problem (2.11) can be seen as a stochastic program. Qian and Wu propose to
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solve it with the Sample Average Approximation (SAA) [RS03].

S independent Monte Carlo samples (τ
(s)
1 , τ

(s)
2 ), s = 1, ..., S, are drawn from

p(τ1, τ2) and are used for approximating Eτ1,τ2 [f(τ1, τ2)]:

Eτ1,τ2 [f(τ1, τ2)] ≃
1

S

S∑
s=1

f(τ
(s)
1 , τ

(s)
2 ). (2.14)

The true stochastic optimization problem (2.11) then can be approximated with

the corresponding deterministic problem:

(ϕ̂ρ, ϕ̂δ) = arg max
ϕρ,ϕδ

{
1

S

S∑
s=1

f(τ
(s)
1 , τ

(s)
2 )

}
s.t. (ϕρ,ϕδ) > 0.

(2.15)

This problem can be solved with a standard non-linear optimization algorithm.

2.2.3 Two step MCMC algorithm in the empirical Bayesian frame-

work

Once the posterior modes of the correlation parameters are computed, we fix

the values of ϕl, ϕρ and ϕδ to their estimates and proceed with the Bayesian

computations as the values θ̃3 of such parameters were given.

Therefore from now on the dependencies on the correlation parameters will be

omitted.

The Bayesian predictive distribution (2.1) becomes:

p(yh(x0)|yh,yl) =
∫
θ1,θ2

p(yh(x0),θ1,θ2|yh,yl) dθ1dθ2

=

∫
θ1,θ2

p(yh(x0)|yh,yl,θ1,θ2)×

× p(θ1,θ2|yh,yl) dθ1dθ2.

(2.16)

The two-step MCMC algorithm illustrated in [BCG04] is still useful to carry

out the integration in (2.16). The steps are identical to the ones described in

section 2.1.1 with the only difference that now the correlation parameters are

known. This time M samples (θ
(i)
1 ,θ

(i)
2 ), i = 1, ...,M , are taken from the posterior

distribution p(θ1,θ2|yh,yl) and the Bayesian predictive density described in step
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2. is approximated by:

p̂m(yh(x0)|yl,yh) =
1

M

M∑
i=1

p
(
yh(x0)|yl,yh,θ

(i)
1 ,θ

(i)
2

)
. (2.17)

The joint posterior distribution for the unknown parameters (θ1,θ2) is:

p(θ1,θ2|yl,yh) ∝
1

(σ2l )
n/2

exp

{
− 1

2vlσ
2
l

(βl − ul)
T (βl − ul)

}
×

× 1

(σ2ρ)
1/2

exp

{
−(ρ0 − uρ)

2

2vρσ2ρ

}
· 1

(σ2δ )
1/2

exp

{
−(δ0 − uδ)

2

2vρσ2δ

}
×

× (σ2l )
−(αl+1) exp

{
− γl
σ2l

}
· (σ2ρ)−(αρ+1) exp

{
−γρ
σ2ρ

}
×

× (σ2δ )
−(αδ+1) exp

{
− γδ
σ2δ

}
· (σ2ϵ )−(αϵ+1) exp

{
− γϵ
σ2ϵ

}
×

× 1

|Q|1/2
exp

{
−1

2
(yh − ρ0yl1 − δ01n1)

TQ−1(yh − ρ0yl1 − δ01n1)

}
×

× 1

(σ2l )
n/2|Rl|1/2

exp

{
− 1

2vlσ
2
l

(yl − Fβl)
TR−1

l (yl − Fβl)

}
(2.18)

whereQ = σ2ρA1RρA1+σ
2
δRδ+σ

2
ϵ I(k+1)×(k+1) andA1 = diag{yl1(x1), ..., yl1(xn1)}.

See Appendix C.2 for intermediate computations.

Again posterior parameter sampling is not easy but at least it requires reason-

able computational times with the empirical approach.

The posterior sampling is carried out using a Monte Carlo Markov Chain algo-

rithm.

2.3 Posterior sampling

In the MCMC framework the posterior distribution we want to sample from, is

the target distribution.

Our target (2.18) has quite a complicated form and depends on seven unknown pa-

rameters (βl, ρ0, δ0, σ
2
l , σ

2
ρ, σ

2
δ , σ

2
ϵ ). The BHGP model formulation combined with

the optimal selection of prior distributions, makes the Gibbs sampling algorithm

the most appealing choice. As a matter of fact, since the dependencies on the
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correlation parameters θ3 are omitted, splitting the high-dimensional posterior

distribution into a sequence of full conditional distributions is quite an easy task.

Such full conditional distributions are all univariate but one, and they are mostly

easy to sample from .

Before proceeding with the computation of the full conditional distribution

that will be used in the Gibbs sampler, [QW08] suggests to introduce a new

parametrization of the variance parameters vector θ2 = (σ2l , σ
2
ρ, σ

2
δ , σ

2
ϵ ):

(σ2l , σ
2
ρ, τ1, τ2) = (σ2l , σ

2
ρ,
σ2δ
σ2ρ
,
σ2ϵ
σ2ρ

) (2.19)

We still refer to (σ2l , σ
2
ρ, τ1, τ2) as θ2.

This particular parametrization has the advantage of easing the sampling of σ2ρ
from its full conditional distribution. In fact the Bayesian computations lead us

to a set of full conditional distributions belonging to known distribution families

for both σ2l and σ2ρ. If we used the original parametrization for θ2 we would get

only one known-form full conditional distribution for σ2l (see appendix for a better

explanation).

Using the change of variables rule described in Appendix B.2 we compute the

joint posterior distribution with the new parametrization:

p(θ1,θ2|yl,yh) ∝
1

(vlσ
2
l )
n/2

exp

{
− 1

2vlσ
2
l

(βl − ul)
TR−1

l (βl − ul)

}
×

× 1

(vρσ2ρ)
1/2

exp

{
−(ρ0 − uρ)

2

2vρσ2ρ

}
· 1

(vδτ1σ2ρ)
1/2

exp

{
−(δ0 − uδ)

2

2vρτ1σ2ρ

}
×

× (σ2l )
−(αl+1) exp

{
− γl
σ2l

}
· (σ2ρ)−(αρ+1) exp

{
−γρ
σ2ρ

}
×

× (τ1σ
2
ρ)

−(αδ+1) exp

{
− γδ
τ1σ2ρ

}
· (τ2σ2ρ)−(αϵ+1) exp

{
− γϵ
τ2σ2ρ

}
· σ4ρ×

× 1

(σ2ρ)
n1/2|M|1/2

×

× exp

{
− 1

2vρσ2ρ
(yh − ρ0yl1 − δ01n1)

TM−1(yh − ρ0yl1 − δ01n1)

}
×

× 1

(σ2l )
n/2|Rl|1/2

exp

{
− 1

2vlσ
2
l

(yl − Fβl)
TR−1

l (yl − Fβl)

}
(2.20)
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where M = Wρ+τ1Rδ+τ2In1×n1 , Wρ = A1RρA1, A1 = diag{yl(x1), ..., yl(xn1)}
and the correlation matrices Rl, Rρ and Rδ depend respectively on the previously

estimated correlation parameters ϕ̂l, ϕ̂ρ and ϕ̂δ.

See Appendix C.2 for intermediate computations.

The full conditional distributions for the unknown parameters are:

βl|yh,yl,βl ∼ N

([
1

vl
I(k+1)×(k+1)+FTl R

−1
l Fl

]−1(ul
vl

+ FTl R
−1
l yl

)
,[

1

vl
I(k+1)×(k+1) + FTl R

−1
l Fl

]−1

σ2l

) (2.21)

ρ0|yh,yl, ρ0 ∼ N

( uρ
vρ

+ yTl1M
−1(yh − δ01n1)

1
vρ

+ yTl1M
−1yl1

,
σ2ρ

1
vρ

+ yTl1M
−1yl1

)
(2.22)

δ0|yh,yl, δ0 ∼ N

(
uδ
vδτ1

+ 1Tn1
M−1(yh − ρ0yl1)

1
vδτ1

+ 1Tn1
M−11n1

,
σ2ρ

1
vδτ1

+ 1Tn1
M−11n1

)
(2.23)

σ2l |yh,yl, σ2l ∼ IG

(
n

2
+
k + 1

2
+ αl,

1

2

(βl − ul)
T (βl − ul)

vl
+

1

2
(yl − Flβl)

′R−1
l (yl − Flβl) + γl

) (2.24)

σ2ρ|yh,yl,σ2ρ ∼ IG

(
n1
2

+ 1 + αρ + αδ + αϵ,
(ρ0 − uρ)

2

2vρ
+

(δ0 − uδ)
2

2vδτ1
+

+ γρ +
γδ
τ1

+
γϵ
τ2

+
1

2
(yh − ρ0yl1 − δ01n1)

′M−1(yh − ρ0yl1 − δ01n1)

)
(2.25)

p(τ1, τ2|yh,yl, τ1, τ2)

∝ τ
−(αδ+3/2)
1 τ

−(αϵ+1)
2 exp

(
− 1

τ1

[
γδ
σ2ρ

+
(δ0 − uδ)

2

2vδσ2ρ

]
− γϵ

(σ2ρτ2)

)
×

× 1

|M|1/2
exp

(
− 1

2σ2ρ
(yh − ρ0yl1 − δ01n1)

TM−1(yh − ρ0yl1 − δ01n1)

)
(2.26)

We point out that ω represents all of the components of θ1 and θ2 except for ω.

The demonstrations are provided in Appendix C.3.

As above mentioned, the full conditional distributions from (2.21) to (2.25)

have a known form and the sequential sampling required by the Gibbs sampler
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can be carried out easily. On the contrary we cannot directly draw samples of

(τ1, τ2) from (2.26) because its form does not relate to any known distribution

density function.

In order to sample from such a full conditional we need to use the Metropolis-

within-Gibbs algorithm. This means that one draw of (τ1, τ2) using the Metropolis

algorithm is included in sampling sequence of the Gibbs algorithm.

(τ1, τ2) are defined as the ratio of two variances, respectively
σ2
δ
σ2
ρ
and σ2

ϵ
σ2
ρ
, therefore

they are positive-valued. The traditional random-walk Metropolis algorithm uses

a normal proposal distribution with mean equal to the sampled valued of the

previous iteration and covariance matrix Σ suitably chosen. In our case we have

to sample two positive values at each iteration and a normal proposal distribution is

not adequate, since it could return negative values for τ1 and τ2. To overcome this

problem the traditional random-walk Metropolis algorithm needs to be modified

in order to provide positive samples of (τ1, τ2) at each iteration. Further details on

the modified random-walk Metropolis algorithm are provided in Appendix A.2.3.

2.4 Posterior predictive distribution when x0 ∈ Dl \Dh

Once the posterior sampling of the unknown parameters (θ1,θ2) is carried out, the

posterior predictive distribution (2.16) of yh(x0) is approximated using the Monte

Carlo mixture (2.17):

p̂m(yh(x0)|yl,yh) =
1

M

M∑
i=1

p
(
yh(x0)|yl,yh,θ

(i)
1 ,θ

(i)
2

)
. (2.27)

The posterior distribution of yh(x0)|yl,yh,θ
(i)
1 ,θ

(i)
2 can be easily computed if

we observe that the joint posterior distribution of (y(x0),yh) is:

yh(x0),yh|yl,θ1,θ2 ∼ N(µ∗,Σ∗). (2.28)

where its mean vector and covariance matrix are:

µ∗ = ρ0y
∗
l + δ01n1+1 =

[
ρ0y

∗
l + δ0

ρ0yl1 + δ01n1

]
=

[
µ∗1
µ2

]
(1× 1)

(n1 × n1)
(2.29)
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Σ∗ = σ2ρM = σ2ρ(A
∗
1R

∗
ρA

∗
1 + τ1R

∗
δ + τ2I(n1+1)×(n1+1)) =

=

[
σ2ρ[(y

∗
l )

2 + τ1 + τ2] σ2ρ(y
∗
lA1rρ + τ1rδ)

T

σ2ρ(y
∗
lA1rρ + τ1rδ) σ2ρM

]
=

=

[
Σ11 ΣT

21

Σ21 Σ22

]
(1× 1) (1× n1)

(n1 × 1) (n1 × 1)

(2.30)

with y∗l = yl(x0), y
∗
l1
= (yl(x0), yl(x1), ..., yl(xn1)), r· = (R·(x0 − x1), ...,R·(x0 −

xn1))
T , A∗

1 = diag{y∗l , yl1 , ..., yln1
} and matrices Rρ and Rδ are the correlation

matrices computed at the input set expanded with the new point x0.

Using the multivariate normal conditional distribution (see Appendix B.1) we get

the following distribution for yh(x0)|yl,yh:

yh(x0)|yh,yl,θ1,θ2 ∼ N(µpr,Σpr)

where:

µpr =µ
∗
1 +Σ12Σ

−1
22 (yh − µ2) =

=ρ0y
∗
l + δ0 + (y∗lA1rρ + τ1rδ)

TM−1(yh − ρ0yl1 − δ01n1)

σ2pr =Σ11 −Σ12Σ
−1
22 Σ21 =

=σ2ρ
{
[(y∗l )

2 + τ1 + τ2]− (y∗lA1rρ + σ2δrδ)
TM−1(y∗lA1rρ + σ2δrδ)

}
The point predictor for the response of interest yh(·) evaluated in x0 is:

ŷh(x0) = E[yh(x0)|yl,yh] = µpr (2.31)

and it is approximated by the mixture estimator :

ŷh(x0) ≃
1

M

M∑
i=1

µ
(i)
pred =

=
1

M

M∑
i=1

(
ρ
(i)
0 y∗l + δ

(i)
0 + (y∗lA1rρ + τ

(i)
1 rδ)

TM−1(yh − ρ
(i)
0 yl1 − δ

(i)
0 1n1)

)
.

(2.32)

If we are interested in predicting yh(·) at a set ofm new input points {x01, ...,x0m}
we could run m times the two-step MCMC algorithm previously described, but

it would be computationally demanding. Alternatively we could also carry out

the joint prediction of y∗
h = (yh(x01), ..., yh(x0m))

T . The last procedure provides
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predictions as realizations from the same estimated predictive density for the re-

sponse variable yh(·) [BCG04].

In the last case the posterior predictive distribution:

p(y∗
h|yh,yl) =

∫
θ1,θ2

p(y∗
h,θ1,θ2|yh,yl) dθ1dθ2

=

∫
θ1,θ2

p(y∗
h|yh,yl,θ1,θ2)×

× p(θ1,θ2|yh,yl) dθ1dθ2

(2.33)

is approximated with:

p̂m(y
∗
h|yl,yh) =

1

M

M∑
i=1

p
(
y∗
h|yl,yh,θ

(i)
1 ,θ

(i)
2

)
. (2.34)

Such posterior predictive density is computed using the very same procedure pre-

viously described in this section.

2.5 Relaxation of the assumption x0 ∈ Dl \Dh

So far we have considered the situation in which we want to predict yh(·) at a new

point x0 when the corresponding low resolution data is available, i.e. x0 ̸∈ Dl.

When this assumption is relaxed yl(x0) is not observed. In this case two different

approaches can be used to compute the predictive density.

We could use as a predictor for yl(x0) the expected value of yl(x0)|yl, where
yl(x0)|yl follows the noncentral t predictive distribution (1.9) computed from the

GP model for the LE data.

Once the point prediction ŷl(x0) = E[yl(x0)|yl] is computed, we add ŷl(x0) to the

set of the yl so that x0 ∈ Dl ∪ {x0}.

Following another suggested approach, the predictive density p(yh(x0)|yh,yl)
is approximated by:

p̂m(yh(x0)|yl,yh) =
1

MN

M∑
i=1

N∑
j=1

p
(
yh(x0)|y∗(j)

l ,yl,yh,θ
(i)
1 ,θ

(i)
2

)
(2.35)

where y
∗(j)
l = (y

(j)
l (x0), yl(x1), ..., yl(xn1))

T , j = 1, ..., N , and y
(j)
l (x0) are N inde-

pendent draws from the distribution p(yl(x0)|yl,θ
(i)
1 ,θ

(i)
2 ), i = 1, ...,M .
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In order to compute the conditional distribution p(yl(x0)|yl,θ
(i)
1 ,θ

(i)
2 ), i =

1, ...,M , we use the multivariate normal conditional distribution (Appendix B.1).

We observe that:

p(yl(x0),yl|θ
(i)
1 ,θ

(i)
2 ) ∼ N(µ∗

l ,Σ
∗
l ) (2.36)

where the mean vector and the covariance matrix are respectively:

µ∗
l =

(
µl1

µl2

)
=

(
fTl (x0)β

(i)
l

Flβ
(i)
l

)

Σ∗
l =

[
Σl11 Σl12

Σl21 Σl22

]
=

[
σ2l σ2l r

T
l

σ2l rl σ2lRl

]
with rl = (Rl(x0 − x1), ...,Rl(x0 − xn1))

T .

It follows that:

yl(x0)|yl,θ
(i)
1 ,θ

(i)
2 ∼ N

(
µ1 +ΣT21Σ

−1
22 (yl − µ2),Σ11 − ΣT21Σ

−1
22 Σ21

)
= N

(
fTl (x0)β

(i)
l + rTl R

−1
l (yl − Flβ

(i)
l ), σ

2(i)
l (1− rTl R

−1
l rl)

)
.

(2.37)

2.6 Adaptation of the BHGPmodel to multi-resolution

metrology data

The BHGP model previously introduced is meant to be used in case the low-

accuracy data come from a computer experiment. Thus the model that describes

the LE data is deterministic, i.e. it does not include a random error term.

When analyzing multi-resolution data coming from physical experiments, a more

general form of the model described in [QW08] is needed. In particular, when the

low-accuracy experiment is not deterministic, a measurement error term has to be

introduced in the model for the LE data.

2.6.1 Introducing the measurement error in the LE response

When both the LE and HE responses come from actual measurement activities,

both yl(·) and yh(·) are affected by measurement error. Such measurement error

can be modeled with an i.i.d. random error. If we want to use the BHGP model,

we need to correct it by introducing a random error term in the model for the

low-resolution data. We call such error term η(·) and we assume that it is a white
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noise.

Equation (1.5) previously introduced has to be modified as follows:

yl(xi) = f
T
l (xi)βl + ϵl(xi) + η(xi) i = 1, ..., n, (2.38)

where still fTl (xi) = (1, xi1, ..., xik)
T , βl = (βl0, βl1, ..., βlk)

T and ϵl(·) ∼ GP (0, σ2l ,ϕl).

We assume that the GP term is independent from the measurement error η(·) and
that η(·) ∼ N(0, σ2η) such that η(xu) ⊥ η(xw), ∀u ̸= w.

The adjustment model that links the HE data to the LE data is the same as the

one illustrated in Equation (1.15):

yh(xi) = ρ(xi)yln1(xi) + δ(xi) + ϵ(xi) i = 1, ..., n1, (2.39)

where ρ(·) ∼ GP (ρ0, σ
2
ρ,ϕρ), δ(·) ∼ GP (δ0, σ

2
δ ,ϕδ) and the measurement error

ϵ(·) ∼ N(0, σ2ε). yln1(·), ρ(·), δ(·) and ϵl(·) are assumed independent one another.

The model described in Equations (2.38) and (2.39) involves a new unknown

parameter, i.e. the variance σ2η of the measurement error η(·).
The new model is complete once the prior for σ2η is selected. Consistently with the

prior distributions chosen by [QW08] for the other variance parameters, we select

the following prior for σ2η:

σ2η ∼ IG(αη, γη).

2.6.2 Estimation of the predictive density in the non-deterministic

case

In order to estimate the predictive density in Equation (2.1) we still refer to the

procedure illustrated in Section 2.2.3. We remind that this procedure approximates

the predictive density for high-resolution data at untried points using a MCMC

algorithm in an empirical bayesian framework.

The first step is the estimation of the correlation parameters ϕl, ϕρ and ϕδ of

the three Gaussian processes involved in the model.

In order to take into account the measurement error in the LE data, optimization
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Problem (2.9) must be adjusted as follows:

ϕ̂l = argmax
ϕl

p(ϕl)

∫
τ3

(τ3)
−(αη+1)|M2|−1/2|H1|−1/2

(γl +
γη
τ3

+
1

2
(−bT1 H1b1 + c1))

−(αl+αη+
n
2
) dτ3

s.t. ϕl > 0,

(2.40)

where:

τ3 =
σ2η
σ2l
,

H1 =
1

vl
+ FTl M

−1
2 Fl,

b1 =
ul
vl

+ FTl M
−1
2 yl,

c1 =
uTl ul
vl

+ yTl M
−1
2 yl,

M2 = Rl +
σ2η
σ2l

In×n.

(2.41)

Using the SAA approximation discussed above, Problem (2.40) ca be recast as:

ϕ̂l = argmax
ϕl

1

S

S∑
s=1

f(τ
(s)
3 )

s.t. ϕl > 0

(2.42)

where:

f(τ3) = |M2|−1/2|H1|−1/2(γl +
γη
τ3

+
1

2
(−bT1 H1b1 + c1))

−(αl+αη+
n
2
) exp

{
γ3
τ3

}
,

(2.43)

and τ
(s)
3 , s = 1, ..., S, are samples drawn from an Inverse Gamma distribution

IG(αη, γ3).

The steps to obtain the objective function in (2.40) are very similar to the ones

that led to Equation (2.7) and they will be omitted.

The remaining correlation parameters ϕρ and ϕδ are estimated again by solving

the optimization Problem (2.15) with no further adjustment.

Once the posterior estimates of the correlation parameters are available, we

treat the correlation parameters as they were given, and the usual Gibbs sampler



2.6 Adaptation of the BHGP model to multi-resolution metrology data 51

is used to draw samples of the unknown parameters (θ1,θ2) from their posterior

distribution.

Again the method described in section 2.3 needs a few simple adjustments in

order to include the new variance parameter σ2η in the sampling procedure. The

likelihood function for the data can be expressed again as:

L(yl,yh|θ1,θ2) ∝ L(yl|θ1,θ2)L(yh|yl,θ1,θ2), (2.44)

where:

L(yl|θ1,θ2) ∝
1

|σ2lM2|1/2
exp

{
− 1

2σ2l
(yl − Flβl)

TM−1
2 (yl − Flβl)

}
(2.45)

L(yh|yl,θ1,θ2) ∝
1

|σ2ρM1|1/2
×

× exp

{
− 1

2σ2ρ
(yh − ρ0yl + δ01n1)

TM−1
1 (yh − ρ0yl + δ01n1)

}
,

withM2 = Rl+
σ2
η

σ2
l
In×n,M1 = A1RlA1+

σ2
δ
σ2
ρ
Rρ+

σ2
ε
σ2
ρ
In1×n1 andA1 = diag {yl(x1), ..., yl(xn1)}.

We introduce again a new parametrization for the variance parameters:

(σ2l , τ3, σ
2
ρ, τ1, τ2) = (σ2l ,

σ2η
σ2l
, σ2ρ,

σ2δ
σ2ρ
,
σ2ϵ
σ2ρ

).

This new parametrization makes the posterior sampling of the variance parame-

ters easier as it allows us to obtain full conditional distributions all belonging to

known distribution families except for τ3, τ1 and τ2.

From now on we refer to
(
σ2l , τ3, σ

2
ρ, τ1, τ3

)
as θ2. Exploiting once again the change

of variable rule illustrated in Appendix B.2, the following joint posterior distribu-
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tion for (θ1,θ2) with the new parametrization is computed:

p(θ1,θ2|yh,yl) = p(θ1,θ2)L(yh,yl|θ1,θ2)

∝ (σ2l )
−(αl+1) exp

{
− γl
σ2l

}
· (σ2l τ3)−(αη+1) exp

{
− γη
σ2l τ3

}
· σ2l ×

× (σ2ρτ1)
−(αδ+1) exp

{
− γδ
(σ2ρτ1)

}
· (σ2ρτ2)−(αϵ+1) exp

{
− γϵ
(σ2ρτ2)

}
×

× (σ2ρ)
−(αρ+1) exp

{
−γρ
σ2ρ

}
· σ4ρ×

× (σ2l )
− k+1

2 exp

{
− 1

2vlσ
2
l

(βl − ul)
T (βl − ul)

}
×

× (σ2ρ)
− 1

2 exp

{
1

2vρσ2ρ
(ρ0 − uρ)

2

}
· (σ2ρτ1)−

1
2 exp

{
− 1

2vδσ2ρτ1
(δ0 − uδ)

2

}
×

× 1

|σ2ρM1|1/2
exp

{
− 1

2σ2ρ
(yh − ρ0yl1 − δ01n1)

TM−1
1 (yh − ρ0yl1 − δ01n1)

}
×

× 1

|σ2lM2|1/2
exp

{
− 1

2σ2l
(yl − Flβl)

TM−1
2 (yl − Flβl)

}
.

(2.46)

In order to implement the Gibbs algorithm for sampling from such joint poste-

rior distribution we need to compute the full conditional distributions for all the

unknown parameters involved:

βl|yl,yh,βl ∼ N

((
1

vl
I(k+1)×(k+1) + FTl M

−1
2 Fl

)−1(ul
vl

+ FTl M
−1
2 yl

)
,(

1

vl
I(k+1)×(k+1) + FTl M

−1
2 Fl

)−1

σ2l

) (2.47)

ρ0|yh,yl, ρ0 ∼ N

( uρ
vρ

+ yTl1M
−1
1 (yh − δ01n1)

1
vρ

+ yTl1M
−1
1 yl1

,
σ2ρ

1
vρ + yTl1M

−1
1 yl1

)
(2.48)

δ0|yh,yl, δ0 ∼ N

(
uδ
vδτ1

+ 1Tn1
M−1

1 (yh − ρ0yl1)

1
vδτ1

+ 1Tn1
M−1

1 1n1

,
σ2ρ

1
vδτ1

+ 1Tn1
M−11n1

)
(2.49)

σ2l |yl,yh, σ2l ∼ IG

(
αl + αη +

k + 1

2
+
n

2
,

γl +
γη
τ3

+
1

2vl
(βl − ul)

T (βl − ul) +
1

2
(yl − Flβl)

TM−1
2 (yl − Flβl)

) (2.50)
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p(τ3|yl,yh, τ3)

∝ 1

τ
(αη+1)
3

1

|M2|1/2
exp

{
− 1

2σ2l

(
γη
τ3

+ (yl − Flβl)
T M−1

2 (yl − Flβl)

)}
(2.51)

σ2ρ|yh,yl,σ2ρ ∼ IG

(
αρ + αδ + αϵ +

3

2
+
n1
2
,

γρ +
γδ
τ1

+
γϵ
τ2

+
1

2σ2ρ

(
(ρ0 − uρ)

2

vρ
+

(δ0 − uδ)
2

vδτ1

)
+

+
1

2σ2ρ
(yh − ρ0yl1 − δ01n1)

TM−1
1 (yh − ρ0yl1 − δ01n1)

) (2.52)

p(τ1, τ2|yh,yl, τ1, τ2)

∝ τ
−(αδ+3/2)
1 τ

−(αε+1)
2

1

|M1|1/2

× exp

{
− γδ
σ2ρτ1

− 1

σ2ρτ2
− (δ0 − uδ)

2

2vδσ2ρτ1

}
× exp

{
− 1

2σ2ρ
(yh − ρ0yl1 − δ01n1)

TM−1
1 (yh − ρ0yl1 − δ01n1)

}
(2.53)

The particular form of the full conditional distributions from (2.47) to (2.53) allows

us to easily sample all the parameters, except for the variance parameters τ3 and

(τ1, τ2). In order to draw samples from the full conditional distributions (2.51)

and (2.53) we need to run two distinct Metropolis algorithms at every iteration of

the Gibbs sampler. As τ3 and (τ1, τ2) are all defined as ratios of variances, they

are positive valued and as we did in Section 2.3, we use the modified version of

the random-walk Metropolis algorithm (see Appendix 2.3).

Once a sufficient number of posterior samples of the unknown parameters is

drawn from the joint posterior distribution (2.46) we can proceed with the approx-

imation of the predictive distribution of the high resolution response at untried

points x0, p(yh(x0)|yh, yh). After applying the appropriate modifications in order

to take into account the effect of the measurement error in the LE response, we are

allowed to adopt the same procedures seen in Sections 2.4 and 2.5 in the following

cases respectively:

- x0 ∈ Dl \ Dh, i.e. the prediction has to be computed at some input point

where the LE response yl(·) is available, and the LE and HE responses are

available at the same input points;

- x0 ̸∈ Dl \Dh but again the LE and HE responses are available at the same
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input points.

We do not report the expressions of the approximation of the predictive distribu-

tions in these cases because they are mere extensions of the formulas in Section

2.4 and 2.5 to the case where the LE response is affected by measurement error.

We rather treat the more general situation in which Dl and Dh are disjoint sets.

2.7 Prediction when Dl and Dh are disjoint

When there is no perfect match between the experimental points of the low-

resolution and the high-resolution data and the adjustment model for the HE

response (2.39) cannot be directly employed. As a matter of fact Equation (2.39)

implies that the set of n1 low-resolution data yl(xi) corresponding to the available

high-resolution training set yh(xi) is given.

Two different approaches can be taken to deal with this situation.

We call the first way to deal with the missing low-resolution data yl1(xi), i =

1, ..., n1, two-stage approach. We simply compute a prediction of the LE response

at the input points where the training HE data are available and we plug such

prediction into the adjustment model (2.39).

We call the second method data augmentation approach, as it exploits the data

augmentation technique introduced by [TW87]. We augment the set of unknown

parameters, by treating the missing LE data corresponding to the high-resolution

training set as they were unknown parameters.

2.7.1 Two-stage approach

As mentioned above, we compute a prediction of the LE response ŷl1(xi) at the

input points where the training HE data are available and we plug such prediction

into the adjustment model (2.39), that can be rewritten as:

yh(xi) = ρ(xi)ŷl1(xi) + δ(xi) + ϵ(xi) i = 1, ..., n1. (2.54)

To compute the prediction ŷln1(xi) we use the following posterior predictive dis-

tribution:

p(yl1(x0)|yl) =
∫
βl,σ

2
l ,τ3

p(yl1(x0)|yl,βl, σ2l , τ3)p(βl, σ2l , σ2η|yl) dβl dσ2l dσ2η. (2.55)
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In accordance with the methodology adopted so far, we approximate such predic-

tive distribution with the Monte Carlo mixture:

p̂(yl1(x0)|yl) =
1

M

M∑
i=1

p(yl1(x0)|yl,β
(i)
l , σ

2 (i)
l , σ2 (i)η ) (2.56)

where (β
(i)
l , σ

2 (i)
l , σ

2 (i)
η ), i = 1, ...,M , are samples drawn from the joint posterior

distribution of (βl, σ
2
l , σ

2
η). The joint posterior distribution of such parameters is

easily computed as the product of the likelihood function of the low resolution

data (2.44) and the prior distributions p(βl), p(σ
2
l ) and p(σ

2
η) previously specified.

Applying the usual change of variables for the second variance parameters:

τ3 =
σ2l
σ2η

(2.57)

we get the following joint posterior distribution:

p(βl, σ
2
l , σ

2
η|yl) ∝ (σ2l )

−(αl+1) exp

{
− γl
σ2l

}
· (σ2l τ3)−(αη+1) exp

{
− γη
σ2l τ3

}
· σ2l ×

× (σ2l )
− k+1

2 exp

{
− 1

2vlσ
2
l

(βl − ul)
T (βl − ul)

}
×

× 1

|σ2lM2|1/2
exp

{
− 1

2σ2l
(yl − Flβl)

TM−1
2 (yl − Flβl)

}
.

(2.58)

In order to compute the approximation (2.56) of the predictive distribution of

the LE data, we need to draw a sufficiently large number of samples from (2.58)

using the Gibbs algorithm with the full conditional distributions (2.47), (2.50) and

(2.51).

Once the prediction ŷl is computed, we can evaluate the predictions of yh(·)
at untried points as done previously, after substituting yl1 with ŷl1.

2.7.2 Data augmentation approach

As suggested in [QW08], if we treat the missing LE data corresponding to the

high-resolution training set as they were unknown parameters, in accordance with

the data augmentation technique introduced by [TW87], we augment the set of

unknown parameters, that becomes (θ1,θ2,yl1mis).

The prediction of yh(·) at untried points is done through the predictive density
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p(yh(x0)|yl,yh), that in this case has the following form:

p(yh(x0)|yl,yh) =
∫
θ1,θ2,yl1 mis

p(yh(x0)|yl,yh,θ1,θ2,yl1mis)

p(θ1,θ2,yl1mis|yl,yh) dθ1 dθ2 dyl1mis.
(2.59)

Thus the usual empirical Bayesian two-step MCMC algorithm needs to be modified

in order to consider yl1mis as a further vector of unknown parameters.

1. First M posterior samples
(
θ
(i)
1 ,θ

(i)
2 ,y

(i)
l1mis

)
, i = 1, ...,M , are drawn (after

a properly chosen burn-in period) from the joint posterior distribution of the

unknown parameters p(θ1,θ2,yl1mis|yl,yh).

2. Then the predictive Bayesian density p(yh(x0)|yh,yl) is computed as the

following Monte Carlo mixture:

p̂m(yh(x0)|yl,yh) =
1

M

M∑
i=1

p
(
yh(x0)|yl,yh,θ

(i)
1 ,θ

(i)
2 ,y

(i)
l1mis

)
. (2.60)

The posterior sampling from the joint posterior density of the unknown param-

eters p(θ1,θ2,yl1mis|yl,yh) is carried out using the usual Gibbs algorithm with

the full conditional distributions modified as follows:

βl|yl,yh,βl,yl1mis ∼ N

((
1

vl
I(k+1)×(k+1) + FTl M

−1
2 Fl

)−1(ul
vl

+ FTl M
−1
2 yl

)
,(

1

vl
I(k+1)×(k+1) + FTl M

−1
2 Fl

)−1

σ2l

)
(2.61)

ρ0|yh,yl, ρ0,yl1mis ∼ N

( uρ
vρ

+ yTl1misM
−1
1 (yh − δ01n1)

1
vρ

+ yTl1misM
−1
1 yl1mis

,
σ2ρ

1
vρ + yTl1misM

−1
1 yl1mis

)
(2.62)

δ0|yh,yl, δ0,yl1mis ∼ N

(
uδ
vδτ1

+ 1Tn1
M−1

1 (yh − ρ0yl1mis)

1
vδτ1

+ 1Tn1
M−1

1 1n1

,
σ2ρ

1
vδτ1

+ 1Tn1
M−11n1

)
(2.63)

σ2l |yl,yh, σ2l ,yl1mis ∼ IG

(
αl + αη +

k + 1

2
+
n

2
,

γl +
γη
τ3

+
1

2vl
(βl − ul)

T (βl − ul) +
1

2
(yl − Flβl)

TM−1
2 (yl − Flβl)

) (2.64)
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p(τ3|yl,yh, τ3,yl1mis)

∝ 1

τ
(αη+1)
3

1

|M2|1/2
exp

{
− 1

2σ2l

(
γη
τ3

+ (yl − Flβl)
T M−1

2 (yl − Flβl)

)}
(2.65)

σ2ρ|yh,yl,σ2ρ,yl1mis ∼ IG

(
αρ + αδ + αϵ +

3

2
+
n1
2
,

γρ +
γδ
τ1

+
γϵ
τ2

+
1

2σ2ρ

(
(ρ0 − uρ)

2

vρ
+

(δ0 − uδ)
2

vδτ1

)
+

+
1

2σ2ρ
(yh − ρ0yl1mis − δ01n1)

TM−1
1 (yh − ρ0yl1mis − δ01n1)

) (2.66)

p(τ1, τ2|yh,yl, τ1, τ2,yl1mis)

∝ τ
−(αδ+3/2)
1 τ

−(αε+1)
2

1

|M1|1/2

× exp

{
− γδ
σ2ρτ1

− 1

σ2ρτ2
− (δ0 − uδ)

2

2vδσ2ρτ1

}
× exp

{
− 1

2σ2ρ
(yh − ρ0yl1mis − δ01n1)

TM−1
1 (yh − ρ0yl1mis − δ01n1)

}
(2.67)

yl1mis|yh,yl,θ1,θ2
∼ N

(
Fl1misβl +Rl1 12M

−1
2 (yl − Flβl), σ

2
l (M2mis −Rl1 12M

−1
2 Rl1 21)

)
(2.68)

where M2 = Rl +
σ2
η

σ2
l
In×n, M2mis = Rlmis +

σ2
η

σ2
l
In1×n1 , M1 = A1RlA1 +

σ2
δ
σ2
ρ
Rρ +

σ2
ε
σ2
ρ
In1×n1 and A1 = diag {yl mis(x1), ...,ylmis(xn1)}.

The full conditional distribution (2.68) is obtained by observing that the joint

posterior distribution of (yl1mis,yl) is:[
yl1mis

yl

∣∣∣∣yh,θ1,θ2
]
∼ N

([
Fl1mis

Fl

]
, σ2l

[
M2mis Rl1 12

Rl1 21 M2

])
, (2.69)

and directly applying the usual result on the conditional multivariate normal dis-

tribution.
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Finally, when a sufficiently large number M of posterior samples is drawn, we

approximate the posterior predictive distribution (2.59) as:

ŷh(x0) ≃
1

M

M∑
i=1

E[yh(x0)|yl,yh,θ
(i)
1 ,θ

(i)
2 ,y

(i)
l1mis

] =

=
1

M

M∑
i=1

(
ρ
(i)
0 yl(x0) + δ

(i)
0 +

+ (yl(x0)A1rρ + τ
(i)
1 rδ)

TM−1(yh − ρ
(i)
0 y

(i)
l1mis

+ δ
(i)
0 1n1)

)
,

(2.70)

which is nothing but an extension of Equation (2.32) when yl1 is missing.

We want to point out, that the data augmentation approach presents a major

advantage to the two-stage approach previously introduced. It allows us to incor-

porate in the predictive distribution p(yh(x0)|yl,yh), not only the uncertainties

brought by the unknown parameters, but also the additional uncertainty due to

the missing yl 1.

On the other hand, the two-stage approach in many cases is much easier to imple-

ment and it requires less time to run.

***

Now that the Bayesian posterior predictive distribution has been constructed

(even in the case when both the high-resolution and low-resolution experiments are

subject to measurement error) and the MCMC simulation techniques required to

complete the Bayesian computations have been described in detail, we can proceed

with the application of the predictive method illustrated so far. First we need to

implement the method as a computational code using Matlab and validate it using

suitable data.



Chapter 3

Model validation

In the present chapter we present a validation study on the Matlab implementation

of the previously described model.

First we run the implemented code on a simulated data set in order to verify that

the inference procedure on the unknown parameters of the model works correctly.

Then we apply the model on a data set provided in [QW08].

Finally we test the predictive performance of the of the extension of the model

presented in [QW08] (whose results are marked with the superscript “QW08”) on

another simulated data set and we compare the Mean Square Prediction Errors

computed using:

- the GP model in the form 1.5 that uses only the low-accuracy data (super-

script “GPlowres”),

- the GP model in the form 1.5 that uses both the low-accuracy data and the

low-accuracy data as they indistinctly came from a unique data set (super-

script “GPmerge”),

- the model in [Qia+06] that uses both the low-accuracy and the high-accuracy

data (superscript “QW06”).

3.1 Matlab Vs. WinBUGS

In their 2008 work Qian and Wu use the WinBUGS software to carry out the

Bayesian computations using MCMC sampling techniques.

BUGS is a software developed to perform Bayesian analysis of complex models

using MCMC techniques. In particular, WinBUGS is a version of BUGS that

59
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runs in Windows operating system. Its main advantage is that it is interactive

and it can be easily run by users that are not familiar with the BUGS language.

The WinBUGS user manual [Spi+03] describes in detail all the software features

and functionalities. Moreover it provides detailed descriptions of how the software

works, i.e. which MCMC methods are used, and it also features a comprehensive

list of suggested bibliography.

We choose to implement the Bayesian computations in Matlab instead.

Writing our own code, testing it and perfecting it took a significant amount of

time. The current version of the code is probably not at the best of its efficiency

and it could undoubtedly use several improvements. Anyhow the use of our own

code to perform the Bayesian computations allows to have better control and

understanding of the results.

Moreover Matlab is probably the most efficient numerical computing environment

when it comes to matrices manipulation. Since the computations required involve

a significant number of matrix operations, such as inversions and determinants,

and WinBUGS matrix standard routines are very slow [BCG04], Matlab sounded

like the most natural choice as a programming environment over other softwares,

like R for instance.

3.2 Model validation with simulated data - I

In order to validate the inference procedure on the unknown model parameters,

we are going to apply the BHGP model to a set of suitably simulated data.

For simplicity we consider a deterministic model for both the LE and HE data,

i.e.:

yl(xi) = f
T
l (xi)βl + ϵl(xi) i = 1, ..., n, (3.1)

yh(xi) = ρ(xi)yl(xi) + δ(xi) l = 1, ..., n1. (3.2)

where f(xi) = (1,x1, ...,xk))
T and βl = (βl0, βl1, ..., βlk)

T is a vector of unknown

regression coefficients, ϵl(·) ∼ GP (0, σ2l ,ϕl). ρ(·) ∼ GP (ρ0, σ
2
ρ,ϕρ) and δ(·) ∼

GP (δ0, σ
2
δ ,ϕδ).

We assume that the responses depend on two input variables x1 and x2 and

we need to select an appropriate experimental plan.
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3.2.1 Experimental plan

In order to simulate the set of low-resolution data yl, we build a complete factorial

plan with two factors with 6 levels and one replicate. This means that we have

a set of n = 62 experimental conditions. We use the same experimental plan to

simulate a set of n high resolution data yh. It is often the case the set of high

resolution data is smaller than the set of low resolution data. Thus n1 = 24 high

resolution data are selected among the n that were simulated and they were used

as a training set, ytraining. The remaining n− n1 = 12 HE data (ytesting) are used

as a testing set for model validation.

3.2.2 Hyperparameter selection

First we select a set of values for the model parameters:

θ1 = (βl, ρ0, δ0)

θ2 = (σ2l , σ
2
ρ, σ

2
δ , σ

2
ϵ )

θ3 = (ϕl,ϕρ,ϕδ).

Such values are sampled from the priors defined in Chapter 1, after setting the

hyperparameters to the following values:

αl = αρ = αδ = 2

γl = γρ = γδ = 1
(3.3)

ul = 0, uρ = 1, uδ = 0

vl = vρ = vδ = 1
(3.4)

al = aρ = aδ = 0.1

bl = 1, bρ = bδ = 0.1.
(3.5)

Equations (3.3) tell that the variance parameters θ2 = (σ2l , σ
2
ρ, σ

2
δ ) follow a dis-

tribution IG(2, 1), i.e. an Inverse-Gamma distribution with finite mean and in-

finite variance. This means that the priors of the variance parameters are non-

informative.

Equations (3.4) imply that the distributions of the regression parameters βl and

the mean parameter δ0 of the location GP are centered in zero, while the mean

parameters ρ0 of the scale GP has a distribution centered in 1. This means that

we do not expect significative average changes of scale or location from the LE to
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the HE experiment.

Equations (3.5) imply that the correlation parameters θ3 = (ϕl,ϕρ,ϕδ) follow

a Gamma distribution G(.1, .1) with mean equal to 1 and variance equal to 10.

This suggests that, since we expect the data to be significatively correlated, the

correlation parameters need not to be too large.

3.2.3 Data simulation

Table 3.1 sums up the sampled values for the unknown parameters. From now on

we will refer to them as the “true values” of the parameters.

Parameter Sampled value

σ2l 0.8533
σ2ρ 0.2144

σ2δ 0.3327
βl (0.1636, 1.2733, -0.3495)
ρ0 1.0517
δ0 -0.0021
ϕl (0.6190, 0.1865)
ϕρ (0.0002, 0.0016)

ϕδ (0.0419, 0.0549)

Table 3.1: Sampled values for the parameters (Simulated data - I).

Since there is no built in Matlab function that samples from an Inverse Gamma

distribution IG(α, γ) we generate the required random samples by taking the in-

verse of the samples from a Gamma distribution G(α, 1/γ), i.e:

IG_sample = 1/gamrnd(alpha,1/gamma).

Once the sampling plan is determined and the parameters values are known,

we can compute the correlation matrices of the gaussian processes involved in the

model, Rl, Rρ and Rδ using the function regfunct.

Given such matrices and the remaining true parameters we can simulate one re-

alization of the Gaussian processes ϵl(·), ρ(·) and δ(·). This is done by sampling

three n-dimentional vectors from the following multivariate normal distributions:

ϵl ∼ N(0, σ2lRl)

ρ ∼ N(ρ01n1 , σ
2
ρRρ)

δ ∼ N(δ01n1 , σ
2
δRδ)
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using the mvnrnd Matlab function.

Finally the simulated data yl and yh are computed as:

yli = f(xi)
Tβl + ϵli

yhi = ρiyli + δi, for i = 1, .., 100.

As previously stated we randomly pick n1 = 24 high resolution data from yh and

we use them as training set. The remaining will be employed for model validation.

Now that we have suitably simulated both the low-resolution and high-resolution

data we proceed with the inference procedure.

3.2.4 Estimation of the correlation parameters

First we compute the posterior estimates of the correlation parameters from the

data, in agreement with the choice to adopt an empirical Bayesian approach.

As in [QW08] the mode of the marginal posterior distribution of the correlation

parameters is used as a point estimator for such quantities.

We previously illustrated in Section 2.2.1 that the marginal posterior distri-

bution of θ3 = (ϕl,ϕρ,ϕδ) is obtained by integrating out the mean and variance

parameters, θ1 = (βl, ρ0, δ0) and θ2 = (σ2l , σ
2
ρ, τ1) from the joint posterior distri-

bution of all the unknown parameters (θ1,θ2,θ3). In the deterministic case of the

model described in Equations 3.19 the marginal posterior distribution of θ3 is:

p(θ3|yh,yl) ∝ L1(ϕl,ϕρ,ϕδ) =

=p(ϕl) | Rl |−1/2| H1 |−1/2

(
γl +

bT1 H
−1
1 b1 − c1
2

)−(αl+
n
2 )

· p(ϕρ)p(ϕδ)×

×
∫
τ1

(a2a3)
−1/2 | M |−1/2

(
b23 − a3c3

2a3
+ γρ +

γδ
τ1

)−(n1
2
+αρ+αδ+1)

τ
−(αδ+

3
2)

1 dτ1

(3.6)

where M = A1RρA1 + τ1Rδ and H1, b1, c1, a2, t1, t2, t3, a3, b3, c3 are the

same defined in Section 2.2.1. The posterior mode estimates of ϕl, ϕρ and ϕδ are
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computed by separately solving the two following optimization problems:

ϕ̂l = argmax
ϕl

p(ϕl) | Rl |−1/2| H1 |−1/2

(
γl +

bT1 H
−1
1 b1 − c1
2

)−(αl+
n
2 )


s.t. ϕl > 0

(3.7)

(ϕ̂ρ, ϕ̂δ) = arg max
ϕρ,ϕδ

{
p(ϕρ)p(ϕδ)

∫
τ1

(a2a3)
−1/2 | M |−1/2 ×

×
(
b23 − a3c3

2a3
+ γρ +

γδ
τ1

)−(n1
2
+αρ+αδ+1)

τ
−(αδ+

3
2)

1 dτ1

}
s.t. (ϕρ,ϕδ) > 0

(3.8)

Problem (3.7) is exactly the same of Problem (2.9), while Problem (3.8) is Problem

(2.10) adjusted to the deterministic case.

If we recast the optimization problem for ϕρ and ϕδ as in Equation (2.11) with:

f(τ1, τ2) =p(ϕρ)p(ϕδ)(a2a3)
−1/2 | M |−1/2 ×

×
(
b23 − a3c3

2a3
+ γρ +

γδ
τ1

)−(n1
2
+αρ+αδ+1)

exp

{
γ1
τ1

} (3.9)

where:

τ1 ∼ IG(αδ +
1

2
, γ1), (3.10)

we can approximate Problem (3.8) using the SAA method illustrated in Section

2.2.2 and solve the equivalent deterministic problem:

(ϕ̂ρ, ϕ̂δ) = arg max
ϕρ,ϕδ

{
1

S

S∑
s=1

f(τ
(s)
1 )

}
s.t. (ϕρ,ϕδ) > 0

(3.11)

where τ
(s)
1 are S = 100 samples from the distribution (3.10).

Both Problems (3.7) and (3.11) can be solved with a constrained non-linear

optimization algorithm that uses a quasi-Newton method.

The Matlab function fmincon solves a minimization problem using this kind of

algorithm. Thus we have to recast our problems as minimization problems. This

is merely done by changing the signs of the objective functions.
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Moreover, in order to avoid numerical issues, we perform the minimization of the

natural logarithm of the objective functions. Minimizing the log of the objective

function is equivalent to minimizing the objective function in its natural scale

because the natural logarithm is a continuous monotonically increasing function.

In conclusion, we need to solve the two following optimization problems to estimate

the correlation parameters using their posterior mode:

ϕ̂l = argmin
ϕl

− log

p(ϕl) | Rl |−1/2| H1 |−1/2

(
γl +

bT1 H
−1
1 b1 − c1
2

)−(αl+
n
2 )


s.t. ϕl > 0

(3.12)

(ϕ̂ρ, ϕ̂δ) = arg min
ϕρ,ϕδ

{
− log

(
1

S

S∑
s=1

f(τ
(s)
1 )

)}
s.t. (ϕρ,ϕδ) > 0

(3.13)

An alternative implementation of the optimization can be used in order to

increase its efficiency. This is accomplished by operating the following changes of

variables in the objective functions:

(ϕl,ϕρ,ϕδ) =
(
exp {ψl} , exp

{
ψρ
}
, exp {ψδ}

)
. (3.14)

This transformation makes the original constrained optimization unconstrained.

In fact the solution of the equivalent unconstrained optimization in the variables

(ψl,ψρ,ψδ) allows the correlation parameters (ϕl,ϕρ,ϕδ) to take only positive

values.

After the change of variables (3.14), Problems (3.12) and (3.13) become:

ϕ̂l = exp argmin
ψl

{
− log

(
p(ϕl) | Rl |−1/2| H1 |−1/2 ×

×
(
γl +

bT1 H
−1
1 b1 − c1
2

)−(αl+
n
2 )

exp

{ k∑
j=1

ψlj

})}
(3.15)

(ϕ̂ρ, ϕ̂δ) = exp arg min
ψρ,ψδ

− log

 1

S

S∑
s=1

f(τ
(s)
1 ) exp

{ k∑
j=1

(ψρj + ψδj)

} (3.16)
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where the terms exp

{∑k
j=1 ψlj

}
and exp

{∑k
j=1(ψρj+ψδj)

}
are the determinants

of the Jacobian matrices of the inverse of the transformations applied on ϕl and

(ϕρ,ϕδ) respectively (refer to Appendix B.2 for the change of variables rule). In

our case k = 2.

Transformation (3.14) brings two major benefits to the optimization proce-

dure.

First it allows to substitute constrained optimization with unconstrained opti-

mization, which is generally easier to solve [XDW07]. We use the Matlab function

fminunc, that implements a quasi-Newton algorithm for unconstrained non-linear

optimization.

Secondly, transformation (3.14) improves the shape of the objective function. This

argument finds an intuitive justification in the fact that after the transformation

the optimization algorithm searches the minimum of the objective function in the

space of the parameters ψl, that corresponds to the space of the parameters ϕl in

a logarithmic scale.

The fminunc algorithm applied to the optimization problems (3.15) and (3.16)

converges to the following solution:

ϕ̂l = (0.3759, 0.1988)

ϕ̂ρ = (0.0273× 10−3, 0.1388× 10−3)

ϕ̂δ = (0.0267, 0.0477).

(3.17)

We stick to such estimated values for the correlation parameters and we pro-

ceed with the implementation of the two-step algorithm described in Sections 2.1.1

and 2.2.3 to approximate the posterior predictive distribution.

Having chosen an empirical Bayesian implementation, we remind that we will not

be able to incorporate the uncertainties due to the estimated correlation parame-

ters in the predictive density.

3.2.5 MCMC sampling of the unknown parameters

Now that the correlation parameters are estimated, the correlation matrices of the

three Gaussian Processes in model (3.19), Rl, Rρ and Rδ, are fully determined.

We built such matrices according to the definition of the Gaussian correlation

structure in (1.4) by using the Matlab function regfunct we implemented.
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As mentioned in the previous chapter, the Gibbs sampling algorithm is used

to draw samples of the unknown parameters from the joint posterior distribu-

tion of the parameters (θ1,θ2) in the empirical Bayesian framework. This task

is accomplished by implementing the Gibbs sampler described in Section 2.3 in

Matlab.

A few observations need to be done.

First, we point out that since both our LE and HE models are deterministic, the

following simplification is allowed: all the terms involving the parameters τ2 (i.e.

σ2ϵ ), αϵ and γϵ can be dropped. This significantly eases the sampling Metropolis-

within-Gibbs algorithm as it is used for univariate sampling of parameter τ1 instead

of both (τ1, τ2).

Secondly, the particular data we simulate satisfy the simplifying assumption made

at the beginning of Section 1.5. The experimental plans of the low-resolution and

the high-resolution data are such that Dh ⊂ Dl, i.e. yh(xi) is available at the same

input points xi, i = 1, ..., n1, where the corresponding yl1(xi) is available. More-

over, in order to compare the results of the prediction of yh at new input points,

we build a testing set of high resolution data that includes yhtest(xj) evaluated

at untried points xj , j = 1, ..., n − n1, such that xj ∈ Dl \Dh. This means that

the low-resolution response yl(·) is available at the testing points. In this case the

mixture that approximates the posterior predictive distribution of high-resolution

data at xj ∈ Dl \ Dh is easier to compute and it solely depends on the sampled

values of the unknown parameters ρ0, σ
2
ρ, δ0 and σ2δ , as in Equation (2.32). Thus,

in order to compute the predictor ŷ(xj) with xj ∈ Dl \ Dh sampling from the

joint posterior distribution of the parameters (ρ0, σ
2
ρ, δ0, σ

2
δ ) would suffice in our

case and the full conditional distributions of βl and σ
2
l are left out of the Gibbs

algorithm.

Before launching the Gibbs sampler, it is important to suitably tune some pa-

rameters.

The starting points of the algorithm are set to the values of the Maximum Likeli-

hood estimates of the unknown parameters ρ0, δ0, σ
2
ρ and σ2δ . Such estimates are

easily computed using the fmincon function. These starting points appear to be

an appropriate initial guess and they allow to shorten the burn-in period, i.e. the

number of iterations before convergence is achieved.

We remind that we need to use the Metropolis-within-Gibbs algorithm at each

loop of the Gibbs algorithm because the form of the full conditional distribu-
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tion of τ1 does not belong to any known-form distribution family. Thus we also

need to properly set the variance parameter of the proposal distribution of the

Random-Walk Metropolis-within-Gibbs algorithm. This can be done by launch-

ing very few iterations of the Gibbs algorithm (say around 100) and by observing

the mean and the standard deviation of the acceptance rates of the Metropolis-

within-Gibbs algorithm computed at each iteration of the Gibbs algorithm. As

suggested by [Gel+03] the variance of the proposal distribution should be tuned

in order to have acceptance rates around 50% in the case of univariate sampling

with Metropolis.

Finally we need to decide the number of iterations of the Metropolis-within-Gibbs

algorithm. This is done by using two different diagnostics for assessing conver-

gence of MCMC algorithms: the Geweke diagnostic, based on a test statistic that

compares the average value of the chain at the first iterations after burn-in and at

the latter iterations, and the Gelman-Rubin diagnostic, based on the comparison

of multiple runs of the chain with overdispersed initial points by using within- and

between-variances. For further details on these diagnostics see Appendix A.3.

We observed that if we repeatedly run N = 5001 iterations of Metropolis-within-

Gibbs and we discard the first kMetropolis
0 = 1667 (about 1/3 of the total) the

simulated chains pass the Geweke test most of the times. Furthermore, we ran

5 parallel chains with overdispersed starting points and we got a potential scale

reduction R̂ = 1.0005 (refer to Equation (A.18)), which is sufficiently close to one.

Given these results we can reasonably assess that if we draw N = 5001 samples

and we discard the first kMetropolis
0 = 5000, the last sample, which is the only one

retained, is representative of the target distribution that we are sampling from.

We run K = 10 000 iterations of the Gibbs algorithm and we set the burn-in

for the Gibbs sampler to kGibbs0 = 3000.

The coda function provides the p-values for the Chi-squared test of the Geweke

convergence diagnostic:

p-value(σ2l ) = 0.801951

p-value(ρ0) = 0.938348

p-value(σ2ρ) = 0.059631

p-value(δ0) = 0.485391

p-value(τ1) = 0.067082.

(3.18)

Such p-values suggest that there is statistical evidence that the means of the first
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10% and the last 50% of the chains are equal.

3.2.6 Inference on the unknown model parameters

Table 3.2 summarizes the results of the posterior sampling: the true value, the

posterior means, the posterior medians and the lower and upper 95% HPD credi-

bility limits of the marginal posterior distribution of the parameters βl, σ
2
l , ρ0, δ0,

σ2ρ and σ2δ .

True value
ML Posterior Posterior LCL HPD UCL HPD

estimate mean median (2.5%) (97.5%)

βl0 0.1636 -0.0452 0.0325 0.0381 -1.2918 1.3404
βl1 1.2733 1.2341 1.2071 1.2086 0.8947 1.5159
βl2 -0.3495 -0.3679 -0.3632 -0.3633 -0.6295 -0.1037
σ2
l 0.8533 1.1101 1.0161 0.9841 0.6458 1.5585

ρ0 1.0517 1.0914 1.0574 1.0561 0.5392 1.5929
σ2
ρ 0.2144 0.2688 0.4784 0.3847 0.1590 1.3783

δ0 -0.0021 -0.1740 -0.1313 -0.1313 -0.2695 0.0057
σ2
δ 0.3327 0.2016 0.2635 0.2496 0.1493 0.4580

Table 3.2: True values, posterior means and medians of the parameters βl, σ
2
l , ρ0,

δ0, σ
2
ρ and σ2δ and their respective 95% credibility HPD limits (Simulated data -

I).

Figures 3.1 and 3.2 represent the histograms of the values of the parameters

sampled from their posterior distribution. Such histograms can be regarded also as

the non-normalized empirical marginal posterior distributions of the parameters.

We observe how the true values of the parameters always fall inside the 95% HPD

credibility interval of their respective non-normalized empirical marginal posterior

distributions. Only the posterior median of the parameter δ0 appears to be smaller

than its true value, but this result id confirmed by the corresponding ML estimate.

We are allowed to conclude that the code Gibbs algorithm implemented in Mat-

lab correctly samples the unknown model parameters from their joint posterior

distribution.
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3.3 Model validation with real data

In order to validate the code implemented in Matlab, we also use the data reported

in Example 1 in [QW08] and we compare our results with the ones obtained in the

paper.

Such data consist of the outputs of two different computer simulations for a heat

exchanger in an electronic cooling application. We will provide just some essential

information about the data themselves. For further details refer to [Qia+06] and

[QW08], where a thorough description of the experiment is provided.

The response of interest y is the total rate of steady-state heat transfer of a

device used to dissipate heat generated by a heat source. The response depends

on the following k = 4 factors, x1, x2, x3 and x4 respectively:

- the mass flow rate of entry air ṁ,

- the temperature of entry air Tin,

- the temperature of the heat source Twall,

- the solid material thermal conductivity k.

Once an appropriate experimental design is selected, two different computer sim-

ulations are run.

An approximate but fast simulation using finite difference method is used to pro-

duce the LE response and a detailed but slow simulation based on FLUENT finite

element analysis is used to generate the HE response.

The low-resolution and high resolution responses are computed at n = 36 different

experimental conditions. yl denotes the LE data. We randomly select n1 = 24

high resolution data among the n we simulated and we use such data as a train-

ing set. The n − n1 = 12 conditions left out are used as a testing set for model

validation.

It has to be pointed out that both the responses of the LE and HE experiments

come from computer simulations. Thus, since no measurement error is involved,

two deterministic models for both the LE and HE data are used, i.e.:

yl(xi) = f
T
l (xi)βl + ϵl(xi) i = 1, ..., n, (3.19)

yh(xl) = ρ(xl)yl(xl) + δ(xl) l = 1, ..., n1. (3.20)
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where f(xi) = (1,x1, ...,xk)
T and βl = (βl0, βl1, ..., βlk)

T is a vector of unknown

regression coefficients, ϵl(·) ∼ GP (0, σ2l ,ϕl), ρ(·) ∼ GP (ρ0, σ
2
ρ,ϕρ) and δ(·) ∼

GP (δ0, σ
2
δ ,ϕδ).

As a consequence we are allowed to simplify the procedure described in the previous

chapter, by dropping all the terms involving the measurement error ϵ(·).

We set the hyperparameters of the priors to the following values:

αl = αρ = αδ = 2

γl = γρ = γδ = 1

ul = 0, uρ = 1, uδ = 0

vl = vρ = vδ = 1

al = aρ = aδ = 0.1

bl = bρ = bδ = 0.1.

The same observations we previously made about such choice of hyperparameters

still stand.

Then we repeat the same steps we followed in the previous section and we run

10 000 iterations of the Gibbs algorithm. Using the Geweke convergence diagnostic

implemented in the coda function we conclude that convergence is achieved after

3 000 burn-in iterations.

Table 3.3 summarizes the results of the posterior sampling: the posterior

means, the posterior medians and the lower and upper 95% HPD credibility limits

of the marginal posterior distribution of the parameters ρ0, δ0, σ
2
ρ and σ2δ . As we

expected the mean of the scale GP ρ(·) is about 1 and the mean of the location

GP δ(·) is small.

Posterior mean Posterior median LCL HPD (2.5%) UCL HPD (97.5%)
ρ0 1.1128 1.1061 0.8687 1.4034
σ2
ρ 0.3573 0.3174 0.1481 0.7826
δ0 0.4040 0.3803 -0.3452 1.2885
σ2
δ 0.5448 0.5057 0.2671 1.0489

Table 3.3: Posterior mean and median of the parameters ρ0, δ0, σ
2
ρ and σ2δ and

their respective 95% credibility HPD limits (Example 1 from [QW08]).

Figure 3.3 represents the histograms of the values of the parameters sampled

from their posterior distribution. Such histograms can be regarded also as the

non-normalized empirical marginal posterior distributions of the parameters.



3.3 Model validation with real data 74

F
ig
u
re

3.
3:

H
is
to
gr
am

s
of
ρ
0
,
δ 0
,
σ
2 ρ
an

d
σ
2 δ
.

T
h
e
p
u
rp
le

li
n
es

re
p
re
se
n
t
th
e
p
o
st
er
io
r
m
ed
ia
n
s,

th
e
b
la
ck

li
n
es

th
e
9
5
%

cr
ed

ib
il
it
y
H
P
D

li
m
it
s
(E

x
am

p
le

1
fr
om

[Q
W

08
])
.



3.3 Model validation with real data 75

Although the data sets are the same, the numerical results we came to appear

to be different from the ones presented in [QW08]. Our Matlab implementation led

to different estimates of the correlation parameters and different marginal posterior

distributions for the parameters.

In spite of this evident discrepancy, we proceed with the prediction procedure.

3.3.1 Approximation of the predictive distribution

Now that a large number of samples has been drawn from the joint posterior

distribution (2.20), we can proceed with the second step of the MCMC algorithm

described in Section 2.4. We predict the HE response at the ntest = 12 input

points belonging to the testing set, for cross-validation

Table 3.4 reports the prediction results we obtained applying the BHGP model and

the respective 95% empirical prediction limits. We refer to the results computed

with such method using the superscript “QW08”.

As pointed out in [QW08] the true response corresponding to the 7th test data (run

nr. 18) appears to be significatively smaller than the responses corresponding to

the other runs. The authors believe that the anomaly might be due to the failure of

the finite element simulation for that particular run. The corresponding prediction

is ŷQW08
h test (x7th) = 11.1491 and it is probably close to the effective LE response. As

a matter of fact we obtain a very high Mean Square Prediction Error:

MSPEQW08 =
1

ntest

ntest∑
i=1

(
yh test(xi)− ŷQW08

h test (xi)
)2

= 7.1039. (3.21)

We follow the suggestion given in [QW08] and we exclude the 7th test data because

it is an outlier. The new Mean Square Prediction Error is about half of the MSPE

previously computed:

MSPEQW08
7th = 3.7900. (3.22)

Finally in Table 3.5 the prediction ŷQW08
h test obtained with the integration of LE and

HE data is compared with the predictions computed employing the GP universal

kriging model that uses only the LE data. ŷSWN
test comes from the application of the

predictive distribution (1.9) proposed by Santner, Williams, and Notz ([SWN03])

and ŷGPlowres
h test is the prediction computed using the 3.1 version of the GPML code

by Rasmussen and Nickisch [RN11].
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The respective Mean Square Prediction Errors are:

MSPEQW08
7th

= 3.7900

MSPESWN
7th

= 10.3742

MSPEGPlowres
7th

= 10.8325.

(3.23)

Note that all the MSPEs were calculated after excluding the 18th run.

Run yh test ŷBHGP
h test LPL (2.5%) UPL (97.5%)

1 25.8200 23.9229 23.7105 24.1222
4 19.7700 23.7531 23.5366 24.0263
9 20.5200 20.2676 20.2423 20.3056
11 18.7800 17.2435 17.1863 17.2935
13 24.6800 25.4501 25.4104 25.4887
17 22.3000 22.2209 22.1485 22.3008
21 23.3300 23.0538 23.0015 23.1024
26 32.8500 37.0659 36.8758 37.2093
28 34.8000 34.0509 33.9398 34.1419
30 36.1100 35.7870 35.6297 36.0172
31 27.3600 26.5313 26.4439 26.6899

Table 3.4: Prediction results at the ntest = 12 testing points. yh test is the true HE
response; ŷBHGP

h test is the response predicted using the BHGP model LPL and UPL
are the 95% prediction limits (Example 1 from [QW08]).

Run yh test ŷBHGP
h test ŷSWN

test ŷRasmussen
test

1 25.8200 23.9229 27.0525 26.9767
4 19.7700 23.7531 25.5577 25.6905
9 20.5200 20.2676 20.7199 20.7519
11 18.7800 17.2435 16.2783 16.2692
13 24.6800 25.4501 25.1349 25.3379
17 22.3000 22.2209 22.5746 22.3670
21 23.3300 23.0538 22.0156 22.0475
26 32.8500 37.0659 30.8178 30.9879
28 34.8000 34.0509 29.1543 28.9487
30 36.1100 35.7870 31.0714 30.9184
31 27.3600 26.5313 23.8499 23.8518

Table 3.5: Prediction results at the ntest = 12 testing points computed using the
BHGP model are compared to the other two predictions ŷSWN

test and ŷRasmussen
test .

Such responses are computed using only the LE data with the predictive density
proposed by [SWN03] and the method proposed by [RW06] respectively (Example
1 from [QW08]).

Because of the discrepancies between our results on the marginal posteriors of

the parameters and the ones in [QW08], we decide to proceed with further tests.
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3.4 Performance comparison with simulated data - II

In order to evaluate the predictive performance of the BHGP model, we use the

implemented Matlab code in a more complicated case. We consider now the situ-

ation in which both the LE and the HE data are affected by a random error, thus

the data are described by the model in Equations (2.38) and (2.39). We simulate

two sets of low-resolution and high-resolution data in the way described below.

Since we are going to apply the Gaussian process models seen so far to multi-

resolution metrology data it is reasonable to assume that k = 2, i.e. two input

variables x1 and x2 are available. This is in accordance to the fact that the data

coming from coordinate measurements consist of “clouds” of points that represent

the 3D coordinates of points on a surface. Thus the input variables are the x and

y coordinates of the measured points and the response of interest is the height

(the z coordinate) of the surface point corresponding to the given input variables.

Furthermore, since we are going to work with surfaces, we expect that the data

are highly correlated.

We suppose that our simulated surface is shaped as the central portion of

the Matlab function peaks. Such function is a mixture of scaled and translated

bivariate Gaussian probability density functions. Figure 3.4 gives a graphical rep-

resentation of the surface of interest. The shape of such surface is quite complex

due to the presence of peaks and valleys.
In order to simulate the low-resolution and high-resolution data sets, we add

independent noise to the analytic form of the function. We evaluate the function

peaks on a set of n = 100 randomly selected points for the LE data and on another

disjoint set of n1 = 30 points for the HE data. Because of the assumption that

the high-resolution data yh1 are highly accurate we simulate them by adding a

very small noisy component to the exact value of the z coordinates. Similarly,

in order to simulate the low-resolution data yl, we add a larger random error to

the analytically computed z values. We also select a set of ntest = 1000 points

for testing purposes. We are going to evaluate the predictive performance of the

BHGP model at these points, with cross-validation. Moreover we are going to

see if the use of the adjustment model significatively improves the performance of

prediction when we use only the low resolution data.

Figure 3.5 provides a representation of the simulated LE and HE data with respect

to the wireframe surface of the analytic function.
Note that in this case the experimental conditions corresponding to the LE and
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Figure 3.4: Graphical representation of the central portion of the Matlab function
peaks.
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Figure 3.5: Representation of the simulated LE and HE data with respect to the
wireframe surface of the analytic function.
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HE, Dl and Dh respectively, are disjoint sets, thus we cannot apply the simplified

predictive procedure illustrated in Section 2.4. We decide to adopt the two stage

approach described in Section 2.7.1.

In order to obtain quick predictions of the missing low resolution yl1 data we

decide to predict them (ŷl1) using the universal kriging GP model (2.38) with the

GPML Matlab code by [RN11] introduced in Appendix D, rather than applying

the whole MCMC procedure illustrated in Section 2.7.1. The main drawback of

this “naive” two-stage approach is that the resulting predictive density for the

high resolution data does not take into account the prediction uncertainty of ŷl1 ,

but only of the uncertainty due to the unknown adjustment model parameters.

Once the structure of our model is specified, we run the function minimize to com-

pute the estimates of the unknown parameters of the model (2.38), by minimizing

the negative marginal likelihood.

Then, given such estimated parameters and the low resolution data yl, the func-

tion gp is run. Such function evaluates the predictions of the missing LE data

corresponding to the available n1 HE data, i.e. ŷGPlowres
l1

.

From now on, we treat the estimated ŷl1 as they were given. We point out again

that this plug-in approach cannot count for the prediction uncertainty of ŷl1 in

the further steps.

We proceed with the Bayesian empirical inferential analysis on the unknown

parameters of the adjustment model (2.39).

In order to compute the values of the correlation parameters ϕρ and ϕδ, we solve

the optimization Problem (2.11), after applying some transformations analogous

to the ones used in Section 3.2.4, and we get the following estimates:

ϕ̂ρ = (0.0012, 0.0013),

ϕ̂δ = (0.3520, 0.0056).
(3.24)

We sample from the joint posterior distribution of (ρ0, σ
2
ρ, δ0, σ

2
δ , σ

2
ϵ ) using the

usual Gibbs algorithm. We draw 10 000 posterior samples of the unknown param-

eters and discard the first 1 000.

The coda function provides the p-values for the Chi-squared test of the Geweke
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convergence diagnostic:

p-value(ρ0) = 0.387203

p-value(σ2ρ) = 0.065893

p-value(δ0) = 0.870070

p-value(τ1) = 0.481181

p-value(τ2) = 0.635662.

(3.25)

In spite of the auto-correlation of the simulated chains, according to the p-values

of the Geweke diagnostic, convergence is achieved if we set the confidence level to

95%.

Table 3.6 summarizes the results of the posterior sampling: the posterior

means, the posterior medians and the lower and upper 95% credibility HPD limits

of the marginal posterior distribution of the parameters ρ0, δ0, σ
2
ρ, σ

2
δ and σ2ϵ .

Figure 3.6 represents the histograms of the values of the parameters sampled from

their posterior distribution (non-normalized empirical marginal posterior distribu-

tions of the parameters).

Posterior mean Posterior median LCL HPD (2.5%) UCL HPD (97.5%)
ρ0 0.8423 0.8513 0.5460 1.0912
σ2
ρ 0.2933 0.2573 0.1111 0.6988
δ0 -0.0533 -0.0445 -1.7638 1.4833
σ2
δ 0.6994 0.5202 0.1748 2.2945
σ2
ϵ 0.1218 0.1152 0.0700 0.2116

Table 3.6: Posterior means and medians of the parameters ρ0, δ0, σ
2
ρ and σ2δ and

their respective 90% credibility HPD limits obtained with BHGP model (Simulated
data - II).
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Since we have a sufficiently large number of samples from the posterior distri-

bution of the parameters, we can approximate the predictive density in the way

described in the previous chapter and compute the predictions at the testing points

and their respective 95% prediction limits. We will not report these results because

ntest = 1000 predictions were computed. We provide instead a graphical repre-

sentation of the cloud of the predicted points and the cloud of the corresponding

points of the true function.
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Figure 3.7: Representation of the clouds of the predicted points (red) computed
using the BHGP model and the corresponding points of the true function (black)
(Simulated data - II).

The Mean Square Prediction Error corresponding to such predictions is:

MSPEQW08 = 0.1155. (3.26)

The superscript “QW08” indicates the results obtained with two-stage version of

the BHGP model that integrates low-accuracy and high-accuracy data.

Another interesting graphical representation of the predictions is the one in
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Figure 3.8. It displays the magnitude of the prediction error ytest− ŷBHGP
h directly

on the shape of the interpolated predicted surface.

As we expected, the prediction error is close to zero in those area of the surface

where the high-accuracy data are placed. This makes us think that if we positioned

the n1 high-resolution data in the most critical areas of the surface, instead of

randomly placing them, we would probably have had further improvement in the

prediction with the BHGP model.

Figure 3.8: Interpolated error plot: it displays the magnitude of the prediction
error ytest− ŷBHGP

h on the shape of the interpolated predicted surface. Cold colors
indicate negative prediction errors, i.e. the predicted points are overestimates
of the testing measured points. Warm colors indicate positive prediction errors,
i.e. the predicted points are “impossible” as they lie under the measured surface
(model validation with simulated data - II).

3.4.1 Predictive performance comparison of different GP models

We finally carry out a comparison of the predictive performances of different mod-

els for the multi-resolution simulated data analyzed in the present section:

- “GPmodel”: universal kriging GP model (2.38) that uses the low-accuracy

data only;

- “GPmerge”: universal kriging GP model (2.38) that uses both the low-

accuracy data and the high-accuracy data as the indistinctly came from
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a unique source and had the same resolution;

- “QW06”: data fusion model [Qia+06] that integrates low-accuracy and high-

accuracy data in the way described in Section 1.5.3;

- “QW08”: two-stage BHGP model [QW08] that integrates low-accuracy and

high-accuracy data in the way described in Section 2.6.

The Mean Squared Prediction Errors computed with each one of these methods

are respectively:

MSPEGPlowres = 0.1612

MSPEGPmerge = 0.1522

MSPEQW06 = 0.1397

MSPEQW08 = 0.1155

(3.27)

The computed MSPEs suggest that models “QW06” and “QW08”, integrating

multi-resolution data using two different GP adjustment models respectively, pro-

vide better prediction results.

To confirm this observation, we perform a series of statistical tests to verify that

the prediction performances of the different methods are significatively different.

The Squared Prediction Errors (SPE) at every input point x∗
i , i = 1, ..., ntest,

of the testing set are computed as:

SPE(x∗
i ) = (ytest(x

∗
i )− ŷh)

2, i = 1, ..., ntest (3.28)

where ytest(·) is the measured high-resolution response used for cross-validation

and ŷh is the estimated high-resolution response at the same input point using one

of the above prediction methods.

We want to determine a suitable hypothesis testing procedure for evaluating the

statistical significance of the difference of two different prediction methods accord-

ing to some performance indicator, for instance a measure of centrality of the

SPEs.

Assume we want to compare “Method 1” and “Method 2”. Then two populations

of SPEs are available, SPEMethod 1 and SPEMethod 2. The test hypotheses to verify

would be the following:
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H0: Measure of centrality of SPEMethod 1 is equal

to measure of centrality of SPEMethod 2.

Vs.

H1: Otherwise.

Since we used the same testing set to compute the SPEs for each of the above

methods, a test for paired observations would be appropriate. In this way we take

into account the possible correlation between the SPEs corresponding to the same

input point x∗
i . As a matter of fact, if “Method 1” exhibits a high SPE at a given

input point, we expect “Method 2” to exhibit a high SPE as well.

Paired tests can be seen as a kind of blocking technique, that allows to reduce the

variance by comparing the SPEs “within” corresponding input points, rather than

“across” different input points.

A paired t-test for testing the mean difference between paired observations

would be our first choice, but such test needs the SPEs to be normally distributed.

We perform the normality test on the pairwise differences of the SPEs computed

with the different methods, but we cannot accept the hypothesis that such differ-

ences follow a normal distribution, not even after they were transformed using the

Box-Cox power transformation.

Thus we have to rely on a non parametric test. We decide to use the One-Sample

Sign Test on the differences of the SMPs. The hypotheses we want to test in our

case are:

H0: median(SPEMethod 1 − SPEMethod 2) = 0.

Vs.

H1: median(SPEMethod 1 − SPEMethod 2) ̸= 0.

Such test is implemented in Minitab and it is a valid non-parametric alternative

to the paired t-test. Furthermore, it is robust to the lack of symmetry of the

distribution of the differences.

We report the Minitab output corresponding to the following tests in the same

order:

- H0: median(SPEGPlowres − SPEGPmerge) = 0

- H0: median(SPEGPlowres − SPEQW06) = 0

- H0: median(SPEGPlowres − SPEQW08) = 0

- H0: median(SPEGPmerge − SPEQW06) = 0
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- H0: median(SPEGPmerge − SPEQW08) = 0

- H0: median(SPEQW06 − SPEQW08) = 0.

Sign test of median = 0,00000 versus not = 0,00000

N Below Equal Above P Median

diff(GPlowres_GPmerge) 1000 403 0 597 0,0000 0,00884

diff(GPlowres_QW06) 1000 400 0 600 0,0000 0,00942

diff(GPlowres_QW08) 1000 365 0 635 0,0000 0,01719

diff(GPmerge_QW06) 1000 449 0 551 0,0014 0,00052

diff(GPmerge_QW08) 1000 424 0 576 0,0000 0,00740

diff(QW06_QW08) 1000 433 0 567 0,0000 0,00670

The computed p-values allow us to conclude that there is no statistical evidence

to support the hypothesis that the median of the pairwise differences is null.

Furthermore the estimated median of the pairwise differences is always positive.

This implies that, if we are testing the hypothesis H0: median(SPEMethod 1 −
SPEMethod 2) = 0, then the median of SPEMethod 2 is significatively smaller than

the median of SPEMethod 1, i.e. “Method 2” determines better predictive perfor-

mances than “Method 1”.

Table 3.7 provides the ranking for the different prediction methods we considered

according to the results of the paired Sign Tests we performed.

Pos. Method Median(SPE)
4 GPlowres 0.0461
3 GPmerge 0.0457
2 QW06 0.0456
1 QW08 0.0443

Table 3.7: Ranking of the compared prediction methods sorted by decreasing
predictive performance according to the results of the Sign Tests performed on the
differences of the SMPs (Simulated data - II).

As we expected methods “QW06” and “QW08”, that combine low-accuracy

data and high-accuracy data using an appropriate adjustment model, are the ones

that lead to better prediction results in terms of Squared Prediction Errors.



Chapter 4

Large Scale Metrology: a real

case study for multi-resolution

data

In the present chapter we face the problem of integrating multi-sensor data in

coordinate metrology. In particular we discuss an application of the Bayesian Hi-

erarchical Gaussian Process Model in Large Scale Metrology.

In our case study the low resolution data are measured with an innovative optical-

based metrological system (MScMS-II) and the high resolution data are measured

with a traditional Coordinate-Measurement Machine (CMM).

First we introduce the matter of multiple sensor integration in coordinate metrol-

ogy. Then we provide a detailed description of the architecture and working prin-

ciples of the MScMS-II system for Large Scale Metrology applications, developed

at the Industrial Quality and Metrology Laboratory of Politecnico di Torino, Italy.

Finally we provide a synthetic description od the CMM measuring system.

4.1 Multi-sensor data integration in metrology

The capability to design and realize products with tight tolerances and satisfactory

dimensional control has become a fundamental requisite in any industrial field.

The fulfilment of such tasks is essential to meet the needs of a more and more

competitive market, subject to continuous and rapid changes. For these reasons,

high precision and rapid acquisition of coordinate measurements of parts and finite

87
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products with complex geometry has become an essential step in many industrial

processes.

According to the definition given by [Wec+09] multisensor data fusion in di-

mensional metrology is:

(...) the process of combining data from several information sources

(sensors) into a common represetational format in order that the metro-

logical evaluation can benefit from all available sensor information and

data.[Wec+09]

The combination of multiple sensors mainly aims to improve the quality of mea-

surement results and increase the amount of information carried by them.

[Wec+09] provides a review on some useful criteria to classify multisensor con-

figurations.

Based on the characteristics of the information sources, sensors can be:

- homogeneous, if they are similar and are designed to capture the same (or

comparable) physical measures;

- inhomogeneous, in the case the information acquired by distinct sensors is

not directly comparable but requires pre-processing;

Based on the sensor configuration multisensor data combination can be:

- complementary, if the multiple sensor, being independent of each other, pro-

vides complete information on the measured object only after their respective

measurement are combined;

- competitive, whether each sensor provides independent measurements of the

same property, i.e. replicates of the same measurements acquired with dif-

ferent sensors are available;

- cooperative, when the measurements coming from independent sensors are

used to derive information that would not be available from the sensors

individually.

In dimensional metrology, data sets can be classified according to the their origin,

source or physical characteristic they represent. Three significant examples are:

- intensity images;
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- surface descriptions;

- volume data.

Finally the last classification criterion is related to the methodology for data merge:

- fusion across sensors, when a set of sensors measure the same property;

- fusion across attributes, when a set of sensors measure different properties

associated with the same experimental environment;

- fusion across domains, when multiple sensors measure the same property

over different domains of the working volume;

- fusion across time, in the case new measurements are merged with historical

data.

Some other sensitive aspects of integrating multiresolution metrology data have

to do with the two following topics:

- Pre-processing. Usually in metrology data fusion is applied at signal level, i.e.

to the raw data (if the data are comparable and have consistent coordinate

systems). In some specific cases mathematical manipulations of the data are

needed.

- Registration. One critical aspect of multisensor data fusion is the problem

of the alignment and transformation of the respective sensor coordinate sys-

tems into one common coordinate system. Typically the algorithms used in

the registration process are based on Least Squares Criterion, i.e. on the

minimization of the variance of distances of corresponding data points. In

the process of registering 3D data set, a common practice to determine these

corresponding data points is the application of markers.

[Wec+09] also provides an overview on different methods for geometric data ac-

quisition. A simple classification of such methods is represented in Figure 4.1.
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Figure 4.1: Methods of geometric data acquisition [Wec+09].

In the next sections we will focus our attention on two specific examples of

coordinate measurement systems that are very different of each other: one, the

MScMS-II, belongs to the optical sensor family, while the other, the CMM, uses a

mechanical touching probe.

4.2 Definition and characteristics of Large Scale Metrol-

ogy (LSM)

As previously stated, improving the accuracy of dimensional metrology is essential

in many industrial applications.

Manufacturers in industrial sectors as automotive, aerospace, shipbuilding and

railway industry have become increasingly aware of the necessity to meet the ac-

curacy requirements for parts and final products. As a consequence, reliable and

efficient large scale measuring systems for large-sized objects are needed as a sup-

port in many stages of the production process, for instance assembly, alignment

and measurement inspection.

[Est+02] quotes the original definition of Large Scale Metrology (LMS) given

by Puttock in 1978:

The field of large-scale metrology can be defined as the metrology of large

machines and structures. The boundaries of this field are laboratory

measurements at one end and surveying at the other. Neither boundary

is well defined and [...] will generally be confined to the metrology of

objects in which the linear dimensions range from tens to hundreds of

meters.

[GMP10a] also provides a concise but effective introduction on the matter of LSM.

When measuring medium-size and large-size objects, traditional Coordinate-Measuring
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Machines (CMMs) could be difficult to handle and have shown poor flexibility. For

these reasons, the traditional CMM approach is overturned and rather than mov-

ing the object to the measuring machine, the measuring system is installed and

arranged in the proximity of the object in order to suitably cover the working

volume in which the object is positioned.

[Fra+09] lists a number of basic requirements of a LMS that are summarized in

Table 4.1.

Requirement Description

Portability Capability of the system to be easily moved, easily
assembled/disassembled, thus minimal weight and
size of the system itself is desirable.

Flexibility Capability of the system to perform different mea-
surement tasks (i.e. determination of point coordi-
nates, distances, curves, surfaces etc.) and be em-
ployed in different working environments.

Handiness Simplicity of installation and rapid start-up and cal-
ibration times, before the system is ready to work;
user-friendliness and intuitiveness of the software in-
terface.

Metrological performance Adequate metrological performances, in terms of
stability, repeatability, reproducibility and accuracy
[ISO 5725 1986].

Scalability The capability of the system to cover different
shaped and sized volumes with linear dimensions
up to 30− 60 meters.

Low economic impact It takes into account the product price plus the in-
stallation, training and maintenance costs.

Work indoor The system should be able to work indoor (inside
warehouses, workshops, or laboratories).

Table 4.1: Definition and description of LMS basic requirements [Fra+09],
[GMP10a].

LSM is a challenging topic for Metrologysts and several measuring systems

based on disparate technologies, such as optical, mechanical, electromagnetic and

acoustic technologies, have been developed.

[Est+02] points out that optical-based systems have proven to be the most efficient

and reliable in LMS applications, mostly thanks to the significant advances in

optical and imaging technology and to the improvements in computational speed

and precision.
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[GMP09] describes the possible different classifications of such measuring systems

according to:

- sensor layout (centralized or distributed);

- measurement operating conditions (contact or non-contact instruments);

- working principles (systems that use two angles and one length, systems that

use multiple angles, i.e. triangulation, systems that use multiple lengths, i.e.

trilateration/multilateration).

A review on a set of existing optical-based solutions for LMS, like laser tracker-

based systems, theodolites and total stations, digital photogrammetry-based sys-

tems, indoor-GPS, is presented in [GMP10a]. For more details on such systems

refer to the literature suggested by Galetto, Mastrogiacomo, and Pralio.

After this concise introduction to indoor Large Scale Measurement, we focus

our attention on the MScMS-II.

4.3 The MScMS-II system

In some of their most recent publications ([GMP09], [GMP10a], [GMP10b]), Galetto,

Mastrogiacomo, and Pralio describe an innovative InfraRed (IR) optical-based dis-

tributed measuring system “designed to perform low-cost, simple and rapid coor-

dinate measurements of large-sized objects exploiting the principles of photogram-

metry”. Such system is also called MScMS-II, that stands for Mobile Spatial

coordinate Measurement System - II.

MScMS-II has been developed at the Industrial Quality and Metrology Laboratory

of Politecnico di Torino, Italy, and it was presented for the first time at the ASME

International Manufacturing Science and Engineering Conference, West Lafayette,

IN, in 2009.

An earlier prototype of MScMS that exploited UltraSound (US) technology

was developed by the same research team. Anyway the poor characteristics of US

devices led to unsatisfactory results and inaccurate measurements. In order to

improve the measuring performances, an enhanced version of the system based on

InfraRed technology was developed.

With respect to the existing systems the MScMS-II has some innovative charac-

teristics, that are reported in Table 4.2.
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Property Description

Scalability Capability to extend the measurement do-
main in order to cover large and geometri-
cally complex working volumes by properly
distributing the network sensors.

All-around visibility Capability of the measuring probe to reach
every part of the object from any side.

Wireless connection The sensors are connected to the processing
unit with a Bluetooth connection.

Layout optimization Capability of the system to automatically
suggest the optimal sensor positions in order
to efficiently cover the working volume

Cooperation of blocks of sensors It allows to optimize point acquisitions, sys-
tem auto-diagnostics, and power consump-
tion.

Sensor fusion Capability to integrate the metrological sys-
tem with other spatially distributed sensors
(of temperature, humidity, vibrations, light
intensity, etc.) in order to provide environ-
mental mapping of the working volume and
monitor the operating conditions of the sys-
tem for auto-diagnostics or self-calibration.

Table 4.2: Innovative technical and operational characteristics of the MScMS-II
[GMP10b].
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According to the requirements previously described in Table 4.1, [GMP10a]

presents a qualitative comparison of different optical-based distributed system for

LMS (Table 4.3).

4.3.1 Architecture of the MScMS-II

The MScMS-II is composed of three basic units (Figure 4.2):

- a network (“constellation”) of wireless sensors;

- a mobile wireless and armless probe;

- a data processing system.

Figure 4.2: MScMS-II architecture. The dashed lines represent visual links be-
tween sensor nodes and retro-reflective markers (indicated as A and B) of the
handheld probe. The Bluetooth connection is established between each node and
the processing system [GMP10a].

The network of sensors is composed of at least three nodes. Such sensors are

suitably distributed in order to adequately cover the measurement volume.

Each camera can track up to four IR sources (IR spots) in real time and it records

the 2D position of the IR spots (in our case a couple of passive reflective markers

at the probe extremities) in the view plane of the camera itself. Then a local-

ization algorithm implemented on the processing unit is used to estimate the 3D

coordinates of the measured point.
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The prototype of the MScMS developed at Politecnico di Torino uses low-cost IR

cameras. In order to work with passive markers, each camera is coupled with a

near IR light source as represented in Figure 4.3.

Table 4.4 summarizes the technical specifications of the sensor components.

Figure 4.3: IR sensor: an IR camera is coupled with an IR LED array to locate
passive retro-reflective targets [GMP10a].

Component Characteristic Specifications

IR camera

Interpolated resolution 1024× 768 pixels
Native resolution 128× 96 pixels
Max sample rate 100 Hz
Field of view (FOV) 45◦ × 30◦

IR light source
Nr. of LED per array 160
Peak wavelength 940 nm

Table 4.4: Technical characteristics of the sensors in the MScMS-II [GMP10b].

The overall sensor set, composed of both the IR camera and the LED array, weights

approximately 500 g and its sizes are 13× 13× 15 cm.

The IR sensor configuration has to be set according to the size and shape of the

object to be measures and the characteristics of the working environment.

Figure 4.4 represents a virtual reconstruction of the working layout with a six-

camera configuration.

The mobile probe is represented in Figure 4.5 and consists of a rod with two

passive reflective markers. Their centers are identified with the letters A and B.
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Figure 4.4: Virtual reconstruction of the working layout. The black lines represent
the camera “ field of sensing” and the pink lines identify the working volume that,
according to the triangulation principles, is the volume of intersection of the field
of sensing of at least two cameras.[GMP10a].

At one end there is a needle, whose tip, marked with V, is lined with A and B and

physically touches the measured points.

Figure 4.5: Mobile measuring probe. [GMP10a].

The passive markers are two polystyrene spheres wrapped with a retro-reflective

silver transfer film. Their dimension depends on the working volume of the mea-

suring systems and on the hardware specifications of the used instruments. For

the prototype system with the characteristics described in Table 4.4, it has been

demonstrated that two markers with diameters of 40 mm can be detected at a

maximum distance of 6 m.

The probe has a very simple design and it is light and handy. It is usually handled
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by an operator, who is free to move around the object and “touches” the points to

be measured with the probe tip. It could also be fastened to another autonomous

agent, such as ground or aerial robot. The probe is designed to allow all-around

visibility, i.e. it makes possible to reach any side of the object and measure it

without the limitations of a mechanical arm.

Referring to the notation of Figure 4.5, the spatial coordinates of the point xV =

(xV , yV , zV ), located on the probe tip, are univocally determined by the following

linear equation:

xV = xA +
(xB − xA)

∥ xB − xA ∥
· dV−A, (4.1)

where xA = (xA, yA, zA) and xB = (xB, yB, zB) are the coordinate of the reflective

markers detected by the sensors. dV−A =∥ xV−xA ∥ is known a priori as it depends

on the geometry of the probe. It has to be pointed out that a further correction

on the coordinates of V must be introduced because of the non-punctiform shape

of the tip.

The data processing system allows to acquire and elaborate data sent by each

network node. The sensor nodes and the processing unit are connected via Blue-

tooth.

The 2D coordinates of the IR spots in the view plane of each camera are trans-

mitted form the sensor network to the processing unit. As previously stated, the

IR sensors can track the IR spots in real time so the processing unit is spared the

computational effort of performing the image analysis and identifying the coordi-

nates of the IR-spot.

Since the connection is based on a Bluetooth link, the cameras are sequentially

sampled and image synchronization is needed for 3D reconstruction. This is a

critical issues as it affects the performances of the 3D reconstruction process due

to acquisition delays. For the prototype system configuration a maximum num-

ber of six-cameras for processing unit is allowed. It was also proved that with an

acquiring rate of 50 Hz the delay has a negligible influence on the measurement

results.

The processing software implements:

- layout evaluation, designing and analyzing sensor network configurations;

- system calibration, providing position, orientation and technical parameters

of sensors;

- 3D point localization;
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- data elaboration procedures.

Figure 4.6 illustrates the data processing system.

Figure 4.6: Scheme of the data processing system. The calibration procedure is
responsible for determining positions and orientations of the IR sensors within
the working environment. The localization procedure, implementing a triangula-
tion method, reconstructs the 3D coordinates of the touched point by locating the
passive markers on the measuring probe. A further step of data elaboration is
implemented to coordinate the data processing operations (acquisition and elab-
oration), according to the purpose of the measurements (single-point, distance or
geometry reconstruction). In this process, n is the number of measured points and
np is the number of points needed to perform the processing. [GMP10a].
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4.3.2 Localization algorithm and calibration

The localization problem can be stated as follows: given a camera layout, i.e. nc

cameras with known technical specifications, positions and orientations, focused

on m markers, for each m-uple of 2D pixel coordinates uij = (uij , vij), with

i = 1, ..., nc and j = 1, ...,m, the 3D coordinates of the corresponding m markers

are to be determined. Figure 4.7 gives a graphical representation of such problem

where a 4-camera setup (nc = 4) is used to reconstruct the 3D coordinates of two

markers (m = 2).

Figure 4.7: Graphical representation of the localization problem when a setup of
four cameras (nc = 4) is used to reconstruct the 3D position of two markers (m =
2). xci (with i = 1, , 4) and xMj (with j = 1, 2) refer to the 3D coordinates of the
i-th camera center and the j-th marker, respectively. Point uij represents the 2D
projection of xMj onto the image plane of the i-th camera. It corresponds to the
intersection of the camera view plane πi with the projection line of xMj (i.e., the
line passing through the 3D point and the camera center) [GMP10a].

The localization algorithm follows the fundamentals of digital photogrammetry

and can be summarized in the following two steps:

1. The correspondences among pixels in different image views are found using

epipolar geometry.

2. The 2D information of different camera views are matched in order to recover

the spatial coordinates for the 3D point using triangulation.
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For what concerns the multi-camera calibration problem, a fully automatic self-

point self-calibration technique is adopted.

A discussion of the localization and calibration problems goes beyond the pur-

pose of the present work, hence for an extensive description of these two problems

and the corresponding implemented algorithms refer to [GMP10b].

4.3.3 Uncertainty evaluation: preliminary tests results

Here we report the results of the preliminary uncertainty evaluation of 3D point

coordinates, that have been performed in order to evaluate the metrological po-

tentiality of the MScMS-II. The Multivariate Law of Propagation of Uncertainty

(MLPU) has been used for this purpose.

The main contributions to overall uncertainty of 3D point coordinates can be

summarized as follows:

- uncertainty of 2D point coordinates, which refers to the 2D pixel coordinates

of point projection in the image plane;

- uncertainty of camera calibration parameters, which is associated with the

internal and external camera parameters obtained in the calibration phase;

- camera synchronization error, which is considered negligible in static condi-

tions (consideration would be necessary for a dynamic approach, i.e. in case

of point tracking);

- uncertainty of 3D point coordinates, which can be traced back to the trian-

gulation algorithm for 3D point reconstruction;

- uncertainty of probe tip coordinates, which actually determines the uncer-

tainty of the point coordinates measured by the MScMS-II.

A set of preliminary tests has been performed in order to investigate the perfor-

mance of the overall system, including the distributed sensor network, the measur-

ing probe, and the data processing system. It has to be noted that the experimental

results are strongly related to the network configuration, in terms of number of IR

cameras, and their positions and orientations. The results reported hereafter have

been obtained by using a set of six IR cameras, arranged in a working environment

similar to the one shown in Figure 4.4. The resulting measurement volume was
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about 2.0 × 2.0 × 2.0 m wide. A sampling frequency of 50 Hz has been used for

data acquisition.

The system has been evaluated through stability, repeatability, and reproducibility

tests and characterized by a preliminary estimation of the measurement accuracy

according to the international standards (VIM - International Vocabulary of basic

and General Terms in Metrology, International Organization for Standardization,

Geneva, Switzerland, 2004).

4.4 Coordinate-Measuring Machine system

As previously mentioned, the high-resolution data are acquired with a Coordinate-

Measuring Machine, the CMM DEA Iota 0101 represented in Figure 4.8.

Figure 4.8: Coordinate-Measuring Machine CMM DEA Iota 0101 used at the
metrology laboratory of DISPEA, Torino. [Fra+10].

Such device is a more traditional and better known measuring system than the

MScMS-II system, so here we provide only a brief introduction to its main features

and working principles.
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A Coordinate-Measuring Machine (CMM) is a device for measuring the geo-

metrical characteristics of an object. The measurements are the spatial coordinates

of points on the surface of the measured object.

A CMM is typically composed by the following parts:

- a main structure, that includes a gantry type superstructure (often called a

bridge) and a working deck,

- a measuring probe, that can be tactile (i.e. mechanical probe) or non-contact

(i.e. optical or laser probe),

- an electronic system for control and data collection.

The CMM DEA Iota 0101 has overall dimensions of 1 500mm × 1 200mm ×
2 800mm and weight of 3 t ca.

Its bridge structure allows the probe to move along three axes of motion that de-

limit a measuring volume of 590mm× 590mm× 440mm.

The CMM is equipped with a motorized mechanical probe head Renishaw PH10M

that holds a steel needle, called stylus. The small ball at the end of the stylus is

made of synthetic ruby and it is characterized by high hardness. The probe moves

towards the surface of the measured object on an orthogonal direction to the sur-

face itself and the approaching speed needs to be slow enough to avoid mechanical

deformation of the surface. As the ruby ball touches the surface, the stylus deflects

and the data processing system simultaneously elaborates the coordinates of the

measured spot.

Though the CMM DEA Iota 0101 was originally manually controlled by an oper-

ator, it was later equipped with a numerical control system.

Table 4.5 summarizes the technical specifications of the CMM DEA Iota 0101.

Property Description

Measuring volume X = 590 mm
Y = 590 mm
Z = 440 mm

Length measuring uncertainty according to
VDI/VDE 2617 (2,1) guidelines in µm (in-
cluding probe head). Repeatability U96
(±2 = 95%).

U1 = 4 + 4L/1000, U3 = 4 + 5L/1000

Probe head Renishaw PH10M

Overall dimensions 1 500mm× 1 200mm× 2 800mm

Weight ca. 3 t

Table 4.5: Technical characteristics of the CMM DEA Iota 0101 used at the
metrology laboratory of DISPEA, Torino.
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The CMM is a very precise measuring system, as mechanical probes can have

resolutions with order of magnitude of 0.5µm and they are very robust [SHM00].

Furthermore, it is a numerically controlled device, so it significatively reduces the

occurrence of measurement errors caused by the operator.

Speaking in terms of Large Scale Metrology, the CMM has some main draw-

backs when compared to the MScMS-II:

- Non Portability. The CMM is extremely heavy and its large dimensions

make transportation uneasy. Usually, once it is installed at one site, it is

rarely moved.

- Limited measuring volume. The measuring volume of the CMM is limited

by the dimensions of the axes of motion and by the mechanism that handles

the probe.

- Slow acquisition speed. The CMM has long acquisition times due to the

required low approaching speed of the probe to the object and the slow

digitization speed .

- High cost. Industrial CMM with large working volumes, manufactured to

measure large-sized objects, are extremely expensive.



Chapter 5

Gaussian process models

applied to multi-resolution

Large Scale Metrology data

In the present chapter we show an application of the Bayesian Hierarchical Gaus-

sian Process (BHGP) model to a set of metrology data with the purpose of mod-

eling the surface of an object.

The same portion of the surface of a relatively small toy car was acquired with

both the Mobile Spatial Coordinate Measuring System II (MScMS-II) and the Co-

ordinate Measuring Machine (CMM) described in the previous chapter. Thus two

sets of coordinate data, or point clouds, are available.

Given the notation introduced in Chapter 2 and the different characteristics and

technological features of the two coordinate measuring systems, we are allowed to

label the data acquired with the MScMS-II as low-resolution data and the data

acquired with the CMM as high-resolution data. We point out that the combina-

tion of data from the MScMS-II and from the CMM does not reflect a real existing

need in manufacturing industry, but it rather provides a good case study to prove

how the BHGP works.

Furthermore, we are going to compare the predictive performances of different GP

models applied to the available multi resolution metrology data.

105
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5.1 Measurement activities

The measurement tests with both the MScMS-II and the CMM measuring systems

were performed at the metrology laboratory of DISPEA (Dipartimento Sistemi di

Produzione) at Politecnico di Torino.

Here we report only some information about the measured object and the

adopted procedures. All the details about the measurement activities are provided

in the technical report [Fra+10].

The measured object is the small toy car represented in Figure 5.1. Its maximum

size is 507× 350× 912 mm including the tyres but not the steering wheel.

Figure 5.1: The measured object [Fra+10].

Measurements of the surface of the car front were acquired, according to the

scheme shown in Figure 5.2. The measured portion of the hood is delimited by

the red lines and includes the windshield, the cental part of the hood and the

central part of the front bumper. The points corresponding to the spots labeled

with numerical tags were used as markers in the registration process of the point

clouds acquired with the two measuring systems.

We point out that the surface of interest is quite complex and presents several

critical spots. The central part of the hood is smooth and quite regular, but the

area where the hood and the windshield join introduces a discontinuity in the
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Figure 5.2: The detail of the measured surface of the hood and the front bumper
[Fra+10].

curvature of the surface. Furthermore the lower front of the object, where the

front bumper is, presents several changes in shape and curvature.

After the MScMS-II system was suitably calibrated, the coordinate system of

the instrument was aligned to a user-defined room coordinate system, with the help

of a reference calibrated artifact. Then 910 measurements of randomly selected

points on the surface delimited by the red lines in Figure 5.2, were acquired with

the MScMS-II system.

A coordinate-measuring machine CMM DEA Iota 0101 was used to acquire the

high resolution data. After the calibration process was completed, 1 243 points of

the surface of the hood were measured.

Ten further reference points (markers) were measured at the same positions with

both the measuring systems. Such markers will be used to register the point clouds

acquired in a unique common coordinate system.

Figure 5.3 represents the non-registered point clouds and their respective markers.
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Figure 5.3: Representation of the point clouds of the measurements acquired with
the MScMS-II system (red) and the CMM (blue). Their respective markers are
represented as black Xs and stars.
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5.2 Registration

In order to register the two sets of measurements, we use the Matlab function

procrustes on the ten reference points. Such function takes two matrices as inputs

and it determines a linear transformation that, when applied to the points in the

second matrix, conforms them to the points in the first matrix. The goodness-of-fit

criterion is the sum of squared errors.

We use procrustes in the following form:

[a, b, tr] = procrustes(rifCMM,rifIR,’Scaling’,false,’Reflection’,false);

i.e we compute the linear transformation without scaling and reflection, in order to

align the points acquired with the MScMS-II to the ones acquired with the CMM.

Figure 5.4 represents the registered point clouds.

Figure 5.4: Representation of the point clouds of the measurements acquired with
the MScMS-II system (red) and the CMM (blue) after the registration procedure
with the Matlab function procrustes.

Now that the low-resolution and high-resolution data are represented in a com-

mon coordinate system, we are ready to apply the BHGP model described in the

previous chapters.
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5.3 Justification of the application of BHGP on metrol-

ogy data

The BHGP model appears to be an adequate tool to describe metrology data for

a few reasons.

The application of the BHGP model to multi-resolution metrology data implies

that k = 2, i.e. two input variables x1 and x2 are available. As a matter of fact

our data consist of “clouds” of points that represent the 3D coordinates of the

surface of interest. Thus the input variables are the x and y coordinates of the

measured point, while the response of interest is the height (the z coordinate) of

the surface point corresponding to the given input variables.

More importantly, Gaussian process models are very popular in spatial Statis-

tics when dealing with intrinsically highly correlated data. When magnified, the

surface of an object reminds of a geographical surface. This analogy provides an

intuitive justification for the use of a spatial Statistics model to represent the sur-

face of a manufactured object [XDW07].

In Section 1.5.1 we introduced the Gaussian correlation function (1.4) for the GP

ϵl(·):

Rϕ(xj ,xm) = exp

{
−

k∑
i=1

ϕli(xji − xmi)
2

}
, j,m = 1, ..., n,

where the power exponential is set to two (because it makes the correlation func-

tion continuous and infinitely differentiable at the origin) and the scale correlation

parameters control the activity of the correlation as a decreasing function of the

distance of two points. This assumption on the correlation structure seems rea-

sonable in our case study.

Finally, we point out that we are in the caseDl∩Dh = ∅, i.e. there is no perfect

correspondence between the input points of the low-resolution data and the input-

points of the high-resolution data. As a matter of fact, the high-resolution data

were measured with a CMM, where the movements of the mechanical arm to which

the touching probe is fastened, are numerically controlled. The low-resolution data

were instead acquired using a measurement system where the probe is manually

handled by an operator. This means that there is no perfect match between the

position of the low-resolution and the high-resolution data and the adjustment

model for the HE response (2.39) cannot be directly employed. So we rely on the
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two approaches illustrated in Section 2.7.

5.4 Downsampling

A very large amount of data is available (910 MScMS-II data and 1 243 CMM

data), thus we decide to thin the data set in order reflect a more realistic situation.

Furthermore, as we explained in the previous chapter, low-resolution MScMS-II

are usually easier and quicker to acquire than the high-resolution CMM data.

In order to compare our results to the ones obtained in the paper in progress

[CP11], we work with the following data percentage configurations:

- Data configuration 1 - 50% MScMS-II data and 2% CMM data

(n = 455, n1 = 25),

- Data configuration 2 - 50% MScMS-II data and 5% CMM data

(n = 455, n1 = 62),

- Data configuration 3 - 50% MScMS-II data and 10% CMM data

(n = 455, n1 = 124).

We point out that we reduce the size of the data using the following deterministic

downsample procedure: starting from the first data, we keep one data every 1/r,

where r is the percentage of data we want to keep. In this way we are fairly sure

that our thinned data sets uniformly cover the whole surface of the hood.

The remaining CMM data (ntest = 1243−n1) in all the three data configurations

are used as testing sets for cross-validation of the prediction results computed with

the different models we are going to analyze.

Figures 5.5 represents the 3D scatter plots of the three data configuration described

above.
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Figure 5.5: Representation of the point clouds acquired with the MScMS-II (red)
and the CMM (blue) in the three data configurations.
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5.5 Application of the Bayesian Hierarchical Gaussian

Process model

In order to apply the BHGP model proposed in [QW08] (see Section 1.5.4), we

follow the same steps we thoroughly described in Chapter 3 for all the three data

configurations defined above.

We set the hyperparameters of the hyperpriors to the same values we used in

3, because they previously proved to work well.

We start with the estimation of the correlation parameters ϕl by solving the

optimization Problem (2.42).

Unfortunately some major numerical issues arise in this phase. In order to estimate

the correlation parameters of the Gaussian process ϵl, we have to maximize an

objective function that is the joint posterior distribution of such parameters. Such

objective function depends explicitly on the number of the available low-resolution

data n. As a matter of fact, n appears as a negative exponent in one of the terms

of the objective function. When n is large, as in our case, such term drops to

zero (because of the limited numerical precision of Matlab) and so does the entire

objective function.

For this reason, we cannot approximate the correlation parameters ϕl using the

posterior modes in our case study.

We overcome this issue by exploiting some of the results in [CP11].

[CP11] implements the GP model proposed in [Qia+06] (see Section 1.5.3) exploit-

ing the GPML toolbox by [RN10]. The following GP model is used:

zl(v) ∼ GP

(
β0, σ

2
z exp

{
−|v − v′|2

2ℓ2
+ σ2n∆

})
, (5.1)

where v = (x, y), β0 is the unknown mean of the GP, σ2z is the unknown variance

of the GP, ℓ is the correlation parameter (according to the notation in [RW06]), σ2n
is the unknown variance of the measurement error and ∆ is the Kronecker delta.

If we express model (5.1) accordingly to the notation used so far, it is equivalent

to the following low resolution model:

yl(xi) = βl0 + ϵl(xi) + η(xi), (5.2)
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where ϵl(·) ∼ GP (0, σ2l , ϕl), η(·) ∼ N(0, σ2η) and:

yl(·) = zl(·),

xi = v = (x, y),

βl0 = β0,

σ2l = σ2z ,

ϕl =
1

2ℓ2
,

σ2η = σ2n.

We point out that, the mean of yl(·) is a perfect plan parallel to the x−y plan and

the discrepancy between this plan and the data is modeled as a Gaussian process

with an isotropic Gaussian correlation function and an i.i.d. noise. Thus, unlike

the model we previously defined, the mean is a constant and the correlation is

assumed to be isotropic, i.e. the activity of the correlation function along both the

directions of the x and y axes is the same.

In order to proceed, we decide to apply the BHGP with the two-stage approach

for prediction, described in Section 2.7.1. This appears to be a convenient choice

at this point, because the missing low resolution data ŷl1 that we need in order to

implement the adjustment model (2.54), are readily obtainable with the function

gp from the GPML Toolbox by [RN11].

We remind again that this plug-in approach does not take into account the predic-

tion uncertainty of ŷl1 in the approximation of the posterior predictive distribution,

but only the uncertainty of the unknown parameters of the GP adjustment model.

We approximate the correlation parameters ϕρ and ϕδ using their posterior

mode and we notice how small the estimated ϕρ are:

Data configuration 1: ϕρ = (0.3329 · 10−8, 0.0941 · 10−8),

Data configuration 2: ϕρ = (0.9107 · 10−10, 0.1935 · 10−10),

Data configuration 3: ϕρ = (0.6377 · 10−6, 0.0002 · 10−6).

This implies that the Gaussian process ρ(·) is extremely highly correlated. We

suspect that the realization of scale GP ρ(·) will be very close to 1 on the whole

surface of interest.

We run the MCMC algorithm and we approximate the predictive distribution
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as we previously did in Chapter 3.

Figure 5.6 represents the 3D scatter plots of the clouds of the predicted points

and the clouds of the corresponding CMM testing points for all the three analyzed

data configurations.
Figures 5.7-5.9 display the magnitude of the prediction error ytest − ŷBHGP

h on

the shape of the interpolated predicted surface.

As we expected, the prediction error is larger where discontinuities in the curvature

of the surface are more evident.
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Figure 5.6: Representation of the clouds of the predicted points (red) and the
corresponding testing set of CMM points (blue) for all the three analyzed data
configurations.
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Figure 5.7: Interpolated error plot: it displays the magnitude of the prediction
error ytest− ŷBHGP

h on the shape of the interpolated predicted surface. Cold colors
indicate negative prediction errors, i.e. the predicted points are overestimates of
the testing measured points. Warm colors indicate positive prediction errors, i.e.
the predicted points are “impossible” as they lie under the measured surface (Data
configuration 1).
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Figure 5.8: Interpolated error plot: it displays the magnitude of the prediction
error ytest− ŷBHGP

h on the shape of the interpolated predicted surface. Cold colors
indicate negative prediction errors, i.e. the predicted points are overestimates of
the testing measured points. Warm colors indicate positive prediction errors, i.e.
the predicted points are “impossible” as they lie under the measured surface (Data
configuration 2).
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Figure 5.9: Interpolated error plot: it displays the magnitude of the prediction
error ytest− ŷBHGP

h on the shape of the interpolated predicted surface. Cold colors
indicate negative prediction errors, i.e. the predicted points are overestimates of
the testing measured points. Warm colors indicate positive prediction errors, i.e.
the predicted points are “impossible” as they lie under the measured surface (Data
configuration 3).
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5.6 Comparison of different GPmodels on multi-accuracy

metrology data

As we did in Section 3.4.1, we compare the predictive performances of different

GP models applied to the available multi-resolution metrology data.

We remind the notation we are going to use:

- “GPmodel”: universal kriging GP model (2.38) that uses the low-accuracy

data only;

- “GPmerge”: universal kriging GP model (2.38) that uses both the low-

accuracy data and the high-accuracy data as the indistinctly came from

a unique source and had the same resolution;

- “QW06”: data fusion model [Qia+06] that integrates low-accuracy and high-

accuracy data in the way described in Section 1.5.3;

- “QW08”: two-stage BHGP model [QW08] that integrates low-accuracy and

high-accuracy data in the way described in Section 2.6.

Table 5.1 summarizes the prediction results in terms of Square Root Mean

Squared Prediction Error, defined as:

SRMSPE(x∗
i ) =

√√√√ 1

ntest

ntest∑
i=1

(ytest(x∗
i )− ŷh)2. (5.3)

This indicator is more appropriate in the present case study because it allows to

quantify the prediction error as a quantity that is dimensionally comparable to the

physical distance between the true high-accuracy measure and the corresponding

predicted measure.

SRMSPE
Data configuration 1 Data configuration 3 Data configuration 3
455 MScMS-II data 455 MScMS-II data 455 MScMS-II data

25 CMM data 62 CMM data 124 CMM data
GPlowres 1.1382 1.1382 1.1382
GPmerge 1.1330 1.0879 1.0798
QW06 1.1519 1.0014 0.9973
QW08 1.1302 0.9769 0.9204

Table 5.1: Comparison of the prediction results in terms of Square Root Mean
Squared Prediction Error.



5.6 Comparison of different GP models on multi-accuracy metrology data 121

The computed SRMSPEs suggest again that models “QW06” and “QW08” pro-

vide lower MSPEs. Furthermore, the best prediction results appear to be the ones

corresponding to the third data configuration, where n1 = 124 high-accuracy data

were used to adjust the predictions computed with the low-accuracy data.

In order to draw conclusions on the matter of prediction performances, we need

to carry out some appropriate statistical tests to verify that the prediction perfor-

mances of the different methods are significatively different.

We proceed as we did in Section 3.4.1. This time we choose as a performance

indicator the Square Root Squared Prediction Error (SRSPE) at every input point

x∗
i , i = 1, ..., ntest, of the testing set (for the reason explained above):

SRSPE(x∗
i ) =

√
(ytest(x∗

i )− ŷh)2, i = 1, ..., ntest (5.4)

where ytest(·) is the measured high-resolution response used for cross-validation

and ŷh is the estimated high-resolution response at the same input point using one

of the above prediction methods.

We want to determine a suitable hypothesis testing procedure for evaluating

the statistical significance of the difference of two different prediction methods ac-

cording to some performance indicator.

Since we used the same testing set to compute the SRSPEs for each of the above

methods, a test for paired observations would be appropriate because, as we

already explained, it allows to reduce the variance by comparing the SRSPEs

“within” corresponding input points, rather than “across” different input points.

We cannot use the paired-t test because the SRSPEs are not normally distributed.

Thus we perform the non parametric One-Sample Sign Test on the pairwise dif-

ferences of the SRSMPs, because it is robust to the lack of symmetry of the distri-

bution of the differences.. Assume we want to compare “Method 1” and “Method

2”. Then two populations of SRSPEs are available, SPEMethod 1 and SPEMethod 2.

The hypotheses we need to test are:

H0: median(SPEMethod 1 − SPEMethod 2) = 0.

Vs.

H1: median(SPEMethod 1 − SPEMethod 2) ̸= 0.

We report the Minitab output corresponding to the following tests for data con-

figuration 2 and data configuration 3, because they provide the most significative

results:
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- H0: median(SPEGPlowres − SPEGPmerge) = 0

- H0: median(SPEGPlowres − SPEQW06) = 0

- H0: median(SPEGPlowres − SPEQW08) = 0

- H0: median(SPEGPmerge − SPEQW06) = 0

- H0: median(SPEGPmerge − SPEQW08) = 0

- H0: median(SPEQW06 − SPEQW08) = 0.

For data configuration 2 we obtain the following results:

Sign test of median = 0,00000 versus not = 0,00000

N Below Equal Above P Median

diff_lowres_merge 1181 442 0 739 0,0000 0,02799

diff_lowres_QW06 1181 531 0 650 0,0006 0,06414

diff_lowres_QW08 1181 495 0 686 0,0000 0,08552

diff_merge_QW06 1181 522 0 659 0,0001 0,06226

diff_merge_QW08 1181 532 0 649 0,0007 0,06792

diff_QW06_QW08 1181 573 0 608 0,3225 0,01180

The computed p-values allow us to conclude that there is no statistical evidence to

support the hypothesis that the median of all the pairwise differences is null, except

for the one corresponding to the pairwise comparison of the SRSPEs computed

with models “QW06” and “QW08”.

Table 5.2 provides the ranking for the different prediction methods we considered

according to the results of the paired Sign Tests we performed.

Pos. Method Median(SRSPE) Improvement rate
3 GPlowres 0.6025 -
2 GPmerge 0.6020 0, 1%
1∗ QW06 0.5341 11, 3%
1∗ QW08 0.5174 3, 1%

Table 5.2: Ranking of the compared prediction methods sorted by decreasing
predictive performance according to the results of the Sign Tests performed on the
differences of the SMPs (Data configuration - II).

The rates reported in the last column confirm that a significative improvement in

the prediction results is accomplished when using GP models that integrate the

low-resolution and the high-resolution data.



5.6 Comparison of different GP models on multi-accuracy metrology data 123

The Minitab output for Sign Test on the pairwise differences of the SRSMPs

computed using data configuration is:

Sign test of median = 0,00000 versus not = 0,00000

N Below Equal Above P Median

diff_lowres_merge 1119 506 0 613 0,0015 0,02169

diff_lowres_QW06 1119 454 0 665 0,0000 0,08976

diff_lowres_QW08 1119 402 0 717 0,0000 0,1046

diff_merge_QW06 1119 450 0 669 0,0000 0,08292

diff_merge_QW08 1119 385 0 734 0,0000 0,1248

diff_QW06_QW08 1119 531 0 588 0,0941 0,02661

The p-values allow us to conclude that, assuming a confidence level of 90%, the

median of the pairwise differences of the SRSPEs are statistically significative.

Table 5.2 shows the ranking of the different prediction methods according to

the results of the paired Sign Tests.

Pos. Method Median(SRSPE) Improvement rate
4 GPlowres 0.6033 -
3 GPmerge 0.5998 0, 6%
2 QW06 0.4664 22, 2%
1 QW08 0.4346 6, 8%

Table 5.3: Ranking of the compared prediction methods sorted by decreasing
predictive performance according to the results of the Sign Tests performed on the
differences of the SMPs (Data configuration - II).

The box-plots in Figure 5.10 provide a graphical representation of the results

and allow to appreciate the reduction of the prediction uncertainty when models

“QW06” and “QW08” are used.
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Figure 5.10: Box-plots of the Square Root Squared prediction Errors computed
using different GP models (Data configuration 3).

As one would expect, we observe that data configuration 3 (455 MScMS-II

data and 124 CMM data) leads to better prediction results compared to the other

data configurations.

However data configuration 3 may not be the optimal one because of the high

computational effort required for running the MCMC sampling algorithm, due to

the high dimensions of the correlation matrices of the Gaussian processes. As a

consequence data configuration 2 appears to be the best compromise between good

prediction results and reasonable computational times.

These observations make us wonder whether the MCMC approach to Bayesian

inference is really worth it in this case study, where such a large amount of data

is available. We witnessed that the method by [CP11], implemented using the

GMPL toolbox, provides good prediction results in instant computational times

if compared to the hours required by the BHGP model. The trade-off between

reasonable computational times and good predictive performance is not an easy

decision.
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5.7 Final remarks

In the present application study, we proved that the structured integration of

multiple sensor coordinate measurements using GP models “QW06” and “QW08”

significatively improves the prediction results, in comparison with the classical

universal kriging GP model by a rate that ranges from 11% to 20% in the current

case study.

We point out that the application of the BHGP model “QW08” has the major

drawback of long computational times due to the choice of using an MCMC ap-

proach.

The implemented BHGP model also exhibits some numerical issues when dealing

with a large amount of data. It has to be evaluated whether the use of Cholesky

factorization and matrix inversion lemma could help to deal with this situation.

Finally we noticed that the predictive performance of the analyzed GP model is

very sensible to the choice of the positions for the high-accuracy point. It would

be appropriate to develop a sampling technique in order to optimally select the

positions where the high accuracy points should be placed, in order to maximize

the predictive power of the model.



Conclusion

In the preceding chapters we discussed the Bayesian Hierarchical Gaussian Process

Model developed by [QW08]. Such model is used to integrate - in a structured way

- data coming from two different sources with different accuracy. The low-accuracy

data are the output of a computer experiment and the high-accuracy data come

from a more precise computer simulation or a physical experiment. In a first stage,

a Gaussian Process Model is used to fit the low-accuracy data. Then the high reso-

lution data are linked to the low resolution data using a flexible adjustment model

where two Gaussian processes perform scale and location adjustments. The def-

inition of the Bayesian model is completed once a set of prior distributions on

the unknown parameters is suitably selected. An empirical Bayesian approach is

chosen in order to ease the computational load, and the correlation parameters of

the Gaussian processes involved in the model are estimated using their posterior

modes. Then a two-stage Monte Carlo Markov Chain algorithm is used to ap-

proximate the posterior predictive distribution at new input sites. The choice of

a Bayesian framework has the main advantage of incorporating the uncertainty of

the unknown model parameters in the posterior predictive distribution.

The Bayesian Hierarchical Gaussian Process Model was then extended in order

to model the more general situation where also the low-accuracy data come from a

physical experiment. A measurement error term was included in the model for the

low-accuracy data and a series of adjustments had to be applied to the prediction

method, as a consequence of this modification.

The Bayesian Hierarchical Gaussian Process Model was then implemented in Mat-

lab and a validation study was performed in order to verify the Matlab code and

evaluate the predictive performance of the model. Cross-validation on the predic-

tion results was performed on three distinct data sets: one data set was provided

in [QW08], the other two data sets were simulated using two different methodolo-

gies. Positive results were achieved, in terms of Mean Square Prediction Error, in
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all the above situations and the model proved to work well as a predictive tool.

The extended Bayesian Hierarchical Gaussian Process Model was then applied

to a set of metrology data acquired with two instruments with different accuracy.

The data are point cloud measures of a portion of the surface of a toy car used for

test purposes. The low-resolution data are acquired with the innovative optical-

based Mobile Spatial Coordinate Measuring System II, developed at Politecnico

di Torino, Italy, and the high-resolution data are acquired with a Coordinate-

Measuring Machine.

In our case study, the combination of a large amount of low-resolution data with a

few high-resolution data using the GP models proposed in [QW08] and [Qia+06],

proved to be more effective for modeling purposes than using simpler GP models

that use low-resolution data alone or treat low-resolution and high-resolution data

as they indistinctly came from a unique source. Improvements rates, in terms of

prediction error, range from 11% to 22%.

The use of spatial Statistics models - in our case Gaussian Process models -

in multi-sensor metrology is relatively new. Working on such a broad and com-

plicated subject was a very compelling challenge. Although it allowed us to face

many different topics and appreciate the complexity and the magnitude of the

matter, many of the problems we dealt with are left for future research.

The first among all the possible future developments is the use of alternative cor-

relation functions. We assumed that the correlation structure of the Gaussian

processes involved in the Bayesian Hierarchical Gaussian Process Model is mod-

eled as a Gaussian correlation function. This choice seemed reasonable for our

case study, but it definitely is not the only possibility. There are many other form

of correlation that could work better than ours. The use of alternative correlation

functions needs to be investigated, better if using the available tools from spatial

Statistics.

The most tough topic we faced was the estimation of the correlation parameters.

In the Bayesian framework the use of the posterior mode as a point estimate is

widespread because it is usually the easiest to compute because it does not need

any integration, unlike the posterior mean or the posterior median. Posterior

mode, mean and median are equivalent for symmetric unimodal posterior distri-

butions, but, when the posterior is multimodal, estimating the parameters with

the posterior mode, could be deceiving. We relied on the posterior mode estimates

of the correlation parameters and this choice worked for us. Anyway we do not
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exclude the possibility that different estimation procedures for such parameters

could be more efficient or provide better results.

In order to overcome the problem of estimating the correlation parameters and

avoid the implications of the Bayesian empirical approach, we considered the idea

of adopting a fully Bayesian approach, but we couldn’t find an efficient implemen-

tation for our case. Putting further effort in this direction would allow our model

to take into account the uncertainty of all the unknown parameters.

Furthermore, we are not sure of how plug-in estimates of the correlation param-

eters affect prediction. We think that a sensitivity analysis, to study the effect

of small perturbations of the correlation parameters on the prediction efficiency,

could be appropriate.

The Bayesian Hierarchical Gaussian Process model is very “rich”. Besides using

a Gaussian process to fit the low-accuracy data, it includes two further Gaussian

processes in the adjustment model. It is likely that this structure could be ex-

ceedingly articulate for some applications. Thus it would be appropriate to verify

whether the use of a Gaussian Process as a scale parameter in the adjustment

model is really necessary, or a simpler constant or linear scale parameter is enough

for the application purposes.

We noticed that the predictive performance of the Bayesian Hierarchical Gaussian

Process model is very sensible to the choice of the positions for the high-accuracy

point. It would be appropriate to develop some sampling technique in order to

optimally select the positions where the high accuracy points should be placed, in

order to maximize the predictive power of the model.

Monte Carlo Markov Chain Methods, although they are a powerful approach to

Bayesian inference, usually require significative computational efforts and long

times to run. In the case of complicated inference problems, it is licit to wonder if

Markov Chain Monte Carlo Methos are really worth it. [RM07] proposes an ap-

proach to approximate marginal posterior densities using numerical deterministic

schemes, that works for many Hierarchical Gaussian Random Field models with

significative time saving.

Finally, further research efforts will be put in the development of Gaussian Pro-

cess models for applications in multi-sensor data fusion in the Metrology field, for

instance for the combination of data coming from the Mobile Spatial Coordinate

Measuring System II and other optical based system, as Structured Light.



Appendix A

Bayesian Inference and Markov

Chain Monte Carlo Sampling

In the present chapter we introduce the basics of Bayesian inference and Markov

Chain Monte Carlo techniques to carry out the Bayesian computations.

We also provide a quick overview on Hierachical Bayesian Models.

A.1 Bayesian Inference

Bayesian Inference is a branch of Statistical Inference that, in opposition to the

“frequentist” approach, combines prior information on the unknown parameters

of a population or a model to the evidence carried by observed data, using Bayes’

theorem. For our illustrative purposes, we consider the univariate case for sim-

plicity. We point out that all the following results and observations can be easily

extended to the multivariate case.

θ indicates the unknown parameter and y the observed data, described by their

likelihood function L(y|θ) = p(y|θ), i.e. a probabilistic model p(·) conditioned on

the unknown θ.

The two basic elements to perform Bayesian inference are the likelihood function

of the data L(y|θ) and a probabilistic distribution on the unknown parameter p(θ),

known as prior distribution, that describes prior beliefs or knowledge on θ.

The aim of Bayesian inference is to compute the probabilistic law that describes

the behavior of the unknown parameter given the information carried by the ob-

served data, in order to draw conclusions (or make decisions based) on θ. In other

words, the goal is to compute a conditional probabilistic distribution p(θ|y), called
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posterior distribution, that summarizes the available prior knowledge on θ and the

information carried by the data y, through the use of Bayes’ theorem.

A.1.1 Bayes’ theorem for densities

For the definition of conditional probability, the two following equalities hold:

L(y|θ) = p(y, θ)

p(θ)

p(θ|y) = p(y, θ)

p(y)
.

(A.1)

From (A.1) it directly follows that the joint density function of (θ,y) is:

p(y, θ) = L(y|θ)p(θ) = L(θ|y)p(y),

which implies:

p(θ|y) = L(y|θ)p(θ)
p(y)

. (A.2)

The density at the denominator is defined as:

p(y) =

∫
θ
L(y|θ)p(θ)dθ. (A.3)

Equation (A.2) is known as Bayes theorem for density functions and provides the

density function p(θ|y) of the posterior distribution of the unknown parameter θ

given the oserved data y.

Since the denominator of (A.2) does not depend on θ, it can be considered as a

constant. Thus the expression:

p(θ|y) ∝ L(y|θ)p(θ) (A.4)

is equivalent to (A.2) and it is known as the non-normalized posterior density

function of the parameter θ.

This set of rules represents the core of Bayesian inference.

A.1.2 Inferential analysis on the unknown parameters

The posterior distribution p(θ|y) is all we need to perform inferential analysis on

the unknown parameter θ.
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Point estimates of the parameter θ can be computed from p(θ|y). The usual

choice is some measure of centrality. Three familiar choices are the posterior mean:

θ̂ =

∫
θ
p(θ|y) dθ, (A.5)

the posterior median:

θ̂ s.t.

∫ θ̂

−∞
p(θ|y) dθ = 0.5, (A.6)

and the posterior mode:

θ̂ = arg sup
θ
p(θ|y). (A.7)

The posterior mode is the easiest to compute, because it does not need any inte-

gration (if p(θ|y) is replaced by its non-standardized form, L(y|θ)p(θ)), unlike the
posterior mean or the posterior median.

Posterior mode, mean and median are equivalent for symmetric unimodal posterior

distributions, but, when the posterior is multimodal, estimating the parameters

with the posterior mode, could be deceiving.

The posterior distribution also allows to compute interval estimations or Bayesian

credibility intervals. Suppose we can find the α/2 and (1−α/2) quantiles of p(θ|y),
i.e. qα/2 and q1−α/2 such that:∫ qα/2

−∞
p(θ|y) dθ = α

2∫ ∞

q1−α/2

p(θ|y) dθ = 1− α

2
.

(A.8)

The interval (qα/2, q1−α/2) is the 100× (1−α)% Bayesian credibility interval for θ.

Unlike the frequentist confidence interval, the Bayesian credibility interval allows

the following interpretation: the probability that θ lies in (qα/2, q1−α/2) is 1− α.

Sometimes, particularly in the case of unimodal posterior distribution, it is desir-

able to compute the Highest Posterior Density (HPD) interval, i.e. the interval

(a, b) computed by solving:

min b− a s.t

∫ b

a
p(θ|y) dθ = 1− α. (A.9)

For multimodal posterior distribution the HPD interval is more complicated to
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compute.

A.1.3 Bayesian prediction

In order to perform inference on a future observation y∗ the posterior predictive

distribution is computed:

p(y∗|y) =
∫
θ
p(y∗, θ|y) dθ =

=

∫
θ
p(y∗|y, θ)p(θ|y) dθ =

=

∫
θ
p(y∗|y, θ) p(θ)L(y|θ)∫

p(θ)L(y|θ)dθ
dθ.

(A.10)

In the first line the marginalization of the joint posterior distribution p(y∗, θ|y) is
carried out by integrating in dθ. The equality in the second line always holds for

the definition of conditional probability. The last step is a direct application of

Bayes’ theorem described in Section A.1.1.

Like we did in the previous section for the parameter θ, an inferential analysis can

be carried out for the prediction y∗ too. Point estimates and interval estimates

can be computed in the same way from the predictive distribution p(y∗|y).

The predictive distribution (A.10) points out a very important feature that

depends on the choice of adopting a Bayesian approach. The ability to attain

prediction through the definition of a probability distribution allows one to in-

corporate the uncertainty on the unknown parameters, directly in the predictive

distribution itself.

A.1.4 Choice of prior distribution

A sensible topic in Bayesian inference is the choice of an appropriate prior distri-

bution p(θ), i.e. the distribution that describes our prior knowledge or beliefs on

the unknown parameter.

The first possible choice is the use of conjugate priors, i.e. the prior and the

posterior distributions have the same parametric form. The main advantage of

conjugate priors is that they ease the computations, as they allow to compute the

integral in the posterior distribution analytically and to obtain a posterior that

has a closed known from. Unfortunately, the selection of an appropriate conjugate

prior is not always simple, as a conjugate prior does not always suitably reflect the
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prior knowledge on the unknown parameter.

The use of non-conjugate priors cause the posterior to have a different parametric

form than the prior. The advantage is that they can be chosen in order to better

reflect the prior knowledge on the parameter θ.

A particular class of non-conjugate priors is the one that includes non-informative

priors. The main feature of such prior distributions is that they express a com-

plete lack of (or very little) prior knowledge on the parameter. In some cases,

non-informative priors are improper, i.e. their density functions do not have a

finite integral. Apart from some particular cases, improper priors could lead to

improper posterior distributions, that are completely useless for inference purposes.

The main difficulty in Bayesian inference, apart from the conceptual challenge

of choosing an adequate prior, is due to the computations needed to obtain the

posterior distribution.

Once the posterior is computed, inferential analysis is carried out by solving other

integrals that involve the posterior distribution, that are usually in the form:

J = E(f(θ)|y) =
∫
θ
f(θ)p(θ|y) dθ, (A.11)

where f(θ) is a generic function of the unknown parameter.

As a consequence, Bayesian inference implies the necessity to solve complicated

integrals, especially when dealing with the multivariate case, that often cannot be

computed in closed form. In the last decades, the development of simulation-based

approaches to Bayesian analysis allowed to overcome this situation.

A very important family of simulation-based approaches is Markov Chain Monte

Carlo methods.

A.2 Markov Chain Monte Carlo sampling

Markov Chain Monte Carlo (MCMC) methods are used to approximate integrals

like the one in Equation (A.11) by drawing dependent samples generated using

Markov chains.

Markov Chains are an important class of random processes where the next state of

the chain depends only on the current state and not on the previous ones. Markov

chains used in MCMC algorithm should be ergodic, i.e. irreducible (any state of

the chain can be reached from any other state in a finite number of steps) and

aperiodic (no cyclic patterns should emerge).
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The stationary distribution of the samples is the target distribution, i.e. the dis-

tribution we want to sample from. In order to carry out correct inference, we have

to be sure that the MCMC algorithm has reached convergence, i.e. the chain used

to generate the samples has reached its steady state.

Once the chains of dependent samples have been generated, integral (A.11) is

approximated using the following Monte Carlo integration:

J = E(f(θ|y)) ≈ 1

K − k0

K∑
k=k0+1

f(θ(k)) = Ĵ . (A.12)

θ(k) are the samples generated using a Markov chain with stationary distribution

given by the posterior distribution p(θ|y) (target distribution). K is the total

number of drawn samples and k0 is the number of samples that need to be discarded

before the chain has reached its stationary distribution (burn-in period).

Important examples of MCMCmethods are the Gibbs algorithm, the Metropolis-

Hastings algorithm and the Random-Walk Metropolis algorithm. In the following

sections we will provide concise descriptions of such algorithms, besides we will il-

lustrate a modified version of the Random-Walk Metropolis algorithm for sampling

positive-valued chains.

A.2.1 Gibbs sampler

Suppose we want to sample D parameters θ = (θ1, ..., θD) from the multivariate

posterior target distribution p(θ|y) = p(θ1, ..., θD|y) given the observed data y.

The Gibbs sampler is the most powerful MCMC sampling method, as its conver-

gence is almost independent of the number of parameters D.

We assume that all the full conditional distributions defined as:

p(θd|y, θd) = p(θd|y, θ1, θ2, ..., θd−1, θd+1, ..., θD), ∀ d = 1, .., D, (A.13)

are easily obtainable from the target distribution.

The Gibbs sampling algorithm is summarized in the following steps:

• Initialize θ to the value θ(0).

• For k = 1, ...,K perform the following sequential draws of θ(k) = (θ
(k)
1 , ..., θ

(k)
D )

from their respective D full conditional distributions defined in (A.13):

1. Draw one sample of θ
(i)
1 from p(θ1|y, θ(i−1)

2 , ..., θ
(i−1)
D ).
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2. Draw one sample of θ
(i)
2 from p(θ2|y, θ(i)1 , θ

(i−1)
3 , ..., θ

(i−1)
D ).

...

D. Draw one sample of θ
(i)
D from p(θD|y, θ(i)1 , θ

(i)
2 , θ

(i)
3 , ..., θ

(i)
D−1).

It has been proven that as K → ∞, after excluding a proper number of burn-in

iterations k0, samples θ(k) = (θ
(k)
1 , ..., θ

(k)
D ), k = k0, ...,K can be viewed as they

were sampled form the target distribution p(θ1, ..., θD|y) [CG92].

For further details on the Gibbs sampler refer to [CG92], [CC07] and [Gel+03].

A.2.2 Metropolis-Hastings algorithm

Suppose we want to draw samples of θ from the posterior distribution p(θ|y), our
target distribution. In order to simplify the notation we will refer to p(θ) as the

target distribution.

The Metropolis-Hastings (MH) algorithm is summarized in the following steps:

• Initialize θ(0).

• For k = 1, ...,K:

1. Draw a proposal sample θ∗ from the transition kernel T (θ∗|θ(k−1)).

2. Accept sample θ∗, i.e. set θ(k) := θ∗, if u < α(θ(k−1), θ∗), where:

α(θ(k−1), θ∗) = min

{
T (θ(k−1)|θ∗)p(θ∗)

T (θ∗|θ(k−1))p(θ(k−1))
, 1

}
u is sampled form the distribution U(0, 1),

else: θ(k) := θ(k−1).

T (a|b) usually is the transition kernel of the Markov chain, i.e. the probabilistic

law that controls the transition from state a to state b. However the exact tran-

sition kernel of the chain is not know, thus T (·|·) indicates an arbitrarily selected

transition kernel, also called proposal distribution. α(a, b) plays the role of accep-

tance ratio and quantifies the probability that a transition from a to b is accepted.

We point out that the non-normalized posterior distribution can be used here in

place of the target distribution, because the normalization factor appears both in

the numerator and denominator of the acceptance ratio.

If we want the MH algorithm to work well, the support of the proposal density has

to be included in the support of the target density, because this condition usually
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ensures that the chain is irreducible and aperiodic. Thus the proposal distribution

needs to be suitably selected in order to have an efficient algorithm.

For further details on the Metropolis-Hastings algorithm see [CG95], [CC07] and

[Gel+03].

A.2.3 Random-Walk Metropolis algorithm

A popular choice for the transition kernel in the MH algorithm (also the one

proposed in the original Metropolis algorithm) is the symmetric transition kernel,

such that T (a|b) = T (b|a). Random Walk Metropolis (RWM) algorithm uses as a

transition kernel T (a|b) = f(|b−a|) where f(·) is a symmetric density, for instance

a (multivariate) normal distribution centered in 0.

Suppose we want to draw multivariate samples of θ from the target distribution

p(θ) = p(θ|y). In such case the RWM algorithm can be summarized as follows:

• Initialize θ(0).

• For k = 1, ...,K:

1. Sample θ∗ from the symmetric proposal distribution N(θ(k−1),Σ).

2. Accept the sample θ∗, i.e. θ(k) := θ∗, if u < α(θ(k−1),θ∗), where:

α(θ(k−1),θ∗) = min

{
p(θ∗)

p(θ(k−1))
, 1

}
u is sampled form the distribution U(0, 1),

else: θ(k) := θ(k−1).

We notice how the acceptance ratio simplifies to the ratio of the target distribution

at the proposal sample and at the previous sample. Furthermore the generated

chain is a random walk, i.e. a random process that at the next state is equal to

the current state plus a random error.

In our case the transition kernel is a multivariate normal distribution. As sug-

gested in [Gel+03] the covariance of such distribution Σ (i.e. the parameter that

controls the magnitude of the jump of the chain) should be tuned in order to have

acceptance rates between 20% and 40%. This choice guarantees an appropriate

convergence speed for the algorithm.

For further details on the RWM algorithm see [CG95] and [RS03].
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A.2.4 Modified random-walk Metropolis algorithm

Suppose we want to sample a positive-valued multivariate D-dimensional param-

eter ψ. In this case a normal transition kernel is no longer adequate, because

proposal samples could be negative. To overcome this issue we need to modify the

traditional Random-Walk Metropolis algorithm described in the previous section

so that the sampled values are always positive.

We sample the proposal value θ∗ from a normal distribution centered in the

natural logarithm of the chain at the previous iteration:

θ∗ ∼ N
(
ln(ψ(k−1)), s2

)
.

To switch back to the original scale we anti-transform the sample θ∗:

ψ∗ = exp {θ∗} .

The distribution of ψ∗, i.e the proposal distribution, is not a normal anymore.

We compute the density function of ψ∗ using the the change of variable rule (see

Appendix B.2):

X = θ∗ with density function f(X)

Y = H(X) = exp {θ∗} = ψ∗

g(Y) = f(X) det

(
dX

dY

)
= f(X)

(
D∏
i=1

ψ∗
i

)−1

Therefore the ratio of the proposal distribution that appears in the acceptance ratio

α(ψ
(k−1)
1 ,ψ∗) evaluated at each step of the Random-Walk Metropolis algorithm

is:

T (ψ
(k−1)
1 |ψ∗)

T (ψ∗|ψ(k−1)
1 )

=

(∏D
i=1 ψ

(k−1)
i

)−1

(∏D
i=1 ψ

∗
i

)−1 =

∏D
i=1 ψ

∗
i∏D

i=1 ψ
(k−1)
i

.

To avoid numerical overflow issues [Ntz09] suggests to switch to the log-scale to

compute the acceptance ratio α(ψ(k−1),ψ∗).

In conclusion, the modified Random-Walk Metropolis algorithm for sampling

positive valued parameters is summarized in the following steps:

• Initialize ψ(0).
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• For k = 1, ...,K:

1. Define θ(k−1) = ln(ψ(k−1)).

2. Sample θ∗ from the distribution N(θ(k−1),Σ).

3. Anti-transform: ψ∗ = exp{θ∗}.

4. Accept sample ψ∗, i.e. set ψ(k) := ψ∗, if u < α(ψ(k−1),ψ∗), where:

ln(α(ψ
(k−1)
1 )) = min

{
0, ln

(
p(ψ∗)

p(ψ(k−1))

∏D
i=1 ψ

∗
i∏D

i=1 ψ
(k−1)
i

)}
u is sampled form the distribution U(0, 1),

else: ψ(k) := ψ(k−1).

We finally point out that the Metropolis algorithm usually comes handy when

we need to sample from target distributions with no known form.

For instance, the Metropolis algorithm can be used in the sampling steps of the

Gibbs algorithm when some of the full conditional distributions do not have a

known form. In this situation we address it as the Metropolis-within-Gibbs algo-

rithm.

A.3 Convergence Diagnostics

When using iterative MCMC simulation algorithms such as the Gibbs sampler

or the Metropolis algorithm, we have to be reasonably sure that the number of

iterations is large enough to guarantee convergence of the sampled distribution to

the target distribution. If the number of iterations is too small the simulations

risk to be very little representative of the target distribution. Furthermore we have

to decide the number of samples to discard before the sampled chain reaches its

stationary distribution, i.e. the burn-in period.

A.3.1 Geweke convergence diagnostic

The convergence diagnostic proposed by Geweke is based on a test statistic that

uses a spectral estimate of the variance of the chain and compares the means of

two subsets of a single chain. If we cannot reject the assumption that the means of

the two subsequences of samples are equal, than the two subsequence of samples

are very likely to come from the same stationary distribution and convergence has

been achieved.
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After discarding the burn-in period we select among the remaining samples the

first nA and the last nB, usually the first 10% and the last 50% of the chain

respectively.

Then the following statistic is computed:

Z =
θA − θB√

1
nA
ŜAθ (0) +

1
nB
ŜBθ (0)

, (A.14)

where θA and θB are the sample means and ŜAθ (0) and ŜBθ (0) are estimates of

the spectral density at zero computed using the first nA and the last nB samples

respectively.

Geweke proved that Z is asymptotically distributed as a standard normal.

As a consequence Z2 is asymptotically distributed as a Chi-squared distribution

with one degree of freedom.

In order to perform the Geweke diagnostic of convergence in Matlab we used

the apm function from a version of the famous coda package for Matlab [LeS99].

CODA (Convergence Diagnostics and Output Analysis) is a suite of S functions

that provide the tools for analyzing the output of MCMC simulations.

The function apm performs the Geweke Z-test of the hypothesis of equality of the

means of the two portions of the simulated chain and the p-value of the Chi-squared

test is reported.

A.3.2 Gelman-Rubin convergence diagnostic

[Gel+03] suggests to use a multiple sequence technique to assess convergence of

iterative simulation. The convergence diagnostic developed by Gelman and Rubin,

described in [Gel+03], uses m independent parallel sequences, with m ≥ 2 and

starting points sampled from overdispersed distributions. Such method applies to

univariate MCMC sampling, so it will allow us to assess convergence for all the

sampled parameters independently to their marginal posterior distribution.

Suppose we want to make inference on a random variable using the scalar sum-

mary θ (which is a random variable itself). In our case θ is distributed according

to a target distribution (our marginal posterior distribution p(θ|y)) with mean µ

and variance σ2.

We first simulateM parallel chains of length N . In order to reduce the effect of the

starting distribution we discard the first half of the simulations, so that we are left
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with m sequences of length N0 =
N
2 . We use θij , i = 1, ..., N0 and j = 1, ...,M , to

indicate the i−th sample from the j−th chain. We compute the between-sequence

variance B and within-sequence variance W as follows:

B =
N0

M − 1

M∑
j=1

(
θ·j − θ··

)2
, (A.15)

W =
1

M

M∑
j=1

s2j , (A.16)

where:

θ·j =
1

N0

N0∑
i=1

θij ,

θ·· =
1

M

M∑
j=1

θ·j ,

s2j =
1

N0 − 1

N0∑
i=1

(
θij − θ·j

)2
.

The marginal posterior variance of θ is computed as a weighted average of B and

W :

σ̂2+ =
N0 − 1

N0
W +

B

N0
. (A.17)

This quantity is an unbiased estimate of the true variance σ2, if the starting points

of the sequences were drawn from the target distribution, but it’s an overestimate

if the starting distribution is overdispersed.

The within-sequence variance for a finiteN0 can be interpreted as an underestimate

of σ2.

Then we compute a quantity called the potential scale reduction:

R̂ =

√
σ̂2+
W
. (A.18)

It represents the factor by which the scale of the current distribution for θ might

be reduced if N0 → ∞. In order to assess convergence, R̂ has to be close to 1,

otherwise it is likely that further simulations may improve the inference on θ.

If we are making inference on the simulation of a multivariate posterior distri-

bution using an iterative algorithm as the Gibbs sampler, we have to compute the
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potential scale reduction R̂ for all the sampled chains for each parameter.

A.3.3 Brooks-Gelman convergence diagnostic

In order to assess convergence for multivariate chains an extension of the method

by Gelman and Rubin is required. Brooks and Gelman developed an extension to

the multivariate case of the previously described methodology [BG98].

We compute the within-sequence covariance matrix W and the between-sequence

covariance matrix B:

W =
1

M(N0 − 1)

M∑
j=1

N0∑
t=1

(θjt − θj·)(θjt − θj·)T , (A.19)

B

N0
=

1

M − 1

M∑
j=1

(
θj· − θ··

) (
θj· − θ··

)T
, (A.20)

The posterior covariance matrix is estimated by:

V̂ =
N0 − 1

N0
W +

(
1 +

1

M

)
B

N0
(A.21)

The potential scale reduction factor in the multivariate case is computed as:

R̂ = max
a

aT V̂ a

aTWa
. (A.22)

Brooks and Gelman prove that (A.22) is equivalent to the following:

R̂ =
N0 − 1

N0
+
M + 1

M
λ (A.23)

where λ is the largest eigenvalue of the positive definite matrix W−1 B
N0

.

A.4 Hierarchical Bayesian models

In a Hierarchical bayesian model we assume that the unknown parameter θ is

a random quantity sampled from a prior distribution p(θ|λ) where λ is called

a hyperparameter. The inferential analysis on θ is then based on the posterior

distribution:

p(θ|y, λ) = p(y, θ|λ)∫
θ p(y, θ|λ) dθ

=
L(y|θ)p(θ|λ)∫

θ L(y|θ)p(θ|λ) dθ
. (A.24)
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In practice λ is not known. So a second stage distribution called a hyperprior p(λ)

is specified. It follows that:

p(θ|y) = p(y, θ)

p(y)
=

∫
λ L(y|θ)p(θ|λ)p(λ) dλ∫
λ

∫
θ L(y|θ)p(θ|λ) dθ dλ

(A.25)

An alternative way to proceed is to estimate λ and plug its estimate λ̂ into

(A.24) and make inference on θ using the approximated posterior p(θ|y, λ̂). This

kind of approach, that integrates previously computed parameter estimates in the

Bayesian machinery, is called empirical Bayesian analysis, in opposition to the

fully Bayesian analysis required by (A.25) [BCG04].

Hierarchical modeling in the Bayesian framework allows one to completely spec-

ify complex models, and enhance their flexibility, by specifying hyperparameters

and hyperpriors.



Appendix B

Useful results

B.1 Multivariate Normal conditional distribution

Let X = (X1,X2)
T be a random vector distributed as a multivariate normal

N(µ,Σ) with:

µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(B.1)

and |Σ22| > 0. Then the conditional distribution of X1|X2 = x2 follows a normal

distribution N(µ∗,Σ∗) with mean [JW02]:

µ∗ = µ1 +Σ12Σ
−1
22 (x2 − µ2) (B.2)

and covariance matrix:

Σ∗ = Σ11 −Σ12Σ
−1
22 Σ21. (B.3)

B.2 Change of variables in density functions

Let X be an n-dimensional random variable with joint density function given by

f . If Y = H(X) where H is a differentiable bijective function then Y has a joint

density function given by:

g(Y) = f(X)

∣∣∣∣det(dXdY
)∣∣∣∣ (B.4)

where
∣∣det ( dXdY)∣∣ is the determinant of the Jacobian of the inverse of H evaluated

in Y.
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Appendix C

Posterior Calculations

C.1 Joint posterior parameters distribution (full Bayesian

approach)

The likelihood function of the HE and LE training data (yl,yh) is:

L(yh, yl|θ1,θ2,θ3) = L(yh|yl,θ1,θ2,θ3)L(yl|θ1,θ2,θ3) (C.1)

Since:

L(yh|yl,θ1,θ2,θ3) ∝
1

|Q|1/2
exp

(
−1

2
(yh − ρ0yl1 − δ01n1)

TQ−1(yh − ρ0yl1 − δ01n1)

) (C.2)

L(yl|θ1,θ2,θ3) ∝
1

|σ2lRl|1/2
exp

(
− 1

2σ2l
(yl − Flβl)

TR−1
l (yl − Flβl)

)
(C.3)

then:

L(yl,yh|θ1,θ2,θ3) ∝
1

|Q|1/2
exp

{
− 1

2vρσ2ρ
(yh − ρ0yl1 − δ01n1)

TQ−1(yh − ρ0yl1 − δ01n1)

}
×

× 1

(σ2l )
n/2|Rl|1/2

exp

{
− 1

2vlσ
2
l

(yl − Fβl)
TR−1

l (yl − Fβl)

}
(C.4)

whereQ = σ2ρWρ+σ
2
δRδ+σ

2
ϵ In1×n1 ,Wρ = A1RρA1,A1 = diag{yl(x1), ..., yl(xn1)}

and the correlation matrices Rl, Rρ and Rδ depend respectively on the unknown
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correlation parameters ϕl, ϕρ and ϕδ.

The joint prior distribution for the unknown parameters (θ1,θ2,θ3) has the

following form:

p(θ) = p(θ1,θ2)p(θ3) = p(θ1|θ2)p(θ2)p(θ3) (C.5)

where:

p(σ2l ) ∼ IG(αl, γl)

p(σ2ρ) ∼ IG(αρ, γρ)

p(σ2δ ) ∼ IG(αδ, γδ)

p(σ2ϵ ) ∼ IG(αϵ, γϵ)

(C.6)

p(βl|σ2l ) ∼ N(ul, vlI(k+1)×(k + 1)σ2l )

p(ρ0|σ2ρ) ∼ N(uρ, vρσ
2
ρ)

p(δ0|σ2δ ) ∼ N(uδ, vδσ
2
δ )

(C.7)

p(ϕli) ∼ G(al, bl)

p(ϕρi) ∼ G(aρ, bρ)

p(ϕδi) ∼ G(aδ, bδ)

∀ i = 1, ..., k.

(C.8)
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It follows that the joint posterior distribution of (θ1,θ2,θ3) is:

p(θ1,θ2|yl,yh) = p(θ)L(yl,yh|θ1,θ2,θ3) = p(θ1|θ2)p(θ2)p(θ3)L(yh|θ1,θ2,θ3) ∝

× 1

(σ2l )
n/2

exp

{
− 1

2vlσ
2
l

(βl − ul)
T (βl − ul)

}
×

× 1

(σ2ρ)
1/2

exp

{
−(ρ0 − uρ)

2

2vρσ2ρ

}
· 1

(σ2δ )
1/2

exp

{
−(δ0 − uδ)

2

2vρσ2δ

}
×

× (σ2l )
−(αl+1) exp

{
− γl
σ2l

}
· (σ2ρ)−(αρ+1) exp

{
−γρ
σ2ρ

}
×

× (σ2δ )
−(αδ+1) exp

{
− γδ
σ2δ

}
· (σ2ϵ )−(αϵ+1) exp

{
− γϵ
σ2ϵ

}
×

×
k∏
i=1

(
ϕ
(al−1)
li exp{−blϕli} · ϕ

(aρ−1)
ρi exp{−bρϕρi} · ϕ(aδ−1)

δi exp{−bδϕδi}
)
×

× 1

|Q|1/2
×

× exp

{
−1

2
(yh − ρ0yl1 − δ01n1)

TQ−1(yh − ρ0yl1 − δ01n1)

}
×

× 1

(σ2l )
n/2|Rl|1/2

exp

{
− 1

2vlσ
2
l

(yl − Fβl)
TR−1

l (yl − Fβl)

}
.

(C.9)

C.2 Joint posterior parameters distribution (empirical

Bayesian approach)

The likelihood function for the observed data is the same as (C.4) with the only

difference that we omit the dependence on the correlation parameters θ3

L(yl,yh|θ1,θ2) ∝
1

|Q|1/2
exp

{
− 1

2vρσ2ρ
(yh − ρ0yl1 − δ01n1)

TQ−1(yh − ρ0yl1 − δ01n1)

}
×

× 1

(σ2l )
n/2|Rl|1/2

exp

{
− 1

2vlσ
2
l

(yl − Fβl)
TR−1

l (yl − Fβl)

}
(C.10)

whereQ = σ2ρWρ+σ
2
δRδ+σ

2
ϵ In1×n1 ,Wρ = A1RρA1,A1 = diag{yl(x1), ..., yl(xn1)}

and the correlation matrices Rl, Rρ and Rδ depend respectively on the estimated

correlation parameters ϕ̂l, ϕ̂ρ and ϕ̂δ.
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The joint prior distribution for the unknown parameters θ1,θ2 has the form:

p(θ1,θ2) = p(θ1|θ2)p(θ2) (C.11)

where p(θ1|θ2) and p(θ2) are defined as (C.7) and (C.6).

It follows that the joint posterior distribution of (θ1,θ2) is:

p(θ1,θ2|yl,yh) = p(θ)L(yl,yh|θ1,θ2) = p(θ1|θ2)p(θ2)L(yh|θ1,θ2) ∝

× 1

(σ2l )
n/2

exp

{
− 1

2vlσ
2
l

(βl − ul)
T (βl − ul)

}
×

× 1

(σ2ρ)
1/2

exp

{
−(ρ0 − uρ)

2

2vρσ2ρ

}
· 1

(σ2δ )
1/2

exp

{
−(δ0 − uδ)

2

2vρσ2δ

}
×

× (σ2l )
−(αl+1) exp

{
− γl
σ2l

}
· (σ2ρ)−(αρ+1) exp

{
−γρ
σ2ρ

}
×

× (σ2δ )
−(αδ+1) exp

{
− γδ
σ2δ

}
· (σ2ϵ )−(αϵ+1) exp

{
− γϵ
σ2ϵ

}
×

× 1

|Q|1/2
×

× exp

{
−1

2
(yh − ρ0yl1 − δ01n1)

TQ−1(yh − ρ0yl1 − δ01n1)

}
×

× 1

(σ2l )
n/2|Rl|1/2

exp

{
− 1

2vlσ
2
l

(yl − Fβl)
TR−1

l (yl − Fβl)

}
.

(C.12)

Following the suggestion given in [QW08] a new parametrization for the vari-

ances is introduced:

(σ2l , σ
2
ρ, τ1, τ2) =

(
σ2l , σ

2
ρ,
σ2δ
σ2ρ
,
σ2ϵ
σ2ρ

)
. (C.13)

We still refer to (σ2l , σ
2
ρ, τ1, τ2) as θ2.

This new parametrization is very convenient in the perspective of the computation

of the full conditional distributions, that will be used in the Gibbs sampler.

The new joint posterior distribution for all the unknown parameters with the new

parametrization is computed with the change of variables rule described in Ap-

pendix B.2.

Thus, if X = (σ2l , σ
2
ρ, σ

2
δ , σ

2
ϵ ) and H(X) = Y =

(
σ2l , σ

2
ρ,

σ2
δ
σ2
ρ
, σ

2
ϵ
σ2
ρ

)
, then

∣∣det ( dXdY)∣∣ =
σ4ρ and the posterior distribution (C.9) with the new parametrization (C.13) be-
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comes:

p(θ1,θ2|yl,yh) ∝
1

(vlσ
2
l )
n/2

exp

{
− 1

2vlσ
2
l

(βl − ul)
TR−1

l (βl − ul)

}
×

× 1

(vρσ2ρ)
1/2

exp

{
−(ρ0 − uρ)

2

2vρσ2ρ

}
· 1

(vδτ1σ2ρ)
1/2

exp

{
−(δ0 − uδ)

2

2vρτ1σ2ρ

}
×

× (σ2l )
−(αl+1) exp

{
− γl
σ2l

}
· (σ2ρ)−(αρ+1) exp

{
−γρ
σ2ρ

}
×

× (τ1σ
2
ρ)

−(αδ+1) exp

{
− γδ
τ1σ2ρ

}
· (τ2σ2ρ)−(αϵ+1) exp

{
− γϵ
τ2σ2ρ

}
· σ4ρ×

×
k∏
i=1

(
ϕ
(al−1)
li exp{−blϕli} · ϕ

(aρ−1)
ρi exp{−bρϕρi} · ϕ(aδ−1)

δi exp{−bδϕδi}
)
×

× 1

(σ2ρ)
n1/2|M|1/2

×

× exp

{
− 1

2vρσ2ρ
(yh − ρ0yl1 − δ01n1)

TM−1(yh − ρ0yl1 − δ01n1)

}
×

× 1

(σ2l )
n/2|Rl|1/2

exp

{
− 1

2vlσ
2
l

(yl − Fβl)
TR−1

l (yl − Fβl)

}
(C.14)

where M = Wρ + τ1Rδ + τ2In1×n1 .

C.3 Full conditional distributions for the mean and

variance parameters

From the joint posterior distribution (C.14) we compute the full conditional dis-

tributions for all the mean and variance parameters.
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C.3.1 Full conditional distribution for βl

p(βl|yh,yl,βl)

∝ exp

(
− 1

2σ2l

[
(βl − ul)

T (βl − ul)

vl
+ (yl − Flβl)

TR−1
l (yl − Flβl)

])
=

= exp

(
− 1

2σ2l

[
βTl βl
vl

− 2
βTl ul
vl

+
uTl ul
vl

+

+ yTl R
−1
l yl − 2βTl F

T
l R

−1
l yl + β

T
l F

T
l R

−1
l Flβl

])
∝ exp

(
− 1

2σ2l

[
βTl βl
vl

− 2
βTl ul
vl

− 2βTl F
T
l R

−1
l yl + β

T
l F

T
l R

−1
l Flβl

])
=

= exp

(
− 1

2σ2l

[
βTl Aβl − 2βTl B

])
∝ exp

(
− 1

2σ2l

[
βTl Aβl − 2βTl AA−1B+ c− c

])
= exp

(
− 1

2σ2l

[
(βl −A−1B)TA(βl −A−1B)− c

])
where A = 1

vl
I(k+1)×(k+1) + FTl R

−1
l Fl, B = ul

vl
+ FTl R

−1
l yl and c is an arbitrary

constant vector.

βl|yh,yl,βl,θ2 ∼ N

([
1

vl
I(k+1)×(k+1)+FTl R

−1
l Fl

]−1(ul
vl

+ FTl R
−1
l yl

)
,[

1

vl
I(k+1)×(k+1) + FTl R

−1
l Fl

]−1

σ2l

)
(C.15)
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C.3.2 Full conditional distribution for ρ0

p(ρ0|yh,yl, ρ0)

∝ exp

(
− 1

2σ2ρ

[
(ρ0 − uρ)

2

vρ
+ (yh − ρ0yl1 − δ01n1)

TM−1(yh − ρ0yl1 − δ01n1)

])
∝ exp

(
− 1

2σ2ρ

[
(ρ20 − 2uρρ0)

vρ
+ yTl1M

−1yl1ρ
2
0 − 2yTl1M

−1(yh − δ01n1)ρ0

])
=

= exp

(
− 1

2σ2ρ

[
aρ20 − 2bρ0

])
∝ exp

(
− 1

2σ2ρa
−1

[
ρ20 − 2a−1bρ0 + c− c

])
=

= exp

(
− 1

2σ2ρa
−1

[
(ρ0 − a−1b)2 − c

])
where a =

(
1
vρ

+ yTl1M
−1yl1

)
, b =

(
uρ
vρ

+ yTl1M
−1(yh − δ01n1)

)
and c is an arbi-

trary constant.

ρ0|yh,yl, ρ0,θ2 ∼ N

( uρ
vρ

+ yTl1M
−1(yh − δ01n1)

1
vρ

+ yTl1M
−1yl1

,
σ2ρ

1
vρ

+ yTl1M
−1yl1

)
(C.16)

C.3.3 Full conditional distribution for δ0

p(δ0|yh,yl, δ0)

∝ exp

(
− 1

2σ2ρ

[
(δ0 − uδ)

2

vδτ1
+ (yh − ρ0yl1 − δ01n1)

TM−1(yh − ρ0yl1 − δ01n1)

])
∝ exp

(
− 1

2σ2ρ

[
(δ20 − 2uδδ0)

vδτ1
+ 1Tn1

M−11n1δ
2
0 − 2 · 1Tn1

M−1(yh − ρ0yl1)δ0

])
=

= exp

(
− 1

2σ2ρ

[
aδ20 − 2bδ0

])
∝ exp

(
− 1

2σ2ρa
−1

[
δ20 − 2a−1bδ0 + c− c

])
=

= exp

(
− 1

2σ2ρa
−1

[
(δ0 − a−1b)2 − c

])
where a =

(
1

vδτ1
+ 1Tn1

M−11n1

)
, b =

(
uδ
vδτ1

+ 1Tn1
M−1(yh − ρ0yl1)

)
and c is an

arbitrary constant.
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δ0|yh,yl, δ0,θ2 ∼ N

(
uδ
vδτ1

+ 1Tn1
M−1(yh − ρ0yl1)

1
vδτ1

+ 1Tn1
M−11n1

,
σ2ρ

1
vδτ1

+ 1Tn1
M−11n1

)
(C.17)

C.3.4 Full conditional distribution for σ2
l

p(σ2l |yh,yl, σ2l )

∝ (σ2l )
−(αl+1)

exp

(
−γl
σ2l

)
· (σ2l )−

k+1
2 exp

(
− 1

2vlσ
2
l

(βl − ul)
T (βl − ul)

)
×

× (σ2l )
−n

2 exp

(
− 1

2σ2l
(yl − Flβl)

TR−1
l (yl − Flβl)

)
∝ (σ2l )

−(n
2
+ k+1

2
+αl+1)

exp

(
− 1

2σ2l

[
(βl − ul)

T (βl − ul)

2vl
+

+
(yl − Flβl)

TR−1
l (yl − Flβl)

2
+ γl

])

σ2l |yh,yl,θ1, σ2l ∼ IG

(
n

2
+
k + 1

2
+ αl,

1

2

(βl − ul)
T (βl − ul)

vl
+

1

2
(yl − Flβl)

′R−1
l (yl − Flβl) + γl

)
(C.18)
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C.3.5 Full conditional distribution for σ2
ρ

p(σ2ρ|yh,yl, σ2ρ)

∝ (σ2ρ)
−(αρ+1) exp

(
−γρ
σ2ρ

)
· (σ2ρ)−(αδ+1) exp

(
− γδ
(σ2ρτ1)

)
×

× (σ2ρ)
−(αϵ+1) exp

(
− γϵ
(σ2ρτ2)

)
(σ2ρ)

2×

× (σ2ρ)
− 1

2 exp

(
−(ρ0 − uρ)

2

2vρσ2ρ

)
· (σ2ρ)−

1
2 exp

(
−(δ0 − uδ)

2

2vδσ2ρτ1

)
×

× (σ2ρ)
−n1

2 exp

(
− 1

2σ2ρ
(yh − ρ0yl1 − δ01n1)

TM−1(yh − ρ0yl1 − δ01n1)

)
=

=(σ2ρ)
−(αρ+1+αδ+1+αϵ+1−2+ 1

2
+ 1

2
+

n1
2
)×

× exp

(
− 1

σ2ρ

[
γρ +

γδ
τ1

+
γϵ
τ2

+
(ρ0 − uρ)

2

2vρ
+

(δ0 − uδ)
2

2vδτ1
+

+
1

2
(yh − ρ0yl1 − δ01n1)

TM−1(yh − ρ0yl1 − δ01n1)

])

σ2ρ|yh,yl,σ2ρ ∼ IG

(
n1
2

+ 1 + αρ + αδ + αϵ,
(ρ0 − uρ)

2

2vρ
+

(δ0 − uδ)
2

2vδτ1
+

+ γρ +
γδ
τ1

+
γϵ
τ2

+
1

2
(yh − ρ0yl1 − δ01n1)

′M−1(yh − ρ0yl1 − δ01n1)

)
(C.19)
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C.3.6 Full conditional distribution for (τ1, τ2)

p(τ1,τ2|yh,yl, τ1, τ2)

∝ (τ1)
−(αδ+1) exp

(
− γδ
(σ2ρτ1)

)
· (τ2)−(αϵ+1) exp

(
− γϵ
(σ2ρτ2)

)
×

× (τ1)
− 1

2 exp

(
− 1

2vδσ2ρτ1
(δ0 − uδ)

2

)
×

× 1

|M|1/2
exp

(
− 1

2σ2ρ
(yh − ρ0yl1 − δ01n1)

TM−1(yh − ρ0yl1 − δ01n1)

)
∝ τ

−(αδ+
3
2
)

1 τ
−(αϵ+1)
2 exp

(
− 1

τ1

[
γδ
σ2ρ

+
(δ0 − uδ)

2

2vδσ2ρ

]
− γϵ

(σ2ρτ2)

)
×

× 1

|M|1/2
exp

(
− 1

2σ2ρ
(yh − ρ0yl1 − δ01n1)

TM−1(yh − ρ0yl1 − δ01n1)

)
(C.20)

C.4 Full conditional distributions for the correlation

parameters

Consider the join posterior distribution of the parameters (θ1,θ2,θ3) of equation

(C.9). If we apply the re-parametrization (C.13) to the variance parameters, the

joint posterior distribution in the fully Bayesian case becomes:
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p(θ|yl,yh) ∝
1

(vlσ
2
l )
n/2

exp

{
− 1

2vlσ
2
l

(βl − ul)
TR−1

l (βl − ul)

}
×

× 1

(vρσ2ρ)
1/2

exp

{
−(ρ0 − uρ)

2

2vρσ2ρ

}
· 1

(vδτ1σ2ρ)
1/2

exp

{
−(δ0 − uδ)

2

2vρτ1σ2ρ

}
×

× (σ2l )
−(αl+1) exp

{
− γl
σ2l

}
· (σ2ρ)−(αρ+1) exp

{
−γρ
σ2ρ

}
×

× (τ1σ
2
ρ)

−(αδ+1) exp

{
− γδ
τ1σ2ρ

}
· (τ2σ2ρ)−(αϵ+1) exp

{
− γϵ
τ2σ2ρ

}
· σ4ρ×

×
k∏
i=1

(
ϕ
(al−1)
li exp{−blϕli} · ϕ

(aρ−1)
ρi exp{−bρϕρi} · ϕ(aδ−1)

δi exp{−bδϕδi}
)
×

× 1

(σ2ρ)
n1/2|M|1/2

×

× exp

{
− 1

2vρσ2ρ
(yh − ρ0yl1 − δ01n1)

TM−1(yh − ρ0yl1 − δ01n1)

}
×

× 1

(σ2l )
n/2|Rl|1/2

exp

{
− 1

2vlσ
2
l

(yl − Fβl)
TR−1

l (yl − Fβl)

}
where M = Wρ+τ1Rδ+τ2In1×n1 , Wρ = A1RρA1, A1 = diag{yl(x1), ..., yl(xn1)}
and the correlation matrices Rl, Rρ and Rδ depend respectively on the unknown

correlation parameters ϕl, ϕρ and ϕδ.

In order to apply the two-step MCMC algorithm illustrated in Section 2.1 to ap-

proximate the predictive posterior distribution, we need to generate
(
θ
(i)
1 ,θ

(i)
2 ,θ

(i)
3

)
with i = 1, ...,K from the joint posterior distribution of the unknown parameters.

We still sample the mean and variance parameters from the same full conditional

distributions computed in Appendix C.3. Plus we have to sample the correlation

parameters form the following posterior distribution:

p(θ3|yl,yh,θ1,θ2) ∝ p(θ3)L(yl,yh|θ1,θ2,θ3)

that can be split in 3k full conditional distributions (where k is the number of the

input variables) since all the correlation parameters are independent from each
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other and from (θ1,θ2):

p(ϕli|yl,yh,θ1,θ2,θ3) ∝

ϕ
(al−1)
li

1

|Rl|1/2
exp

{
−
[
blϕli +

1

2vlσ
2
l

(yl − Flβl)
TR−1

l (yl − Flβl)

]}
(C.21)

p(ϕρi|yl,yh,θ1,θ2,θ3) ∝ ϕ
(aρ−1)
ρi

1

|M|1/2
×

× exp

{
−
[
bρϕρi +

1

2vρσ2ρ
(yh − ρ0yl1 − δ01n1)

TM−1(yh − ρ0yl1 − δ01n1)

]}
(C.22)

p(ϕδi|yl,yh,θ1,θ2,θ3) ∝ ϕ
(aδ−1)
δi

1

|M|1/2
×

× exp

{
−
[
bδϕδi +

1

2vρσ2δ
(yh − ρ0yl1 − δ01n1)

TM−1(yh − ρ0yl1 − δ01n1)

]}
(C.23)

with i = 1, ..., k.

Such full conditional distributions do not allow direct sample draws, so we have to

use Metropolis-within-Gibbs algorithm. For computational convenience, to mini-

mize the number of matrix inversions and determinants at each Metropolis-within-

Gibbs iteration, it may seem reasonable to draw samples from the following two

multivariate distributions:

p(ϕl|yl,yh,θ1,θ2,ϕl) ∝
k∏
i=1

ϕ
(al−1)
li

1

|Rl|1/2
exp

{
−bl

k∑
i=1

ϕli +
1

2vlσ
2
l

(yl − Flβl)
TR−1

l (yl − Flβl)

}
(C.24)

p(ϕρ,ϕδ|yl,yh,θ1,θ2,ϕρ,ϕδ) ∝
k∏
i=1

(
ϕ
(aρ−1)
ρi ϕ

(aδ−1)
δi

)
exp

{
−bρ

k∑
i=1

ϕρi − bδ

k∑
i=1

ϕδi

}
×

× 1

|M|1/2
exp

{
− 1

2vρσ2ρ
(yh − ρ0yl1 − δ01n1)

TM−1(yh − ρ0yl1 − δ01n1)

}
.

(C.25)



Appendix D

The GPML Toolbox

The Gaussian Process for Machine Learning (GPML) Toolbox is a Matlab 7.x

(and Octave 3.2.x) implementation of a variety of Gaussian Process models for

inference and prediction, developed by Rasmussen and Nickisch. It implements

the algorithms and techniques illustrated in [RW06]. It is a very powerful and

efficient tool that allows the user to specify a large variety of model structures and

inference procedures, thanks to its modular structure.

The GPML Toolbox will come in handy at a certain point for our purposes, so here

we provide a concise description of its main functionalities and working principles.

For a complete discussion on its features refer to [RN10] and [RN11].

Gaussian processes are used to specify distributions over function without hav-

ing to stick to a specific functional form. Thus a GP prior distribution on an

unknown latent function:

f ∼ GP (mϕ(x), kψ(x,x
′)), (D.1)

is fully determined by its mean function:

mϕ(x) = E[f(x)], (D.2)

and covariance function:

kψ(x,x
′) = E[(f(x)−mϕ(x))(f(x

′)−mϕ(x
′))]. (D.3)

Both (D.2) and (D.3) depend on some unknown parameters (ϕ, ψ) that need to be

fit using the information carried by the data y through a specific likelihood func-
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tion, p(y|f). This is done by maximizing the log marginal likelihood as explained

in Chapter 5 of [RW06].

The inference techniques adopted in this phase significatively depend on the form

of the likelihood function. As shown in the previous sections, in our case we deal

only with Gaussian likelihood functions. As explained in detail in [RW06] this

eases a lot the computations because it is the only case in which it is possible to

carry out exact inference, as the analytic expressions of the marginal likelihood

and its gradient with respect to the unknown parameters are readily obtainable.

The function minimize by Rasmussen and Nickisch implements a very efficient

optimizer based on conjugate gradients and it is used to find the values of the

unknown parameters that minimize the negative log marginal likelihood.

Once the unknown parameters are suitably fit, the prior distribution (D.1) is fully

specified and the next step is the computation of predictive distributions at new

input points x0.

The function gp, updated with the estimates of the unknown parameters, com-

putes the predictions at the new inputs as the approximate marginal predictive

mean E[p(y∗|y)] and also the predictive variance V ar[p(y∗|y)].

It has to be pointed out that the approach implemented in the GPML toolbox

significatively differs from the empirical Bayesian approach illustrated in the pre-

vious sections.

So far we adopted MCMC techniques to treat all the integrals involved in the

Bayesian inference computations. In particular we used a MCMC sampling tech-

nique in order to make inference on the distributions of the of unknown parameters

(θ1,θ2) given the prior information and the information carried by the observa-

tions.

On the contrary, Rasmussen and Nickisch rely on a so-called type II Maximum

Likelihood approximation.
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